Limited Warranty

“Products manufactured by CSI are warranted by CSI to be free from defects in materials and workmanship under normal use and service for twelve months from the date of shipment unless otherwise specified in the corresponding product manual. (Product manuals are available for review online at www.campbellsci.com.) Products not manufactured by CSI, but that are resold by CSI, are warranted only to the limits extended by the original manufacturer. Batteries, fine-wire thermocouples, desiccant, and other consumables have no warranty. CSI’s obligation under this warranty is limited to repairing or replacing (at CSI’s option) defective Products, which shall be the sole and exclusive remedy under this warranty. The Customer assumes all costs of removing, reinstalling, and shipping defective Products to CSI. CSI will return such Products by surface carrier prepaid within the continental United States of America. To all other locations, CSI will return such Products best way CIP (port of entry) per Incoterms ® 2010. This warranty shall not apply to any Products which have been subjected to modification, misuse, neglect, improper service, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied. The warranty for installation services performed by CSI such as programming to customer specifications, electrical connections to Products manufactured by CSI, and Product specific training, is part of CSI's product warranty. CSI EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CSI hereby disclaims, to the fullest extent allowed by applicable law, any and all warranties and conditions with respect to the Products, whether express, implied or statutory, other than those expressly provided herein.”
Assistance

Products may not be returned without prior authorization. The following contact information is for US and international customers residing in countries served by Campbell Scientific, Inc. directly. Affiliate companies handle repairs for customers within their territories. Please visit www.campbellsci.com to determine which Campbell Scientific company serves your country.

To obtain a Returned Materials Authorization (RMA), contact CAMPBELL SCIENTIFIC, INC., phone (435) 227-9000. After an application engineer determines the nature of the problem, an RMA number will be issued. Please write this number clearly on the outside of the shipping container. Campbell Scientific’s shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#____
815 West 1800 North
Logan, Utah 84321-1784

For all returns, the customer must fill out a “Statement of Product Cleanliness and Decontamination” form and comply with the requirements specified in it. The form is available from our web site at www.campbellsci.com/repair. A completed form must be either emailed to repair@campbellsci.com or faxed to (435) 227-9106. Campbell Scientific is unable to process any returns until we receive this form. If the form is not received within three days of product receipt or is incomplete, the product will be returned to the customer at the customer’s expense. Campbell Scientific reserves the right to refuse service on products that were exposed to contaminants that may cause health or safety concerns for our employees.
Table of Contents

PDF viewers: These page numbers refer to the printed version of this document. Use the PDF reader bookmarks tab for links to specific sections.

1. General ...1

2. Specifications ...1
 2.1 Cable Length Considerations ...1

3. Wiring ..2
 3.1 General Wiring Information ...2
 3.2 Triggering Sampler ...3
 3.3 Sense Sampler Event Markers ..3
 3.4 Inhibit Sampler’s Program ...3

4. Programming ..4
 4.1 CRBasic Programming ..5
 4.1.1 Trigger Sampler ..5
 4.1.2 Sense Sampler Event ..5
 4.1.3 Inhibit Sampler’s Program6
 4.2 Edlog Programming ...7
 4.2.1 Trigger Sampler ..7
 4.2.2 Sense Sampler Event Markers8
 4.2.2.1 Pulse Port Method ..8
 4.2.2.2 CR10(X) Control Port Interrupt Method8
 4.2.3 Inhibit Sampler’s Program9

Figure
3-1. 10164 Sampler Control Cable Schematic2

Tables
3-1. Technical Details of Cable Design ...2
3-2. Datalogger Wiring for Triggering Sampler3
3-3. Datalogger Wiring for Sampler Event Marker3
3-4. Datalogger Wiring to Inhibit a Sigma Sampler Program4
3-5. Datalogger Wiring to Inhibit an Isco Sampler Program4
4-1. Wiring for CRBasic Triggering Sampler Example5
4-2. Wiring for CRBasic Sampler Event Marker Example5
4-3. Wiring for Example of Inhibiting an Isco Onboard Program6
4-4. Wiring for Example of Inhibiting a Sigma Sampler Onboard Program ...7
10164-L Sampler Control Cable for use with Isco and Sigma Autosamplers

1. General

The 10164-L sampler control cable enables a datalogger to trigger an Isco, American Sigma, or connector-compatible autosampler. Through this cable, the datalogger can inhibit the sampler from running its programmed sampling routine and sense and record when the sampler indicates that it has taken a sample. Each of these functions is independent of the others and may be combined as desired.

2. Specifications

Sample Connection: mil-spec, 6-pin circular connector (shell size 14)

Datalogger Connection: pigtail with individual conductors

Current Drain: < 1 mA; consult the specifications of the connected sampler to determine its power considerations.

Cable Length: 50 ft standard; 1000 ft maximum (see Cable Length Considerations)

2.1 Cable Length Considerations

In most applications, the 10164 cable connects the datalogger to a sampler residing in the same instrumentation shack. Therefore, a cable length of 50 ft or less is typically used.

Cable lengths up to 1000 ft are possible if the sampler supports long event markers. For example, the Isco-brand sampler has a 3 second event marker, which is an adequate duration for a 1000 ft cable length.

CAUTION

The 10164 does not include surge protection. Therefore, longer cables need to be protected from surges in order to safeguard the system from electrical transients. A recommended method of doing this is to place the cable in a metal conduit and then bury the conduit at a depth of at least one foot.
3. Wiring

3.1 General Wiring Information

FIGURE 3-1 shows a schematic of the 10164 and TABLE 3-1 shows pin connector and wire functions.

Sections 3.2 through 3.4 provide information about connecting the wires to a datalogger. The datalogger wiring depends on the function.

![FIGURE 3-1. 10164 Sampler Control Cable Schematic](image)

<table>
<thead>
<tr>
<th>Wire Color</th>
<th>Via</th>
<th>Connector Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Direct</td>
<td>D</td>
</tr>
<tr>
<td>Green</td>
<td>Direct</td>
<td>F</td>
</tr>
<tr>
<td>Purple</td>
<td>Direct</td>
<td>B</td>
</tr>
<tr>
<td>Yellow</td>
<td>Solid State Relay Circuit</td>
<td>None (controls C)</td>
</tr>
<tr>
<td>Red</td>
<td>Solid State Relay Circuit</td>
<td>C</td>
</tr>
<tr>
<td>Orange</td>
<td>20 kohm Resistor</td>
<td>E</td>
</tr>
<tr>
<td>Clear</td>
<td>Cable Shield</td>
<td>No Connection</td>
</tr>
</tbody>
</table>
3.2 Triggering Sampler

TABLE 3-2 shows the datalogger connections required to trigger the sampler.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>CR800 CR850 CR1000 CR3000</th>
<th>CR500 CR510 CR10(X)</th>
<th>CR23X 21X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>Ground</td>
<td>G</td>
<td>G</td>
<td>(\perp)</td>
</tr>
<tr>
<td>Yellow</td>
<td>Control Port (C1, C2,...)</td>
<td>Control Port (C1, C2,...)</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Power 12V</td>
<td>12V</td>
<td>12V +12</td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>Shield</td>
<td>(\perp)</td>
<td>G</td>
<td>(\perp)</td>
</tr>
</tbody>
</table>

NOTE
Insulate and tuck the unused wires out of the way.

3.3 Sense Sampler Event Markers

TABLE 3-3 shows the datalogger connections required to sense the sampler events.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>CR800 CR850 CR1000 CR3000</th>
<th>CR500 CR510 CR10(X)</th>
<th>CR23X 21X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>Ground G</td>
<td>G</td>
<td>G</td>
<td>(\perp)</td>
</tr>
<tr>
<td>Orange</td>
<td>Pulse Pulse Channel (P1, P2,...)</td>
<td>Pulse Channel (P1, P2,...)</td>
<td>Pulse</td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>Shield (\perp)</td>
<td>G</td>
<td>(\perp)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE
Insulate and tuck the unused wires out of the way.

3.4 Inhibit Sampler’s Program

Some samplers run their own program that you might want to inhibit. The wiring for inhibiting the sampler’s onboard program depends on the program’s logic. TABLE 3-4 shows the wiring for Sigma samplers that require a control port to be set high to inhibit their onboard program. TABLE 3-5 shows the wiring for Isco samplers that require a control port to be set low to inhibit their onboard program.
4. Programming

The datalogger is programmed using either CRBasic or Edlog. Dataloggers that use CRBasic include the CR800, CR850, CR1000, and CR3000. Dataloggers that use Edlog include the CR10(X), CR510, CR500, CR23X, and 21X.

With this cable, the datalogger can be programmed to:

- Trigger the sampler
- Sense and record when the sampler has taken a sample
- Inhibit the sampler from running its onboard sampling routine

Each of these functions is independent of the others and may be combined as desired.

TABLE 3-4. Datalogger Wiring to Inhibit a Sigma Sampler Program

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>CR800</th>
<th>CR500</th>
<th>CR23X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>Ground</td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>Control Port</td>
<td>Control Port (C1, C2,…))</td>
<td>Control Port (C1, C2,…))</td>
<td>Control</td>
</tr>
<tr>
<td>Clear</td>
<td>Shield</td>
<td></td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3-5. Datalogger Wiring to Inhibit an Isco Sampler Program

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>CR800</th>
<th>CR500</th>
<th>CR23X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>Ground</td>
<td></td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Control Port</td>
<td>Control Port (C1, C2,…))</td>
<td>Control Port (C1, C2,…))</td>
<td>Control</td>
</tr>
<tr>
<td>Clear</td>
<td>Shield</td>
<td></td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

Insulate and tuck the unused wires out of the way.
4.1 CRBasic Programming

4.1.1 Trigger Sampler

To trigger the sampler, the datalogger program must set the port high, delay for at least 0.5 seconds, and then set the port low.

TABLE 4-1. Wiring for CRBasic
Triggering Sampler Example

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>CR800, CR850, CR1000, or CR3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>Ground</td>
<td>✈️</td>
</tr>
<tr>
<td>Yellow</td>
<td>Control Port</td>
<td>C2</td>
</tr>
<tr>
<td>Red</td>
<td>Power</td>
<td>12V</td>
</tr>
<tr>
<td>Clear</td>
<td>Shield</td>
<td>✈️</td>
</tr>
</tbody>
</table>

For example, if control port 2 is used (see TABLE 4-1), a datalogger program that includes the following CRBasic instructions will trigger the sampler:

```
PortSet(2,1)
Delay(0,50,mSec)
PortSet(2,0)
```

NOTE

Above is only a portion of the CRBasic program.

4.1.2 Sense Sampler Event

To sense the sampler event, use the **PulseCount()** instruction with the **PConfig** parameter set to high frequency (code 0). The value stored in the variable should be totalized.

The following example program will sense the sampler events when the cable is wired to pulse channel 1 (see TABLE 4-2).

TABLE 4-2. Wiring for CRBasic
Sampler Event Marker Example

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>CR1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>Ground</td>
<td>G</td>
</tr>
<tr>
<td>Orange</td>
<td>Pulse</td>
<td>P1</td>
</tr>
<tr>
<td>Clear</td>
<td>Shield</td>
<td>✈️</td>
</tr>
</tbody>
</table>
4.1.3 Inhibit Sampler’s Program

To inhibit a sampler’s onboard program, use the `PortSet()` instruction. Whether the port should be set low or high depends on the onboard program’s logic. For samplers such as the products manufactured by Isco, the onboard program is inhibited by setting the control port low.

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
<th>CR800, CR850, CR1000, or CR3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>Ground</td>
<td>![]</td>
</tr>
<tr>
<td>Green</td>
<td>Control Port</td>
<td>C1</td>
</tr>
<tr>
<td>Clear</td>
<td>Shield</td>
<td>![]</td>
</tr>
</tbody>
</table>

For example, if the cable is wired as shown in TABLE 4-3, a datalogger program that includes the following CRBasic instruction will inhibit an Isco sampler’s onboard program:

```
PortSet(1,0)
```

NOTE

Above is only a portion of the CRBasic program.

After an Isco sampler’s program has been inhibited, it can be allowed to run by setting the port high.
For samplers such as the products manufactured by Sigma, the onboard program is inhibited by setting the control port high.

For example, if the cable is wired as shown in TABLE 4-4, a datalogger program that includes the following CRBasic instruction will inhibit a Sigma sampler’s onboard program:

\[
\text{PortSet}(1, 1)
\]

NOTE
Above is only a portion of the CRBasic program.

After a Sigma sampler’s program has been inhibited, it can be allowed to run by setting the port low.

4.2 Edlog Programming

4.2.1 Trigger Sampler

<table>
<thead>
<tr>
<th>Wire Color</th>
<th>CR10(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>G</td>
</tr>
<tr>
<td>Yellow</td>
<td>C2</td>
</tr>
<tr>
<td>Red</td>
<td>12V</td>
</tr>
<tr>
<td>Clear</td>
<td>G</td>
</tr>
</tbody>
</table>

To trigger the sampler, pulse port 2 using a set of instructions such as follows:

```
Do (P86)
1: 42  Set Port 2 High

; Note: The 50 in the third parameter keeps the
; port high for 0.5 seconds. Some users have
; reported using a delay of 1 sec (100 in
; parameter 3) to ensure reliable triggering of
; the sampler.

Excitation with Delay (P22)
1: 1  Ex Channel
2: 0  Delay W/Ex (units = 0.01 sec)
3: 50 Delay After Ex (units = 0.01 sec)
4: 0  mV Excitation

Do (P86)
1: 52  Set Port 2 Low
```
You can also supply the trigger signal from switched excitation if no control ports are available. In this case, connect the yellow cable to the desired excitation channel (say E3) and pulse the channel using Instruction 22 as follows:

<table>
<thead>
<tr>
<th>Excitation with Delay (P22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 3 EX Chan (or the channel you select)</td>
</tr>
<tr>
<td>2: 50 Delay w/EX (units=0.01sec)</td>
</tr>
<tr>
<td>3: 0 Delay after EX (units=0.01sec)</td>
</tr>
<tr>
<td>4: 2500 mV Excitation</td>
</tr>
</tbody>
</table>

4.2.2 Sense Sampler Event Markers

4.2.2.1 Pulse Port Method

<table>
<thead>
<tr>
<th>Wire Color</th>
<th>CR10(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>G</td>
</tr>
<tr>
<td>Orange</td>
<td>P1</td>
</tr>
<tr>
<td>Clear</td>
<td>G</td>
</tr>
</tbody>
</table>

To sense sampler events, use Instruction 3 with a configuration code of 0.

<table>
<thead>
<tr>
<th>Pulse (P3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 1 Reps</td>
</tr>
<tr>
<td>2: 1 Pulse Input Chan</td>
</tr>
<tr>
<td>3: 0 High Frequency (configuration code)</td>
</tr>
<tr>
<td>4: 2 Loc [:EVENTS]</td>
</tr>
<tr>
<td>5: 1 Mult</td>
</tr>
<tr>
<td>6: 0 Offset</td>
</tr>
</tbody>
</table>

To record the events in the datalogger's final storage area, remember to totalize the events temporarily stored in Input Location 2 in this example.

4.2.2.2 CR10(X) Control Port Interrupt Method

For the CR10(X), there is another useful method for sensing and recording sampler events. This method uses the control port 8/subroutine 98 interrupt feature of the CR10(X). Each time the sampler reports an event, the CR10(X) records the sample number with a time stamp in final storage. In this example, sampler events will show up as output arrays with an array ID of 400.

<table>
<thead>
<tr>
<th>Wire Color</th>
<th>CR10(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>G</td>
</tr>
<tr>
<td>Orange</td>
<td>C8</td>
</tr>
<tr>
<td>Clear</td>
<td>G</td>
</tr>
</tbody>
</table>

CR10(X) Program (Subroutine 98 in Program Table 3)

```
* 3 Table 3 Subroutines
1: Beginning of Subroutine (P85)
1: 98 Subroutine Number
2: Z=Z+1 (P32)
1: 10 Z Loc [ Sample_No ]
```
3: Do (P86)
 1: 10 Set high Flag 0 (output flag)

4: Set Active Storage Area (P80)
 1: 1 Final Storage Area 1
 2: 400 Array ID or location

5: Real Time (P77)
 1: 1110 Year, Day, Hour-Minute

6: Sample (P70)
 1: 1 Reps
 2: 10 Loc [Sample_No]

7: End (P95) ; of Subroutine Number 98
End Table 3

4.2.3 Inhibit Sampler's Program

<table>
<thead>
<tr>
<th>Wire Color</th>
<th>CR10(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purple</td>
<td>G</td>
</tr>
<tr>
<td>(Isco) Green</td>
<td>C1</td>
</tr>
<tr>
<td>(Sigma) Brown</td>
<td>C1</td>
</tr>
<tr>
<td>Clear</td>
<td>G</td>
</tr>
</tbody>
</table>

To inhibit an Isco sampler from running its own program, set control port 1 low using a program control instruction such as Instruction 86. To allow the sampler to run its program, set it high.

NOTE

The logic for Sigma samplers is just the opposite. A high signal inhibits the sampler.

Example for inhibiting an Isco sampler's program:

Do (P86)
1: 51 Set Port 1 low ; (41 would set it high)
Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES
www.campbellsci.com • info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)
PO Box 2450
Somerset West 7129
SOUTH AFRICA
www.csafrica.co.za • cleroux@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 8108
Garbutt Post Shop QLD 4814
AUSTRALIA
www.campbellsci.com.au • info@campbellsci.com.au

Campbell Scientific (Beijing) Co., Ltd.
8B16, Floor 8 Tower B, Hanwei Plaza
7 Guanghua Road
Chaoyang, Beijing 100004
P.R. CHINA
www.campbellsci.com • info@campbellsci.com.cn

Campbell Scientific do Brasil Ltda. (CSB)
Rua Apinagés, nbr. 2018 — Perdizes
CEP: 01258-00 — São Paulo — SP
BRASIL
www.campbellsci.com.br • vendas@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)
14532 – 131 Avenue NW
Edmonton AB T5L 4X4
CANADA
www.campbellsci.ca • dataloggers@campbellsci.ca

Campbell Scientific Centro Caribe S.A. (CSCC)
300 N Cementerio, Edificio Breller
Santo Domingo, Heredia 40305
COSTA RICA
www.campbellsci.cc • info@campbellsci.cc

Campbell Scientific Ltd. (CSL)
Campbell Park
80 Hathern Road
Shepshed, Loughborough LE12 9GX
UNITED KINGDOM
www.campbellsci.co.uk • sales@campbellsci.co.uk

Campbell Scientific Ltd. (CSL France)
3 Avenue de la Division Leclerc
92160 ANTONY
FRANCE
www.campbellsci.fr • info@campbellsci.fr

Campbell Scientific Ltd. (CSL Germany)
Fahrenheitstraße 13
28359 Bremen
GERMANY
www.campbellsci.de • info@campbellsci.de

Campbell Scientific Spain, S. L. (CSL Spain)
Avda. Pompeu Fabra 7-9, local 1
08024 Barcelona
SPAIN
www.campbellsci.es • info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or international representative.