
IN
ST

R
U

C
T

IO
N

 M
A

N
U

A
L

CR9000 Measurement and
Control System

Revision: 5/05

C o p y r i g h t (c) 1 9 9 5 - 2 0 0 5
C a m p b e l l S c i e n t i f i c , I n c .

Warranty and Assistance
The CR9000 MEASUREMENT AND CONTROL SYSTEM is warranted
by CAMPBELL SCIENTIFIC, INC. to be free from defects in materials and
workmanship under normal use and service for thirty-six (36) months from
date of shipment unless specified otherwise. Batteries have no warranty.
CAMPBELL SCIENTIFIC, INC.'s obligation under this warranty is limited to
repairing or replacing (at CAMPBELL SCIENTIFIC, INC.'s option) defective
products. The customer shall assume all costs of removing, reinstalling, and
shipping defective products to CAMPBELL SCIENTIFIC, INC. CAMPBELL
SCIENTIFIC, INC. will return such products by surface carrier prepaid. This
warranty shall not apply to any CAMPBELL SCIENTIFIC, INC. products
which have been subjected to modification, misuse, neglect, accidents of
nature, or shipping damage. This warranty is in lieu of all other warranties,
expressed or implied, including warranties of merchantability or fitness for a
particular purpose. CAMPBELL SCIENTIFIC, INC. is not liable for special,
indirect, incidental, or consequential damages.

Products may not be returned without prior authorization. The following
contact information is for US and International customers residing in countries
served by Campbell Scientific, Inc. directly. Affiliate companies handle
repairs for customers within their territories. Please visit
www.campbellsci.com to determine which Campbell Scientific company
serves your country. To obtain a Returned Materials Authorization (RMA),
contact CAMPBELL SCIENTIFIC, INC., phone (435) 753-2342. After an
applications engineer determines the nature of the problem, an RMA number
will be issued. Please write this number clearly on the outside of the shipping
container. CAMPBELL SCIENTIFIC's shipping address is:

 CAMPBELL SCIENTIFIC, INC.
 RMA#_____
 815 West 1800 North
 Logan, Utah 84321-1784

CAMPBELL SCIENTIFIC, INC. does not accept collect calls.

i

CR9000 Table of Contents

Overview... OV-1
OV1. Physical Description ..OV-1

OV1.1 Basic System ...OV-1
OV1.2 Measurement Modules ..OV-3
OV1.3 Communication Interfaces ..OV-8

OV2. Memory and Programming Concepts ..OV-9
OV2.1 Memory ...OV-9
OV2.2 Measurements, Processing, Data Storage..............................OV-9
OV2.3 Data Tables..OV-10

OV3. PC9000 Application Software ...OV-10
OV3.1 Hardware and Software Requirements................................OV-11
OV3.2 PC9000 Installation...OV-11
OV3.3 PC9000 Software Overview..OV-11

OV4. Specifications...OV-14

1. Installation...1-1
1.1 Enclosure .. 1-1

1.1.1 Connecting Sensors... 1-1
1.1.2 Quick Connectors ... 1-1
1.1.3 Junction Boxes.. 1-2

1.2 System Power Requirements and Options.. 1-3
1.2.1 Power Supply and Charging Circuitry .. 1-3
1.2.2 Connecting to Vehicle Power Supply ... 1-6
1.2.3 Solar Panels... 1-7
1.2.4 External Battery Connection... 1-7
1.2.5 Safety Precautions... 1-8

1.3 Humidity Effects and Control... 1-8
1.3.1 Desiccant... 1-8
1.3.2 Nitrogen Purging... 1-8

1.4 Recommended Grounding Practices... 1-9
1.4.1 Protection from Lightning... 1-9
1.4.2 Effect on Measurements: Common Mode Range 1-9

1.5 Use of Digital Control Ports for Switching Relays............................. 1-10

2. Data Storage and Retrieval2-1
2.1 Data Storage in CR9000 ... 2-1

2.1.1 Internal Static Ram.. 2-1
2.1.2 Internal Flash Memory.. 2-1
2.1.3 9080 PAM Module — PCMCIA PC Card.................................. 2-2

2.2 Internal Data Format... 2-2
2.3 Data Collection ... 2-3

2.3.1 The Collect Menu ... 2-4
2.3.2 RealTime Write File.. 2-6
2.3.3 Logger Files Retrieve.. 2-7
2.3.4 Via PCMCIA PC Card.. 2-8

CR9000 Table of Contents

ii

2.4 Data Format on Computer... 2-9
2.4.1 Header Information ... 2-9
2.4.2 TOA5 ASCII File Format ... 2-11
2.4.3 TOB1 Binary File Format ... 2-12
2.4.4 TOB2 Binary File Format ... 2-12

3. CR9000 Measurement Details................................. 3-1
3.1 Measurements using the CR9041 A/D.. 3-1

3.1.1 Analog Voltage Measurement Sequence 3-1
3.1.2 Single Ended and Differential Voltage Measurements 3-3
3.1.3 Signal Settling Time.. 3-6
3.1.4 Thermocouple Measurements ... 3-7
3.1.5 Bridge Resistance Measurements.. 3-14
3.1.6 Measurements Requiring AC Excitation................................... 3-16
3.1.7 Influence of Ground Loop on Measurements 3-16

3.2 CR9058E Isolation Module Measurements .. 3-17
3.2.1 CR9058E Supported Instructions.. 3-18
3.2.2 CR9058E Sampling, Noise and Filtering 3-20

3.3 CR9052 Filter Module Measurements .. 3-22
3.4 Pulse Count Measurements ... 3-25

4. CRBASIC - Native Language Programming 4-1
4.1 Format Introduction .. 4-1

4.1.1 Mathematical Operations .. 4-1
4.1.2 Measurement and Output Processing Instructions 4-1
4.1.3 Inserting Comments Into Program .. 4-2

4.2 Programming Sequence .. 4-2
4.3 Example Program.. 4-3

4.3.1 Data Tables.. 4-4
4.3.2 The Scan — Measurement Timing and Processing 4-5

4.4 Numerical Entries ... 4-6
4.5 Logical Expression Evaluation ... 4-7

4.5.1 What is true? ... 4-7
4.5.2 Expression Evaluation... 4-7
4.5.3 Numeric Results of Expression Evaluation................................. 4-7

4.6 Flags.. 4-8
4.7 Parameter Types.. 4-8

4.7.1 Expressions in Parameters... 4-9
4.7.2 Arrays of Multiplier Offsets for Sensor Calibration 4-9

4.8 Program Access to Data Tables .. 4-9

5. Program Declarations.. 5-1

6. Data Table Declarations and Output
Processing Instructions..................................... 6-1

6.1 Data Table Declaration ... 6-1
6.2 Trigger Modifiers.. 6-2
6.3 Export Data Instructions ... 6-8
6.4 Output Processing Instructions ... 6-9

CR9000 Table of Contents

iii

7. Measurement Instructions7-1
7.1 Voltage Measurements ... 7-3
7.2 Thermocouple Measurements... 7-3
7.3 Half Bridges.. 7-6
7.4 Full Bridges .. 7-9
7.5 Excitation/Continuous Analog Output ... 7-10
7.6 Self Measurements.. 7-11
7.7 Peripheral Devices .. 7-12
7.8 Digital I/O... 7-21
7.9 CR9052DC Filter Module Measurements .. 7-26

8. Processing and Math Instructions8-1

9. Program Control Instructions..................................9-1

A. Keywords and Predefined Constants.................... A-1

Index ... Index-1

CR9000 Table of Contents

iv

This is a blank page.

OV-1

Overview
The CR9000 is a modular, multi-processor system that provides precision measurement
capabilities in a rugged, battery-operated package. The system makes measurements at a
rate of up to 100 K samples/second with 16-bit resolution. Higher sample rates and
resolutions can be attained using some of our higher end modules (CR9052E filter module,
or the CR9058E isolation module). The CR9000 Base System includes CPU, power
supply, and A/D modules. Up to nine I/O modules are inserted to configure a system for
specific applications. The on-board, BASIC-like programming language includes data
processing and analysis routines. PC9000 Windows™ Software provides program
generation and editing, data retrieval, and realtime monitoring.

CR9000

AC ADAPTOR

FIGURE OV1-1. CR9000 Measurement and Control System

OV1. Physical Description

OV1.1 Basic System

CR9031 CPU Module

The CR9031 CPU Module provides system control, processing, and
communication to a PC via Transputer Link (TLINK) and fiber optic. The
main processor is a 32-bit Inmos T805 Transputer. The module has 2MB
static RAM and 2MB Flash EEPROM.

CR9000 Overview

OV-2

9031 CPU

FIBER OPTIC

LINK IN

FIBER OPTIC

LINK OUT TLINK

MADE IN USA

FIGURE OV1-2. CR9031

CR9041 A/D and Amplifier Module

The CR9041 A/D and Amplifier Module provides signal conditioning and 16
bit, 100 kHz A/D conversions.

9041 A D

CR9000
MEASUREMENT & CONTROL SYSTEM

LOGAN, UTAH MADE IN USA

FIGURE OV1-3. CR9041

CR9011 Power Supply Module and AC Adapter

The CR9011 Power Supply Module provides regulated power to the CR9000
from the internal battery modules. It also regulates battery charging from
power supplied by the AC adapter, a DC input, or other external sources. The
AC adapter may be used where AC power is available (100 - 240 volts) to
provide power to the CR9000 and charge its batteries.

The CR9011 has a relay that allows shutting off power under program control.
The Power Up inputs allow an external signal to awaken the CR9000 from a
powered down state (PowerOff, Section 9). When the CR9000 is in this power
off state the ON Off switch is in the on position but the internal relay is open.
The power LED is not lit. If the "<0.5 " input is switched to ground or if the
">2" input has a voltage greater than 2 volts applied, the CR9000 will awake,
load the program in memory and run. If the "< 0.5" input continues to be held
at ground while the CR9000 is powered on and goes through its 2–5 second
initialization sequence, the CR9000 will not run the program in memory.

MEASUREMENTS:

Battery (voltage and current)

CONTROL:

PowerOff

CR9000 Overview

OV-3

9011 POWER SUPPLY

POWER
ON OFF CHARGE(9-18VDC)

<0.8V

CHARGE

>2.0V

12VOUT POWER UP

MADE IN USA

FIGURE OV1-4. CR9011

OV1.2 Measurement Modules

CR9050(E) Analog Input Module

The CR9050(E) Analog Input Module has 14 differential or 28 single-ended
inputs for measuring voltages up to ±5 V. Voltages exceeding ±9 V may cause
errors on other channels. An on-board PRT provides the reference temperature
for thermocouple measurements, while a heavy copper grounding bar and
connectors combine with the case design to reduce temperature gradients for
accurate thermocouple measurements. Resolution on the most sensitive range
is 1.6 µV.

MEASUREMENTS:

Voltage
Differential Voltage (VoltDiff)
Single-Ended Voltage (VoltSE)

Thermocouple, Differential Voltage (TCDiff) Thermocouple, Single-Ended
Voltage (TCSE)

Bridge measurements (also require CR9060 Excitation Module)
Full Bridge (BrFull)
6 Wire Full Bridge (BrFull6W)
Half Bridge (BrHalf)
3 Wire Half Bridge (BrHalf3W)
4 Wire Half Bridge (BrHalf4W)

Module Temperature (ModuleTemp)

9050 ANALOG INPUT W RTD

SE

DIF
1

1

H

2

L
2

3

H

4

L
3

5

H

6

L
4

7

H

8

L
5

9

H

10

L
6

11

H

12

L
7

13

H

14

L
8

15

H

16

L
9

17

H

18

L
10

19

H

20

L
11

21

H

22

L
12

23

H

24

L
13

25

H

26

L
14

27

H

28

L

MADE IN USA

FIGURE OV1-5. CR9050

CR9051E Fault Protected 5V Analog Input Module

The number of channels and measurements are the same as for the CR9050
Analog Input Module. Each input channel is fault-protected so as to permit
over-voltages between +50 V and –40 V without corruption of measurements
on other input channels. All the CR9051E input channels become open
switches when the CR9000 is powered off. The CR9051E is recommended

CR9000 Overview

OV-4

over the CR9050E for applications where fault voltages beyond ±9 V could
come in contact with the inputs, or when the CR9000 could be powered off
while still connected to sensors that have power applied to them.

CR9051E FAULT MADE IN USA

CR9050EC
5V ANALOG INPUT CONNECTOR FOR CR9050E OR CR9051E MADE IN USA

FIGURE OV1-6. CR9051E

CR9052DC Anti-Alias Filter Module with DC Excitation

The CR9052DC is a high-performance anti-alias filter module that extends the
capability of the CR9000 Measurement and Control System. The module
includes six anti-aliased analog measurement channels with differential input
ranges from ±20 mV to ±5 V. Each input channel has current and voltage
excitation options. Measurement rates up to 50 kHz per channel are possible.

MEASUREMENTS:

VoltFilt
FFTFilt

CR9052DC MADE IN USA

CR9052EC
FILTER MODULE CONNECTOR DC EXCITATION MADE IN USA

FIGURE OV1-7. CR9052DC

CR9052IEPE Anti-Alias Filter Module with DC Excitation

The The CR9052IEPE module allows direct connection of Internal Electronics
Piezo-Electric (IEPE) accelerometers and microphones to CR9000- or
CR9000X-series dataloggers. Each CR9052IEPE includes six channels. Each
channel has a BNC connector, an open circuit indicator LED, and a short
circuit indicator LED which can indicate if the channel is over-or under-driven.
Each channel has a built-in constant current source which is software
programmable to 0, 2, 4, or 6 mA.

MEASUREMENTS:

VoltFilt
FFTFilt

CR9000 Overview

OV-5

CR9052IEPE MADE IN USA

OPEN

CH 1

SHORT

OPEN

CH 2

SHORT

OPEN

CH 3

SHORT

OPEN

CH 4

SHORT

OPEN

CH 5

SHORT

OPEN

CH 6

SHORT

FIGURE OV1-8. CR9052IEPE

CR9058E Isolation Module

The CR9058E is a 10 channel, differential input isolation module. Each
channel has a 24 bit A/D converter which supplies input isolation for up to ±60
V continuous common mode voltage conditions. The full scale ranges
available are ±60 V, ±20 V, and ±2 V with a resolution to 2 µVolts. Due to its
superb signal to noise ratio, and good resolution, an accurate thermocouple
measurement can be made on the 2 Volt range code. An on-board
programmable DSP provides digital filtering.

MEASUREMENTS:

VoltDiff
TCDiff

CR9058E 60V ISOLATED ANALOG INPUT MODULE W/RTD MADE IN USA

CR9058EC
60V ISOLATED ANALOG INPUT CONNECTOR FOR CR9058E MADE IN USA

FIGURE OV1-9. CR9058

CR9055 50-Volt Analog Input Module

The CR9055 50-Volt Analog Input Module has 14 differential or 28 single-
ended inputs for measuring voltages up to ± 50 V. Resolution on the most
sensitive range is 16 µV. The CR9055 has a common mode range of ± 50 V.

MEASUREMENTS:

Voltage
Differential Voltage (VoltDiff)
Single-Ended Voltage (VoltSE)

Normally thermocouple measurements would be made on the CR9050 Analog
Input Module (±5 Volt) because of its greater resolution, however they can be
made on the CR9055 if the ±50 V common mode range is necessary.

Thermocouple, Differential Voltage (TCDiff)
Thermocouple, Single-Ended Voltage (TCDiff)

CR9000 Overview

OV-6

9055 50V ANALOG INPUT

SE

DIF
1

1

H

2

L
2

3

H

4

L
3

5

H

6

L
4

7

H

8

L
5

9

H

10

L
6

11

H

12

L
7

13

H

14

L
8

15

H

16

L
9

17

H

18

L
10

19

H

20

L
11

21

H

22

L
12

23

H

24

L
13

25

H

26

L
14

27

H

28

L

MADE IN USA

FIGURE OV1-10. CR9055

CR9060 Excitation Module

The CR9060 Excitation Module has six continuous analog outputs with
individual digital-to-analog converters for PID Algorithm, waveform
generation, and excitation for bridge measurements. Ten switched excitation
channels provide precision voltages for bridge measurements. Each analog
output will provide up to 50 mA between ±5 V. Also includes eight digital
control outputs (0 V low, 5 V high).

MEASUREMENTS:

Excite
PortSet

Full Bridge (BrFull)
6 Wire Full Bridge (BrFull6w)
Half Bridge (BrHalf)
3 Wire Half Bridge (BrHalf3W)
4 Wire Half Bridge (BrHalf4W)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 3 6 82 4 5 7

9060 EXCITATION C.A.O. SWITCHED EXCITATION DIGITAL CONTROL OUTPUT
MADE
IN USA

FIGURE OV1-11. CR9060

CR9070 Counter - Timer / Digital I/O Module — Obsolete

Features 12 channels capable of high-level (5 V square wave) pulse counting at
frequencies up to 5 MHz. Four channels can also count switch closures; the
other eight can count low-level A/C signals. In addition, there are 16
independent digital I/O channels for digital control, communications, and
triggering.

MEASUREMENTS:

Count Pulses or frequency (PulseCount)
Read state of I/O Channels (ReadI/O)
Write to I/O Channels (WriteI/O)

CR9000 Overview

OV-7

9070 COUNTER & DIGITAL I O

1 2
DIGITAL I/O

4 5 7 8 9 10 12 13 15 16 1 2 3 4 5 6 7 8 9 10 11 12

MADE IN USA

3 6 11 14
LOW LEVEL AC SWITCH CLOSURRE

FIGURE OV1-12. CR9070

CR9071E Counter and Digital I/O Module

Features 12 channels capable of high-level (5 V square wave) pulse counting at
frequencies up to 1 MHz. The pulse channels can also do interval timing
measurements with 40 ηs resolution. Four channels can also count switch
closures; the other eight can count low-level A/C signals. In addition, there are
16 independent digital I/O channels for digital control, communications, and
triggering.

MEASUREMENTS:

Count Pulses or frequency (PulseCount)
Read state of I/O Channels (ReadI/O)
Write to I/O Channels (WriteI/O)
Interval and Timing Measurements (TimerI/O)

CR9071E COUNTER MADE IN USA

CR9071EC
COUNTER & DIGITAL I/O MADE IN USA

FIGURE OV1-13. CR9071E

Data Storage Peripheral and Memory Module
Contains slots for two type I/II PCMCIA cards or one type III PCMCIA card.
A 9-pin serial I/O port supports CSI peripherals. The LEDs indicate the status
of the cards in slots A and B. Not lit: no card detected, green: present and
correctly formatted, red: present but corrupt or unrecognized, orange:
accessing the card. Press the button next to the status LED to power down a
card before removing it. The LED will blink green several times then go out
for ten seconds. Remove the card while the LED is not lit. The card will be
reactivated if not removed.

Removing a card while it is active can cause garbled data
and can actually damage the card. Do not switch off the
power (CR9011 Module) while the cards are present and
active.

MEASUREMENTS:

Output data to PAM (PAMOut)
DSP4 Display (DSP4)
CSAT3 Sonic Anemometer (CSAT)

CAUTION

CR9000 Overview

OV-8

9080 PERIPHERAL AND MEMORY

CSI SERIAL I O

A

B

STATUS AND CONTROL

TOP OF CARDS FACE UPCARD A CARD B

MADE IN USA

FIGURE OV1-14. CR9080

OV1.3 Communication Interfaces

TL925 RS232-TLINK Interface

The TL925 CR9000 to Computer Interface converts RS232 signals from the
computer into a transputer link for the CR9000. The TLINK cable can be up
to 30 meters long.

Logan Utah

TL925
CR9000 TO RS232 SERIAL INTERFACE

MADE IN USA

C
R

90
00

 /
R

S
42

2

C
O

M
P

U
T

E
R

 / R
S

232
S/N: 0004

FIGURE OV1-15. TL925

BLC100 Bus Link Card and Fiber Optic Link Interface — Obsolete

The BLC100 is an interface board that plugs into a half-length card slot (AT
bus) in the user's computer. It can be used for either TLINK (8 wire, up to 30
meters) or for fiber optic (separate transmit and receive) communications.
Communication rates up to 10 MBPS can be attained.

IN

O
U

T

T
LIN

K

T
LIN

K

FIGURE OV1-16. BLC100 Bus Link Card

CR9000 Overview

OV-9

PLA100-L Parallel Link Interface

The PLA100-L converts a parallel port on a computer to a TLINK for
communication with the CR9000.

CONNECT TO PC
TB300C

PN: 50-100300-001

SN: TB300-238

FIGURE 0V1-17. PLA100-L Parallel Link Interface

OV2. Memory and Programming Concepts

OV2.1 Memory
The CR9031 CPU Module in the CR9000 base system has 2MB static RAM
and 2MB Flash EEPROM. The static RAM allows fast read write cycles (150
ηs). The Flash EEPROM is much slower to write to (15 µs minimum) but it
retains its information when power is shut off. The operating system and user
program listing(s) are stored in the flash EEPROM. When the CR9000 is
powered up, the operating system and the compiled program are loaded into
RAM. The memory that is not used by the operating system and program is
available for data storage. The size of available memory may be seen in the
status file. Additional data storage is available with the 9080 PAM Module.

OV2.2 Measurements, Processing, Data Storage
The CR9000 divides datalogging and control between two entities. The task
sequencer manipulates the measurement and control hardware on a rigidly
timed sequence. The main processor, an Inmos T805 Transputer, processes
and stores the resulting measurements and makes the decisions to actuate
controls.

The Transputer is a 32-bit processor that has parallel processing capabilities.
Four communication links allow rapid transfer of data with little processor
time. One link is used to transfer data to and from intelligent modules in the
CR9000 (e.g., the PAM module). One link is used for TLINK
communications and another for the fiber optic link. The forth link gives the
task sequencer direct memory access (DMA) to store raw Analog to Digital
Converter (ADC) data directly into transputer memory. As soon as the data
from a scan is in memory, the transputer starts processing it. There are two
buffers allocated for this raw ADC data, thus the transputer can be busy full
time processing one scan of data while the task sequencer is filling the other.

CR9000 Overview

OV-10

The transputer directly controls the 9070/CR9071E Counter and Digital I/O
Module.

The task sequencer is a combination of components that include memory, a
Xylinx Programmable Gate Array (i.e., a CSI customized chip), and the digital
bus. When a program is compiled by the transputer, it loads the task sequencer
memory with a series of instructions that define the sequence and timing of the
measurements. This control includes channel and gain switching and ADC
control that is done in our other dataloggers by the CPU. When the program
runs, the task sequencer steps through the instructions at a precise rate,
ensuring that the measurement timing is exact and invariant.

Transputer: Task sequencer:

OV2.3 Data Tables
The CR9000 can store individual measurements or it may use its extensive
processing capabilities to calculate averages, maxima, minima, histograms,
FFTs, etc., on periodic or conditional intervals. Data are stored in tables such
as listed in Table OV2-1. The values to output are selected when running the
program generator or when writing a datalogger program directly.

Table OV2-1. Typical Data Table

TOA4 StnName Temp
TIMESTAMP RECORD RefTemp_Avg TC_Avg(1) TC_Avg(2) TC_Avg(3) TC_Avg(4) TC_Avg(5) TC_Avg(6)
TS RN DegC DegC DegC degC degC degC degC
 Avg Avg Avg Avg Avg Avg Avg
1995-02-16 15:15:04.61 278822 31.08 24.23 25.12 26.8 24.14 24.47 23.76
1995-02-16 15:15:04.62 278823 31.07 24.23 25.13 26.82 24.15 24.45 23.8
1995-02-16 15:15:04.63 278824 31.07 24.2 25.09 26.8 24.11 24.45 23.75
1995-02-16 15:15:04.64 278825 31.07 24.21 25.1 26.77 24.13 24.39 23.76

OV3. PC9000 Application Software
PC9000 is a Windows™ application for use with the CR9000. The software
supports CR9000 program generation, real-time display of datalogger
measurements, graphing, and retrieval of data files.

Digital I/O task
Read ports and counters on 9070 and
append data to that sent by Task sequencer
Set ports on 9070 Counter timer

Processes measurements
Determines controls (port states) to set next scan
Stores data

Analog measurement and excitation sequence and
timing
Pipelines data from measurements to transputer
Sets ports on 9060 Excitation Module
Sends interrupt to Transputer task that reads and
sets ports/counters.

CR9000 Overview

OV-11

OV3.1 Hardware and Software Requirements
The following computer resources are recommended:

• IBM PC, Portable or Desktop
• 64 Meg of Ram
• VGA Monitor
• Windows 2000, Windows XP, Windows NT, or Windows 4.0
• 60 Meg of Hard Drive Space for software
• 400 Meg of Hard Drive Space for data
• Parallel port and a PLA100-L, RS232 Serial Port and TL925, or BLC100

Bus Link Card

The following computer resources are recommended:

• 128 Meg of Ram
• 233 MHz 486 or faster
• Mouse

OV3.2 PC9000 Installation
To install the PC9000 Software:

• Start Microsoft Windows 2000, NT, or XP
• Insert diskette 1 (marked 1 of 2) in a disk drive.
• From the Program Manager, select File menu and choose Run
• Type (disk drive):\setup and press Enter e.g. a:\setup<Enter>
• The setup routine will prompt for disk 2.

You may use the default directory of PC9000 or install the software in a
different directory. The directory will be created for you.

To abort the installation, type Ctrl-C or Break at any time.

OV3.3 PC9000 Software Overview
This overview points out the main PC9000 functions and where to find them.
PC9000 has extensive on-line help to guide the user in its operation. Install
PC9000 to get the details. A CR9000 is not necessary to try out the
programming and real time display options; the demo uses canned data for
viewing. Without a CR9000, there are no communications with the
datalogger; operations such as downloading programs and retrieving data will
not function.

Figures OV3-1 and OV3-2 show the main PC9000 menus. The primary
functions of PC9000 are accessed from the File, Comm, Realtime, and
Analysis selections on the main menu (Figure OV3-1).

CR9000 Overview

OV-12

Realtime Display
& Graphing

File Edit Realtime Analysis Tools Collect Display Windows Help

Program Generator
Open Program File . . .
Open Wiring File . . .
Open Data Table Info File . . .
Open Data File . . .
Convert Binary to ASCII File . . .
Print . . .
Printer Setup . . .
DOS Shell . . .
File Manager . . .
Explorer . . .
Exit PC9000

Menu-driven Program Generation.
Direct Editing of Program
View/Edit Wiring Diagram & DataTable
Information (Created by Program Generator)
View Data Collected from CR9000

Display Data in Tables Collected From CR9000.
Graphing requires no special processing of the
data and provides rapid feedback to the operator.

Display Data Graph 1 . . .
Display Data Graph 2 . . .
ID2000 . . . Ctrl + I

CommLink
Select Series Linked Station . . .
Select Parallel Linked Station . . .
Logger Clock . . .
Logger Status . . .
Download . . .
Logger Files . . .
Diagnostics

PC to CR9000
communications.

Data Retrieval . . .
Scheduled Data Retrieval . . .

Collect data from CR9000

Field Monitor . . .
Virtual Meter . . .
Virtual O'Scope . . .
X-Y Plotter . . .
Histogram . . .
Fast Fourier Transform . . .
Get/Set Variable . . .

OV3-1. PC9000 Primary Functions

CR9000 Overview

OV-13

File Edit Realtime Analysis Tools Collect Display Windows Help

Undo Ctrl + Z
Date & Time
Select All
Cut Ctrl + X
Copy Ctrl + C
Paste Ctrl + V
Delete
Wrap Text Ctrl + W
Go To Line . . .
Find Ctrl + F
Replace Ctrl + R

Colors . . .
Fonts . . .
Defaults . . .

Tile Horizontal . . .
Tile Vertical . . .
Cascade . . .
Arrange Icons . . .
List of Windows

PC9000 Help Contents . . .
Search PC9000 Help . . .
CRBasic Help Contents . . .
Search CRBasic Help . . .
Obtaining Technical Support . . .
About PC9000 . . .
Software Versions . . .

Editing Options for
Active Windows

Change fonts
and/or Colors for
Active Windows.

OV3-2. PC9000 Editing, Help, and User Preferences

File

Program Generator
Guides the user through a series of menus to configure the measurement types:
thermocouple, voltage, bridge, pulse counting, frequency, and others. Creates
a CR9000 program, wiring diagram, output table, description, and
configuration file.

Program Editor
Create programs directly or edit those created by the program generator or
retrieved from the CR9000. Provides context-sensitive help for the CR9000's
BASIC-like language.

Edit

REALTIME

Virtual Meter
Updates up to five displays simultaneously. Choices include analog meter,
horizontal and vertical bars, independent scaling/offset, multiple alarms, and
rapid on-site calibration of sensors

Virtual Oscilloscope
Displays up to six channels. Time base variable from milliseconds to hours.

X-Y Plotter
Allows comparison of any two measurements in real time.

CR9000 Overview

OV-14

Analysis

Data Graphing
Displays up to 16 fields simultaneously as strip charts or two multi-charts with
up to 8 traces each. Includes 2D/3D bars, line, log/linear, area, and scatter.
Line statistics available for max/min, best fit, mean, and standard deviation.
Handles files of unlimited size. Historical graphing requires no special
processing of the data and provides rapid feedback to the operator.

TOOLS

Control and Communications
Supports PC to CR9000 communications: clock read/set, status read, program
download, and program retrieval.

COLLECT

Collect data from CR9000 data tables

DISPLAY

Configure the font and color scheme in an active window.

WINDOWS

Size and arrange windows.

HELP

On-line help for PC9000 software.

OV4. Specifications

9031 CPU MODULE

PROCESSORS: Main CPU is 32-bit with on-chip
floating point unit. Measurements,timing, and
setup done by hardware task sequencer with DMA
type transfer to CPU memory.

M E M O RY:2 MB Flash EEPROM, 2 MB Static RAM

9011 POWER SUPPLY MODULE

VOLTAGE: 9.6 to 18 Vdc

TYPICAL CURRENT DRAIN: Base system with no
modules is 500 mA active; 300 mA standby.
Current drain of individual I/O modules varies.
Refer to specifications for each I/O module for
specific values. Power supply module can place
the system in standby mode by shutting off power
to the rest of the modules.

DC CHARGING: 9.6 to 18 Vdc input charges internal
batteries at up to 2 A rate. Charging circuit
includes temperature compensation.

INTERNAL BATTERIES: Sealed rechargeable with 14
Ahr (7 Ahr for the CR9000C) capacity per charge.

EXTERNAL BATTERIES: External 12 V batteries can
be connected.

9041 A/D and AMPLIFIER MODULE

A/D Conversions: 16-bit, 100 kHz

PC9000(C) INTERFACES
PLA100

TYPICAL CURRENT DRAIN: 50 mA, supplied by
the CR9000(C)

SIZE (excluding cable): 2.25” x 0.5” x 4.0”
(5.7 x 1.3 x 10.2 cm)

CABLE LENGTH: Specified, in feet, by the user,
50 ft maximum length

WEIGHT: 2.5 lb (0.11 kg)

TL925

TYPICAL CURRENT DRAIN: 50 mA, supplied by
the CR9000(C)

BAUD RATE: 300 bps to 115.2 kbps with auto baud
detection.

SIZE: 2.1” x 1.0” x 6.8” (5.3 x 2.5 x 17.3 cm)

WEIGHT: 2.5 lb (0.11 kg)

TRANSIENT PRO TECTION
All analog and digital inputs and outputs use gas
discharge tubes and transient filters to protect against
high-voltage transients. Digital I/Os also have over-
voltage protection clamping.

PHYSICAL SPECIFICATIONS
Size

Lab Enclosure: 15.75"L x 9.75"W x 8"D
(40 x 24.8 x 20.3 cm)

Fiberglass Enclosure: 18"L x 13.5"W x 9"D
(45.7 x 34.3 x 22.9 cm)

CR9000C: 10"L x 11"W X 9"D
(25.4 x 27.9 x 22.9 cm)

W eight

Lab Enclosure: 30 lbs including modules (13.6 kg)

Fiberglass Enclosure: 42 lbs including modules
(19.1 kg)

CR9000C: 27 lbs including modules (12.3 kg)

Replacement Batteries: 6.4 lbs (2.9 kg)

Additional Modules: 1 lb each (0.5 kg)

W ARRANTY
Three years against defects in materials and
workmanship.

General CR9000 & CR9000C Specifications

W e recommend that you confirm system
configuration and critical specifications with

Campbell Scientific before purchase.

Electrical specifications are valid over a -25° to +50°C range unless otherwise specified; testing over -40° to
+70°C available as an option, excluding batteries. Non-condensing environment is required. To maintain specifi-
cations, Campbell Scientific recommends recalibrating dataloggers every two years.

CR9000 Overview

OV-15

CR9050(E) and CR9051E ANALOG
INPUT MODULE with RTD

INPUT CHANNELS PER MODULE: 14 differential
or 28 single-ended.

RANGE AND RESOLUTION:
Max

Input Resolution Input Sample
Range (1 A/D count) Noise Rates
(mV) (µV) (µV RMS) (kHz)
±5000 158.0 105 100
±1000 32.0 35 100
±200 6.3 7 50
±50 1.6 4 50

Input
Range Input Noise (µV RMS)
(mV) CR9050(E) CR9051E

±5000 105 130
±1000 35 35
±200 7 7
±50 4 4

Note: Measurement averaging provides lower
noise and better resolution.

ACCURACY OF VOLTAGE MEASUREMENTS:
Single-Ended & Differential:
±(0.07% of reading + 4 A/D counts) -25° to +50°C
±(0.14% of reading + 4 A/D counts) -40° to +70°C

Dual Differential:
(two measurements with input polarity reversed)
±(0.07% of reading + 1 A/D count) -25° to +50°C
±(0.14% of reading + 1 A/D count) -40° to +70°C

COMMON MODE RANGE: ±5 V

DC COMMON MODE REJECTION: >120 dB

INPUT RESISTANCE: 2.5 gigaohms typical

MAXIMUM INPUT VOLTAGE WITHOUT
DA M AGE: ±20 V CR9050(E), -40 to +50 V CR9051E

TYPICAL CURRENT DRAIN: 25 mA active

Resistance & Conductivity Measurements
(Also requires 9060 Excitation Module)

ACCURAC Y:± (0.04% of reading + 2 A/D counts)
limited by accuracy of external bridge
resistors.

MEASUREMENT TYPES: 6-wire and 4-wire full
bridge, 4-wire, 3-wire, and 2-wire half bridge.
Uses excitation reversal to remove thermal
EMF errors.

CR9052 ANTI-ALIAS FILTER MODULE

INPUT CHANNELS PER MODULE: six differential

CONTINUOUS EXCITATION CHANNELS PER
MODULE: 12 (6 current, 6 voltage)

TYPICAL CURRENT DRAIN: 400 mA + 1.5*[Iex],
where Iex is the sum of excitation currents provid-
ed by all channels.

Refer to the CR9052 product literature for a complete
listing of specifications.

CR9055(E) 50 V-ANALOG
INPUT MODULE
INPUT CHANNELS PER MODULE: 14 differential

or 28 single-ended.

RANGE AND RESOLUTION:
Max

Input Resolution Input Sample
Range (1 A/D count) Noise Rates
(V) (µV) (µV RMS) (kHz)
±50 1580 1050 100
±10 320 350 100
±2 63 85 50
±0.5 16 60 50

Note: Measurement averaging provides lower
noise and better resolution.

ACCURACY OF VOLTAGE MEASUREMENTS:

Single-Ended & Differential:
±(0.1% of reading + 4 A/D counts) -25° to +50°C
±(0.2% of reading + 4 A/D counts) -40° to +70°C

Dual Differential:
(two measurements with input polarity reversed)
±(0.1% of reading + 1 A/D count) -25° to +50°C
±(0.2% of reading + 1 A/D counts) -40° to +70°C

COMMON MODE RANGE: ±50 V

DC COMMON MODE REJECTION: >62 dB

INPUT RESISTANCE: 100 Kohms typical

MAXIMUM INPUT VOLTAGE WITHOUT
DA M AGE: ±150 V

TYPICAL CURRENT DRAIN: 15 mA active

CR9058E ISOLATION MODULE

INPUT CHANNELS PER MODULE: 10 isolated, differ-
ential; each channel has its own isolation ground for
shielded cable connection.

RANGE, RESOLUTION, AND INPUT RESISTANCE:

Input Resolution Resolution Input
Range w/o Averaging w/ Averaging Resistance
(Vdc) (µV) (µV) (Kohms)

±2 ±10 ±2 10,000
±20 ±100 ±20 88.9
±60 ±300 ±60 269

ACCURAC Y: ±0.02% of Full Scale Range over
-40° to +70°C

MINIMUM SCAN TIME PER MODULE:
VoltDiff: 1285 µs (778 samples per second) +
integration time for no input reversal (RevDiff=0);
or 2990 µs (334 samples per second) +
integration time with input reversal (RevDiff=1)

TCDiff (range parameter set to V2C): 2570 µs
(389 samples per second) + integration time for
no input reversal (RevDiff=0); or 4275 µs (233
samples per second) + integration time with input
reversal (RevDiff=1).

MAXIMUM CONTINUOUS VOLTAGE W/O DA M AGE:
Input H or L to ISO Ground to H or L to
Range H to L ISO Ground Systm Ground Systm Ground
(Vdc) (Vdc) (Vdc) (Vdc) (Vdc)

±2 ±208 ±109 ±360 ±469
±20 ±223 ±121 ±360 ±481
±60 ±448 ±233 ±360 ±593

MAXIMUM ESD VOLTAGE ON INPUTS: ±5000V

CR9060 EXCITATION MODULE
TYPICAL CURRENT DRAIN:

108 mA quiescent, 125 mA active

Analog Outputs

ANALOG OUTPUTS PER MODULE:
10 switched, 6 continuous

SWITCHED: Provides excitation for resistance
measurements.Only one output can be active at
a time.

CONTINUOUS: All outputs can be active
simultaneously.

RANGE: ±5 V

ACCURAC Y:± (0.2% of output ±4 mV)

RESOLUTION: 12-bit A/D (2.4 mV)

OUTPUT CURRENT:±50 mA

Digital Control Outputs

CONTROL CHANNELS PER MODULE: 8

OUTPUT VOLTAGES (no load):
High: 5.0 V ±0.2 V
Low: < 0.2 V

OUTPUT RESISTANCE: 100 ohms

CR9071E COUNTER & DIGITAL
I/O MODULE
Counter Channels

COUNTER CHANNELS PER MODULE: 12

MAXIMUM COUNTS PER INTERVAL: 2
32

Maximu m
counts per interval should never be reached because
with a maximum input frequency of 1 MHz, the 32-bit
counter will go 71.58 minutes before it rolls over. The
maximum CR9000 scan rate is 1 minute.

SWITCH CLOSURE MODE (4 channels)
Minimum switch closed time: 5 ms
Minimum switch open time: 6 ms
Maximum bounce time: 1 ms open without

being counted

HIGH FREQUENCY MODE (all channels)
Minimum pulse width: 500 ns
Maximum input frequency: 1 MHz
Thresholds: Pulse counted on transition from

below 1.5 V to above 3.5 V
Maximum input voltage: ±20 V

LOW LEVEL AC MODE (8 channels)
Input hysteresis: 10 mV
Minimum ac voltage: 25 mV RMS
Maximum input voltage: ±20 V
Frequency range:

(mV RMS) RANGE (Hz)
25 mV 1 to 10,000
≥50 mV 0.5 to 20,000

Digital Inputs/Outputs

I/O CHANNELS PER MODULE: 16

OUTPUT VOLTAGES (no load)
High: 5.0 V ±0.2 V
Low: < 0.2 V

OUTPUT RESISTANCE: 320 ohms

Input State

High: 3.5 to 5 V
Low: -0.5 to 1.2 V

Input Resistance: 100 KOhms

Interval Measurement

I/O CHANNELS:

Resolution is the scan rate

PULSE CHANNELS

Maximum interval: 1 minute
Resolution: ±40 ns

CR9080 PCMCIA and MEMORY
MODULE
PCMCIA CARD INTERFACE: Accepts two Type I/II, or

one Type III SRAM or ATA Flash Memory Cards.

SERIAL I/O: Allows serial communications with CSI
peripherals at up to 115,200 bps.

TYPICAL CURRENT DRAIN: 300 mA active

CR9000 & CR9000C I/O Module Specifications

Copyright © 1994, 2003
Campbell Scientific, Inc.
Printed November 2003

W e recommend that you confirm system
configuration and critical specifications with

Campbell Scientific before purchase.

CR9000 Overview

OV-16

This is a blank page.

1-1

Section 1. Installation

1.1 Enclosure
The CR9000 is equipped with either the –L option laboratory case or the –F
option fiberglass case. The laboratory case can be used in a clean, dry, indoor
environment or mounted in an enclosure. The fiberglass case provides a self-
contained field enclosure. Campbell Scientific does not punch holes in the
fiberglass case because it is our experience that most users like to customize
the wire entry locations for their applications.

During the manufacturing of the fiberglass case, the base and lid are formed
together to insure a perfectly matched fit. A six-digit serial number is stamped
into the extruded aluminum rims on both the base and lid. When more than
one CR9000 is owned, care should be taken to avoid a mismatch which could
prevent a gas-tight seal. (Note that there is a pressure release valve on the
enclosure. If you have difficulty removing the lid, try pressing the release
valve to equalize the pressure differential between the case and atmosphere.)

1.1.1 Connecting Sensors
The CR9000 input modules use screw terminals for connecting sensor wires
(Figure 1.1-1). Terminals for individual wires provide the most flexibility for
connection to the wide range of sensors the CR9000 is used to measure as well
as allowing the simplest field repair of the wire termination (strip and twist or
tin).

1.1.2 Quick Connectors
Some customers who use CR9000s for numerous tests requiring the same or
similar sets of sensors have found it useful to pre-wire the CR9000 to a set of
plug-in quick connectors that mate with those installed on their sensors.
Bulkhead type connectors can be installed either in the aluminum wiring panel
cover or in the fiberglass case (Figure 1.1-2).

Section 1. Installation

1-2

FIGURE 1.1-1 CR9000 Input Terminals

FIGURE 1.1-2 Quick Connectors Installed in CR9000 Cover

1.1.3 Junction Boxes
Individual sensor leads (and multiconductor cables) may be routed directly
from the sensor locations to the CR9000 or routed to a junction box and then to
the CR9000. When sensors are spread out over a large area, a junction box
provides a convenient method for changing sensors in one location quickly.
Junction boxes can also provide more localized protection against
instrumentation damage as a result of lightning induced high voltages.
Junction boxes should be sealed adequately to limit air exchange and stocked
with fresh desiccant (Section 1.3). When used for thermocouple lead wires
junction boxes need to be insulated to reduce thermal gradients (Section 3.4).

Strip
0.5”

Section 1. Installation

1-3

1.2 System Power Requirements and Options
The standard CR9000 is equipped with sealed lead acid battery packs and
charging circuitry for charging the batteries from a 9-18 volt DC input. The
input can come from 120/240 VAC line power via the universal AC power
adapter (included with CR9000), vehicular 12V power sources, solar panels, et
cetera. When fully charged, the internal batteries of the CR9000 are capable of
providing 13-14 Amp-Hours, between 4 and 13 hours of operation in a typical
application where the CR9000 is active continuously (not powering itself
down).

1.2.1 Power Supply and Charging Circuitry
The 9011 Power Supply Module has two CHARGE inputs for connecting a
DC Power source: either the plug connector used with the AC adapter or the
screw terminals. A DC source with voltage in the range of 9 to 18 VDC will
charge the internal lead acid batteries and power CR9000 provided sufficient
current is available and the system is setup to use 3 amps or less (see Table
1.2-2). If the CR9000 system configuration requires greater than 3 amps,
consult a Campbell Scientific applications engineer for information on the
CR9011 Power Supply High-Current modification. The voltage is
automatically stepped up to an adequate voltage for charging. A temperature
compensated charging regulator circuit regulates the charging voltage supplied
to the lead acid batteries and the CR9000. The charging circuitry operates with
the ON/OFF switch in either position. The charging circuitry is NOT designed
to charge a large external 12V battery.

Power for running the CR9000 and charging the internal batteries from AC
line power is provided via the CR9000's universal AC adapter through the
power input connector located on the 9011 Power Supply Module. The
universal adapter converts 100–240 VAC 50–60 Hz to 17.5 VDC.

On the left end of the Power Supply Module there are two LEDs, Power and
Charge. The charge LED is lit when there is sufficient power connected to
charge the batteries. Power to the CR9000 is controlled by the ON/OFF toggle
switch. The power LED is lit when the CR9000 is on. It goes off when the
switch is in the off position or when the CR9000 is powered off under program
control (PowerOff instruction).

The sealed lead acid battery packs are located at each end of the CR9000
(Figure 1.1-3).

Section 1. Installation

1-4

CR9000

FIGURE 1.1-3 CR9000 Battery Pack

Section 1. Installation

1-5

TABLE 1.2-1. CR9000 Battery and Charging Circuitry Specifications

CR9000 WITH STANDARD BATTERIES (4):
Battery life, no supplemental
charge

13 hours to 10.5 V (assuming 1A current)

Voltage at full discharge 10.5 volts
Recharge time
(AC Adapter input)

9 hours from 100% discharge

 5 hours from 50% discharge.
Individual Batteries
Type Yuasa NP7-6
Nominal Voltage 6 Volts
Nominal Capacity 20 hr rate of 350 mA to 5.25 V, 7 Ahr
 10 hr rate of 650 mA to 5.25 V, 6.5 Ahr
Operating Temperature range:
Charge –15 to 50 ºC
Discharge –20 to 60 ºC
Shelf Life @ 20 ºC:
1 month 97%
3 months 91%
6 months 85%
Life Expectancy:
Standby 3 to 5 years
Cycle use
100% depth of discharge 250 cycles
50% depth of discharge 550 cycles
30% depth of discharge 1200 cycles
Number of batteries 4
CHARGING CIRCUIT
Type Controlled voltage with temperature

compensated voltage regulation
Charging Current limited to 2 Amps max
POWER SUPPLY TRANSFORMER
Input Voltage 100-240 VAC,

50-60 Hz
Input Current 1.4 A maximum
Output Voltage 17.5 VDC
Output Current 3.5 A maximum

At typical CR9000 current demand, the batteries are 100%
discharged at a system battery voltage of 10.5 V. Discharging
the batteries below this voltage damages the cells. As can be
seen from the above table, battery life expectancy decreases with
depth of discharge. CSI's warranty does NOT cover battery or
cell damage resulting from deep discharge.

Avoid deep discharge states by storing the battery voltage as part of the
collected data and periodically checking the voltage record to be sure the
batteries and charging system are working correctly.

NOTE

Section 1. Installation

1-6

All external charging devices must be disconnected from the CR9000 in order
to measure the true voltage level of the internal batteries.

This CR9000 current drain depends on the number and type of modules
installed, the sensors excited, and the scan interval and measurements made.
The current drain of a specific CR9000 can be approximated from the
information provided in Table 1.2-2.

TABLE 1.2-2. Current required by CR9000 modules

Model No. Module Quiescent
Current

Current During
Measurement

9031 9041
9011

CPU Module
A/D Module
Power Supply
Module

410 mA 485 mA

9050(E)
9051E

Analog Input
Module

0 mA 15 mA

9052DC Filtered Analog
Input Module

5 mA if not
programmed

500 mA + 1.5 (sum of
excitation currents on

channels)
9055 50–Volt Analog

Input Module
0 mA 15 mA

9058E 60 V Isolation
Module

5 mA 360 mA

9060 Excitation Module 108 mA 125 mA
9070 Counter–Timer

Module
0 mA 80 mA

9071E Counter–Timer
Module

25 mA 35 mA

9080 Peripheral Adapter
Module

As an example, the current drain of a CR9000 System containing the base
system (CPU Module, A/D Module, and Power Supply Module: 410 mA / 485
mA) 1 9060 Excitation Module (108 mA / 125 mA, this does not include the
current required for exciting the sensors), 2 9070 Counter/Timer Modules (0
mA / 30 mA), and 4 Analog Input Modules (0 mA / 60 mA) is about 518 mA
between measurement scans and 700 mA during measurement. If it was active
measuring close to 100 percent of the time, fully charged internal batteries (1
Ahr) would be depleted to a full SAFE discharge level (10.5 V) in about 20
hours. If the CR9000 system configuration requires greater than 3 amps,
consult a Campbell Scientific applications engineer for information on the
CR9011 Power Supply High-Current modification.

1.2.2 Connecting to Vehicle Power Supply
A vehicle 12 Volt electrical system can be connected directly to the charge
input on the Power Supply Module. The Power Supply Module will step the
voltage from the vehicle up or down to the proper voltage for charging the
CR9000 batteries. The input is diode protected so the CR9000 batteries will
not leak power to the vehicle if the vehicle's battery is low.

Section 1. Installation

1-7

Because the charge input supplies power to charge the CR9000 batteries (up to
two amps when discharged) as well as power the CR9000, the current drawn
from the vehicle could be in excess of three amps.

1.2.3 Solar Panels
In a remote installation, solar panels, in conjunction with a large external
battery, may be used to power the CR9000. The solar panels that Campbell
Scientific carries on it's price list are sized for lower power requirements and
will only be adequate if the CR9000 is programmed to periodically power
itself off so that it is active less than 25 percent of the time. Other panels are
available for continuous operation. Contact a Campbell Scientific application
engineer for help in configuring a solar powered CR9000 installation.

1.2.4 External Battery Connection
An external battery may be used in place of the internal lead acid batteries of
the CR9000. The external battery is connected using a special cable that is
plugged into the CR9000 in place of a standard battery pack (Figure 1.2-1).

Reverse polarity protection is NOT provided on these
terminals and CR9000 damage will occur if external power
is connected with reverse polarity.

CSI recommends using 16 AWG lead wires or larger when connecting an
external battery to the CR9000.

FIGURE 1.2-1 Connector for External Battery

CAUTION

Section 1. Installation

1-8

1.2.5 Safety Precautions
There are inherent hazards associated with the use of sealed lead acid batteries.
Under normal operation, lead acid batteries generate a small amount of
hydrogen gas. This gaseous by-product is generally insignificant because the
hydrogen dissipates naturally before build up to an explosive level (4%)
occurs. However, if the batteries are shorted or overcharging takes place,
hydrogen gas may be generated at a rate sufficient to create a hazard. Because
the potential for excessive hydrogen build up does exist, CSI makes the
following recommendations:

1. A CR9000 equipped with standard lead acid batteries should NEVER be
used in environments requiring INTRINSICALLY SAFE EQUIPMENT.

2. When attaching an external battery to the CR9000, insulate the bare lead
ends to protect against accidental shorting while routing the power leads.

3. When the CR9000 is to be located in a gas-tight enclosure or used in a
gas-tight mode with the standard ENVIRONMENTALLY SEALED
FIBERGLASS CASE, the internal lead acid batteries SHOULD BE
REMOVED and an external battery substituted.

1.3 Humidity Effects and Control
The CR9000 system is designed to operate reliably under environmental
conditions where the relative humidity inside its enclosure does not exceed
90% (noncondensing). Condensing humidity may result in damage to IC
chips, microprocessor failure and/or measurement inaccuracies due to
condensation on the various PC board runners. Effective humidity control is
the responsibility of the user and is particularly important in environments
where the CR9000 is exposed to salty air.

Two humidity control methods are:

1. the use of desiccant

2. nitrogen purging

1.3.1 Desiccant
As a minimal precaution, the packets of HUMI-SORB desiccant shipped with
the CR9000 should be placed inside the case. These packets should be
routinely replaced. Obviously, the desiccant requires more frequent attention
in environments where the relative humidity is high.

1.3.2 Nitrogen Purging
Several CSI customers have had success in preventing humidity-related
equipment malfunctions in harsh environments by allowing nitrogen gas to
slowly bleed into the datalogger enclosure. The sensor leads, power cables,
etc., are routed to the terminal blocks of the datalogger through simple,
inexpensive conduit elbows which are left unplugged. A nitrogen bottle is
then left at the field site with its regulator valve slightly open so that nitrogen is

Section 1. Installation

1-9

allowed to escape slowly through a rubber tube which is routed along with the
sensor leads through the conduit elbows into the CR9000 enclosure.

Equipment required for this method of humidity control generally can be
obtained from any local welding supply shop and includes a nitrogen bottle,
regulator with tube adapter (content gauge, optional), hose clamp and a
suitable length of small diameter rubber tubing. Nitrogen bottles are available
in various sizes and capacities. The size of the nitrogen bottle used depends on
the transport facilities available to and from the field site and on the time
interval between visiting the site. Where practical, larger nitrogen bottles
should be used to reduce cost and refilling frequency.

1.4 Recommended Grounding Practices

1.4.1 Protection from Lightning
Primary lightning strikes are those where the lightning hits the datalogger or
sensors. Secondary strikes occur when the lightning strikes somewhere near
the lead in wires and induces a voltage in the wires. All input and output
connections in the I/O Module are protected using spark gaps. This transient
protection is useless if there is not a good connection between the CR9000 and
earth ground.

All dataloggers in use in the field should be grounded. A 12 AWG or larger
wire should be run from the grounding terminal on the right side of the I/O
Module case to a grounding rod driven far enough into the soil to provide a
good earth ground.

A modem/phone line connection to the CR9000 provides another pathway for
transients to enter and damage the datalogger. The phone lines should have
proper spark gap protection at or just before the modem at the CR9000. The
phone line spark gaps should also have a solid connection to earth ground.

1.4.2 Effect on Measurements: Common Mode Range
A difference in ground potential between a sensor or signal conditioner and the
CR9000 can offset the measurement. A differential voltage measurement gets
rid of offset caused by a difference in ground potential. However, in order to
make a differential measurement, the inputs must be within the CR9000
common mode range of ±5V (+15/-5 for the CR9052E module, ±50V for the
9055 module, or ±60V for the CR9058E module).

The common mode range is the voltage range, relative to CR9000 ground,
within which both inputs of a differential measurement must lie, in order for
the differential measurement to be made. For example, if the high side of a
differential input is at 4V and the low side is at 3V relative to CR9000 ground,
there is no problem, a measurement made on the ±1.5V range would indicate a
signal of 1V. However, if the high input is at 5.8V and the low input is at
4.8V, the measurement cannot be made because the high input is outside of the
CR9000 common mode range.

Section 1. Installation

1-10

Sensors that have a floating output or are not referenced to ground through a
separate connection may need to have one side of the differential input
connected to ground to ensure the signal remains within the common mode
range.

Problems with exceeding common mode range may be encountered when the
CR9000 is used to read the output of external signal conditioning circuitry if a
good ground connection does not exist between the external circuitry and the
CR9000. When operating where AC power is available, it is not always safe to
assume that a good ground connection exists through the AC wiring. If a
CR9000 is used to measure the output from a laboratory instrument (both
plugged into AC power and referencing ground to outlet ground), it is best to
run a ground wire between the CR9000 and the external circuitry. Even with
this ground connection, the ground potential of the two instruments may not be
at exactly the same level, which is why a differential measurement is desired.

1.5 Use of Digital Control Ports for Switching Relays
The digital control outputs on the 9060 Excitation Module and the I/O
channels on the CR9070/CR9071E Counter Timer Module may be used to
actuate controls but, because of current supply limitations, the output ports are
not used directly to drive a relay coil. Relay driver circuitry is used to switch
current from another source to actually power the relay. These relays may be
used for activating an external power source to run a fan motor or for altering
an external circuit as a means of multiplexing signal lines, etc. CSI's Model
A21REL-12 and A6 REL12 are Relay Controllers using a 12 VDC source for
switching the relays. Solid state relays that may be controlled with a 0-5 V
logic signal are also available for switching AC or DC power.

Figure 1.5-1 is a schematic representation of a typical external coil driven relay
configuration which may be used in conjunction with one of the CR9000s
digital control output ports. The example shows a DC fan motor and 12V
battery in the circuit. This particular configuration has a coil current limitation
of 75mA because of the NPN Medium Power Transistors used (Part No.
2N2222).

FIGURE 1.5-1. Typical Connection for Activating/Powering External
Devices, Using a Digital Control Output Port and Relay Driver

2-1

Section 2. Data Storage and Retrieval
The CR9000 can store individual measurements or it may use its extensive processing
capabilities to calculate averages, maxima, minima, histograms, FFTs, etc., on periodic or
conditional intervals. Data are stored in tables. For simplicity, the PC9000 program
generator allows a maximum of six data tables (in the native language the limit on the
number of data tables depends on where the tables are stored). The number of tables and
the values to output in each table are selected when running the program generator
(Overview) or when writing a datalogger program directly (Sections 4 – 9).

2.1 Data Storage in CR9000
There are three possible areas for data storage on the CR9000:

Internal Static Ram–avaliable storage the only limit on the number of tables

Internal Flash Memory–6 data tables maximum

PCMCIA PC Card–30 data tables maximum

Internal Ram is used as either the sole storage area for a data table or as a
buffer area when data are sent to the PC card or to internal flash memory.

When PC9000 requests data from a table that is stored in Flash memory or a
PC card, the CR9000 only looks for the data in flash memory or in the PC card
when the oldest data are requested or if the data are not available in CPU
memory.

In the CRBASIC program, the DataTable instruction sets the size of the data
table or buffer area. A data table can be stored in a PC card by including the
PAMOut instruction within the data table declaration. A data table can be
stored in internal flash memory by including the FlashOut instruction within
the data table declaration. A data table cannot be sent to both a PC card and to
internal flash memory; the CR9000 will flag an error if both PAMOut and
FlashOut are in a data table declaration.

2.1.1 Internal Static Ram
Internal Ram is used as either the sole storage area for a data table or as a
buffer area when data are sent to PC card or to internal flash memory. The
only limit on the number of tables is the available memory. Data in RAM are
lost if the CR9000 is powered down either by switching off the power switch
or with the PowerOff instruction.

2.1.2 Internal Flash Memory
There are 1.5 M bytes of flash memory available for data storage. No more than
six data tables can be stored in flash memory. Flash Memory is always fill and
stop, that is, once the space allocated for the data table is full, no more data are
stored until the table is reset.

Section 2. Data Storage and Retrieval

2-2

When the CR9000 compiles and runs a program that uses flash memory, it
checks to see if the program is different from the last program it ran. If the
program has changed (including any changes to comments), flash memory is
erased and reset. If the program is the same, the CR9000 leaves the flash
memory as it was, appending data to tables that are not yet full.

The 1.5 M bytes of flash memory available for data storage is in six 256 K
erasable segments. A segment can only store data from 1 table (otherwise the
tables could not be individually reset). This is the reason a maximum of six
tables are possible (none larger than 256 K). Automatic allocation (negative
number for FlashOut size) will divide tables on the 256 K boundaries.

2.1.3 9080 PAM Module – PCMCIA PC Card
The CR9000 9080 PAM Module allows expanding the CR9000’s storage
capacity with Type I, II, or III PCMCIA Cards. SRAM, ATA Flash, and ATA
hard disk cards are supported. ATA hard disks cards cannot withstand the
environmental temperature range of the CR9000’s specifications. A program
can send a maximum of 30 data tables to PC cards.

Data stored on cards can be retrieved through one of the communication links
to the CR9000 or by removing the card and inserting it in a PC card slot in a
computer. Converting the data using the computer's PC card slot is much
faster than retrieving it through the CR9000 using one of the communication
links.

The CR9000 uses an MS DOS format for the PC cards. Cards can be
formatted in a PC or in the CR9000.

TABLE 2.2-1. CR9000 DATA TYPES

Data Type Size Range Resolution
LONG 4 bytes -2,147,483,648 to +2,147,483,647 1 bit (1)
IEEE4 4 bytes 1.8 E –38 to 1.7 E 38 24 bits (about 7 digits)
FP2 2 bytes -7999 to +7999 13 bits (about 4 digits)

2.2 Internal Data Format
Data are stored internally in a binary format. Variables and calculations are
performed internally in IEEE 4 byte floating point with some operations
calculated in double precision. There are two data types used to store data:
IEEE4 four byte floating point and Campbell Scientific two byte floating
point (FP2). The data format is selected in the instruction that outputs the
data. A third data type, the four byte integer format (LONG) is used by the
CR9000 for storing time and record number. Within the CR9000, time is
stored as integer seconds and nanoseconds into the second since midnight,
the start of 1990. While IEEE 4 byte floating point is used for variables
and internal calculations, FP2 is adequate for most stored data. Campbell
Scientific 2 byte floating point provides 3 or 4 significant digits of
resolution, and requires half the memory space as IEEE 4 byte floating
point (2 bytes per value vs 4).

Section 2. Data Storage and Retrieval

2-3

TABLE 2.2-1. Resolution and Range Limits

of FP2 Data

Zero Minimum
Magnitude

Maximum
Magnitude

0.000 ±0.001 ±7999.

The resolution of FP2 is reduced to 3 significant digits when the first (left
most) digit is 8 or greater (Table 2.2-2). Thus, it may be necessary to use
IEEE4 output or an offset to maintain the desired resolution of a
measurement. For example, if water level is to be measured and output to
the nearest 0.01 foot, the level must be less than 80 feet for low resolution
output to display the 0.01 foot increment. If the water level is expected to
range from 50 to 90 feet the data could either be output in high resolution
or could be offset by 20 feet (transforming the range to 30 to 70 feet).

TABLE 2.2-2. FP2 Decimal Location

Absolute Value Decimal Location
 0 - 7.999 X.XXX
 8 - 79.99 XX.XX
 80 - 799.9 XXX.X
 800 - 7999. XXXX.

2.3 Data Collection
Data can be transferred into a computer using PC9000 via a
communications link or by transferring a PC card from the PC9000 to the
computer. There are three ways to collect data via a link to the CR9000
using the PC9000 software:.

1. The collect menu is used to collect any or all stored data Tables and is
used for most archival purposes.

2. In PC9000’s Field Monitor RealTime window there is a "Disc file"
check box. Data stored to the table while the box is checked are also
stored to a file on the PC. If communications cannot keep up with the
measurement rate, there will be holes (missing data) in the data files.

3. Logger Files under the Tools menu has the option of retrieving a file
from a PC card. This can be used to retrieve a data file in the raw
binary format.

When the CR9000 is used without a computer in the field, or large data
files are collected on a PC card, the PC card can be transported to the
computer with the data on it.

The format of the data files on the PC card is different than the data file
formats created by PC9000 when the collect or write file options are used.
Data files retrieved from the Logger Files screen or read directly from the
PC card generally need to be converted into another format to be used
(Section 2.3.4.2).

Section 2. Data Storage and Retrieval

2-4

2.3.1 The Collect Menu
When Retrieve Data is selected in the Collect menu, PC9000 displays the
Collect Data dialog box (Figure 2.3.1). The station name (may be entered
by the user when a program is downloaded) is retrieved from the connected
CR9000 and shown at the top.

FIGURE 2.3-1. Collect Data Dialog Box

2.3.1.1 File Type

ASCII With Time – Click here to store the data as an ASCII (TOA5,
Section 2.4) file. Each record will be date and time stamped.

Binary With Time – Click here to store the data as a binary file (TOB1,
Section 2.4). Each record will be date and time stamped.

ASCII Without Time – Click here to store the data as an ASCII file
(TOA5, Section 2.4). There will be no date and time stamps.

Binary Without Time – Click here to store the data as a binary file (TOB1,
Section 2.4). There will be no date and time stamps.

Section 2. Data Storage and Retrieval

2-5

2.3.1.2 Collection Method

All Records, Create New File – Collects the entire table stored in the
CR9000. PC9000 gets the current record number from the table in the
CR9000 and then retrieves the oldest record in the table up to the current
record number. The number in the file name is incremented to create the
file name in which the data are stored.

Since Last, Create New File – Click here to save new data in a new file.
PC9000 searches for the last file with the Root name, gets the last record
number from that file, then the current record from the table in the CR9000,
and requests all records in between those numbers from the CR9000. The
number in the file name is incremented to create the file name in which the
data are stored.

Since Last, Append To File – Click here to append retrieved data to the
end of the named file. PC9000 searches for the last file with the Root
name, gets the last record number from that file, then the current record
from the table in the CR9000, and requests all records in between those
numbers from the CR9000. The data are appended to the existing file.

Number of Records, Create New File – Collects the number of records
entered in Num of Recs box. Retrieves that many records back from the
current record number. The number in the file name is incremented to
create the file name in which the data are stored.

Num of Recs – Enabled when Number of Records, Create New File is
checked. Enter the number of records back from the current record number
to retrieve.

2.3.1.3 Table Selection

All Tables – When the All Tables box is checked, all data tables except the
Public and Status tables are collected when collection is executed. The
data from each table are stored in a file with the table name and increment
number (see Table naming). This is a convenient method of collecting all
data from the CR9000. The first time data are collected, “all data” is
checked and the file type and collection method are selected. PC9000
remembers the settings, and on subsequent collections the operator only
needs to click on execute.

Stream – acts the same as Write file for the selected Table Name (Section
2.3.2).

Table Name – When "All tables" is not checked, a single data table can be
selected for collection. The Table Name box is used to select the table to
be retrieved.

Reset Table – Resetting a data table erases all data in the table and sets the
record number back to 0. Unless the table is configured as fill and stop by
the CR9000 program, it is not necessary to reset the table because the
"Since Last" collection option can be used to get only the new data. If the
table is configured as fill and stop, it stops collecting data once full and
must be reset before more data can be collected. Use with caution.

Section 2. Data Storage and Retrieval

2-6

2.3.1.4 File Control

The default naming for a file stored to disk is to use the data table name
appended with a 2 digit number and the extension .DAT. If the table name
is longer than 6 characters, it is truncated. For example, the table name
EVENTS is stored as EVENTS00.DAT. A table named CYLTEMP is
stored as CYLTEM00.DAT.

When the file collection options that create a new file are used, each time a
table is collected, the 2 digit number is incremented (e.g.,
EVENTS00.DAT, EVENTS01.DAT, EVENTS03.DAT ...). PC9000
searches the selected directory and adds 1 to the number of the highest
numbered file of the matching name to create the new name.

When the new data are to be appended to the existing file, PC9000 searches
the selected directory for the highest numbered file of the matching name,
and appends the data to that file.

Change File – Press the Change File button to change the name of the file
to be stored on disk. This is not possible when "All Tables" is selected.

Set Path – Press here to select a different disk or directory to write the files
to.

EXECUTE – Press here to begin collecting data.

2.3.1.5 Status Messages

TABLE SIZE – Shows the size (in records) of the table highlighted in the
Table Name box above.

COLLECTION RANGE – Displays the range of records to be collected.
More records than the last number in this range may actually be retrieved.

LOGGER MESSAGE – Displays messages from the CR9000.

2.3.2 RealTime Write File
This feature is provided to allow the user to start and stop collecting data
for some event without leaving the real-time window. Check this box to
write the current table to a file in the computer. Writing begins with the
current record and continues until the Write File box is unchecked or until
the window is closed.

This collection method requires that the PC is connected to the CR9000
while the data are collected. Because the beginning and end points of the
data file are roughly determined by when the box is checked, this is best
suited to collecting data when the user rather than the measurements
determine when data should be collected.

The bottom line of the screen will periodically display the current record
being written. The name of the file written will be the first six characters
of the table name plus 2 digits and an extension of .DAT. If the table name
is MAIN then the first file created will be named MAIN00.DAT. The next

Section 2. Data Storage and Retrieval

2-7

file will be named MAIN01.DAT and so on. It takes a little time to open
the file so be sure it is opened in advance of the event you want to store.

The file is written to every 1 second so it is important the table size be large
enough to store sufficient data between writes. During each write
operation, the data may not be updated on the screen but this will not effect
the stored data.

2.3.3 Logger Files Retrieve
Logger Files under the PC9000 tools menu allows the user to check the
programs stored in CPU Flash memory and the files stored on the PCMCIA
cards. Any of the files shown in logger files can be copied to the computer
by highlighting the file and pressing the retrieve button. Data files in the
CR9000 CPU and Flash memory are not shown.

The retrieved data file is stored on the computer in the same form that it
was stored on the PC card (TOB2). This format generally needs to be
converted to another format for analysis (Section 2.3.4)

FIGURE 2.3-2. Logger Files Dialog Box

Section 2. Data Storage and Retrieval

2-8

2.3.4 Via PCMCIA PC Card
When the CR9000 is used without a computer in the field, or large data
files are collected on a PC card, the PC card can be transported to the
computer with the data on it.

2.3.4.1 Removing Card from CR9000

The 9080 PCMCIA Adapter Module contains slots for two Type I/II
PCMCIA cards or one type III PCMCIA card. The LEDs indicate the
status of the cards in slots A and B.

• Not lit: no card detected.

• green: present and correctly formatted.

• red: present but corrupt.

• orange: accessing the card.

To remove a card, press the button next to the status LED to power down
the card. The LED will blink green several times then go out for 10
seconds. Remove the card while the LED is not lit. The card will be
reactivated if not removed.

Caution: Removing a card while it is active can cause garbled data and can
actually damage the card. Do not switch off the power (9011 Module)
while the cards are present and active.

When the PC card is inserted in a computer, the data files can be copied to
another drive or used directly from the PC card just as one would from any
other disk. In most cases, however, it will be necessary to convert the file
format before using the data.

2.3.4.2 Converting File Format

The CR9000 stores data on PC cards in TOB2 Format. TOB2 is a binary
format that incorporates features to improve reliability of the PC Cards.
TOB2 allows the accurate determination of each record’s time without the
space required for individual time stamps.

When TOB2 files are converted to another format, the number of records
may be greater or less than the number requested in the data table
declaration. There are always at least two additional frames of data
allocated. When the file is converted these will result in additional records
if no lapses occurred. If more lapses occur than were anticipated, there
may be fewer records in the file than were allocated.

PC9000’s file converter will convert TOB1 files to ASCII or TOB2 files to
TOB1, ASCII, DaDisp, or ID-2000W. The Convert Data Files option is in
the File Menu. The options for TOB2 appear after the name of the file to
convert has been selected (Figure 2.3-3.)

Section 2. Data Storage and Retrieval

2-9

FIGURE 2.3-3. File Conversion Dialog Box

2.4 Data Format on Computer
The format of the file stored on disk can be either ASCII or Binary
depending on the file type selected in the collect data dialog box. Files
collected from a real time window are always stored in ASCII format.

2.4.1. Header Information
Every data file stored on disk has an ASCII header at the beginning. The
header gives information on the format, datalogger and program used to
collect the data. Figure 2.4.1 is a sample header where the text in the
header is a generic name for the information contained in the header. The
entries are described following the figure.

"File Format","Station","Logger","Serial No.","OS Ver","DLD File","DLD Sig","Table Name"
"TIMESTAMP","RECORD","Field Name","Field Name","Field Name"
"TS","RN","Field Units","Field Units","Field Units"
"","","Processing","Processing","Processing"
"Field Data Type","Field Data Type","Field Data Type","Field Data Type","Field Data Type"
timestamp,record number,field data,field data,field data,

FIGURE 2.4-1. Header Information

File Format
The format of the file on disk. TOA5 is an ASCII format. TOB1 is a
Binary format. This information is used by the historical graphing and file
conversion functions of PC9000.

Section 2. Data Storage and Retrieval

2-10

Station Name
The station name set in the logger that the data was collected from.

Logger Model
The datalogger model that the data was collected from.

Logger Serial Number
The serial number of the logger that the data was collected from. This is
the serial number of the CR9000 CPU.

Operating System Version
The version of the operating system in the logger that the data was
collected from.

DLD File
The name of the DLD file that was running when the data were created.

DLD Signature
The signature of the DLD file that created the data.

Table Name
The data table name.

Field Name
The name of the field in the data table. This name is created by the
CR9000 by appending underscore (_) and a three character mnemonic for
the output processing.

Field Units
The units for the field in the data table. Units are assigned in the program
with the units declaration.

Field Processing
The output processing that was used when the field was stored.

Smp = Sample

Max = Maximum

Min = Minimum

Avg = Average

Field Data Type
This header line is only in TOB1 binary format and identifies the data type
for each of the fields in the data table.

UINT4 = Unsigned 4 byte integer

IEEE4 = 4 byte floating point

Time Stamp
This field is the date and time stamp for this record. It indicates the time,
according to the logger clock, that each record was stored.

Section 2. Data Storage and Retrieval

2-11

Record Number
This field is the record number of this record. The number will increase up
to 2E32 and then start over with zero. The record number will also start
over at zero if the table is reset.

Field Data
This is the data for each of the fields in the record.

2.4.2 TOA5 ASCII File Format
The following is a sample of a file collected as ASCII with time stamps.

"TOA5","Bob's9K","CR9000","1048575","1.00","EXPLDAT.DLD","4339","Temp"
"TIMESTAMP","RECORD","RefTemp_Avg","TC_Avg(1)","TC_Avg(2)","TC_Avg(3)","TC_Avg(4)
"
"TS","RN","degC","degC","degC","degC","degC"
"","","Avg","Avg","Avg","Avg","Avg"
"1995-09-19 14:31:43.84",458,29.94,25.6,25.36,25.48,25.4
"1995-09-19 14:31:43.85",459,29.93,25.6,25.36,25.41,25.35

The following is an example of how the above data might look when
imported into a spread sheet.

TOA5 Bob's9K CR9000 1048575 1.00 EXPLDAT.
DLD

4339 Temp

TIMESTAMP RECORD RefTemp_Avg TC_Avg(1) TC_Avg(2) TC_Avg(3) TC_Avg(4)
TS RN degC degC degC degC degC
 Avg Avg Avg Avg Avg
1995-09-19 14:31:43.84 458 29.94 25.6 25.36 25.48 25.4
1995-09-19 14:31:43.85 459 29.93 25.6 25.36 25.41 25.35

This is the same data table collected as ASCII without time stamps

"TOA5","Bob's9K","CR9000","1048575","1.00","EXPLDAT.DLD","4339","Temp"
"RefTemp_Avg","TC_Avg(1)","TC_Avg(2)","TC_Avg(3)","TC_Avg(4)"
"degC","degC","degC","degC","degC"
"Avg","Avg","Avg","Avg","Avg"
29.94,25.6,25.36,25.48,25.4
29.93,25.6,25.36,25.41,25.35

And again, an example of how the above data might look when imported
into a spread sheet.

TOA5 Bob's9K CR9000 1048575 1.00 EXPLDAT.
DLD

4339 Temp

RefTemp_Avg TC_Avg(1) TC_Avg(2) TC_Avg(3) TC_Avg(4)
degC degC degC degC degC
Avg Avg Avg Avg Avg
29.94 25.6 25.36 25.48 25.4
29.93 25.6 25.36 25.41 25.35

Section 2. Data Storage and Retrieval

2-12

2.4.3 TOB1 Binary File Format
This is a sample of a file collected as Binary with time stamps.

TOB1,Bob's9K,CR9000,1048575,1.00,EXPLDAT.DLD,4339,Temp
SECONDS,NANOSECONDS,RECORD,RefTemp_Avg,TC_Avg(1),TC_Avg(2),TC_Avg(3),TC_Avg(4)
SECONDS,NANOSECONDS,RN,degC,degC,degC,degC,degC
,,,Avg,Avg,Avg,Avg,Avg
UINT4,UINT4,UINT4,IEEE4,IEEE4,IEEE4,IEEE4,IEEE4
(data lines are binary and not directly readable)

This is an example of binary without time stamps.

TOB1,Bob's9K,CR9000,1048575,1.00,EXPLDAT.DLD,4339,Temp
RefTemp_Avg,TC_Avg(1),TC_Avg(2),TC_Avg(3),TC_Avg(4)
degC,degC,degC,degC,degC
Avg,Avg,Avg,Avg,Avg
IEEE4,IEEE4,IEEE4,IEEE4,IEEE4
(data lines are binary and not directly readable)

2.4.4 TOB2 Binary File Format
The TOB2 binary format has a header similar to the other formats. TOB2
data is stored in fixed size “frames” that generally contain a number of
records. The size of the frames is a function of the record size. The frames
are time stamped, allowing the calculation of time stamps for their records.
If there is a lapse in periodic interval records that does not occur on a frame
boundary, an additional time stamp is written within the frame and its
occurrence noted in the frame boundary. This additional time stamp takes
up space that would otherwise hold data.

When TOB2 files are converted to another format, the number of records
may be greater or less than the number requested in the data table
declaration. There are always at least two additional frames of data
allocated. When the file is converted these will result in additional records
if no lapses occurred. If more lapses occur than were anticipated, there
may be fewer records in the file than were allocated.

3-1

Section 3. CR9000 Measurement
Details

3.1 Measurements using the CR9041 A/D
The CR9050(E), CR9051E, and the CR9055(E) modules all use the A/D
module to digitize their analog measurements. Section 3.1 documents
measurement details for the measurements made using these modules. The
Filter module (CR9052DC) and the Isolation Module (CR9058E) both have an
A/D converter for each channel. The analog inputs are digitized by the
modules (the CR9041 A/D module is not used) and the digital data is sent
directly to the CR9000’s CPU module. The differences in measurement details
for these modules are covered in Sections 3.2 and 3.3. The measurement
details for the CR9070 and CR9071 Pulse modules are covered in Section 3.4.

3.1.1 Analog Voltage Measurement Sequence
The CR9000 measures analog voltages with a sample and hold analog to
digital (A/D) conversion. The signal at a precise instant is sampled and this
voltage is held or "frozen" while the digitization takes place. The A/D
conversion is made with a 16 bit successive approximation technique which
resolves the signal voltage to approximately one part in 62,500 of the full scale
range (e.g., for the ±5000 mV range, 10 V/62,500 = 160 µV). The analog
measurements are multiplexed through a single A/D converter with a
maximum conversion rate of 100,000 per second or one every 10 µs.

The timing of the CR9000 measurements is precisely controlled by the task
sequencer, a combination of components that switches the measurement
circuitry on a rigid schedule that is determined at compile time and loaded into
the task sequencer's memory. The basic tick of the task sequencer
measurement clock may be thought of as 10 µs. The minimum time between
measurements is 10 µs. When voltage signals are measured at a 10
µs/measurement rate, every 10 µs the task sequencer holds the signal from one
channel and then switches to the next channel. When the signal is held, the
A/D converter goes to work and ships the result off to the transputer memory.

The instructions executed by the task sequencer (e.g., hold, turn on the
excitation, switch to the next channel, etc.) take 400 ηs each. When measuring
every 10 µs, after holding for one measurement, the task sequencer switches to
the next channel (400 ηs), waits 9200 ηs, then holds for the next measurement
(400 ηs).

Changing voltage ranges requires one 10 µs tick; the task sequencer sets up the
new voltage range then delays until the next 10 µs boundary before switching
to the first channel. This only occurs before the first measurement within a
scan or when the voltage range actually changes. Using two different voltage
measurement instructions with the same voltage range takes the same
measurement time as using one instruction with two repetitions. (This is
not the case in the CR10, 21X and CR7 dataloggers where there is always a
setup time for each instruction.)

Section 3. CR9000 Measurement Details

3-2

There are four parameters in the measurement instructions that may vary the
sequence and timing of the measurement. These are options to reverse the
polarity of the excitation voltage (RevEx), reverse the high and low
differential inputs (RevDiff), to set the time to wait between switching to a
channel and making a measurement (Delay), and the length of time to integrate
a measurement (Integ).

3.1.1.1 Reversing Excitation or the Differential Input

Reversing the excitation polarity or the differential input are techniques to
cancel voltage offsets that are not part of the signal. For example, if there is a
+5 µV offset, a 5 mV signal will be measured as 5.005 mV. When the input is
reversed, the measurement will be -4.995 mV. Subtracting the second
measurement from the first and dividing by 2 gives the correct answer: 5.005-
(-4.995)=10, 10/2=5. Most offsets are thermocouple effects caused by
temperature gradients in the measurement circuitry or wiring.

Reversing the excitation polarity cancels voltage offsets in the sensor, wiring,
and measurement circuitry. One measurement is made with the excitation
voltage with the polarity programmed and a second measurement is made with
the polarity reversed. The excitation "on time" for each polarity is exactly the
same to ensure that ionic sensors do not polarize with repetitive measurements.

Reversing the inputs of a differential measurement cancels offsets in the
CR9000 measurement circuitry. One measurement is made with the high input
referenced to the low input and a second with the low referenced to the high.

3.1.1.2 Delay

When the CR9000 switches to a new channel or switches on the excitation for
a bridge measurement, there is a finite amount of time required for the signal to
reach its true value. Delaying between setting up a measurement (switching to
the channel, setting the excitation) and making the measurement allows the
signal to settle to the correct value. The default CR9000 delays, 10 µs for the
5000 and 1000 mV ranges and 20 µs for the 200 and 50 mV ranges, are the
minimum required for the CR9000 to settle to within its accuracy
specifications. Additional delay is necessary when working with high sensor
resistances or long lead lengths (higher capacitance). It is also possible to
shorten the delay on the 200 and 50 mV ranges to 10 µs when speed and
resolution is more important than high accuracy. Using a delay increases the
time required for each measurement.

When the CR9000 Reverses the differential input or the excitation polarity It
delays the same time after the reversal as it does before the first measurement.
Thus there are two delays per channel when either RevDiff or RevEx is used.
If both RevDiff and RevEx are selected, there are four measurement segments,
positive and negative excitations with the inputs one way and positive and
negative excitations with the inputs reversed. The CR9000 switches to the
channel:

Section 3. CR9000 Measurement Details

3-3

 sets the excitation, delays, measures,
 reverses the excitation, delays, measures,
 reverses the excitation, reverses the inputs, delays, measures,
 reverses the excitation, delays, measures.

Thus there are four delays per channel measured.

3.1.1.3 Integration

With the 9050 and 9055 analog input modules, there is no analog integration
of the signal and minimal filtering from the 422 ohm series resistor and 0.001
µF capacitor to ground that protect the input. The signal is sampled when the
task sequencer issues a hold command and any noise that may be on the signal
becomes part of the measured voltage. The rapid sample is a necessity for high
speed measurements. Integrating the signal will reduce noise. When lower
noise measurements are needed or speed is not an issue, integration can be
specified as part of the measurement.

The CR9000 uses digital integration. An integration time in microseconds (10
µs resolution) is specified as part of the measurement instruction. The CR9000
will repeat measurements every 10 µs throughout the integration interval and
store the average as the result of the measurement.

The random noise level is decreased by the square root of the number of
measurements made. For example, the input noise on the ±5000 mV range
with no integration (one measurement) is 90 µV RMS; integrating for 40 µs
(four measurements) will cut this noise in half (90/(√4)=45).

One of the most common sources of noise is not random but is 60 Hz from AC
power lines. An integration time of 16,670 µs is equal to one 60 Hz cycle.
Integrating for one cycle will integrate the AC noise to 0.

The integration time specified in the measurement instruction is used for each
segment of the measurement. Thus, if reversing the differential input or
reversing the excitation is specified, there will be two integrations per channel;
if both reversals are specified, there will be four integrations.

3.1.2 Single Ended and Differential Voltage Measurements
A single-ended measurement is made on a single input which is measured
relative to ground. A differential measurement measures the difference in
voltage between two inputs. Twice as many single ended measurements can
be made per Analog Input Module.

There are two sets of channel numbers on the Analog Input
Modules. Differential channels (1-14) have two inputs: high (H)
and low (L). Either the high or low side of a differential channel
can be used for a single ended measurement. The single-ended
channels are numbered 1-28.

Because a single ended measurement is referenced to CR9000 ground, any
difference in ground potential between the sensor and the CR9000 will result

NOTE

Section 3. CR9000 Measurement Details

3-4

in an error in the measurement. For example, if the measuring junction of a
copper-constantan thermocouple, being used to measure soil temperature, is
not insulated and the potential of earth ground is 1 mV greater at the sensor
than at the point where the CR9000 is grounded, the measured voltage would
be 1 mV greater than the thermocouple output, or approximately 25 oC high.
Another instance where a ground potential difference creates a problem is in a
where external signal conditioning circuitry is powered from the same source
as the CR9000. Despite being tied to the same ground, differences in current
drain and lead resistance result in different ground potential at the two
instruments. For this reason, a differential measurement should be made on an
analog output from the external signal conditioner. Differential measurements
MUST be used when the inputs are known to be different from ground, such as
the output from a full bridge.

3.1.2.1 Single Ended Voltage Range

The voltage range for single ended measurements is the range in which the
input voltage must be, relative to CR9000 ground, for the measurement to be
made.

The resolution (the smallest difference that can be detected) for the A/D
conversion is a fixed percentage of the full scale range. To obtain the best
resolution, select the smallest range that will cover the voltage output by the
sensor. For example, the resolution of an A/D conversion made on the ± 50
mV range is 1.6 µV; the resolution on the ±5000 mV range is 160 µV. A
copper-constantan thermocouple outputs a voltage of about 40 µV / °C
(difference in temperature between the measurement and reference junction).
The temperature resolution on the ± 50 mV range is 0.04 degrees (1.6 µV /
40 µV / 1°C); the resolution on the ±5000 mV range is 4 degrees (160 µV /
40 µV / °C). Because the smallest ± 50 mV range will allow a 1250 degree
difference (0.05 V / 0.00006 V), which is greater than the sensor capability
(-200 to 400 degrees C) there is no reason to use a larger range.

3.1.2.2 Differential Voltage Range

When a differential voltage measurement is made, the high (H) input is
referenced to the low (L) input. To obtain the best resolution, select the
smallest range that will cover the voltage output by the sensor as described for
single ended voltage measurements above.

Common mode range

In order to make a differential measurement, the inputs must be within the
CR9000 common mode range of ±5 V for the 9050 Analog Input Module and
the 9051E Fault-Tolerant Analog Input Module or ±50 V for the 9055 Analog
input Module. The common mode range is the voltage range, relative to
CR9000 ground, within which both inputs of a differential measurement must
lie, in order for the differential measurement to be made. For example, if the
high side of a differential input is at 4 V and the low side is at 3 V relative to
CR9000 ground, there is no problem. A measurement made on the 9050
module with the ±5000 mV range will return 1000 mV. However, if the high
input is at 5.8 V and the low input is at 4.8 V, the measurement should not be
trusted because the high input is outside of the 9050 Module's ±5 V common
mode range. Differential made on signals outside the common mode range

Section 3. CR9000 Measurement Details

3-5

may return the over range value Not-A-Number (NAN) or a valid, but
incorrect, number. To avoid misleading data, either be sure the signal is
referenced to CR9000 ground or use the voltage range R option to check
common mode range as described below.

Sensors that have a floating output (the output is not referenced to ground
through a separate connection) may float out of common-mode range, causing
measurement problems. The voltage range C option described below can be
used to keep floating differential inputs within common-mode range. Another
solution is to connect one side of the differential input to ground to ensure the
signal remains within the common mode range.

There are several measurement options for differential voltage measurements
and differential voltage thermocouple measurements (VoltDiff and TCDiff),
specified in the range code, that are related to common mode:

Range Code C option : Before making the differential measurement, the H
and L inputs are briefly connected to internal voltages within the common
mode range allowing floating inputs to remain within common mode for the
differential measurement.

The C option has the added benefit of being able to detect an open input (e.g.,
broken thermocouple). The H input is connected to a voltage approximately
2.8 V above the L input so that an open input will result in an over range on
the ±200 mV and ±50 mV input ranges. With an open input the high and low
inputs are floating independently and remain close to the values they reached
while connected to the excitation, over ranging voltage ranges up to ±200 mV
and causing Not a Number (NAN) to be returned for the result.

Check common mode range, R, option (e.g., mV1000R): After making the
differential measurement, appropriate single-ended measurements are made on
the H and L inputs to determine if the differential measurement was within
common-mode range. The result of the differential measurement is set to the
over range value (NAN) if the measurement was determined to be out of
common-mode range.

The options to pull into common mode before the differential measurement
and to check that the input remained in common mode with a single ended
measurement after the differential measurement can be combined (e.g.,
mV1000CR).

Problems with exceeding common mode range may be encountered when the
CR9000 is used to read the output of external signal conditioning circuitry if a
good ground connection does not exist between the external circuitry and the
CR9000. When operating where AC power is available, it is not always safe to
assume that a good ground connection exists through the AC wiring. If a
CR9000 is used to measure the output from a laboratory instrument (both
plugged into AC power and referencing ground to outlet ground), it is best to
run a ground wire between the CR9000 and the external circuitry. Even with
this ground connection, the ground potential of the two instruments may not be
at exactly the same level, which is why a differential measurement is desired.

A differential measurement has the option of reversing the inputs to cancel
offsets as described above. The maximum offset when the inputs are reversed
on a differential measurement offset is about one quarter what it is on a single
ended or one way differential.

Section 3. CR9000 Measurement Details

3-6

Sustained voltages in excess of ±20 V on the 9050 Module
inputs or ±150 V on the 9055 Module inputs will damage the
CR9000 circuitry.

3.1.3 Signal Settling Time
Whenever an analog input is switched into the CR9000 measurement circuitry
prior to making a measurement, a finite amount of time is required for the
signal to stabilize at it's correct value. The rate at which the signal settles is
determined by the input settling time constant which is a function of both the
source resistance and input capacitance. The CR9000 delays after switching to
a channel to allow the input to settle before initiating the measurement. The
default delays used by the CR9000 are 10 µs on the ±5000 and ±1000 mV
ranges and 20 µs on the ±200 and ±50 mV range. This settling time is the
minimum required to allow the input to settle to the resolution specification.
The additional wire capacitance associated with long sensor leads can increase
the settling time constant to the point that measurement errors may occur.
There are three potential sources of error which must settle before the
measurement is made:

1. The signal must rise to its correct value.

2. A small transient caused by switching the analog input into the
measurement circuitry must settle.

3. When a resistive bridge measurement is made using a switched excitation
channel, a larger transient caused when the excitation is switched must
settle.

MINIMIZING SETTLING ERRORS

When long lead lengths are mandatory, the following general practices can be
used to minimize or measure settling errors:

1. When measurement speed is not a prime consideration, additional delay
time can be used to ensure ample settling time.

2 When making fast bridge measurements, use the continuous excitation
channels (1-6) to excite the bridges so the excitation doesn't have to settle
before each measurement.

3. Where possible run excitation leads and signal leads in separate shields to
minimize transients.

4. DO NOT USE WIRE WITH PVC INSULATED CONDUCTORS. PVC
has a high dielectric which extends input settling time.

5. Use the CR9000 to measure the input settling error associated with a
given configuration. Stabilize the sensor so that its output is not
changing. Program the CR9000 to make the measurement with the delay
you would like to use and a second time with a much longer delay that
ensures adequate settling time. The difference between the two
measurements is the error due to inadequate settling time.

NOTE

Section 3. CR9000 Measurement Details

3-7

3.1.4 Thermocouple Measurements
A thermocouple consists of two wires, each of a different metal or alloy, which
are joined together at each end. If the two junctions are at different
temperatures, a voltage proportional to the difference in temperatures is
induced in the wires. When a thermocouple is used for temperature
measurement, the wires are soldered or welded together at the measuring
junction. The second junction, which becomes the reference junction, is
formed where the other ends of the wires are connected to the measuring
device. (With the connectors at the same temperature, the chemical
dissimilarity between the thermocouple wire and the connector does not induce
any voltage.) When the temperature of the reference junction is known, the
temperature of the measuring junction can be determined by measuring the
thermocouple voltage and adding the corresponding temperature difference to
the reference temperature.

The CR9000 determines thermocouple temperatures using the following
sequence. First the temperature of the reference junction is measured. If the
reference junction is the CR9000 Analog Input Module, the temperature is
measured with the PRT in the 9050 Analog Input Module (ModuleTemp
instruction). The reference junction temperature in oC is stored and then
referenced by the thermocouple measurement instruction (TCDiff or TCSE).
The CR9000 calculates the voltage that a thermocouple of the type specified
would output at the reference junction temperature if its reference junction
were at 0 oC, and adds this voltage to the measured thermocouple voltage. The
temperature of the measuring junction is then calculated from a polynomial
approximation of the NIST TC calibrations

3.1.4.1 Error Analysis

The error in the measurement of a thermocouple temperature is the sum of the
errors in the reference junction temperature, the thermocouple output
(deviation from standards published in NIST Monograph 175), the
thermocouple voltage measurement, and the linearization error (difference
between NIST standard and CR9000 polynomial approximations). The
discussion of errors which follows is limited to these errors in calibration and
measurement and does not include errors in installation or matching the sensor
to the environment being measured.

Reference Junction Temperature with 9050

The PRT in the CR9000 is mounted on the circuit board near the center of the
9050 terminal strip. This resistance temperature device (RTD) is accurate to
±0.1 oC over the CR9000 operating range. The I/O Module was designed to
minimize thermal gradients. It is encased in an aluminum box which is
thermally isolated from the CR9000 fiberglass enclosure. Measurement
modules have aluminum mounting plates extending beyond the edges of the
circuit cards that provide thermal conduction for rapid equilibration of thermal
gradients. Sources of heat within the CR9000 enclosure exist due to power
dissipation by the electronic components or charging batteries. In a situation
where the CR9000 is at an ambient temperature of approximately 20oC and no
external temperature gradients exist, the temperature gradient between one end
of an Analog Input card to the other is likely to be less than 0.1°C. The
gradient from one end of the I/O Module to the other, is likely to be about

Section 3. CR9000 Measurement Details

3-8

4°C. The end of the enclosure with the CPU Module will be warmer due to
heat dissipated by the processor.

For the best accuracy, use the temperature of each 9050 module as the
reference temperature for any thermocouples attached to it. Given the above
conditions, this would keep the reference junctions within 0.05°C of the
temperature of the RTD. When making more thermocouple measurements
than can be accomplished on a single 9050 module, it is faster to measure the
temperature of one 9050 module and use it for all thermocouples. If speed is
more important than the reduced accuracy, the temperature of a single 9050
module can be used for thermocouples connected to other modules.

A foam block that fits under the terminal cover is sent with the CR9000.
When installed, this block insulates and limits air circulation around the
terminals. This helps to limit temperature gradients on the analog input
modules, particularly when the CR9000 is subjected to rapid temperature
changes. Figure 3.4-1 shows the thermocouple temperature errors experienced
on different channels of the analog module when the CR9000 was subjected to
an abrupt change in temperature (-40ºC to +60ºC in approximately 12
minutes).

Thermocouple Limits of Error

The standard reference which lists thermocouple output voltage as a function
of temperature (reference junction at 0oC) is the National Institute of Standards
and Technology Monograph 175 (1993). The American National Standards
Institute has established limits of error on thermocouple wire which is accepted
as an industry standard (ANSI MC 96.1, 1975). Table 3.4-1 gives the ANSI
limits of error for standard and special grade thermocouple wire of the types
accommodated by the CR9000.

-4

-3

-2

-1

0

1

2

3

4

17
00

17
05

17
10

17
15

17
20

17
25

17
30

17
35

17
40

17
45

17
50

17
55

18
00

18
05

18
10

18
15

18
20

18
25

18
30

T im e

Te
m

pe
ra

tu
re

 D
iff

er
en

ce
 D

eg
. C

-40

-30

-20

-10

0

10

20

30

40

50

60
C

R
90

00
 C

as
eT

em
pe

ra
tu

re
, D

eg
. CC hanel 1 - A c tua l

C hannel 6 - A c tua l
C hannel 12 - A c tual
R ef Tem p - Cas e Tem p
C R9000 C as e Tem p., D eg. C

FIGURE 3.4-1. Thermocouple Temperature Errors During Rapid Temperature Change

Section 3. CR9000 Measurement Details

3-9

TABLE 3.4-1. Limits of Error for Thermocouple Wire (Reference

Junction at 0oC)

 Limits of Error
Thermocouple Temperature (Whichever is greater)

Type Range oC Standard Special

T -200 to 0 ± 1.0oC or 1.5%
 0 to 350 ± 1.0oC or 0.75% ± 0.5oC or 0.4%

J 0 to 750 ± 2.2oC or 0.75% ± 1.1oC or 0.4%

E -200 to 0 ± 1.7oC or 1.0%
 0 to 900 ± 1.7oC or 0.5% ± 1.0oC or 0.4%

K -200 to 0 ± 2.2oC or 2.0%
 0 to 1250 ± 2.2oC or 0.75% ± 1.1oC or 0.4%

R or S 0 to 1450 ± 1.5oC or 0.25% ± 0.6oC or 0.1%

B 800 to 1700 ± 0.5% Not Estab.

When both junctions of a thermocouple are at the same temperature there is no
voltage produced (law of intermediate metals). A consequence of this is that a
thermocouple can not have an offset error; any deviation from a standard
(assuming the wires are each homogeneous and no secondary junctions exist) is
due to a deviation in slope. In light of this, the fixed temperature limits of error
(e.g., ±1.0 °C for type T as opposed to the slope error of 0.75% of the temperature)
in the table above are probably greater than one would experience when
considering temperatures in the environmental range (i.e., the reference junction, at
0 °C, is relatively close to the temperature being measured, so the absolute error -
the product of the temperature difference and the slope error - should be closer to
the percentage error than the fixed error). Likewise, because thermocouple
calibration error is a slope error, accuracy can be increased when the reference
junction temperature is close to the measurement temperature. For the same reason
differential temperature measurements, over a small temperature gradient, can be
extremely accurate.

In order to quantitatively evaluate thermocouple error when the reference
junction is not fixed at 0 oC, one needs limits of error for the Seebeck
coefficient (slope of thermocouple voltage vs. temperature curve) for the
various thermocouples. Lacking this information, a reasonable approach is to
apply the percentage errors, with perhaps 0.25% added on, to the difference in
temperature being measured by the thermocouple.

Accuracy of the Thermocouple Voltage Measurement

The accuracy of a CR9000 voltage measurement is specified as 0.07% the
measured voltage plus 4 A/D counts of the range being used to make the
measurement. The input offset error reduces to 1 A/D count if a differential
measurement is made utilizing the option to reverse the differential input.

Section 3. CR9000 Measurement Details

3-10

For optimum resolution, the ±50 mV range is used for all but high temperature
measurements (Table 3.4-2). The input offset error dominates the voltage
measurement error for environmental measurements. A temperature difference
of 40 to 60 °C between the measurement and reference junctions is required
for a thermocouple to output 2.285 mV, the voltage at which 0.07% of the
reading is equal to 1 A/D count (1.6 mV). For example, assume that a type T
thermocouple is used to measure a temperature of 45 °C and that the reference
temperature is 25 °C. The voltage output by the thermocouple is 830.7 µV. At
45 degrees a type T thermocouple outputs 42.4 µV per oC. The possible slope
error in the voltage measurement is 0.0007x830.7 µV = 0.58 µV or 0.014 oC
(0.58/42.4). An A/D count on the ±50 mV range is worth 1.6 µV or 0.038 oC.
Thus, the possible error due to the voltage measurement is 0.166 oC on a
single-ended or non-reversing differential, or 0.052 oC with a reversing
differential measurement. The value of using a differential measurement with
reversing input to improve accuracy is readily apparent.

The error in the temperature due to inaccuracy in the measurement of the
thermocouple voltage is worst at temperature extremes, particularly when the
temperature and thermocouple type require using the 200 mV range. For
example, assume type K (chromel-alumel) thermocouples are used to measure
temperatures around 1300 oC. The TC output is on the order of 52 mV,
requiring the ±200 mV input range. At 1300 oC, a K thermocouple outputs
34.9 µV per oC. The possible slope error in the voltage measurement is
0.0007x52 mV = 36.4 µV or 1.04 oC (36.4/34.9). An A/D count on the 200
mV range is worth 6.3 µV or 0.18 oC. Thus, the possible error due to the
voltage measurement is 1.77 oC on a single-ended or non-reversing
differential, or 1.22 oC with a reversing differential measurement.

TABLE 3.4-2. Voltage Range for maximum
Thermocouple resolution

Thermocouple
Type and

temperature
range oC

Temperature
range for ±50

mV range

Temperature
range for ±200

mV range

T -270 to 400 -270 to 400 not used
E -270 to 1000 -270 to 660 >660
K --270 to 1372 -270 to 1230 >1230
J -210 to 1200 -210 to 870 > 870

B 0 to 1820 0 to 1820 not used
R -50 to 1768 -50 to 1768 not used
S -50 to 1768 -50 to 1768 not used

N -270 to 1300 -270 to 1300 not used

When the thermocouple measurement junction is in electrical contact with the
object being measured (or has the possibility of making contact) a differential
measurement should be made. If the voltage potential exceeds the common
mode range of the 9050 module (e.g., the +12 V terminal of an automotive
battery) it is possible to use the 9055 ±50 V Analog Input Module to make the
Thermocouple measurement. The resolution and noise level are much worse
than with the 9050 Module. The ±500 mV range offers the best resolution, 1
A/D count is 16 µV, about 0.4 oC for most thermocouples.

Section 3. CR9000 Measurement Details

3-11

Noise on Voltage Measurement

The input noise on the ±50 mV range for a measurement with no integration is
4 µV RMS. On a type T thermocouple (approximately 40 µV/oC) this is 0.1
oC. Note that this is an RMS value, some individual readings will vary by
greater than this. By integrating for 500 µs (50 samples) the noise level is
reduced to 0.6 µV RMS (4/√50=0.6). If a 500 µs integration is combined with
reversing the differential input, there are 100 samples in the measurement and
the noise level is reduced to 0.4 µV RMS.

Thermocouple Polynomial: Voltage to Temperature

NIST Monograph 175 gives high order polynomials for computing the output
voltage of a given thermocouple type over a broad range of temperatures. In
order to speed processing and accommodate the CR9000's math and storage
capabilities, 4 separate 6th order polynomials are used to convert from volts to
temperature over the range covered by each thermocouple type. Table 3.4-3
gives error limits for the thermocouple polynomials.

TABLE 3.4-3. Limits of Error on CR9000
Thermocouple Polynomials (Relative to

NIST Standards)

TC
Type

Range oC

Limits of Error oC

T -270 to 400
 -270 to -200 +18@ -270
 -200 to -100 ±0.08
 -100 to 100 ±0.001
 100 to 400 ±0.015

J -150 to 760 ±0.008
 -100 to 300 ±0.002

E -240 to 1000
 -240 to -130 ±0.4
 -130 to 200 ±0.005
 200 to 1000 ±0.02

K -50 to 1372
 -50 to 950 ±0.01
 950 to 1372 ±0.04

Reference Junction Compensation: Temperature to Voltage

The polynomials used for reference junction compensation (converting
reference temperature to equivalent TC output voltage) do not cover the entire
thermocouple range. Substantial errors will result if the reference junction
temperature is outside of the linearization range. The ranges covered by these
linearizations include the CR9000 environmental operating range, so there is
no problem when the CR9000 is used as the reference junction. External
reference junction boxes however, must also be within these temperature
ranges. Temperature difference measurements made outside of the reference

Section 3. CR9000 Measurement Details

3-12

temperature range should be made by obtaining the actual temperatures
referenced to a junction within the reference temperature range and subtracting
one temperature from the other. Table 3.4-3 gives the reference temperature
ranges covered and the limits of error in the linearizations within these ranges.

Two sources of error arise when the reference temperature is out of range. The
most significant error is in the calculated compensation voltage, however error
is also created in the temperature difference calculated from the thermocouple
output. For example, suppose the reference temperature for a measurement on
a type T thermocouple is 300 oC. The compensation voltage calculated by the
CR9000 corresponds to a temperature of 272.6 oC, a -27.4 oC error. The type
T thermocouple with the measuring junction at 290 oC and reference at 300 oC
would output -578.7 µV; using the reference temperature of 272.6 oC, the
CR9000 calculates a temperature difference of -10.2 oC, a -0.2 oC error. The
temperature calculated by the CR9000 would be 262.4 oC, 27.6 oC low.

TABLE 3.4-4. Reference Temperature
Compensation Range and Polynomial

Error Relative to NIST Standards

Type Range oC Limits of Error oC

T -100 to 100 ± 0.001
J -150 to 296 ± 0.005
E -150 to 206 ± 0.005
K -50 to 100 ± 0.01

Error Summary

The magnitude of the errors described in the previous sections illustrate that
the greatest sources of error in a thermocouple temperature measurement with
the CR9000 are likely to be due to the limits of error on the thermocouple wire
and in the reference temperature determined with the 9050 RTD. Errors in the
thermocouple and reference temperature linearizations are extremely small,
and error in the voltage measurement is negligible.

To illustrate the relative magnitude of these errors in the environmental range,
we will take a worst case situation where all errors are maximum and additive.
A temperature of 45 oC is measured with a type T (copper-constantan)
thermocouple, using the ±50 mV range. The nominal accuracy on this range is
1 µV (0.01% of 10 mV) which at 45 oC changes the temperature by 0.012 oC.
The RTD is 25 oC but is indicating 25.1 oC, and the terminal that the
thermocouple is connected to is 0.05 oC cooler than the RTD.

Section 3. CR9000 Measurement Details

3-13

TABLE 3.4-5. Example of Errors in Thermocouple Temperature

Source Error: oC : % of Total Error
 Single-Ended or single

Differential
Reversing Differential
w:500 µs Integration

 ANSI TC
Error (1oC)

TC Error 1%
Slope

ANSI TC Error
(1oC)

TC Error 1%
Slope

Reference
Temp.

0.15o:10.6% 0.15o:24.3% 0.15o:12.3% 0.15o:36.2%

TC Output 1.0o:70.5% 0.2o:32.3% 1.0o:82.4% 0.2o:48.3%
Voltage
Measurement

0.166o:11.7% 0.166o:26.8% 0.052o:4.3% 0.052o:12.6%

Noise 0.1o:7% 0.1o:16.2% 0.01o:0.8% 0.01o:2.4%
Reference
Linearization

0.001o:0.1% 0.001o:0.2% 0.001o:0.1% 0.001o:0.25%

Output
Linearization

0.001o:0.1% 0.001o:0.2% 0.001o:0.1% 0.001o:0.25%

Total Error 1.418o:100% 0.618o:100% 1.214o:100% 0.414o:100%

3.1.4.2 Use of External Reference Junction or Junction Box

An external junction box is often used to facilitate connections and to reduce
the expense of thermocouple wire when the temperature measurements are to
be made at a distance from the CR9000. In most situations it is preferable to
make the box the reference junction in which case its temperature is measured
and used as the reference for the thermocouples and copper wires are run from
the box to the CR9000. Alternatively, the junction box can be used to couple
extension grade thermocouple wire to the thermocouples being used for
measurement, and the CR9000 I/O Module used as the reference junction.
Extension grade thermocouple wire has a smaller temperature range than
standard thermocouple wire, but meets the same limits of error within that
range. The only situation where it would be necessary to use extension grade
wire instead of a external measuring junction is where the junction box
temperature is outside the range of reference junction compensation provided
by the CR9000. This is only a factor when using type K thermocouples, where
the upper limit of the reference compensation linearization is 100 oC and the
upper limit of the extension grade wire is 200 oC. With the other types of
thermocouples the reference compensation range equals or is greater than the
extension wire range. In any case, errors can arise if temperature gradients
exist within the junction box.

Figure 3.4-1 illustrates a typical junction box. Terminal strips will be a
different metal than the thermocouple wire. Thus, if a temperature gradient
exists between A and A' or B and B', the junction box will act as another
thermocouple in series, creating an error in the voltage measured by the
CR9000. This thermoelectric offset voltage is a factor whether or not the
junction box is used for the reference. This offset can be minimized by making
the thermal conduction between the two points large and the distance small.
The best solution in the case where extension grade wire is being connected to
thermocouple wire would be to use connectors which clamped the two wires in
contact with each other.

Section 3. CR9000 Measurement Details

3-14

CR9000

H

L

A' A

B' B

Junction Box

TC

FIGURE 3.4-1. Diagram of Junction Box

An external reference junction box must be constructed so that the entire
terminal area is very close to the same temperature. This is necessary so that a
valid reference temperature can be measured and to avoid a thermoelectric
offset voltage which will be induced if the terminals at which the thermocouple
leads are connected (points A and B in Figure 3.4-1) are at different
temperatures. The box should contain elements of high thermal conductivity,
which will act to rapidly equilibrate any thermal gradients to which the box is
subjected. It is not necessary to design a constant temperature box, it is
desirable that the box respond slowly to external temperature fluctuations.

Radiation shielding must be provided when a junction box is installed in the
field. Care must also be taken that a thermal gradient is not induced by
conduction through the incoming wires. The CR9000 can be used to measure
the temperature gradients within the junction box.

3.1.5 Bridge Resistance Measurements
There are four bridge measurement instructions included in the standard
CR9000 software. Figure 3.5-1 shows the circuits that would typically be
measured with these instructions. In the diagrams, the resistors labeled Rs
would normally be the sensors and those labeled Rf would normally be fixed
resistors. Circuits other than those diagrammed could be measured, provided
the excitation and type of measurements were appropriate.

All of the bridge measurements have the option (RevEx) to make one set of
measurements with the excitation as programmed and another set of
measurements with the excitation polarity reversed. The offset error in the two
measurements due to thermal emfs can then be accounted for in the processing
of the measurement instruction. The excitation channel maintains the
excitation voltage until the hold for the analog to digital conversion is
completed. When more than one measurement per sensor is necessary (four
wire half bridge, three wire half bridge, six wire full bridge), excitation is
applied separately for each measurement. For example, in the four wire half
bridge when the excitation is reversed, the differential measurement of the
voltage drop across the sensor is made with the excitation at both polarities and
then excitation is again applied and reversed for the measurement of the
voltage drop across the fixed resistor.

Calculating the actual resistance of a sensor which is one of the legs of a
resistive bridge usually requires additional processing following the bridge
measurement instruction. In addition to the schematics of the typical bridge
configurations, Figure 3.5-1 lists the calculations necessary to compute the
resistance of any single resistor, provided the values of the other resistors in
the bridge circuit are known.

Section 3. CR9000 Measurement Details

3-15

BrHalf

X = result w/mult = 1, offset = 0

X
V

V

R

R Rx

s

s f
= =

+
1

()

R R
X

X

R
R X

R

s f

f
s

s

=
−

=
−

1

1

BrHalf3W

X = result w/mult = 1, offset = 0

X
V V

V V

R

RX

s

f
=

−

−
=

2 2 1

1

R R X

R R X
s f

f s

=

= /

BrHalf4W

H

L
H

L

X = result w/mult = 1, offset = 0

X
V

V

R

R
s

f
= =2

1

R R X

R R X
s f

f s

=

= /

BrFull

H
L

BrFull6W

H
L

H
L

X = result w/mult = 1, offset = 0

X
V

V

R

R R

R

R Rx
= =

+
−

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟1000 10001 3

3 4

2

1 2

X = result w/mult = 1, offset = 0

X
V

V

R

R R

R

R R
= =

+
−

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟1000 10002

1

3

3 4

2

1 2

()
()

()

()

X X R R R

R
R X

X

R
R X

X

X X R R R

R
R X

X

R
R X

X

1 3 3 4

1
2 1

1

2
1 1

1

2 2 1 2

3
4 2

2

4
3 2

2

1000

1

1

1000

1

1

= − + +

=
−

=
−

= + +

=
−

=
−

/ /

/ /

FIGURE 3.5-1. Circuits Used with Bridge Measurement Instructions

Section 3. CR9000 Measurement Details

3-16

3.1.6 Measurements Requiring AC Excitation
Some resistive sensors require AC excitation. These include electrolytic tilt
sensors, soil moisture blocks, water conductivity sensors and wetness sensing
grids. The use of DC excitation with these sensors can result in polarization,
which will cause an erroneous measurement, and may shift the calibration of
the sensor and/or lead to its rapid decay.

Other sensors like LVDTs (without built in electronics) require an AC
excitation because they rely on inductive coupling to provide a signal. DC
excitation would provide no output.

Any of the bridge measurements can reverse excitation polarity to provide AC
excitation and avoid ion polarization. The frequency of the excitation can be
determined by the delay and integration time used with the measurement. The
highest frequency possible is 50 kHz, the excitation is switched on and then
reversed 10 µs later when the first measurement is held and then is switched
off after another 10 µs when the second measurement is held (i.e., reverse the
excitation, 10 µs delay, no integration). A switched excitation channel (7-16
on the 9060 Module) should be used when AC excitation is required because it
will be switched out as soon as the measurement is completed. The continuous
excitation channels (1-6 on the 9060 Module) should not be used because they
retain the last voltage programmed (i.e., after reversing the excitation, the
channel would be left at the reversed polarity voltage until the next instruction
that acted on the excitation channel).

3.1.7 Influence of Ground Loop on Measurements
When measuring soil moisture blocks or water conductivity the potential exists
for a ground loop which can adversely affect the measurement. This ground
loop arises because the soil and water provide an alternate path for the
excitation to return to CR9000 ground, and can be represented by the model
diagrammed in Figure 3.6-1.

FIGURE 3.6-1. Model of Resistive Sensor with Ground Loop

In Figure 3.6-1, Vx is the excitation voltage, Rf is a fixed resistor, Rs is the
sensor resistance, and RG is the resistance between the excited electrode and
CR9000 earth ground. With RG in the network, the measured signal is:

Section 3. CR9000 Measurement Details

3-17

 ()V V
R

R R R R Rx
s

s f s f G
1 = + + /

 [3.6-1]

RsRf/RG is the source of error due to the ground loop. When RG is large the
equation reduces to the ideal. The geometry of the electrodes has a great effect
on the magnitude of this error. The Delmhorst gypsum block used in the 227
probe has two concentric cylindrical electrodes. The center electrode is used
for excitation; because it is encircled by the ground electrode, the path for a
ground loop through the soil is greatly reduced. Moisture blocks which consist
of two parallel plate electrodes are particularly susceptible to ground loop
problems. Similar considerations apply to the geometry of the electrodes in
water conductivity sensors.

The ground electrode of the conductivity or soil moisture probe and the
CR9000 earth ground form a galvanic cell, with the water/soil solution acting
as the electrolyte. If current was allowed to flow, the resulting oxidation or
reduction would soon damage the electrode, just as if DC excitation was used
to make the measurement. Campbell Scientific probes are built with series
capacitors in the leads to block this DC current. In addition to preventing
sensor deterioration, the capacitors block any DC component from affecting
the measurement.

3.2 CR9058E Isolation Module Measurements
Each CR9058E input channel has its own 24 bit sigma delta analog to digital
converter taking 10,000 measurements per second, or one measurement sample
per 100 microseconds. The effective resolution at this sample rate is 18.7 bits,
or +/- 9.4 microvolts when using the +/- 2 Volt range, because of the inherent
noise of the A/D converter and noise from other sources. The effective
resolution can be dramatically improved through filtering, and/or integrating,
multiple measurements. Thus, noise reduction and measurement speed can be
traded off using the Integration parameter. Noise is reduced by approximately
the square root of the number of samples within the integration time. Thus, if
the integration time is set to 10000 versus 100 microseconds, noise should be
reduced approximately by a factor of ten . This approximation assumes that
the noise is white noise, which is not entirely true because some of the noise is
due to interference from sources at fixed frequencies. Noise reduction by
filtering can go just so far, and the best the CR9058E can achieve is
approximately 21 bits of resolution (+/- 1.9 microvolts on the 2 Volt range).

The CR9058E isolated input module is similar in operation to the CR9050
analog input module except for:

• The CR9058E has ten differential input channels instead of 16 differential
/ 32 single-ended inputs.

• The CR9058E has different voltage ranges of +/- 60 Volts DC, +/- 20
Volts DC, and +/- 2 Volts DC.

• The CR9058E has a slower maximum scan rate than the CR9050, but this
is somewhat balanced by the fact that the CR9058E measures all of its
channels simultaneously, as each channel has its own 24 bit sigma delta
analog to digital converter. Conversely, the measurements from the

Section 3. CR9000 Measurement Details

3-18

CR9050(E) are multiplexed sequentially through a single A to D
converter.

3.2.1 CR9058E Supported Instructions
The CR9058E currently supports three CR9000X measurement instructions:

1. VoltDiff (Dest, Reps, Range, ASlot, DiffChan, RevDiff, Settle, Integ,
Mult, Offset)

2. TCDiff (Dest, Reps, Range, ASlot, DiffChan, TCType, TRef, RevDiff,
Settle, Integ, Mult, Offset)

3. ModuleTemp (Dest, Reps, ASlot, Integ)

These instructions operate the same as with the CR9050 with these differences:

• DiffChan must be within 1..10.

• VoltDiff supports these voltage ranges: V2 (+/- 2 Volts DC), V2C (+/- 2
Volts with open thermocouple checking), V20 (+/- 20 Volts DC), and
V60 (+/- 60 Volts DC).

• TCDiff will work with the same range settings as the VoltDiff instruction,
but only V2 (no open thermocouple checking) or V2C (+/-2 volt range
with open thermocouple checking) should be used with TCDiff. When the
range is set = V2C, an open circuit will report an over-range condition to
the CR9000X.

• The Settle time parameter is unused.

• The minimum scan time when using the VoltDiff instruction, without
input reversal, for the CR9058E is 1290 microseconds for integration
times under 200 microseconds. If the integration time is greater than 200
microseconds, then the minimum scan interval is 1090 + integration time
(microseconds). When using the VoltDiff instruction with input reversal
and integration under 200 microseconds, the minimum scan interval is
2990 microseconds. With input reversal and integration times greater than
200 microseconds, the minimum scan time is (2790 + (2 x integration
time)).

• The minimum scan time when using the TCDiff instruction, without input
reversal, for the CR9058E is 2570 microseconds for integration times
under 200 microseconds. If the integration time is greater than 200
microseconds, then the minimum scan interval is 1370 + integration time
(microseconds). When using the VoltDiff instruction with input reversal
and integration under 200 microseconds, the minimum scan interval is
4280 microseconds. When using input reversal and integration times
greater than 200 microseconds, the minimum scan time is (4080 + (2 x
integration time)).

Section 3. CR9000 Measurement Details

3-19

• The Integ parameter in VoltDiff and in TCDiff (not in ModuleTemp) can
be set to –1, -2, -3, -4, or -5 and the CR9058E will set the corresponding
synch filter of 1, 2, 3, 4, or 5. The integration time will be maximized for
the given synch filter and scan interval. The integration and synch filter
order that a given CR9058E is using can be seen through PC9000's
terminal mode window (Tools/Diagnostics/Terminal Mode). In the I/O
Port area, click on "Open Port". Next, click in the Low Level I/O section
and hit Enter several times until the CR9000> prompt is returned. Type in
"4" and enter. The CR9058Es' slot numbers, integration times, and sync
filters will be returned.

• Input reversal (for offset cancellation) isn’t individually selectable
within the ten channels of a CR9058E module. If any one channel of a
CR9058E’s ten input channels has input reversal selected, by setting
the Rev parameter of the VoltDiff or TCDiff instruction to true, input
reversal will be applied to all ten channels. If other VoltDiff or
TCDiff instructions tied to this module within the same scan don’t
have the Rev parameter set True, then, without generating an error,
input reversal will be applied to them all anyway.

• A CR9058E can only have one integration time per scan interval that
applies to all ten of its channels. If multiple measurement instructions
within a scan are tied to a single CR9058E module, and they don’t all have
the same Integ time parameter, then the Integration time for all of that
module's channels will be set by the value of the Integ time parameter of
the last measurement instruction, tied to that module, within the scan.

• The Integ parameter in the VoltDiff and TCDiff instructions, within the
constraints listed above, can be used to adjust the measurement frequency
response. For example, for both 60 Hz and 50 Hz rejection the Integ
parameter could be set = 100,000 microseconds.

• The CR9058E ModuleTemp measurement is independent of the isolated
input measurements. The CR9058E ModuleTemp measurement method is
identical to that of the CR9050, using a platinum resistance thermometer
to obtain the thermocouple reference junction temperature at the EZ-
connect terminal module.

• Because heat is generated within the CR9058E, a thermal gradient can
develop across the EZ-connect terminal block which can produce errors in
thermocouple measurements. To minimize this error, keep the CR9058EC
covers in place. Also, type E or K thermocouples are better than type T
because type T thermocouples have a copper conductor which is an
excellent conductor of heat increasing the thermal gradient across the
terminal block.

• Each channel has an H (high) input terminal, a L (low) terminal, and a G
(isolated ground) terminal. The isolated ground terminals are not
connected to the CR9000X system ground. The isolated ground terminal
can be used to connect the shield of a shielded cable. Also, when un-
shielded thermocouples are used, the G terminal can be tied to the H or L
terminal to reduce noise in the readings.

Section 3. CR9000 Measurement Details

3-20

• The CR9058E does not directly support Bridge measurements, but Bridge
type measurements can be performed through using the CR9060s CAOs or
external excitation and adjusting the multiplier according to the excitation
level.

3.2.2 CR9058E Sampling, Noise and Filtering
The ten analog to digital converters are re-synchronized at the beginning of
each scan. There are 1290 microseconds of over-head associated with this
process and other tasks. Therefore the minimum scan period for the CR9058E
is 1290 microseconds when setting the integration parameter to 200 or less
(two measurement samples 100 microseconds apart per channel is attained at
this rate). The integration time (microseconds) divided by 100 determines the
number of measurements taken during a scan. Setting the integration
parameter to a value greater than 200 microseconds requires a minimum scan
interval of 1090 + integration time. If reverse measurement is set true, then the
over-head is 2990 microseconds. With reversal on, and setting the integration
parameter to a value of 200 or less, a minimum scan interval of 2990
microseconds will be required.

The CR9058E has a digital signal processor that performs “sync-n” filtering of
the analog to digital converter results to reduce noise. At compile time the
CR9058E computes the order of the sync-n filter based on the integration time
and Scan interval. The more samples available, the higher the order of sync-n
filter is implemented up to an order of five. The equation used to calculate the
filter is:

()
()SampleTimeIntegTime

SampleTimeAvailTimerfilterorde
−
−

=

where:

AvailTime = Scan Interval with the following adjustments:

Subtract off 1290 microseconds if range code v2C is used.

Divide by 2 and subtract off 420 microseconds if input reversal is true.

Finally, subtract another 1090 microseconds

IntegTime = user entered Integration time in microseconds.

SampleTime = 100 (microseconds) or
SampleTime = N X 100 (microseconds). See below.

Where N is the number of integrated values that are averaged
together before the sync-n filter is applied. Initially N is set to 1 (no
averaging of the integrated values). If the CR9058E finds that it
doesn’t have enough memory to implement the filter, it increments N
above and repeats the calculation until the filter will fit in its memory.

If the Integration time parameter is set = -1, the IntegTime above is set =
AvailTime. This gives a filter order of 1, which amounts to simple averaging
of all the samples measured in a scan interval.

Section 3. CR9000 Measurement Details

3-21

C H AR T 3 .1
F R E Q U E N C Y R E S P O N S E O F S Y N C F IL T E R O R D E R S 1 - 5

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

0 1 2 3 4 5 6

F R E Q U E N C Y
N O R M A L IZ E D T O (1 /IN T E G R AT IO N T IM E)

R
EL

 R
ES

PO
N

SE
S y n c O rd e r 1

S y n c O rd e r 5

Chart 3.1 shows the response times for the synch filters available for the
CR9058E. As can be seen, the 1rst order sync filter does not filter out the
higher frequency components of the input signal. This could result in higher
frequency signals being aliased back to lower frequencies. While the 5th order
sync filter does a fairly good job filtering out higher order frequencies, the
trade off is that it also attenuates the signal at lower frequencies as can be seen
in Chart 3.2.

C H AR T 3 .2
FR E Q U E N C Y R E S P O N S E O F S Y N C F ILTE R O R D E R S 1 TH R O U G H 5

0.91

0 .92

0 .93

0 .94

0 .95

0 .96

0 .97

0 .98

0 .99

1 .00

1 .01

0.00 0.01 0.02 0 .03 0.04 0.05 0.06 0.07 0 .08 0.09 0.10

FR E Q U E N C Y
N O R M ALIZE D TO (1 /IN TE G R ATIO N T IM E)

R
EL

R

ES
PO

N
SE

S ync_order_1

S ync_order_2

S ync_order_3

S ync_order_4

S ync_order_5

Section 3. CR9000 Measurement Details

3-22

3.3 CR9052 Filter Module Measurements
 Each CR9052 module has six differential analog measurement channels with
programmable input ranges from ±20 mV to ±5 V. Each channel has its own
programmable-gain instrumentation amplifier, pre-sampling analog filter, and
sigma-delta analog-to-digital converter. All CR9052 channels in a single
CR9000X chassis are sampled simultaneously.

The CR9052 implements anti-aliasing with programmable, real-time, low-pass,
finite impulse response (FIR) filters. An on-board digital signal processor
(DSP) collects alias-free, 50-kHz samples from each of the module's sigma-
delta converters, and then applies real-time, programmable low-pass filtering
and decimation to anti-alias and down-sample the data to the selected
measurement rate, selectable from 5 Hz to 50 kHz. The CR9052 can also
accumulate snapshots of anti-aliased time-series, Fourier transform them into
frequency spectra, and send the resulting real-time spectra to the CR9000X's
main processor.

The CR9052 can burst measurements to its on-board, 8-million sample buffer
at 50,000 measurements per second per channel. Using the FFT spectrum
analyzer mode, the module's DSP can provide real-time spectra from
"seamless", anti-aliased, 50-kHz, 2048-point time-series snapshots for each of
its six analog input channels. The decimated data can be downloaded to an
appropriate PC card at an aggregate rate of 100,000 measurements per second.

The CR9052 filter's pass-band ripple is less than ±0.01 dB (0.1 percent), and
the stop-band attenuation exceeds 90 dB (1/32,000). The FIR filter's transition
band has a steep roll-off, with the stop-band frequency starting a factor of 1.24
above the pass-band frequency. In comparison, the stop-band frequency of an
ideal eight-pole Butterworth filter with the same ripple and attenuation starts a
factor of 5.81 above its pass-band frequency.

The digital implementation of the CR9052 FIR filters maintains a group delay
that is independent of frequency (linear phase response). In addition, the
digital filter performance does not change with time, temperature, or
component tolerances. The on-board DSP automatically chooses the

Section 3. CR9000 Measurement Details

3-23

appropriate low-pass filter to anti-alias the input data for the user's desired
measurement rate. If desired, users may load their own coefficients into the
on-board DSP to tailor the FIR filter's frequency response to their own needs
(band pass, band reject, etc.).

CR9052IEPE DC Frequency Response

The CR9052IEPE module has two programmable time constants available: 5
seconds and 0.5 seconds. The advantage of the 0.5 second time constant is
that if you have a step in the voltage (either from a shock to the sensor or when
initially supplying excitation) it will only take 0.5 seconds for 63% of the
voltage step to discharge, while with the 5 second time constant, it would take
5 seconds.

Chart 3.3 Step Discharge Rate

The 5.0 second time constant will not result in lower frequencies being
attenuated as much (3 dB at 0.03 Hz) as the 0.5 second time constant (3 dB at
0.3 Hz).
 Chart 3.4 Frequency Response

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

-1 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

S E C O N D S

V/
V_

ST
EP

 R
ES

PO
N

SE

T a u = 5 .0 S e c o n d s
T a u = 0 .5 S e c o n d s

T im e C o n s ta n t
= 5 S e c o n d s

T im e C o n s ta n t
= 0 .5 S e c o n d s

0

0 .2

0 .4

0 .6

0 .8

1

1 .0 E -0 4 1 .0 E -0 3 1 .0 E -0 2 1 .0 E -0 1 1 .0 E + 0 0 1 .0 E + 0 1 1 .0 E + 0 2 1 .0 E + 0 3 1 .0 E + 0 4 1 .0 E + 0 5

F re q u e n c y (L o g S c a le)

R
el

 R
es

po
ns

e

T a u = 5 .0 S e c o n d s
T a u = 0 .5 S e c o n d s

T im e C o n s ta n t
= 5 S e c o n d s

T im e C o n s ta n t
= 0 .5 S e c o n d s

Section 3. CR9000 Measurement Details

3-24

WINDOWING
The FFT option allows radix-two (2n, where n = 5, 6, …16) transform lengths
ranging from 32 to 65,536 samples. Users can optionally apply a Hanning,
Hamming, Blackman-Harris, or one from a selection of Kaiser-Bessel beta
choices, window function to their time series before transforming them. The
beta (Kaiser-Bessel) allows the user to trade spectral leakage for spectral
resolution. Table 3.3-1 shows the maximum out of band leakage and the full
width, half of maximum (FWHM) spectral resolution monitoring a
monochromatic signal using four different betas. Chart 3.5-1 shows
graphically the bin resolution (or bin smearing effect) for no windowing, the
Hanning window and 4 Kaiser-Bessel betas.

Table 3.3-1. Spectral Leakage vs. Resolution

BETA

MAXIMUM LEAKAGE
(dB)

SPECTRAL RESOLUTION
(BINS)

8 -63 2.25
10 -74 2.50
12 -95 2.75
14 -110 3.00

CHART 3.5 COMPARISION OF SPECTRAL RESOLUTION FOR VARIOUS
WINDOWING FUNCTIONS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

253 254 255 256 257 258 259 260 261

FREQUENCY BIN

PE
A

K
 S

IG
N

A
L

No Window

Hanning Window

Kaiser Window, Beta=8

Kaiser Window, Beta=10

Kaiser Window, Beta=12

Kaiser Window, Beta=14

Using a Kaiser-Bessler with a beta of around 12 results in a spectral leakage
that best matched the attenuation of the CR9052's anti-aliasing filters.
Although this spreads the FWHM of a single line source to 2.75 bins, this can
be compensated for by increasing the length (or number of bins) of the FFT
because the windowing spreads the signal across a finite number of bins, not
across an absolute frequency range.

Section 3. CR9000 Measurement Details

3-25

SPECTRAL OUTPUT

The CR9052 offers a variety of spectrum normalizations, including real and
imaginary, amplitude and phase, power, power spectral density (PSD), and
decibels (dB). In addition, the CR9052 can combine adjacent spectral bins into
a single bin to decrease the size of the final spectrum. A built-in function
selects an exponentially increasing spectral bin width to give 1/n octave
analyses, where n can vary from 1 to 12. A single programming step with
either the CRBasic programming language or the CR9000X program generator
configures the FFT spectrum analyzer options.

The module has superior noise performance, with an input-referred noise of 8
nV Hz-1/2 for the ± 20 mV input range. On the ± 20 mV input range, the total
noise for a 20 kHz bandwidth is less than 1.4 uV, and for a 1 Hz bandwidth,
250 nV. The programmable anti-alias filter allows users to trade bandwidth for
noise, or vice versa. The DSP's floating-point numeric implementation of the
FIR anti-alias filters and Fourier transforms preserve this low-noise
performance. A 2048-point FFT gives an instantaneous dynamic range
exceeding 126 dB (an amplitude ratio of 2x106), and the 65,536-point FFT
gives an instantaneous dynamic range exceeding 140 dB (an amplitude ratio of
1x107). Real-time digital temperature compensation ensures gain accuracy
(±0.03 percent of reading) and offset accuracy (±0.03 percent of full-scale)
throughout the -40° to 70° C operating temperature range.

The combined capabilities of the CR9052 and the CR9000X offer numerous
measurement and data processing possibilities. For example, this combination
allows users to mix high-speed, anti-aliased measurements and spectra from
accelerometers, strain gages, and microphones with slower measurements from
thermocouples, pressure transducers, and serial data streams. The general-
purpose programmability of the CR9000X allows users to process their data
before saving it to data tables. For example, users may save measured data
only if the amplitude of a specific acoustic frequency exceeds some threshold,
or only if an acoustic spectral component correlates to measurements from
other sensors.

3.4 Pulse Count Measurements
Many pulse output type sensors (e.g., anemometers and flow-meters) are
calibrated in terms of frequency (counts/second). For these measurements the
accuracy is related directly to the accuracy of the time interval over which the
pulses are accumulated. Frequency dependent measurements should have the
PulseCount instruction programmed to return frequency. If the number of
counts is primary interest, PulseCount should be programmed to return counts
(i.e., the number of times a door opens, the number of tips of a tipping bucket
rain gage).

The interval of the scan loop that PulseCount is in is not the sole determining
factor in the calculation of frequency. While normally the counters will be
read on the scan interval, if execution is delayed, for example by lengthy
output processing, the pulse counters are not read until the scan is
synchronized with real time and restarted. The Transputer actually measures
the elapsed time since the last time the counters were read when determining
frequency so in the case of an overrun, the correct frequency would still be
output.

Section 3. CR9000 Measurement Details

3-26

The resolution of the pulse counters is one count. The resolution of the
calculated frequency depends on the scan interval: frequency resolution =
1/scan interval (e.g., a pulse count in a 1 second scan has a frequency
resolution of 1 Hz, a 0.5 second scan gives a resolution of 2 Hz, and a 1 ms
scan gives a resolution of 1000 Hz). The resultant measurement will bounce
around by the resolution. For example, if you are scanning a 2.5 Hz input once
a second, in some intervals there will be 2 counts and in some 3 as shown in
Figure 3.4-1. If the pulse measurement is averaged, the correct value will be
the result.

3 2 3 2

FIGURE 3.4-1. Varying Counts within Pulse Interval

The resolution gets much worse with the shorter intervals used with higher
speed measurements. As an example, assume that engine RPM is being
measured from a signal that outputs 30 pulses per revolution. At 2000 RPM,
the signal has a frequency of 100 Hz (2000 RPMx(1 min/60 s)x30=1000). The
multiplier to convert from frequency to RPM is 2 RPM/Hz (1 RPM/(30
pulses/60s) = 2). At a 1 second scan interval, the resolution is 2 RPM.
However, if the scan interval were 1 ms, the resolution would be 2000 RPM.
At the 1 ms scan, if every thing was perfect, each interval there would be 1
count. However, a slight variation in the frequency might cause 2 counts
within one interval and none in the next, causing the result to vary from 0 to
4000 RPM!

The POption parameter in the PulseCount instruction can be used to set an
interval period for a running average computation of the frequency output from
the sensor. Example: Scan Rate of 10 mSec is for other measurements. The
output from the Pulse sensor will vary from 1000 Hz to 10 Hz. Set the
POption parameter to 1000 (mSec), and the instruction returns get a running
average of the Pulse outputs (getting 100 samples/second) over a 1 second
period. This would smooth the output.

Another method for measuring frequency is to use the TimerIO instruction
using one of the Pulse channels on the CR9071E Pulse Module to measure the
period of the signal (40 nanosecond resolution). The value returned is in
milliseconds. You can take the reciprocal of the returned value and multiply
by 1000 to get the frequency of the signal.

3.4.1 High Frequency Pulse Measurements
All twelve pulse channels of the CR9070 and CR9071E can be configured for
high frequency inputs. The signal is feed through a filter with a time constant
of 200 (τ = 200 nanoseconds) nanoseconds to remove higher frequency noise.
It is then feed through a Schmitt circuit to convert the signal to a square wave,
and to guard against false triggers when the signal is hovering around the
threshold level. In the High Frequency mode, the input signal to the Schmitt

Section 3. CR9000 Measurement Details

3-27

trigger must rise from below 1.5 volts to above 3.5 volts in order to trigger an
output. Due to the attenuation caused by the filter on the front side of the
Schmitt circuit, a larger input voltage transition is required for higher
frequencies. The transition required for the input of the Schmitt trigger can be
viewed as 2.5 volts ± 1 volt (from below 1.5 volt to above 3.5 volt). The
equation to calculate the amount that the signal is attenuated by the front end
filter is:

()()()221
1

fV
V

In

Out

πτ+
=

VOut is the voltage level leaving the filter (level into the Schmitt circuit) when
VIn is the input voltage. VOut must be at minimum 1 volt for the Schmitt
circuit to trigger an output.

Chart 3.6 Required Transition Voltage for High Frequency Pulse

Chart 3.6 plots the trace for the minimum transition voltage about 2.5 volts
against the input signal frequency. To demonstrate how to use this plot, for a
input frequency of 1 MHz, the voltage signal, centered about 2.5 volts, must
have a transition of ± 1.6 volts in order to trigger the Schmitt circuit. In other
words, the signal must rise from below 0.9 volts (2.5 volts minus 1.6 volts) to
above 4.1 volts (2.5 volts plus 1.6 volts) for a pulse to be counted.

0.6

0.8

1

1.2

1.4

1.6

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000

Signal Frequency (Hz)

±V
 T

ra
ns

is
tio

n
(C

en
te

re
d

at
 2

.5
 V

ol
t)

Vin

Required Input Voltage

Section 3. CR9000 Measurement Details

3-28

This is a blank page.

4-1

Section 4. CRBasic – Native Language
Programming
The CR9000 is programmed in a language that has some similarities to a structured basic.
There are special instructions for making measurements and for creating tables of output
data. The results of all measurements are assigned variables (given names).
Mathematical operations are written out much as they would be algebraically. This
section describes a program, its syntax, structure, and sequence.

4.1 Format Introduction

4.1.1 Mathematical Operations
Mathematical operations are written out much as they would be algebraically.
For example, to convert a temperature in Celsius to Fahrenheit one might
write:

TempF = TempC * 1.8 + 32

With the CR9000 there may be 5 or 50 temperature (or other) measurements.
Rather than have 50 different names, a variable array with one name and 50
elements may be used. A thermocouple temperature might be called TCTemp.
With an array of 50 elements the names of the individual temperatures are
TCTemp(1), TCTemp(2), TCTemp(3), ... TCTemp(50). The array notation
allows compact code to perform operations on all the variables. For example,
to convert ten temperatures in a variable array from C to F:

For I=1 to 10
 TCTemp(I)=TCTemp(I)*1.8+32
Next I

4.1.2 Measurement and Output Processing Instructions
Measurement instructions are procedures that set up the measurement
hardware to make a measurement and place the results in a variable or a
variable array. Output processing instructions are procedures that store the
results of measurements or calculated values. Output processing includes
averaging, saving maximum or minimum, standard deviation, FFT, etc.

The instructions for making measurements and outputting data are not found in
a standard basic language. The instructions Campbell Scientific has created
for these operations are in the form of procedures. The procedure has a
keyword name and a series of parameters that contain the information needed
to complete the procedure. For example, the instruction for measuring the
temperature of the RTD on the 9050 Analog Input Module is:

ModuleTemp(Dest, Reps, ASlot, Integ)

Section 4. CRBasic – Native Language Programming

4-2

ModuleTemp is the keyword name of the instruction. There are four
parameters associated with ModuleTemp are: Destination, the name of the
variable in which to put the temperature; Repetitions, the number of sequential
9050 modules to measure the temperature of; Aslot, the slot in the CR9000 that
the analog card is in; and Integration, the length of time to integrate the
measurement. To place the temperature of the analog module in slot 5 in the
variable RefTemp (using a 10 microsecond measurement integration time) the
code is:

ModuleTemp(RefTemp, 1, 5, 10)

The use of these instructions should become more clear as we go through an
introductory example.

4.1.3 Inserting Comments Into Program
Comments can be inserted into a program by preceding the comment with a
single quote ('). Comments can be entered either as independent lines or
following CR9000 code. When the CR9000 compiler sees the ' it ignores the
rest of the line.

' The declaration of variables starts here.
Public Start(6) 'Declare the start time array

4.2 Programming Sequence
The following table describes the structure of a typical CR9000 program:

Declarations Make a list of what to measure and calculate.

Declare constants Within this list, include the fixed constants used,

Declare Public variables indicate the values that the user is able to view while the program
is running,

Dimension variables the number of each measurement that will be made,

Define Aliases and specific names for any of the measurements.

Define data tables. Describe, in detail, tables of data that will be saved from the
experiment.

Process/store trigger Set when the data should be stored. Are they stored when some
condition is met? Are data stored on a fixed interval? Are they
stored on a fixed interval only while some condition is met?

Table size Set the size of the table in CR9000 RAM

Other on-line storage devices Should the data also be sent to PC card or Flash memory?

Processing of Data What data are to be output (current value, average, maximum,
minimum, etc.)

Define Subroutines If there is a process or series of calculations that need to be
repeated several times in the program, it can be packaged in a
subroutine and called when needed rather than repeating all
the code each time.

Section 4. CRBasic – Native Language Programming

4-3

Program The program section defines the action of datalogging

Set scan interval The scan sets the interval for a series of measurements

Measurements Enter the measurements to make

Processing Enter any additional processing with the measurements

Call Data Table(s) The Data Table must be called to process output data

Initiate controls Check measurements and Initiate controls if necessary

NextScan Loop back (and wait if necessary) for the next scan

End Program

4.3 Example Program

Const RevDiff 1
Const Del 0
Const Integ 0
Const Mult 1
Const Offset 0
Public RefTemp
Public DIM TC(6)
Units RefTemp=degC
Units TC=degC

DataTable (Temp,1,2000)
 DataInterval(0,10,msec,10)
 Average(1,RefTemp,fp2,0)
 Average(6,TC(),fp2,0)
EndTable

BeginProg
Scan(1,MSEC,0,0)
 ModuleTemp(RefTemp,1,4,0)
 TCDiff(TC(),6,mV50,4,1,TypeT,RefTemp,RevDiff,Del,Integ,Mult,Offset)
 CallTable Temp
NextScan
EndProg

Scan loop

Declare public variables ,
dimension array, and
declare units.

Declare constants

Define Data Table

Declarations

Measure

Call Data Table

Section 4. CRBasic – Native Language Programming

4-4

4.3.1 Data Tables
Data storage follows a fixed structure in the CR9000 in order to optimize the
time and space required. Data are stored in tables such as:

TOA4 StnName Temp
TIMESTAMP RECORD RefTemp_Avg TC_Avg(1) TC_Avg(2) TC_Avg(3) TC_Avg(4) TC_Avg(5) TC_Avg(6)
TS RN degC degC degC degC degC degC degC
 Avg Avg Avg Avg Avg Avg Avg
1995-02-16 15:15:04.61 278822 31.08 24.23 25.12 26.8 24.14 24.47 23.76
1995-02-16 15:15:04.62 278823 31.07 24.23 25.13 26.82 24.15 24.45 23.8
1995-02-16 15:15:04.63 278824 31.07 24.2 25.09 26.8 24.11 24.45 23.75
1995-02-16 15:15:04.64 278825 31.07 24.21 25.1 26.77 24.13 24.39 23.76

The user's program determines the values that are output and their sequence.
The CR9000 automatically assigns names to each field in the data table. In the
above table, TIMESTAMP, RECORD, RefTemp_Avg, and TC_Avg(1) are
fieldnames. The fieldnames are a combination of the variable name (or alias if
one exists) and a three letter mnemonic for the processing instruction that
output the data. Alternatively, the FieldNames instruction can be used to
override the default names.

The data table header also has a row that lists units for the output values. The
units must be declared for the CR9000 to fill this row out (e.g., Units RefTemp
= degC). The units are strictly for the user's documentation; the CR9000
makes no checks on their accuracy.

The above table is the result of the data table description in the example
program:

DataTable (Temp,1,2000)
 DataInterval(0,10,msec,10)
 Average(1,RefTemp,fp2,0)
 Average(6,TC(1),fp2,0)
EndTable

All data table descriptions begin with DataTable and end with EndTable.
Within the description are instructions that tell what to output and that can
modify the conditions under which output occurs.

DataTable(Name, Trigger, Size)
DataTable (Temp,1,2000)

The DataTable instruction has three parameters: a user specified name for the
table, a trigger condition, and the size to make the table in CR9000 RAM. The
trigger condition may be a variable, expression, or constant. The trigger is true
if it is not equal to 0. Data are output if the trigger is true and there are no
other conditions to be met. No output occurs if the trigger is false (=0). The
example creates a table name Temp, outputs any time other conditions are met,
and retains 2000 records in RAM.

Section 4. CRBasic – Native Language Programming

4-5

DataInterval(TintoInt, Interval, Units, Lapses)
DataInterval(0,10,msec,10)

DataInterval is an instruction that modifies the conditions under which data are
stored. The four parameters are the time into the interval, the interval on
which data are stored, the units for time, and the number of lapses or gaps in
the interval to keep track of. The example outputs at 0 time into (on) the
interval relative to real time, the interval is 10 milliseconds, and the table will
keep track of 10 lapses. The DataInterval instruction reduces the memory
required for the data table because the time of each record can be calculated
from the interval and the time of the most recent record stored. Other output
condition modifiers are: Worst Case and FillandStop.

The output processing instructions included in a data table declaration
determine the values output in the table. The table must be called by the
program in order for the output processing to take place. That is, each time a
new measurement is made, the data table is called. When the table is called,
the output processing instructions within the table process the current inputs.
If the trigger conditions for the are true, the processed values are output to the
data table. In the example, several averages are output.

Average(Reps, Source, DataType, DisableVar)
Average(1,RefTemp,fp2,0)
Average(6,TC(1),fp2,0)

Average is an output processing instruction that will output the average of a
variable over the output interval. The parameters are repetitions - the number
of elements in an array to calculate averages for, the Source variable or array to
average, the data format to store the result in (Table 4.3-1), and a disable
variable that allows excluding readings from the average if conditions are not
met. A reading will not be included in the average if the disable variable is not
equal to 0; the example has 0 entered for the disable variable so all readings are
included in the average.

TABLE 4.3-1 Formats for Output Data

Code Data Format Size Range Resolution
FP2 Campbell Scientific floating point 2 bytes ±7999 13 bits (about 4 digits)

IEEE4 IEEE four byte floating point 4 bytes 1.8 E -38 to 1.7 E 38 24 bits (about 7 digits)
LONG 4 byte Signed Integer 4 bytes -2,147,483,648 to

+2,147,483,647
1 bit (1)

4.3.2 The Scan -- Measurement Timing and Processing
Once you know what you want, the measurements and calculations have been
listed and the output tables defined, the program itself may be relatively short.
The executable program begins with BeginProg and ends with EndProg. The
measurements, processing, and calls to output tables bracketed by the Scan and
NextScan instructions determine the sequence and timing of the datalogging.

Section 4. CRBasic – Native Language Programming

4-6

BeginProg
Scan(1,MSEC,0,0)
 ModuleTemp(RefTemp,1,4,0)
 TCDiff(TC(),6,mV50,4,1,TypeT,RefTemp,RevDiff,Del,Integ,Mult,Offset)
 CallTable Temp
NextScan
EndProg

The Scan instruction determines how frequently the measurements within the
scan are made:

Scan(Interval, Units, BurstOption, Count)
Scan(1,MSEC,0,0)

The Scan instruction has four parameters. The Interval is the interval between
scans. Units are the time units for the interval. The maximum scan interval is
one minute. The BurstOption determines if processing is concurrent with
measurements (0) or if raw values are buffered in RAM (1) or a PCMCIA card
(2), for processing after all measurements are made. At the maximum
measurement rate, processing time may exceed the time required for
measuring. Count is the number of scans to make before proceeding to the
instruction following NextScan. A count of 0 means to continue looping
forever (or until ExitScan). In the example the scan is 1 millisecond,
measurements are processed as they are made, and the measurements and
output continue indefinitely.

4.4 Numerical Entries
In addition to entering regular base 10 numbers there are 3 additional ways to
represent numbers in a program: scientific notation, binary, and hexadecimal
(Table 4.4-1).

TABLE 4.4-1 Formats for Entering
Numbers in CRBasic

Format Example Value
Standard 6.832 6.832
Scientific notation 5.67E-8 5.67X10-8
Binary: &B1101 13
Hexadecimal &HFF 255

The binary format makes it easy to visualize operations where the ones and
zeros translate into specific commands. For example, a block of ports can be
set with a number, the binary form of which represents the status of the ports
(1= high, 0=low). To set ports 1, 3, 4, and 6 high and 2, 5, 7, and 8 low; the
number is &B00101101. The least significant bit is on the right and represents
port 1. This is much easier to visualize than entering 72, the decimal
equivalent.

Section 4. CRBasic – Native Language Programming

4-7

4.5 Logical Expression Evaluation

4.5.1 What is true?
Several different words get used to describe a condition or the result of a test.
The expression, X>5, is either true or false. However, when describing the
state of a port or flag, on or off or high or low sounds better. In CRBasic there
are a number of conditional tests or instruction parameters the result of which
may be described with one of the words in Table 4.5-1. The CR9000 evaluates
the test or parameter as a number; 0 is false, not equal to 0 is true.

TABLE 4.5-1. Synonyms for True and False

Predefined Constant True (-1) False (0)
Synonym High Low
Synonym On Off
Synonym Yes No
Synonym Trigger Do Not

Trigger
Number ≠0 0
Digital port 5 Volts 0 Volts

4.5.2 Expression Evaluation
Conditional tests require the CR9000 to evaluate an expression and take one
path if the expression is true and another if the expression is false. For
example:
If X>=5 then Y=0
will set the variable Y to 0 if X is greater than or equal to 5.

The CR9000 will also evaluate multiple expressions linked with and or or.
For example:
If X>=5 and Z=2 then Y=0
will only set Y=0 if both X>=5 and Z=2 are true.
If X>=5 or Z=2 then Y=0
will set Y=0 if either X>=5 or Z=2 is true (see And and Or in Section 9). A
condition can include multiple and and or links.

4.5.3 Numeric Results of Expression Evaluation
The CR9000 expression evaluator evaluates an expression and returns a
number. A conditional statement uses the number to decide which way to
branch. The conditional statement is false if the number is 0 and true if the
number is not 0. For example:
If 6 then Y=0,
is always true, Y will be set to 0 any time the conditional statement is
executed.
If 0 then Y=0
is always false, Y will never be set to 0 by this conditional statement.

The CR9000 expression evaluator evaluates the expression, X>=5, and returns
-1, if the expression is true, and 0, if the expression is false.
W=(X>Y)
will set W equal to -1 if X>Y or will set W equal to 0 if X<=Y.

Section 4. CRBasic – Native Language Programming

4-8

The CR9000 uses -1 rather than some other non-zero number because the and
and or operators are the same for logical statements and binary bitwise
comparisons (see and and or in Section 8). The number -1 is expressed in
binary with all bits equal to 1, the number 0 has all bits equal to 0. When -1 is
anded with any other number the result is the other number, ensuring that if the
other number is non-zero (true), the result will be non-zero

4.6 Flags
Any variable can be used as a flag as far as logical tests in CRBasic are
concerned. If the value of the variable is non-zero the flag is high. If the value
of the variable is 0 the flag is low (Section 4.5). PC9000 looks for the variable
array with the name Flag when the option to display flag status is used in one
of the real time screens.

4.7 Parameter Types
Instructions parameters allow different types of inputs these types are listed
below and specifically identified in the description of the parameter in the
following sections or in PC9000 CRBasic help.

 Constant
 Variable
 Variable or Array
 Constant, Variable, or Expression
 Constant, Variable, Array, or Expression
 Name
 Name or list of Names
 Variable, or Expression
 Variable, Array, or Expression

Table 4.7-1 list the maximum length and allowed characters for the names for
Variables, Arrays, Constants, etc.

TABLE 4.7-1. Rules for Names

Name for Maximum Length
(number of characters)

Allowed characters

Variable or
Array

16 Letters A-Z, upper or lower
case, underscore “_”, and
numbers 0-9. The name
must start with a letter.
CRBasic is not case
sensitive.

Constant 16
Alias 16
Data Table
Name

8

Field name 16

Section 4. CRBasic – Native Language Programming

4-9

4.7.1 Expressions in Parameters
Many parameters allow the entry of expressions. If an expression is a
comparison, it will return -1 if the comparison is true and 0 if it is false
(Section 4.5.3). An example of the use of this is in the DataTable instruction
where the trigger condition can be entered as an expression. Suppose the
variable TC(1) is a thermocouple temperature:

DataTable(Name, TrigVar, Size)
DataTable(Temp, TC(1)>100, 5000)

Entering the trigger as the expression, TC(1)>100, will cause the trigger to be
true and data to be stored whenever the temperature TC(1) is greater than 100.

4.7.2 Arrays of Multiplier Offsets for Sensor Calibration
If variable arrays are used as the multiplier and offset parameters in
measurements that use repetitions, the instruction will automatically step
through the multiplier and offset arrays as it steps through the channels. This
allows a single measurement instruction to measure a series of individually
calibrated sensors, applying the correct calibration to each sensor. If the
multiplier and offset are not arrays, the same multiplier and offset are used for
each repetition.

VoltSE(Dest,Reps,Range,ASlot,SEChan,Delay,
Integ,Mult,Offset)

'Calibration factors:
Mult(1)=0.123 : Offset(1)= 0.23
Mult(2)=0.115 : Offset(2)= 0.234
Mult(3)=0.114 : Offset(3)= 0.224
VoltSE(Pressure(),3,mV1000,6,1,1,100,Mult(),Offset()

4.8 Program Access to Data Tables
Data stored in a table can be accessed from within the program. The format
used is:

Tablename.Fieldname(fieldname index,records back)

Where Tablename is the name of the table in which the desired value is stored.
Fieldname is the name of the field in the table. The fieldname is always an
array even if it consists of only one variable; the fieldname index must always
be specified. Records back is the number of records back in the data table
from the current time (1 is the most recent record stored, 2 is the record stored
prior to the most recent). For example, the expression:

Tdiff=Temp.TC_Avg(1,1)–Temp.TC_Avg(1,101)

could be used in the example program (Section 4.3) to calculate the change in
the 10 ms average temperature of the first thermocouple between the most
recent average and the one that occurred a second (100 x 10 ms) earlier.

Section 4. CRBasic – Native Language Programming

4-10

In addition to accessing the data actually output in a table, there are some
pseudo fields related to the data table that can be retrieved:

Tablename.record(1,n) = the record number of the record output n records ago.

Tablename.Tablesize(1,1) = the size of the table in records.

Tablename.output(1,1) = 1 if data were output to the table the last time the
table was called, = 0 if data were not output.

Tablename.timestamp(m,n) = element m of the timestamp output n records ago
where:

timestamp(1,n) = microseconds since 1990
timestamp(2,n) = microseconds into the current year
timestamp(3,n) = microseconds into the current month
timestamp(4,n) = microseconds into the current day
timestamp(5,n) = microseconds into the current hour
timestamp(6,n) = microseconds into the current minute
timestamp(7,n) = microseconds into the current second

Tablename.eventend(1,1) is only valid for a data table using the DataEvent
instruction, Tablename.eventend(1,1) = 1 if the last record of an event
occurred the last time the table was called, = 0 if the data table did not store a
record or if it is in the middle of an event.

Tablename.EventCount(1,1) is also only valid for a data table using the
DataEvent Instruction.

Tablename.EventCount(1,1) = the number of events that have been completed
in the table. An event is complete when the table has stopped storing data for
the event.

The values of Tablename.output(1,1) and Tablename.eventend
(1,1) are only updated when the tables are called.

The WorstCase example in Section 6.2 illustrates the use of this syntax.

NOTE

5-1

Section 5. Program Declarations

ALIAS
Used to assign a second name to a variable.

Syntax
Alias VariableA = VariableB

Remarks
Alias allows assigning a second name to a variable. Within the datalogger
program, either name can be used. Only the alias is available for Public variables.
The alias is also used as the root name for datatable fieldnames.

With aliases the program can have the efficiency of arrays for measurement and
processing yet still have individually named measurements.

Alias Declaration Example

The example shows how to use the Alias declaration.

Dim TCTemp(4)
Alias TCTemp(1) = CoolantT
Alias TCTemp(2) = ManifoldT
Alias TCTemp(3) = ExhaustT
Alias TCTemp(4) = CatConvT

CONST
Declares symbolic constants for use in place of values.

Syntax
Const constantname = expression [, constantname = expression] . . .

Remarks
The Const statement has these parts:

Part Description
constantname Name of the constant.
expression Expression assigned to the constant. It can consist of literals

(such as 1.0), other constants, or any of the arithmetic or logical
operators.

Tip Constants can make your programs self-documenting and easier
to modify. Unlike variables, constants can't be inadvertently
changed while your program is running.

Caution Constants must be defined before referring to them.

Tip Use all uppercase letters for constant names to make them easy
to recognize in your program listings.

Section 5. Program Declarations

5-2

Const Declaration Example

The example uses Const to define the symbolic constant PI.

Const PI = 3.141592654 'Define constant.
Dim Area, Circum, Radius 'Declare variables.
Radius = Volt(1) 'Get measurement.
Circum = 2 * PI * Radius 'Calculate circumference.
Area = PI * (Radius ^ 2) 'Calculate area.

DIM
Declares variables and allocates storage space. In CRBasic, ALL variables MUST
be declared.

Syntax
Dim varname[([subscripts]) [, varname[([subscripts])]]

Remarks
The Dim statement has these parts:

Part Description
varname Name of a variable.
subscripts Dimensions of an array variable. You can declare multiple

dimensions.

The argument subscripts has the following syntax:
size [size, size]

In CRBasic the Option Base is always 1. This means the lowest number in a
dimension is 1 and not 0.

Dim A(8, 3)

The maximum number of array dimensions allowed in a Dim statement is 3. If a
program uses a subscript that is greater than the dimentioned value, a subscript out
of bounds error is recorded.

When variables are initialized, they are initialized to 0

Tip Put Dim statements at the beginning of the program.

PUBLIC
Dimensions a variable as public and available in the Public table of the CR9000.

Syntax
Public(list of [dimensioned] variables that make up the Public Table)

Remarks
More than one Public statement can be made.

Section 5. Program Declarations

5-3

Public Declaration Example

The example shows the use of the Public declaration.

Dim x(3), y, z(2, 3, 4)
Public x, y, z
Public Dim x(3), y, z(2, 3, 4) 'Dim is optional
Public x(3),y, z(2, 3, 4)
Public w

STATION NAME

Sets the station name.

Syntax
StationName StaName

Remarks
StationName is used to set the datalogger station name with the program. The
station name is displayed by PC9000 and stored in the data table headers
(Section 2.4).

UNITS

Used to assign a unit name to a field associated with a variable.

Syntax
Units Variable = UnitName

Remarks
Units allows assigning a unit name to a field. Units are displayed on demand
in the real-time windows of PC9000. The unit name also appears in the header
of the output files and in the Data Table Info file of PC9000. The unit name is
a text field that allows the user to label data. When the user modifies the units,
the text entered is not checked by PC9000 or the CR9000.

Example
Dim TCTemp(1)

Units TCTemp(1) = Deg_C

SUB, EXIT SUB, END SUB
Declares the name, variables, and code that form a Subroutine.

Syntax
Sub SubName [(VariableList)]
 [statementblock]
 [Exit Sub]
 [statementblock]
End Sub

Section 5. Program Declarations

5-4

The Sub statement has these parts:

Part Description

Sub Marks the beginning of a Subroutine.

SubName Name of the Subroutine. Because Subroutine names are
recognized by all procedures in all modules, subname cannot be
the same as any other globally recognized name in the program.

VariableList List of variables that are passed to the Subroutine when it is
called. The variable names used in this list should not be the
same names as variables, aliases, or constants declared
elsewhere. The variable names in this list can only be used
within the Subroutine. Multiple variables are separated by
commas. When the Subroutine is called, the call statement must
list the program variables or values to pass into the subroutine
variable. The number and sequence of the program
variables/values in the call statement must match the number
and sequence of the variable list in the sub declaration.
Changing the value of one of the variables in this list inside the
Subroutine changes the value of the variable passed into it in
the calling procedure.

The call may pass constants or expressions that evaluate to
constants (i.e., do not contain a variable) into some of the
variables. If a constant is passed, the “variable” it is passed to
becomes a constant and cannot be changed by the subroutine. If
constants will be passed, the subroutine should be written to not
try to change the value of the “variables” they will be passed
into.

statementblock Any group of statements that are executed within the body of
the Subroutine.

Exit Sub Causes an immediate exit from a Subroutine. Program
execution continues with the statement following the statement
that called the Subroutine. Any number of Exit Sub statements
can appear anywhere in a Subroutine.

End Sub Marks the end of a Subroutine.

A Subroutine is a procedure that can take variables, perform a series of statements,
and change the value of the variables. However, a Subroutine can't be used in an
expression. You can call a Subroutine using the name followed by the variable list.
See the Call statement for specific information on how to call Subroutines.

The list of Subroutine variables to pass is optional. Subroutines can operate on the
global program variables declared by the Public or Dim statements. The advantage
of passing variables is that the Subroutine can be used to operate on whatever
program variable is passed (see example).

Caution Subroutines can be recursive; that is, they can call themselves to
perform a given task. However, recursion can lead to strange
results.

Section 5. Program Declarations

5-5

Subroutine Example

'CR9000
''Declare Variables used in Program:
Public RefT, TC(4),I

'Data output in deg C:
DataTable (TempsC,1,-1)
 DataInterval (0,5,Min,10)
 Average (1,RefT,FP2,0)
 Average (4,TC(),FP2,0)
EndTable

'Same Data output in F after conversion:
DataTable (TempsF,1,-1)
 DataInterval (0,5,Min,10)
 Average (1,RefT,FP2,0)
 Average (4,TC(),FP2,0)
EndTable

'Subroutine to convert temperature in degrees C to degrees F
Sub ConvertCtoF (Tmp)
 Tmp = Tmp*1.8 +32
EndSub

BeginProg
 Scan (1,Sec,3,0)
 'Measure Temperatures (module + 4 thermocouples) in deg C
 ModuleTemp (RefT,1,1,250)
 TCDiff (TC(),4,mV50C,1,1,TypeT,RefT,True ,0,250,1.0,0)
 'Call Output Table for C
 CallTable TempsC
 'Convert Temperatures to F using Subroutine:
 Call ConvertCtoF(RefT) 'Subroutine call using Call statement
 For I = 1 to 4
 ConvertCtoF(TC(I)) 'Subroutine call without Call statement
 Next I
 'Call Output Table for F:
 CallTable TempsF
 NextScan
EndProg

Section 5. Program Declarations

5-6

This is a blank page.

6-1

Section 6. Data Table Declarations and
Output Processing Instructions

6.1 Data Table Declaration

DataTable (Name, TrigVar, Size)

output trigger modifier
export data destinations
output processing instructions
EndTable

DataTable is used to declare/define a data table. The name of the table, output
trigger and size of the table in RAM are set with DataTable. The Table
declaration must be at the beginning of the code prior to BeginProg. The table
declaration starts with DataTable and ends with EndTable. Within the
declaration are output trigger modifiers (optional, e.g., DataInterval, DataEvent
or WorstCase), the on-line storage devices to send the data to (optional, e.g.,
PAMOut, FlashOut, DSP4), and the output processing instructions describing
the data set in the table.

Parameter
& Data Type

Enter DataTable Parameters
Name
Name

The name for the data table. The table name is limited to eight characters.

TrigVar The name of the variable to test for the trigger. Trigger modifiers add additional conditions.
Constant Value Result
Variable, or 0 Do not trigger
Expression ≠ 0 Trigger
Size
Constant

The size to make the data table. The number of data sets (records) to allocate memory for in static
RAM. Each time a variable or interval trigger occurs, a line (or row) of data is output with the number
of values determined by the output Instructions within the table. This data is called a record. The total
number of records stored equals the size..

 Note Enter a negative number and all remaining memory (after creating fixed size data tables) will
be allocated to the table or partitioned between all tables with a negative value for size. The
partitioning algorithm attempts to have the tables fill at the same time.

DataTable Example - see native language Section 4.3.

EndTable

Used to mark the end of a data table.

See DataTable

Section 6. Data Table Declarations and Output Processing Instructions

6-2

6.2 Trigger Modifiers

DataInterval (TintoInt, Interval, Units, Lapses)

Used to set the time interval for an output table. DataInterval is inserted into a
data table declaration following the DataTable instruction to establish a fixed
interval table. The fixed interval table requires less memory than a conditional
table because time is not stored with each record. The time of each record is
calculated by knowing the time of the most recent output and the interval of
the data. DataInterval does not override the Trigger in the DataTable
instruction. If the trigger is not set always true by entering a constant, it is a
condition that must be met in addition to the time interval before data will be
stored.

The Interval determines how frequently data are stored to the table. The
interval is synchronized with the real time clock. Time is kept internally as the
elapsed time since the start of 1990 (01-01-1990 00:00:00). When the interval
divides evenly into this elapsed time it is time to output (elapsed time MOD
interval = 0). Entering 0 for the Interval sets it equal to the scan Interval.

TintoInt allows the user to set the time into the Interval, or offset relative to
real time, at which the output occurs([elapsed time + TintoInt] MOD interval =
0). For example, 360 (TintoInt) minutes into a 720 (Interval) minute (Units)
interval specifies that output should occur at 6:00 (6 AM, 360 minutes from
midnight) and 18:00 (6 PM, 360 minutes from noon) where the 720 minute (12
hour) interval is set relative to midnight 00:00. Enter 0 to keep output on the
even interval.

Interval driven data allows a more efficient use of memory because it is not
necessary to store time with each record. The CR9000 still stores time but on a
fixed spacing, only about once per 1 K of memory used for the table. As each
new record is stored, time is checked to ensure that the interval is correct. The
datalogger keeps track of lapses or discontinuities in the data. If a lapse has
occurred, the CR9000 inserts a time stamp into the data. When the data are
retrieved a time stamp can be calculated and stored with each record.

This lapse time stamp takes up some memory that would otherwise be used for
data. While the CR9000 allocates some extra memory for the table, if there are
a lot of lapses, it is not possible to store as many records as requested in the
DataTable declaration. The Lapses parameter allows the programmer to
allocate additional space for the number of lapses entered. This is used in
particular when the program is written in a way that will create lapses. For
example, if the data output is controlled by a trigger (e.g., a user flag) in the
DataTable instruction in addition to the DataInterval, lapses would occur each
time the trigger was false for a period of time longer than the interval.

To take advantage of the more efficient memory use, always enter 1 or greater
for the lapses parameter even if no lapses are expected. Entering 0 causes
every record to be time stamped.

Entering a negative number tells the CR9000 not to keep track of lapses. Only
the periodic time stamps (approximately once per K of data) are inserted.

Section 6. Data Table Declarations and Output Processing Instructions

6-3

Parameter
& Data Type

Enter DataInterval Parameters
TintoInt
Constant

The time into the interval (offset to the interval) at which the table is to be output. The units for time are
the same as for the interval.

Interval
Constant

Enter the time interval on which the data in the table is to be recorded. The interval may be in µs, ms, s,
or minutes, whichever is selected with the Units parameter. Enter 0 to make the data interval the same
as the scan interval.

Units The units for the time parameters, PowerOff is the only instruction that uses hours or days.
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 microseconds
 MSEC 1 milliseconds
 SEC 2 seconds
 MIN 3 minutes
Lapses
Constant

As each new record is stored, time is checked to ensure that the interval is correct. The datalogger keeps
track of lapses or discontinuities in the data.

OpenInterval

When the DataInterval instruction is included in a data table, the CR9000 uses
only values from within an interval for time series processing (e.g., average,
maximum, minimum, etc.). When data are output every interval, the output
processing instructions reset each time output occurs. To ensure that data from
previous intervals is not included in a processed output, processing is reset any
time an output interval is skipped. (An interval could be skipped because the
table was not called or another trigger condition was not met.) The CR9000
resets the processing the next time that the table is called after an output
interval is skipped. If this next call to the table is on a scheduled interval, it
will not output. Output will resume on the next interval. (If Sample is the only
output processing instruction in the table, data will be output any time the table
is called on the interval because sampling uses only the current value and
involves no processing.)

OpenInterval is used to modify an interval driven table so that time series
processing in the table will include all values input since the last time the table
output data. Data will be output whenever the table is called on the output
interval (provided the other trigger conditions are met), regardless of whether
or not output occurred on the previous interval.

OpenInterval Example:

In the following example, 5 thermocouples are measured every 500
milliseconds. Every 10 seconds, while Flag(1) is true, the averages of the
reference and thermocouple temperatures are output. The user can toggle
Flag(1) to enable or disable the output. Without the OpenInterval Instruction,
the first averages output after Flag(1) is set high would include only the
measurements within the previous 10 second interval. This is the default and
is what most users desire. With the Open interval in the program (remove the
initial single quote (‘) to uncomment the instruction) all the measurements
made while the flag was low will be included in the first averages output after
the flag is set high.

Section 6. Data Table Declarations and Output Processing Instructions

6-4

Const RevDiff 1 'Reverse input to cancel offsets
Const Del 0 'Use default delay
Const Integ 0 'Use default Integration
Public RefTemp 'Declare the variable used for reference temperature
Public TC(5) 'Declare the variable used for thermocouple measurements
Public Flag(8)
Units RefTemp=degC '
Units TC=degC

DataTable (AvgTemp,Flag(1),1000)'Output when Flag(1)=true
 DataInterval(0,10,sec,10) 'Output every 10 seconds(while Flag(1)=true)
 'OpenInterval 'When Not Commented, include data while Flag(1)=false in next average
 Average(1,RefTemp,IEEE4,0)
 Average(5,TC,IEEE4,0)
EndTable

BeginProg
 Scan(500,mSec,0,0)
 ModuleTemp(RefTemp,1,5,30)
 TCDiff(TC(),5,mV50C,5,9,TypeT,RefTemp,RevDiff,Del,Integ,1,0)
 CallTable AvgTemp
 NextScan
EndProg

DataEvent (PreTrigRecs, StartTrig, StopTrig, PostTrigRecs)

Used to set a trigger to start storing records and another trigger to stop storing
records within a table. The number of records before the start trigger and the
number of records after the stop trigger can also be set. A filemark (Section 8) is
automatically stored in the table between each event.

Parameter
& Data Type

Enter DataEvent Parameters
PreTrigRecs
Constant

The number of records to store before the Start Trigger.

StartTrig The variable or expression test to Trigger copying the pre trigger records into the data table
and start storing each new record..

Variable, or Value Result
Expression 0 Do not trigger
 ≠ 0 Trigger
StopTrig
Variable,
Expression or
Constant

The variable, expression or constant to test to stop storing to the data table. The CR9000
does not start checking for the stop trigger until after the Start Trigger occurs. A non-zero
(true) constant may be used to store a fixed number of records when the start trigger occurs
(total number of records = PreTrigRecs+ 1 record for the trigger +PostTrigRecs.). Zero
(false) could be entered if it was desired to continuously store data once the start trigger
occurred.

 Value Result
 0 Do not trigger
 ≠ 0 Trigger
PostTrigRecs
Constant

The number of records to store after the Stop Trigger occurs.

Section 6. Data Table Declarations and Output Processing Instructions

6-5

DataEvent Example:

In this example, 5 type T thermocouples are measured. The trigger for the start
of an event is when TCTemp(1) exceeds 30 degrees C. The stop trigger is
when TCTemp(1) less than 29 degrees C. The event consists of 20 records
prior to the start trigger and continues to store data until 10 records following
the stop trigger.

Const RevDiff 1 ‘Reverse input to cancel offsets
Const Del 0 'Use default delay
Const Integ 0 'Use default integration
Public RefTemp 'Declare the variable used for reference temperature
Public TC(5) 'Declare the variable used for thermocouple measurements
Units RefTemp=degC
Units TC=degC

DataTable (Event,1,1000)
 DataInterval(0,00,msec,10) 'Set the sample interval equal to the scan
 DataEvent(20,TC(1)>30,TC(1)<29,10) '20 records before TC(1)>30,
 ‘after TC(1)<29 store 10 more records
 Sample(1,RefTemp,IEEE4) 'Sample the reference temperature
 Sample(5,TC,IEEE4) 'Sample the 5 thermocouple temperatures
EndTable

BeginProg
 Scan(500,mSec,0,0)
 ModuleTemp(RefTemp,1,5,30)
 TCDiff(TC(),5,mV50C,5,9,TypeT,RefTemp,RevDiff,Del,Integ,1,0)
 CallTable Event
 NextScan
EndProg

FillStop

Data Tables are by default ring memory where, once full, the newest data are
written over the oldest. Entering FillStop into a data table declaration makes
the table fill and stop. Once the table is filled, no more data are stored until the
table has been reset. The table can be reset from within the program by
executing the ResetTable instruction. Tables can also be reset from PC9000
real time windows or the collect data window.

Example:

DataTable (Temp,1,2000)
 DataInterval(0,10,msec,10)
 FillStop ' the table will stop collecting
data after 2000 records.
 Average(1,RefTemp,fp2,0)
 Average(6,TC(1),fp2,0)
EndTable

Section 6. Data Table Declarations and Output Processing Instructions

6-6

WorstCase (TableName, NumCases, MaxMin, Change, RankVar)

Allows saving the most significant or “worst-case” events in separate data
tables.

A data table is created that is sized to hold one event. This table acts as the
event buffer. Each event that occurs is stored to this table. This table may use
the DataEvent instruction or some other condition to determine when an event
is stored. The significance of an event is determined by an algorithm in the
program and a numerical ranking if the event is stored in a variable.

WorstCase creates as many clones of the specified table as the number of cases
for which to keep data. When WorstCase is executed, it checks the ranking
variable; if the value of the variable is a new worst case, the data in the event
table replace the data in the cloned table that holds the least significant event
currently stored.

An additional data table, nameWC (e.g., EvntWC) is created that holds the
values of the rank variables for each of the worst case tables and the time that
that table was stored.

WorstCase must be used with data tables sent to the CPU. It will not work if
the event table is sent to the PAM module or CPU Flash memory.

While WorstCase acts as Trigger Modifier and a data table declaration
(creating the cloned data tables), it is entered within the program to call the
worst case tables (see example).

Parameter
& Data Type

Enter WorstCase Parameters
TableName
name

The name of the data table to clone. The length of this name should be 4 characters or less so the
complete names of the worst case tables are retained when collected (see NumCases).

NumCases The number of “worst” cases to store. This is the number of clones of the data table to create. The
cloned tables use the name of the table being cloned (up to the first 6 characters) plus a 2 digit number
(e.g., Evnt01, Evnt02, Evnt03, …). The numbers give the tables unique names, they have no
relationship to the ranking of the events. PC9000 uses this same name modification when creating a new
data file for a table. To avoid confusion and ambiguous names when collecting data with PC9000, keep
the base name four characters or less (4character base name + 2 digit case identifier + 2 digit collection
identifier = 8 character maximum length).

MaxMin A code specifying whether the maximum or minimum events should be saved.
Constant Value Result
 0 Min, save the events associated with the minimum ranking; i.e., Keep

track of the RankVar associated with each event stored. If a new
RankVar is less than previous maximum, copy the event over the event
with previous maximum)

 1 Max, save the events associated with the maximum ranking; i.e., copy
if RankVar is greater than previous lowest (over event with previous
minimum)

Change
Constant

The minimum change that must occur in the RankVariable before a new worst case is stored.

RankVar
Variable

The Variable to rank the events by.

Section 6. Data Table Declarations and Output Processing Instructions

6-7

WorstCase Example

This program demonstrates the Worst Case Instruction. Five type T
thermocouples are measured. The event is similar to that in the example for
the DataEvent instruction; the trigger for the start of a data event is when
TC(1) exceeds 30 degrees C. However in this example, the stop trigger is set
immediately true. This is done to set a fixed size for the event which can be
duplicated in the worst case tables. To use the worst case instruction with
events of varying duration, the event table size must be selected to
accommodate the maximum duration expected (or needed). The event consists
of 20 records prior to the start trigger and continues until 100 records
following the start trigger.

The ranking criteria is the number of readings following the trigger that TC(1)
stays above 30 degrees C. The greater the number the “worse” the event.

Const RevDiff 1 'Reverse input to cancel offsets
Const Del 0 'Use default delay
Const Integ 0 'Use default Integration
Const NumCases 5 'Number of Worst Cases to save
Const Max 1
Public RefTemp 'Declare the variable used for reference temperature
Public TC(5) 'Declare the variable used for thermocouple measurements
Public I, NumAbove30 ‘Declare index and the ranking variable
Units RefTemp=degC '
Units TC=degC

DataTable (Evnt,1,125)
 DataInterval(0,00,msec,10) 'Set the sample interval equal to the scan
 DataEvent(20,TC(1)>30,-1,100) '20 records before TC(1)>30,
 ‘100 records after TC(1)>30
 Sample(1,RefTemp,IEEE4) 'Sample the reference temperature
 Sample(5,TC,IEEE4) 'Sample the 5 thermocouple temperatures
EndTable

BeginProg
 Scan(500,mSec,0,0)
 ModuleTemp(RefTemp,1,5,30)
 TCDiff(TC(),5,mV50C,5,9,TypeT,RefTemp,RevDiff,Del,Integ,1,0)
 CallTable Evnt
 If Evnt.EventEnd(1,1) Check if an Event just Ended
 I=100 ‘Initialize Index
 NumAbove30=0 ‘Zero Ranking Variable
 Do ‘Loop through the Event table
 NumAbove30=NumAbove30+1 ‘Counting the # of times
TC(1)>30
 I=I-1
 Loop While I>0 and Evnt.TC(1,I)>=30 ‘Quit looping when at end or TC(1)<30
 WorstCase(Evnt,NumCases,Max,0,NumAbove30) ‘Check for worst case
 End If
 NextScan
EndProg

Section 6. Data Table Declarations and Output Processing Instructions

6-8

6.3 Export Data Instructions

DSP4 (FlagVar, Rate)

Send data to the DSP4. If this instruction appears inside a DataTable, the
DSP4 can display the fields of this Table, otherwise, the Public Variables are
used by the DSP4. The Instruction can only be used once in a program; hence,
only the public variables or a single data table can be viewed.

Parameter
& Data Type

Enter DSP4 Parameters
FlagVar
Array

The variable array to use for the 8 flags that can be displayed and toggled by the DSP4. A value of 0 =
low; ≠0 = high. If the array is dimensioned to less than 8, the DSP4 will only work with the flags up to
the dimension. The array used for flags in the Real Time displays of PC9000 is Flag ().

Rate
Constant

How frequently to send new values to the DSP4 in milliseconds.

Example

DSP4 (Flag(), 200)

Use Flag() to work with the buttons, update the DSP4 display every 200 msec.
(5 times a second).

FlashOut (Size)

Used to store data in Flash memory. Used inside DataTable to indicate the
table is stored in Flash memory. Flash Memory is always fill and stop.
FlashOut cannot be used in a DataTable that uses the WorstCase instruction.

Parameter
& Data Type

Enter FlashOut Parameters
Size
Constant

The size to make the data table. The number of data sets (records) to allocate memory for in Flash
Memory. Each time a variable or interval trigger occurs, a line (or row) of data is output with the
number of values determined by the output Instructions within the table. This data is called a record.
The total number of records stored equals the size..

 Note Enter a negative number and all remaining memory (after creating fixed size data tables) will
be allocated to the table or partitioned between all tables with a negative value for size. The
partitioning algorithm attempts to have the tables fill at the same time.

PamOut (Slot, Card, StopRing, Size)

Used to send output data to the PCMCIA card. This instruction creates a data
table on the specified PCMCIA card in the PAM module. PamOut must be
entered within each data table declaration that is to store data on a PCMCIA
card.

Section 6. Data Table Declarations and Output Processing Instructions

6-9

Parameter
& Data Type

Enter PamOut Parameters
Slot
Constant

The number of the slot in the CR9000 card frame that holds the PAM Module.

Card The card (A or B) in which to store the data on the PAM module
Constant Alpha Code Numeric Code Card
 CARDA 0 A
 CARDB 1 B
StopRing
Constant

A code to specify if the Data Table on the PCMCIA card is fill and stop or ring (newest data overwrites
oldest).

 Value Result
 0 Ring
 1 Fill and Stop
Size
Constant

The size to make the data table. The number of data sets (records) to allocate memory for in the
PCMCIA card. Each time a variable or interval trigger occurs, a line (or row) of data is output with the
number of values determined by the output Instructions within the table. This data is called a record.

 Note Enter a negative number and all remaining memory (after creating fixed size data tables) will
be allocated to the table or partitioned between all tables with a negative value for size. The
partitioning algorithm attempts to have the tables fill at the same time.

6.4 Output Processing Instructions

Average (Reps, Source, DataType, DisableVar)

This instruction stores the average value over the output interval for the source
variable or each element of the array specified.

Parameter
& Data Type

Enter Average Parameters
Reps
Constant

The number of averages to calculate. When Reps is greater than one, the source must be an array.

Source
Variable

The name of the Variable that is to be averaged.

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, in the Average instruction, when the disable variable is ≠0 the current input is not included
in the average. The average that is eventually stored is the average of the inputs that occurred while the
disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input

Section 6. Data Table Declarations and Output Processing Instructions

6-10

Covariance (NumVals, Source, DataType, DisableVar, NumCov)

Calculates the covariance of values in an array over time. The Covariance of
X and Y is calculated as:

()
Cov X Y

X Y

n

X Y

n

i i
i

n

i
i

n

i
i

n

(,) =
⋅

−
⋅

= = =
∑ ∑ ∑

1 1 1
2

where n is the number of values processed over the output interval and X i
and Yi are the individual values of X and Y .

Parameter&
Data Type

Enter Covariance Parameters
NumVals
Constant

The number of elements in the array to include in the covariance calculations

Source Variable
Array

The variable array that contains the values from which to calculate the covariances. If the
covariance calculations are to start at some element of the array later than the first, be sure
to include the element number in the source (e.g., X(3)).

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
DisableVar
Constant,

A non-zero value will disable intermediate processing. When the disable variable is ≠0 the current
input is not included in the Covariance.

Variable, or Value Result
Expression 0 Process current input
 ≠ 0 Do not process current input
NumCov
Constant

The number of covariances to calculate. The maximum number of covariances is
Z/2*(Z+1). Where Z= NumVals. If X(1) is the first specified element of the source array,
the covariances are calculated and output in the following sequence:
X_Cov(1)…X_Cov(Z/2*(Z+1)) = Cov[X(1),X(1)], Cov[X(1),X(2)], Cov[X(1),X(3)], …
Cov[X(1),X(Z)], Cov[X(2),X(2)], Cov[X(2),X(3)], … Cov[X(2),X(Z)], …
Cov[X(Z),X(Z)]. The first “NumCov” of these possible covariances are output.

FFT (Source, DataType, N, Tau, Units, Option)

The FFT performs a Fast Fourier Transform on a time series of measurements
stored in an array. It can also perform an inverse FFT, generating a time series
from the results of an FFT. Depending on the output option chosen, the output
can be: 0) The real and imaginary parts of the FFT; 1) Amplitude spectrum.
2) Amplitude and Phase Spectrum; 3) Power Spectrum; 4) Power Spectral
Density (PSD); or 5) Inverse FFT.

Section 6. Data Table Declarations and Output Processing Instructions

6-11

Parameter
& Data Type

Enter FFT Parameters
Source
Variable

The name of the Variable array that contains the input data for the FFT.

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
N
Constant

Number of points in the original time series. The number of points must be a power of 2 (i.e., 512, 1024,
2048, etc.).

Tau
Constant

The sampling interval of the time series.

Units The units for Tau.
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 microseconds
 MSEC 1 milliseconds
 SEC 2 seconds
 MIN 3 minutes
Options A code to indicate what values to calculate and output.

Constant Code Result
 0

1
2

3

4

5

FFT. The output is N/2 complex data points, i.e., the real and imaginary parts of the FFT.
The first pair is the DC component and the Niquist component. This first pair is an
exception because the DC and niquist components have no imaginary part.
Amplitude spectrum. The output is N/2 magnitudes. With Acos(wt); A is magnitude.
Amplitude and Phase Spectrum. The output is N/2 pairs of magnitude and phase; with
Acos(wt - φ); A is amplitude, φ is phase (-π,π).
Power Spectrum. The output is N/2 values normalized to give a power spectrum. With
Acos(wt - φ), the power is A2 / 2. The summation of the N/2 values yields the total power
in the time series signal.
Power Spectral Density (PSD). The output is N/2 values normalized to give a power
spectral density (power per herz). The Power Spectrum multiplied by T = N*tau yields the
PSD. The integral of the PSD over a given bandwidth yields the total power in that band.
Note that the bandwidth of each value is 1/T herz.
Inverse FFT. The input is N/2 complex numbers, organized as in the output of option 0,
which is assumed to be the transform of some real time series. The output is the time series
whose FFT would result in the input array.

T = N*tau: the length, in seconds, of the time series.
Processing field: “FFT,N,tau,option”. Tick marks on the x axis are 1/(N*tau)
Herz. N/2 values, or pairs of values, are output, depending upon the option
code.

Normalization details:

 Complex FFT result i, i = 1 .. N/2: ai*cos(wi*t) + bi*sin(wi*t).
 wi = 2π(i-1)/T.
 φi = atan2(bi,ai) (4 quadrant arctan)
 Power(1) = (a12 + b12)/N2 (DC)
 Power(i) = 2*(ai2 + bi2)/N2 (i = 2..N/2, AC)
 PSD(i) = Power(i) * T = Power(i) * N * tau
 A1 = sqrt(a12 + b12)/N (DC)
 Ai = 2*sqrt(ai2 + bi2)/N (AC)

Section 6. Data Table Declarations and Output Processing Instructions

6-12

Notes:

• Power is independent of the sampling rate (1/tau) and of the number of
samples (N).

• The PSD is proportional to the length of the sampling period (T=N*tau),
since the “width” of each bin is 1/T.

• The sum of the AC bins (excluding DC) of the Power Spectrum is the
Variance (AC Power) of the time series.

• The factor of 2 in the Power(i) calculation is due to the power series being
mirrored about the Niquist frequency N/(2*T); only half the power is
represented in the FFT bins below N/2, with the exception of DC. Hence,
DC does not have the factor of 2.

• The Inverse FFT option assumes that the data array input is the transform
of a real time series. Filtering is performed by taking an FFT on a data set,
zeroing certain frequency bins, and then taking the Inverse FFT.
Interpolation is performed by taking an FFT, zero padding the result, and
then taking the Inverse FFT of the larger array. The resolution in the time
domain is increased by the ratio of the size of the padded FFT to the size
of the unpadded FFT. This can be used to increase the resolution of a
maximum or minimum, as long as aliasing is avoided.

Section 6. Data Table Declarations and Output Processing Instructions

6-13

FFT Example

Const SIZE_FFT 16
CONST PI 3.141592654
Const CYCLESperT 2
Const AMPLITUDE 3
Const DC 7
Const OPT_FFT 0
CONST PI 3.141592654

dim i
public x(SIZE_FFT),y(SIZE_FFT)

DataTable(Amp,1,1)
 fft(x,fp2,SIZE_FFT,10 msec,1)
EndTable
DataTable(AmpPhase,1,1)
 fft(x,fp2,SIZE_FFT,10 msec,2)
EndTable
DataTable(power,1,1)
 fft(x,fp2,SIZE_FFT,10 msec,3)
EndTable
DataTable(PSD,1,1)
 fft(x,fp2,SIZE_FFT,10 msec,4)
EndTable
DataTable(FFT,1,1)
 fft(x,IEEE4,SIZE_FFT,10 msec,0)
EndTable
DataTable(IFFT,1,1) 'inverse FFT
 fft(y,IEEE4,SIZE_FFT,10 msec,5)
EndTable

BeginProg

Scan(10, msec,0,SIZE_FFT)
 i=i+1
 X(i) = DC + Sin(PI/8+2*PI*CYCLESperT*i/SIZE_FFT) * AMPLITUDE +
Sin(PI/2+PI*i)
Next Scan

CallTable(Amp)
CallTable(AmpPhase)
CallTable(Power)
CallTable(PSD)
CallTable(FFT)
for i = 1 to SIZE_FFT ' get result back into y()
 y(i) = FFT.x_fft(i,1)
next
CallTable(IFFT) ' inverse, result is the same as x()

EndProg

Section 6. Data Table Declarations and Output Processing Instructions

6-14

FieldNames “list of fieldnames”

The FieldNames instructions may be used to override the fieldnames that the
CR9000 generates for results sent to the data table. Fieldnames must
immediately follow the output instruction creating the data fields. Field names
are limited to 19 characters. Individual names may be entered for each result
generated by the previous output instruction or an array may used to name
multiple fields. When the program is compiled, the CR9000 will determine
how many fields are created. If the list of names is greater than the number of
fields the extra names are ignored. If the number of fields is greater than the
number names in the list of fieldnames, the default names are used for the
remaining fields.

Example

Sample(4, Temp(1), IEEE4)
FieldNames “IntakeT, CoolerT, PlenumT, ExhaustT”

The 4 values from the variable array temp are stored in the output table with
the names IntakeT, CoolerT, PlenumT, and ExhaustT.

Sample(4, Temp(1), IEEE4)
FieldNames “IntakeT, CoolerT”

The 4 values from the variable array Temp are stored in the output table with 2
individual names and the remainder of the default array Temp:
IntakeT, CoolerT, Temp(3), and Temp(4),

Sample(4, Temp(1), IEEE4)
FieldNames “IntakeT(2)”

The 4 values from the variable array Temp are stored in the output table with
IntakeT, an array of 2, and the remainder of the default array Temp:
IntakeT(1), IntakeT(2), Temp(3), and Temp(4),

Fieldnames can also be used to put the programmer’s description of the field
into the “Process” field. The description for each field is entered following the
fieldname as:

FieldNames(“fieldname1:Description1,fieldname2:Description2,…”)

The ‘ : ’ character indicates the start of the description. Descriptions can have
any characters in them except commas. The description is optional.

The description is appended to the Processing field as ,:Description. That is, it
is an addition to what is already automatically there, with a comma and colon
in front of it.

The maximum size of the Processing Field is 64 characters. This leaves about
60 characters for a description of a Sample() instruction where the automatic
description is Smp. A compile error is issued if the user’s description won’t
fit.

Section 6. Data Table Declarations and Output Processing Instructions

6-15

Histogram (BinSelect, DataType, DisableVar, Bins, Form, WtVal, LowLim,
UpLim)

Processes input data as either a standard histogram (frequency distribution) or
a weighted value histogram.

The standard histogram counts the time that the bin select variable is within
particular sub-range of its specified range. The count in a bin is incremented
whenever the bin select input falls within the sub-range associated with the
bin. The value that is output to the data table for each bin can either be the
accumulated total count for each bin or a relative fraction of time computed by
dividing the accumulated total in each bin by the total number of scans. This
form of output is also referred to as a frequency distribution.

The weighted value histogram does not add a constant to the bin but instead
adds the current value of a variable. That variable name is entered as the
weighted value. Each time the instruction is executed, the weighted value is
added to a bin. The sub-range that the bin select value is in determines the bin
to which the weighted value is added. When the histogram is output, the value
accumulated in each bin can be output or the totals can be divided by the
TOTAL number of input scans and then output. These values are the
contributions of the sub-ranges to the overall weighted value. A common use
of a closed form weighted value histogram is the wind speed rose. Wind speed
values (the weighted value input) are accumulated into corresponding direction
sectors (bin select input).

To obtain the average of the weighted values that occurred while the bin select
value was within a particular sub-range, the weighted value output must be
divided by the fraction of time that the bin select value was within that
particular sub-range (i.e., a standard histogram of the bin select value must also
be output; for each bin the weighted value output must be divided by the
frequency distribution output).

The frequency distribution histogram is specified by entering a constant in the
weighted value parameter. Enter 1 to have frequency output as the fraction of
the total time that the bin select value was within the bin range. Enter 100 to
have the frequency output as the percent of time. Enter a variable name for the
weighted value histogram.

At the user's option, the histogram may be either closed or open. The open
form includes all values below the lower range limit in the first bin and all
values above the upper range limit in the last bin. The closed form excludes
any values falling outside the histogram range.

The difference between the closed and open form is shown in the following
example for temperature values:

Lower range limit 10° C
Upper range limit 30° C
Number of bins 10
 Closed Form Open Form
Range of first bin 10 to <12° < 12°
Range of last bin 28 to <30° > 28°

Section 6. Data Table Declarations and Output Processing Instructions

6-16

Parameter
& Data Type

Enter Histogram Parameters
BinSelect
Variable or
Array

The variable that is tested to determine which bin is selected. The histogram 4D instruction
requires an array dimensioned with at least as many elements as histogram dimensions.

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not included in the histogram. The
histogram that is eventually stored includes the inputs that occurred while the disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input
Bins
Constant

The number of bins or subranges to include in the histogram bin select range. The width of each
subrange is equal to the bin select range (UpLim - LowLim) divided by the number of bins.

Form
Constant

The Form argument is 3 digits - ABC

 Code Form
 A = 0 Reset histogram after each output.
 A = 1 Do not reset histogram.
 B = 0 Divide bins by total count.
 B = 1 Output total in each bin.
 C = 0 Open form. Include outside range values in end bins.
 C = 1 Closed form. Exclude values outside range.
 101 means: Do not reset. Divide bins by total count. Closed form.
WtVal
Constant or
Variable

The variable name of the weighted value. Enter a constant for a frequency distribution of the BinSelect
value.

LowLim
Constant

The lower limit of the range covered by the bin select value.

UpLim
Constant

The upper limit of the range of the bin select value.

Histogram4D (BinSelect, Source, DataType, DisableVar, Bins1, Bins2,
Bins3, Bins4, Form, WtVal, LowLim1, UpLim1, LowLim2, UpLim2,
LowLim3, UpLim3, LowLim4, UpLim4)

Processes input data as either a standard histogram (frequency distribution) or
a weighted value histogram of up to 4 dimensions.

The description of the Histogram instruction also applies to the Histogram4D
instruction. The difference is that the Histogram4D instruction allows up to
four bin select inputs (dimensions). The bin select values are specified as
variable array. Each of the bin select values has its own range and number of
bins. The total number of bins is the product of the number of bins in each
dimension (Bins1 x Bins2 x Bins3 x Bins4).

Section 6. Data Table Declarations and Output Processing Instructions

6-17

Histogram4D Output Example

'\\\\\\\\\\\\\\\\\\\\ VARIABLES and CONSTANTS ////////////////////
Public mAmps
Public Volts
Dim Bin(2)
Units Bin = Percent

'\\\\\\\\\\\\\\\\\\\\\\\\ OUTPUT SECTION ////////////////////////
DataTable ("HIST4D",1,100)
 DataInterval(0,1,Sec,100)
 Histogram4D(Bin(), FP2, 0, 2, 4, 0, 0, 001, 100, 12, 14, -25, 0, 0, 0, 0, 0)
EndTable

DataTable ("VALUES",1,100) 'Trigger, buffer of 100 Records
 DataInterval(0,100,mSec,100) 'Synchronous, 100 lapses
 Average(1,Volts,FP2,0) 'Reps,Source,Type
 Average(1,mAmps,FP2,0) 'Reps,Source,Type
EndTable

'\\\\\\\\\\\\\\\\\\\\\\\\\\\ PROGRAM
///////////////////////////
BeginProg
 Scan (1 mSec,0,0)
 Battery(Volts, 0) 'main battery volts
 Battery(mAmps, 1) 'main battery current
 Bin(1) = Volts
 Bin(2) = mAmps
 CallTable VALUES
 CallTable HIST4D
 Next Scan
EndProg

Section 6. Data Table Declarations and Output Processing Instructions

6-18

LevelCrossing (Source, DataType, DisableVar, NumLevels, 2ndDim,
CrossingArray, 2ndArray, Hysteresis, Option)

Parameter
& Data Type

Enter LevelCrossing Parameters
Source
Variable or
Array

The variable that is tested to determine if it crosses the specified levels. If a two dimensional
level crossing is selected, the source must be an array. The second element of the array (or the
next element beyond the one specified for the source) is the variable that is tested to determine
the second dimension of the histogram.

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not included in the histogram. The
histogram that is eventually stored includes the inputs that occurred while the disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input
NumLevels
Constant

The number levels on which to count crossings. This is the number of bins in which to store the number
of crossings for the associated level. The actual levels are input in the Crossing Array. A count is added
to a bin when the Source goes from less than the associated level to greater than the associated level
(Rising edge or positive polarity). Or if Falling edge or negative polarity is selected, a count occurs if
the source goes from greater than the level to less than the level.

2ndDim
Constant

The second dimension of the histogram. The total number of bins output = NumLevels*2ndDim. Enter
1 for a one dimensional histogram consisting only of the number of level crossings. If 2ndDim is greater
than 1, the element of the source array following the one tested for level crossing is used to determine
the second dimension.

Crossing
Array
Arrayt

The name of the Array that contains the Crossing levels to check. Because it does not make sense to
change the levels while the program is running, the program should be written to load the values into the
array once before entering the scan.

2ndArray
Array

The name of the Array that contains the levels that determine the second dimension. Because it does not
make sense to change the levels while the program is running, the program should be written to load the
values into the array once before entering the scan.

Hysteresis
Constant

The minimum change in the source that must occur for a crossing to be counted.

Option
Constant

The Option code is 3 digits - ABC

 Code Form
 A = 0 Count on falling edge (source goes form > level to <level)
 A = 1 Count on rising edge (source goes from < level to >level)
 B = 0 Reset histogram counts to 0 after each output.
 B = 1 Do not reset histogram; continue to accumulate counts.
 C = 0 Divide count in each bin by total number of counts in all bins.
 C = 1 Output total counts in each bin.
 101 means: Count on rising edge, reset count to 0 after each output, output counts.

Processes data with the Level Crossing counting algorithm. The output is a
two dimensional Level Crossing Histogram. One dimension is the levels
crossed; the second dimension, if used, is the value of a second input at the
time the crossings were detected. The total number of bins output =
NumLevels*2ndDim. For a one dimensional level crossing histogram, enter 1 for
2ndDim.

Section 6. Data Table Declarations and Output Processing Instructions

6-19

The source value may be the result of a measurement or calculation. Each time
the data table with the Level Crossing instruction is called, the source is
checked to see if its value has changed from the previous value and if in any
change it has crossed any of the specified crossing levels. The instruction can
be programmed to count crossings on either the rising edge (source changes
from less than the level to greater than the level) or on the falling edge (source
changes from greater than the level to less than the level).

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

FIGURE 6.4-1. Example Crossing Data

As an example of the level crossing algorithm, assume we have a one
dimension 3 bin level crossing histogram (the second dimension =1) and are
counting crossings on the rising edge. The crossing levels are 1, 1.5, and 3.
Figure 6.4-1 shows some example data. Going through the data point by point:

Point Source Action Bin 1
(level=1)

Bin 2
(level=1.5)

Bin 3
(level=3)

1 0.5 First value, no counts 0 0 0
2 1.2 Add one count to first

bin, the signal crossed 1
1 0 0

3 1.4 No levels crossed, no
counts

1 0 0

4 0.3 Crossed a level but was
falling edge, no counts

1 0 0

5 3.3 Add one count to first,
second, and third bins,
the signal crossed 1, 1.5
and 3.

2 1 1

The second dimension, when greater than 1, is determined by the value of the
element in the source array following the element checked for the crossing. It
is the value of this variable at the time the crossings are detected that
determines the second dimension.

Section 6. Data Table Declarations and Output Processing Instructions

6-20

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

Crossing Levels
Crossing Source
2nd Dim Boundary
2ndDim Source

FIGURE 6.4-2. Crossing Data with Second Dimension Value

Point Crossing
Source

2nd Dim
Source

Action

1 0.5 .7 First value, no counts
2 1.2 1.8 Add one count to first crossing,

second 2D bin, the signal crossed
1

Histogram:
 2D < 1.25 1.25<2D<2.25 2.25<2D<3.25
Cross 1 0 1 0
Cross 1.5 0 0 0
Cross 3 0 0 0

3 1.4 .7 No levels crossed, no counts
4 0.3 .7 Crossed a level but was falling

edge, no counts
5 3.3 2.7 Add one count to first, second, and

third crossing bins in the third 2D
bin, the signal crossed 1, 1.5 and
3.

Histogram:
 2D < 1.25 1.25<2D<2.25 2.25<2D<3.25
Cross 1 0 1 1
Cross 1.5 0 0 1
Cross 3 0 0 1

Note that the first bin of the second dimension is always “open”. Any value
less than the specified boundary is included in this bin. The last bin of the

Section 6. Data Table Declarations and Output Processing Instructions

6-21

second dimension is always “closed”. It only includes values that are less than
its upper boundary and greater than or equal to the upper boundary of the
previous bin. If you want the histogram to be “open” on both ends of the
second dimension, enter an upper boundary for the last bin that is greater than
any possible second dimension source value.

The crossing levels and the boundaries for the second dimension are not
specified in the LevelCrossing instruction but are contained in variable arrays.
This allows the levels to be spaced in any manner the programmer desires.
The arrays need to be dimensioned to at least the same size as the dimensions
of the histogram. If a one dimension level crossing histogram is selected (1
entered for the second dimension) the name of the Crossing Array can also be
entered for the 2nd Array to avoid declaring an unused array. The program
must load the values into these arrays.

The array specifying the boundaries of the second dimension is loaded with the
upper limits for each bin. For example, assume the second dimension is 3, and
the upper limits loaded into the array containing the second dimension
boundaries are 1, 3, and 6.

The value of each element (bin) of the histogram can be either the actual
number of times the signal crossed the level associated with that bin or it can
be the fraction of the total number of crossings counted that were associated
with that bin (i.e., number of counts in the bin divided by total number of
counts in all bins).

The hysteresis determines the minimum change in the input that must occur
before a crossing is counted. If the value is too small, “crossings” could be
counted which are in reality just noise. For example, suppose 5 is a crossing
level. If the input is not really changing but is varying from 4.999 to 5.001, a
hysteresis of 0 would allow all these crossings to be counted. Setting the
hysteresis to 0.1 would prevent this noise from causing counts.

Maximum (Reps, Source, DataType, DisableVar, Time)

This instruction stores the MAXIMUM value that occurs in the specified
Source variable over the output interval. Time of maximum value(s) is
OPTIONAL output information, which is selected by entering the appropriate
code in the time parameter.

Parameter
& Data Type

Enter Maximum Parameters
Reps
Constant

The number of maximum values to determine. When repetitions are greater than 1, the source must be
an array..

Source
Variable

The name of the Variable that is the input for the instruction.

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point

Section 6. Data Table Declarations and Output Processing Instructions

6-22

DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not checked for a new maximum. The
maximum that is eventually stored is the maximum that occurred while the disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input
Time Option to store time of Maximum. When time is output, the maximums for all reps are output first

followed by the respective times at which they occurred.
Constant Value Result
 0 Do not store time
 1 Store time

Minimum (Reps, Source, DataType, DisableVar, Time)

This instruction stores the MINIMUM value that occurs in the specified Source
variable over the output interval. Time of minimum value(s) is OPTIONAL
output information, which is selected by entering the appropriate code for

Parameter
& Data Type

Enter Minimum Parameters
Reps
Constant

The number of minimum values to determine. When repetitions are greater than 1, the source must be an
array..

Source
Variable

The name of the Variable that is the input for the instruction.

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not checked for a new minimum. The
minimum that is eventually stored is the minimum that occurred while the disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input
Time
Constant

Option to store time of Minimum. When time is output, the minimum values for all repetitions are
output first followed by the times at which they occurred.

 Value Result
 0 Do not store time
 1 Store time

Section 6. Data Table Declarations and Output Processing Instructions

6-23

RainFlow (Source, DataType, DisableVar, MeanBins, AmpBins, Lowlimit,
Highlimit, MinAmp, Form)

Parameter
& Data Type

Enter RainFlow Parameters
Source
Variable

The variable that is tested to determine which bin is selected

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not included in the histogram. The
histogram that is eventually stored includes the inputs that occurred while the disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input
MeanBins
Constant

The number of bins or subranges to sort the mean value of the signal during a stress strain cycle into.
Enter 1 to disregard the signal value and only sort by the amplitude of the signal. The width of each
subrange is equal to the HiLimit - LowLimit divided by the number of bins. The lowest bin’s minimum
value is the low limit and the highest bin’s maximum value is the High limit

AmpBins
Constant

The number of bins or subranges to sort the amplitude of a stress strain cycle into. The width of each
subrange is equal to the HiLimit - LowLimit divided by the number of bins.

LowLim
Constant

The lower limit of the input signal and the Mean Bins.

UpLim
Constant

The upper limit of the input signal and the Mean Bins.

MinAmp
Constant

The minimum amplitude that a stress strain cycle must have to be counted..

Form
Constant

The Form code is 3 digits - ABC

 Code Form
 A = 0 Reset histogram after each output.
 A = 1 Do not reset histogram.
 B = 0 Divide bins by total count.
 B = 1 Output total in each bin.
 C = 0 Open form. Include outside range values in end bins.
 C = 1 Closed form. Exclude values outside range.
 101 means: Do not reset. Divide bins by total count. Closed form.

Processes data with the rainflow counting algorithm, essential to estimating
cumulative damage fatigue to components undergoing stress/strain cycles.
Data can be provided by making measurements in either the standard or the
burst mode. The Rainflow Instruction can process either a swath of data
following the burst mode, or it can process "on line" similar to other
processing instructions.

The output is a two dimensional Rainflow Histogram. One dimension is the
amplitude of the closed loop cycle (i.e., the distance between peak and valley);
the other dimension is the mean of the cycle (i.e., [peak value + valley
value]/2). The value of each element (bin) of the histogram can be either the
actual number of closed loop cycles that had the amplitude and average value
associated with that bin or the fraction of the total number of cycles counted

Section 6. Data Table Declarations and Output Processing Instructions

6-24

that were associated with that bin (i.e., number of cycles in bin divided by total
number of cycles counted).

The user enters the number of mean bins, the number of amplitude bins, and
the upper and lower limits of the input data.

The values for the amplitude bins are determined by difference between the
upper and lower limits on the input data and by the number of bins. For
example, if the lower limit is 100 and the upper limit is 150, and there are 5
amplitude bins, the maximum amplitude is 150 - 100 = 50. The amplitude
change between bins and the upper limit of the smallest amplitude bin is 50/5 =
10. Cycles with an amplitude, A, less than 10 will be counted in the first bin.
The second bin is for 10 ≤ A < 20, the third for 20 ≤ A < 30, etc.

In determining the ranges for mean bins, the actual values of the limits are used
as well as the difference between them. The lower limit of the input data is
also the lower limit of the first mean bin. Assume again that the lower limit is
100, the upper limit 150, and that there are 5 mean bins. In this case the first
bin is for cycles which have a mean value M, 100 ≤ M < 110, the second bin
110 ≤ M < 120, etc.

If Cm,a is the count for mean range m and amplitude range a, and M and N are
the number of mean and amplitude bins respectively, then the output of one
repetition is arranged sequentially as (C1,1, C1,2, ... C1,N, C2,1, C2,2, ... CM,N).
Multiple repetitions are sequential in memory. Shown in two dimensions, the
output is:

 C1,1 C1,2 . . . C1,N
 C2,1 C2,2 . . . C2,N

 CM,1 CM,2 . . . CM,N

The histogram can have either open or closed form. In the open form, a cycle
that has an amplitude larger than the maximum bin is counted in the maximum
bin; a cycle that has a mean value less than the lower limit or greater than the
upper limit is counted in the minimum or maximum mean bin. In the closed
form, a cycle that is beyond the amplitude or mean limits is not counted.

The minimum distance between peak and valley, MinAmp, determines the
smallest amplitude cycle that will be counted. The distance should be less than
the amplitude bin width ([high limit - low limit]/no. amplitude bins) or cycles
with the amplitude of the first bin will not be counted. However, if the value is
too small, processing time will be consumed counting "cycles" which are in
reality just noise.

Outputs Generated: No. Mean Bins x No. Amplitude Bins x Reps

Section 6. Data Table Declarations and Output Processing Instructions

6-25

Sample (Reps, Source, DataType)

This instruction stores the current value(s) at the time of output from the
specified variable or array.

Parameter
& Data Type

Enter Sample Parameters
Reps
Constant

The number of values to sample. When repetitions are greater than 1, the source must be an array.

Source
Variable

The name of the Variable to sample.

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point

StdDev (Reps, Source, DataType, DisableVar)

StdDev calculates the standard deviation of the Source(s) over the output
interval.

δ() / /x x x N Ni i
i

i N

i

i N
= −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟=

=

=

=

∑∑ 2

1

2

1

1

2

where ()δ x is the standard deviation of x, and N is the number of samples

Parameter
& Data Type

Enter StdDev Parameters
Reps
Constant

The number of standard deviations to calculate. When repetitions are greater than 1, the source must be
an array.

Source
Variable

The name of the Variable that is the input for the instruction.

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not included in the standard deviation.
The standard deviation that is eventually stored is the standard deviation of the inputs that occurred
while the disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input

Section 6. Data Table Declarations and Output Processing Instructions

6-26

Totalize (Reps, Source, DataType, DisableVar)

This instruction stores the total(s) of the values of the source(s) over the given
output interval.

Parameter
& Data Type

Enter Totalize Parameters
Reps
Constant

The number of totals to calculate. When repetitions are greater than 1, the source must be an array.

Source
Variable

The name of the Variable that is the input for the instruction.

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not included in the total. The total that
is eventually stored is the total of the inputs that occurred while the disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input

7-1

Section 7. Measurement Instructions

7.1 Voltage Measurements
VoltDiff – Differential Voltage Measurement... 7-3
VoltSE – Single-ended Voltage Measurement .. 7-3

7.2 Thermocouple Measurements
Measure the output of thermocouples and convert to temperature.
TCDiff – Differential Voltage Measurement of Thermocouple 7-3
TCSE – Single-ended Voltage Measurement of Thermocouple.................. 7-4

Resistance Bridge Measurements
Bridge measurements combine an excitation with voltage measurements and
are used to measure sensors that change resistance in response to the
phenomenon being measured. These sensors include RTDS, thermistors,
potentiometers, strain gages, and pressure and force transducers.

7.3 Half Bridges
BrHalf – Half Bridge ... 7-6
BrHalf3W – Three Wire Half Bridge .. 7-7
BrHalf4W – Four Wire Half Bridge.. 7-7

7.4 Full Bridges
BrFull – Four Wire Full Bridge ... 7-9
BrFull6W – Six Wire Full Bridge ... 7-9

7.5 Excitation / Continuous Analog Output
Excite – Set Excitation... 7-10

7.6 Self Measurements
Battery – Measures Battery Voltage or Current .. 7-11
ModuleTemp – Measures the Temperature of the 9050 Analog Input

Module (used as a reference for thermocouple measurements)......... 7-11
Calibrate – Adjusts the Calibration for Analog Measurements 7-12
BiasComp – Adjusts Analog Input Bias Current Compensation............... 7-12

7.7 Peripheral Devices
AM25T .. 7-12
CANBUS... 7-14
CSAT3... 7-17
INT8 Interval Timer .. 7-17
SDMSpeed... 7-20
SDMTrigger... 7-20
SIO4 - Serial Input Multiplexer... 7-21

Section 7. Measurement Instructions

7-2

7.8 Digital I/O
PortSet – Sets Digital Ports on 9060 Excitation Module 7-21
PulseCount – Pulse/Frequency Measurement on CR9070/CR9071E

Counter-Timer Digital I/O Module.. 7-22
PulseCountReset – Resets Pulse Counters and Running Averages

Used in Pulse Count Instruction .. 7-23
ReadIO –Reads State of Digital I/O Ports on CR9070/CR9071E Module 7-23
TimerIO – Measures Time Between Edges on CR9070/CR9071E

Counter and Digital I/O Module .. 7-24
WriteIO – Sets Digital Outputs on CR9070/CR9071E Module 7-26

7.9 9052DC Filter Module Measurements
VoltFilt... 7-27
SubScan ... 7-29
FFTFilt ... 7-33
FFTSample... 7-46

Section 7. Measurement Instructions

7-3

7.1 Voltage Measurements

VoltDiff (Dest, Reps, Range, ASlot, DiffChan, RevDiff, SettlingTime, Integ,
Mult, Offset)

Sensor

Diff. Chanel H

Diff. Chanel L.

This instruction measures the voltage difference between the HI and Low
inputs of a differential channel. Both the high and low inputs must be within ±
5V of the datalogger's ground (See Common Mode Range, Section 3.2). With
a multiplier of one and an offset of 0, the result is in millivolts or volts
depending on the range selected.

VoltSE (Dest, Reps, Range, ASlot, SEChan, SettlingTime, Integ, Mult,
Offset)

Sensor

S.E. Chanel

Ground

This instruction measures the voltage at a single ended input with respect to
ground. With a multiplier of one and an offset of 0, the result is in millivolts
or volts depending on the range selected.

7.2 Thermocouple Measurements

TCDiff (Dest, Reps, Range, ASlot, DiffChan, TCType, TRef, RevDiff,
SettlingTime, Integ, Mult, Offset)

Diff. Chanel H

Diff. Chanel L
Thermocouple

This instruction measures a thermocouple with a differential voltage
measurement and calculates the thermocouple temperature (°C) for the
thermocouple type selected. The instruction adds the measured voltage to the
voltage calculated for the reference temperature relative to 0° C, and converts
the combined voltage to temperature in °C. The mV50C and mV200C ranges
briefly (10 µs) connect the differential input to reference voltages prior to
making the voltage measurement to insure that it is within the common mode
range and to test for an open thermocouple.

Section 7. Measurement Instructions

7-4

TCSE (Dest, Reps, Range, ASlot, SEChan, TCType, TRef, SettlingTime,
Integ, Mult, Offset)

S.E. Chanel

Ground
Thermocouple

This instruction measures a thermocouple with a single-ended voltage
measurement and calculates the thermocouple temperature (°C) for the
thermocouple type selected. The instruction adds the measured voltage to the
voltage calculated for the reference temperature relative to 0° C, and converts
the combined voltage to temperature in °C.

Parameter
& Data Type

Enter VOLTDIFF AND TCDIFF INSTRUCTION PARAMETERS

Dest
Variable or
Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all the Reps.

Reps
Constant

The number of repetitions for the measurement. For analog measurements, entering reps as a negative
number forces all reps to be on the same channel except for with CR9058E module.

Range The voltage range for the measurement. V ranges output volts, mV ranges output millivolts.
Constant ± 5 Volt Analog Input

Module
± 50 Volt Analog Input
Module

CR9058E* Isolation Module

 Alpha
Code

Num
Code

R *
Option
Code

Voltage
Range
(±mV)

Alpha
Code

Num
Code

R *
Option
Code

Voltage
Range

±

Alpha
Code

Num
Code

R * Option
Code

Voltage Range

mV5000 0 100 5000 V50 6 N/A 50 V V60 24 N/A ± 60 V
mV1000 1 101 1000 V10 7 N/A 10 V V20 25 N/A ± 20 V
mV200 4 104 200 V2 10 N/A 2 V V2 10 N/A ± 2 V
mV50 5 105 50 mV500 11 N/A 500 mV V2C 22 N/A ± 2 V

mV200C 16 116 200 Alpha Codes ending with a C signify that the channel will be pulled into

See Section
3.2.2 for
more info on
the C & R
range code
options. mV50C 17 117 50 common mode range & checked for open input. See Section 3.2 for details.

ASlot
Constant

The number of the slot that holds the Analog Input Module to be used for the measurement.

DiffChan
Constant

The differential channel number on which to make the first measurement. When Reps are used,
subsequent measurements will be automatically made on the following differential channels.

TCType The code for the thermocouple type.

Constant Alpha Code Numeric Code Thermocouple Type
 TypeT 0 Copper Constantan
 TypeE 1 Chromel Constantan
 TypeK 2 Chromel Alumel
 TypeJ 3 Iron Constantan
 TypeB 4 Platinum Rhodium
 TypeR 5 Platinum Rhodium
 TypeS 6 Platinum Rhodium
TRef
Variable

The name of the variable that is the reference temperature for the thermocouple measurements.

Section 7. Measurement Instructions

7-5

Parameter Enter VOLTDIFF AND TCDIFF INSTRUCTION PARAMETERS

RevDiff
Constant

Option to reverse inputs to cancel offsets. The sign corrected average of these measurements is used in
the result. This technique cancels voltage offsets in the measurement circuitry but requires twice as
much time to complete the measurement. (CR9058E: All channels on a module must have same setting.)

 Value
 0 Signal is measured with the high side referenced to the low
 1 A second measurement is made after reversing the inputs
SettlingTime
Constant

The time in microseconds to delay between setting up a measurement (switching to the channel, setting
the excitation) and making the measurement (10 microsecond resolution).
Enter 0 when using the CR9058E (Settling Time not used).

Entry

Voltage
 Range

Delay

CR9055 Voltage
Range

Delay

 0 ± 50 mV 20 µS (default) ± 500 mV 40 µS (default)
 0 ± 200 mV 20 µS (default) ± 2 V 40 µS (default)
 0 ±1000 mV 10 µS (default) ± 10 V 30 µS (default)
 0 ± 5000 mV 10 µS (default) ± 50 V 30 µS (default)
 > 0 all Truncate to closest 10

µS
all Truncate to closest 10 µS

Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).
CR9058E*:100 microsecond resolution. All channels on a CR9058 module must have same integration.

Mult, Offset
Constant,
Variable,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. See the measurement
description for the units of the raw result; a multiplier of one and an offset of 0 are necessary to output in
the raw units. For example, the TCDiff instruction measures a thermocouple and outputs temperature in
degrees C. A multiplier of 1.8 and an offset of 32 will convert the temperature to degrees F.

R*: Place an R at the end of the range code (ex: 50mVCR) in order to perform a common mode range check
before making the measurement. If the input is out of common mode range, a NAN will be returned. See section
3.2.2 for more details on the common mode check option.

CR9058E*: Enter -1 for the integration parameter when using a CR9058E and the integration will automatically
be set to the maximum allowed for the given Scan Interval. See section 3.2 for CR9058E measurement details.

Parameter
& Data Type

Enter VOLTSE & TCSE INSTRUCTION PARAMETERS

Dest
Variable or
Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all the Reps.

Reps
Constant

The number of repetitions for the measurement. For analog measurements, entering reps as a negative
number forces all reps to be on the same channel.

Range The voltage range for the measurement. V ranges output volts, mV ranges output millivolts.
Constant ± 5 Volt Analog Input Module ± 50 Volt Analog Input Module
 Alpha

Code
Numeric
Code

Voltage
Range

Alpha
Code

Numeric
Code

Voltage
Range

 mV5000 0 ± 5000 mV V50 6 ± 50 V
 mV1000 1 ± 1000 mV V10 7 ± 10 V
 mV200 4 ± 200 mV V2 10 ± 2 V
 mV50 5 ± 50 mV mV500 11 ± 500 mV

ASlot
Constant

The number of the slot that holds the Analog Input Module to be used for the measurement.

SEChan
Constant

The single-ended channel number on which to make the first measurement. When Reps are used,
subsequent measurements will be automatically made on the following single-ended channels.

Section 7. Measurement Instructions

7-6

Parameter
& Data Type

Enter VOLTSE & TCSE INSTRUCTION PARAMETERS

TCType The code for the thermocouple type.
Constant Alpha Code Numeric Code Thermocouple Type
 TypeT 0 Copper Constantan
 TypeE 1 Chromel Constantan
 TypeK 2 Chromel Alumel
 TypeJ 3 Iron Constantan
 TypeB 4 Platinum Rhodium
 TypeR 5 Platinum Rhodium
 TypeS 6 Platinum Rhodium
TRef
Variable

The name of the variable that is the reference temperature for the thermocouple measurements.

RevDiff
Constant

Option to reverse inputs to cancel offsets. The sign corrected average of these measurements is used in
the result. This technique cancels voltage offsets in the measurement circuitry but requires twice as
much time to complete the measurement.

 Value Result
 0 Signal is measured with the high side referenced to the low
 1 A second measurement is made after reversing the inputs
SettlingTime
Constant

The time in microseconds to delay between setting up a measurement (switching to the channel, setting
the excitation) and making the measurement (10 microsecond resolution)

Entry

Voltage Range

Delay

CR9055
Voltage Range

Delay

 0 ± 50 mV 20 µS (default) ± 500 mV 40 µS (default)
 0 ± 200 mV 20 µS (default) ± 2 V 40 µS (default)
 0 ±1000 mV 10 µS (default) ± 10 V 30 µS (default)
 0 ± 5000 mV 10 µS (default) ± 50 V 30 µS (default)
 > 0 All Truncate to closest 10 µS all Truncate to closest 10 µS
Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).

Mult, Offset
Constant,
Variable,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. See the measurement
description for the units of the raw result; a multiplier of one and an offset of 0 are necessary to output in
the raw units. For example, the TCDiff instruction measures a thermocouple and outputs temperature in
degrees C. A multiplier of 1.8 and an offset of 32 will convert the temperature to degrees F.

7.3 Half Bridges

BrHalf (Dest, Reps, Range, ASlot, SEChan, ExSlot, ExChan, MesPEx,
ExmV, RevEx, SettlingTime, Integ, Mult, Offset)

X = result w/mult = 1, offset = 0

X
V
V

R
R RX

S

S f
= =

+
1

Section 7. Measurement Instructions

7-7

This Instruction applies an excitation voltage, delays a specified time and then
makes a single ended voltage measurement. The result with a multiplier of 1
and an offset of 0 is the ratio of the measured voltage divided by the excitation
voltage.

BrHalf3W (Dest, Reps, Range, ASlot, SEChan, ExSlot, ExChan, MesPEx,
ExmV, RevEx, SettlingTime, Integ, Mult, Offset)

X = result w/mult = 1, offset = 0

X
V V

V V
R
RX

S

f
=

−
−

=
2 2 1

1

This Instruction is used to determine the ratio of the sensor resistance to a
known resistance using a separate voltage sensing wire from the sensor to
compensate for lead wire resistance.

The measurement sequence is to apply an excitation voltage and make two
voltage measurements on two adjacent single-ended channels: the first on the
reference resistor and the second on the voltage sensing wire from the sensor.
The two measurements are used to calculate the resulting value (multiplier = 1,
offset = 0) that is the ratio of the voltage across the sensor to the voltage across
the reference resistor.

BrHalf4W (Dest, Reps, Range1, Range2, ASlot, DiffChan, ExSlot, ExChan,
MesPEx, ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)

X = result w/mult = 1, offset = 0

X
V
V

R
R

S

f
= =2

1

This Instruction applies an excitation voltage and makes two differential
voltage measurements, then reverses the polarity of the excitation and repeats
the measurements. The measurements are made on sequential channels. The
result is the voltage measured on the second channel (V2) divided by the
voltage measured on the first (V1). The connections are made so that V1 is the
voltage drop across the fixed resistor (Rf), and V2 is the drop across the sensor
(Rs). The result with a multiplier of 1 and an offset of 0 is V2 / V1 which
equals Rs / Rf.

Section 7. Measurement Instructions

7-8

Parameter
& Data Type

Enter BRHALF, BRHALF3W, BRHALF4W PARAMETERS

Dest
Variable or
Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in an
array with the variable name. An array must be dimensioned to have elements for all the Reps.

Reps
Constant

The number of repetitions for the measurement. For analog measurements, entering reps as a negative
number forces all reps to be on the same channel.

Range The voltage range for the measurement.
Constant ± 5 Volt Analog Input Module ± 50 Volt Analog Input Module
 Alpha

Code
Numeric
Code

Voltage
Range

Alpha
Code

Numeric
Code

Voltage
Range

 mV5000 0 ± 5000 mV V50 6 ± 50 V
 mV1000 1 ± 1000 mV V10 7 ± 10 V
 mV200 4 ± 200 mV V2 10 ± 2 V
 mV50 5 ± 50 mV mV500 11 ± 500 mV
ASlot
Constant

The number of the slot that holds the Analog Input Module to be used for the measurement.

SEChan
Constant

The single-ended channel number on which to make the first measurement. When Reps are used, subsequent
measurements will be automatically made on the following single-ended channels.

ExSlot
Constant

The slot that holds the Excitation Module for the measurement.

ExChan
Constant

Enter the excitation channel number to excite the first measurement.

 Channels Result
 1 - 6 Continuous analog output channels, will remain at the excitation voltage set by the

instruction unless a subsequent instruction changes their voltage

 7 - 16 Switched excitation channels, are switched to the excitation voltage for the
measurement and switched off between measurements.

MesPEx
Constant

The number of sensors to excite with the same excitation channel before automatically advancing to the next
excitation channel. To excite all the sensors with the same excitation channel, the number should equal the
number of Reps.

ExmV
Constant

The excitation voltage in millivolts. Allowable range ± 5000 mV. RevEx may be used to excite with both a
positive and negative polarity to cancel offset voltages.

RevEx Option to reverse excitation to cancel offsets.
Constant Value Result
 0 Excite only with the excitation voltage entered
 1 A second measurement is made with the voltage polarity reversed.
RevDiff Option to reverse inputs to cancel offsets.
Constant Value Result
 0 Signal is measured with the high side referenced to the low
 1 A second measurement is made after reversing the inputs
SettlingTime
Constant

The time in microseconds to delay between setting up a measurement (switching to the channel, setting the
excitation) and making the measurement (10 microsecond resolution).

Entry

Voltage Range

Delay

CR9055
Voltage Range

Delay

 0 ± 50 mV 20 µS (default) ± 500 mV 40 µS (default)
 0 ± 200 mV 20 µS (default) ± 2 mV 40 µS (default)
 0 ±1000 mV 10 µS (default) ± 10 mV 30 µS (default)
 0 ± 5000 mV 10 µS (default) ± 50 mV 30 µS (default)
 > 0 All Truncate to closest 10 µS all Truncate to closest 10 µS

Section 7. Measurement Instructions

7-9

Parameter
& Data Type

Enter BRHALF, BRHALF3W, BRHALF4W PARAMETERS

Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).

Mult, Offset
Constant,
Variable,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement.

7.4 Full Bridges

BrFull (Dest, Reps, Range, ASlot, DiffChan, ExSlot, ExChan, MesPEx,
ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)

X = result w/mult = 1, offset = 0

X
V
V

R
R R

R
R RX

= =
+

⎛

⎝
⎜ −

+

⎞

⎠
⎟1000 1000 3

3 4

2

1

1

2

This Instruction applies an excitation voltage to a full bridge and makes a
differential voltage measurement of the bridge output. The resulting value
(multiplier = 1, offset = 0) is the measured voltage in millivolts divided by the
excitation voltage in volts (i.e., millivolts per volt).

BrFull6W (Dest, Reps, Range1, Range2, ASlot, DiffChan, ExSlot, ExChan,
MesPEx, ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)

X = result w/mult = 1, offset = 0

X
V
V

R
R R

R
R R

= =
+

⎛

⎝
⎜ −

+

⎞

⎠
⎟1000 10002

1

3

3 4

2

1 2

This Instruction applies an excitation voltage and makes two differential
voltage measurements. The measurements are made on sequential channels.
The result is the voltage measured on the second channel (V2) divided by the
voltage measured on the first (V1). The result is 1000 times V2 / V1 or
millivolts output per volt of excitation. The connections are made so that V1 is

Section 7. Measurement Instructions

7-10

the measurement of the voltage drop across the full bridge, and V2 is the
measurement of the bridge output.

7.5 Excitation/Continuous Analog Output

Excite (ExSlot, ExChan, ExmV, SettlingTime)
This instruction sets the selected excitation output to a specific value.
Channels 1 through 6 are continuous analog output channels and will remain at
the excitation voltage set by the instruction unless a subsequent instruction
changes their voltage. Channels 7 through 16 are switched excitation
channels, they are switched to the excitation voltage for the time specified for
the Delay and then switched off.

Parameter
& Data Type

Enter BRIDGEFULL, BRIDGEFULL6W, EXCITE PARAMETERS

Dest
Variable or
Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in an
array with the variable name. An array must be dimensioned to have elements for all the Reps.

Reps
Constant

The number of repetitions for the measurement or instruction.

Range The voltage range for the measurement.
Constant ± 5 Volt Analog Input Module ± 50 Volt Analog Input Module
 Alpha

Code
Numeric
Code

Voltage
Range

Alpha
Code

Numeric
Code

Voltage
Range

 mV5000 0 ± 5000 mV V50 6 ± 50 V
 mV1000 1 ± 1000 mV V10 7 ± 10 V
 mV200 4 ± 200 mV V2 10 ± 2 V
 mV50 5 ± 50 mV mV500 11 ± 500 mV
ASlot
Constant

The number of the slot that holds the Analog Input Module to be used for the measurement.

DiffChan
Constant

The differential channel number on which to make the first measurement. When Reps are used, subsequent
measurements will be automatically made on the following differential channels.

ExSlot
Constant

The slot that holds the Excitation Module for the measurement.

ExChan Enter the excitation channel number to excite the first measurement.
Constant Channels Result
 1 - 6 Continuous analog output channels, will remain at the excitation voltage set by the

instruction unless a subsequent instruction changes their voltage

 7 - 16 Switched excitation channels, are switched to the excitation voltage for the
measurement and switched off between measurements.

MesPEx
Constant

The number of sensors to excite with the same excitation channel before automatically advancing to the next
excitation channel. To excite all the sensors with the same excitation channel, the number should equal the
number of Reps.

ExmV
Constant

The excitation voltage in millivolts. Allowable range ± 5000 mV. RevEx may be used to excite with both a
positive and negative polarity to cancel offset voltages.

RevEx Option to reverse excitation to cancel offsets.
Constant Value Result
 0 Excite only with the excitation voltage entered
 1 A second measurement is made with the voltage polarity reversed.
RevDiff Option to reverse inputs to cancel offsets
Constant Value Result
 0 Signal is measured with the high side referenced to the low
 1 A second measurement is made after reversing the inputs

Section 7. Measurement Instructions

7-11

Parameter
& Data Type

Enter BRIDGEFULL, BRIDGEFULL6W, EXCITE PARAMETERS

SettlingTime
Constant

The time in microseconds to delay between setting up a measurement (switching to the channel, setting the
excitation) and making the measurement (10 microsecond resolution).

Entry

Voltage Range

Delay

CR9055
Voltage Range

Delay

 0 ± 50 mV 20 µS (default) ± 500 mV 40 µS (default)
 0 ± 200 mV 20 µS (default) ± 2 mV 40 µS (default)
 0 ±1000 mV 10 µS (default) ± 10 mV 30 µS (default)
 0 ± 5000 mV 10 µS (default) ± 50 mV 30 µS (default)
 > 0 All Truncate to closest 10 µS all Truncate to closest 10 µS
Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).

Mult, Offset
Constant,
Variable,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement.

7.6 Self Measurements

Battery (Dest, BattOpt)

This instruction reads the voltage or current of the battery powering the system
or the voltage of the backup lithium battery. The units for battery voltage are
volts; current is in milliamperes.

ModuleTemp (Dest, Reps, ASlot, Integ)

This instruction measures the temperature in °C of the specified CR9050(E),
CR9051E, or CR9058E analog input module.

Parameter
& Data Type

Enter BATTERY, MODULETEMP PARAMETERS

Dest
Variable or
Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all the Reps.

BattOpt The code indicating the desired measurement.
Constant Code Measurement
 0 Main battery voltage, volts
 1 Main battery current, milliamperes
 2 Memory backup battery (lithium), volts
Reps
Constant

The number of repetitions for the measurement or instruction. If reps is greater than 1, the first element
of the Dest array will hold the temperature for the module in the specified Aslot and the modules'
temperatures in the sequentially following slots will be loaded into the corresponding elements of the
Dest array.

ASlot
Constant

The number of the slot that holds the first Analog Input Module to be used for the measurement.

Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).
The CR9000 will repeat measurements every 10 microseconds throughout the integration interval (with
the appropriate Delay at the beginning and between RevDiff and RevEx if used) and output the average.
The random noise level is decreased by the square root of the number of measurements made. An
integration time of one 60 Hz cycle (16,670 microseconds) will cancel 60 Hz noise. Enter 0 for no
integration and the fastest measurements.

Section 7. Measurement Instructions

7-12

Calibrate

Measures offset and gain on all voltage ranges. This instruction is done
automatically at user program compile time. The major factor affecting the
calibration of the analog section is temperature. If calibration is not done as
part of the program, a typical shift in the calibration is 0.01 % per degree C
change from the temperature at which the program compile calibration
occurred. When there is adequate time for all measurements, BiasComp and
Calibrate are typically run in a scan in the SlowSequence section of the
program to provide continuous adjusting of the calibration as temperature
changes. If executed in the SlowSequence, an RC filter is applied with the
previous calibration weighted .95 and the new weighted .05. Calibrate uses 54
measurement slots in the Task Sequencer.

BiasComp

Measures bias current and adjusts the bias current DACS accordingly. This
instruction is done automatically at user program compile time. The bias
current is the amount of current that is required to flow into the input channel
in order to make the measurement. This is reduced to a minimum (<3
nanoamps) when the bias current compensation is adjusted correctly. If the
bias current compensation is not adjusted correctly, the current could rise as
high as 100 nanoamps. The major factor affecting the bias current is
temperature. When there is adequate time for all measurements, BiasComp
and Calibrate are typically run in a scan in the SlowSequence section of the
program to provide continuous adjusting of the bias current compensation and
the calibration as temperature changes. If executed in the SlowSequence, an
RC filter is applied with the previous bias compensation weighted .95 and the
new weighted .05. BiasComp uses 120 measurement slots in the task
sequencer.

The 4 DAC values that are the results of the bias compensation appear in the
Status Table: BiasLo, BiasLo X10, BiasHi, BiasHI X10.

7.7 Peripheral Devices

AM25T (AM25TChan, CardAnlg, ChanAnlg, CardPort, ClkPort, ResPort,
ChanExcite)

This Instruction controls the AM25T Multiplexer when used with the CR9000.
The AM25T instruction precedes the instruction used to make the
measurements on the AM25T, and must be inserted before any instruction that
makes a measurement on the AM25T. In the measurement that follows, the
CR9000 will automatically switch the AM25T so that all repetitions specified
in the measurement are made on AM25T channels. If RevDiff is specified in
the measurement, the CR9000 will reverse the input at the AM25T.
ModuleTemp can be used following the AM25T instruction (set for channel 0)
to measure the AM25T temperature.

Section 7. Measurement Instructions

7-13

Parameter
& Data Type

Enter AM25T INSTRUCTION PARAMETERS

Am25tChan
Constant

The starting input channel on the multiplexer for the following measurement. If the following
instruction needs to start measuring a AM25T channel other than number 1, the channel is
specified here. Specify channel 0 when used before ModuleTemp to measure the module
temperature of the AM25T.

CardAnlg
Constant

The number of the slot that contains the CR9050 Module used to measure the AM25T
reference temperature and connected sensors.

ChanAnlg
Constant

The channel number on the CR9050 Module that will be used to make the actual
measurements from the AM25T.

CardPort
Constant

The number of the slot that contains the CR9060 Module used to Clock and Reset the
multiplexer and to provide excitation for the reference temperature PRT.

ClkPort
Constant

The Digital Output port number on the CR9060 Module that will be used to clock the AM25T.
One clock port may be used with several AM25Ts.

ResPort
Constant

The Digital Output port number on the CR9060 Module that will be used to enable and reset
the AM25T. Each AM25T must have it's own unique Reset line

ChanExcite
Constant

The Excitation Channel number on the CR9060 Module that will be used to provide excitation
for the PRT reference temperature measurement.

'This example demonstrates using the AM25T thermocouple multiplexer
'with the CR9000.

'\\\\\\\\\\ VARIABLES and CONSTANTS //////////
Const AM25TChan = 1 'starting channel in AM25T
Const CardAnlg = 5 '9050 module slot AM25T connected to
Const ChanAnlg = 14 '9050 module diff channel AM25T connected to
Const CardPort = 6 '9060 module slot
Const ClkPort = 1 '9060 Digital Control Output port
Const ResPort = 2 '9060 Digital Control Output port
Const ChanExcite = 16 '9060 Excitation Channel
Const MuxReps = 25 'number of AM25T channels to use
Const RevIn = 0 'don't reverse TCDiff measurement
Const Delay = 5000 'delay in uSecs between tc measurements on AM25T
Const Integ = 500 'integration time in uSecs of each AM25T measurements

Public RefAM25T, Mux(25)

'\\\\\\\\\\\\\\ OUTPUT SECTION //////////////
DataTable(MUXTC, 1, 2000)
 Sample(MuxReps,Mux(),FP2)
EndTable

'\\\\\\\\\\\\\\\\\\ PROGRAM //////////////////
BeginProg
 Scan (200, mSec, 0, 0)
AM25T(0,CardAnlg, ChanAnlg, CardPort, ClkPort, ResPort, ChanExcite)
ModuleTemp(RefAM25T, 1, CardAnlg, Integ) 'measure ref temp in AM25T

AM25T(AM25TChan, CardAnlg, ChanAnlg, CardPort, ClkPort, ResPort, ChanExcite)
TCDiff(Mux(), MuxReps, mv50,CardAnlg, ChanAnlg, TypeT, RefAM25T, RevIn, Delay, Integ, 1, 0)
 CallTable MUXTC
 NextScan
EndProg

Section 7. Measurement Instructions

7-14

CANBUS (Dest, SDMAddress, TimeQuanta, TSEG1, TSEG2, ID, DataType,
StartBit, NumBits, NumVals, Multiplier, Offset)

The CANBUS instruction is used to measure and control the SDM-CAN
interface. Multiple CANBUS instructions may be used within a program. The
initial function of the instruction is to configure the SDM-CAN interface when
the datalogger program is compiled. Subsequent instructions can be used to
determine what data is passed between the CAN-bus network and the
datalogger, set and/or read the SDM-CAN's internal switches, and read and/or
reset detected errors.

The SDMTrigger instruction can be used to trigger simultaneous
measurements from one or more SDM-CANs and other SDM devices
connected to the datalogger. When the SDMTrigger instruction is encountered
in a program, it broadcasts a special SDM message which causes all the SDM-
CAN devices to copy the last data values captured from the CAN-bus into the
working data buffers. Refer to the SDM-CAN manual for additional help.

If more than one CanBus Instruction is used within a datalogger
program, the values used for TimeQuanta, TSEG1 and TSEG2
must be the same for each instruction.

Parameter
& Data Type

Enter CANBUS INSTRUCTION PARAMETERS

Dest
Variable or
Array

The variable array in which to store the results of the measurement. It must be an array of
sufficient size to hold all of the values that will be returned by the function chosen (defined by
the DataType parameter).

SDMAddress
Constant

The address of the SDM-CAN with which to communicate. Valid SDM addresses are 0
through 15.

TimeQuanta
Constant

Three time segments are used to set the bit rate and other timing parameters for the CAN-bus
network, TimeQuanta, TSEG1, and TSEG2. These parameters are entered as integer numbers.
The relationship between the three time segments is defined as:

21 TSEGTSEGqbit tttt ++=

The first time segment, the synchronization segment (S-SG), is defined by the TimeQuanta
parameter. To calculate a suitable value for TimeQuanta, use the following
equation: 6108××= qtTimeQuanta where tq = the TimeQuanta. There are between 8 and
25 time quanta in the bit time. The bit time is defined as 1/baud rate.

TSEG1
Constant

The second time segment, TSEG1, is actually two time segments known as the propagation
segment and phase segment one. The value entered is determined by the characteristics of the
network and the other devices on the network. It can be calculated as: qTSEGSEG ttT /11 =

TSEG2
Constant

The third time segment, TSEG2 (the phase segment two), is defined by the TSEG2 parameter.
The value of TSEG2 can be calculated using the equation: qSEGSEG ttT /21 =
The relative values of TSEG1 and TSEG2 determine when the SDM-CAN samples the data
bit.

NOTE

Section 7. Measurement Instructions

7-15

Parameter
& Data Type

Enter CANBUS INSTRUCTION PARAMETERS

ID
Constant

Each device on a CAN-bus network prefaces its data frames with an 11 or 29 bit identifier.
The ID parameter is used to set this address. The ID is entered as a single decimal equivalent.
Enter a positive value to signify a 29 bit ID or a negative value to signify an 11 bit ID.

DataType
Constant

The DataType parameter defines what function the CANBUS instruction will perform. This
instruction can be used to collect data, buffer data for transmission to the CAN-bus, transmit
data to the CAN-bus, read or reset error counters, read the status of the SDM-CAN, read the
SDM-CAN's OS signature and version, send a remote frame, or read or set the SDM-CAN's
internal switches. Enter the numeric value for the desired option.

 Value Description
 1 Retrieve data; unsigned integer, most significant byte first.
 2 Retrieve data; unsigned integer, least significant byte first.
 3 Retrieve data; signed integer, most significant byte first.
 4 Retrieve data; signed integer, least significant byte first.
 5 Retrieve data; 4-byte IEEE floating point number; most significant byte first.
 6 Retrieve data; 4-byte IEEE floating point number; least significant byte first.
 Options 7 through build a data frame in SDM-CAN memory
 7 Unsigned integer, most significant byte first. Overwrite existing data.
 8 Unsigned integer, least significant byte first. Overwrite existing data.
 9 Signed integer, most significant byte first. Overwrite existing data.
 10 Signed integer, least significant byte first. Overwrite existing data.
 11 4-byte IEEE floating point number; most significant byte first. Overwrite existing

data.
 12 4-byte IEEE floating point number; least significant byte first. Overwrite existing

data.
 13 Unsigned integer, most significant byte first. Logical "OR" with existing data.
 14 Unsigned integer, least significant byte first. Logical "OR" with existing data.
 15 Signed integer, most significant byte first. Logical "OR" with existing data.
 16 Signed integer, least significant byte first. Logical "OR" with existing data.
 17 4-byte IEEE floating point number; most significant byte first. Logical "OR" with

existing data.
 18 4-byte IEEE floating point number; least significant byte first. Logical "OR" with

existing data.
 Options 19 through 25 Transmit data to the CAN-bus
 19 Unsigned integer, most significant byte first.
 20 Unsigned integer, least significant byte first.
 21 Signed integer, most significant byte first.
 22 Signed integer, least significant byte first.
 23 4-byte IEEE floating point number; most significant byte first.
 24 4-byte IEEE floating point number; least significant byte first.
 25 Previously built data frame

 26 Set up previously built data frame as a Remote Frame Response.
 27 Read Transmit, Receive, Overrun, and Watchdog errors. The errors are placed

consecutively in the array specified by the Dest parameter.
 28 Read Transmit, Receive, Overrun, and Watchdog errors. The errors are placed

consecutively in the array specified by the Dest parameter. Reset error counters to
0 after reading.

 29 Read SDM-CAN status; result is placed into the array specified in the Destination
parameter. The result codes are as follows:

Section 7. Measurement Instructions

7-16

Parameter
& Data Type

Enter CANBUS INSTRUCTION PARAMETERS

 Status Description
 0000 SDM-CAN involved in bus activities; error counters < than 96.
 0001 SDM-CAN involved in bus activities; one or more error counters is

greater than or equal to 96.
 0002 SDM-CAN is not involved in bus activities; error counters < 96.
 0003 SDM-CAN is not involved in bus activities; one or more error

counters is greater than or equal to 96.
 30 Read SDM-CAN operating system and version number; results are placed in two

consecutive array variables beginning with the variable specified in the Destination
parameter.

 31 Send Remote Frame Request.
 32 Set SDM-CAN's internal switches. The code is stored in the array specified in the

Dest parameter and is entered in the form of ABCD.
 Digit Value Description
 A 0 Not Used
 B 0 SDM-CAN returns the last value captured from the network,

even if that value has been read before (default).
 1 SDM-CAN returns -99999 if a data value is requested by the

datalogger and a new value has not been captured from the
network since the last request.

 C 0 Disable I/O interrupts (default).
 1 Enable I/O interrupts, pulsed mode.
 2 Enable I/O interrupts, fast mode.
 3-7 Currently not used.
 8 Place the SDM-CAN into low power stand-by mode.
 9 Leave switch setting unchanged.
 D 0 Listen only (error passive) mode. CAN transmissions are not

confirmed.
 1 Transmit once. Data will not be retransmitted in case of error or

loss of arbitration. Frames received without error are
acknowledged.

 2 Self-reception. A frame transmitted from the SDM-CAN that
was acknowledged by an external node will also be received by
the SDM-CAN but no retransmission will occur in the event of
loss of arbitration or error. Frames received correctly from an
external node are acknowledged.

 3 Normal, retransmission will occur in the event of loss of
arbitration or error. Frames received correctly from an external
node are acknowledged. This is the typical setting to use if the
SDM-CAN is to be used to transmit data.

 4 Transmit once; self-test. The SDM-CAN will perform a
successful transmission even if there is no acknowledgment
from an external CAN node. Frames received correctly from an
external node are acknowledged.

 5 Self-reception; self -test. The SDM-CAN will perform a
successful transmission even if there is no acknowledgment
from an external CAN node. Frames received correctly from an
external node are acknowledged. SDM-CAN will receive its
own transmission.

Section 7. Measurement Instructions

7-17

Parameter
& Data Type

Enter CANBUS INSTRUCTION PARAMETERS

 6 Normal; self-test. The SDM-CAN will perform a successful
transmission even if there is no acknowledgment from an
external CAN node. Frames received correctly from an external
node are acknowledged.

 7,8 Not Used.
 9 Leave switch setting unchanged.
 33 Read SDM-CAN's internal switches. Place results in the array specified in the

Destination parameter.
StartBit
Constant

StartBit is used to identify the least significant bit of the data value within the CAN data frame
to which the instruction relates. The bit number can range from 1 to 64 (there are 64 bits in a
CAN data frame). The SDM-CAN adheres to the ISO standard where the least significant bit
is referenced to the right most bit of the data frame. If a negative value is entered, the least
significant bit is referenced to the left most bit of the data frame.

NumBits
Constant

NumBits specifies the number of bits that will be used in a transaction. The number can range
from 1 to 64 (there are 64 bits in a CAN data frame).
The SDM-CAN can be configured to notify the datalogger when new data is available by
setting a control port high. This allows data to be stored in the datalogger tables faster than the
program execution interval. This interrupt function is enabled by entering a negative value for
this parameter.
Note: This parameter may be overridden by a fixed number of bits, depending upon the
data type selected.

NumVals The number of values (beginning with the value stored in the Dest array) that will be
transferred to or from the datalogger during one operation. For each value transferred, the
Number of Bits (NumBits) will be added to the Start Bit number so that multiple values can be
read from or stored to one data frame.

Mult, Offset
Constant,
Variable,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. See the measurement
description for the units of the raw result; a multiplier of one and an offset of 0 are necessary to output in
the raw units. For example, the TCDiff instruction measures a thermocouple and outputs temperature in
degrees C. A multiplier of 1.8 and an offset of 32 will convert the temperature to degrees F.

CSAT3 (Dest, Reps, Address, Command)

Communicates with the CSAT3 three dimensional sonic anemometer. See
CSAT3 manual for more information.

INT8 INTERVAL TIMER

Used to control the INT8, an 8 Channel Interval Timer module, using the
CR9000.

Syntax
INT8(Dest, Address,Config8_5,Config4_1,

Funct8_5,Funct4_1,OutputOpt,CaptureTrig, Mult, Offset)

Section 7. Measurement Instructions

7-18

Remarks
This Instruction allows the use of the SDM-INT8, 8 Channel Interval Timer,
with the CR9000. The INT8 is a (S)ynchronous (D)evice for the
(M)easurement of intervals, counts between events, frequencies, periods,
and/or time since an event. See the INT8 manual for more information about
its capabilities.

NOTE: This instruction must NOT be placed inside a conditional statement.

Parameter
& Data Type

Enter INT8 INSTRUCTION PARAMETERS

Dest
Variable or
Array

The array where the results of the instruction are stored. For all output options except
Capture All Events, the Dest argument should be a one dimensional array with as many
elements as there are programmed INT8 channels. If the "Capture All Events" OutputOption
is selected, then the Dest array must be two dimensional. The magnitude of first dimension
should be set to the number of functions (up to 8), and the magnitude of the second dimension
should be set to at least the number of events to be captured. The values will be loaded into
the array in the sequence of all of the time ordered events captured from the lowest
programmed channel to the time ordered events of the highest programmed channel.

Address
Constant

The INT8 is addressable using internal jumpers. The jumpers are set at the factory for address
00. See Appendix A of the INT8 manual for details on changing the INT8 address.

Config8_5
Config4_1
Constants

Each of the 8 input channels can be configured for either high or low level voltage inputs, and
for rising or falling edges. Config8_5 is a four digit code to configure the INT8's channels 5
through 8. Config4_1 is a four digit code to configure the INT8's channels 1 through 4. The
digits represent the channels in descending order left to right. For example, the code entered
for Config8_5 to program channels 8 and 6 to capture the rising edge of a high level voltage,
and channels 5 and 7 to capture the falling edge of a low level voltage would be "0303". See
section 2 of the INT8 manual for information about the specification requirements of high and
low level voltage signals.

 Digit Edge
 0 High level, rising edge
 1 High level, falling edge
 2 Low level, rising edge
 3 Low level falling edge

Section 7. Measurement Instructions

7-19

Parameter
& Data Type

Enter INT8 INSTRUCTION PARAMETERS

Funct8_5
Funct4_1
Constants

Each of the 8 input channels can be independently programmed for one of eight different
timing functions. Funct8_5 is a four digit code to program the timing functions of INT8
channels 5 through 8. Funct4_1 is a four digit code to program the timing functions of INT8
channels 1 through 4. See section 5.3 of the INT8 manual for further details about these
functions.

 Digit Results
 0 None
 1 Period (msec) between edges on this channel
 2 Frequency (kHz) of edges on the channel
 3 Time between an edge on the previous channel and the edge on this channel

(msec)
 4 time between an edge on channel 1 and the edge on this channel (msec)
 5 Number of edges on channel 2 between the last edge on channel 1 and the edge

on this channel using linear interpolation
 6 Low resolution frequency (kHz) of edges on this channel
 7 Total number of edges on this channel since last interrogation
 8 Integer number of edges on channel 2 between the last edge on channel 1 and the

edge on this channel.
 For example, 4301 in the second function parameter means to return 3 values: the period for

channel 1, (nothing for channel 2) the time between an edge on channel 2 and an edge on
channel 3, and the time between an edge on channel 1 and an edge on channel 4. The values
are returned in the sequence of the channels, 1 to 16.
Note: the destination array must be dimensioned large enough to hold all the functions
requested.

OutputOpt Code to select one of the five different output options. The Output Option that is selected will
be applied to the data collection for all of the INT8 channels. The numeric code for each
option is listed below with a brief explanation of each. See the INT8 manual for detailed
explanations of each option.

 Code Result
 0: Average of the event data since the last time that the INT8 was interrogated by the

datalogger. If no edges were detected, 0 will be returned for frequency and count
functions, and 99999 will be returned for the other functions. The INT8 ceases to
capture events during communications with the logger, thus some edges may be
lost.

 32768 Continuous averaging, which is utilized when input frequencies have a slower
period than the execution interval of the datalogger. If an edge was not detected
for a channel since the last time that the INT8 was polled, then the datalogger will
not update the input location for that channel. The INT8 will capture events even
during communications with the datalogger.

 nnnn Averages the input values over "nnnn" milliseconds. The datalogger program is
delayed by this instruction while the INT8 captures and processes the edges for
the specified time duration and sends the results back to the logger. If no edges
were detected, 0 will be returned for frequency and count functions, and 99999
will be returned for the other functions.

Section 7. Measurement Instructions

7-20

Parameter
& Data Type

Enter INT8 INSTRUCTION PARAMETERS

 -nnnn Instructs the INT8 to capture all events until "nnnn" edges have occurred on
channel 1, or until the logger addresses the INT8 with the CaptureTrig argument
true, or until 8000 (storage space limitation) events have been captured. When
the CaptureTrig argument is true, the INT8 will return up to the last nnnn events
for each of the programmed INT8 channels, reset its memory and begin capturing
the next nnnn events. The Dest array must be dimensioned large enough to
receive the captured events.

 -9999 Causes the INT8 to perform a self memory test. The signature of the INT8's
PROM is returned to the datalogger.

 RESULT CODE DEFINITION
 0 Bad ROM
 -0 Bad ROM, & bad RAM
 Positive integer ROM signature, good RAM
 Negative integer ROM signature, bad RAM
CaptureTrig
Constant,
Variable, or
Expression

This argument is used when the "Capture All Events" output option is used. When
CaptureTrig is true, the INT8 will return the last nnnn events.

Mult, Offset
Constant,
Variable,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. See the measurement
description for the units of the raw result; a multiplier of one and an offset of 0 are necessary to output in
the raw units. For example, the TCDiff instruction measures a thermocouple and outputs temperature in
degrees C. A multiplier of 1.8 and an offset of 32 will convert the temperature to degrees F.

SDMSpeed (SDMSpeed)

Changes the rate that the CR9000 uses to clock the SDM data. Slowing down
the clock rate may be necessary when long cables lengths are used to connect
the CR9000 and SDM devices.

Parameter
& Data Type

Enter SDMSPEED INSTRUCTION PARAMETER

SDMSpeed
Constant or
variable

Valid parameters range from 1 to 255 where 1 is the fastest (default) and 255 is the longest
period. The default bit period is approximately 2 microseconds. The time per bit, in
microseconds, is: BitPeriod = 2 * SDMSpeed + 5.

SDMTrigger

When SDMTrigger is executed, the CR9000 sends a "measure now" group
trigger to all connected SDM devices. SDM stands for Synchronous Device
for Measurement. SDM devices make measurements independently and send
the results back to the datalogger serially. The SDMTrigger instruction allows
the CR9000 to synchronize when the measurements are made. Subsequent
Instructions communicate with the SDM devices to collect the measurement
results. Not all SDM devices support the group trigger; check the manual on
the device for more information.

Section 7. Measurement Instructions

7-21

SIO4 (Dest, Reps, Address, Mode, Command, FirstOp, SecOp,
ValuesPerRep, Mult, Offset)

This Instruction communicates with theSDM-SIO4 Serial Input Multiplexer.
See the SDM-SIO4 Manual for details.

Parameter
& Data Type

Enter SIO4 INSTRUCTION PARAMETERS

Dest
Variable or Array

The Variable in which to store the results of the instruction or, when the instruction is used to send
data, this array becomes the data to send. When Reps or multiple values per rep are used, the results
are stored in an array with the variable name. An array must be dimensioned to have elements for
Reps multiplied by Values per Rep..

Reps
Constant

The number of repetitions for the measurement or instruction.

Address
Constant

The address for the SDM-SIO4 (0-15)

Mode The SIO4 port the instruction applies to.
Constant Code Port Code Port
 1 Send/Receive Port 1 4 Send/Receive Port 4
 2 Send/Receive Port 2 5 Send to all four ports (global)
 3 Send/Receive Port 3
Command,
FirstOp, SecOp
Constants1

Commands to SDM-SIO4. See SDM-SIO4 Manual

ValuesPerRep
Constant

How many values to send or receive

Mult, Offset
Constant,
Variable, Array, or
Expression

A multiplier and offset by which to scale the results. A multiplier of one and an offset of 0 are
necessary to store the values as received. For example, the TCDiff instruction measures a
thermocouple and outputs temperature in degrees C. A multiplier of 1.8 and an offset of 32 will
convert the temperature to degrees F.

7.8 Digital I/O

PortSet (ExSlot, Port, State)

This Instruction will set the specified control port on the 9060 Excitation
Module high or low. This instruction should not be placed in a conditional
statement.

Parameter
& Data Type

Enter PORTSET INSTRUCTION

ExSlot
Constant

The slot that holds the 9060 Excitation Module on which to set the port.

Port
Constant

The number of the port to set with the instruction.

State The state (high or low) to set the port to.
Constant, Value State
Variable, or 0 Low
Expression ≠ 0 High

Section 7. Measurement Instructions

7-22

PulseCount (Dest, Reps, PSlot, PChan, PConfig, POption, Mult, Offset)

This instruction should not be placed in a conditional or in a Slow Sequence
Scan. Sets up pulse measurements using the twelve 16 bit counter channels
on the CR9070 or the twelve 32 bit counters channels on the CR9071E
Counter module. There are three pulse types or configurations that may be
measured using these Counter modules:

High Frequency: All twelve pulse channels can be configured for high
frequency inputs. This configuration is used for the higher
frequency pulse inputs (up to 1 MHz). The pulse count is
incremented when the signal rises from below 1.5 VDC to
above 3.5 VDC. Because of the input filter's 200
nanosecond time constant, higher frequencies will require
larger input transitions. See section 3.4 for additional
measurement information. The minimum pulse width that
can be detected is 500 ns. The maximum input voltage is ±
20 V.

Low Level AC: The first 8 frequency input channels can be configured for
low level ac inputs. This option is used to count the
frequency of low level ac signals from such sensors as a
magnetic pick up. The minimum input voltage that can be
counted is 25 mV RMS. At this minimum voltage,
frequencies up to 10 kHz can be measured. For input
voltage greater than 50 mV, frequencies up to 20 kHz can
be measured. Again, the maximum input voltage is 20 V.

Switch Closure Channels 9 through 12 can be configured as Switch
Closure inputs. The switch closure (dry contact) should be
connected between the pulse channel and ground. When
the contact is open, the pulse channel is pulled to 5 volts
through a 100 kOhm pull up resistor. When the contact is
closed, the pulse channel is pulled to ground. The count is
incremented when the channel is pulled high. The
minimum switch close time is 5 msec. The minimum
switch open time is 5 msec. The maximum bounce time
without being counted is 1 msec open.

Using the Poption, you can configure the output as Counts, Frequency over
the scan interval, or as a running average frequency for a set duration. See
section 3.4 for more pulse measurement details.

Parameter
& Data Type

Enter PULSECOUNT INSTRUCTION

Dest
Variable or
Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all the Reps.

Reps
Constant

The number of repetitions for the measurement or instruction.

PSlot
Constant

The number of the slot that holds the 9070/9071E Counter Timer Module for the measurement.

PChan
Constant

The number of the pulse channel for the measurement.

Section 7. Measurement Instructions

7-23

Parameter
& Data Type

Enter PULSECOUNT INSTRUCTION

Pconfig A code specifying the type of pulse input to measure.
Constant Code Pulse Channels Input Configuration
 0 1 - 12 High Frequency
 1 1 - 8 Low Level AC
 1 9 - 12 Switch Closure
Poption
Constant

A code that determines if the raw result (multiplier = 1, offset = 0) is returned as counts or frequency.
The running average can be used to smooth out readings when a low frequency relative to the scan rate
causes large fluctuations in the measured frequency from scan to another.

 Code Result
 0 Counts
 1 Frequency (Hz) counts/scan interval in seconds
 >1 Running average of frequency. The number entered is the time period over

which the frequency is averaged in milliseconds.

Mult, Offset
Constant,
Variable,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. See the measurement
description for the units of the raw result; a multiplier of one and an offset of 0 are necessary to output in
the raw units. For example, the TCDiff instruction measures a thermocouple and outputs temperature in
degrees C. A multiplier of 1.8 and an offset of 32 will convert the temperature to degrees F.

PulseCountReset

PulseCountReset is used to reset the pulse counters and the running averages
used in the pulse count instruction. It resets all counters in all installed
CR9070/CR9071E Counter and Digital I/O modules. The CR9070's 16 bit
counters can count up to decimal 65535. More counts than 65535 result in an
over-range condition. The CR9071E's 32 bit counters can count up to 4.29
billion before over-ranging. This should never occur because at the maximum
input frequency of 1 MHz, it would take almost 72 minutes before it fills while
the CR9000's maximum scan rate is 1 minute. With each scan, the CR9000
reads the counts accumulated since the last scan and then resets the counter. If
the scans stop, as in burst operation or in a program with more that one Scan
loop, the counter continues to accumulate counts until another scan is initiated
or it over-ranges. If the running averaging is in use, the over-range value will
be included in the average for the duration of the averaging period (e.g., with a
1000 millisecond running average, the over-range will be the value from the
PulseCount(...) instruction until 1 second has passed. Resetting the average
prior to (re)starting the scan avoids this.

ReadIO (Dest, PSlot, Mask)

ReadIO is used to read the status of selected digital I/O channels (ports) on the
CR9070/CR9071E Counter - Timer / Digital I/O Module. There are 16 ports on
the CR9070/CR9071E. The status of these ports is considered to be a binary
number with a high port (+5 V) signifying 1 and a low port (0 V) signifying 0.
For example, just looking at the first 8 ports, if ports 1 and 3 are high and the
rest low, the binary representation is 00000101, or 5 decimal. The mask
parameter is used to select which of the ports to read, it too is a binary
representation of the ports, a 1 means pay attention to the status of the port, a 0
means ignore the status of the port (the mask is "anded" with the port status; the
"and" operation returns a 1 for a digit if the mask digit and the port status are
both 1 and a 0 if either or both is 0). CRBasic allows the entry of numbers in

Section 7. Measurement Instructions

7-24

binary format by preceding the number with "&B". For example if the mask is
entered as &B100 (leading zeros can be omitted in binary format just as in
decimal) and ports 3 and 1 are high as in the previous example, the result of the
instruction will be 4 (decimal, binary = 100); if port 3 is low, the result would be
0.

Examples

ReadIO(Port3, 6, &B100) ' read port 3 on the CR9070/CR9071E card in slot
6
 ' if port 3 is high then Port3 = 4, if port 3 is low then Port3 = 0

Parameter
& Data Type

Enter READIO INSTRUCTION PARAMTERS

Dest
Variable or
Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all the Reps.

PSlot
Constant

The number of the slot that holds the 9070 Counter Timer Module for the measurement.

Mask
Constant

The Mask allows the read or write to only act on certain ports. The Mask is ANDed with the value
obtained from the 9070 when reading and ANDed with the source before writing.

TimerIO (Dest, PSlot, Edges 16–9, Edges 8–1, Function 16–9,
Function 8–1, AllDoneFlag)

The TimerIO instruction is used to measure the time between edges (state
transitions) on the digital I/O channels of the CR9070/CR9071E Counter and
Digital I/O Module as well as on the Pulse channels on the CR9071E module .
The transitions can be either on the rising edge (low to high) or falling edge
(high to low) of the signal. The states are nominally 0 V low and 5 V high.
When TimerIO is the only measurement in a scan and the time since previous
channel is measured on 4 channels, the fastest interval is approximately 140
microseconds. . Instruction cannot rep from one module to the next.

There are six functions that can be performed:

The period (msec) of the signal on a channel (CR9070 or CR9071E)

The frequency (hertz) of the signal (CR9071E only)

The time (msec) since an edge on the previous channel (1 number lower) to an
edge on the specified channel. (CR9070 or CR9071E)

The time (msec) from an edge on channel 1 to an edge on the specified
channel. (CR9070 or CR9071E)

Number of edges since last execution. (CR9071E only)

Number of edges since last edge on channel 1 (CR9071E only). Only one
function may be programmed per channel. The number of values returned
is determined by the number of channels for which a result is requested.

There are two AllDoneFlag operating modes for this instruction:

One is to check each scan for transitions that have occurred since the
previous scan. A flag is set true when there are results for all
measurements requested. The resolution of the timing measurement
when using the I/O channels (only option when using the CR9070) is
the scan interval. When using the CR9071E's Pulse channels, the
resolution is 40 nanoseconds.

Section 7. Measurement Instructions

7-25

The second mode is to stay within the instruction until it has results
for each measurement requested. In this mode, the resolution when
using the I/O channels is approximately (10 microseconds + 15
microseconds * the number of results requested). The resolution for
the CR9071's Pulse channels is 40 nanoseconds.

Parameter
& Data Type

Enter TIMERIO INSTRUCTION PARAMETERS

Dest
Variable or
Array

Array for results of the measurements.

Pslot
Constant

The slot that the CR9070/CR9071E module is in.

Edges
Constant

There are two Edge parameters, 8 digits each, one digit is for either each of the 16 I/O
channels on the CR9070/CR9071E Module when programmed with a 0 or a 1, or for the 12
pulse channels when programmed with a 2, 3, 4, or 5. Each digit configures the respective
channel to count a transition on the rising edge (from <1.5V to >3.5V) or on the falling edge
(from >3.5V to <1.5V).

 Digit Edge
 0 Falling, IO channel, I/O 1 to I/O 16
 1 Rising, IO channel, I/O 1 to I/O 16
 2 Falling, high freq, pulse channel (CR9071E only), P1 to P12
 3 Rising, high freq, pulse channel (CR9071E only), P1 to P12
 4 Falling, low level ac, P1 to P8 (or switch closure, P9 -P12), pulse

channel (CR9071E only)

 5 Rising, low level ac, P1 to P8 (or switch closure, P9 - P12), pulse
channel (CR9071E only)

 The first edge parameter is either for I/O channels 16 to 9 or for Pulse channels 12 to 9
depending on the edge code used. The second edge parameter is either for I/O channels 8 to 1
or for Pulse channels 8 to 1. The digits represent the channels in descending order left to right.
For example, 00000101 in the second edge parameter means channels 1 and 3 count rising
edges and channels 2 and 4-8 are to count falling edges (this could also be specified as 101,
the leading zeros do not need to be entered). Separate instructions are required when
programming both I/O and Pulse channels for TimerIO functions. See PulseCount instruction
section for description of high freq, low level ac, and switch closure inputs. Instruction cannot
rep over to another module.

Function Two parameters, 8 digits each, one digit to program results for each channel.
Constant Digit Results
 0 None
 1 Period (msec)
 2 Frequency (CR9071E P1 to P12 only)
 3 time since previous channel (msec)
 4 time since channel 1 (msec)
 5 count since last execution (CR9071E only)
 6 count since channel 1 (CR9071E only)
 The digits correspond to the channels using the same layout outlined for the edge parameter.

For example, 00004301 in the second function parameter means to return 3 values: the period
for channel 1, (nothing for channel 2) the time between an edge on channel 2 and an edge on
channel 3, and the time between an edge on channel 1 and an edge on channel 4. The values
are returned in the sequence of the channels, 1 to 16.
Note: the destination array must be dimensioned large enough to hold all the functions
requested.

AllDoneFlag
Constant or
Variable

If a variable is entered for this parameter, the variable will be set to TRUE (-1.0) when all the
functions have a value. This allows a user program to test when the experiment is complete.
If a constant is entered, then the task sequencer will stay in this instruction until values can be
returned for all channels.

Section 7. Measurement Instructions

7-26

WriteIO (PSlot, Mask, Source)
WriteIO is used to set the status of selected digital I/O channels (ports) on the
CR9070/CR9071E Counter - Timer / Digital I/O Module. (See PortSet for
setting the Output channels on the CR9060.) There are 16 ports on the
CR9070/CR9071E. The status of these ports is considered to be a binary
number with a high port (+5 V) signifying 1 and a low port (0 V) signifying 0.
For example, just looking at the first 8 ports, if ports 1 and 3 are high and the
rest low, the binary representation is 00000101, or 5 decimal. The source
value is interpreted as a binary number and the ports set accordingly. The
mask parameter is used to select which of the ports to set, it too is a binary
representation of the ports, a 1 means set the port according to the source, a 0
means do not change the status of the port. CRBasic allows the entry of
numbers in binary format by preceding the number with "&B". For example if
the mask is entered as &B110 (leading zeros can be omitted in binary format
just as in decimal) and the source is 5 decimal (binary 101) port 3 will be set
high and port 2 will be set low. The mask indicates that only 3 and 2 should be
set. While the value of the source also has a 1 for port 1, it is ignored because
the mask indicates 1 should not be changed.

Examples

WriteIO (5, &B100, &B100) ' Set
port 3 on the 9070 in slot 5 high.

WriteIO (5, &Hff00, Y*256) ' Write
Y to upper 8 ports (9-16)

Parameter
& Data Type

Enter WRITEIO INSTRUCTION PARAMETERS

PSlot
Constant

The number of the slot that holds the CR9070/CR9071E Counter Timer Module for the measurement.

Mask
Constant

The Mask allows the read or write to only act on certain ports. The Mask is ANDed with the value
obtained from the 9070 when reading and ANDed with the source before writing.

Source
Constant
Variable

The Variable or number that is to be written to the I/O ports.

7.9 CR9052DC Filter Module Measurements
The CR9052DC is a six-channel, analog-input module that includes
programmable anti-alias filtering and dc excitation. The CR9052DC can
provide filtered voltage measurements or spectra from fast fourier transforms
of the voltage measurements. See Section 3.3 for additional measurement
details.

The filter module collects alias-free, 50-kHz samples from each of its six
analog-to-digital converters; applies additional real-time, finite-impulse-
response filtering, and decimates (down samples) the 50-kHz data to the
programmed scan rate. The Filter Module supports 726 different scan intervals
including the basic ones shown in the table below. For scan intervals not
listed, enter the scan interval desired, download the program, and the logger
will return suggested operational scan intervals close to the one that was
entered.

Section 7. Measurement Instructions

7-27

Scan Interval Scan Rate
 20 µs 50 kHz
 40 µs 25 kHz
 100 µs 10 kHz
 200 µs 5 kHz
 400 µs 2.5 kHz

 1 ms 1 kHz
 2 ms 500 Hz
 4 ms 250 Hz
 10 ms 100 Hz
 20 ms 50 Hz
 40 ms 25 Hz
 100 ms 10 Hz
 200 ms 5 Hz

VoltFilt (Dest, Reps, Range, FSlot, Chan, FiltOption, Excitation, Mult,
Offset)

The VoltFilt instruction is used to obtain voltage measurements from the 9052
Filter Module in much the same way as the VoltDiff instruction is used with
the CR9050 module. The program scan interval (or the SubScan Interval, see
SubScan) determines the filter module output interval. Data are passed from
the Filter Module to the CR9000 CPU for processing and final storage at this
scan interval. There is the option of turning on a fixed excitation (10V, 5V, or
10 mA). No ratiometric scaling (as in the bridge measurement instructions) is
applied when the excitation is on; the VoltFilt instruction always returns
millivolts scaled by the multiplier and offset.

Section 7. Measurement Instructions

7-28

Parameter
& Data Type

Enter VOLTFILT PARAMETERS

Dest
Variable,Array

The Variable to store the results of the instruction. When Reps are used the results are stored in an
array with the variable name. An array must be dimensioned to have elements for all Reps.

Reps
Constant

The number of times to repeat the measurement on subsequent CR9052 channels..

Range The voltage range for the measurement. The CR9052 normally replaces out-of-range
measurements with not-a-number (NaN) which is displayed in PC9000 as Range?.
Users may choose to have out-of-range measurements to be replaced by the analog-to-
digital converter saturation value with a special code in FiltOption.

Constant Alpha
Code

Numeric
Code

Voltage
Range

Module Excitation
Board Supported

 mV5000 0 ± 5000 mV CR9052DC, CR9052IEPE
 mV1000 1 ± 1000 mV CR9052DC, CR9052IEPE
 mV200 4 ± 200 mV CR9052DC
 mV50 5 ± 50 mV CR9052DC
 mV20 6 ± 20 mV CR9052DC
Fslot
Constant

The number of the slot that holds the CR9052 Module to be used for the measurement.

Chan
Constant

The CR9052 channel number on which to make the first measurement. When Reps are used,
subsequent measurements will be automatically made on the following differential channels.

FiltOption
Constant

The sample ratio for the measurement (how many measurements are made within one cycle of the
highest frequency in the pass band). The sample ratio determines the top of the pass-band
(FPASS) and the beginning of the stop-band (FSTOP) of the anti-aliasing low-pass filter
relative the sample rate (FSAMPLE). The sample rate is the inverse the scan interval in the
CRBASIC program. FiltOption must be the same for all channels of a single CR9052
Filter Module. Out-of-range measurements may be replaced by the analog-to-digital
converter saturation value by adding 1000 to the FiltOption codes shown below.

 NumericCode Sampling Ratio FPASS FSTOP
 2 2.5 FSAMPLE/2.5 FSAMPLE/2.01
 5 5 FSAMPLE/5 FSAMPLE/3.37
 10 10 FSAMPLE/10 FSAMPLE/5.08
 20 20 FSAMPLE/20 FSAMPLE/6.81
 1* 2.155 23.2 Khz 26.8 kHz
 *Option 1 has no additional filtering beyond the CR9052DC analog front-end and the

sigma-delta A/D converter, thus freeing the CR9052DC on-board digital signal
processor for additional processing. FSAMPLE must be 50 kHz to use this filter option.

Excitation
Constant

The continuous, dc, output for the excitation channel(s). If Reps is greater than one, then
the same excitation will be output on sequential excitation channels.

 Numeric Code Alpha Code Output Level IEPE Freq. Response

CR9052IEPE 605 None Constant 6 mA 0.3 Hz to 20 kHz (τ = 5.0 Sec)
CR9052IEPE 405 None Constant 4 mA 0.3 Hz to 20 kHz (τ = 5.0 Sec)
CR9052IEPE 205 None Constant 2 mA 0.3 Hz to 20 kHz (τ = 5.0 Sec)
CR9052IEPE 600 None Constant 6 mA 3.0 Hz to 20 kHz (τ = 0.5 Sec)
CR9052IEPE 400 None Constant 4 mA 3.0 Hz to 20 kHz (τ = 0.5 Sec)
CR9052IEPE 200 None Constant 2 mA 3.0 Hz to 20 kHz (τ = 0.5 Sec)
CR9052DC 7 V10 Constant 10 V DC N/A
CR9052DC 5 None Constant 5 V DC N/A
CR9052DC 2 None Constant 10 mA N/A
CR9052DC 1 None None N/A
Mult, Offset
Constant,Variable,
Array, Expression

A multiplier and offset by which to scale the measurement. A multiplier of one and an offset of 0
will return the measurement in millivolts.

Section 7. Measurement Instructions

7-29

The following example program measures 6 channels on the CR9052DC using the VoltFilt instruction.

' CR9052 example program #1
'
' Measure six channels at 1 kHz on +/- 5000 mV range with 5-Volt excitation.
‘ Sample ratio is 2.5: top of pass band is 1 kHz / 2.5 = 400 Hz.
‘ CR9052 is in slot 8.
‘ Turn on flag 1 on to save instantaneous data to output table.

Public sig_in (6)
units sig_in = mV

Public flag (1)

'------------------- Data Tables -------------
DataTable (FiltData, flag (1), -1) ' save to final storage if flag (1) = True
 Sample (6, sig_in(1),IEEE4)
EndTable

'------------------- Program ---------------
BeginProg
 Scan(1, msec, 0,0)
' VoltFilt (Destination, Reps, Range, Fslot, Chan, FiltOption, Excitation, Mult, Offset)
 VoltFilt (sig_in(1), 6, mV5000, 8, 1, 2, 5, 1.0, 0.0)
 CallTable FiltData
 Next Scan
EndProg

SubScan (SubInterval, Units, SubRatio)

The SubScan instruction makes it possible to measure CR9052DC inputs at
one rate and measurements on other modules at a slower rate, all within the
same scan.

Parameter
& Data Type

Enter SUBSCAN INSTRUCTION PARAMETERS

SubInterval
Constant

The time interval at which to run the subscan. The interval must be one of the valid intervals
for the CR9052 module: 20, 40, 100, 200, or 400 microseconds or 1, 2, 4, 10, 20, 40, 100, or
200 milliseconds. When used with the CR9052 Filter Module, the interval of the scan that
contains the SubScan must be an integral multiple of the SubScan interval.

Units The units for the Interval
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 Microseconds
 MSEC 1 Milliseconds
SubRatio
Constant

The subscan will run SubRatio times each time the scan runs. When SubScan is used with the
CR9052 Filter Module (the only use as of March 2001) this parameter is redundant but must
be entered anyway. (The Scan interval must be an integral multiple of the SubScan interval or
a compile error will occur. SubRatio is the ratio between the scan interval and the subscan
interval.)

Section 7. Measurement Instructions

7-30

The following program uses the SubScan to combine 2.5 kHz filtermodule measurements with 10 Hz
measurements on a 9050 card.

' CR9052 example program #2
'
' Measure 2 channels on the CR9050 at 10 Hz on the +/- 5000 mV range.
'
' Measure six channels on the CR9052DC at 2.5 kHz on +/- 5000 mV range with 5-Volt excitation.
' Sample ratio is 2.5: top of pass band is 2.5 kHz / 2.5 = 1 kHz.
' CR9052 is in slot 8.
' Turn on flag 1 on to save instantaneous data to output table.

const stats_interval = 2 ' time period over which to compute stats, in seconds

Public Flt_in (6)
units Flt_in = mV
Public Alg_in (2)
units Alg_in = mV
Public flag (1)

'Filter Module Filter Option
const SmplRat_2_5 = 2 'Fpass = Fsr/2.5 = 1/(T_scan*2.5)

'------------------- Data Tables -------------
DataTable (FiltData, flag (1), -1) ' save to final storage if flag (1) = True
 Sample (6, Flt_in(1),IEEE4)
EndTable

DataTable (AlgData, flag (1), -1) ' save to final storage if flag (1) = True
 Sample (2, Alg_in(1),IEEE4)
EndTable

'------------------- Program------------------
BeginProg
 Scan (100, msec, 0, 0)
 VoltDiff (Alg_in(1), 2, mV5000, 6, 1, False, 0, 0, 1.0, 0.0)
 CallTable AlgData
 SubScan (400, usec, 250)
' VoltFilt (Destination, Reps, Range, FSlot, Chan, FiltOption, Excitation, Mult, Offset)
 VoltFilt (Flt_in(1), 6, mV5000, 8, 1, SmplRat_2_5, 5, 1.0, 0.0)
 CallTable FiltData
 Next SubScan
 Next Scan

 SlowSequence
 Scan (1, Sec, 0, 0)
 Calibrate ' run calibrations for cr9050 measurements
 BiasComp
 Next Scan
EndProg

Section 7. Measurement Instructions

7-31

Bursting to CPU and PAM Memory

The maximum continuous throughput rate for measurements made by the
CR9052DC to be processed and stored by the CR9031 CPU is 2500 Hz for 1
to 24 channels. The measurement rate can be increased by bursting data into
CPU memory or PC cards in the CR9080 PAM Module. In this mode, the
CR9031 and CR9052DC support a sustained aggregate sample rate (the sum of
the sample rates on all channels) of 50 ksamples/sec (100 ksamples/sec to
rotating-media PC cards). The burst buffer size is limited by the capacity of the
CPU memory, or by the capacity of the PC card. The triggered burst option
allows experimenters to save only the data of interest before, during, or after, a
trigger event.

The following program bursts CR9052DC measurements onto a PC card.

' CR9052 example program #3
' Measure 5 channels on the CR9050 at 10 kHz on the +/- 5000 mV range with triggered
' burst buffering on a PCMCIA card.
' Burst trigger when channel 1 exceeds 4000 mV, or when flag 1 is on.
' Subsequent recordings are appended to end of preceding recording.
const pam_slot = 4
const cr9052_slot = 8
const sample_len = 1000 ' record 1000 samples for each trigger
const scans_past_trig = sample_len-200 ' this makes the trigger the ~200th sample point
Public Flt_in (5)
units Flt_in = mV
Public flag (1)
'------------------- Data Tables -------------
DataTable (FiltData, True, -1)
 DataInterval (0, 0, usec, 100) ' do not explicitly save the time stamp with each record,
 ‘data can still be collected to the pc with time stamps
 PamOut(PAM_Slot, CardA, 0, -1) ' data table is ring memory, maximum size
 Sample (5, Flt_in(1), ieee4)
EndTable

'------------------- Program--------------------
BeginProg
 ResetTable (FiltData) ' start with fresh data table
 while (True)
 Scan(100, usec, 1, sample_len)
 BeginBurstTrigger (1)
' VoltFilt (Dest, Reps, Range, FSlot, Chan, FiltOption, Excit, Mult, Offset)
 VoltFilt (Flt_in(1), 5, mV5000, cr9052_slot, 1, 2, 1, 1.0, 0.0)
 EndBurstTrigger ((Flt_in(1)>4000) or flag(1), scans_past_trig)
 CallTable FiltData
 Next Scan
 Flag(1) = False ' turn flag 1 off to eliminate multiple triggers
 wend
EndProg

Section 7. Measurement Instructions

7-32

Bursting to Filter Module Memory
Each CR9052DC Filter Module includes an 8-Msample (32-Mbyte) burst
memory buffer. Experimenters may use this memory to increase CR9052DC
measurement rates to 50 ksamples/sec per channel, giving a sustained
aggregate sample rate of 300 ksamples/sec for a single Filter Module, 600
ksamples/sec for two Filter Modules, etc. The 8-Msample buffer allows 26.7-
second recordings for six channels running at 50 kHz, 80-second recordings
for two channels running at 20 kHz, etc. Because each CR9052DC Filter
Module includes its own burst memory buffer, the total burst buffer capacity
increases as experimenters add additional Filter Modules within the CR9000
chassis.
The Filter Module will burst measurements to its on-board memory when the
CRBASIC program specifies the burst option in the Scan instruction, and
when the program contains a VoltFilt instruction within a SubScan.
To monitor trigger conditions, the CR9031 CPU collects data from the
CR9052DC Filter Module at the scan rate (not the subscan rate). While the
Filter Module passes this decimated data to the CPU, it also stores non-
decimated measurements in its on-board burst buffer at the subscan rate. Once
a trigger has occurred and the CR9052DC has recorded the appropriate number
of scans after the trigger, the CPU collects and processes the stored burst data
from the CR9052DC memory.
The following example program uses the SubScan instruction to buffer
measurements into the CR9052DC burst memory.

' CR9052 example program #4
'' Measure 6 channels on the CR9050 at 25 kHz on the +/- 5000 mV range with triggered
' burst buffering on CR9052 memory.
' Trigger when channel 1 exceeds 4000 mV, or when flag 1 is on.
' Subsequent recordings are appended to end of the preceding recording in table FiltData.
const pam_slot = 4
const cr9052_slot = 8
const num_scans = 100 ' record 100*25 = ~2500 samples for each trigger
 ' (the number of samples recorded is *25 because
 ' the subscan ratio is 25, see below)
const scans_after_trig = 95 ' this makes the trigger the (100-95)*25 ~= 125th
 ' sample point
Public Flt_in (6)
units Flt_in = mV
Public flag (1)
'------------------- Data Tables -------------
DataTable (FiltData, True, -1)
 DataInterval (0, 0, usec, 100) 'do not explicity save the time stamp with each record,
 ' data can still be collected to the pc with time stamps
 PamOut(PAM_Slot, CardA, 0, -1) ' data table is ring memory, maximum size
 Sample (6, Flt_in(1), ieee4)
EndTable
'------------------- Program----------------
BeginProg
 ResetTable (FiltData) ' start with fresh data table
 while (True)
 Scan(1, msec, 1, num_scans)
 SubScan (40, usec, 25)
 BeginBurstTrigger (1)
' VoltFilt (Dest, Reps, Range, FSlot, Chan, FiltOption, Excit, Mult, Offset)

Section 7. Measurement Instructions

7-33

 VoltFilt (Flt_in(1), 6,mV5000, cr9052_slot, 1, 2, 1, 1.0, 0.0)
 if (Flt_in(1) > 4000) then flag(1) = True
 EndBurstTrigger (flag(1), scans_after_trig)
 CallTable FiltData
 Next SubScan
 Next Scan
 Flag(1) = False ' turn flag 1 off to eliminate multiple manual triggers
 wend
EndProg

FFTFilt (Dest, Reps, Range, Fslot, Channel, FiltOption, Excitation, Mult, FSampRate,
FFTLen, TSWindow, SpectOption, Fref, SBin, ILow, IHigh)

The CR9052 filter module can perform real-time fast Fourier transform (FFT)
analyses on the voltages measured on its inputs, and then pass the resulting
spectra to the CR9000 CPU for further processing and storage into data tables.
The FFT operation is specified with the FFTFilt instruction.
With the VoltFilt instruction the Scan (or SubScan) interval determines the
rate at which individual measurements are passed to the CPU. With FFTFilt
the Scan interval is how often an entire spectrum for each channel is sent to
the CPU. The sample rate for the FFT time-series is set within the instruction.
FFTFilt can provide spectra from “seamless” time-series snapshots if the Scan
interval is set equal to it’s minimum value: the FFT length divided by the
time-series sample rate (i.e., measurements are continuously sampled, an FFT
is calculated each time the required number of measurements are sampled, no
samples are missed.) When the scan interval is greater than this minimum
value there will be gaps between acquiring the FFT time series.
The first eight parameters of the FFTFilt instruction are similar to the first
eight parameters of VoltFilt. The Fslot, FiltOption, FSampRate, and
FFTLen parameters must be the same for all channels of a single CR9052DC
module. The other parameters may be unique for each channel.

Section 7. Measurement Instructions

7-34

Parameter Enter FFTFILT PARAMETERS
Dest
Variable or
Array

The Variable in which to store the results of the instruction. Because FFTFilt returns all or part of
an entire spectrum (see ILow and IHigh) for each Rep, Dest usually must be an array.

Reps
Constant

The number of times to repeat the measurements and subsequent FFTs on consecutive
CR9052DC channels. Spectra from multiple Reps are placed head-to-tail in the Dest array.

Range
Constant

The voltage range for the measurement. The CR9052 normally replaces out-of-range
measurements with not-a-number (NaN) which is displayed in PC9000 as Range?. Users may
choose to have out-of-range measurements to be replaced by the analog-to-digital converter
saturation value with a special code in FiltOption.

 Alpha Code Numeric Code Voltage
Range

Module Excitation
Board Supported

 mV1000 0 ± 5000 mV CR9052DC, CR9052IEPE
 mV1000 1 ± 1000 mV CR9052DC, CR9052IEPE
 mV200 4 ± 200 mV CR9052DC
 mV50 5 ± 50 mV CR9052DC
 mV20 6 ± 20 mV CR9052DC

Fslot Const The number of the slot that holds the CR9052 Module to be used for the measurement.
Chan
Constant

The CR9052 channel number on which to make the first measurement. When Reps are used, subsequent
measurements will be automatically made on the following differential channels.

FiltOption
Constant

The sample ratio for the measurement (how many measurements are made within one cycle of
the highest frequency in the pass band). The sample ratio determines the top of the pass-band
(FPASS) and the beginning of the stop-band (FSTOP) of the anti-aliasing low-pass filter relative
the sample rate (FSAMPLE). The sample rate is the inverse the scan interval in the CRBASIC
program. FiltOption must be the same for all channels of a single CR9052DC Filter Module.
The CR9052 normally replaces out-of-range measurements with not-a-number (NaN) which is
displayed in PC9000 as Range?. Out-of-range measurements may be replaced by the analog-
to-digital converter saturation value by adding 1000 to the FiltOption codes shown below.

 Numeric Code Sampling Ratio FPASS FSTOP
 2 2.5 FSAMPLE/2.5 FSAMPLE/2.01
 5 5 FSAMPLE/5 FSAMPLE/3.37
 10 10 FSAMPLE/10 FSAMPLE/5.08
 20 20 FSAMPLE/20 FSAMPLE/6.81
 1* 2.155 23.2 Khz 26.8 kHz
 FiltOption 1 is available only when FsampRate is 50 kHz. At this sample rate, no additional

filtering beyond that provided by the CR9052DC hardware is required to anti-alias the data.
Because the CR9052DC processor is not performing additional anti-alias filtering, this
FiltOption increases the CR9052DC’s FFT throughput. To achieve spectra from seamless
snapshots with FsampRate equal to 50 kHz on six channels, FiltOption must be 1.

Section 7. Measurement Instructions

7-35

Parameter Enter FFTFILT PARAMETERS
Excitation
Constant

The continuous, dc, output level for the excitation channel(s). If Reps is greater than one, then
the Filter Module drives the same excitation level on sequential excitation outputs.

 Numeric Code Alpha Code Output Level IEPE Freq. Response
CR9052IEPE 605 None Constant 6 mA 0.3 Hz to 20 kHz (τ = 5.0 Sec)
CR9052IEPE 405 None Constant 4 mA 0.3 Hz to 20 kHz (τ = 5.0 Sec)
CR9052IEPE 205 None Constant 2 mA 0.3 Hz to 20 kHz (τ = 5.0 Sec)
CR9052IEPE 600 None Constant 6 mA 3.0 Hz to 20 kHz (τ = 0.5 Sec)
CR9052IEPE 400 None Constant 4 mA 3.0 Hz to 20 kHz (τ = 0.5 Sec)
CR9052IEPE 200 None Constant 2 mA 3.0 Hz to 20 kHz (τ = 0.5 Sec)
CR9052DC 7 V10 Constant 10 V DC
CR9052DC 5 None Constant 5 V DC
CR9052DC 2 None Constant 10 mA
CR9052DC 1 None None
Mult
Constant,Variable,
Array, Expression

A factor by which to multiply the raw time-series voltage measurements. Mult-1 provides the
reference value for the deciBell (dB) spectral option.

FsampRate
Constant

The sample rate in samples per second, at which the CR9052 will collect time series data
before performing the FFT. FsampRate must be the same for all channels in a CR9052
module.

 FsampRate Sample Rate Sample Interval
 50000 50 kHz 20 µs
 25000 25 kHz 40 µs
 10000 10 kHz 100 µs
 5000 5 kHz 200 µs
 2500 2.5 kHz 400 µs
 1000 1 kHz 1 ms
 500 500 Hz 2 ms
 250 250 Hz 4 ms
 100 100 Hz 10 ms
 50 50 Hz 20 ms
 25 25 Hz 40 ms
 10 10 Hz 100 ms
 5 5 Hz 200 ms
FFTLen
Constant

 FFTLen
 65536
 32768
 16384
 8192
 4096
 2048
 1024
 512
 256
 128
 64
 32

The length of (number of points in) the time series snapshot on which to
perform the FFT. If the scan period equals FFTLen/FsampRate, then the
consecutive time seriessnapshots processed into spectra are “seamless”. If
the scan period is greater than FFTLen/FsampRate, then the time series
snapshots will have gaps between them. A compile error occurs if the scan
Period is less than FFTLen/FsampRate

The FFT throughput for transforms of 2048 points or less is much higher
than the throughput for transforms longer than 2048 points. The
CR9052DC can produce spectra from seamless 50-kHz snapshots on six
channels for FFTLen equal to 2048 or less. The CR9052DC can produce
spectra from seamless 50-kHz snapshots on two channels for any FFTLen.

Section 7. Measurement Instructions

7-36

Parameter
& Data Type

Enter FFTFILT INSTRUCTION PARAMETERS
TSWindow
Constant

TSWindow designates whether the CR9052 should apply a window (also known as a taper, or
apodization) function to the time series snapshot before performing the FFT. Typical window
functions give more weight to the middle of the time series while tapering the ends to avoid
spectral leakage caused by a non-integral number of periods of a repetitive signal in the
snapshot.

 Numeric Code Window Function
 0 None
 1 Hanning
 2 Hamming
 3 Blackman
 4nn Kaiser-Bessel nn: represents Beta (β) nn range: 5 - 16 (integer)
SpectOption Designates the output option for the computed spectrum.
Constant Numeric Code Spectra Result Maximum Spectrum Length
 0 Real and Imaginary (FFTLen/2 + 1) pairs
 1 Amplitude (FFTLen/2 + 1) values
 2 Amplitude and Phase (FFTLen/2 + 1) pairs
 3 Power Spectrum (FFTLen/2 + 1) values
 4 Power Spectral Density

Function
(FFTLen/2 + 1) values

 6 RMS Amplitude (FFTLen/2 + 1) values
 7 DeciBels (FFTLen/2 + 1) values
 Add 100 to the 100 to the SpectOption codes above and the original time series data will be

returned along with the spectrum. The CR9000X places the time series data in the array Dest
immediately following the spectrum. When this option is enabled, Dest must be dimensioned
large enough to hold this additional time series data. If Reps is more than one, the CR9000X
places the spectrum for the first channel in Dest, followed by the time series for the first
channel. Next, the CR9000X places the spectrum for the second channel in Dest, followed by
the time series for the second channel, etc.

FRef Constant Reference Frequency for Logarithmic rebinning. Set to 0 for linear or no rebinning.
SBin Constant For linear rebinning: the number of adjacent spectral bins to combine. For logarithmic

rebinning: the number of bins per octave in the rebinned spectrum. Set to 0 or 1 for no
rebinning. The DC component, bin 0, is left alone and not combined with other bins. Bin
combination starts with the first AC component. Combining bins is not allowed for the Real
and Imaginary or Amplitude and Phase spectral options.

ILow, IHigh
Constants

ILow and IHigh make it possible to return a subset of the spectrum that results from the
Spectral option and bin combining specified by the previous parameters. I is the bin number.
ILow is the number of first bin to return, IHigh the number of the last bin to return. To get all
the components set ILow equal to the lowest bin number and IHigh to the maximum bin
number. With linear spectral bins (Fref = 0), the lowest bin number is 0 and the highest bin
number is the integer portion of FFTLen/(2*Sbin). See the text for details and logarithmic
rebinning (Fref≠0).

Section 7. Measurement Instructions

7-37

Window Function

TSWindow is a constant designating whether the CR9052 should apply a
window (also known as taper, or apodization) function to the time series
snapshot before performing the FFT. Typical window functions give more
weight to the middle of the time series while tapering the ends to avoid spectral
leakage caused by a non-integral number of periods of a repetitive signal in the
snapshot.

The CR9052 applies the selected window function by multiplying each point
of the original time series by the corresponding point of the window function.
Because this windowing process removes some of the original signal variation,
the CR9052 uses the following procedure to correct the resulting spectra.

The CR9052 first computes the mean and standard deviation of the original
time series for use in additional processing. Next, the CR9052 subtracts the
mean from each point of the original time series, and then multiplies the mean-
subtracted time series by the selected window function. The CR9052 then
computes the standard deviation of this windowed time series. The CR9052
then computes the FFT of the windowed time series, and multiplies each ac
component of the complex spectrum by the ratio of the standard deviations of
the time series computed before and after the window function was applied.
The CR9052 then sets the dc component of the spectrum to the mean of the
original time series, normalized for the FFT length.

The CR9052 computes the Hanning window function from:

⎟
⎠
⎞

⎜
⎝
⎛

−
−

1
2cos5.05.0

N
kπ

 for ()10 −≤≤ Nk .

N is the length of the original time series (FFTLen).

The CR9052 computes the Hamming window function from:

⎟
⎠
⎞

⎜
⎝
⎛

−
−

1
2cos46.054.0

N
kπ

 for ()10 −≤≤ Nk .

The CR9052 computes the Blackman window function from

⎟
⎠
⎞

⎜
⎝
⎛

−
+⎟

⎠
⎞

⎜
⎝
⎛

−
−

1
4cos08.0

1
2cos5.042.0

N
k

N
k ππ

 for ()10 −≤≤ Nk .

The Kaiser-Bessel window function is calculated using:

()β

β

0

2

2
1
2

1

0

I

1I
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
− −

−

N

Nk

Section 7. Measurement Instructions

7-38

for ()10 −≤≤ Nk

where ()0I is the modified zeroth order Bessel function and

where 5 ≥ β(integer) ≥ 16

 Spectral Options

The CR9052DC supports the following spectral options. The first five spectral
options are the same as the CR9000 FFT instruction. RMS Amplitude and
Decibels are new for the FFTFilt instruction.

 Real and Imaginary

The real and imaginary option returns the raw real (r) and imaginary (i)
components from the FFT. The FFT calculation produces FFTLen/2 +1 pairs
of real and imaginary components. ILow and IHigh, described below,
determine which of these pairs of values are loaded into the destination array
by FFTFilt.

 Amplitude

The amplitude option returns the amplitude of each spectral component. The
FFT calculation produces FFTLen/2 +1 amplitude components. ILow and
IHigh ,described below, determine the number of values returned by FFTFilt.
The amplitude of a sinusoid represented by ()tA ωcos is A. The CR9052DC

computes the amplitude from:
N

ir 222 +

for all components except the dc and Nyquist components. The dc and Nyquist

components are computed from
N

ir 22 +
.

N is the length of the original time series (FFTLen). The units of the
amplitude spectrum are mV.

 Amplitude and Phase

The amplitude and phase option returns the amplitude as described above, plus

the phase in radians given by: ⎟
⎠
⎞

⎜
⎝
⎛−

r
i1tan .

The FFT calculation produces FFTLen/2 +1 pairs of amplitude and phase
components. ILow and IHigh, described below, determine which of these
pairs of values are returned by FFTFilt. The phase is between -π and π.

 Power

The power spectrum option gives the power for each of the spectral
components. The FFT calculation produces FFTLen/2 +1 power components.
ILow and IHigh, described below, determine the number of values returned by

FFTFilt. The CR9052DC computes the power from:
()

2

222
N

ir +

for all spectral components except the dc and Nyquist components. The dc

Section 7. Measurement Instructions

7-39

component is computed from
()

2

22

N
ir +

,

and the Nyquist component is computed from
()

2

22

2N
ir +

.

The sum of all of the ac components of the power spectrum gives the variance
of the original time series. The units of the power spectrum are ()2mV .

 Power Spectral Density

The power spectral density (PSD) function normalizes the power spectrum by
the bandwidth of each spectral component. The FFT calculation produces
FFTLen/2 +1 PSD components. ILow and IHigh, described below, determine
the number of values returned by FFTFilt. The CR9052DC computes the psd

from:
()

SRfN
ir 222 +

for all components except the dc and Nyquist components. fSR is the sample
rate of the original time series (FSampRate). The dc component is computed

from:
()

SRfN
ir 22 +

,

and the Nyquist component is computed from:
()

SRfN
ir

2

22 +
.

The integral of the PSD over all of the ac components gives the variance of the

original time series. The units of the PSD are
()

Hz
mV 2

.

 RMS Amplitude

The RMS (root-mean-square) amplitude is computed from the square root of
the power spectrum for all spectral components, or equivalently, the amplitude
spectrum divided by the 2 for all ac components. The dc component of
RMS amplitude spectrum is the same as the dc component of the amplitude
spectrum. The FFT calculation produces FFTLen/2 +1 RMS amplitude
components. Spectral binning and ILow and IHigh, described below,
determine the number of values returned by FFTFilt. The units of the RMS
amplitude spectrum are mV RMS.

 deciBell

The deciBell (dB) spectrum normalizes the RMS amplitude spectrum

according to ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

refA
A

10log02

where A is value from the RMS amplitude spectrum, and refA is RMS

amplitude reference level. The inverse of the multiplier parameter (Mult-1) of
the FFTFilt instruction gives Aref . Because the square of the RMS amplitude

Section 7. Measurement Instructions

7-40

is equal to power, an equivalent normalization to dB is ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

refP
P

10log01

where P is the value from the power spectrum, and refP is power reference

level. The square of the inverse of the multiplier parameter (Mult-2) gives

refP . The multiplier parameter of the FFTFilt performs two functions for the
dB spectrum option. The first function is to convert the raw signal
measurements from mV to the units in which the dB reference is specified, and
the second function gives the dB reference. For example, users may convert
signals from a microphone to sound pressure level (SPL) spectra in dB relative

to 20 µPascals RMS, by setting Mult to:
RMS Pascals1020 6−×

k

where k is the microphone calibration in Pascals per mV. The FFT calculation
produces FFTLen/2 +1 deciBell components. ILow and IHigh, described
below, determine the number of values returned by FFTFilt. The dB spectrum
is unitless.

FFT Spectral Bins

The FFT calculation produces N/2 +1 spectral bins, where N is the number of
points in the original time series. These bins may contain a single value (i.e.,
amplitude) or a pair of values (i.e., Real and Imaginary). Each of these bins
represents a frequency range. Let i be the bin number, ranging from 0 for the
DC component to N/2 for the highest frequency range. The center frequency of

each range is: () i
N
f

if SR
c =

where SRf is the sample rate of the time series processed by the FFT

(parameter FSampRate), and N is the length of the FFT (parameter
FFTLen). ()0cf is the center frequency of the first spectral component

calculated by the FFT, ()1cf is the center frequency of the second spectral
component, and so on.

The difference between the center frequencies of adjacent spectral bins is

N
f SR , and bandwidth of each bin is also

N
f SR .

The results described above are returned by the FFTFilt Instruction when Fref
is set to zero, SBin is either zero or one, ILow is 0, and IHigh equals N/2.
ILow and IHigh refer to the bin numbers of the first and last bins to load into
the destination array. For example, if the number of points in the original time
series, N=1024 then the resulting FFT would have 1024/2 +1 = 513 bins
numbered from 0 to 512. To get the entire FFT, ILow would be set to 0 and
IHigh would be set to 512.

ILow and IHigh can be used to return only a part of the spectrum. For
example, If only the higher frequencies were of interest, say bin 200 to bin
512, ILow could be set to 200 and IHigh to 512.

Section 7. Measurement Instructions

7-41

In terms of frequency:

To limit the lower end of the spectrum, select a minimum frequency of interest,

lowf , and then set Ilow to: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
low

SR

f
f
Nround ,

where ()xround is x rounded to the nearest integer.

To limit the upper end of the spectrum, select a maximum frequency of

interest, highf , and then set IHigh to: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
high

SR

f
f
Nround .

Not saving the higher frequency bins is particularly useful if you are used to
using some of the rules of thumb on over sampling that evolved to avoid
aliasing higher frequencies present because of the prolonged rolloff of analog
filters. For example, suppose you are interested in frequencies up to 1 kHz. To
get a 5 times oversample, FSampRate of 5 kHz is used with FiltOpt sampling
ratio = 5 and N=1024. The bin containing the 1 kHz information will be
Round((1024/5000)x1000) = 205. Bins containing spectra beyond the filter
stop frequency of 5000/3.37 = 1484 Hz will be drastically attenuated (≥ 90
dB). The bin containing the stop frequency is: I = Round ((1024/5000)x1484)
= 304). Set IHigh to bin 205 and only spectra up to 1 kHz will be returned. Set
IHigh to 304 get the spectra through the filter roll off but discard the 208 bins
containing spectra beyond the stop frequency.

The total number of spectral components (spectral pairs for real and
imaginary, or amplitude and phase, spectral options) loaded into the
destination array by FFTFilt is IHigh - ILow + 1. Note that the bin numbers
ILow and IHigh are not the same as the array index numbers of the destination
array. For example, with a single (1Rep) 1024 point Amplitude FFT, if all the
bins were returned (ILow=0, and I High=512) into the destination:
FFTResult(1), FFTResult(1) would equal the amplitude for bin 0,
FFTResult(2) = bin(1), … FFTResult(513) = bin(512). If ILow were set equal
200 and IHigh equal 512, then FFTResult(1) = bin(200), FFTResult(2) =
Bin(201), … FFTResult(313) = bin(512).

Frequency Range

 Maximum Frequency

The maximum non-attenuated frequency in the FFT is a function of the
Sampling Frequency, SRf , (FSampRate) and the Filter option (FiltOption)

The maximum frequency in the spectrum calculated by an FFT is half the
sampling frequency (2/SRf). This is also called the Nyquist frequency.

FSampRate must be at least twice the maximum frequency of interest, highf .

Any frequencies higher than the Nyquist frequency that were present in the
time series will be aliased, contributing to the lower frequency components.
Aliasing is not a concern with the CR9052 because the Pass frequency and the
stop frequency are both less than FSampRate/2 for all filter options except 1.

Section 7. Measurement Instructions

7-42

Alaising is not a problem with filter option 1 because any signals in the
transition band up to the stop frequency of 26.8 kHz will be alaised to
frequencies higher than the pass frequency of 23.2 kHz.

The pass frequency (FPASS) is the maximum frequency that is not attenuated by
the filter. Be sure that the selected filter option FiltOption in combination with
FSampRate makes FPASS greater than or equal to the maximum frequency of
interest, highf . (i.e., that passhigh ff ≤).

One effect of the filter option used is on the number of spectral bins calculated
by the FFT beyond the pass frequency. The pass frequency is defined in terms
of the sampling ratio, sampR , the ratio of the sample rate to the pass frequency :

sampSRpass Rff /= . For the smallest sampling ratio of 2.5, the number of

bins representing frequencies greater than passf is approximately 20% of the
bins calculated by the FFT. This goes up to 90% of the calculated bins for the
maximum sampling ratio of 20. It is easy to set IHigh to not return bins
beyond passf . However, the fewer calculations required for the same

maximum frequency, passff =max , when using a sampling ratio of 2.5 vs a
sampling ratio of 20 may make the difference between seamless and
intermittent FFTs if the FFT length has to be increased at the higher sample
rate to obtain the desired minimum frequency.

 Minimum Frequency

Once FsampRate is selected to include the highest frequency of interest,
FFTLen can be set to determine the lowest non-zero frequency.

The lowest frequency AC component of an FFT (bin 1 in the description of the

FFT Spectra above) has a center frequency, ()
N
f

N
f

f SRSR
c =×= 11 .

Where SRf is the sample rate (FsampRate, samples/second) and N is the
number of samples (FFTLen). This frequency is the reciprocal of the time
required to complete the sampling. In other words, exactly one cycle of this
low frequency is completed in the time it takes to sample the time series for the
FFT. To be sure the spectrum output by the FFT includes the lowest frequency

of interest, lowf , set N (FFTLen) so that: low
SR f
N
f

≤ .

Frequency Resolution

Frequency resolution goes hand in hand with the minimum frequency. The

difference between the center frequencies of adjacent spectral bins is
N
f SR ,

and bandwidth of each bin is also
N
f SR .

Section 7. Measurement Instructions

7-43

For a given sample rate, SRf , if better frequency resolution is required (i.e.,
more bins, each covering a narrower frequency range) increase the number of
points in the FFT, N. If less resolution is required (i.e., fewer bins each
covering a wider frequency range) decrease the number of points in the FFT or
(to keep the minimum frequency from slipping into the DC bin) combine bins
as described below.

Spectral ReBinning

An FFT spectrum can be “rebinned” into a spectrum containing fewer bins
where each of the new bins contains a component that covers the frequency
range of the bins that were combined. The dc component (bin 0 of the original
FFT) is not combined with other bins but may be returned with a linear
rebinned spectrum. The first bin to be combined is the first ac component. Bins
can be combined in two different ways:

1)Linearly with the resulting bins all having a fixed bandwidth equal to the
distance between center frequencies of adjacent bins (as in a the spectrum
created by the FFT).

2) Logarithmically with the bandwidth increasing with frequency.

The mathematical operations to combine bins depends on the spectrum type
(SpectOption). Amplitude, RMS amplitude, and dB spectra are combined by
summing the power in the adjacent bins and then converting this summed
power to the desired spectrum type (amplitude, RMS amplitude, or dB). Power
spectral density (PSD) functions are combined by averaging adjacent
frequency-normalized bins into to give the frequency-normalized result.
Combining Real and Imaginary, or Amplitude and Phase spectra is not
allowed.

Fref and SBin are constants that determine the type of spectral binning. ILow
and IHigh are constants that determine which part of the rebinned spectrum is
returned.

 Linear Spectral Rebinning

Linear spectral rebinning combines the spectral components from a fixed
number of adjacent bins into a single component of the final spectrum. Linear
spectral rebinning is selected by setting Fref equal to zero and SBin to two or
more. The parameter SBin determines the number of bins to combine.

Let i be the bin number of the rebinned spectrum. The center frequency of
each spectral component with linear spectral rebinning is

() ⎟
⎠
⎞

⎜
⎝
⎛ −

−×=
2

1bin
bin

SR
c

S
Si

N
f

if

Where i ranges from 0 for the DC component to Floor ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
× binS
N

2

for the bin containing the highest frequency component. where the ()xFloor

is the largest integer that is not greater than x , SRf is sample rate of the

original time series (parameter FSampRate), N is the length of the FFT

Section 7. Measurement Instructions

7-44

(parameter FFTLen), and binS is the number of bins to combine (parameter
SBin).

The difference between the center frequencies of adjacent spectral components

after linear spectral rebinning is bin
SR S
N
f

, and bandwidth of each spectral

component (except the dc component) is also bin
SR S
N
f

. The bandwidth of the

dc component is
N
f SR .

As with the original FFT results, ILow and IHigh . determine which part of
the rebinned spectrum to return. To return the entire spectrum, set ILow to its
minimum value, 0, and IHigh to its maximum value. The maximum IHigh is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
× binS

N
2

floor

where the ()xfloor is the largest integer that is not greater than x . To limit
the lower end of the spectrum, users first select a minimum frequency of

interest, lowf , and then set ILow to ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

×
2

11round bin

SR

low

bin

S
f

fN
S

,

where ()xround is x rounded to the nearest integer. To limit the upper end

of the spectrum, users select a maximum frequency of interest, highf , and then

set IHigh to: ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

×

2
11round bin

SR

high

bin

S
f

fN
S

.

The total number of spectral components returned by the FFTFilt instruction is
IHigh - ILow + 1.

 Logarithmic Spectral ReBinning (1/n Octave Analyses)

Logarithmic spectral rebinning combines the spectral components from a
variable number of adjacent bins into a single component of the final spectrum.
The number of bins that are combined increases logarithmically with
frequency. FFTFilt is programmed to return a logarithmic spectrum by setting
Fref to a non-zero value and SBin between one and twelve. The parameter
SBin determines the number of bins per octave in the rebinned spectrum. An
octave is a factor of two increase in frequency.

The dc component is never part of the final logarithmic spectrum.

Let i be the bin number of the rebinned spectrum. The center frequency of

each spectral component with logarithmic spectral binning is () binS
i

refc fif 2=

for highlow iii ≤≤

where reff is an arbitrary reference frequency selected by the user (parameter

Section 7. Measurement Instructions

7-45

Fref), and binS is the bins per octave in the final logarithmic spectrum
(parameter SBin). In many acoustic applications, Fref is set to 1 kHz.

The ratio (not the difference) between center frequencies of adjacent spectral

components in the logarithmic spectrum is binS
1

2 . The absolute bandwidth of
each spectral component is not constant, but rather, increases with increasing
frequency. The bandwidth of each spectral component, expressed as a fraction

of the center frequency, is binbin SS 2
1

2
1

22
−

− .
Many acoustic applications call for 1/3 octave analyses (three points per
octave). For this case, the center frequency of a given bin is a factor of about
1.26 greater than the center frequency of the preceding bin. The bandwidth of
each bin is about 23 percent of the bin’s center frequency.

Note that in this logarithmic spectrum the integer bin number, i , may be
negative as well as positive. Fref is the center frequency of bin 0,

() ref
S

refc fff bin ==
0

20

This is not to say that bin 0 is always a valid output. The valid frequency bins
to output are determined by frequency range of the original FFT and the values
entered for Sbin and Fref (e.g., if the original sample rate (FSampRate) was
1kHz and Fref was entered as 1 kHz bin 0 (1 kHz center frequency) could not
be output because the highest frequency in the original FFT is 500 Hz.)

The minimum i is: ()
⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2
1

2log

log

ceiling
10

10
ref

SR

bin

fN
f

S

where ()xceiling is the smallest integer that is not less than x . The

maximum i is: ()
⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2
1

2log
2

log
floor

10

10
ref

SR

bin

f
f

S

where ()xfloor is the largest integer that is not greater than x .

Users can select whether the CR9052DC returns the entire spectrum or only
part of the spectrum by setting ILow and IHigh. To return the entire spectrum,
set ILow to its minimum value, and set IHigh to its maximum value. As an
alternative to computing the minimum ILow and maximum IHigh from the
equations given above, let the CR9000 perform the calculations: Set ILow a
very negative value (like -1000) and set IHigh to a very positive value (like
1000). When the program is downloaded, the CR9000 compiler will issue an
error that gives the minimum ILow and maximum IHigh for the current

Section 7. Measurement Instructions

7-46

FFTFilt programming. These values can then be entered into the program and
used to calculate the size required for the destination array.

To limit the lower end of the final spectrum by frequency, select a minimum
frequency of interest, lowf , and then calculate ILow:

ILow = ()
⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2log

log

round
10

10
ref

low

bin

f
f

S ,

where ()xround is x rounded to the nearest integer.

To limit the upper end of the final spectrum, select a maximum frequency of
interest, highf , and then calculate IHigh:

IHigh = ()
⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2log

log

round
10

10
ref

high

bin

f
f

S .

The total number of spectral components returned by FFTFilt is
IHigh - ILow + 1.

FFTSample (Source, DataType)

FFTSample is an output instruction it used to sample a variable array written to
by an FFTFilt instruction. FFTSample is used in place of the Sample
instruction because gets the FFT programming from the FFTFilt instruction
and stores this processing information in the header of the data table. Without
the processing information, PC9000 would not be able to automatically detect
and plot the FFT.

Parameter
& Data Type

Enter FFTSAMPLE INSTRUCTION PARAMETERS

Source
Variable

The variable that in the FFTFilt Destination array that contains the start of the spectrum
returned by the FFTFilt instruction. This must be the same variable array that was used as the
FFTFilt Destination. All of the spectral values returned by the FFTFilt Instruction for that
9052 channel will be output. Separate FFTSample instructions are required to output each of
the Reps used in an FFTFilt instruction. The datalogger will return a compile error if it cannot
find an FFTFilt instruction which uses this source variable as the destination for a spectrum.

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point

8-1

Section 8. Processing and Math
Instructions

Operators

^ Raise to Power
* Multiply
/ Divide
+ Add
- Subtract
= Equals
<> Not Equal
> Greater Than
< Less Than
>= Greater Than or Equal
<= Less Than or Equal

Absolute Value
Returns the absolute value of a number.

Syntax
Abs(number)
Remarks
The argument number can be any valid numeric expression. The absolute value of
a number is its unsigned magnitude. For example, ABS(-1) and ABS(1) both return
1.

Abs Function Example

The example finds the approximate value for a cube root. It uses Abs to determine
the absolute difference between two numbers.

Dim Precision, Value, X, X1, X2 'Declare variables.
Precision = .00000000000001
Value = Volt(3) 'Volt(3) will be evaluated.
X1 = 0: X2 = Value 'Make first two guesses.
'Loop until difference between guesses is less than precision.
Do Until Abs(X1 - X2) < Precision
X = (X1 + X2) / 2
If X * X * X - Value < 0 Then 'Adjust guesses.
 X1 = X
Else
 X2 = X
End If
Loop

'X is now the cube root of Volt(3).

Section 8. Processing and Math Instructions

8-2

And Operator

Used to perform a bit-wise conjunction on two numbers.

Syntax
result = number1 And number2

The And operator performs a bit-wise comparison of identically positioned bits in
two numbers and sets the corresponding bit in result according to the following
truth table:
If bit in And bit in The result
number1 is number2 is is
0 0 0
0 1 0
1 0 0
1 1 1

Although AND is a bit wise operator, it is often used to test Boolean
(True/False) conditions. The CR200 decides if something is true or false on
the criteria that 0 is false and any non-zero number is true (Section 4.5).
Because AND is a bit wise operation it is possible to AND two non-zero
numbers (e.g., 2 and 4) and get 0. The binary representation of –1 has all bits
equal 1. Thus any number AND –1 returns the original number. That is why
the pre defined constant, True = -1.

The predefined constant True = -1
The predefined constant False = 0

If number1 is: AND number2 is: The result is:
-1 Any number number2
-1 NAN (not a number) NAN
0 Any number 0
0 NAN NAN

Expressions are evaluated to a number (Section 4.5) and can be used in place
of one or both of the numbers. Comparison expressions evaluate as True (-1)
or False (0) For example:

If Temp(1) > 50 AND Temp(3) < 20 Then
 X = True
Else
 X = False
EndIf

and

X = Temp(1) > 50 AND Temp(3) < 20

Both have the same effect, X will be set to –1 if Temp(1) is greater than 50 and
Temp(4) is less than 40. X will be set to 0 if either expression is false.

Section 8. Processing and Math Instructions

8-3

Atn()
Returns the arctangent of a number.

Syntax
Atn(number)

Remarks
The argument number can be any valid numeric expression.

The Atn function takes the ratio (number) of two sides of a right triangle and
returns the corresponding angle. The ratio is the length of the side opposite the
angle divided by the length of the side adjacent to the angle. The result is
expressed in radians and is in the range -Pi/2 to Pi/2 radians. Pi is approximately
3.141593.

To convert degrees to radians, multiply degrees by Pi/180. To convert radians to
degrees, multiply radians by 180/Pi.

Note Atn is the inverse trigonometric function of Tan, which takes an angle as
its argument and returns the ratio of two sides of a right triangle. Do not
confuse Atn with the cotangent, which is the simple inverse of a tangent
(1/tangent).

Atn FunctionExample

The example uses Atn to calculate Pi. By definition, Atn(1) is 45 degrees; 180
degrees equals Pi radians.

Dim Pi 'Declare variables.

Pi = 4 * Atn(1) 'Calculate Pi.

Spatial Average
Computes the spatial average of a measurement.

Syntax
AvgSpa(Dest, Swath, Source)
Remarks
Find the average of the values in the given array and place the result in the variable
named in Dest. The Source must be a particular element in an array (e.g., Temp(1));
it is the first element in the array to include in the average. The Swath is the
number of elements to include in the average.

Dest
X i

swath
i j

i j swath

= =

= +∑ ()

Where X(j) = Source

Parameter
& Data Type

Enter AvgSpa Parameters
Dest
Variable

The variable in which to store the results of the instruction.

Swath
Constant

The number of values of the source array to average.

Source
Array

The name of the variable array that is the input for the instruction.

Section 8. Processing and Math Instructions

8-4

Average Spatial Output Example

This example uses AvgSpa to find the average value of the five elements Temp(6)
through Temp(10) and store the result in the variable AvgTemp.

AvgSpa(AvgTemp, 5, Temp(6))

Running Average

Calculates a running average of a measurement or calculated value.

Syntax

AvgRun(Dest, Reps, Source, Number)
Remarks

AvgRun is used to create a running average. A running average is the average
of the last N values where N is the number of values.

Dest
X

N
ii

i N

= =

=∑ 1

Where X N is the most recent value of the source variable and X N −1 is the
previous value (X1 is the oldest value included in the average, i.e., N-1 values
back from the most recent).

Parameter
& Data Type

Enter AvgRun Parameters
Dest
Variable or
Array

The variable or array in which to store the average(s).

Reps
Constant

When the source is an array, this is the number of variables in the array to calculate averages for. When
the source is not an array or only a single variable of the array is to be averaged, reps should be 1.

Number
Constant

The number of values to include in the running average..

Source
Array

The name of the variable or array that is to be averaged.

Example

BeginProg 'Program begins here
 Scan(RATE, RUNITS, 0, 0) 'Scan 1(mSecs),
 '______________________ Volt Blocks ______________________
 VoltDiff(HiVolts, VREP1, VRNG1, 5, 1, 0, VDLY1, VINT1, VMULT1, VOSET1)
 AvgRun(AvgOut,1,HiVolts,100) 'Put the average of 100 HiVolts in AvgOut
 CallTable MAIN 'Go up and run Table MAIN
 Next Scan 'Loop up for the next scan
EndProg 'Program ends here

Section 8. Processing and Math Instructions

8-5

Cosine
Returns the cosine of an angle.

Syntax
Cos(angle)

Remarks
The argument angle can be any valid numeric expression measured in radians.

The Cos function takes an angle and returns the ratio of two sides of a right
triangle. The ratio is the length of the side adjacent to the angle divided by the
length of the hypotenuse. The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by Pi/180. To convert radians to
degrees, multiply radians by 180/Pi. Pi is approximately 3.141593.

Cos FunctionExample

The example uses Cos to calculate the cosine of an angle with a user-specified
number of degrees.

Dim Degrees, Pi, Radians, Ans 'Declare variables.
BeginProg
Pi = 4 * Atn(1) 'Calculate Pi.
Degrees = Volts(1) 'Get value to convert.
Radians = Degrees * (Pi / 180) 'Convert to radians.
Ans = Cos(Radians) ‘The Cosine of Degrees.
EndProg

Spatial Covariance

The CovSpa instruction computes the covariance(s) of sets of data that are
loaded into arrays.

Syntax

CovSpa(Dest, NumOfCov, SizeOfSets, CoreArray; DatArray)

CovSpa calculates the covariance(s) between the data in the CoreArray and
one or more data sets in the DatArray. The covariance of the sets of
data X and Y is calculated as:

2
111),(

n

YX

n

YX
YXCov

n

i
i

n

i
i

n

i
ii ∑∑∑

=== −
⋅

=

Where n is the number of values in each data set (SizeofSets). iX and iY are

the individual values of X and Y .

Section 8. Processing and Math Instructions

8-6

Parameter
& Data Type

Enter CovSpa Parameters
Dest
Variable or
Array

The Variable in which to store the results of the instruction. When multiple covariances are
calculated, the results are stored in an array with the variable name. An array must be
dimensioned to at least the value of NumOfCov.

NumOfCov
Constant

The number of covariances to be calculated. If four data sets are to be compared against a fifth
set, this would be set to four.

SizeOfSets
Constant

The number of values in the data sets for the covariance calculations.

CoreArray
Array

The array that holds the core data set. The covariance of core data with each of the other sets
is calculated independently. The data need to be consecutive in the array. If the first data
value is not the first point of the array, the first point of the data set must be specified in this
parameter.

DatArray
Array

The array that contains the data set(s) for calculating the covariance with the CoreSet. When
multiple covariances are calculated, the data sets have to be loaded consecutively into one
array. The array must be dimensioned to at least the value of NumOfCov multiplied by
SizeOfSets. For example, if each set of data has 100 elements (SizeOfSets), and there are 4
covariances (NumOfCov) to be calculated, then the DatArray needs to be dimensioned to 4 x
100 = 400. If the first value of the first set is not the first point of the array, the first point of
the data set must be specified in this parameter.

Exp
Returns e (the base of natural logarithms) raised to a power.

Syntax
Exp(number)

Remarks
If the value of number exceeds 709.782712893, an Overflow error occurs. The
constant e is approximately 2.718282.

Note The Exp function complements the action of the Log function and is
sometimes referred to as the antilogarithm.

Exp FunctionExample

The example uses Exp to calculate the value of e. Exp(1) is e raised to the power
of 1.

'Exp(x) is e ^x so Exp(1) is e ^1 or e.

Dim ValueOfE 'Declare variables.
BeginProg
ValueOfE = Exp(1) 'Calculate value of e.
EndProg

Section 8. Processing and Math Instructions

8-7

FFTSpa (Dest, N, Source, Tau, Units, Option)

The FFTSpa performs a Fast Fourier Transform on a time series of
measurements stored in an array and places the results in an array. It can also
perform an inverse FFT, generating a time series from the results of an FFT.
Depending on the output option chosen, the output can be: 0) The real and
imaginary parts of the FFT; 1) Amplitude spectrum. 2) Amplitude and Phase
Spectrum; 3) Power Spectrum; 4) Power Spectral Density (PSD); or 5) Inverse
FFT.

The difference between the FFT instruction (Section 6) and FFTSpa is that
FFT is an output instruction that stores the results in a data table and FFTSpa
stores its results in an array.

Parameter
& Data Type

Enter FFTSPA Parameters
Dest
Array

The array in which to store the results of FFT.

Source
Variable

The name of the Variable array that contains the input data for the FFT.

N
Constant

Number of points in the original time series. The number of points must be a power of 2 (i.e., 512, 1024,
2048, etc.).

Tau
Constant

The sampling interval of the time series.

Units The units for Tau.
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 Microseconds
 MSEC 1 Milliseconds
 SEC 2 Seconds
 MIN 3 Minutes
Options A code to indicate what values to calculate and output.
Constant Code Result
 0

1
2

3

4

5

FFT. The output is N/2 complex data points, i.e., the real and imaginary parts of the FFT.
The first pair is the DC component and the Niquist component. This first pair is an
exception because the DC and niquist components have no imaginary part.
Amplitude spectrum. The output is N/2 magnitudes. With Acos(wt); A is magnitude.
Amplitude and Phase Spectrum. The output is N/2 pairs of magnitude and phase; with
Acos(wt - φ); A is amplitude, φ is phase (-π,π).
Power Spectrum. The output is N/2 values normalized to give a power spectrum. With
Acos(wt - φ), the power is A2 / 2. The summation of the N/2 values yields the total power
in the time series signal.
Power Spectral Density (PSD). The output is N/2 values normalized to give a power
spectral density (power per herz). The Power Spectrum multiplied by T = N*tau yields the
PSD. The integral of the PSD over a given bandwidth yields the total power in that band.
Note that the bandwidth of each value is 1/T herz.
Inverse FFT. The input is N/2 complex numbers, organized as in the output of option 0,
which is assumed to be the transform of some real time series. The output is the time series
whose FFT would result in the input array.

T = N*tau: the length, in seconds, of the time series.
Processing field: “FFT,N,tau,option”. Tick marks on the x axis are 1/(N*tau)
Herz. N/2 values, or pairs of values, are output, depending upon the option
code.

Section 8. Processing and Math Instructions

8-8

Normalization details:

 Complex FFT result i, i = 1 .. N/2: ai*cos(wi*t) + bi*sin(wi*t).
 wi = 2π(i-1)/T.
 φi = atan2(bi,ai) (4 quadrant arctan)
 Power(1) = (a12 + b12)/N2 (DC)
 Power(i) = 2*(ai2 + bi2)/N2 (i = 2..N/2, AC)
 PSD(i) = Power(i) * T = Power(i) * N * tau
 A1 = sqrt(a12 + b12)/N (DC)
 Ai = 2*sqrt(ai2 + bi2)/N (AC)

Notes:

• Power is independent of the sampling rate (1/tau) and of the number of
samples (N).

• The PSD is proportional to the length of the sampling period (T=N*tau),
since the “width” of each bin is 1/T.

• The sum of the AC bins (excluding DC) of the Power Spectrum is the
Variance (AC Power) of the time series.

• The factor of 2 in the Power(i) calculation is due to the power series being
mirrored about the Niquist frequency N/(2*T); only half the power is
represented in the FFT bins below N/2, with the exception of DC. Hence,
DC does not have the factor of 2.

• The Inverse FFT option assumes that the data array input is the transform
of a real time series. Filtering is performed by taking an FFT on a data set,
zeroing certain frequency bins, and then taking the Inverse FFT.
Interpolation is performed by taking an FFT, zero padding the result, and
then taking the Inverse FFT of the larger array. The resolution in the time
domain is increased by the ratio of the size of the padded FFT to the size
of the unpadded FFT. This can be used to increase the resolution of a
maximum or minimum, as long as aliasing is avoided.

Fractional Part
Returns the fractional part of a number.

Syntax
Frac(number)

Remarks
Returns the fractional portion of the number within the parentheses.

Frac FunctionExample

The example uses Frac function.

Section 8. Processing and Math Instructions

8-9

Get Record

Retrieves one record from a data table.

Syntax

GetRecord (Dest, TableName, RecsBack)

Remarks

The GetRecord instruction retrieves one entire record from a data table. The
destination array must be dimensioned large enough to hold all the fields in the
record.

Parameter
& Data Type

Enter GetRecord Parameters
Dest
Array

The destination variable array in which to store the fields of the record. The array must be
dimensioned large enough to hold all the fields in the record.

TableName
name

The name of the data table to retrieve the record from.

RecsBack
Const. Or
variable

The number of records back from the most recent record stored to go to retrieve the record (1
record back is the most recent).

GetRecord Example

IfTime

The IfTime instruction is used to return a number indicating True (-1) or False
(0) based on the datalogger's real-time clock.

Syntax

IfTime (TintoInt, Interval, Units)

The IfTime function returns True (-1) or False (0) based on the scan clock.
Time is kept internally by the datalogger as the elapsed time since January 1,
1990, at 00:00:00 hours. The interval is synchronized with this elapsed time
(i.e., the interval is true when the Interval divides evenly into this elapsed
time). The time into interval allows an offset to the interval. The IfTime
instruction can be used to set the value of a variable or it can be used as an
expression for a condition.

The scan clock that the IfTime function checks has the time resolution of the
scan interval (i.e., it remains fixed for an entire scan and increments for the
next scan). IfTime must be within a scan to function.

The window of time in which the IfTime instruction is true is 1 of its specified
Units. For example, if IfTime specifies 0 into a 10 minute interval, it could be
true when the scan clock specified any time within the first minute of the ten
minute interval. With 0 into a 600 second interval, the interval is still 10
minutes but it could only be true during the first 1 second of that interval.

Section 8. Processing and Math Instructions

8-10

IfTime will only return true once per interval. For example, a program with a
1 second scan that tests IfTime(0,10, min) -- 0 minutes into a 10 minute
interval – each scan will execute the instruction 60 times during the minute that
it could be true. It will only return true the first time that it is executed, it will
not return true again until another interval has elapsed.

Parameter
& Data Type

Enter IfTime Parameters
TintoInt
constant

The time into interval sets an offset from the datalogger’s clock to the interval at which the
IfTime will be true. For example, if the Interval is set at 60 minutes, and TintoInt is set to 5,
IfTime will be True at 5 minutes into the hour, every hour, based on the datalogger's real-time
clock. If the TintoInt is set to 0, the IfTime statement is True at the top of the hour.

Interval
constant

The Interval is how often IfTime will be True.

Units The time units for TintoInt and Interval
Constant Alpha Code Numeric Code Units
 Sec 2 seconds
 Min 3 minutes
 Hr 4 hours
 Day 5 days

IIF

The IIF function evaluates a variable or expression and returns one of two
results based on the outcome of that evaluation.

Syntax

Result = IIF(Expression, TrueValue, FalseValue)

Parameter
& Data Type

Enter IIf Parameters
Expression The Variable or expression to test.
Expression or Value Result
Variable ≠0 True: return TrueValue
 0 False: return FalseValue
TrueValue
Constant
Variable or
Expression

The Value (or expression determining the value) to return if the test condition is true

FalseValue
Constant
Variable or
Expression

The Value (or expression determining the value) to return if the test condition is False

Section 8. Processing and Math Instructions

8-11

Int, Fix Functions
Return the integer portion of a number.

Syntax
Int(number)

Fix(number)

Remarks
The argument number can be any valid numeric expression. Both Int and Fix
remove the fractional part of number and return the resulting integer value.

If the numeric expression results in a Null, Int and Fix return a Null.

The difference between Int and Fix is that if number is negative, Int returns the
first negative integer less than or equal to number, whereas Fix returns the first
negative integer greater than or equal to number. For example, Int converts -8.4 to
-9, and Fix converts -8.4 to -8.

Fix(number) is equivalent to:

Int and Fix Function Example

This example illustrates the use of Int and Fix.

Dim A, B, C, D 'Declare
variables.
BeginProg
A = Int(-99.8) 'Returns -
100
B = Fix(-99.8) 'Returns -99
C = Int(99.8) 'Returns 99
D = Fix(99.8) 'Returns 99
EndProg

Log Function
Returns the natural logarithm of a number.

Syntax
Log(number)

Remarks
The argument number can be any valid numeric expression that results in a value
greater than 0. The natural logarithm is the logarithm to the base e. The constant e
is approximately 2.718282.

You can calculate base-n logarithms for any number x by dividing the natural
logarithm of x by the natural logarithm of n as follows:

Logn(x) = Log(x) / Log(n)

The following example illustrates a procedure that calculates base-10 logarithms:

Log10 = Log(X) / Log(10)

Log Function Example

The example calculates the value of e, then uses the Log function to calculate the
natural logarithm of e to the first, second, and third powers.

Section 8. Processing and Math Instructions

8-12

Dim I, M 'Declare variables.
BeginProg
M = Exp(1)
For I = 1 To 3 'Do three times.
 M =Log(Exp(1) ^ I)
Next I
EndProg

Memory Test

Stores the results of the most recent memory test in a variable.

Syntax
MemoryTest (Dest)

Remarks
The CR9000 tests CPU RAM and Task Sequencer memory when it compiles
and runs a program. MemoryTest stores the results of this compile test in a
variable

Parameter
& Data Type

Enter MemoryTest Parameters
Dest The variable in which to store the results of the memory test
Variable Result Meaning
 0 No problems found
 1 Error in CPU RAM
 2 Error in Task Memory
 3 Error in both CPU RAM and Task Memory

Spatial Maximum
Finds the maximum value in a swath of variables in an array.

Syntax
MaxSpa(Dest, Swath, Source)
Remarks
Find the maximum value in the given array and place the result in the array named
in Dest. The Source must be a particular element in an array (e.g., Temp(1)); it is
the first element in the array

Parameter
& Data Type

Enter MaxSpa Parameters
Dest
Array

The array in which to store the maximum value. The next element in the destination array will be loaded
with which element of the swath (ranging from 1 to swath) held the maximum value.

Swath
Constant

The number of values of the source array in which to search for the maximum.

Source
Array

The element of the source array in which to start looking for the maximum.

MaxSpa Function Example

This example uses MaxSpa to find the maximum value of the five elements
Temp(6) through Temp(10) and store the result in MaxTemp(1) and MaxTemp(2).

MaxSpa(MaxTemp(1), 5, Temp(6))

Section 8. Processing and Math Instructions

8-13

Spatial Minimum
Finds the minimum value in a swath of variables in an array.

Syntax
MinSpa(Dest, Swath, Source)
Remarks
Find the minimum value in the given array and place the result in the array named
in Dest. The Source must be a particular element in an array (e.g., Temp(1)); it is
the first element in the array to check for the minimum. The Swath is the number
of elements to compare for the minimum.

Parameter
& Data Type

Enter MinSpa Parameters
Dest
Array

The array in which to store the minimum value. The next element in the destination array will be loaded
with which element of the swath (ranging from 1 to swath) that held the minimum value.

Swath
Constant

The number of values of the source array in which to search for the minimum.

Source
Array

The element of the source array in which to start looking for the minimum.

MinSpa Function Example

This example uses MinSpa to find the minimum value of the five elements Temp(6)
through Temp(10) and store the results in MinTemp(1) and MinTemp(2).

MinSpa(MinTemp(1), 5, Temp(6))

Mod
Divides two numbers and returns only the remainder.

Syntax
result = operand1 Mod operand2

Remarks
The modulus, or remainder, operator divides operand1 by operand2 (rounding
floating-point numbers to integers) and returns only the remainder as result. For
example, in the expression A = 19 Mod 6.7, A (which is result) equals 5. The
operands can be any numeric expression.

Mod Operator Example

The example uses the Mod operator to determine if a 4-digit year is a leap year.

Dim TestYr, LeapStatus 'Declare variables.
TestYr = 1995
If TestYr Mod 4 = 0 And TestYr Mod 100 = 0 Then 'Divisible by 4?
 If TestYr Mod 400 = 0 Then 'Divisible by 400?
 LeapStatus = True
 Else
 LeapStatus = False
 End If
ElseIf TestYr Mod 4 = 0 Then
 LeapStatus = True
Else
 LeapStatus = False
End If

Section 8. Processing and Math Instructions

8-14

Move
Moves a block or fills an array.

Syntax
Move(Dest, Reps, Source, Reps)
Remarks
Block Move or fill array.

Parameters: Dest array, destination reps; Source array or expression; Source reps.
If source reps is less than destination reps, the remainder of destination is filled
with that last value of source.

Parameter
& Data Type

Enter Move Parameters
Dest
Variable or
Array

The variable in which to store the results of the instruction.

Reps
Constant

The number of repetitions for the measurement or instruction.

Source
Array

The name of the variable array that is the input for the instruction.

Reps
Constant

The number of repetitions for the measurement or instruction.

Move Function Example

The example uses the Move function.

Move(x, 20, y, 20) 'move array y into array x
Move(x, 20, 0.0, 1) 'fill x with 0.0.

NOT

The NOT function is used to perform a bit-wise negation on a number.

Syntax
result = NOT (number)

The NOT operator inverts the bit values of any variable and sets the
corresponding bit in result according to the following truth table:

If bit is The result is
0 1
1 0

Although NOT is a bit wise operator, it is often used to test Boolean
(True/False) conditions. The CR200 decides if something is true or false on the
criteria that 0 is false and any non-zero number is true (Section 4.5). Because
NOT is a bit wise operation, the only non-zero number that NOT can operate
on and return 0 is –1. The binary representation of –1 has all bits equal 1. That
is why the pre defined constant, True = -1.

The predefined constant True = -1
The predefined constant False = 0

Section 8. Processing and Math Instructions

8-15

NOT (-1) = 0
NOT (0) = -1
NOT (NAN) = NAN

(NAN= Not A Number)

OR Operator
Used to perform a bit-wise disjunction on two numbers.

Syntax
result = number1 Or number2

The Or operator performs a bit-wise comparison of identically positioned bits in
two numeric expressions and sets the corresponding bit in result according to the
following truth table:

If bit in And bit in The result
expr1 is expr2 is is
0 0 0
0 1 1
1 0 1
1 1 1

Although OR is a bit wise operator, it is often used to test Boolean
(True/False) conditions. The CR200 decides if something is true or false on the
criteria that 0 is false and any non-zero number is true (Section 4.5). In the
CR200, the pre-defined constant, True = -1.The binary representation of –1 has
all bits equal 1. Thus any number OR -1 returns -1. Any number AND -1
returns the original number.

The predefined constant True = -1
The predefined constant False = 0

If number1 is: Number2 is: The result is:
-1 Any Number -1
-1 NAN (not a number) NAN
0 Any Number Number 2
0 NAN NAN

Expressions are evaluated to a number (Section 4.5) and can be used in place
of one or both of the numbers. Comparison expressions evaluate as True (-1)
or False (0) For example:

If Temp(1) > 50 OR Temp(3) < 20 Then
 X = True
Else
 X = False
EndIf

and

X = Temp(1) > 50 OR Temp(3) < 20

Section 8. Processing and Math Instructions

8-16

Both have the same effect, X will be set to –1 if Temp(1) is greater than 50 OR
Temp(4) is less than 40. X will be set to 0 if both expressions are false.

PeakValley (DestPV, DestChange, Reps, Source, Hysteresis)

PeakValley is used to detect peaks and valleys (local maxima and minima) in a
signal. When a new peak or valley is detected, the new peak or valley and the
change from the previous peak or valley are stored in variables.

Parameter
& Data Type

Enter PeakValley Parameters
DestPV
Variable or
array

Variable or array in which to store the new peak or valley. When a new peak or valley is
detected, the value of the peak or valley is loaded in the destination. PeakValley will
continue to load the previous peak or valley until the next peak or valley is detected.

DestChange
Variable or
array

Variable or array in which to store the change from the previous peak or valley. When a new
peak or valley is detected, the change from the previous peak or valley is loaded in the
destination. When a new peak or valley has not yet been reached, 0 is stored in the
destination. When Reps are greater than 1, the array must be dimensioned to Reps+1. The
additional element is used to flag when a new peak or valley is detected in any of the source
inputs. The flag element is stored after the changes [e.g., changevar(Reps+1)] and is set to -
1 (true) when a new peak or valley is detected and set to 0 (false) when none are detected.

Reps
Constant

The number inputs to track the peaks and valleys for. Each input is tracked independently.
When reps are greater than 1 the source and DestPV arrays must be dimensioned to at least
the number of repetitions; DestChange must be dimensioned to Reps+1.

Source
Variable or
Array

The variable or array containing the inputs to check for peaks and valleys.

Hysteresis
Constant
Variable or
expression

The minimum amount the input has to change to be considered a new peak or valley. This
would usually be entered as a constant.

Public PeakV(2), Change(3),Deg
Public Dim XY(2)

Const Pi=4*ATN(1) ‘Define Pi for converting degrees to radians

DataTable(PV1,Change(1),500) ‘Peaks and valleys for first signal, triggered when
 ‘Change(1) is not 0.
 Sample(1,PeakV(1),IEEE4) ‘DataTable PV1 holds the peaks and valleys for XY(1)
EndTable

DataTable(PV2,Change(2),500) ‘Peaks and valleys for second signal, triggered when
 ‘Change(2) is not 0.
 Sample(1,PeakV(2),IEEE4) ‘DataTable PV2 holds the peaks and valleys for XY(2)
EndTable

‘The Following table is an alternative to using separate tables for each signal. It stores both
‘signals whenever there is a new peak or valley in either signal. The value stored for the signal
‘that does not have a new peak will be a repeat of its last peak or valley.
‘Normally a program would not have a table storing peaks and valleys for several signals if ‘individual tables it
used individual tables for the signals.

Section 8. Processing and Math Instructions

8-17

DataTable(PVBoth,Change(3),500)
 Sample(2,PeakV(1),IEEE4)
EndTable

BeginProg
 Scan(500,mSec,0,0)
 Deg=Deg+5
 XY(1)=Cos(Deg*Pi/180) ‘Compute the cosine as input XY(1)
 XY(2)=Sin(Deg*Pi/180) ‘Compute the sine as input XY(2)

 PeakValley(PeakV(1),Change(1),2,XY(1),0.1) ‘Find the peaks and valleys for both
 ‘inputs. Hysteresis = 0.1
 CallTable PV1
 CallTable PV2
 CallTable PVBoth
 Next Scan
EndProg

PRT (Dest, Reps, Source, Mult, Offset)
Used to calculate temperature from the resistance of an RTD.

Syntax
PRT(Dest, Reps, Source)

Remarks
This instruction uses the result of a previous RTD bridge measurement to calculate
the temperature. The input (Source) must be the ratio Rs/R0, where Rs is the RTD
resistance and R0 the resistance of the RTD at 0° C.

The temperature is calculated according to the DIN 43760 specification adjusted
(1980) to the International Electrotechnical Commission standard. The range of
linearization is -200° C to 850° C. The error in the linearization is less than 0.001°
C between -200 and +300° C, and is less than 0.003° C between -180 and +830° C.
The error (T calculated - T standard) is +0.006° at -200° C and -0.006° at +850° C.

Parameter
& Data Type

Enter PRT Parameters
Dest
Variable or
Array

The variable in which to store the temperature in degrees C.

Reps
Constant

The number of repetitions for the measurement or instruction.

Source
Variable or
Array

The name of the variable or array that contains the Rs/RO value(s).

Mult, Offset
Constant,
Variable,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. See the measurement
description for the units of the raw result; a multiplier of one and an offset of 0 are necessary to output in
the raw units. For example, the TCDiff instruction measures a thermocouple and outputs temperature in
degrees C. A multiplier of 1.8 and an offset of 32 will convert the temperature to degrees F.

Section 8. Processing and Math Instructions

8-18

Randomize
Initializes the random-number generator.

Syntax
Randomize [number]

Remarks
The argument number can be any valid numeric expression. Number is used to
initialize the random-number generator by giving it a new seed value. If you omit
number, the value returned by the Timer function is used as the new seed value.

If Randomize is not used, the Rnd function returns the same sequence of random
numbers every time the program is run. To have the sequence of random numbers
change each time the program is run, place a Randomize statement with no
argument at the beginning of the program.

RealTime
Used to pick out year, month, day, hour, minute, second, day of week, and/or day
of year from the CR9000 clock.

Syntax
RealTime(Dest)

Remarks
RealTime Example

This example uses RealTime to place all time segments in the Destination array. If the
remark (‘) is removed from the first 8 Sample statements and the last Sample statement is
remarked, the results will be exactly the same.

Public rTime(9) 'declare as public and dimension rTime to 9
Alias rTime(1) = Year 'assign the alias Year to rTime(1)
Alias rTime(2) = Month 'assign the alias Month to rTime(2)
Alias rTime(3) = Day 'assign the alias Day to rTime(3)
Alias rTime(4) = Hour 'assign the alias Hour to rTime(4)
Alias rTime(5) = Minute 'assign the alias Minute to rTime(5)
Alias rTime(6) = Second 'assign the alias Second to rTime(6)
Alias rTime(8) = WeekDay 'assign the alias WeekDay to rTime(8)
Alias rTime(9) = Day_of_Year 'assign the alias Day_of_Year to rTime(9)

DataTable (VALUES, 1, 100) 'set up data table
' Sample(1, Year, IEEE4) 'place Year in VALUES table
' Sample(1, Month, IEEE4) 'place Month in VALUES table
' Sample(1, Day, IEEE4) 'place Day in VALUES table
' Sample(1, Hour, IEEE4) 'place Hour in VALUES table
' Sample(1, Minute, IEEE4) 'place Minute in VALUES table
' Sample(1, Second, IEEE4) 'place Second in VALUES table
' Sample(1, WeekDay, IEEE4) 'place WeekDay in VALUES table
' Sample(1, Day_of_Year, IEEE4) 'place Day_of_Year in VALUES table
 Sample(9, rTime(), IEEE4) 'place all 9 segments in VALUES table
EndTable

BeginProg
 Scan (1, mSec, 0, 0)
 RealTime(rTime())
 CallTable VALUES
 Next Scan
EndProg

Section 8. Processing and Math Instructions

8-19

RectPolar (Dest, Source)

Converts from rectangular to polar coordinates.

Parameter
& Data Type

Enter RectPolar Parameters
Dest
Variable
array

Variable array in which to store the 2 resultant values. The length of the vector is stored in the
specified destination element and the angle, in radians(± π), in the next element of the array

Source
Variable
Array

The variable array containing the X and Y coordinates to convert to Polar coordinates. The X
value must be in the specified array element and the Y value in the next element of the array.

Example: In the following example, a counter (Deg) is incremented from 0 to
360 degrees. The cosine and sine of the angle are taken to get X and Y in
rectangular coordinates. RectPolar is then used to convert to polar coordinates.

Dim XY(2),Polar(2),Deg,AnglDeg
Const Pi=4*ATN(1)

Alias XY(1)=X
Alias XY(2)=Y
Alias Polar(1)=Length
Alias Polar(2)=AnglRad

DataTable(RtoP,1,500)
 Sample(1,Deg,IEEE4)
 Sample(2,XY,IEEE4)
 Sample(2,Polar,IEEE4)
 Sample(1,AnglDeg,IEEE4)
EndTable

BeginProg
 For Deg=0 to 360
 XY(1)=Cos(Deg*Pi/180) ‘Cos and Sin operate on radians
 XY(2)=Sin(Deg*Pi/180)
 RectPolar(Polar,XY)
 AnglDeg=Polar(2)*180/Pi ‘Convert angle to degrees for comparison w/Deg
 CallTable RtoP
 Next Deg
EndProg

Section 8. Processing and Math Instructions

8-20

Spatial RMS
Used to compute the RMS value of an array.

Syntax
RMSSpa(Dest, Swath, Source)
Remarks
Spatial RMS, Calculate the root mean square of values in an array.

()
Dest

X i

swath
i j

i j swath

= =

= +

∑ () 2

Where X(j) = Source

Parameter
& Data Type

Enter RMSSpa Parameters
Dest
Variable

The variable in which to store the RMS value.

Swath
Constant

The number of values of the array to include in the RMS calculation.

Source
Array

The name of the variable array that is the input for the instruction.

RmsSpa Function Example

The example uses the RmsSpa function to

StrainCalc

Converts the output of a bridge measurement instruction to microstrain.

Syntax

StrainCalc (Dest, Reps, BrConfig, Source, Zero, GF, v)

Remarks

Calculates microstrain, µ∈, from the appropriate formula for the bridge
configuration. All are electrically full bridges , the quarter bridge, half bridge
and full bridge strain gages refer to the number of active elements (i.e., strain
gages), 1,2, or 4 respectively.

Section 8. Processing and Math Instructions

8-21

Parameter
& Data Type

Enter StrainCalc Parameters
Dest Variable to store strain in.
Reps Number of strains to calculate, Destination, source, and zero variables must be dimensioned

accordingly.
BrConfig Bridge configuration code for strain gages The bridge configuration code can be entered as a

positive or negative number:
+ code: Vr = −0 001. ()Source Zero ; bridge configured so its output decreases with
increasing strain.
- code: Vr = − −0 001. ()Source Zero ; bridge configured so output increases with strain.
This is the configuration for a quarter bridge using CSI’s 4WFB350 Terminal Input Module
(i.e., enter the bridge configuration code as -1 for 1/4 bridge with TIM.)

 Code Configuration
 1

Quarter bridge strain gaugeµε =
− ⋅

+

4 10

1 2

6 V

GF V
r

r()

 2 Half bridge strain gauge, one gage parallel to strain, the other at 90° to strain:

µε

ν ν
=

− ⋅

+ − −

4 10

1 2 1

6 V

GF V
r

r[() ()]
 3 Half bridge strain gauge, one gage parallel to +ε , the other parallel to −ε:

µε =

− ⋅2 106 V

GF
r

 4 Full bridge strain gage, 2 gages parallel to +ε , the other 2 parallel to −ε:

µε =

−106 V

GF
r

 5 Full bridge strain gage, half the bridge has 2 gages parallel to +ε and −ε: the other

half +νε and −νε:

µε

ν
=

− ⋅

+

2 10

1

6 V

GF
r

()
 6 Full bridge strain gage, one half +ε and −νε, the other half −νε and +ε .:

µε

ν ν
=

− ⋅

+ − −

2 10

1 1

6 V

GF V
r

r[() ()]
Source The source variable array for the measurement(s), the input is expected as millivolts out per

volt in (the result of the full bridge instruction with a multiplier of 1 and an offset of 0.
Zero The variable array that holds the unstrained reading(s) in millivolts out per volt in.
GF Gage Factor. The gage factor can be entered as a constant used for all repetitions or a variable

array can be loaded with individual gage factors which are automatically used with each rep.
To use an array enter the parameter as arrayname(), with no element number in the
parentheses.

v Poisson ratio, enter 0 if it does not apply to configuration.

StrainCalc Example

This example uses StrainCalc to find the microstrain value of a bridge output.

Section 8. Processing and Math Instructions

8-22

'Program name: STRAIN.DLD

Public Count, ZStrain, StMeas, Strain, Flag(8) ' Declare all variables as public

'Data Table STRAINS samples every measurement when user Sets Flag(1) High

DataTable(STRAINS,Flag(1),-1)
 DataInterval(0,0,0,100) 'Interval = Scan, 100 lapses
 Sample (1,Strain,Ieee4)
EndTable

'DataTable ZERO_1 stores the "zero" measurements

DataTable(ZERO_1,Count>99,100) 'Trigger on Count 100
 Average(1,ZStrain,IEEE4,0)
EndTable

'Subroutine to measure Zero, Called on first pass or when user sets Flag(2)low

Sub Zero
 Count = 0 'Reset Count
 Scan(10,mSec,0,100) 'Scan 100 times
 BrFull(ZStrain,1,mV50,5,1,6,7,1,5000,1,0,0,100,1,0)
 Count = Count + 1 'Increment Counter used By DataTable
 CallTable ZERO_1 'Zero_1 outputs on last scan (Count=100)
 Next Scan
 ZStrain = ZERO_1.ZStrain_Avg(1,1) 'Set ZStrain = averaged value
 Flag(2) = True
End Sub

BeginProg
 Scan(10,mSec,0,0) 'Scan 10(mSecs)
 If Not Flag(2) Then Zero
 BrFull(StMeas,1,mV50,5,1,6,7,1,5000,1,0,0,100,1,0)
 StrainCalc(Strain,1,StMeas,ZStrain,-1,2,0)
 CallTable STRAINS 'Strains outputs only when Flag(1)=True
 Next Scan
EndProg

Rnd Function
Returns a random number.

Syntax
Rnd[(number)]

Remarks
The argument number can be any valid numeric expression.

The Rnd function returns a Single value less than 1 but greater than or equal to 0.

The value of number determines how Rnd generates a random number:

Section 8. Processing and Math Instructions

8-23

Value of number Number returned
< 0 The same number every time, as determined by number.
> 0 The next random number in the sequence.
= 0 The number most recently generated.
number omitted The next random number in the sequence.

The same random-number sequence is generated each time the instruction is
encountered because each successive call to the Rnd function uses the previous
random number as a seed for the next number in the random-number sequence.

To have the program generate a different random-number sequence each time it is
run, use the Randomize statement without an argument to initialize the random-
number generator before Rnd is called.

To produce random integers in a given range, use this formula:

 Int((upperbound - lowerbound + 1) * Rnd + lowerbound)

Here, upperbound is the highest number in the range, and lowerbound is the lowest
number in the range.

Rnd Function Example

The example uses the Rnd function to generate random integer values from 1 to 9.
Each time this program is run, Randomize generates a new random-number
sequence.

Dim Wild1, Wild2 'Declare variables.
Randomize 'Seed random number generator.
Wild1 = Int(9 * Rnd + 1) 'Generate first random value.
Wild2 = Int(9 * Rnd + 1) 'Generate second random value.

Sgn Function
Used to find the sign value of a number.

Syntax
Sgn(number)

Remarks
Returns an integer indicating the sign of a number.

The argument number can be any valid numeric expression. Its sign determines the
value returned by the Sgn function:

If X > 0, then Sgn(X) = 1.

If X = 0, then Sgn(X) = 0.

If X < 0, then Sgn(X) = -1.

Sgn Function Example

The example uses Sgn to determine the sign of a number.

Dim Msg, Number 'Declare variables.
Number = Volt(1) 'Get user input.
Select Case Sgn(Number) 'Evaluate Number.
 Case 0 'Zero.
 Msg = 0
 Case 1 'Positive.
 Msg = 1
 Case -1 'Negative.
 Msg = -1
End Select

Section 8. Processing and Math Instructions

8-24

Sine Function
Returns the sine of an angle.

Syntax
Sin(angle)

Remarks
The argument angle can be any valid numeric expression measured in radians.

The Sin function takes an angle and returns the ratio of two sides of a right triangle.
The ratio is the length of the side opposite the angle divided by the length of the
hypotenuse.

The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by Pi/180. To convert radians to
degrees, multiply radians by 180/Pi. Pi is approximately 3.141593.

Returns the sine of the value in parentheses. The input must be in radians.

Sin Function Example

The example uses Sin to calculate the sine of an angle from a Volt input.

Dim Degrees, Pi, Radians, Ans 'Declare variables.
Pi = 4 * Atn(1) 'Calculate Pi.
Degrees = Volt(1) 'Get input.
Radians = Degrees * (Pi / 180) 'Convert to radians.
Ans = Sin(Radians) ‘The Sine of Degrees.

Sqr Function
Returns the square root of a number.

Syntax
Sqr(number)
Remarks
The argument number can be any valid numeric expression that results in a value
greater than or equal to 0.

Returns the square root of the value in parentheses.

Sqr Function Example

The example uses Sqr to calculate the square root of Volt(1) value.

Dim Msg, Number 'Declare variables.
Number = Volt(1) 'Get input.
If Number < 0 Then
 Msg = 0 ‘Cannot determine the square root of a negative number.
Else
 Msg = Sqr(Number)
End If

Section 8. Processing and Math Instructions

8-25

Spatial Standard Deviation
Used to find the standard deviation of an array.

Syntax
StdDevSpa(Dest, Swath, Source)
Remarks
Spatial standard deviation.

Dest X i X i swath swath
i j

i j swath

i j

i j swath

= −
⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

=

= +

=

= +

∑∑ () () / /2

2
1
2

Where X(j) = Source

Parameter
& Data Type

Enter StdDevSpa Parameters
Dest
Variable or
Array

The variable in which to store the results of the instruction.

Swath
Constant

The number of values of the array over which to perform the specified operation.

Source
Array

The name of the variable array that is the input for the instruction.

Tangent Function
Returns the tangent of an angle.

Syntax
Tan(angle)

Remarks
The argument angle can be any valid numeric expression measured in radians.

Tan takes an angle and returns the ratio of two sides of a right triangle. The ratio is
the length of the side opposite an angle divided by the length of the side adjacent to
the angle.

To convert degrees to radians, multiply degrees by Pi/180. To convert radians to
degrees, multiply radians by 180/Pi. Pi is approximately 3.141593.

Tan Function Example

The example uses Tan to calculate the tangent of an angle from a Volt(1) input.

Dim Degrees, Pi, Radians, Ans 'Declare variables.
Pi = 4 * Atn(1) 'Calculate Pi.
Degrees = Volt(1) 'Get user input.
Radians = Degrees * (Pi / 180) 'Convert to radians.
Ans = Tan(Radians) ‘The Tangent of Degrees.

Section 8. Processing and Math Instructions

8-26

XOR

The XOR function is used to perform a binary logical exclusion on two
numbers.

Syntax

result = number1 XOR number2

The XOR operator also performs a bit-wise comparison of identically
positioned bits in two numbers (may be variables or the results of expressions)
and sets the corresponding bit in result according to the following truth table:

If bit in X is And bit in Y is The result is
0 0 0
0 1 1
1 0 1
1 1 0

Derived Math Functions
The following is a list of nonintrinsic mathematical functions that can be derived
from the intrinsic math functions provided with CRBasic:

Function CRBasic equivalent
Secant Sec = 1 / Cos(X)
Cosecant Cosec = 1 / Sin(X)
Cotangent Cotan = 1 / Tan(X)
Inverse Sine Arcsin = Atn(X / Sqr(-X * X + 1))
Inverse Cosine Arccos = Atn(-X / Sqr(-X * X + 1)) + 1.5708
Inverse Secant Arcsec = Atn(X / Sqr(X * X - 1)) + Sgn(Sgn(X) -1) * 1.5708
Inverse Cosecant Arccosec = Atn(X/Sqr(X * X - 1)) + (Sgn(X) - 1) * 1.5708
Inverse Cotangent Arccotan = Atn(X) + 1.5708

Hyperbolic Sine HSin = (Exp(X) - Exp(-X)) / 2
Hyperbolic Cosine HCos = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent HTan = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant HSec = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant HCosec = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent HCotan = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine HArcsin = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine HArccos = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent HArctan = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant HArcsec = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant HArccosec = Log((Sgn(X) * Sqr(X * X + 1) +1) / X)
Inverse Hyperbolic Cotangent HArccotan = Log((X + 1) / (X - 1)) / 2
Logarithm LogN = Log(X) / Log(N)

9-1

Section 9. Program Control
Instructions

BeginProg, EndProg

Used to mark the beginning and end of a program.

Syntax
BeginProg
 ...
 ...
EndProg
Marks the end of Variable, DataTable declarations and the beginning of the
main program.

BeginProg Example

This example uses BeginProg and EndProg to mark the beginning and end of a
program.

BeginProg
 ...
 ...
EndProg

BeginBurstTrigger, EndBurstTrigger

or

BeginBurstTrigger, EndBurstTriggerSequence

Without the burst trigger, all measurements within a burst scan are made and
the raw values buffered until the specified number of times through the scan
are complete. The count in the Scan instruction determines the total number of
scans stored in the burst buffer. The measurements start as soon as the scan is
executed and stop as soon as the specified number of scans are complete.
Processing is delayed until after all measurements are complete.

When BeginBurstTrigger … is inserted into a burst scan, the scan continues
until a trigger is true. Until the trigger(s) is true, the burst buffer is a ring
memory that holds the number of scans specified in the scan instruction.

The trigger condition(s) is specified with either the EndBurstTrigger or
EndBurstTriggerSequence instruction. EndBurstTriggerSequence is not in
CR9000 operating systems prior to OBJ 3.00

Section 9. Program Control Instructions

9-2

Syntax

BeginBurstTrigger

 [statementblock]

EndBurstTrigger(BurstTrigger, ScansAfterTrigger)

or

BeginBurstTrigger

 [statementblock]

EndBurstTriggerSequence (ScansBefore, StartTrigger, StopTrigger,
ScansAfterTrigger, FillandStop)

The BeginBurstTrigger... EndBurstTrigger(...) statement has these parts:

Part Description

BeginBurstTrigger Marks the start of the instructions that must be
processed to test the Burst Trigger.

Statementblock Typically this would consist of the measurement
to be tested for the trigger. While any number of
CRBasic statements could be inserted here, the
processing associated with any instructions
within the statement block must be able to be
completed within 400 microseconds or the burst
scan (whichever is longer). Keep the number of
instructions as small as possible.

EndBurstTrigger
or
EndBurstTriggerSequence Specifies the trigger(s) and marks the end of the

instructions to process for testing the trigger.

While other measurements in burst scan are buffered, the processing for the
instructions between BeginBurstTrigger and EndBurstTrigger or
EndBurstTriggerSequence is completed as the scans are occurring. These
instructions must be kept to a minimum to avoid processing overruns.

The maximum rate at which the trigger is evaluated is 400 microseconds, this
allows some time to complete the processing. If the scan interval is greater
than 400 microseconds, the trigger is evaluated at the scan interval. If the scan
interval is less than 400 microseconds, the trigger is evaluated at the first
integer multiple of the scan interval that is greater than 400 microseconds. For
example, if the scan interval is 300 microseconds, the trigger will be tested
every 600 microseconds.

If the measurement(s) within the Burst trigger are to be output, set the optional
processing parameter on BeginBurstTrigger to 1. This parameter forces the
instructions within the burst trigger to be processed with the rest of the scan.
(Because the measurements and instructions within the burst trigger are
processed as the scans take place, the processing for these instructions is

Section 9. Program Control Instructions

9-3

normally skipped when the processing for the rest of the scan takes place after
the burst is completed. This processing includes converting the raw
measurement result and storing it in the destination variable.)

EndBurstTrigger

The EndBurstTrigger instruction is typically used to output a fixed number of
scans per burst. (The number of scans equal the count in the scan instruction.)
Once the BurstTrigger is true, the burst will continue for the number of scans
entered for ScansAfterTrigger. This allows the program to be written to store
data before, after, or surrounding the trigger condition. The number of pre-
trigger scans is equal to the count in the Scan(...) instruction minus the
ScansAfterTrigger. For example, assume the count on the Scan is 10 and
EndBurstTrigger specifies 5 scans after the trigger. At the end of the burst
the burst buffer will hold: 4 scans before the trigger, the scan made at the same
time as the trigger, and 5 scans after the trigger. To store all of these values,
the program is written to store all measurements made in the scan. Once the
burst is complete, the CR9000 loops through the instructions in the scan the
number of times specified in the count, pulling data for measurements from the
burst buffer.

EndBurstTriggerSequence

The EndBurstTriggerSequence instruction can be used to output a variable
number of scans per burst (up to the number entered for count in the scan
instruction). When the scan starts, only the StartTrigger is tested. Once the
StartTrigger tests true, only the StopTrigger is tested. Once the StopTrigger
is true, the burst will continue for the number of scans entered for
ScansAfterTrigger.

The number of scans that are processed after the burst is complete is the lesser
of:

The Scan Count parameter or

ScansBefore + StartTrigger scan (1) + Scans between StartTrigger and
StopTrigger + StopTrigger Scan (1) + ScansAfter

The variability in the number of scans processed is in the number of scans
between the Start and Stop triggers.

The FillandStop option determines which scans are processed if the number of
scans determined by the triggers is greater than the Count parameter.

If FillandStop is true, the first scans will be processed, starting at the specified
number of scans before the start trigger. (The burst actually stops after the
StartTrigger when the burst buffer is full.)

If FillandStop is false the last scans will be processed. (The burst continues
until the ScansAfter are complete.)

Section 9. Program Control Instructions

9-4

Parameter
& Data Type

Enter

Process
empty or 1

This is an optional parameter on the BeginBurstTrigger instruction. If set to 1 the measurements or
calculations within BeginBurstTrigger … EndBurst… will be available to output when the burst is
complete. If not present, the variables set by these measurements or calculations will retain the value(s)
from the last pass through the scan.

BurstTrigger The variable or expression to test for the trigger. When the trigger condition is true, a
counter is started which increments with each following scan. When the counter equals
ScansAfterTrigger the program will exit the Scan(...) Next Scan loop and process the data in
the burst buffer.

Variable, or Value Result
Expression 0 Do not trigger
 ≠0 Trigger
ScansBefore
Constant

The ScansBeforeStartTrigger parameter specifies the number of scans that occur prior to the
StartTrigger to include in the burst output. If the Start Trigger is detected before this number
of scans have been completed, there will be fewer values before the trigger.

StartTrigger If the StartTrigger condition is true (nonzero), all measurements in the scan are executed until
the StopTrigger evaluates as true and the ScansAfterTrigger have been completed.

Constant Value Result
Variable or 0 Do not trigger
Expression ≠0 Trigger
StopTrigger The variable or expression to test for the trigger. Once the StopTrigger is true (nonzero)

measurements in the scan are executed until the ScansAfterStopTrigger have been completed
Constant Value Result
Variable or 0 Do not trigger
Expression ≠0 Trigger
ScansAfter
Trigger
Constant

The number of scans to execute after the BurstTrigger or StopTrigger evaluates true. For the
EndBurstTrigger instruction, the number of pre-trigger scans is equal to the total scans in
the Scan(...) instruction minus the ScansAfterTrigger

FillandStop State of burst buffer, determines which data are saved if the triggered scans exceed the
Constant Value Result capacity of the burst buffer
 0 Ring Memory: The last data are saved and processed
 ≠0 Fill and Stop = true. The first data are saved and

processed

Burst Trigger Example

This example program monitors two accelerometers. When the first
accelerometer exceeds 5 G's there will be 2000 pre-trigger scans and 8000
post-trigger scans recorded.

Section 9. Program Control Instructions

9-5

'\\\\\\\\\\\\\\\\\\\\\\\ TIMING CONSTANTS ///////////////////////

Const RATE = 100 'Scan interval number
Const RUNITS = 0 'Scan interval units (uSecs)

'\\\\\\\\\\\\\\\\\\\\\\\ BRIDGE CONSTANTS ///////////////////////

'________________________ Bridge Block #1 ________________________
Const BRNG1 = 4 'Block #1 measurement range (200 mV)
Const BREP1 = 2 'Block #1 repetitions
Const BEXCIT1 = 5000 'Block #1 excitation mVolts
Const BDLY1 = 0 'Block #1 Delay time (usecs)
Const BINT1 = 0 'Block #1 integration time (usecs)
Const BMULT1 = 1 'Block #1 default multiplier
Const BOSET1 = 0 'Block #1 default offset
Dim BBlk1(BREP1) 'Block #1 dimensioned source
Units BBlk1ZeroMv = mVperV 'Block #1 default units (mVperV)
Units BBlk1 = G_Force 'Block #1 default units (G_Force)

'\\\\\\\\\\\\\\\\\\ ALIASES & PUBLIC VARIABLES //////////////////

Alias BBlk1(1) = Accel_1 'Assign alias name Accel_1 to BBlk1(1)
Alias BBlk1(2) = Accel_2 'Assign alias name Accel_2 to BBlk1(2)
Public Flag(8) 'General Purpose Flags

'\\\\\\\\\\\\\\\\\\\\\\\\ OUTPUT SECTION ////////////////////////

'Table #1 - Name,TrigVar,Records
DataTable(ACCEL,True,100000) 'Trigger, 100000 records
 DataInterval(0,0,0,1000) 'Synchronous, 1000 lapses
 '_______________________ Bridge Blocks _______________________
 Sample (BREP1,BBlk1(),FP2) '2 Reps,Source,Res
EndTable 'End of table ACCEL

'\\\\\\\\\\\\\\\\\\\\\\\\\\\\ PROGRAM ////////////////////////////

BeginProg 'Program begins here

Do 'Loop to allow scan on flag repeat
 Do Until Flag(1): Loop 'Loop Until Flag(1) is pressed
 Scan(RATE,RUNITS,1,10000) 'Scan 100(uSecs), buffer 10,000 records to CPU S-RAM
 '________________________ Bridge Blocks ________________________
 BrFull(BBlk1(),BREP1,BRNG1,5,1,6,7,1,BEXCIT1,0,0,BDLY1,BINT1,BMULT1,BOSET1)
 ‘________________________ Trigger Sequence_____________________
 BeginBurstTrigger 'Begin burst scan
 BrFull(BBlk1(),1,BRNG1,5,1,6,7,1,BEXCIT1,0,0,BDLY1,BINT1,BMULT1,BOSET1)
 ‘ Note that BBlk1(1) is measured again here for evaluation as trigger.
 EndBurstTrigger(BBlk1(1)>=5,8000) 'Stop scan 8000 scans after trigger
 CallTable ACCEL ‘Store every record in the burst buffer.
 Next Scan 'Loop up for the next scan
 Flag(1) = False 'Set Flag(1) back to false
Loop 'Loop up to allow scan on flag
EndProg ‘Program ends here

Section 9. Program Control Instructions

9-6

Call

The Call statement is used to transfer program control from the main program
to a subroutine.

Syntax
Call Name(List of Variables)

Remarks
Use of the Call keyword when calling a subroutine is optional.
The Call statement has these parts:

Part Description
Call Call is an optional keyword used to transfer

program control to a subroutine..
name The Name parameter is the name of the

subroutine to call.
List of Variables or Constants The list may contain variables, constants, or

expressions that evaluate to a constant (i.e., do
not contain variable) that should be passed into
the variables declared in the subroutine.
Values of variables passed can be altered by
the subroutine. If the subroutine changes the
value of the subroutine declared variable, it
changes the value in the variable that was
passed in. If a constant is passed to one of the
subroutine declared “variables”, that “variable”
becomes a constant and its value cannot be
changed by the subroutine.

You are never required to use the Call keyword when calling a subroutine. If
you use the Call keyword to call a procedure that requires arguments, the
arguments list must be enclosed in parentheses. If you omit the Call keyword,
you also must omit the parentheses around the arguments list.

You can pass arguments to a procedure by reference or by value. Values of
arguments passed by reference can be altered by the procedure when the
arguments are returned; CRBasic supplies the actual address of the argument.

Call Statement Example

See Sub description in Section 5.

Call Table
Used to call a data table.

Syntax
CallTable Name
Remarks
Calls DataTable that has been declared above BeginProg. When the DataTable
is called, it will process data as programmed and check the output condition.

CallTable Example

This example uses CallTable to transfer program control to the ACCEL table.

CallTable ACCEL

Section 9. Program Control Instructions

9-7

Data, Read, Restore

Used to mark the beginning of a data list.

Syntax
Data list of constants

Read [VarExpr]

Restore
Remarks
Data function: A list of floating point constants that can be read (using Read)
into an Array Variable.

Parameter: A list of floating point constants.

Reads Data from Data declaration into an array. Subsequent Read picks up
where current Read leaves off.

Parameter: Variable destination.

Restore pointer to Data to beginning. Used in conjunction with Data and
Read.

Data Statement Example

This example uses Data to hold the data values and Read to transfer the values
to variables.

Data 1, 2, 3, 4, 5 'data for x
Data 6, 7, 8, 9, 10 'data for y
For I = 1 To 5
 Read x(I)
Next I
For I = 1 To 5
 Read y(I)
Next I
This next example uses Restore to read 1, 2, 3, 4 into both X() and Y()
variables.
Data 1, 2, 3, 4
For I = 1 To 4
 Read X(I)
Next I
Restore
For I = 1 To 4
 Read Y(I)
Next I

ClockSet (Source).

Sets the CR9000 clock from the values in an array. The most likely use for
this is where the CR9000 can input the time from a more accurate clock than
its own (e.g., a GPS receiver). The input time would periodically or
conditionally be converted into the required variable array and ClockSet would
be used to set the CR9000 clock.

Source
Array

The source must be a seven element array . array(1)..array(7) should hold respectively year,
month, day, hours, minutes, seconds, and microseconds..

Section 9. Program Control Instructions

9-8

Delay

Used to delay the program.

Syntax
Delay(Delay, Units)
Remarks
Delay processing the specified time before continuing.

Parameter
& Data Type

Enter

Delay
Constant

The time to delay before continuing with the next measurement.

Units The units for the delay.
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 microseconds
 MSEC 1 milliseconds
 SEC 2 seconds
 MIN 3 minutes

Delay Function Example

This example uses Delay to cause the program to pause for 20 milliseconds.

Delay(20, msec)

Do

Repeats a block of statements while a condition is true or until a condition
becomes true.

Syntax 1
Do [{While | Until} condition]
 [statementblock]
 [Exit Do]
 [statementblock]
Loop

Syntax 2
Do
 [statementblock]
 [Exit Do]
 [statementblock]
Loop [{While | Until} condition]

The Do...Loop statement has these parts:

Part Description

Do Must be the first statement in a Do...Loop control structure.

While Indicates that the loop is executed while condition is true.

Until Indicates that the loop is executed until condition is true.

Section 9. Program Control Instructions

9-9

condition Numeric expression that evaluates true (nonzero) or false (0
or Null).

statementblock Program lines between the Do and Loop statements that are
repeated while or until condition is true.

Exit Do Only used within a Do...Loop control structure to provide
an alternate way to exit a Do...Loop. Any number of Exit
Do statements may be placed anywhere in the Do...Loop.
Often used with the evaluation of some condition (for
example, If...Then), Exit Do transfers control to the
statement immediately following the Loop. When
Do...Loop statements are nested, control is transferred to the
Do...Loop that is one nested level above the loop in which
the Exit Do occurs.

Loop Ends a Do...Loop.

Do...Loop Statement Example

The example creates an infinite Do...Loop that can be exited only if Volt(1) is
within a range.

Dim Reply 'Declare variable.
Do
 Reply = Volt(1)
 If Reply > 1 And Reply < 9 Then 'Check range.
 Exit Do 'Exit Do Loop.
 End If
Loop

Alternatively, the same thing can be accomplished by incorporating the range
test in the Do...Loop as follows:

Dim Reply 'Declare variable.
Do
 Reply = Volt(1)
Loop Until Reply > 1 And Reply < 9
The next example show the use of Wend.
While X > Y 'Old fashioned way of looping.

Wend

Do While X > Y 'Much better

Loop

FileManage

Used to manage files from within a running DLD program.

Syntax

FileManage("d:FileName", Attribute)

Section 9. Program Control Instructions

9-10

Remarks

FileManage is a function that allows a running DLD program to manipulate
files that are stored in the CR9000. "d:FileName" is the device and name of
the file that must have previously been stored in the CR9000. The device must
be CPU: or a possible Pam device such as P4A:. P4A: means Pam in slot 4,
card A. The quote marks (") are necessary. The attributes are actually a bit
field as follows:

Bit Decimal Description
bit 0 1 not used
bit 1 2 Run On Power Up
bit 2 4 Run Now
bit 3 8 Delete
bit 4 16 Delete All

FileManage Example

The example uses FileManage to run CPU:TEMPS.DLD when Flag(2) becomes high.

If Flag(2) then FileManage("CPU:TEMPS.DLD" 4) '4 means Run Now

FileMark(TableName)

Parameter
& Data Type

Enter

TableName
name

The name of the data table in which to insert the filemark..

FileMark is used to insert a filemark into a data file. The filemark can be used
by the decoding software to indicate that a new file should be started at the
mark. This capability to create multiple files only exists in the binary to ASCII
converter. To make use of it files must be stored to a PCMCIA card and
retrieved from the logger files screen or by removing the card and transferring
the file directly to the computer.

FileMark is placed within a conditional statement in order to write the filemark
at the desired time.

For ... Next Statement

Repeats a group of instructions a specified number of times.

Syntax
For counter = start To end [Step increment]
 [statementblock]
 [Exit For]
 [statementblock]
Next [counter [, counter][, ...]]

Section 9. Program Control Instructions

9-11

The For...Next statement has these parts:

Part Description

For Begins a For...Next loop control structure. Must appear
before any other part of the structure.

counter Numeric variable used as the loop counter. The variable
cannot be an array element or a record element.

start Initial value of counter.

To Separates start and end values.

end Final value of counter.

Step Indicates that increment is explicitly stated.

increment Amount counter is changed each time through the loop. If
you do not specify Step, increment defaults to one.

statementblock Program lines between For and Next that are executed the
specified number of times.

Exit For Only used within a For...Next control structure to provide
an alternate way to exit. Any number of Exit For
statements may be placed anywhere in the For...Next loop.
Often used with the evaluation of some condition (for
example, If...Then), Exit For transfers control to the
statement immediately following the Next.

Next Ends a For...Next loop. Causes increment to be added to
counter.

The Step value controls loop execution as follows:

When Step is Loop executes if
Positive or 0 counter <= end
Negative counter >= end

Once the loop has been entered and all the statements in the loop have
executed, Step is added to counter. At this point, either the statements in the
loop execute again (based on the same test that caused the loop to execute in
the first place), or the loop is exited and execution continues with the statement
following the Next statement.

Tip Changing the value of counter while inside a loop can make the
program more difficult to read and debug.

You can nest For...Next loops by placing one For...Next loop within another.
Give each loop a unique variable name as its counter. The following
construction is correct:

For I = 1 To 10
 For J = 1 To 10
 For K = 1 To 10
 ...
 Next K
 Next J
Next I

Section 9. Program Control Instructions

9-12

Note If you omit the variable in a Next statement, the value of Step
increment is added to the variable associated with the most recent For
statement. If a Next statement is encountered before its corresponding
For statement, an error occurs.

For...Next Statement Example

The example runs one For..Next loop inside another.

Dim I, J 'Declare variables.
For J = 5 To 1 Step -1 'Loop 5 times backwards.
 For I = 1 To 12 'Loop 12 times.
 'Run some code.
 Next I
 'Run some code.
Next J
. . . . 'Run some code.

This next example fills odd elements of X up to 40 * Y with odd numbers.

For I = 1 To 40 * Y Step 2
 X(I) = I
Next I

If ... Then ... Else Statement

Allows conditional execution, based on the evaluation of an expression.

Syntax 1
If condition Then thenpart [Else elsepart]

Syntax 2
If condition1 Then
 [statementblock-1]
[ElseIf condition2 Then
 [statementblock-2]]
[Else
 [statementblock-n]]
End If

Syntax 1 Description
The single-line form is often useful for short, simple conditional tests. Syntax
1 has these parts:

Part Description

If Begins the simple If...Then control structure.

condition An expression that evaluates true (nonzero) or false (0 and
Null).

Then Identifies actions to be taken if condition is satisfied.

thenpart Statements or branches performed when condition is true.

Else Identifies actions taken if condition is not satisfied. If the
Else clause is not present, control passes to the next
statement in the program.

elsepart Statements or branches performed when condition is false.

Section 9. Program Control Instructions

9-13

The thenpart and the elsepart fields both have this syntax:

{statements | [GoTo] linenumber | GoTo linelabel }

The thenpart and elsepart syntax has these parts:

Part Description

statements One or more CRBasic statements, separated by colons.

Note You can have multiple statements with a condition, but they
must be on the same line and separated by colons, as in the
following statement:

 If A > 10 Then A = A + 1 : B = B + A : C = C + B

Syntax 2 Description

The block form of If...Then...Else provides more structure and flexibility than
the single-line form and is usually easier to read, maintain, and debug. Syntax
2 has these parts:

Part Description

If Keyword that begins the block If...Then decision
control structure.

condition1 Same as condition used in the single-line form shown
above.

Then Keyword used to identify the actions to be taken if a
condition is satisfied.

statementblock-1 One or more CRBasic statements executed if condition1
is true.

ElseIf Keyword indicating that alternative conditions must be
evaluated if condition1 is not satisfied.

condition2 Same as condition used in the single-line form shown
above.

statementblock-2 One or more CRBasic statements executed if condition2
is true.

Else Keyword used to identify the actions taken if none of
the previous conditions are satisfied.

statementblock-n One or more CRBasic statements executed if condition1
and condition2 are both false.

End If Keyword that ends the block form of the If...Then.

In executing a block If, CRBasic tests condition1, the first numeric expression.
If the expression is true, the statements following Then are executed.

If the first expression is false, CRBasic begins evaluating each ElseIf condition
in turn. When CRBasic finds a true condition, the statements immediately
following the associated Then are executed. If none of the ElseIf conditions is
true, the statements following the Else are executed. After executing the
statements following Then or Else, the program continues with the statement
following End If.

Section 9. Program Control Instructions

9-14

The Else and ElseIf clauses are both optional. You can have as many ElseIf
clauses as you like in a block If, but none can appear after an Else clause. Any
of the statement blocks can contain nested block If statements.

CRBasic looks at what appears after the Then keyword to determine whether
or not an If statement is a block If. If anything other than a comment appears
after Then, the statement is treated as a single-line If statement.

A block If statement must be the first statement on a line. The Else, ElseIf,
and End If parts of the statement can have nothing but spaces in front of them.
The block If must end with an End If statement.

For Example

If a > 1 And a <= 100 Then

 ...

ElseIf a = 200 Then

 ...

End If

Tip Select Case may be more useful when evaluating a single expression
that has several possible actions.

If...Then ... Else Statement Example

The example illustrates the various forms of the If...Then...Else syntax.

Dim X, Y, Temp(5) 'Declare variables.
X = Temp(1)
If X < 10 Then
 Y = 1 '1 digit.
ElseIf X < 100 Then
 Y = 2 '2 digits.
Else
 Y = 3 '3 digits.
End If
. . . . 'Run some code
. . . . 'Run some code

LowPriority

 ...
 ...
HighPriority
LowPriority is used to set the following code to background execution. It is
used in the declaration section of the program to mark a datatable or subroutine
that will be called from the slow sequence. HighPriority is used to mark the
end of the LowPriority code.

Section 9. Program Control Instructions

9-15

OutLink (Source, Reps, Link)

Used to synchronize scans and to send data to another CR9000 connected via
either the Tlink or the Fiber Optic Link. WaitLinkTrig is used in the
receiving CR9000 to input the data. When OutLink is executed, it sends the
data out on the specified link. Link communication requires an
acknowledgment from the receiving CR9000. OutLink will time out in 5
seconds if this acknowledgment is not received (320 seconds if executed in the
Slow Sequence).

Parameter
& Data Type

Enter

Source
Variable or
Array

The Variable or array that is the source of the values sent out the link

Reps
Constant

The number of values to send. When greater than 1, the source must be an array dimensioned to at least
the number being sent

Link
Constant

The link to send the data out on.
1 Tlink
2 Fiber Optic Link

Power Off

Used to turn the CR9000 off until a designated time.

Syntax
PowerOff(StartTime, Interval, Units)

Parameter
& Data Type

Enter

Start Time
Array

The name of a six element array that contains the start time: Year, month, day, hour, minutes, and
seconds, respectively.

Interval
Constant

Enter the time interval on which the CR9000 is to be powered up.

Units The units for the time parameters.
Constant Alpha

Code
Numeric
Code

Units

 SEC 2 seconds
 MIN 3 minutes
 HR 4 hours
 DAY 5 days

Remarks
This instruction sets a time to power up and then shuts off CR9000 power.
Only the clock continues running while the CR9000 is powered down. When
the time to power up arrives, the power is restored, the CR9000 reloads its
program from Flash memory and begins running.

The interval allows the CR9000 to periodically power up and execute a program.
StartTime is a time value. If StartTime is in the future when PowerOff is
executed, it is the time the CR9000 will be programmed to power up. If
StartTime is in the past when PowerOff is executed, The CR9000 will set the
time to power up to the next occurrence of the interval (using StartTime as the
start of the first interval)

Section 9. Program Control Instructions

9-16

The units for the interval are days, hours, minutes, or seconds.

Power off can also be used in conjunction with the digital inputs on the 9011 Power
Supply Board to set up the CR9000 to power up in response to external trigger, make
a series of measurements, and then power off.

When the CR9000 is in this power off state the ON Off switch on the 9011
Power Supply Board is in the on position but the internal relay is open. The
power LED is not lit. If the "<0.5 " input is switched to ground or if the ">2"
input has a voltage greater than 2 volts applied, the CR9000 will awake, load
the program in memory and run. If the "< 0.5" input continues to be held at
ground while the CR9000 is powered on and goes through its 2–5 second
initialization sequence, the CR9000 will not run the program in memory. This
is extremely useful if the program executes the PowerOff instruction
immediately or after a short measurement period.

The following example is a good one to play with to become familiar with the
PowerOff instruction. The CR9000 "scans" once a second for two minutes.
At the end of that time it powers down. It is programmed to wake up on a 4
minute interval. After the first PowerOff, it will wake up every four minutes,
count for 2 minutes and turn itself off. You can load this program and use the
Power On inputs on the 9011 Module to wake the CR9000 before the interval
is up. A program for an actual application would have measurements within
the scan.

Public Start(6), count 'Declare the start time array and count
 'Start() is initialized to 0 at compile time. 0 time is Midnight the start of 1990
 'count is initialized to 0 at compile time
BeginProg
 Scan(1,SEC,0,120) 'Scan once per second for 2 minutes
 Count=count+1 'Increment counter
 NextScan
 PowerOff(Start,4,min) 'Power off, wake up on 4 minute interval
EndProg

Print list of variables or quoted text

Print is used as a tool in debugging a program to print text or the value of
variables at different points in the program. “Printing” occurs over the active
link (Tlink or Fiber Optic) and can be observed from Tools | Diagnostics |
Terminal Mode in PC9000.

Reset Table

Used to reset a data table under program control.

Syntax

ResetTable(TableName)
Remarks

ResetTable is a function that allows a running DLD program to reset a data
table. TableName is the name of the table to reset.

Section 9. Program Control Instructions

9-17

ResetTable Example

The example program line uses ResetTable to reset table MAIN when Flag(2)
is high.

If Flag(2) then ResetTable(MAIN) 'resets table MAIN

RunDLDFile

Used to run one DLD file from another.

Syntax
RunDLDFile("d:FileName", Attribute)

Remarks
RunDLDFile is a function that allows a running DLD program to call another
DLD file that is stored in the CR9000. "d:FileName" is the device and name of
the DLD file that must have previously been stored in the CR9000. The device
must be CPU: or a possible Pam device such as P4A:. P4A: means Pam in
slot 4, card A. The quote marks (") are necessary. The attribute parameter is
evaluated as a binary number where bits one and two are used to indicate if the
program is to become the program that runs on power up and/or if it is to
replace the current program and run when the instruction is executed.

Bit Decimal Description
bit 0 1 not used
bit 1 2 Run On Power Up
bit 2 4 Run Now

Only bit1 and bit2 are available for this function.

For example,

RunDLDFile("CPU:TEMPS.DLD", &B100)

means to load TEMPS.DLD from CPU flash memory and run it. Whatever
DLD file is currently run on power up would be loaded and run if the CR9000
was powered off and then on again. In the above example, the attribute
parameter is entered as a binary number (&B100); it could also be entered in
decimal format as 4.

RunDLDFile("CPU:TEMPS.DLD", &B110)

means to load and run TEMPS.DLD and to make it the file that the CR9000
will run when powered up. The attribute parameter could also be entered as 6.

The example uses RunDLDFile to run CPU:TEMPS.DLD when Flag(2)
becomes high.

If Flag(2) then RunDLDFile("CPU:TEMPS.DLD" 4) '4 means Run Now

Section 9. Program Control Instructions

9-18

Reset Table

Used to reset a data table under program control.

Syntax

ResetTable(TableName)
Remarks

ResetTable is a function that allows a running DLD program to reset a data
table. TableName is the name of the table to reset.

ResetTable Example

The example program line uses ResetTable to reset table MAIN when Flag(2)
is high.

If Flag(2) then ResetTable(MAIN) 'resets table MAIN

Scan

Used to establish the program scan rate.

Syntax
Scan(Interval, Units, BurstOption, Count)
 ...
 ...[Exit Scan]
 ...
Next Scan

Parameter
& Data Type

Enter

Interval
Constant

Enter the time interval at which the scan is to be executed. The interval may be in µs, ms, s, or minutes,
whichever is selected with the Units parameter. The maximum scan interval is one minute. When
followed by Wait Digital Trigger, 0 may be entered to ensure there is no delay before looking for the
trigger.

Units The units for the time parameters.
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 microseconds
 MSEC 1 milliseconds
 SEC 2 seconds
 MIN 3 minutes
BurstOpt
Constant

Option to Buffer a Burst of measurements before processing.

 Option Result
 0 Process measurements as they are made
 1 Buffer raw measurements in RAM
 2 Buffer raw measurements on PCMCIA Card
Count
Integer

The number of times to execute the Scan/NextScan loop. Enter 0 for infinite looping.

Section 9. Program Control Instructions

9-19

Remarks
The measurements, processing, and calls to output tables bracketed by the Scan
and NextScan instructions determine the sequence and timing of the
datalogging.

The Scan instruction determines how frequently the measurements within the
scan are made:

The Scan instruction has four parameters. The Interval is the interval between
scans. Units are the time units for the interval. The BurstOption determines if
processing is concurrent with measurements or if raw values are buffered for
processing after all measurements are made. At the maximum measurement
rate, processing time may exceed the time required for measuring. Count is the
number of scans to make before processing buffered values (if burst is
selected) and proceeding to the instruction following NextScan. A count of 0
means to continue looping forever (or until ExitScan).

If option = 1 or 2, measurements inside Scan .. Next Scan are buffered for
number of scans, then number of scans are processed.

Scan Example

This example uses Scan and Next Scan in a simple program.

Scan(10, usec, 0, 2000) ‘Record 2000 samples
 VoltSE(...)
 CallTable
Next Scan

Select Case Statement

Executes one of several statement blocks depending on the value of an
expression.

Syntax
Select Case testexpression
[Case expressionlist1
 [statementblock-1]]
[Case expressionlist2
 [statementblock-2]]
[Case Else
 [statementblock-n]]
End Select

The Select Case syntax has these parts:

Part Description

Select Case Begins the Select Case decision control structure. Must
appear before any other part of the Select Case structure.

testexpression Any numeric or string expression. If testexpression matches
the expressionlist associated with a Case clause, the
statementblock following that Case clause is executed up to
the next Case clause, or for the final one, up to the End
Select. Control then passes to the statement following End
Select. If testexpression matches more than one Case

Section 9. Program Control Instructions

9-20

clause, only the statements following the first match are
executed.

Case Sets apart a group of CRBasic statements to be executed if
an expression in expressionlist matches testexpression.

expressionlist The expressionlist consists of a comma-delimited list of one
or more of the following forms.

 expression

 expression To expression

 Is compare-operator expression

 statementblock

 Elements statementblock-1 to statementblock-n consist of
any number of CRBasic statements on one or more lines.

Case Else Keyword indicating the statementblock to be executed if no
match is found between the testexpression and an
expressionlist in any of the other Case selections. When
there is no Case Else statement and no expression listed in
the Case clauses matches testexpression, program execution
continues at the statement following End Select.

End Select Ends the Select Case. Must appear after all other statements
in the Select Case control structure.

The argument expression list has these parts:

Part Description

expression Any numeric expression.

To Keyword used to specify a range of values. If you use the To
keyword to indicate a range of values, the smaller value must
precede To.

Although not required, it is a good idea to have a Case Else statement in your
Select Case block to handle unforeseen testexpression values.

You can use multiple expressions or ranges in each Case clause. For example,
the following line is valid:

 Case 1 To 4, 7 To 9, 11, 13

Select Case statements can be nested. Each Select Case statement must have a
matching End Select statement.

Select Case Statement Example

The example uses Select Case to decide what action to take based on user
input.

Section 9. Program Control Instructions

9-21

Dim X, Y 'Declare variables.
If Not X = Y Then 'Are they equal
 If X > Y Then
 Select Case X 'What is X.
 Case 0 To 9 'Must be less than 10.
 'Run some code.
 'Run some code.
 Case 10 To 99 'Must be less than 100.
 'Run some code.
 'Run some code.
 Case Else Must be something else.
 'Run some code.
 End Select
 End If
Else
 Select Case Y 'What is Y.
 Case 1, 3, 5, 7, 9 'It's odd.
 'Run some code.
 Case 0, 2, 4, 6, 8 'It's even.
 'Run some code.
 Case Else 'Out of range.
 'Run some code.
 'Run some code.
 End Select
End If
. . . . 'Run some code.
. . . . 'Run some code.

Slow Sequence

Allows slower measurements and low priority processing to take place in
background.

Syntax
SlowSequence
Remarks
Ends the main program and begins a low priority program. There must be a
Scan … NextScan loop following SlowSequence.

It is possible to have a scan in the SlowSequence for measurements that are
needed at a slower rate of the primary scan interval. The CR9000 tags on
measurement instructions from the slow sequence scan to the normal scan as
time allows. At least one A/D conversion from the slow sequence scan is
added to each normal scan (the appropriate settling time occurs before the A/D
conversion). Thus, the primary scan interval must be long enough to make the
primary scan measurements plus the longest single measurement fragment
(settling time + A/D conversion) from the scan in the slow sequence. In the
case where the primary scan interval is only long enough to allow one
measurement fragment from the slow sequence per primary scan, the minimum
time for the slow sequence scan interval is the product of the number of slow
sequence measurement segments and the primary scan interval. A
consequence of the way a measurement scan in the slow sequence may be
parceled into several primary scans is that the measurements in a single "scan"
of the slow sequence may be spread over a greater time than if they were in the
primary scan. Also, if integration is used in a measurement that is included in

Section 9. Program Control Instructions

9-22

the slowsequence scan, the measurements that go into that integration may not
occur sequentially, but may be broken up into multiple integration segments
that are separated by the time that the primary scan measurements require. If
settling time is used for a measurement whose integration is broken up, that
settling time will take place before each integration period. Processing
instructions within the slow sequence are executed in the time available after
processing in the main program is completed.

SlowSequence Example

The example uses SlowSequence to calibrate the CR9000 every ten seconds.

SlowSequence
 Scan(10 Secs, 0, 0)
 Calibrate
 BiasComp
 Next Scan

Timer

Used to return the value of a timer.

Syntax
Timer(TimNo, Units, TimOpt)
Remarks
Timer is a function that returns the value of a timer. TimOpt is used to start,
stop, reset and start, stop and reset, or read without altering the state (running
or stopped). Multiple timers, each identified by a different number (TimNo),
may be active at the same time.

Syntax
variable = Timer(1,usec,2)

Parameter
& Data Type

Enter

TimNo
Constant,
Variable, or
Expression

An integer number for the timer (e.g., 0, 1, 2, . . .) Use low numbers to conserve memory; using TimNo
100 will allocate space for 100 timers even if it is the only timer in the program.

Units The units in which to return the timer value.
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 microseconds
 MSEC 1 milliseconds
 SEC 2 seconds
 MIN 3 minutes
TimOpt
Constant

The action on the timer. The timer function returns the value of the timer after the action is performed

 Code Result
 0 start
 1 stop
 2 reset and start
 3 stop and reset
 4 read only

Section 9. Program Control Instructions

9-23

Timer Example
The example uses Timer.

Wait Digital Trigger

Used to wait for a digital trigger before making measurements.

Syntax
WaitDigTrig(PSlot, Mask, Word)
Remarks
Measurement sequencer will wait until the digital inputs on the CR9071E
Counter - Timer / Digital I/O Module matches the specified word. It should be
noted that the CR9000 time stamp is clocked by the scan. Thus, if the scan
rate is set at 2 seconds, but the trigger is activated every 4 seconds, the time
stamp will still increment only 2 seconds every time the trigger activates the
scan (increment value will be off by a factor of 2).

Wait Digital Trigger is used to trigger measurement scans from an external
digital input to the CR9071E Counter - Timer / Digital I/O Module.
WaitDigTrig is placed in the program following Scan; the task sequencer will
delay until the digital trigger occurs. Mask and word are in terms of the binary
number represented by the 16 digital I/O channels. Mask is used to determine
which digital inputs to read. Word is the digital input pattern to match. When
the input matches the "word", the scan takes place.

Parameter
& Data Type

Enter

PSlot
Constant

The number of the slot in the CR9000 card frame that holds the CR9071E Module.

Mask
Constant

The Mask allows the read or write to only act on certain ports. The Mask is ANDed with the value
obtained from the CR9071E when reading and ANDed with the source before writing.

Word
Constant or
Variable

Example:

Scan (1, msec, 0, 0)
WaitDigTrig(6,&B0000000000000100, &B0000000000000100)
'read only port 3, wait until 3 is high. mask and word entered as binary numbers.
measurements and processing instructions
next Scan

example 2

WaitDigTrig(6,4,4)
'same as above: read only port 3, wait until 3 is high.
'mask and word entered as decimal numbers.
measurements and processing instructions
Next Scan

Section 9. Program Control Instructions

9-24

WaitLinkTrig (Dest, Reps, Link)

WaitLinkTrig is used to trigger CR9000 scans by a message sent over a
communication link from another CR9000 sent using the OutLink instruction.
WaitLinkTrig is placed immediately after the Scan instruction and pauses the
scan until values are received over the specified link. The Scan interval is
entered as a negative number to tell the CR9000 that it is to use an external
scan trigger input. It should be noted that the CR9000 time stamp is clocked
by the scan. Thus, if the scan rate is set at 2 seconds, but the trigger is
activated every 4 seconds, the time stamp will still increment only 2 seconds
every time the trigger activates the scan (increment value will be off by a factor
of 2).

Parameter
& Data Type

Enter

Dest
Variable or
array

Variable or array in which to store the value(s) received over the link. This instruction does
not require that any values be stored. If Reps are set to 0, no values will be loaded into the
destination variable.

Reps
Constan

The number of values to expect over the link and store in the destination variable. Enter 0 and the scan
still waits for the link but does not store any values.

Link A code specifying the link to receive the data.
Constant Value Link
 1 T-Link, (Link 1)
 2 Fiber Optic Link, (Link 2)

A-1

Appendix A. Keywords and Predefined
Constants
The following is a list of keywords and predefined constants in CRBasic. These keywords
are not case sensitive and must not be used as variable names. It is possible to use a
keyword as part of a variable name if there are additional letters preceding or following
the letters that make up the keyword.

ABS function
Alias declaration
AM25T measurement
AND operator
ATN function
Average output processing
AvgRun processing
AvgSpa processing
Battery measurement
BeginBurstTrigger program control
BeginProg program control
BiasComp CSI Calibration
BrFull measurement
BrFull6W measurement
BrHalf measurement
BrHalf3W measurement
BrHalf4W measurement
Calibrate calibration
Call program control
CallTable program control
CanBus measurement
CardA =1, predefined constant
CardAB =0, predefined constant
CardB =2, predefined constant
Case program control
ClockSet program control
Const declaration
COS function
Covariance output processing
COVSpa processing
CSAT3 measurement
CSGN function
Data processing
DataEvent output processing
DataInterval output processing
DataTable output processing
day =5, predefined constant
Delay program control
DIM declaration
Do program control
DSP4 output control
Else program control
ElseIf program control
End program control

EndBurstTrigger program control
EndBurstTriggerSequence program control
EndIf program control
EndProg program control
EndSelect program control
EndSub program control
EndTable output processing
EQV operator
Excite measurement
Exit program control
ExitDo program control
ExitFor program control
ExitScan program control
ExitSub program control
EXP function
Expr function
False =0, predefined constant
FFT output processing
FFTFilt measurement
FFTSpa processing
FieldNames output processing
FileManage program control
FileMark output
FillStop output
FIX function
FlashOut output processing
FOR program control
FP2 =7, predefined constant
FRAC function
GetRecord processing
HighPriority program control
Histogram output processing
Histogram4D output processing
hr =4, predefined constant
IEEE4 =24, predefined constant
If program control
IfTime function
IIF program control
IMP operator
INT function
INT8 measurement
IS operator
LevelCrossing output processing
LOG function

Appendix A. Keywords and Predefined Constants

A-2

Long =20, predefined constant
Loop program control
LowPriority program control
Maximum output processing
MaxSpa processing
MemoryTest calibration
min =3, predefined constant
Minimum output processing
MinSpa processing
MOD operator
ModuleTemp measurement
Move processing
msec =1, predefined constant
mV1000 =1, predefined constant
mV200 =4, predefined constant
mV200c =16, predefined constant
mV50 =5, predefined constant
mV500 =11, predefined constant
mV5000 =0, predefined constant
mV500c =23, predefined constant
mV50c =17, predefined constant
mVX10500 =3, predefined constant
mVX1500 =2, predefined constant
Next program control
NextScan program control
NextSubScan program control
NOT program control
OpenInterval output
OR operator
OutLink program control
PamOut output processing
PeakValley processing
PF function
PortSet measurement
PowerOff program control
Print program control
PRT processing
Public declaration
PulseCount measurement
PulseCountReset measurement
PWR function
Rainflow output processing
Randomize function
Read processing
ReadIO measurement
RealTime processing
RectPolar processing
RemoveOffset calibration
ResetTable program control
Restore processing
RMSSpa processing
RND function
RunDldFile program control
Sample output processing
Scan program control

SDMSpeed measurement
SDMTrigger measurement
sec =2, predefined constant
Select program control
SerialInput measurement
SetDac calibration
SGN function
SIN function
SIO4 measurement
SlotModules CSI testing
SlowSequence program control
SQR function
StationName program control
StdDev output processing
StdDevSpa processing
StrainCalc processing
Sub declaration
SubScan program control
Table =5, predefined constant
TAN function
TCDiff measurement
TCSe measurement
Then program control
TimerIO measurement
Timer program control
To program control
Totalize output processing
True =-1, predefined constant
TypeB =4, predefined constant
TypeE =1, predefined constant
TypeJ =3, predefined constant
TypeK =2, predefined constant
TypeR =5, predefined constant
TypeS =6, predefined constant
TypeT =0, predefined constant
Units declaration
Until program control
usec =0, predefined constant
V10 =7, predefined constant
V2 =10, predefined constant
V2c =22, predefined constant
V50 =6, predefined constant
VoltDiff measurement
VoltSE measurement
Vx105 =9, predefined constant
Vx15 =8, predefined constant
WaitDigTrig program control
WaitLinkTrig program control
WatchDogTrap CSI testing
Wend program control
While program control
WorstCase output processing
WriteIO measurement
XOR operator

Index-1

CR9000 Index

A
ABS, Absolute Value Instruction, 8-1
AC Excitation, 3-17
Alias, 4-4, 4-8, 5-1
AM25T Instruction, 7-12
And Operator, 8-2
Anti-Aliasing, 3-23
Anti-logarithm, 8-7
Argument Rules, 4-8
Arrays, 4-9
ATN, Arctangent Instruction, 8-3
Average Output Instruction, 6-9
AvgRun, Spatial Average Instruction, 8-4
AvgSpa, Spatial Average Instruction, 8-3

B
Background Calibration, 7-12
Batteries, External, 1-3, 1-7
Batteries, Internal, 1-3, 1-5, 1-8
Battery Voltage Measurement, 7-11
BeginBurstTrigger, 9-1
BeginProg, 9-1
BiasComp Instruction, 7-12
Blackman Window Function, 3-24, 7-37
BLC100 Bus Link Card, OV-8
BrFull Instruction, 7-9
BrFull6W Instruction, 7-9
BrHalf Instruction, 7-7
BrHalf3W Instruction, 7-7
BrHalf4W Instruction, 7-7
Bridge Measurement, 2 Wire Half, 3-15, 7-7
Bridge Measurement, 3 Wire Half, 3-15, 7-7
Bridge Measurement, 4 Wire Full, 3-15, 7-9
Bridge Measurement, 4 Wire Half, 3-15, 7-7
Bridge Measurement, 6 Wire Full, 3-15, 7-9
Burst Mode, 7-31, 9-1

C
Calibrate Instruction, 7-12
Call Instruction, 9-6
CallTable Instruction, 9-6
CANBus Instruction, 7-14
Case, 9-20
CaseElse, 9-20
ClockSet Instruction, 9-7
Common Mode Check Option, 3-5

Common Mode Range, 1-9, 3-4
Connectors, 1-1
Const Instruction, 5-1
Constant Declaration, 5-1
Continuous Analog Output, 7-10
Control Ports, Setting, 7-21
Convert Data File, 2-8
COS, Cosine Instruction, 8-6
Covariance Output Instruction, 6-10
COVSPA, Spatial Covariance Instruction, 8-6
CR9011, OV-2
CR9031, OV-1
CR9041, OV-2
CR9050(E) Module, OV-3
CR9051E Module, OV-3
CR9052 Filter Module Measurements, 3-23, 7-26
CR9052IEPE DC Frequency Response, s
Measurements, 3-23, 7-26
CR9052DC Module, OV-4
CR9052IEPE Module, OV-4
CR9055(E) Module, OV-5
CR9058E Module Measurements, 3-18
CR9058E Module, OV-4
CR9058E Sampling, Noise & Filtering, 3-21
CR9060 Module, OV-5
CR9070 Module, OV-6
CR9071E Module, OV-6
CR9080 Module, OV-6
CR9080 Peripheral and Memory Card, 2-2
CRBasic Programming, 4-1
CSAT3 Instruction, 7-17

D
Data Retrieval, 2-3
Data File Format, 2-11
Data Instruction, 9-7
Data Resolution, 2-2
Data Retrieval, PC Card, 2-8
Data Storage, 2-1
Data Streaming, 2-6
Data Table Access, 4-9, 8-10
Data Table Control, 9-19
Data Table, OV-10, 2-9, 4-4
DataEvent, 6-4
DataInterval, 6-2
Delay Instruction, 9-9
Differential Voltage Measurement, 7-3
Dim, 5-2
Dimension Array, 5-2
Do Loop, 9-9

CR9000 Index

Index-2

DSP4 Instruction, 6-8

E
Editor, OV-12
Else, 9-13
ElseIf, 9-13
Enclosure, 1-1
End Sub, 5-3
EndBurstTrigger, 9-1
EndBurstTriggerSequence, 9-1
Endif, 9-13
EndProg, 9-1
EndSelect, 9-20
EndTable, 6-1
Excitation, 7-10
Excitation, Reversal, 3-2
Excite Instruction, 7-10
Exit Do, 9-9
Exit For, 9-11
Exit Scan, 9-19
Exit Sub, 5-3
EXP, Exponential Instruction, 8-7
Exponential, Base, 8-7

F
False, 4-7
Fast Fourier Transform, 7-33
FFT Output Instruction, 6-10
FFT Spectral Options, 7-38
FFT Windowing, 7-37
FFTFilt Instruction, 7-33
FFTSample Output Instruction, 7-46
FFTSPA, FFT Spatial Instruction, 8-8
Field Name Declaration, 5-1
Field Names Instruction, 6-14
File Control, 2-6, 9-18
FileManage, 9-10
FileMark, 9-11
FillStop, 6-5
Filter Module, OV-4
Filtered FFT Analysis, 7-33
Filtered Voltage Measurements, 3-23, 7-27
FIR Filter, 3-23
FIX, Integer Function, 8-12
Flags, User, 4-8
Flash Memory, 2-1
FlashOut Instruction, 6-8
For Next Loop, 9-11
FP2 Data Format Resolution, 2-2, 2-3
FRAC, Fractional Instruction, 8-9

G
GetRecord Instruction, 8-10
Ground Loop effects, 3-17

H
Hamming Window Function, 3-24, 7-37
Hanning Window Function, 3-24, 7-37
HighPriority, 9-15
Histogram Output Instruction, 6-15
Histogram4D Instruction, 6-16
Historical Data Viewing, OV-14
Humidity Concerns, 1-8

I
I/O Ports, 7-26
IEEE4, 2-2
If Then Else, 9-13
IfTime Instruction, 8-10
IIF Instruction, 8-11
Input/Output Ports, 7-23
INT, Integer Function, 8-12
INT8 Interval Timer Instruction, 7-17
Integration, 3-3
Interval Timing, 7-24
Isolation Module Measurements, 3-18
Isolation Module, OV-5

K
Kaiser-Bessel Window Function, 3-24, 7-37

L
LevelCrossing Instruction, 6-18
Lightning Protection, 1-9
Log, Natural Logarithm Function, 8-12
Logarithmic Spectral Rebinning, 7-44
Logger Files, Retrieve, 2-7
Logic, And, 8-2
Logic, Not, 8-15
Logic, Or, 8-16
Logic, XOR, 8-28
Logical Expressions, 4-7
Long, 2-2
Loop, 9-9
LowPriority, 9-15

M
Math Functions, Derived, 8-28
Mathematical Operations, 4-1
Mathematical Operators, 8-1

CR9000 Index

Index-3

Maximum Output Instruction, 6-21
Maximum, local, 8-17
MaxSpa, Spatial Maximum Instruction, 8-13
Measurements

Analog Voltage Sequence, 3-1
Common Mode Check (R Option), 3-5
Common Mode Range, 3-4
Delay, 3-2
Integration, 3-3
Multiplexed through CR9041, 3-1
Open Sensor Detect, 3-5
Settling Time, 3-6
Single Ended verses Differential, 3-3
with excitation reversal, 3-2

Memory Card, OV-6
Memory, OV-9
Memory, Storage Area, 2-1
MemoryTest Function, 8-13
Minimum Output Instruction, 6-22
Minimum, local, 8-17
MinSpa, Spatial Minimum Instruction, 8-14
MOD, Modulas Function, 8-14
ModuleTemp Measurement, 7-11
Move Function, 8-15
mV1000, 7-4
mV1000R,7-4
mV200, 7-4
mV200c, 7-4
mV200cR, 7-4
mV200R, 7-4
mV50, 7-4
mV500, 7-4
mV5000, 7-4
mV5000R, 7-4
mV50C, 7-4
mV50cR, 7-4

N
Next, 9-11
NextScan, 9-19
Not Operator, 8-15
Numeric Format Options, 4-6

O
Octave Analysis (1/n), 7-44
Open Sensor Detect, 3-5
OpenInterval, 6-3
Operatators, 8-1
Or Operator, 8-16
OutLink, 9-15

P
PamOut Instruction, 6-8

Parameter Types, 4-8
PC Card Instruction, 6-8
PC Card, 2-1
PC9000 Application Software, OV-10
PeakValley Instruction, 8-17
PLA100-L Parallel Link Interface, OV-8
Platinum Resistance Thermometer Measurement,
8-18
Polar Coordinates, 8-21
PortSet Instruction, 7-21
Power Requirements, 1-3, 1-6
Power, External Battery, 1-7
Power, Using Solar Panels, 1-7
Power, Using Vehicle, 1-6
PowerOff Instruction, 9-16
Print Instruction, 9-17
Processing, OV-8
Program Control, 9-18
Programming Structure, 4-2
PRT Instruction, 8-18
Public Declaration, 5-2
Pulse Counter Module, OV-6
Pulse Measurements, 3-26, 7-22
PulseCount Instruction, 7-22
PulseCountReset Instruction, 7-23

R
Rainflow Output Instruction, 6-23
Random Number Generator, 8-20
Random Number, 8-24
Randomize Instruction, 8-20
Read Instruction, 9-7
ReadIO Instruction, 7-23
Real Time Data Viewing, OV-13
RealTime Instruction, 8-20
RectPolar Instruction, 8-21
Remainder Function, 8-14
ResetTable Instruction, 9-17, 9-19
Resistive Bridge Measurements, 3-15
Restore Instruction, 9-7
Reverse Excitation, 3-2
RMSSpa Instruction, 8-22
RND Function, 8-24
RS232 Interface, OV-7
RunDLD File Instruction, 9-18
Running Average, 8-4

S
Safety Precautions, 1-8
Sample Output Instruction, 6-25
Scan Instruction, 4-5, 9-19
Scans, Multiple, 9-22
SDMSpeed Instruction, 7-20
SDMTrigger Instruction, 7-20

CR9000 Index

Index-4

Select Case, 9-20
Serial Input/Output, 7-21
Sgn Function - Sign of Number, 8-25
SIN, Sine Function, 8-26
Single Ended Voltage Measurement, 7-3
SIO4 Instruction, 7-21
SlowSequence Instruction, 9-22
Spatial Average, 8-3
Spatial Covariance, 8-6
Spatial Maximum Function, 8-13
Spatial Minimum Function, 8-14
Spatial RMS, 8-22
Specifications, OV-14
Spectral Options, 7-38
Sqr, Square Root Function, 8-26
SRAM Memory, 2-1
Standard Deviation, 6-25
Standard Deviation, Spatial, 8- 27
Station Name, 5-3
Status Messages, 2-6
StdDev Instruction, 6-25
StdDevSpa Instruction, 8-27
StrainCalc Instruction, 8-22
Sub, Subroutine Declaration, 5-3
Subroutine Calling, 9-6
SubScan Instruction, 7-29
Switching Relays w/ Control Ports, 1-10

T
Tan, Tangent function, 8-27
Task Sequencer, OV-9
TCDiff Instruction, 7-3
TCSE Instruction, 7-4
Thermocouple Accuracy

TypeB, 3-9, 3-10
TypeE, 3-9, 3-10
TypeJ, 3-9, 3-10
TypeK, 3-9, 3-10
TypeR, 3-9, 3-10
TypeS, 3-9, 3-10

Thermocouple Measurements, 3-7
Thermocouple Reference Temperature, 7-11
Thermocouple, Differential Measurement, 7-3
Thermocouple, Single Ended Instruction, 7-4
Time, Datalogger, 8-10
Timer Instruction, 9-23
TimerIO Instruction, 9-24
TL925, OV-7
TOA5 Data File Format, 2-11
TOB1 Binary File Format, 2-12
TOB2 Binary File Format, 2-12
Totalize Output Instruction, 6-26
Trigger Data Output, 6-4
Triggered Measurements, 9-1
Triggered Scan, 9-24, 9-25

True, 4-7
TypeT, 3-9, 3-10

U
Units Declaration, 5-3
Until, 9-9
User Flags, 4-8

V
V10, 7-4
V2, 7-4
V20, 7-4
V2c, 7-4
V50, 7-4
V60, 7-4
Variable Nomenclature Rules, 4-8
VoltDiff Instruction, 7-3
VoltFilt Instruction, 7-27
VoltSe Instruction, 7-3

W
WaitDigTrig, Wait Digital Trigger Instruction, 9-24
WaitLinkTrig, 9-25
Wend, 9-9
While, 9-9
Windowing, 3-24, 7-37
WorstCase, 6-6
WriteIO Instruction, 7-26

X
XOr Function, 8-28

This is a blank page.

Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES

www.campbellsci.com
info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)
PO Box 2450

Somerset West 7129
SOUTH AFRICA

www.csafrica.co.za
sales@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 444

Thuringowa Central
QLD 4812 AUSTRALIA
www.campbellsci.com.au
info@campbellsci.com.au

Campbell Scientific do Brazil Ltda. (CSB)
Rua Luisa Crapsi Orsi, 15 Butantã

CEP: 005543-000 São Paulo SP BRAZIL
www.campbellsci.com.br

suporte@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)
11564 - 149th Street NW

Edmonton, Alberta T5M 1W7
CANADA

www.campbellsci.ca
dataloggers@campbellsci.ca

Campbell Scientific Ltd. (CSL)
Campbell Park

80 Hathern Road
Shepshed, Loughborough LE12 9GX

UNITED KINGDOM
www.campbellsci.co.uk
sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)
Miniparc du Verger - Bat. H

1, rue de Terre Neuve - Les Ulis
91967 COURTABOEUF CEDEX

FRANCE
www.campbellsci.fr

campbell.scientific@wanadoo.fr

Campbell Scientific Spain, S. L.
Psg. Font 14, local 8

08013 Barcelona
SPAIN

www.campbellsci.es
info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or International representative.

mailto:suporte@campbellsci.com.br

	Revision and Copyright Information
	Warranty and Assistance
	Table of Contents
	Overview
	OV1. Physical Description
	OV1.1 Basic System
	CR9031 CPU Module
	CR9041 A/D and Amplifier Module
	CR9011 Power Supply Module and AC Adapter

	OV1.2 Measurement Modules
	CR9050(E) Analog Input Module
	CR9051E Fault Protected 5V Analog Input Module
	CR9052DC Anti-Alias Filter Module with DC Excitation
	CR9052IEPE Anti-Alias Filter Module with DC Excitation
	CR9058E Isolation Module
	CR9055 50-Volt Analog Input Module
	CR9060 Excitation Module
	CR9070 Counter - Timer / Digital I/O Module — Obsolete
	CR9071E Counter and Digital I/O Module
	Data Storage Peripheral and Memory Module

	OV1.3 Communication Interfaces
	TL925 RS232-TLINK Interface
	BLC100 Bus Link Card and Fiber Optic Link Interface — Obsole
	PLA100-L Parallel Link Interface

	OV2. Memory and Programming Concepts
	OV2.1 Memory
	OV2.2 Measurements, Processing, Data Storage
	OV2.3 Data Tables

	OV3. PC9000 Application Software
	OV3.1 Hardware and Software Requirements
	OV3.2 PC9000 Installation
	OV3.3 PC9000 Software Overview

	OV4. Specifications

	Section 1. Installation
	1.1 Enclosure
	1.1.1 Connecting Sensors
	1.1.2 Quick Connectors
	1.1.3 Junction Boxes

	1.2 System Power Requirements and Options
	1.2.1 Power Supply and Charging Circuitry
	1.2.2 Connecting to Vehicle Power Supply
	1.2.3 Solar Panels
	1.2.4 External Battery Connection
	1.2.5 Safety Precautions

	1.3 Humidity Effects and Control
	1.3.1 Desiccant
	1.3.2 Nitrogen Purging

	1.4 Recommended Grounding Practices
	1.4.1 Protection from Lightning
	1.4.2 Effect on Measurements: Common Mode Range

	1.5 Use of Digital Control Ports for Switching Relays

	Section 2. Data Storage and Retrieval
	2.1 Data Storage in CR9000
	2.1.1 Internal Static Ram
	2.1.2 Internal Flash Memory
	2.1.3 9080 PAM Module – PCMCIA PC Card

	2.2 Internal Data Format
	2.3 Data Collection
	2.3.1 The Collect Menu
	2.3.1.1 File Type
	2.3.1.2 Collection Method
	2.3.1.3 Table Selection
	2.3.1.4 File Control
	2.3.1.5 Status Messages

	2.3.2 RealTime Write File
	2.3.3 Logger Files Retrieve
	2.3.4 Via PCMCIA PC Card
	2.3.4.1 Removing Card from CR9000
	2.3.4.2 Converting File Format

	2.4 Data Format on Computer
	2.4.1. Header Information
	2.4.2 TOA5 ASCII File Format
	2.4.3 TOB1 Binary File Format
	2.4.4 TOB2 Binary File Format

	Section 3. CR9000 Measurement Details
	3.1 Measurements using the CR9041 A/D
	3.1.1 Analog Voltage Measurement Sequence
	3.1.1.1 Reversing Excitation or the Differential Input
	3.1.1.2 Delay
	3.1.1.3 Integration

	3.1.2 Single Ended and Differential Voltage Measurements
	3.1.2.1 Single Ended Voltage Range
	3.1.2.2 Differential Voltage Range

	3.1.3 Signal Settling Time
	3.1.4 Thermocouple Measurements
	3.1.4.1 Error Analysis
	Reference Junction Temperature with 9050
	Thermocouple Limits of Error
	Accuracy of the Thermocouple Voltage Measurement
	Noise on Voltage Measurement
	Thermocouple Polynomial: Voltage to Temperature
	Reference Junction Compensation: Temperature to Voltage
	Error Summary

	3.1.4.2 Use of External Reference Junction or Junction Box

	3.1.5 Bridge Resistance Measurements
	3.1.6 Measurements Requiring AC Excitation
	3.1.7 Influence of Ground Loop on Measurements

	3.2 CR9058E Isolation Module Measurements
	3.2.1 CR9058E Supported Instructions
	3.2.2 CR9058E Sampling, Noise and Filtering

	3.3 CR9052 Filter Module Measurements
	3.4 Pulse Count Measurements
	3.4.1 High Frequency Pulse Measurements

	Section 4. CRBasic - Native Language Programming
	4.1 Format Introduction
	4.1.1 Mathematical Operations
	4.1.2 Measurement and Output Processing Instructions
	4.1.3 Inserting Comments Into Program

	4.2 Programming Sequence
	4.3 Example Program
	4.3.1 Data Tables
	4.3.2 The Scan -- Measurement Timing and Processing

	4.4 Numerical Entries
	4.5 Logical Expression Evaluation
	4.5.1 What is true?
	4.5.2 Expression Evaluation
	4.5.3 Numeric Results of Expression Evaluation

	4.6 Flags
	4.7 Parameter Types
	4.7.2 Arrays of Multiplier Offsets for Sensor Calibration
	4.7.1 Expressions in Parameters

	4.8 Program Access to Data Tables

	Section 5. Program Declarations
	ALIAS
	CONST
	DIM
	PUBLIC
	STATION NAME
	UNITS
	SUB, EXIT SUB, END SUB

	Section 6. Data Table Declarations and Output Processing Instructions
	6.1 Data Table Declaration
	DataTable (Name, TrigVar, Size)
	EndTable

	6.2 Trigger Modifiers
	DataInterval (TintoInt, Interval, Units, Lapses)
	OpenInterval
	DataEvent (PreTrigRecs, StartTrig, StopTrig, PostTrigRecs)
	FillStop
	WorstCase (TableName, NumCases, MaxMin, Change, RankVar)

	6.3 Export Data Instructions
	DSP4 (FlagVar, Rate)
	FlashOut (Size)
	PamOut (Slot, Card, StopRing, Size)

	6.4 Output Processing Instructions
	Average (Reps, Source, DataType, DisableVar)
	Covariance (NumVals, Source, DataType, DisableVar, NumCov)
	FFT (Source, DataType, N, Tau, Units, Option)
	FieldNames “list of fieldnames”
	Histogram (BinSelect, DataType, DisableVar, Bins, Form, WtVa
	Histogram4D (BinSelect, Source, DataType, DisableVar, Bins1,
	LevelCrossing (Source, DataType, DisableVar, NumLevels, 2ndD
	Maximum (Reps, Source, DataType, DisableVar, Time)
	Minimum (Reps, Source, DataType, DisableVar, Time)
	RainFlow (Source, DataType, DisableVar, MeanBins, AmpBins, L
	Sample (Reps, Source, DataType)
	StdDev (Reps, Source, DataType, DisableVar)
	Totalize (Reps, Source, DataType, DisableVar)

	Section 7. Measurement Instructions
	7.1 Voltage Measurements
	VoltDiff (Dest, Reps, Range, ASlot, DiffChan, RevDiff, Settl
	VoltSE (Dest, Reps, Range, ASlot, SEChan, SettlingTime, Inte

	7.2 Thermocouple Measurements
	TCDiff (Dest, Reps, Range, ASlot, DiffChan, TCType, TRef, Re
	TCSE (Dest, Reps, Range, ASlot, SEChan, TCType, TRef, Settli

	7.3 Half Bridges
	BrHalf (Dest, Reps, Range, ASlot, SEChan, ExSlot, ExChan, Me
	BrHalf3W (Dest, Reps, Range, ASlot, SEChan, ExSlot, ExChan,
	BrHalf4W (Dest, Reps, Range1, Range2, ASlot, DiffChan, ExSlo

	7.4 Full Bridges
	BrFull (Dest, Reps, Range, ASlot, DiffChan, ExSlot, ExChan,
	BrFull6W (Dest, Reps, Range1, Range2, ASlot, DiffChan, ExSlo

	7.5 Excitation/Continuous Analog Output
	Excite (ExSlot, ExChan, ExmV, SettlingTime)

	7.6 Self Measurements
	Battery (Dest, BattOpt)
	ModuleTemp (Dest, Reps, ASlot, Integ)
	Calibrate
	BiasComp

	7.7 Peripheral Devices
	AM25T (AM25TChan, CardAnlg, ChanAnlg, CardPort, ClkPort, Res
	CANBUS (Dest, SDMAddress, TimeQuanta, TSEG1, TSEG2, ID, Data
	CSAT3 (Dest, Reps, Address, Command)
	INT8 INTERVAL TIMER
	SDMSpeed (SDMSpeed)
	SDMTrigger
	SIO4 (Dest, Reps, Address, Mode, Command, FirstOp, SecOp, Va

	7.8 Digital I/O
	PortSet (ExSlot, Port, State)
	PulseCount (Dest, Reps, PSlot, PChan, PConfig, POption, Mult
	PulseCountReset
	ReadIO (Dest, PSlot, Mask)
	TimerIO (Dest, PSlot, Edges 16–9, Edges 8–1, Function 16–9,
	WriteIO (PSlot, Mask, Source)

	7.9 CR9052DC Filter Module Measurements
	VoltFilt (Dest, Reps, Range, FSlot, Chan, FiltOption, Excita
	SubScan (SubInterval, Units, SubRatio)
	Bursting to CPU and PAM Memory
	Bursting to Filter Module Memory
	FFTFilt (Dest, Reps, Range, Fslot, Channel, FiltOption, Exci
	FFTSample (Source, DataType)

	Section 8. Processing and Math Instructions
	Absolute Value
	And Operator
	Atn()
	Spatial Average
	Running Average
	Cosine
	Spatial Covariance
	Exp
	FFTSpa (Dest, N, Source, Tau, Units, Option)
	Fractional Part
	Get Record
	IfTime
	IIF
	Int, Fix Functions
	Log Function
	Memory Test
	Spatial Maximum
	Spatial Minimum
	Mod
	Move
	NOT
	OR Operator
	PeakValley (DestPV, DestChange, Reps, Source, Hysteresis)
	PRT (Dest, Reps, Source, Mult, Offset)
	Randomize
	RealTime
	RectPolar (Dest, Source)
	Spatial RMS
	StrainCalc
	Rnd Function
	Sgn Function
	Sine Function
	Sqr Function
	Spatial Standard Deviation
	Tangent Function
	XOR
	Derived Math Functions

	Section 9. Program Control Instructions
	BeginProg, EndProg
	BeginBurstTrigger, EndBurstTrigger
	BeginBurstTrigger, EndBurstTriggerSequence
	Call
	Call Table
	Data, Read, Restore
	ClockSet (Source).
	Delay
	Do
	FileManage
	FileMark(TableName)
	For ... Next Statement
	If ... Then ... Else Statement
	LowPriority
	OutLink (Source, Reps, Link)
	Power Off
	Print list of variables or quoted text
	Reset Table
	RunDLDFile
	Reset Table
	Scan
	Select Case Statement
	Slow Sequence
	Timer
	Wait Digital Trigger
	WaitLinkTrig (Dest, Reps, Link)

	Appendix A. Keywords and Predefined Constants
	CR9000 Index
	Campbell Scientific Contact Information

