
Revision: 11/2023
Copyright © 2023
Campbell Scientific, Inc.

CR1000X
Measurement and Control Datalogger

PRODUCT MANUAL

Please read first
About this manual

Please note that this manual was produced by Campbell Scientific Inc. primarily for the North
American market. Some spellings, weights and measures may reflect this. In addition, while most
of the information in the manual is correct for all countries, certain information is specific to the
North American market and so may not be applicable to European users. Differences include the
U.S. standard external power supply details where some information (for example the AC
transformer input voltage) will not be applicable for British/European use. Please note, however,
that when a power supply adapter is ordered from Campbell Scientific it will be suitable for use in
your country.

Reference to some radio transmitters, digital cell phones and aerials (antennas) may also not be
applicable according to your locality. Some brackets, shields and enclosure options, including
wiring, are not sold as standard items in the European market; in some cases alternatives are
offered.

Recycling information for countries subject to WEEE regulations 2012/19/EU

At the end of this product’s life it should not be put in commercial or domestic refuse
but sent for recycling. Any batteries contained within the product or used during the
products life should be removed from the product and also be sent to an appropriate
recycling facility, per The Waste Electrical and Electronic Equipment (WEEE)
Regulations 2012/19/EU. Campbell Scientific can advise on the recycling of the
equipment and in some cases arrange collection and the correct disposal of it,
although charges may apply for some items or territories. For further support, please
contact Campbell Scientific, or your local agent.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32012L0019
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32012L0019

Table of Contents
1. Introduction 1

2. Precautions 2

3. Initial inspection 3

4. CR1000X data acquisition system components 4
4.1 The CR1000X Datalogger 5

4.1.1 Overview 5
4.1.2 Operations 6
4.1.3 Programs 6

4.2 Sensors 6

5. Wiring panel and terminal functions 8
5.1 Power input 11

5.1.1 Powering a data logger with a vehicle 12
5.1.2 Power LED indicator 12

5.2 Power output 12
5.3 Grounds 13
5.4 Communications ports 15

5.4.1 USB device port 15
5.4.2 Ethernet port 15
5.4.3 C terminals for communications 16

5.4.3.1 SDI-12 ports 16
5.4.3.2 RS-232, RS-422, RS-485, TTL, and LVTTL ports 16
5.4.3.3 SDM ports 16

5.4.4 CS I/O port 17
5.4.5 RS-232/CPI port 18

5.5 Programmable logic control 19

6. Setting up the CR1000X 21
6.1 Setting up communications with the data logger 21

6.1.1 USB or RS-232 communications 22
6.1.2 Virtual Ethernet over USB (RNDIS) 24
6.1.3 Ethernet communications option 25

Table of Contents - i

6.1.3.1 Configuring data logger Ethernet settings 25
6.1.3.2 Ethernet LEDs 26
6.1.3.3 Setting up Ethernet communications between the data logger and
computer 26

6.2 Testing communications with EZSetup 28
6.3 Making the software connection 29
6.4 Creating a Short Cut data logger program 29
6.5 Sending a program to the data logger 32

7. Working with data 34
7.1 Default data tables 34
7.2 Collecting data 35

7.2.1 Collecting data using LoggerNet 35
7.2.2 Collecting data using PC400 36

7.3 Viewing historic data 36
7.4 Data types and formats 37

7.4.1 Variables 37
7.4.2 Constants 38
7.4.3 Data storage 39

7.5 About data tables 40
7.5.1 Table definitions 41

7.5.1.1 Header rows 41
7.5.1.2 Data records 43

7.6 Creating data tables in a program 43

8. Data memory 46
8.1 Data tables 46
8.2 Memory allocation 47
8.3 SRAM 47

8.3.1 USR drive 48
8.4 Flash memory 49

8.4.1 CPU drive 49
8.5 MicroSD (CRD: drive) 49

8.5.1 Formatting microSD cards 51
8.5.2 MicroSD card precautions 51
8.5.3 Act LED indicator 51
8.5.4 Card data retrieval 52

8.5.4.1 Via a communications link 52

Table of Contents - ii

8.5.4.2 Card transport to computer 53

9. Measurements 57
9.1 Voltage measurements 57

9.1.1 Single-ended measurements 58
9.1.2 Differential measurements 59

9.1.2.1 Reverse differential 59
9.2 Current-loop measurements 59

9.2.1 Example current-loop measurement connections 60
9.3 Resistance measurements 61

9.3.1 Resistance measurements with voltage excitation 62
9.3.2 RTD and PRT 64
9.3.3 Strain measurements 65
9.3.4 AC excitation 67
9.3.5 Accuracy for resistance measurements 67

9.4 Thermocouple Measurements 68
9.5 Period-averaging measurements 69
9.6 Pulse measurements 70

9.6.1 Low-level AC measurements 71
9.6.2 High-frequency measurements 72

9.6.2.1 P terminals 72
9.6.2.2 C terminals 72

9.6.3 Switch-closure and open-collector measurements 73
9.6.3.1 P Terminals 73
9.6.3.2 C terminals 74

9.6.4 Edge timing and edge counting 74
9.6.4.1 Single edge timing 74
9.6.4.2 Multiple edge counting 74
9.6.4.3 Timer input NAN conditions 74

9.6.5 Quadrature measurements 75
9.6.6 Pulse measurement tips 76

9.6.6.1 Input filters and signal attenuation 76
9.6.6.2 Pulse count resolution 76

9.7 Vibrating wire measurements 77
9.7.1 VSPECT® 77

9.8 Sequential and pipeline processing modes 77
9.8.1 Sequential mode 78

Table of Contents - iii

9.8.2 Pipeline mode 78
9.8.3 Slow Sequences 79

10. Communications protocols 80
10.1 General serial communications 81

10.1.1 RS-232 83
10.1.2 RS-485 84
10.1.3 RS-422 85
10.1.4 TTL 85
10.1.5 LVTTL 86
10.1.6 TTL-Inverted 86
10.1.7 LVTTL-Inverted 87

10.2 Modbus communications 87
10.2.1 About Modbus 88
10.2.2 Modbus protocols 89
10.2.3 Understanding Modbus Terminology 90
10.2.4 Connecting Modbus devices 90
10.2.5 Modbus client-server protocol 91
10.2.6 About Modbus programming 91

10.2.6.1 Endianness 92
10.2.6.2 Function codes 92

10.2.7 Modbus information storage 93
10.2.7.1 Registers 93
10.2.7.2 Coils 94
10.2.7.3 Data Types 94

Unsigned 16-bit integer 95
Signed 16-bit integer 95
Signed 32-bit integer 95
Unsigned 32-bit integer 95
32-Bit floating point 95

10.2.8 Modbus tips and troubleshooting 96
10.2.8.1 Error codes 96

Result code -01: illegal function 96
Result code -02: illegal data address 96
Result code -11: COM port error 97

10.3 Internet communications 97
10.3.1 IP address 98

Table of Contents - iv

10.3.2 HTTPS server 98
10.3.3 FTP server 98

10.4 MQTT 100
10.4.1 Sending data to CAMPBELL CLOUD 100

10.4.1.1 Configure the data logger 100
10.4.1.2 Program the data logger 102
10.4.1.3 Set up the CLOUD 103

10.4.2 Sending data to another MQTT broker 109
10.4.2.1 Configure the data logger 109
10.4.2.2 Program the data logger 112
10.4.2.3 Check broker for incoming data 112

10.5 DNP3 communications 114
10.6 Serial peripheral interface (SPI) and I2C 115
10.7 PakBus communications 115
10.8 SDI-12 communications 116

10.8.1 SDI-12 transparent mode 116
10.8.1.1 Watch command (sniffer mode) 118
10.8.1.2 SDI-12 transparent mode commands 118
10.8.1.3 aXLOADOS! command 119

10.8.2 SDI-12 programmed mode/recorder mode 120
10.8.3 Programming the data logger to act as an SDI-12 sensor 121
10.8.4 SDI-12 power considerations 121

11. Installation 123
11.1 Default program 124
11.2 Data logger security 125

11.2.1 Device Configuration Utility Security Check 125
11.2.1.1 PakBus 126
11.2.1.2 Web services 126

HTTP 126
HTTPS 127

11.2.1.3 Network services 127
FTP 127
Telnet 127
Ping 128

11.2.1.4 Operating System Status 128
11.2.2 Other security measures reviewed by Device Configuration Utility 128

Table of Contents - v

11.2.2.1 PakBus TCP Enabled 128
11.2.2.2 Account manager 128
11.2.2.3 IP Broadcast Filtered 128
11.2.2.4 Other communications protocols 129

11.2.3 TLS 129
11.2.3.1 Obtaining certificate and private key 130

From a Certificate Authority 130
From your IT department 132

11.2.3.2 Applying keys and certificates to CSI Web Server 133
11.2.4 Other security measures 135

11.2.4.1 CRBasic 135
11.2.4.2 Other 135
11.2.4.3 The .csipasswd file 136

Deprecated API functionality 138
11.3 Web interface 138
11.4 Power budgeting 138
11.5 Field work 139
11.6 Data logger enclosures 139
11.7 Electrostatic discharge and lightning protection 140

12. CR1000X maintenance 142
12.1 Data logger calibration 142

12.1.1 About background calibration 143
12.2 Internal battery 143

12.2.1 Replacing the internal battery 144
12.3 Updating the operating system 146

12.3.1 Sending an operating system to a local data logger 147
12.3.2 Sending an operating system to a remote data logger 148

12.4 gzip 149
12.5 File management via powerup.ini 150

12.5.1 Syntax 151
12.5.2 Example powerup.ini files 152

13. Tips and troubleshooting 154
13.1 Checking station status 155

13.1.1 Viewing station status 155
13.1.2 Watchdog errors 156
13.1.3 Results for last program compiled 157

Table of Contents - vi

13.1.4 Skipped scans 157
13.1.5 Skipped records 157
13.1.6 Variable out of bounds 157
13.1.7 Battery voltage 158

13.2 Understanding NAN and INF occurrences 158
13.3 Timekeeping 159

13.3.1 Clock best practices 159
13.3.2 Time stamps 159
13.3.3 Avoiding time skew 160

13.4 CRBasic program errors 161
13.4.1 Program does not compile 161
13.4.2 Program compiles but does not run correctly 162

13.5 Resetting the data logger 162
13.5.1 Processor reset 162
13.5.2 Program send reset 162
13.5.3 Manual data table reset 163
13.5.4 Formatting drives 163
13.5.5 Full memory reset 163

13.6 Troubleshooting power supplies 164
13.7 Using terminal mode 164

13.7.1 Serial talk through and comms watch 167
13.7.2 SDI-12 transparent mode 167

13.7.2.1 Watch command (sniffer mode) 169
13.7.2.2 SDI-12 transparent mode commands 169

13.8 Ground loops 170
13.8.1 Common causes 170
13.8.2 Detrimental effects 170
13.8.3 Severing a ground loop 172
13.8.4 Soil moisture example 173

13.9 Improving voltage measurement quality 174
13.9.1 Deciding between single-ended or differential measurements 174
13.9.2 Minimizing ground potential differences 176

13.9.2.1 Ground potential differences 176
13.9.3 Detecting open inputs 177
13.9.4 Minimizing power-related artifacts 177

13.9.4.1 Minimizing electronic noise 178
13.9.5 Filtering to reduce measurement noise 179

Table of Contents - vii

13.9.5.1 CR1000X filtering details 180
13.9.6 Minimizing settling errors 180

13.9.6.1 Measuring settling time 181
13.9.7 Factors affecting accuracy 183

13.9.7.1 Measurement accuracy example 183
13.9.8 Minimizing offset voltages 184

13.9.8.1 Compensating for offset voltage 186
13.9.8.2 Measuring ground reference offset voltage 187

13.10 Field calibration 188
13.11 File system error codes 188
13.12 File name and resource errors 190
13.13 Background calibration errors 190

14. Information tables and settings (advanced) 191
14.1 DataTableInfo table system information 192

14.1.1 DataFillDays 192
14.1.2 DataRecordSize 192
14.1.3 DataTableName 192
14.1.4 RecNum 193
14.1.5 SecsPerRecord 193
14.1.6 SkippedRecord 193
14.1.7 TimeStamp 193

14.2 Status table system information 193
14.2.1 Battery 193
14.2.2 BuffDepth 194
14.2.3 CalCurrent 194
14.2.4 CalGain 194
14.2.5 CalOffset 194
14.2.6 CalRefOffset 194
14.2.7 CalRefSlope 194
14.2.8 CalVolts 194
14.2.9 CardStatus 194
14.2.10 CommsMemFree 195
14.2.11 CompileResults 195
14.2.12 ErrorCalib 195
14.2.13 FullMemReset 195
14.2.14 LastSystemScan 195

Table of Contents - viii

14.2.15 LithiumBattery 195
14.2.16 Low12VCount 195
14.2.17 MaxBuffDepth 196
14.2.18 MaxProcTime 196
14.2.19 MaxSystemProcTime 196
14.2.20 MeasureOps 196
14.2.21 MeasureTime 196
14.2.22 MemoryFree 196
14.2.23 MemorySize 197
14.2.24 Messages 197
14.2.25 OSDate 197
14.2.26 OSSignature 197
14.2.27 OSVersion 197
14.2.28 PakBusRoutes 197
14.2.29 PanelTemp 197
14.2.30 PortConfig 198
14.2.31 PortStatus 198
14.2.32 ProcessTime 198
14.2.33 ProgErrors 198
14.2.34 ProgName 198
14.2.35 ProgSignature 198
14.2.36 RecNum 199
14.2.37 RevBoard 199
14.2.38 RunSignature 199
14.2.39 SerialNumber 199
14.2.40 SkippedScan 199
14.2.41 SkippedSystemScan 199
14.2.42 StartTime 200
14.2.43 StartUpCode 200
14.2.44 StationName 200
14.2.45 SW12Volts 200
14.2.46 SystemProcTime 200
14.2.47 TimeStamp 200
14.2.48 VarOutOfBound 201
14.2.49 WatchdogErrors 201
14.2.50 WiFiUpdateReq 201

14.3 CPIStatus system information 201

Table of Contents - ix

14.3.1 BusLoad 201
14.3.2 ModuleReportCount 202
14.3.3 ActiveModules 202
14.3.4 BuffErr (buffer error) 202
14.3.5 RxErrMax 202
14.3.6 TxErrMax 202
14.3.7 FrameErr (frame errors) 202
14.3.8 ModuleInfo array 203

14.4 Settings 203
14.4.1 Baudrate 204
14.4.2 Beacon 204
14.4.3 CentralRouters 204
14.4.4 CommsMemAlloc 204
14.4.5 ConfigComx 205
14.4.6 CSIOxnetEnable 205
14.4.7 CSIOInfo 205
14.4.8 DisableLithium 206
14.4.9 DeleteCardFilesOnMismatch 206
14.4.10 DNS 206
14.4.11 EthernetInfo 206
14.4.12 EthernetPower 207
14.4.13 FilesManager 207
14.4.14 FTPEnabled 207
14.4.15 FTPPassword 207
14.4.16 FTPPort 207
14.4.17 FTPUserName 207
14.4.18 HTTPEnabled 208
14.4.19 HTTPHeader 208
14.4.20 HTTPPort 208
14.4.21 HTTPSEnabled 208
14.4.22 HTTPSPort 208
14.4.23 IncludeFile 208
14.4.24 IPAddressCSIO 209
14.4.25 IPBroadcastFiltered 209
14.4.26 IPAddressEth 209
14.4.27 IPGateway 209
14.4.28 IPGatewayCSIO 209

Table of Contents - x

14.4.29 IPMaskCSIO 210
14.4.30 IPMaskEth 210
14.4.31 IPTrace 210
14.4.32 IPTraceCode 210
14.4.33 IPTraceComport 210
14.4.34 IsRouter 211
14.4.35 KeepAliveURL (Ping keep alive URL) 211
14.4.36 KeepAliveMin (Ping keep alive timeout value) 211
14.4.37 MaxPacketSize 211
14.4.38 Neighbors 211
14.4.39 NTPServer 212
14.4.40 PakBusAddress 212
14.4.41 PakBusEncryptionKey 212
14.4.42 PakBusNodes 212
14.4.43 PakBusPort 213
14.4.44 PakBusTCPClients 213
14.4.45 PakBusTCPEnabled 213
14.4.46 PakBusTCPPassword 213
14.4.47 PingEnabled 213
14.4.48 PCAP 213
14.4.49 pppDial 214
14.4.50 pppDialResponse 214
14.4.51 pppInfo 214
14.4.52 pppInterface 214
14.4.53 pppIPAddr 215
14.4.54 pppPassword 215
14.4.55 pppUsername 215
14.4.56 RouteFilters 215
14.4.57 RS232Handshaking 215
14.4.58 RS232Power 216
14.4.59 RS232Timeout 216
14.4.60 Security(1), Security(2), Security(3) 216
14.4.61 ServicesEnabled 216
14.4.62 TCPClientConnections 216
14.4.63 TCP_MSS 216
14.4.64 TCPPort 216
14.4.65 TelnetEnabled 217

Table of Contents - xi

14.4.66 TLSConnections (Max TLS Server Connections) 217
14.4.67 TLSPassword 217
14.4.68 TLSStatus 217
14.4.69 USBConfig (Configure USB) 217
14.4.70 USBEnumerate 218
14.4.71 USRDriveFree 218
14.4.72 USRDriveSize 218
14.4.73 UTCOffset 218
14.4.74 Verify 219
14.4.75 MQTT settings 219

14.4.75.1 CampbellCloudEnable (Enable or disable CAMPBELL CLOUD) 219
14.4.75.2 CloudConfigURL (CLOUD configuration URL) 219
14.4.75.3 MQTTBaseTopic (MQTT base topic) 220
14.4.75.4 MQTTCleanSession (MQTT connection) 220
14.4.75.5 MQTTClientID (MQTT client identifier) 220
14.4.75.6 MQTTEnable (Enable or disable MQTT) 220
14.4.75.7 MQTTEndpoint (MQTT broker URL) 221
14.4.75.8 MQTTKeepAlive (MQTT keep alive) 221
14.4.75.9 MQTTPassword (MQTT password) 221
14.4.75.10 MQTTPortNumber (MQTT port number) 221
14.4.75.11 MQTTStatusInterval (Status information publish interval) 221
14.4.75.12 MQTTState (MQTT state) 221
14.4.75.13 MQTTStateInterval (State publish interval) 222
14.4.75.14 MQTTUserName (MQTT user name) 223
14.4.75.15 MQTTWillMessage (MQTT last will message) 223
14.4.75.16 MQTTWillQoS (Quality of service) 223
14.4.75.17 MQTTWillRetain (MQTT last will message retained by broker) 223
14.4.75.18 MQTTWillTopic (MQTT last will topic) 223

14.4.76 GOES settings 224
14.4.76.1 GOESComPort 224
14.4.76.2 GOESEnabled 224
14.4.76.3 GOESGainSetting 225
14.4.76.4 GOESMsgWindow 225
14.4.76.5 GOESPlatformID 225
14.4.76.6 GOESRepeatCount 225
14.4.76.7 GOESRTBaudRate 225
14.4.76.8 GOESRTChannel 226

Table of Contents - xii

14.4.76.9 GOESRTInterval 226
14.4.76.10 GOESSTBaudRate 226
14.4.76.11 GOESSTChannel 226
14.4.76.12 GOESSTInterval 226
14.4.76.13 GOESSTOffset 227

15. CR1000X specifications 228
15.1 System specifications 228
15.2 Physical specifications 229
15.3 Power requirements 229
15.4 Power output specifications 230

15.4.1 System power out limits (when powered with 12 VDC) 230
15.4.2 12 V and SW12 V power output terminals 230
15.4.3 5 V fixed output 231
15.4.4 C as power output 231
15.4.5 CS I/O pin 1 231
15.4.6 Voltage excitation 232

15.5 Analog measurement specifications 232
15.5.1 Voltage measurements 232
15.5.2 Resistance measurement specifications 234
15.5.3 Period-averaging measurement specifications 235
15.5.4 Current-loop measurement specifications 236

15.6 Pulse measurement specifications 236
15.6.1 Switch closure input 236
15.6.2 High-frequency input 237
15.6.3 Low-level AC input 237

15.7 Digital input/output specifications 237
15.7.1 Switch closure input 238
15.7.2 High-frequency input 238
15.7.3 Edge timing 238
15.7.4 Edge counting 239
15.7.5 Quadrature input 239
15.7.6 Pulse-width modulation 239

15.8 Communications specifications 239
15.9 Standards compliance specifications 240

Appendix A. MQTT commands 241
A.1 MQTT topic structure 241

Table of Contents - xiii

A.2 MQTT automatic publish topics 242
A.2.1 state 242
A.2.2 statusInfo 242
A.2.3 watchdogEvent 243

A.3 MQTT command and control (automatic subscription topics) 244
A.3.1 Command response 244
A.3.2 OS download 245
A.3.3 CRBasic program download 245
A.3.4 New mqtt configuration 246
A.3.5 Edit constant table (editConst) 246
A.3.6 Reboot data logger 247
A.3.7 File control 247

A.3.7.1 list 248
A.3.8 Settings 248

A.3.8.1 set 248
A.3.8.2 download from CLOUD 249

download 249
A.3.8.3 Delete a file 250
A.3.8.4 Stop 250
A.3.8.5 Run 250
A.3.8.6 Upload to CLOUD 250
A.3.8.7 publish 251
A.3.8.8 apply 251

A.3.9 Historic Data Collection 252
A.3.10 Set Public Variable 252

A.3.10.1 setVar 252
A.3.11 Get Public variable 253

A.3.11.1 getVar 253
A.3.12 Serial talkThru 253

A.3.12.1 Talk through to sensor 253
A.3.12.2 TalkThru from sensor 254
A.3.12.3 Allowable Com port values 254

Appendix B. Glossary 256

Table of Contents - xiv

1. Introduction
The CR1000X is our flagship data logger that provides measurement and control for a wide
variety of applications. Its reliability and ruggedness make it an excellent choice for remote
environmental applications, including weather stations, mesonet systems, wind profiling, air
quality monitoring, hydrological systems, water quality monitoring, and hydrometeorological
stations.

The CR1000X is a low-powered device that measures sensors, drives direct communications and
telecommunications, analyzes data, controls external devices, and stores data and programs in
onboard, nonvolatile storage. The electronics are RF-shielded by a unique sealed, stainless-steel
canister. A battery-backed clock assures accurate timekeeping. The onboard, BASIC-like
programming language supports data processing and analysis routines.

The Getting Started Guide provides an introduction to data acquisition and walks you
through a procedure to set up a simple system. You may not find it necessary to progress beyond
this. However, should you want to dig deeper into the complexity of the data logger functions or
quickly look for details, extensive information is available in this and other Campbell Scientific
manuals.

Additional Campbell Scientific publications are available online at www.campbellsci.com .
Video tutorials are available at www.campbellsci.com/videos . Generally, if a particular feature
of the data logger requires a peripheral hardware device, more information is available in the
help or manual written for that device.

1. Introduction 1

https://s.campbellsci.com/documents/us/manuals/cr1000x-getting-started-guide.pdf
http://www.campbellsci.com/
https://www.campbellsci.com/videos

2. Precautions
READ AND UNDERSTAND the Safety section at the back of this manual.

An authorized technician shall verify that the installation and use of this product is in accordance
to the manufacturer’s instructions, recommendations and intended use.

Although the CR1000X is rugged, it should be handled as a precision scientific instrument.

Maintain a level of calibration appropriate to the application. Campbell Scientific recommends
factory recalibration every three years.

2. Precautions 2

3. Initial inspection
Upon receiving the CR1000X, inspect the packaging and contents for damage. File damage
claims with the shipping company.

Immediately check package contents. Thoroughly check all packaging material for product that
may be concealed. Check model numbers, part numbers, and product descriptions against the
shipping documents. Model or part numbers are found on each product. Report any
discrepancies to Campbell Scientific.

Check the CR1000X operating system version as outlined in Updating the operating system (p.
146), and update as needed. CR1000X data loggers with Serial Numbers 34000 and newer have
hardware requiring the use of OS version 5.02 or newer.

3. Initial inspection 3

4. CR1000X data acquisition
system components
A basic data acquisition system consists of sensors, measurement hardware, and a computer with
programmable software. The objective of a data acquisition system should be high accuracy,
high precision, and resolution as high as appropriate for a given application.

The components of a basic data acquisition system are shown in the following figure.

Following is a list of typical data acquisition system components:

 l Sensors - Electronic sensors convert the state of a phenomenon to an electrical signal (see
Sensors (p. 6) for more information).

 l Data logger - The data logger measures electrical signals or reads serial characters. It
converts the measurement or reading to engineering units, performs calculations, and
reduces data to statistical values. Data is stored in memory to await transfer to a computer
by way of an external storage device or a communications link.

4. CR1000X data acquisition system components 4

 l Data Retrieval and Communications - Data is copied (not moved) from the data logger,
usually to a computer, by one or more methods using data logger support software. Most
communications options are bi-directional, which allows programs and settings to be sent
to the data logger. For more information, see Sending a program to the data logger (p. 32).

 l Datalogger Support Software - Software retrieves data, sends programs, and sets settings.
The software manages the communications link and has options for data display.

 l Programmable Logic Control - Some data acquisition systems require the control of
external devices to facilitate a measurement or to control a device based on
measurements. This data logger is adept at programmable logic control. See
Programmable logic control (p. 19) for more information.

 l Measurement and Control Peripherals - Sometimes, system requirements exceed the
capacity of the data logger. The excess can usually be handled by addition of input and
output expansion modules.

4.1 The CR1000X Datalogger
The CR1000X is used in a broad range of measurement and control projects. Rugged enough for
extreme conditions and reliable enough for remote environments, it plays a critical role in
numerous complex applications. Used in applications all over the world, it is a powerful core
component for your data acquisition system.

4.1.1 Overview
The CR1000X data logger is the main part of a data acquisition system (see CR1000X data
acquisition system components (p. 4) for more information). It has a central-processing unit
(CPU), analog and digital measurement inputs, analog and digital outputs, and memory. An
operating system (firmware) coordinates the functions of these parts in conjunction with the
onboard clock and the CRBasic application program.

The CR1000X can simultaneously provide measurement and communications functions. Low
power consumption allows the data logger to operate for extended time on a battery recharged
with a solar panel, eliminating the need for ac power. The CR1000X temporarily suspends
operations when primary power drops below 9.6 V, reducing the possibility of inaccurate
measurements.

The electronics are RF shielded and protected by the sealed, stainless-steel canister, making the
CR1000X economical, small, and very rugged. A battery-backed clock assures accurate
timekeeping.

4. CR1000X data acquisition system components 5

4.1.2 Operations
The CR1000X measures almost any sensor with an electrical response, drives direct
communications and telecommunications, reduces data to statistical values, performs
calculations, and controls external devices. After measurements are made, data is stored in
onboard, nonvolatile memory. Because most applications do not require that every
measurement be recorded, the program usually combines several measurements into
computational or statistical summaries, such as averages and standard deviations.

4.1.3 Programs
A program directs the data logger on how and when sensors are measured, calculations are
made, data is stored, and devices are controlled. The application program for the CR1000X is
written in CRBasic, a programming language that includes measurement, data processing, and
analysis routines, as well as the standard BASIC instruction set. For simple applications, Short Cut,
a user-friendly program generator, can be used to generate the program. See also:

 l Creating a Short Cut data logger program (p. 29)
 l https://www.campbellsci.com/videos/datalogger-programming

For more demanding programs, use the full-featured CRBasic Editor. The CRBasic Editor help
contains program structure details, instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

4.2 Sensors
Sensors transduce phenomena into measurable electrical forms by modulating voltage, current,
resistance, status, or pulse output signals. Suitable sensors do this with accuracy and precision.
Smart sensors have internal measurement and processing components and simply output a
digital value in binary, hexadecimal, or ASCII character form.

Most electronic sensors, regardless of manufacturer, will interface with the data logger. Some
sensors require external signal conditioning. The performance of some sensors is enhanced with
specialized input modules. The data logger, sometimes with the assistance of various peripheral
devices, can measure or read nearly all electronic sensor output types.

4. CR1000X data acquisition system components 6

https://www.campbellsci.com/videos/datalogger-programming
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

The following list may not be comprehensive. A library of sensor manuals and application notes is
available at www.campbellsci.com/support to assist in measuring many sensor types.

 l Analog
 o Voltage
 o Current
 o Strain
 o Thermocouple
 o Resistive bridge

 l Pulse
 o High frequency
 o Switch-closure
 o Low-level AC
 o Quadrature

 l Period average
 l Vibrating wire (through interface modules)
 l Smart sensors

 o SDI-12
 o RS-232
 o Modbus
 o DNP3
 o TCP/IP
 o RS-422
 o RS-485

4. CR1000X data acquisition system components 7

http://www.campbellsci.com/support
http://www.campbellsci.com/support

5. Wiring panel and terminal
functions

The CR1000X wiring panel provides ports and removable terminals for connecting sensors,
power, and communications devices. It is protected against surge, over-voltage, over-current,
and reverse power. The wiring panel is the interface to most data logger functions so studying it
is a good way to get acquainted with the data logger. Functions of the terminals are broken
down into the following categories:

 l Analog input
 l Pulse counting
 l Analog output
 l Communications
 l Digital I/O
 l Power input
 l Power output
 l Power ground
 l Signal ground

5. Wiring panel and terminal functions 8

Table 5-1: Analog input terminal functions

SE
DIFF

1 2
┌1┐
H L

3 4
┌2┐
H L

5 6
┌3┐
H L

7 8
┌4┐
H L

9 10
┌5┐
H L

11 12
┌6┐
H L

13 14
┌7┐
H L

15 16
┌8┐
H L

RG1 RG2

Single-Ended
Voltage

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Differential
Voltage

H L H L H L H L H L H L H L H L

Ratiometric/Bridge ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Thermocouple ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Current Loop ✓ ✓

Period Average ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5-2: Pulse counting terminal functions

 P1 P2 C1-C8

Switch-Closure ✓ ✓ ✓

High Frequency ✓ ✓ ✓

Low-level AC ✓ ✓

NOTE:
Conflicts can occur when a control port pair is used for different instructions (TimerInput(),
PulseCount(), SDI12Recorder(), WaitDigTrig()). For example, if C1 is used for
SDI12Recorder(), C2 cannot be used for TimerInput(), PulseCount(), or
WaitDigTrig().

Table 5-3: Analog output terminal functions

 VX1-VX4

Switched Voltage Excitation ✓

5. Wiring panel and terminal functions 9

Table 5-4: Voltage Output

 C1-C81 VX1-VX4 5V 12V SW12-1 SW12-2

5 VDC ✓ ✓ ✓

3.3 VDC ✓ ✓

12 VDC ✓ ✓ ✓
1 C terminals have limited drive capacity. Voltage levels are configured in pairs.

Table 5-5: Communications terminal functions

 C1 C2 C3 C4 C5 C6 C7 C8 RS-232/CPI

SDI-12 ✓ ✓ ✓ ✓

GPS PPS Rx Tx Rx Tx Rx Tx Rx

TTL 0-5 V Tx Rx Tx Rx Tx Rx Tx Rx

LVTTL 0-3.3 V Tx Rx Tx Rx Tx Rx Tx Rx

RS-232 Tx Rx Tx Rx ✓

RS-485 (Half Duplex) A- B+ A- B+

RS-485 (Full Duplex) Tx- Tx+ Rx- Rx+

I2C SCL SDA SCL SDA SCL SDA SCL SDA

SPI SCLK COPI CIPO SCLK COPI CIPO

SDM1 Data Clk Enabl Data Clk Enabl

CPI/CDM ✓
1 SDM can be on either C1-C3 or C5-C7, but not both at the same time.

Communications functions also include Ethernet and USB.

Table 5-6: Digital I/O terminal functions

 C1-C8

General I/O ✓

Pulse-Width Modulation Output ✓

Timer Input ✓

5. Wiring panel and terminal functions 10

Table 5-6: Digital I/O terminal functions

 C1-C8

Interrupt ✓

Quadrature ✓

5.1 Power input
The data logger requires a power supply. It can receive power from a variety of sources, operate
for several months on non-rechargeable batteries, and supply power to many sensors and
devices. The data logger operates with external power connected to the green POWER IN port
on the face of the wiring panel. See Wiring panel and terminal functions (p. 8). The positive power
wire connects to the 12V terminal. The negative wire connects to G. The power terminals are
internally protected against polarity reversal and high voltage transients. If the voltage on the
POWER IN terminals exceeds 19 V, power is shut off to certain parts of the data logger to prevent
damaging connected sensors or peripherals.

The primary power source, which is often a transformer, power converter, or solar panel,
connects to the charging regulator, as does a nominal 12 VDC sealed rechargeable battery. A
third connection connects the charging regulator to the 12V and G terminals of the POWER IN
port. UPS (uninterruptible power supply) is often the best power source for long-term
installations. If external alkaline power is used, the alkaline battery pack is connected directly to
the POWER IN port. External UPS consists of a primary-power source, a charging regulator
external to the data logger, and an external battery.

WARNING:
Sustained input voltages in excess of those listed in the Power requirements (p. 229), can
damage the transient voltage suppression.

Ensure that power supply components match the specifications of the device to which they are
connected. When connecting power, switch off the power supply, insert the connector, then turn
the power supply on. See Troubleshooting power supplies (p. 164) for more information.

The CR1000X can receive power via the POWER IN port as well as 5 VDC via a USB connection. If
both POWER IN and USB are connected, power will be supplied by whichever has the highest
voltage. If USB is the only power source, then the CS I/O port and the 12V, SW12, and 5V
terminals will not be operational. When powered by USB (no other power supplies connected)
Status field Battery = 0. Functions that will be active with a 5 VDC source (USB) include sending
programs, adjusting data logger settings, and making some measurements.

5. Wiring panel and terminal functions 11

NOTE:
The Status field Battery value and the destination variable from the Battery() instruction
(often called batt_volt in the Public table) reference the external battery voltage. For
information about the internal battery, see Internal battery (p. 143).

5.1.1 Powering a data logger with a vehicle
If a data logger is powered by a motor-vehicle power supply, a second power supply may be
needed. When starting the motor of the vehicle, battery voltage often drops below the voltage
required for data logger operation. This may cause the data logger to stop measurements until
the voltage again equals or exceeds the lower limit. A second supply or charge regulator can be
provided to prevent measurement lapses during vehicle starting.

In vehicle applications, the earth ground lug should be firmly attached to the vehicle chassis with
12 AWG wire or larger.

5.1.2 Power LED indicator
When the data logger is powered, the Power LED will turn on according to power and program
states:

 l Off: No power, no program running.
 l 1 flash every 10 seconds: Powered from BAT, program running.
 l 3 flashes every 10 seconds: Powered via USB, program running.
 l Always on: Powered, no program running.

5.2 Power output
The data logger can be used as a power source for communications devices, sensors and
peripherals. Take precautions to prevent damage to these external devices due to over- or
under-voltage conditions, and to minimize errors. Additionally, exceeding current limits causes
voltage output to become unstable. Voltage should stabilize once current is again reduced to
within stated limits. The following are available:

 l 12V: unregulated nominal 12 VDC. This supply closely tracks the primary data logger supply
voltage; so, it may rise above or drop below the power requirement of the sensor or
peripheral. Precautions should be taken to minimize the error associated with
measurement of underpowered sensors.

5. Wiring panel and terminal functions 12

 l 5V: regulated 5 VDC. The 5 VDC supply is regulated to within a few millivolts of 5 VDC as
long as the main power supply for the data logger does not drop below the minimum
supply voltage. It is intended to power sensors or devices requiring a 5 VDC power supply.
It is not intended as an excitation source for bridge measurements. Current output is
shared with the CS I/O port; so, the total current must be within the current limit. See 5 V
fixed output (p. 231) specifications.

 l SW12: program-controlled, switched 12 VDC terminals. It is often used to power devices
such as sensors that require 12 VDC during measurement. Voltage on a SW12 terminal will
change with data logger supply voltage. CRBasic instruction SW12() controls the SW12
terminal. See the CRBasic Editor help for detailed instruction information and program
examples: https://help.campbellsci.com/crbasic/cr1000x/ .

 l CS I/O port: used to communicate with and often supply power to Campbell Scientific
peripheral devices.

CAUTION:
Voltage levels at the 12V and switched SW12 terminals, and pin 8 on the CS I/O port, are tied
closely to the voltage levels of the main power supply. Therefore, if the power received at the
POWER IN 12V and G terminals is 16 VDC, the 12V and SW12 terminals and pin 8 on the CS I/O
port will supply 16 VDC to a connected peripheral. The connected peripheral or sensor may
be damaged if it is not designed for that voltage level.

 l VX terminals: supply precise output voltage used by analog sensors to generate high
resolution and accurate signals. In this case, these terminals are regularly used with
resistive-bridge measurements (see Resistance measurements (p. 61) for more
information). Using the SWVX() instruction, VX terminals can also supply a selectable,
switched, regulated 3.3 or 5 VDC power source to power digital sensors and toggle control
lines.

 l C terminals: can be set low or high as output terminals . With limited drive capacity, digital
output terminals are normally used to operate external relay-driver circuits. See also Digital
input/output specifications (p. 237).

See also Power output specifications (p. 230).

5.3 Grounds
Proper grounding lends stability and protection to a data acquisition system. Grounding the data
logger with its peripheral devices and sensors is critical in all applications. Proper grounding will
ensure maximum ESD protection and measurement accuracy. It is the easiest and least expensive

5. Wiring panel and terminal functions 13

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

insurance against data loss, and often the most neglected. The following terminals are provided
for connection of sensor and data logger grounds:

 l Signal Ground () - reference for single-ended analog inputs, excitation returns, and a
ground for sensor shield wires.

 o 11 common terminals
 l Power Ground (G) - return for 3.3 V, 5 V, 12 V, and digital sensors. Use of G grounds for

these outputs minimizes potentially large current flow through the analog-voltage-
measurement section of the wiring panel, which can cause single-ended voltage
measurement errors.

 o 4 common terminals
 l Resistive Ground (RG) - used for non-isolated 0-20 mA and 4-20 mA current loop

measurements (see Current-loop measurements (p. 59) for more information). Also used
for decoupling ground on RS-485 signals. Includes 100 Ω resistance to ground. Maximum
voltage for RG terminals is ±16 V.

 o 2 common terminals
 l Earth Ground Lug () - connection point for heavy-gauge earth-ground wire. A good

earth connection is necessary to secure the ground potential of the data logger and shunt
transients away from electronics. Campbell Scientific recommends 14 AWG wire, minimum.

NOTE:
Several ground wires can be connected to the same ground terminal.

A good earth (chassis) ground will minimize damage to the data logger and sensors by providing
a low-resistance path around the system to a point of low potential. Campbell Scientific
recommends that all data loggers be earth grounded. All components of the system (data
loggers, sensors, external power supplies, mounts, housings) should be referenced to one
common earth ground.

In the field, at a minimum, a proper earth ground will consist of a 5-foot copper-sheathed
grounding rod driven into the earth and connected to the large brass ground lug on the wiring
panel with a 14 AWG wire. In low-conductive substrates, such as sand, very dry soil, ice, or rock, a
single ground rod will probably not provide an adequate earth ground. For these situations,
search for published literature on lightning protection or contact a qualified lightning-protection
consultant.

In laboratory applications, locating a stable earth ground is challenging, but still necessary. In
older buildings, new VAC receptacles on older VAC wiring may indicate that a safety ground
exists when, in fact, the socket is not grounded. If a safety ground does exist, good practice

5. Wiring panel and terminal functions 14

dictates to verify that it carries no current. If the integrity of the VAC power ground is in doubt,
also ground the system through the building plumbing, or use another verified connection to
earth ground.

See also:

 l Ground loops (p. 170)
 l Minimizing ground potential differences (p. 176)

5.4 Communications ports
The data logger is equipped with ports that allow communications with other devices and
networks, such as:

 l Computers
 l Smart sensors
 l Modbus and DNP3 networks
 l Ethernet
 l Modems
 l Campbell Scientific PakBus® networks
 l Other Campbell Scientific data loggers

Campbell Scientific data logger communications ports include:

 l CS I/O
 l RS-232/CPI
 l USB Device
 l Ethernet
 l C terminals

5.4.1 USB device port
The USB device port supports communicating with a computer through data logger support
software or through virtual Ethernet (RNDIS), and provides 5 VDC power to the data logger
(powering through the USB port has limitations - details are available in the specifications). The
data logger USB device port does not support USB flash or thumb drives. Although the USB
connection supplies 5 V power, a 12 VDC battery will be needed for field deployment.

5.4.2 Ethernet port
The RJ45 10/100 Ethernet port is used for IP communications.

5. Wiring panel and terminal functions 15

5.4.3 C terminals for communications
C terminals are configurable for the following communications types:

 l SDI-12
 l RS-232
 l RS-422
 l RS-485
 l TTL (0 to 5 V)
 l LVTTL (0 to 3.3 V)
 l SDM

Some communications types require more than one terminal, and some are only available on
specific terminals. See Communications specifications (p. 239) for more information.

5.4.3.1 SDI-12 ports
SDI-12 is a 1200 baud protocol that supports many smart sensors. C1, C3, C5, and C7 can be
configured as SDI-12 ports. Maximum cable lengths depend on the number of sensors
connected, the type of cable used, and the environment of the application. Refer to the sensor
manual for guidance.

For more information, see SDI-12 communications (p. 116).

5.4.3.2 RS-232, RS-422, RS-485, TTL, and LVTTL ports
RS-232, RS-422, RS-485, TTL, and LVTTL communications are typically used for the following:

 l Reading sensors with serial output
 l Creating a multi-drop network
 l Communications with other data loggers or devices over long cables

Configure C terminals as serial ports using Device Configuration Utility or by using the
SerialOpen() CRBasic instruction. Terminals are configured in pairs for TTL, LVTTL, RS-232,
and half-duplex RS-422 and RS-485 communications. For full-duplex RS-422 and RS-485, four
terminals are required. See also Communications protocols (p. 80).

5.4.3.3 SDM ports
SDM is a protocol proprietary to Campbell Scientific that supports several Campbell Scientific
digital sensor and communications input and output expansion peripherals and select smart

5. Wiring panel and terminal functions 16

sensors. It uses a common bus and addresses each node. CRBasic SDM device and sensor
instructions configure terminals C1, C2, and C3 together to create an SDM port. Alternatively,
terminals C5, C6, and C7 can be configured together to be used as the SDM port by using the
SDMBeginPort() instruction.

See also Communications specifications (p. 239).

5.4.4 CS I/O port
One nine-pin port, labeled CS I/O, is available for communicating with a computer through
Campbell Scientific communications interfaces, modems, and peripherals. Campbell Scientific
recommends keeping CS I/O cables short (maximum of a few feet). See also Communications
specifications (p. 239).

Table 5-7: CS I/O pinout

Pin
number Function Input (I)

Output (O) Description

1 5 VDC O 5 VDC: sources 5 VDC, used to power peripherals.

2 SG Signal ground: provides a power return for pin 1 (5V),
and is used as a reference for voltage levels.

3 RING I Ring: raised by a peripheral to put the CR1000X in the
telecom mode.

4 RXD I Receive data: serial data transmitted by a peripheral are
received on pin 4.

5 ME O Modem enable: raised when the CR1000X determines
that a modem raised the ring line.

6 SDE O Synchronous device enable: addresses synchronous
devices (SD); used as an enable line for printers.

7 CLK/HS I/O

Clock/handshake: with the SDE and TXD lines addresses
and transfers data to SDs. When not used as a clock, pin
7 can be used as a handshake line; during printer output,
high enables, low disables.

5. Wiring panel and terminal functions 17

Table 5-7: CS I/O pinout

Pin
number Function Input (I)

Output (O) Description

8 12 VDC Nominal 12 VDC power. Same power as 12V and SW12
terminals.

9 TXD O

Transmit data: transmits serial data from the data logger
to peripherals on pin 9; logic-low marking (0V), logic-
high spacing (5V), standard-asynchronous ASCII: eight
data bits, no parity, one start bit, one stop bit. User
selectable baud rates: 300, 1200, 2400, 4800, 9600,
19200, 38400, 115200.

5.4.5 RS-232/CPI port
The data logger includes one RJ45 module jack labeled RS-232/CPI. CPI is a proprietary interface
for communications between Campbell Scientific data loggers and Campbell Scientific CDM
peripheral devices and smart sensors. It consists of a physical layer definition and a data protocol.
CDM devices are similar to Campbell Scientific SDM devices in concept, but the CPI bus enables
higher data-throughput rates and use of longer cables. CDM devices require more power to
operate in general than do SDM devices. CPI ports also enable networking between compatible
Campbell Scientific data loggers. Consult the manuals for CDM modules for more information.

CPI port power levels are controlled automatically by the CR1000X:

 l Off: Not used.
 l High power: Fully active.
 l Low-power standby: Used whenever possible.
 l Low-power bus: Sets bus and modules to low power.

When used with a Campbell Scientific RJ45-to-DB9 converter cable, the RS-232/CPI port can be
used as an RS-232 port. It defaults to 115200 bps (in autobaud mode), 8 data bits, no parity, and 1
stop bit. Use Device Configuration Utility or the SerialOpen() CRBasic instruction to change
these options.

Table 5-8: RS-232/CPI pinout

Pin number Description

1 RS-232: Transmit (Tx)

2 RS-232: Receive (Rx)

5. Wiring panel and terminal functions 18

Table 5-8: RS-232/CPI pinout

Pin number Description

3 100 Ω Res Ground

4 CPI: Data

5 CPI: Data

6 100 Ω Res Ground

7 RS-232 CTS CPI: Sync

8 RS-232 DTR CPI: Sync

9 Not Used

5.5 Programmable logic control
The data logger can control instruments and devices such as:

 l Controlling cellular modem or GPS receiver to conserve power.
 l Triggering a water sampler to collect a sample.
 l Triggering a camera to take a picture.
 l Activating an audio or visual alarm.
 l Moving a head gate to regulate water flows in a canal system.
 l Controlling pH dosing and aeration for water quality purposes.
 l Controlling a gas analyzer to stop operation when temperature is too low.
 l Controlling irrigation scheduling.

Control decisions can be based on time, an event, or a measured condition. Controlled devices
can be physically connected to C, VX, or SW12 terminals. Short Cut has provisions for simple
on/off control. Control modules and relay drivers are available to expand and augment data
logger control capacity.

 l C terminals are selectable as binary inputs, control outputs, or communications ports.
These terminals can be set low (0 VDC) or high (3.3 or 5 VDC) using the PortSet() or
WriteIO() instructions. See the CRBasic Editor help for detailed instruction information and
program examples: https://help.campbellsci.com/crbasic/cr1000x/ . Other functions
include device-driven interrupts, asynchronous communications and SDI-12

5. Wiring panel and terminal functions 19

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

communications. The high voltage for these terminals defaults to 5 V, but it can be
changed to 3.3 V using the PortPairConfig() instruction. Terminals C4, C5, and C7
can also be configured for pulse width modulation with a maximum period of 36.4 s. A C
terminal configured for digital I/O is normally used to operate an external relay-driver
circuit because the terminal itself has limited drive capacity.

 l VX terminals can be set low or high using the PortSet() or SWVX() instruction. For
more information on these instructions, see the CRBasic help.

 l SW12 terminals can be set low (0 V) or high (12 V) using the SW12() instruction (see the
CRBasic help for more information).

The following image illustrates a simple application wherein a C terminal configured for digital
input, and another configured for control output are used to control a device (turn it on or off)
and monitor the state of the device (whether the device is on or off).

In the case of a cell modem, control is based on time. The modem requires 12 VDC power, so
connect its power wire to a data logger SW12 terminal. The following code snip turns the modem
on for the first ten minutes of every hour using the TimeIsBetween() instruction embedded
in an If/Then logic statement:

If TimeIsBetween (0,10,60,Min)Then
 SW12(SW12_1,1,1) 'Turn phone on.

Else
 SW12(SW12_1,0,1) 'Turn phone off.

EndIf

5. Wiring panel and terminal functions 20

6. Setting up the CR1000X
The basic steps for setting up your data logger to take measurements and store data are
included in the following sections:

6.1 Setting up communications with the data logger 21

6.2 Testing communications with EZSetup 28

6.3 Making the software connection 29

6.4 Creating a Short Cut data logger program 29

6.5 Sending a program to the data logger 32

6.1 Setting up communications with the data
logger

The first step in setting up and communicating with your data logger is to configure your
connection. Communications peripherals, data loggers, and software must all be configured for
communications.

You can configure your connection using any of the following options. The simplest is via USB.
For detailed instruction, see:

6.1.1 USB or RS-232 communications 22

6.1.2 Virtual Ethernet over USB (RNDIS) 24

6.1.3 Ethernet communications option 25

For other configurations, see the LoggerNet EZSetup Wizard help. Context-specific help is given
in each step of the wizard by clicking the Help button in the bottom right corner of the window.
For complex data logger networks, use Network Planner. For more information on using the
Network Planner, watch a video at https://www.campbellsci.com/videos/loggernet-software-
network-planner .

Additional information is found in your specific peripheral manual, and the data logger support
software manual and help. See also:

 l www.campbellsci.com/cellular-communications for links to CELL200-series, RV50X,
cellular data services, Konect PakBus router, and other cellular products

6. Setting up the CR1000X 21

https://www.campbellsci.com/videos/loggernet-software-network-planner
https://www.campbellsci.com/videos/loggernet-software-network-planner
https://www.campbellsci.com/videos/loggernet-software-network-planner
https://www.campbellsci.com/cellular-communications

 l www.campbellsci.com/wi-fi-communications for links to the NL241, and other Wi-Fi
products

 l www.campbellsci.com/spread-spectrum-radios for links to the RF452 and RF407-series
spread spectrum radios

 l www.campbellsci.com/satellite-communications for links to the TX325, TX326,
HUGHES9502, and other satellite products

 l www.campbellsci.com/loggernet
 l www.campbellsci.com/pc400

Manuals for retired products are found at: www.campbellsci.com/manuals . These include, but
are not limited to: RF401, RV50, TX321, TX320, and TX312.

6.1.1 USB or RS-232 communications
Setting up a USB or RS-232 connection is a good way to begin communicating with your data
logger. Because these connections do not require configuration (like an IP address), you need
only set up the communications between your computer and the data logger. Use the following
instructions or watch the Quickstart videos at https://www.campbellsci.com/videos .

TIP:
You will physically connect your data logger to your computer in step 6.

Follow these steps to get started. These settings can be revisited using the data logger support
software Edit Datalogger Setup option .

 1. Using data logger support software, launch the EZSetup Wizard.

NOTE:
New software installations automatically open the EZSetup Wizard the first time they
run.

 l LoggerNet users, click Setup , select the View menu and ensure you are in the EZ
(Simplified) view, then click Add Datalogger .

 l PC400 users, click Add Datalogger .

 2. Click Next.

 3. Select your data logger from the list. In the Datalogger Name field, type a meaningful
name for your data logger (for example, a site identifier or project name), and click Next.

 4. Select the Direct Connect connection type and click Next.

6. Setting up the CR1000X 22

https://www.campbellsci.com/wi-fi-communications
https://www.campbellsci.com/spread-spectrum-radios
https://www.campbellsci.com/satellite-communications
https://www.campbellsci.com/loggernet
https://www.campbellsci.com/pc400
https://www.campbellsci.com/manuals
https://www.campbellsci.com/videos

 5. If this is the first time connecting this computer to a CR1000X via USB, click Install
USB Driver, select your data logger, click Install, and follow the prompts to install the
USB driver.

 6. Plug the data logger into your computer using a USB or RS-232 cable. The USB connection
supplies 5 V power as well as a communications link, which is adequate for setup. A 12 V
battery will be needed for field deployment. If using RS-232, external power must be
provided to the data logger, and a CPI/RS-232 RJ45 to DB9 cable is required to connect to
the computer.

NOTE:
The Power LED on the data logger indicates the program and power states. Because
the data logger ships with a program set to run on power-up, the Power LED flashes
three times every 10 seconds when powered over USB. When powered with a 12 V
battery, it flashes once every 10 seconds. When no program is running, the LED is
always on.

 7. From the COM Port list, select the COM port used for your data logger. It will appear as
CR1000X (COM number).

 8. USB and RS-232 connections do not typically require a COM Port Communication Delay;
this type of delay allows time for hardware devices to "wake up" and negotiate a
communications link. Accept the default value of 00 seconds and click Next.

 9. You must match the baud rate and PakBus address hardware settings of your data logger.
A USB connection does not require a baud rate selection, keep the default. RS-232
connections default to 115200 baud. The default PakBus address is 1.

 10. Set an Extra Response Time if you have a difficult or marginal connection and you want the
data logger support software to wait a certain amount of time before returning a
communications failure error. Accept the default value of 00 seconds.

 11. Set a Max Time On-Line to limit the amount of time the data logger remains connected.
When the data logger is connected, communications with it are terminated when this time
limit is exceeded. A value of 0 in this field indicates that there is no time limit for
maintaining a connection to the data logger.

 12. Leave the Neighbor PakBus Address as the default of 0.

 13. Click Next.

 14. By default, the data logger does not use a security code or a PakBus encryption key.
Therefore, the Security Code can be set to 0, and the PakBus Encryption Key can be left
blank. If either setting has been changed, enter the new code or key. See Data logger

6. Setting up the CR1000X 23

security (p. 125) for more information.

 15. Click Next.

 16. Review the Setup Summary. If you need to make changes, click Previous to return to a
previous window and change the settings.

 17. Setup is now complete. The EZSetup Wizard allows you to Finish, or you may click Next to
test communications, set the data logger clock, and send a program to the data logger. See
Testing communications with EZSetup (p. 28) for more information.

6.1.2 Virtual Ethernet over USB (RNDIS)
The data logger supports RNDIS (virtual Ethernet over USB). This allows the data logger to
communicate via TCP/IP over USB. Watch a video at
https://www.campbellsci.com/videos/ethernet-over-usb or use the following instructions.

 1. Supply power to the data logger. If connecting via USB for the first time, you must first
install USB drivers by using Device Configuration Utility (select your data logger, then on
the main page, click Install USB Driver). Alternately, you can install the USB drivers using EZ
Setup. A USB connection supplies 5 V power (as well as a communications link), which is
adequate for setup, but a 12 V battery will be needed for field deployment.

NOTE:
Ensure the data logger is connected directly to the computer USB port (not to a
USB hub). We recommended always using the same USB port on your computer.

 2. Physically connect your data logger to your computer using a USB cable, then in Device
Configuration Utility select your data logger.

 3. Retrieve your IP Address. On the bottom, left side of the screen, select IP as the Connection
Type, then click the browse button next to the Server Address box. Note the IP Address
(default is 192.168.66.1). If you have multiple data loggers in your network, more than one
data logger may be returned. Ensure you select the correct data logger by verifying the
data logger serial number or station name (if assigned).

 4. A virtual IP address can be used to connect to the data logger using Device Configuration
Utility or other computer software, or to view the data logger internal web page in a
browser. To view the web page, open a browser and enter linktodevice.com or the IP
address you retrieved in the previous step (for example, 192.168.66.1) into the address bar.

To secure your data logger from others who have access to your network, we recommend that
you set security. For more information, see Data logger security (p. 125).

6. Setting up the CR1000X 24

https://www.campbellsci.com/videos/ethernet-over-usb
https://www.campbellsci.com/videos/ethernet-over-usb
http://linktodevice.com/
http://linktodevice.com/

NOTE:
Ethernet over USB (RNDIS) is considered a direct communications connection. Therefore, it is
a trusted connection and Administrator privileges are automatically granted for all
functionality (csipasswd does not apply).

6.1.3 Ethernet communications option
The CR1000X offers a 10/100 Ethernet connection. Use Device Configuration Utility to enter the
data logger IP Address, Subnet Mask, and IP Gateway address. After this, use the EZSetup Wizard
to set up communications with the data logger. If you already have the data logger
IP information, you can skip these steps and go directly to Setting up Ethernet communications
between the data logger and computer (p. 26). Watch a video at
https://www.campbellsci.com/videos/datalogger-ethernet-configuration or use the following
instructions.

6.1.3.1 Configuring data logger Ethernet settings

 1. Supply power to the data logger. If connecting via USB for the first time, you must first
install USB drivers by using Device Configuration Utility (select your data logger, then on
the main page, click Install USB Driver). Alternately, you can install the USB drivers using EZ
Setup. A USB connection supplies 5 V power (as well as a communications link), which is
adequate for setup, but a 12 V battery will be needed for field deployment.

 2. Connect an Ethernet cable to the 10/100 Ethernet port on the data logger. The yellow and
green Ethernet port LEDs display activity approximately one minute after connecting. If you
do not see activity, contact your network administrator. For more information, see Ethernet
LEDs (p. 26).

 3. Using data logger support software (LoggerNet, or PC400), open Device Configuration
Utility .

 4. Select the CR1000X Series data logger from the list

 5. Select the port assigned to the data logger from the Communication Port list. If connecting
via Ethernet, select Use IP Connection.

 6. By default, this data logger does not use a PakBus encryption key; so, the PakBus
Encryption Key box can be left blank. If this setting has been changed, enter the new code
or key. See Data logger security (p. 125) for more information.

6. Setting up the CR1000X 25

https://www.campbellsci.com/videos/datalogger-ethernet-configuration
https://www.campbellsci.com/videos/datalogger-ethernet-configuration

 7. Click Connect.

 8. On the Deployment tab, click the Ethernet subtab.

 9. The Ethernet Power setting allows you to reduce the power consumption of the data
logger. If there is no Ethernet connection, the data logger will turn off its Ethernet interface
for the time specified before turning it back on to check for a connection. Select Always On,
1 Minute, or Disable.

 10. Enter the IP Address, Subnet Mask, and IP Gateway. These values should be provided by
your network administrator. A static IP address is recommended. If you are using DHCP,
note the IP address assigned to the data logger on the right side of the window. When the
IP Address is set to the default, 0.0.0.0, the information displayed on the right side of the
window updates with the information obtained from the DHCP server. Note, however, that
this address is not static and may change. An IP address here of 169.254.###.### means
the data logger was not able to obtain an address from the DHCP server. Contact your
network administrator for help.

 11. Apply to save your changes.

6.1.3.2 Ethernet LEDs
When the data logger is powered, and Ethernet Power setting is not disabled, the 10/100 Ethernet
LEDs will show the Ethernet activity:

 l Solid Yellow: Valid Ethernet link.
 l No Yellow: Invalid Ethernet link.
 l Flashing Yellow: Ethernet activity.
 l Solid Green: 100 Mbps link.
 l No Green: 10 Mbps link.

6.1.3.3 Setting up Ethernet communications between the data

logger and computer
Once you have configured the Ethernet settings or obtained the IP information for your data
logger, you can set up communications between your computer and the data logger over
Ethernet. Watch a video at https://www.campbellsci.com/videos/ezsetup-ethernet-connection
or use the following instructions.

This procedure only needs to be followed once per data logger. However, these settings can be
revised using the data logger support software Edit Datalogger Setup option .

6. Setting up the CR1000X 26

https://www.campbellsci.com/videos/ezsetup-ethernet-connection
https://www.campbellsci.com/videos/ezsetup-ethernet-connection

 1. Using data logger support software, open EZSetup.
 l LoggerNet users, select Setup from the Main category on the toolbar, click the

View menu to ensure you are in the EZ (Simplified) view, then click Add Datalogger.
 l PC400 users, click Add Datalogger .

 2. Click Next.

 3. Select the CR1000X Series from the list, enter a name for your station (for example, a site or
project name), Next.

 4. Select the IP Port connection type and click Next.

 5. Type the data logger IP address followed by a colon, then the port number of the data
logger in the Internet IP Address box. These were set up through the Ethernet
communications option (p. 25) step. They can be accessed in Device Configuration Utility
on the Ethernet subtab. Leading 0s must be omitted. For example:

 l IPv4 addresses are entered as 192.168.1.2:6785
 l IPv6 addresses must be enclosed in square brackets. They are entered as

[2001:db8::1234:5678]:6785

 6. The PakBus address must match the hardware settings for your data logger. The default
PakBus address is 1.

 l Set an Extra Response Time if you want the data logger support software to wait a
certain amount of time before returning a communications failure error.

 l LoggerNet and PC400 users can set a Max Time On-Line to limit the amount of time
the data logger remains connected. When the data logger is contacted,
communications with it is terminated when this time limit is exceeded. A value of 0 in
this field indicates that there is no time limit for maintaining a connection to the data
logger. Next.

 7. By default, the data logger does not use a security code or a PakBus encryption key.
Therefore the Security Code can be set to 0 and the PakBus Encryption Key can be left
blank. If either setting has been changed, enter the new code or key. See Data logger
security (p. 125). Next.

 8. Review the Communication Setup Summary. If you need to make changes, click Previous to
return to a previous window and change the settings.

Setup is now complete, and the EZSetup Wizard allows you Finish or select Next. The Next steps
take you through testing communications, setting the data logger clock, and sending a program
to the data logger. See Testing communications with EZSetup (p. 28) for more information.

6. Setting up the CR1000X 27

6.2 Testing communications with EZSetup
 1. Advance to, or select, the Communication Test step in EZ Setup. See USB or RS-232

communications (p. 22) for more information.

 2. Ensure the data logger is physically connected to the computer, select Yes to test
communications, then click Next to initiate the test. To troubleshoot an unsuccessful test,
see Tips and troubleshooting (p. 154).

 3. With a successful connection, the Connection Time with the data logger is displayed in the
lower-left corner of the wizard. Click Next.

 4. The Datalogger Clock window displays the time for both the data logger and the computer
(server).

 l The Adjusted Server Date/Time displays the current reading of the clock for the
computer running your data logger support software. If the Datalogger Date/Time
and Adjusted Server Date/Time do not match, click Set Datalogger Clock to set the
data logger clock to the computer clock.

 l Optionally, specify a positive or negative Time Zone Offset to apply when setting the
data logger clock. This offset allows you to set the clock for a data logger that is in a
different time zone than the computer (or to accommodate for changes in daylight
saving time).

 5. Click Next.

 6. The data logger ships with a default GettingStarted program. If the data logger does not
have a program, you can choose to send one by clicking Select and Send Program. Click
Next.

 7. LoggerNet only - Use the following instructions or watch the Scheduled/Automatic Data
Collection video :

6. Setting up the CR1000X 28

https://www.campbellsci.com/videos/scheduled-automatic-data-collection
https://www.campbellsci.com/videos/scheduled-automatic-data-collection
https://www.campbellsci.com/videos/scheduled-automatic-data-collection

 l The Datalogger Table Output Files window displays the data tables available to be
collected from the data logger and the output file name. By default, all data tables set
up in the data logger program will be included for collection. Make note of the
Output File Name and location. Click Next.

 l Check Scheduled Collection Enabled to have LoggerNet automatically collect data
from the data logger on the Collection Interval entered. When the Base Date and
Time are in the past, scheduled collection will begin immediately after finishing the
EZSetup wizard. Do not set up a scheduled collection during this tutorial. Click Next.

 8. Click Finish, or you may click Next to test communications, set the data logger clock, and
send a program to the data logger.

6.3 Making the software connection
Once you have configured your hardware connection (see Setting up communications with the
data logger (p. 21), your data logger and computer can communicate. Use the Connect screen to
send a program, set the clock, view real-time data, and manually collect data.

 l LoggerNet users, select Main and Connect on the LoggerNet toolbar, select the data
logger from the Stations list, then Connect .

 l PC400 users, select the data logger from the list and click Connect .

To disconnect, click Disconnect .

For more information, see the Connect Window Tutorial .

6.4 Creating a Short Cut data logger program
You must provide a program for the data logger in order for it to make measurements, store
data, or control external devices. There are several ways to write a program. The simplest is to use
the program generator called Short Cut. For more complex programming, CRBasic Editor is used.
The program file may use the extension .CR1X, .CRB, or .DLD.

Data logger programs are executed on a precise schedule termed the scan interval, based on the
data logger internal clock.

Measurements are first stored in temporary memory called variables in the Public table. Data
stored in variables is usually overwritten each scan. Periodically, generally on a time interval, the
data logger stores data in tables. The data tables are later copied to a computer using your data
logger support software.

6. Setting up the CR1000X 29

https://www.campbellsci.com/videos/connect-window-tutorial
https://www.campbellsci.com/videos/connect-window-tutorial

Use Short Cut software to generate a program for your data logger. Short Cut is included with
your data logger support software.

This section guides you through programming a CR1000X data logger to measure the voltage of
the data logger power supply, the internal temperature of the data logger, and a thermocouple.
With minor changes, these steps can apply to other measurements. Use the following
instructions or watch the Quickstart part 3 video :

 1. Using data logger support software, launch Short Cut.
 l LoggerNet users, click Program then Short Cut .
 l PC400 users, click Short Cut .

 2. Click Create New Program.

 3. Select CR1000X Series and click Next.

NOTE:
The first time Short Cut is run, a prompt asks for a noise rejection choice. Select 60 Hz
Noise Rejection for North America and areas using 60 Hz ac voltage. Select 50 Hz Noise
Rejection for most of the Eastern Hemisphere and areas that operate at 50 Hz.

A second prompt lists sensor support options. Campbell Scientific, Inc. (US) is usually
the best fit outside of Europe.

To change the noise rejection or sensor support option for future programs, use the
Program menu.

 4. Lists of Available Sensors and Devices and Selected Measurements Available for Output are
displayed. Battery voltage BattV and internal temperature PTemp_C are selected by
default. During operation, battery and temperature should be recorded at least daily to
assist in monitoring system status.

 5. Use the Search feature or expand folders to locate your sensor or device. Double-click on a
sensor or measurement in the Available Sensors and Devices list to configure the device (if
needed) and add it to the Selected list. For the example program, expand the Sensors and
Temperature folders and double-click Type T Thermocouple.

 6. If the sensor or device requires configuration, a window displays with configuration
options. Click Help at the bottom of the window to learn more about any field or option.
For the example program, accept the default options:

 l 1 Type T TC sensor
 l Temp_C as the Temperature label, and set the units to Deg C

6. Setting up the CR1000X 30

https://www.campbellsci.com/videos/cr1000x-datalogger-getting-started-program-part-3
https://www.campbellsci.com/videos/cr1000x-datalogger-getting-started-program-part-3

 l PTemp_C as the Reference Temperature Measurement

 7. Click the Wiring tab at the top of the page to see how to wire the sensor to the data logger.
With the power disconnected from the data logger, insert the wires as directed in the
diagram. Ensure you clamp the terminal on the wire, not the colored insulation. Use the
included flat-blade screwdriver to open and close the terminals.

 8. Click OK.

 9. Click Next.

 10. Use the Output Setup options to specify how often to make measurements and how often
outputs are to be stored. Type 1 in the How often should the data logger measure its
sensor(s)? box. Leave the units as Seconds.

 11. Multiple output intervals can be specified, one for each output table (Table1 and Table2
tabs). For the example program, only one table is needed. Click the Table2 tab and click
Delete Table.

 12. In the Table Name box, type a name for the table. For example: OneMin.

 13. Select a Data Output Storage Interval. For example: 1 minute.

 14. Click Next.

 15. Select a measurement from the Selected Measurements Available for Output list, then click
an output processing option to add the measurement to the Selected Measurements for
Output list. For the example program, select BattV and click the Minimum button to add it
to the Selected Measurements for Output list. Do not store the exact time that the
minimum occurred. Repeat this procedure for an Average PTemp_C and Average Temp_C.

 16. Click Finish and give the program a meaningful name such as a site identifier. Click Save.

 17. If LoggerNet or other data logger support software is running on your computer, and the
data logger is connected to the computer (see Making the software connection (p. 29) for
more information), you can choose to send the program. Generally it is best to collect data

6. Setting up the CR1000X 31

first; so, we recommend sending the program using the instructions in Sending a program
to the data logger (p. 32). Click No, do not send the program to the data logger.

TIP:
It is good practice to always retrieve data from the data logger before sending a
program; otherwise, data may be lost. See Collecting data (p. 35) for detailed
instruction.

 18. Make note of the newly generated program location and filename. By default, programs
created with Short Cut are stored in C:\Campbellsci\SCWin\.

 19. Close Short Cut.

If your data acquisition requirements are simple, you can probably create and maintain a data
logger program exclusively with Short Cut. If your data acquisition needs are more complex, the
files that Short Cut creates are a great source for programming code to start a new program or
add to an existing custom program using CRBasic. See the CRBasic Editor help for detailed
information on program structure, syntax, and each instruction available to the data logger
https://help.campbellsci.com/crbasic/cr1000x/ .

NOTE:
Once a Short Cut generated program has been edited with CRBasic Editor, it can no longer be
modified with Short Cut.

6.5 Sending a program to the data logger
TIP:
It is good practice to always retrieve data from the data logger before sending a program;
otherwise, data may be lost. See Collecting data (p. 35) for detailed instruction.

Some methods of sending a program give the option to retain data when possible. Regardless of
the program upload tool used, data will be erased when a new program is sent if any change
occurs to one or more data table structures in the following list:

 l Data table name(s)
 l Data output interval or offset
 l Number of fields per record

 l Number of bytes per field
 l Field type, size, name, or position
 l Number of records in table

 Use the following instructions or watch the Quickstart part 4 video .

6. Setting up the CR1000X 32

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm
https://www.campbellsci.com/videos/cr1000x-datalogger-getting-started-data-part-4
https://www.campbellsci.com/videos/cr1000x-datalogger-getting-started-data-part-4

 1. Connect the data logger to your computer (see Making the software connection (p. 29) for
more information).

 l LoggerNet users, select Main and Connect on the LoggerNet toolbar, select the
data logger from the Stations list, then Connect .

 l PC400 users, select the data logger from the list and click Connect .

 2. LoggerNet users, click Send New... (located in the Current Program section on the right side
of the window).

PC400 users, click Send Program... (located in the Datalogger Program section on the right
side of the window).

 3. PC400 users, confirm that you would like to proceed and erase all data tables saved on the
data logger. Click Yes.

 4. Navigate to the program, select it, and click Open. For example: navigate to
C:\Campbellsci\SCWin and select MyTemperature.CR1X. Click Open.

 5. LoggerNet users, confirm that you would like to proceed and erase all data tables saved on
the data logger. Click Yes.

 6. The program is sent and compiled.

 7. Review the Compile Results window for errors, messages and warnings.

 8. LoggerNet users, click Details, select the Table Fill Times tab.

PC400 user click OK then click Station Status , select the Table Fill Times tab.

Ensure that the times shown are expected for your application. Click OK.

After sending a program, it is a good idea to monitor the Public table to make sure sensors are
taking good measurements. See Working with data (p. 34) for more information.

6. Setting up the CR1000X 33

7. Working with data
7.1 Default data tables

By default, the data logger includes three tables: Public, Status, and DataTableInfo. Each of these
tables only contains the most recent measurements and information.

 l The Public table is configured by the data logger program, and updated at the scan interval
set within the data logger program. It shows measurement and calculation results as they
are made.

 l The Status table includes information about the health of the data logger and is updated
only when viewed.

 l The DataTableInfo table reports statistics related to data tables. It also only updates when
viewed.

 l User-defined data tables update at the schedule set within the program.

For information on collecting your data, see Collecting data (p. 35).

Use these instructions or follow the Connect Window tutorial to monitor real-time data.

LoggerNet users, select the Main category and Connect on the LoggerNet toolbar, then select
the data logger from the Stations list, then click Connect . Once connected, select a table to
view in the Table Monitor.

PC400 users, click Connect , then Monitor Data. When this tab is first opened for a data logger,
values from the Public table are displayed. To view data from other tables, click Add , select a
table or field from the list, then drag it into a cell on the Monitor Data tab.

7. Working with data 34

https://www.campbellsci.com/videos/connect-window-tutorial
https://www.campbellsci.com/videos/connect-window-tutorial

7.2 Collecting data
The data logger writes to data tables based on intervals and conditions set in the CRBasic
program (see Creating data tables in a program (p. 43) for more information). After the program
has been running for enough time to generate data records, data may be collected by using data
logger support software. During data collection, data is copied to the computer and still remains
on the data logger. Collections may be done manually, or automatically through scheduled
collections set in LoggerNet Setup. Use these instruction or follow the Collect Data Tutorial .

7.2.1 Collecting data using LoggerNet
 1. From the LoggerNet toolbar, click Main and Connect , select the data logger from the

Stations list, then Connect .

 2. Click Collect Now .

 3. After the data is collected, the Data Collection Results window displays the tables collected
and where they are stored on the computer.

 4. Select a data file, then View File to view the data. See Viewing historic data (p. 36)

7. Working with data 35

https://www.campbellsci.com/videos/collect-data-tutorial
https://www.campbellsci.com/videos/collect-data-tutorial

7.2.2 Collecting data using PC400
 1. Click Connect on the main PC400 window.

 2. Go to the Collect Data tab.

 3. By default, all output tables set up in the data logger program are selected for collection.
Typically, the default tables (DataTableInfo, Public, and Status) are not collected.

 4. Select an option for What to Collect. Either option creates a new file if one does not already
exist.

 l New data from data logger (Append to data files): This is the default, and most often
used option. Collect only the data, in the selected tables, stored since the last data
collection from this instance of PC400 and append this data to the end of the existing
files on the computer.

 l All data from data logger (Overwrite data files): Collects all of the data in the selected
tables and overwrites (or replaces) the existing data files on the computer.

 5. Click Start Data Collection.

 6. After the data is collected, the Data Collection Results window displays the tables collected
and where they are stored on the computer.

 7. Select a data file, then View File to view the data. See Viewing historic data (p. 36)

7.3 Viewing historic data
View Pro contains tools for reviewing data in tabular form as well as several graphical layouts
for visualization. Use these instructions or follow the View Data Tutorial .

Once the data logger has had enough time to store multiple records collect and review the data.

 1. To view the most recent data, connect the data logger to your computer and collect your
data (see Collecting data (p. 35) for more information).

 2. Open View Pro:
 l LoggerNet users click Data then View Pro on the LoggerNet toolbar.
 l PC400 users click View Data Files via View Pro .

 3. Click Open , navigate to the directory where you saved your tables (the default directory
is C:\Campbellsci\[your data logger software application]). For example: navigate to the
C:\Campbellsci\LoggerNet folder and select OneMin.dat.

 4. Click Open.

7. Working with data 36

https://www.campbellsci.com/videos/view-data-tutorial
https://www.campbellsci.com/videos/view-data-tutorial

7.4 Data types and formats
Data takes different formats as it is created and manipulated in the data logger, as it is displayed
through software, and as it is retrieved to a computer file. It is important to understand the
different data types, formats and ranges, and where they are used.

Table 7-1: Data types, ranges and resolutions

Data type Description Range Resolution Where used

Float IEEE four-byte
floating point

+/–1.8 *10^–38 to
+/–3.4 *10^38

24 bits
(about 7 digits) variables

Long four-byte
signed integer

–2,147,483,648 to
+2,147,483,647 1 bit variables, output

Boolean four-byte
signed integer –1, 0 True (–1) or

False (0)
variables,

sample output

String ASCII String variables,
sample output

IEEE4 IEEE four-byte
floating point

+/–1.8 *10^–38 to
+/–3.4 *10^38

24 bits
(about 7 digits)

internal calculations,
output

IEEE8 IEEE eight-byte
floating point

+/–2.23 *10^–308 to
+/–1.8 *10^308

53 bits
(about 16 digits)

internal calculations,
output

FP2 Campbell Scientific
two-byte floating point –7999 to +7999 13 bits

(about 4 digits) output

NSEC eight-byte time stamp nanoseconds variables, output

7.4.1 Variables
In CRBasic, the declaration of variables (via the DIM or the PUBLIC statement) allows an optional
type descriptor As that specifies the data type. The data types are Float, Long, Boolean, and
String. The default type is Float.

Example variables declared with optional data types
Public PTemp As Float, Batt_volt
Public Counter As Long
Public SiteName As String * 24

As Float specifies the default data type. If no data type is explicitly specified with the As
statement, then Float is assumed. Measurement variables are stored and calculations are

7. Working with data 37

performed internally in IEEE 4 byte floating point with some operations calculated in double
precision. A good rule of thumb is that resolution will be better than 1 in the seventh digit.

As Long specifies the variable as a 32 bit integer. There are two possible reasons a user would
do this: (1) speed, since the CR1000X Operating System can do math on integers faster than with
Floats, and (2) resolution, since the Long has 31 bits compared to the 24 bits in the Float. A
good application of the As Long declaration is a counter that is expected to get very large.

As Boolean specifies the variable as a 4 byte Boolean. Boolean variables are typically used for
flags and to represent conditions or hardware that have only 2 states (e.g., On/Off, High/Low). A
Boolean variable uses the same 32 bit long integer format as a Long but can set to only one of
two values: True, which is represented as –1, and false, which is represented with 0. When a
Float or Long integer is converted to a Boolean, zero is False (0), any non-zero value will set
the Boolean to True (-1). The Boolean data type allows application software to display it as an
On/Off, True/False, Red/Blue, etc.

The CR1000X uses –1 rather than some other non-zero number because the AND and OR
operators are the same for logical statements and binary bitwise comparisons. The number -1 is
expressed in binary with all bits equal to 1, the number 0 has all bits equal to 0. When –1 is anded
with any other number the result is the other number, ensuring that if the other number is non-
zero (true), the result will be non-zero.

As String * size specifies the variable as a string of ASCII characters, NULL terminated,
with an optional size specifying the maximum number of characters in the string. A string is
convenient in handling serial sensors, dial strings, text messages, etc. When size is not specified, a
default of 24 characters will be used (23 usable bytes and 1 terminating byte).

As a special case, a string can be declared As String * 1. This allows the efficient storage of a
single character. The string will take up 4 bytes in memory and when stored in a data table, but it
will hold only one character.

Structures (StructureType/EndStructureType) are an advanced technique used to
organize variables and display data in a structured manner. They can significantly shorten
program code, especially for instructions that output an array of values, such as AVW200(), GPS(),
and SDI12Recorder(). For example, a single StructureType may be used to organize and
display data for multiple vibrating wire sensors or many SDI-12 sensors without creating aliases
for each sensor. See the CRBasic Editor help for detailed instruction information and program
examples: https://help.campbellsci.com/crbasic/cr1000x/ .

7.4.2 Constants
The Const declaration is used to assign a name that can be used in place of a value in the data
logger CRBasic program. Once a value is assigned to a constant, each time the value is needed in

7. Working with data 38

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

the program, the programmer can type in the constant name instead of the value itself. The use
of the Const declaration can make the program easier to follow, easier to modify, and more
secure against unintended changes. Unlike variables, constants cannot be changed while the
program is running.

Constants must be defined before they are used in the program. Constants can be defined in a
ConstTable/EndConstTable construct allowing them to be changed using the keyboard
display, the C command in terminal mode, or via a custom menu.

Constants can also be typed For example: Const A as Long = 9999, and Const B as String =
“MyString”. Valid data types for constants are: Long, Float, Double, and String. Other data
types return a compile error.

When the CRBasic program compiles, the compiler determines the type of the constant (Long,
Float, Double, or String) from the expression. This data type is communicated to the
software. The software formats or restricts the input based on the data type communicated to it
by the data logger.

You can declare a constant with or without specifying a data type. If a data type is not specified,
the compiler determines the data type from the expression. For example: Const A = 9999 will
use the Long data type. Const A = 9999.0 will use the Floatdata type.

7.4.3 Data storage
Data can be stored in IEEE4 or FP2 formats. The format is selected in the program instruction that
outputs the data, such as Minimum() and Maximum().

Additionally, data can be stored in IEEE8 format when high precision is needed. For more
information on double-precision math, watch an instructional video
at: http://www.campbellsci.com/videos/double-precision .

While Float (IEEE 4 byte floating point) is used for variables and internal calculations, FP2 is
adequate for most stored data. Campbell Scientific 2 byte floating point (FP2) provides 3 or 4
significant digits of resolution, and requires half the memory space as IEEE4 (2 bytes per value
vs 4).

Table 7-2: Resolution and range limits of FP2 data

Zero Minimum magnitude Maximum magnitude

0.000 ±0.001 ±7999.

The resolution of FP2 is reduced to 3 significant digits when the first (left most) digit is 8 or
greater. Thus, it may be necessary to use IEEE4 output or an offset to maintain the desired
resolution of a measurement. For example, if water level is to be measured and output to the

7. Working with data 39

https://www.campbellsci.com/videos/double-precision

nearest 0.01 foot, the level must be less than 80 feet for FP2 output to display the 0.01 foot
increment. If the water level is expected to range from 50 to 90 feet the data could either be
output in IEEE4 or could be offset by 20 feet (transforming the range to 30 to 70 feet).

Table 7-3: FP2 decimal location

Absolute value Decimal location

0 – 7.999 X.XXX

8 – 79.99 XX.XX

80 – 799.9 XXX.X

800 – 7999. XXXX.

NOTE:
String and Boolean variables can be output with the Sample() instruction. Results of
Sampling a Boolean variable will be either -1 or 0 in the collected Data Table. A Boolean
displays in the Numeric Monitor Public and Data Tables as true or false.

7.5 About data tables
A data table is essentially a file that resides in data logger memory (for information on data table
storage. See Data memory (p. 46). The file consists of five or more rows. Each row consists of
columns, or fields. The first four rows constitute the file header. Subsequent rows contain data
records. Data tables may store individual measurements, individual calculated values, or
summary data such as averages, maximums, or minimums.

Typically, files are written to based on time or event. The number of data tables is limited to 250,
which includes the Public, Status, DataTableInfo, and ConstTable. You can retrieve data based on
a schedule or by manually choosing to collect data using data logger support software. See
Collecting data (p. 35).

Table 7-4: Example data

TOA5, MyStation, CR1000X, 1142, CR1000X.Std.01, CPU:MyTemperature.CR1X, 1958, OneMin

TIMESTAMP RECORD BattV_Avg PTemp_C_Avg Temp_C_Avg

TS RN Volts Deg C Deg C

 Avg Avg Avg

2019-03-08 14:24:00 0 13.68 21.84 20.71

2019-03-08 14:25:00 1 13.65 21.84 20.63

7. Working with data 40

Table 7-4: Example data

TOA5, MyStation, CR1000X, 1142, CR1000X.Std.01, CPU:MyTemperature.CR1X, 1958, OneMin

TIMESTAMP RECORD BattV_Avg PTemp_C_Avg Temp_C_Avg

TS RN Volts Deg C Deg C

 Avg Avg Avg

2019-03-08 14:26:00 2 13.66 21.84 20.63

2019-03-08 14:27:00 3 13.58 21.85 20.62

2019-03-08 14:28:00 4 13.64 21.85 20.52

2019-03-08 14:29:00 5 13.65 21.85 20.64

7.5.1 Table definitions
Each data table is associated with descriptive information, referred to as a“table definition,” that
becomes part of the file header (first few lines of the file) when data is downloaded to a
computer. Table definitions include the data logger type and OS version, name of the CRBasic
program associated with the data, name of the data table (limited to 20 characters), and
alphanumeric field names.

7.5.1.1 Header rows
The first header row of the data table is the environment line, which consists of eight fields. The
following list describes the fields using the previous table entries as an example:

 l TOA5 - Table output format. Changed via LoggerNet Setup Standard View, Data Files
tab. Other formats include: TOB1 and TOACI1.

 l MyStation - Station name. Changed via LoggerNet Setup, Device Configuration Utility, or
CRBasic program.

 l CR1000X - Data logger model.
 l 1142 - Data logger serial number.
 l CR1000X.Std.01 - Data logger OS version.
 l CPU:MyTemperature.CR1X - Data logger program name. Changed by sending a new

program (see Sending a program to the data logger (p. 32) for more information).
 l 1958 - Data logger program signature. Changed by revising a program or sending a new

program (see Sending a program to the data logger (p. 32) for more information).
 l OneMin - Table name as declared in the running program (see Creating data tables in a

program (p. 43) for more information).

7. Working with data 41

The second header row reports field names. Default field names are a combination of the
variable names (or aliases) from which data is derived, and a three-letter suffix. The suffix is an
abbreviation of the data process that outputs the data to storage. A list of these abbreviations
follows in Data processing abbreviations (p. 42).

If a field is an element of an array, the field name will be followed by a indices within parentheses
that identify the element in the array. For example, a variable named Values, which is declared
as a two-by-two array in the data logger program, will be represented by four field names:
Values(1,1), Values(1,2), Values(2,1), and Values(2,2). There will be one value in
the second header row for each scalar value defined by the table.

If the default field names are not acceptable to the programmer, the FieldNames() instruction
can be used in the CRBasic program to customize the names. TIMESTAMP, RECORD, BattV_
Avg, PTemp_C_Avg, and Temp_C_Avg are the default field names in the previous Example
data (p. 40).

The third header row identifies engineering units for that field. These units are declared at the
beginning of a CRBasic program using the optional Units() declaration. In Short Cut, units are
chosen when sensors or measurements are added. Units are strictly for documentation. The data
logger does not make use of declared units, nor does it check their accuracy.

The fourth header row reports abbreviations of the data process used to produce the field of
data.

Table 7-5: Data processing abbreviations

Data processing name Abbreviation

Totalize Tot

Average Avg

Maximum Max

Minimum Min

Sample at Max or Min SMM

Standard Deviation Std

Moment MMT

Sample No abbreviation

Histogram Hst

Histogram4D H4D

FFT FFT

7. Working with data 42

Table 7-5: Data processing abbreviations

Data processing name Abbreviation

Covariance Cov

Level Crossing LCr

WindVector WVc

Median Med

ET ETsz

Solar Radiation (from ET) RSo

Time of Max TMx

Time of Min TMn

7.5.1.2 Data records
Subsequent rows are called data records. They include observed data and associated record
keeping. The first field is a time stamp (TS), and the second field is the record number (RN).

The time stamp shown represents the time at the beginning of the scan in which the data is
written. Therefore, in record number 3 in the previous Example data (p. 40), Temp_C_Avg shows
the average of the measurements taken over the minute beginning at 14:26:01 and ending at
14:27:00. As another example, consider rainfall measured every second with a daily total rainfall
recorded in a data table written at midnight. The record time stamped 2019-03-08 00:00:00 will
contain the total rainfall beginning at 2019-03-07 00:00:01 and ending at 2019-03-08 00:00:00.

NOTE:
TableName.Timestamp syntax can be used to return the timestamp of a data table record,
expressed either as a time into an interval (for example seconds since 1970 or seconds since
1990) or as a date/time string. For more information,
see: https://www.campbellsci.com/blog/programmatically-access-stored-data-values .

7.6 Creating data tables in a program
Data is stored in tables as directed by the CRBasic program. In Short Cut, data tables are created
in the Output steps. See Creating a Short Cut data logger program (p. 29) Data tables are created
within the CRBasic data logger program using the DataTable()/EndTable instructions. They
are placed after variable declarations and before the BeginProg instruction.

7. Working with data 43

https://www.campbellsci.com/blog/programmatically-access-stored-data-values
https://www.campbellsci.com/blog/programmatically-access-stored-data-values

Public 'Declare Public Variables

DataTable()
 'Output Trigger Condition(s)
 'Output Processing Instructions
EndTable

'Main Program
BeginProg

Between DataTable() and EndTable() are instructions that define what data to store and
under what conditions data is stored. A data table must be called by the CRBasic program for
data processing and storage to occur. Typically, data tables are called by the CallTable()
instruction once each program scan.

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

Use the DataTable() instruction to define the number of records, or rows, allocated to a data
table. You can set a specific number of records, which is recommended for conditional tables, or
allow your data logger to auto-allocate table size. With auto-allocation, the data logger balances
the memory so the tables “fill up” (newest data starts to overwrite the oldest data) at about the
same time. It is recommended you reserve the use of auto-allocation for data tables that store
data based only on time (tables that store data based on the DataInterval() instruction).
Event or conditional tables are usually set to a fixed number of records. View data table fill times
for your program on the Station Status > Table Fill Times tab (see Checking station status (p. 155)
for more information). An example of the Table Fill Times tab follows. For information on data
table storage see Data memory (p. 46).

7. Working with data 44

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

For additional information on data logger memory, visit the Campbell Scientific blog article, How
to Know when Your Datalogger Memory is Getting Full .

7. Working with data 45

https://www.campbellsci.com/blog/datalogger-memory-getting-full
https://www.campbellsci.com/blog/datalogger-memory-getting-full
https://www.campbellsci.com/blog/datalogger-memory-getting-full

8. Data memory
The data logger includes three types of memory: SRAM, Flash, and Serial Flash. A memory card
slot is also available for an optional microSD card. Note that the data logger USB port does not
support USB flash or thumb drives (see Communications ports (p. 15) for more information).

 l Total onboard: 128 MB of flash + 4 MB battery-backed SRAM
 o Data storage: 4 MB SRAM + 72 MB flash (extended data storage automatically used

for auto-allocated Data Tables not being written to a card)
 o CPU drive: 30 MB flash
 o OS load: 8 MB flash
 o Settings: 1 MB flash
 o Reserved (not accessible): 10 MB flash

 l Data storage expansion: Removable microSD flash memory, up to 16 GB

8.1 Data tables
Measurement data is primarily stored in data tables within SRAM. Data is usually erased from this
area when a program is sent to the data logger.

During data table initialization, memory sectors are assigned to each data table according to the
parameters set in the program. Program options that affect the allocation of memory include the
Size parameter of the DataTable() instruction, the Interval and Units parameters of
the DataInterval() instruction. The data logger uses those parameters to assign sectors in a
way that maximizes the life of its memory. See the CRBasic Editor help for detailed instruction
information and program examples: https://help.campbellsci.com/crbasic/cr1000x/ .

By default, data memory sectors are organized as ring memory. When the ring is full, oldest data
is overwritten by newest data. Using the FillStop statement sets a program to stop writing to
the data table when it is full, and no more data is stored until the table is reset. To see the total
number of records that can be stored before the oldest data is overwritten, or to reset tables, go
to Station Status > Table Fill Times in your data logger support software.

Data concerning the data logger memory are posted in the Status and DataTableInfo tables. For
additional information on these tables, see Information tables and settings (advanced) (p. 191).

For additional information on data logger memory, visit the Campbell Scientific blog article, How
to Know when Your Datalogger Memory is Getting Full .

8. Data memory 46

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm
https://www.campbellsci.com/blog/datalogger-memory-getting-full
https://www.campbellsci.com/blog/datalogger-memory-getting-full
https://www.campbellsci.com/blog/datalogger-memory-getting-full

8.2 Memory allocation
Data table SRAM and the CPU drive are automatically partitioned by the data logger. The USR
drive can be partitioned as needed. The CRD drive is automatically partitioned when a memory
card is installed.

The CPU and USR drives use the FAT file system. There is no limit, beyond practicality and
available memory, to the number of files that can be stored. While a FAT file system is subject to
fragmentation, performance degradation is not likely to be noticed since the drive has a relatively
small amount of solid state RAM and is accessed very quickly.

8.3 SRAM
SRAM holds program variables, communications buffers, final-data memory, and, if allocated,
the USR drive. An internal lithium battery retains this memory when primary power is removed.

The structure of the data logger SRAM memory is as follows:

 l Static Memory: This is memory used by the operating system, regardless of the running
program. This sector is rebuilt at power-up, program recompile, and watchdog events.

 l Operating Settings and Properties: Also known as the "Keep" memory, this memory is used
to store settings such as PakBus address, station name, beacon intervals, and allowed
neighbor lists. This memory also stores dynamic properties such as known routes and
communications timeouts.

 l CRBasic Program Operating Memory: This memory stores the currently compiled and
running user program. This sector is rebuilt on power-up, recompile, and watchdog events.

 l Variables & Constants: This memory stores constants and public variables used by the
CRBasic program. Variables may persist through power-up, recompile, and watchdog
events if the PreserveVariables instruction is in the running program.

 l Final-Data Memory: This memory stores data. Auto-allocated tables fill whatever memory
remains after all other demands are satisfied. A compile error occurs if insufficient memory
is available for user-allocated data tables. This memory is given lowest priority in SRAM
memory allocation.

 l Communication Memory 1: Memory used for construction and temporary storage of
PakBus packets.

 l Communication Memory 2: Memory used to store the list of known nodes and routes to
nodes. Routers use more memory than leaf nodes because routes store information about

8. Data memory 47

other routers in the network. You can increase the Communication Allocation field in
Device Configuration Utility to increase this memory allocation.

 l USR drive: Optionally allocated. Holds image files. Holds a copy of final-data memory when
TableFile() instruction used. Provides memory for FileRead() and FileWrite()
operations. Managed in File Control. Status reported in Status table fields USRDriveSize
and USRDriveFree.

8.3.1 USR drive
Battery-backed SRAM can be partitioned to create a FAT USR drive, analogous to partitioning a
second drive on a computer hard disk. Certain types of files are stored to USR to reserve limited
CPU drive memory for data logger programs and calibration files. Partitioning also helps prevent
interference from data table SRAM. The USR drive holds any file type within the constraints of the
size of the drive and the limitations on filenames. Files typically stored include image files from
cameras, certain configuration files, files written for FTP retrieval, HTML files for viewing with web
access, and files created with the TableFile() instruction. Measurement data can also be
stored on USR as discrete files by using the TableFile() instruction. Files on USR can be
collected using data logger support software Retrieve command in File Control, or automatically
using the LoggerNet Setup > File Retrieval tab functions.

USR is not affected by program recompilation or formatting of other drives. It will only be reset if
the USR drive is formatted, a new operating system is loaded, or the size of USR is changed. USR
size is set manually by accessing it in the Settings Editor, or programmatically by loading a
CRBasic program with a USR drive size entered in a SetSetting() instruction. Partition the
USR drive to at least 11264 bytes in 512-byte increments. If the value entered is not a multiple of
512 bytes, the size is rounded up. Maximum size of USR 2990080 bytes.

8. Data memory 48

WARNING:
Partitioning or changing the size of the USR drive will delete stored data from tables. Collect
data first.

NOTE:
Placing an optional USR size setting in the CRBasic program overrides manual changes to
USR size. When USR size is changed manually, the CRBasic program restarts and the
programmed size for USR takes immediate effect.

Files in the USR drive can be managed through data logger support software File Control or
through the FileManage() instruction in CRBasic program.

8.4 Flash memory
The data logger operating system is stored in a separate section of flash memory. To update the
operating system, see Updating the operating system (p. 146).

Serial flash memory holds the CPU drive, web page, and data logger settings. Because flash
memory has a limited number of write/erase cycles, care must be taken to avoid continuously
writing to files on the CPU drive.

8.4.1 CPU drive
The serial flash memory CPU drive contains data logger programs and other files. This memory is
managed in File Control.

NOTE:
When writing to files under program control, take care to write infrequently to prevent
premature failure of serial flash memory. Internal chip manufacturers specify the flash
technology used in Campbell Scientific CPU: drives at about 100,000 write/erase cycles. While
Campbell Scientific's in-house testing has found the manufacturers' specifications to be very
conservative, it is prudent to note the risk associated with repeated file writes via program
control.

Also, see System specifications (p. 228) for information on data logger memory.

8.5 MicroSD (CRD: drive)
The data logger has a microSD card slot for removable, supplemental memory. The card can be
configured as an extension of the data logger final-data memory or as a repository of discrete

8. Data memory 49

data files.

When storing high-frequency data, or when storing data to cards greater than 2 GB, TableFile
() with Option 64 is recommended to write final storage data to a card. In other applications
CardOut() can be used to store data to a card.

NOTE:
Sub-folders are not supported.

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

The CRD: drive uses microSD cards exclusively. Campbell Scientific recommends and supports
only the use of microSD cards obtained from Campbell Scientific. These cards are industrial-
grade and have passed Campbell Scientific hardware testing. Use of consumer-grade cards
substantially increases the risk of data loss. Following are advantages Campbell Scientific cards
have over less expensive commercial-grade cards:

 l Verified compatibility with Campbell Scientific data loggers
 l Less susceptible to failure and data loss
 l Match the data logger operating temperature range
 l Provide faster read/write times
 l Include vibration and shock resistance
 l Have longer life spans (more read/write cycles)

A "card controller error" indicates that the data logger has failed to communicate with the card. It
is an error caused by the micro-controller built into the microSD card. Sometimes this error may
be resolved by reformatting the card. If the error repeats itself, try an industrial-grade card. For
more information on errors, see File system error codes (p. 188).

A maximum of 30 data tables can be created using CardOut() on a microSD card. When a data
table is sent to a microSD card, a data table of the same name in SRAM is used as a buffer for
transferring data to the card. Note that with TableFile(), the number of files stored on the
card is controlled by the MaxFiles parameter.

When a new program is compiled that sends data to the card, the data logger checks if a card is
present and if the card has adequate space for the data tables. If no card is present, or if space is
inadequate, the data logger will warn that the card is not being used. However, the CRBasic
program runs anyway and data is stored to SRAM. When a card is inserted later, data
accumulated in the SRAM table is copied to the card.

8. Data memory 50

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

NOTE:
A card must be exchanged before it fills, or the oldest data will be overwritten, by incoming
new records, and lost. During the card exchange, once the old card is removed, the new card
must be inserted before the data table in data logger CPU memory rings, or data will be
overwritten and lost.

A microSD card can also facilitate the use of powerup.ini (see File management via powerup.ini
(p. 150) for more information).

8.5.1 Formatting microSD cards
The data logger accepts microSD cards formatted as FAT16 or FAT32; however, FAT32 is
recommended. Otherwise, some functionality, such as the ability to manage large numbers of
files (>254) is lost. There are several ways to format cards such as using: File Control, CR1000KD,
and Windows. Formatting on the data logger is recommended because this ensures correct
FAT32 format.

8.5.2 MicroSD card precautions
Observe the following precautions when using optional memory cards:

 l Before removing a card from the data logger, disable the card by pressing the Eject button
and wait for the green LED. You then have 15 seconds to remove the card before normal
operations resume.

 l Do not remove a memory card while the drive is active, or data corruption and damage to
the card may result.

 l Prevent data loss by collecting data before sending a program. Sending a program to the
data logger often erases all data.

 l See System specifications (p. 228) for information on maximum card size.

8.5.3 Act LED indicator
When the data logger is powered and a microSD card installed, the Act (Activity) LED will turn on
according to card activity or status:

 l Red flash: Card read/write activity
 l Solid green: This LED indicates it is OK to remove card. The Eject button must be pressed

before removing a card to allow the data logger to store buffered data to the card and then
power it off.

8. Data memory 51

 l Solid orange: Error
 l Dim/flashing orange: Card has been removed and has been out long enough that CPU

memory has wrapped and data is being overwritten without being stored to the card.

8.5.4 Card data retrieval
Data stored on cards can be retrieved through a communications link to the data logger or by
removing the card and carrying it to a computer with a card adapter. With large files, transferring
the card to a computer may be faster than collecting the data over a communications link.

CAUTION:
Removing a card while it is active can cause corrupted data and can damage the card. Always
press the Eject button and wait for a green light before removing card. Do not switch off the
data logger power if a card is present and active.

CAUTION:
File Control (in LoggerNet or PC400) should not be used to retrieve an open file (for example,
a file created by using CardOut() or the latest file created by TableFile(), Option 64)
from a card. Using File Control to retrieve the data can result in a corrupted data file.
However, File Control can be used to retrieve closed files such as JPEG images or files (other
than the latest) created by TableFile(), Option 64.

8.5.4.1 Via a communications link
Data can be copied to a computer via a communications link by using one of Campbell Scientific
data logger support software packages (for example, LoggerNet or PC400). There is no need to
distinguish whether the data is to be collected from the CPU memory or a card. The software
package will look for data in both the CPU memory and the card.

The data logger manages data on a card as final-storage data, accessing the card as needed to
fill data-collection requests initiated with the Collect button in data logger support software. If
desired, binary data can be collected by using the File Control utility in data logger support
software. Before collecting data this way, stop the data logger program to ensure data is not
written to the card while data is retrieved; this will avoid data corruption.

Fast storage/data-collection constraints

Factors affecting how fast the data logger stores data include the data storage rate, number of
table values, and number of tables. For more information, see Creating data tables in a program
(p. 43).

8. Data memory 52

When data logger support software collects data from ring tables that have filled, there is the
possibility of missing records due to the collection process. When a ring table has filled, the
oldest data is overwritten by the newest data. LoggerNet and PC400 use a collection algorithm
that collects data from multiple tables in small blocks as they collect from all the tables. Collection
starts with the oldest data for each table.

With filled ring tables, as collection begins, the data collection software queries the data logger
for the oldest data starting with the first table. When this data block is returned, the software
goes to the next table and so on until all of the tables are initially collected. By the time LoggerNet
or PC400 make the second pass requesting more data from the tables, the possibility exists that
some of that data may have been overwritten.

Normally, data is collected without gaps; however, if the data logger is storing data fast enough,
it is possible to get into an always-behind scenario where the data collection never catches up
and the data logger repeatedly overwrites uncollected data.

CAUTION:
The possibility of missing records is greater when collecting data over high-latency
communications links, such as RF or busy IP networks. This is due to the high demand of
communications on processor time.

8.5.4.2 Card transport to computer
With large files, transferring the card to a computer may be faster than collecting the data over a
communications link.

CAUTION:
Removing a card while it is active can cause corrupted data and can damage the card. Always
press the Eject button and wait for a green light before removing card. Do not switch off the
data logger power if a card is present and active.

To remove a card, first press the Eject button. The data logger will copy any buffered data to the
card and then power the card off. The Act LED will turn green when it is OK to physically remove
the card. The card will be reactivated after 15 seconds if it is not removed.

When the card is inserted into a computer, the data files can be copied to another drive or used
directly from the card just as one would from any other disk. In most cases, however, it will be
necessary to convert the file format before using the data.

Note that for both CardOut() and TableFile() Option 64, data is stored on the card in
binary (TOB3) format. TOB3 is a binary format that incorporates features to improve reliability of
cards. TOB3 format is different from the data file formats created when data is collected via a

8. Data memory 53

communications link, which is ASCII (TOA5) format. Hence, data files that are read directly from
the card need to be converted into another format to be human readable. You can convert files
from binary or other formats using CardConvert software that is included in your data logger
support software.

Converting file formats

Use CardConvert to convert data to a different format.

 1. Open CardConvert.
 l On the LoggerNet toolbar select the Data category.
 l In PC400 select the Tools menu.

 2. Click Select Card Drive.

 3. Select where the files to be converted are stored and press OK.

 4. Click Change Output Dir and select where to store the converted files.

 5. Place check marks next to the files to be converted. A default destination filename is given.
It can be changed by right-clicking with the filename highlighted.

 6. Press Destination File Options to select what file format to convert to and other options.

 7. Press Start Conversion to begin converting files. Green check marks will appear next to
each filename as conversion is complete. Refer to the data logger support software manual
or built-in CardConvert help for more information.

8. Data memory 54

Figure 8-1. CardConvert

Reinserting the card

If the same card is inserted again into the data logger, the data logger will store all data to the
card that has been generated since the card was removed that is still in the CPU memory. If the
data tables have been left on the card, new data will be appended to the end of the old files. If
the data tables have been deleted, new ones will be created.

CAUTION:
Check the status of the card before leaving the data logger. If a card was not properly
accepted, the LED will flash orange. In that case, reformat and erase all data contained on the
card. Formatting or erasing a card might be done on a computer or data logger. See MicroSD
(CRD: drive) (p. 49) for information on formatting a card.

Card swapping

When transporting a card to a computer to retrieve data, most users will want to use a second
card to ensure that no data is lost. For this method of collection, use the following steps.

 1. Insert formatted card (“card-A”) into the data logger card slot. See Formatting microSD
cards (p. 51).

 2. Send program containing TableFile() or CardOut() instruction(s).

8. Data memory 55

 3. When ready to retrieve data (hours, days, or months later), press the Eject button. The LED
will be red while the most-current data is stored to the card and then turn green. Remove
the card while the LED is green.

 4. Insert the clean card (“card-B”).

 5. Use CardConvert to copy data from card-A to computer and convert. The default
CardConvert filename will be TOA5_stationname_tablename.dat. Once the data is copied,
use Windows Explorer to delete all data files from the card.

 6. At the next card swap, eject card-B, press the Eject button. The LED will be red while the
most-current data is stored to the card and then turn green. Remove the card while the
LED is green.

 7. Insert the clean card-A.

 8. Running CardConvert on card-B will result in separate data files containing records since
card-A was ejected. CardConvert can increment the filename to TOA5_stationname_
tablename_0.dat.

 9. The data files can be joined by using text editing software such as WordPad or a
spreadsheet such as Excel.

CardConvert file Card-A record numbers Card-B record numbers

TOA5_tablename.dat 0-100

TOA5_tablename.dat 101-1234

TOA5_tablename.dat 1235-….

8. Data memory 56

9. Measurements
9.1 Voltage measurements 57

9.2 Current-loop measurements 59

9.3 Resistance measurements 61

9.4 Thermocouple Measurements 68

9.5 Period-averaging measurements 69

9.6 Pulse measurements 70

9.7 Vibrating wire measurements 77

9.8 Sequential and pipeline processing modes 77

9.1 Voltage measurements
Voltage measurements are made using an Analog-to-Digital Converter (ADC). A high-
impedance Programmable-Gain Amplifier (PGA) amplifies the signal. Internal multiplexers route
individual terminals within the amplifier. The CRBasic measurement instruction controls the ADC
gain and configuration – either single-ended or differential input. Information on the differences
between single-ended and differential measurements can be found here: Deciding between
single-ended or differential measurements (p. 174).

A voltage measurement proceeds as follows:

 1. Set PGA gain for the voltage range selected with the CRBasic measurement instruction
parameter Range. Set the ADC for the first notch frequency selected with fN1.

 2. If used, such as with bridge measurements, turn on excitation to the level selected with
ExmV.

 3. Multiplex selected terminals (SEChan or DiffChan).

 4. Delay for the entered settling time (SettlingTime).

 5. Perform the analog-to-digital conversion.

 6. Repeat for input reversal as determined by parameters RevEx and RevDiff.

 7. Apply multiplier (Mult) and offset (Offset) to measured result.

9. Measurements 57

Conceptually, analog voltage sensors output two signals: high and low. For example, a sensor
that outputs 1000 mV on the high signal and 0 mV on the low has an overall output of 1000 mV. A
sensor that outputs 2000 mV on the high signal and 1000 mV on the low also has an overall
output of 1000 mV. Sometimes, the low signal is simply sensor ground (0 mV). A single-ended
measurement measures the high signal with reference to ground; the low signal is tied to
ground. A differential measurement measures the high signal with reference to the low signal.
Each configuration has a purpose, but the differential configuration is usually preferred.

In general, use the smallest input range that accommodates the full-scale output of the sensor.
This results in the best measurement accuracy and resolution (see Analog measurement
specifications (p. 232) for more information).

A set overhead reduces the chance of overrange. Overrange limits are available in the
specifications. The data logger indicates a measurement overrange by returning a NAN for the
measurement.

WARNING:
Sustained voltages in excess of ±20 V applied to terminals configured for analog input will
damage CR1000X circuitry.

9.1.1 Single-ended measurements
A single-ended measurement measures the difference in voltage between the terminal
configured for single-ended input and the reference ground. For example, single-ended channel
1 is comprised of terminals SE 1 and . Single-ended terminals are labeled in blue. For more
information, see Wiring panel and terminal functions (p. 8). The single-ended configuration is
used with the following CRBasic instructions:

 l VoltSE()
 l BrHalf()
 l BrHalf3W()
 l TCSE()
 l Therm107()
 l Therm108()
 l Therm109()

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

9. Measurements 58

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

9.1.2 Differential measurements
A differential measurement measures the difference in voltage between two input terminals. For
example, DIFF channel 1 is comprised of terminals 1H and 1L, with 1H as high and 1L as low. For
more information, see Wiring panel and terminal functions (p. 8). The differential configuration is
used with the following CRBasic instructions:

 l VoltDiff()
 l BrFull()
 l BrFull6W()
 l BrHalf4W()
 l TCDiff()

9.1.2.1 Reverse differential
Differential measurements have the advantage of an input reversal option, RevDiff. When
RevDiff is set to True, two differential measurements are made, the first with a positive
polarity and the second reversed. Subtraction of opposite polarity measurements cancels some
offset voltages associated with the measurement.

For more information on voltage measurements, see Improving voltage measurement quality (p.
174) and Analog measurement specifications (p. 232).

9.2 Current-loop measurements
RG terminals can be configured to make analog current measurements using the CurrentSE()
instruction. When configured to measure current, terminals each have an internal resistance of
101 Ω in the current measurement loop. The return path of the sensor must be connected directly
to the RG terminal. The following image shows a simplified schematic of a current measurement.

9. Measurements 59

9.2.1 Example current-loop measurement connections
The following table shows example schematics for connecting typical current sensors and
devices. See also Current-loop measurement specifications (p. 236).

Sensor type Connection example

2-wire transmitter using data logger power

2-wire transmitter using external power

3-wire transmitter using data logger power

9. Measurements 60

Sensor type Connection example

3-wire transmitter using external power

4-wire transmitter using data logger power

4-wire transmitter using external power

9.3 Resistance measurements
Bridge resistance is determined by measuring the difference between a known voltage applied to
the excitation (input) of a resistor bridge and the voltage measured on the output arm. The data
logger supplies a precise voltage excitation via VX terminals. Return voltage is measured on

9. Measurements 61

analog input terminals configured for single-ended (SE) or differential (DIFF) input. The result of
the measurement is a ratio of measured voltages.

See also Resistance measurement specifications (p. 234).

9.3.1 Resistance measurements with voltage excitation
CRBasic instructions for measuring resistance with voltage excitation include:

 l BrHalf() - half bridge
 l BrHalf3W() - three-wire half bridge
 l BrHalf4W() - four-wire half bridge
 l BrFull() - four-wire full bridge
 l BrFull6W() - six-wire full bridge

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

Resistive-bridge type and
circuit diagram

CRBasic instruction and
fundamental relationship Relational formulas

Half Bridge1

CRBasic Instruction:
BrHalf()

Fundamental Relationship:

Three Wire Half Bridge1,2

CRBasic Instruction:
BrHalf3W()

Fundamental Relationship:

9. Measurements 62

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

Resistive-bridge type and
circuit diagram

CRBasic instruction and
fundamental relationship Relational formulas

Four Wire Half Bridge1,2

CRBasic Instruction:
BrHalf4W()

Fundamental Relationship:

Full Bridge1,2

CRBasic Instruction:
BrFull()

Fundamental Relationship:

These relationships apply
to

BrFull()
and BrFull6W()

Six Wire Full Bridge1

CRBasic Instruction:
BrFull6W()

Fundamental Relationship:

1 Key: Vx = excitation voltage; V1, V2 = sensor return voltages; Rf = fixed, bridge or completion resistor; Rs = variable
or sensing resistor.
2 Campbell Scientific offers terminal input modules to facilitate this measurement.

Offset voltage compensation applies to bridge measurements. In addition to RevDiff and
MeasOff parameters discussed in Minimizing offset voltages (p. 184), CRBasic bridge

9. Measurements 63

measurement instructions include the RevEx parameter that provides the option to program a
second set of measurements with the excitation polarity reversed. Much of the offset error
inherent in bridge measurements is canceled out by setting RevDiff, RevEx, and MeasOff to
True.

Measurement speed may be reduced when using RevDiff, MeasOff, and RevEx. When more
than one measurement per sensor is necessary, such as occurs with the BrHalf3W(),
BrHalf4W(), and BrFull6W() instructions, input and excitation reversal are applied
separately to each measurement. For example, in the four-wire half-bridge (BrHalf4W()),
when excitation is reversed, the differential measurement of the voltage drop across the sensor is
made with excitation at both polarities and then excitation is again applied and reversed for the
measurement of the voltage drop across the fixed resistor. The results of the measurements (X)
must then be processed further to obtain the resistance value, which requires additional program
execution time.

CRBasic Example 1: Four-wire full-bridge measurement and processing

'This program example demonstrates the measurement and
'processing of a four-wire resistive full bridge.
'In this example, the default measurement stored
'in variable X is deconstructed to determine the
'resistance of the R1 resistor, which is the variable
'resistor in most sensors that have a four-wire
'full-bridge as the active element.
'Declare Variables
Public X
Public X_1
Public R_1
Public R_2 = 1000 'Resistance of fixed resistor R2
Public R_3 = 1000 'Resistance of fixed resistor R3
Public R_4 = 1000 'Resistance of fixed resistor R4
'Main Program
BeginProg
Scan(500,mSec,1,0)
'Full Bridge Measurement:
BrFull(X,1,mV250,1,Vx1,1,4000,True,True,0,60,1.0,0.0)
X_1 = ((-1 * X) / 1000) + (R_3 / (R_3 + R_4))
R_1 = (R_2 * (1 - X_1)) / X_1

NextScan
EndProg

9.3.2 RTD and PRT
RTDs (resistance temperature detectors) are resistive devices made of platinum, nickel, copper,
or other material. Platinum RTDs, known as PRTs (platinum resistance thermometers) are very

9. Measurements 64

accurate temperature measurement sensors.

A PRT element is a specialized resistor with two connection points. Most PRTs are either 100 Ω or
1000 Ω. This number is the resistance the PRT has at 0 °C. The resistance of a PRT increases as it is
warmed. Industry standards define how PRTs respond to temperature.

BrHalf4W() or CDM_BrHalf4W() in combination with PRTCalc() are the recommended
CRBasic instructions for measuring RTDs.

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

9.3.3 Strain measurements
A principal use of the four-wire full bridge is the measurement of strain gages in structural stress
analysis. StrainCalc() calculates microstrain (µɛ) from the formula for the specific bridge
configuration used. All strain gages supported by StrainCalc() use the full-bridge schematic.
'Quarter-bridge', 'half-bridge' and 'full-bridge' refer to the number of active elements in the
bridge schematic. In other words, a quarter-bridge strain gage has one active element, a half-
bridge has two, and a full-bridge has four.

StrainCalc() requires a bridge-configuration code. The following table shows the equation
used by each configuration code. Each code can be preceded by a dash (-). Use a code without
the dash when the bridge is configured so the output decreases with increasing strain. Use a
dashed code when the bridge is configured so the output increases with increasing strain. A
dashed code sets the polarity of Vr to negative.

Table 9-1: StrainCalc() configuration codes

BrConfig code Configuration

1

Quarter-bridge strain gage:

2

Half-bridge strain gage. One gage parallel to strain, the other at 90°
to strain:

9. Measurements 65

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

Table 9-1: StrainCalc() configuration codes

BrConfig code Configuration

3

Half-bridge strain gage. One gage parallel to +ɛ, the other parallel
to -ɛ:

4

Full-bridge strain gage. Two gages parallel to +ɛ, the other two
parallel to -ɛ:

5

Full-bridge strain gage. Half the bridge has two gages parallel to +ɛ
and -ɛ, and the other half to +νɛ and -νɛ

6

Full-bridge strain gage. Half the bridge has two gages parallel to +ɛ
and -νɛ , and the other half to -νɛ and +ɛ:

Where:
ν : Poisson's Ratio (0 if not applicable).
GF: Gage Factor.
Vr: 0.001 (Source-Zero) if BRConfig code is positive (+).

Vr: –0.001 (Source-Zero) if BRConfig code is negative (–).

and where:
"source": the result of the full-bridge measurement (X = 1000 • V1 / Vx) when multiplier = 1 and offset = 0.
"zero": gage offset to establish an arbitrary zero.

9. Measurements 66

9.3.4 AC excitation
Some resistive sensors require AC excitation. AC excitation is defined as excitation with equal
positive (+) and negative (–) duration and magnitude. These include electrolytic tilt sensors, soil
moisture blocks, water-conductivity sensors, and wetness-sensing grids. The use of single
polarity DC excitation with these sensors can result in polarization of sensor materials and the
substance measured. Polarization may cause erroneous measurement, calibration changes, or
rapid sensor decay.

Other sensors, for example, LVDTs (linear variable differential transformers), require AC excitation
because they require inductive coupling to provide a signal. DC excitation in an LVDT will result in
no measurement.

CRBasic bridge-measurement instructions have the option to reverse polarity to provide AC
excitation by setting the RevEx parameter to True.

NOTE:
Take precautions against ground loops when measuring sensors that require AC excitation.
See also Ground loops (p. 170).

For more information, see Accuracy for resistance measurements (p. 67).

9.3.5 Accuracy for resistance measurements
Consult the following technical papers for in-depth treatments of several topics addressing
voltage measurement quality:

 l Preventing and Attacking Measurement Noise Problems
 l Benefits of Input Reversal and Excitation Reversal for Voltage Measurements
 l Voltage Measurement Accuracy, Self- Calibration, and Ratiometric Measurements

NOTE:
Error discussed in this section and error-related specifications of the CR1000X do not include
error introduced by the sensor, or by the transmission of the sensor signal to the data logger.

For accuracy specifications of ratiometric resistance measurements, see Resistance measurement
specifications (p. 234). Voltage measurement is variable V1 or V2 in resistance measurements.
Offset is the same as that for simple analog voltage measurements.

Assumptions that support the ratiometric-accuracy specification include:

9. Measurements 67

https://s.campbellsci.com/documents/us/technical-papers/mnoise.pdf
https://s.campbellsci.com/documents/us/technical-papers/mnoise.pdf
https://s.campbellsci.com/documents/us/technical-papers/inputrev.pdf
https://s.campbellsci.com/documents/us/technical-papers/inputrev.pdf
https://s.campbellsci.com/documents/us/technical-papers/voltaccy.pdf
https://s.campbellsci.com/documents/us/technical-papers/voltaccy.pdf

 l Data logger is within factory calibration specification.
 l Input reversal for differential measurements and excitation reversal for excitation voltage

are within specifications.
 l Effects due to the following are not included in the specification:

 o Bridge-resistor errors
 o Sensor noise
 o Measurement noise

9.4 Thermocouple Measurements
Thermocouple measurements are special case voltage measurements.

NOTE:Thermocouples are inexpensive and easy to use. However, they pose several
challenges to the acquisition of accurate temperature data, particularly when using external
reference junctions.

A thermocouple consists of two wires, each of a different metal or alloy, joined at one end to
form the measurement junction. At the opposite end, each wire connects to terminals of a
voltage measurement device, such as the data logger. These connections form the reference
junction. If the two junctions (measurement and reference) are at different temperatures, a
voltage proportional to the difference is induced in the wires. This phenomenon is known as the
Seebeck effect.

Measurement of the voltage between the positive and negative terminals of the voltage-
measurement device provides a direct measure of the temperature difference between the
measurement and reference junctions. A third metal (for example, solder or data logger
terminals) between the two dissimilar-metal wires form parasitic-thermocouple junctions, the
effects of which cancel if the two wires are at the same temperature. Consequently, the two wires
at the reference junction are placed in close proximity so they remain at the same temperature.

Knowledge of the reference junction temperature provides the determination of a reference
junction compensation voltage, corresponding to the temperature difference between the
reference junction and 0°C. This compensation voltage, combined with the measured
thermocouple voltage, can be used to compute the absolute temperature of the thermocouple
junction.

TCDiff() and TCSE() thermocouple instructions determine thermocouple temperatures
using the following sequence. First, the temperature (°C) of the reference junction is determined.
Next, a reference junction compensation voltage is computed based on the temperature
difference between the reference junction and 0°C. If the reference junction is the data logger
analog-input terminals, the temperature is conveniently measured with the PanelTemp()
instruction. The actual thermocouple voltage is measured and combined with the reference

9. Measurements 68

junction compensation voltage. It is then used to determine the thermocouple-junction
temperature based on a polynomial approximation of NIST thermocouple calibrations.

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

9.5 Period-averaging measurements
Use PeriodAvg() to measure the period (in microseconds) or the frequency (in Hz) of a signal
on a single-ended channel. For these measurements, the data logger uses a high-frequency
digital clock to measure time differences between signal transitions, whereas pulse-count
measurements simply accumulate the number of counts. As a result, period-average
measurements offer much better frequency resolution per measurement interval than pulse-
count measurements. See also Pulse measurements (p. 70).

SE terminals on the data logger are configurable for measuring the period of a signal.

The measurement is performed as follows: low-level signals are amplified prior to a voltage
comparator. The internal voltage comparator is referenced to the programmed threshold. The
threshold parameter allows referencing the internal voltage comparator to voltages other than
0 V. For example, a threshold of 2500 mV allows a 0 to 5 VDC digital signal to be sensed by the
internal comparator without the need for additional input conditioning circuitry. The threshold
allows direct connection of standard digital signals, but it is not recommended for small-
amplitude sensor signals.

A threshold other than zero results in offset voltage drift, limited accuracy (approximately
±10 mV) and limited resolution (approximately 1.2 mV).

See also Period-averaging measurement specifications (p. 235).

TIP:
Both pulse count and period-average measurements are used to measure frequency output
sensors. However, their measurement methods are different. Pulse count measurements use
dedicated hardware - pulse count accumulators, which are always monitoring the input
signal, even when the data logger is between program scans. In contrast, period-average
measurements use program instructions that only monitor the input signal during a program
scan. Consequently, pulse count scans can occur less frequently than period-average scans.
Pulse counters may be more susceptible to low-frequency noise because they are always
"listening", whereas period-averaging measurements may filter the noise by reason of being
"asleep" most of the time.

9. Measurements 69

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

Pulse count measurements are not appropriate for sensors that are powered off between
scans, whereas period-average measurements work well since they can be placed in the scan
to execute only when the sensor is powered and transmitting the signal.

9.6 Pulse measurements
The output signal generated by a pulse sensor is a series of voltage waves. The sensor couples its
output signal to the measured phenomenon by modulating wave frequency. The data logger
detects the state transition as each wave varies between voltage extremes (high-to-low or low-
to-high). Measurements are processed and presented as counts, frequency, or timing data. Both
pulse count and period-average measurements are used to measure frequency-output sensors.
For more information, see Period-averaging measurements (p. 69).

The data logger includes terminals that are configurable for pulse input as shown in the following
image.

Table 9-2: Pulse input terminals and the input types they can measure

Input type Pulse input terminal

High-frequency

P1
P2

C (all)

Low-level AC P1
P2

9. Measurements 70

Table 9-2: Pulse input terminals and the input types they can measure

Input type Pulse input terminal

Switch-closure

P1
P2

C (all)

Using the PulseCount() instruction, P C terminals are configurable for pulse input to measure
counts or frequency. Maximum input frequency is dependent on input voltage. If pulse input
voltages exceed the maximum voltage, third-party external-signal conditioners should be
employed. Do not measure voltages greater than 20 V.

NOTE:
Conflicts can occur when a control port pair is used for different instructions (TimerInput(),
PulseCount(), SDI12Recorder(), WaitDigTrig()). For example, if C1 is used for
SDI12Recorder(), C2 cannot be used for TimerInput(), PulseCount(), or
WaitDigTrig().

Terminals configured for pulse input have internal filters that reduce electronic noise, and thus
reduce false counts. Internal AC coupling is used to eliminate DC offset voltages. For tips on
working with pulse measurements, see Pulse measurement tips (p. 76).

Output can be recorded as counts, frequency or a running average of frequency.

For more information, see Pulse measurement specifications (p. 236).

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

9.6.1 Low-level AC measurements
Low-level AC (alternating current or sine-wave) signals can be measured on P terminals. AC
generator anemometers typically output low-level AC.

Measurement output options include the following:

 l Counts
 l Frequency (Hz)
 l Running average

Rotating magnetic-pickup sensors commonly generate AC voltage ranging from millivolts at
low-rotational speeds to several volts at high-rotational speeds.

9. Measurements 71

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

CRBasic instruction: PulseCount(). See the CRBasic Editor help for detailed instruction
information and program examples: https://help.campbellsci.com/crbasic/cr1000x/ .

Low-level AC signals cannot be measured directly by C terminals. Peripheral terminal expansion
modules, such as the Campbell Scientific LLAC4, are available for converting low-level AC signals
to square-wave signals measurable by C terminals.

For more information, see Pulse measurement specifications (p. 236).

9.6.2 High-frequency measurements
High-frequency (square-wave) signals can be measured on terminals:

 l P or C

Common sensors that output high-frequency pulses include:

 l Photo-chopper anemometers
 l Flow meters

Measurement output optionss include counts, frequency in hertz, and running average. Note
that the resolution of a frequency measurement can be different depending on the terminal used
in the PulseCount() instruction. See the CRBasic help for more information.

The data logger has built-in pull-up and pull-down resistors for different pulse measurements
which can be accessed using the PulseCount() instruction. Note that pull down options are
usually used for sensors that source their own power.

9.6.2.1 P terminals

 l CRBasic instruction: PulseCount()

High-frequency pulse inputs are routed to an inverting CMOS input buffer with input hysteresis.
See Pulse measurement specifications (p. 236) for more information.

9.6.2.2 C terminals

 l CRBasic instructions: PulseCount()

See Pulse measurement specifications (p. 236) for more information.

9. Measurements 72

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

9.6.3 Switch-closure and open-collector measurements
Switch-closure and open-collector (also called current-sinking) signals can be measured on
terminals:

 l P or C

Mechanical switch-closures have a tendency to bounce before solidly closing. Unless filtered,
bounces can cause multiple counts per event. The data logger automatically filters bounce.
Because of the filtering, the maximum switch-closure frequency is less than the maximum high-
frequency measurement frequency. Sensors that commonly output a switch-closure or an open-
collector signal include:

 l Tipping-bucket rain gages
 l Switch-closure anemometers
 l Flow meters

The data logger has built-in pull-up and pull-down resistors for different pulse measurements
which can be accessed using the PulseCount() instruction. Note that pull down options are
usually used for sensors that source their own power.

Data output options include counts, frequency (Hz), and running average.

9.6.3.1 P Terminals
An internal 100 kΩ pull-up resistor pulls an input to 5 VDC with the switch open, whereas a
switch-closure to ground pulls the input to 0 V.

 l CRBasic instruction: PulseCount(). See the CRBasic Editor help for detailed instruction
information and program examples: https://help.campbellsci.com/crbasic/cr1000x/ .

Switch Closure on P Terminal Open Collector on P Terminal

9. Measurements 73

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

9.6.3.2 C terminals
Switch-closure mode is a special case edge-count function that measures dry-contact switch-
closures or open collectors. The operating system filters bounces.

 l CRBasic instruction: PulseCount().

See also Pulse measurement specifications (p. 236).

9.6.4 Edge timing and edge counting
Edge time, period, and counts can be measured on P or C terminals. Feedback control using
pulse-width modulation (PWM) is an example of an edge timing application.

9.6.4.1 Single edge timing
A single edge or state transition can be measured on C terminals. Measurements can be
expressed as a time (µs), frequency (Hz) or period (µs).

CRBasic instruction: TimerInput()

9.6.4.2 Multiple edge counting
Time between edges, time from an edge on the previous terminal, and edges that span the scan
interval can be measured on C terminals. Measurements can be expressed as a time (µs),
frequency (Hz) or period (µs).

 l CRBasic instruction: TimerInput()

9.6.4.3 Timer input NAN conditions
NAN is the result of a TimerInput() measurement if one of the following occurs:

 l Measurement timer expires
 l The signal frequency is too fast

For more information, see:

 l Pulse measurement specifications (p. 236)
 l Digital input/output specifications (p. 237)
 l Period-averaging measurement specifications (p. 235)

9. Measurements 74

9.6.5 Quadrature measurements
The Quadrature() instruction is used to measure shaft or rotary encoders. A shaft encoder
outputs a signal to represent the angular position or motion of the shaft. Each encoder will have
two output signals, an A line and a B line. As the shaft rotates the A and B lines will generate
digital pulses that can be read, or counted, by the data logger.

In the following example, channel A leads channel B, therefore the encoder is determined to be
moving in a clockwise direction. If channel B led channel A, it would be determined that the
encoder was moving in a counterclockwise direction.

Terminals C1-C8 can be configured as digital pairs to monitor the two channels of an encoder.
The Quadrature() instruction can return:

 l The accumulated number of counts from channel A and channel B. Count will increase if
channel A leads channel B. Count will decrease if channel B leads channel A.

 l The net direction.
 l Number of counts in the A-leading-B direction.
 l Number of counts in the B-leading-A direction.

Counting modes:

 l Counting the increase on rising edge of channel A when channel A leads channel B.
Counting the decrease on falling edge of channel A when channel B leads channel A.

 l Counting the increase at each rising and falling edge of channel A when channel A leads
channel B. Counting the decrease at each rising and falling edge of channel A when
channel A leads channel B.

 l Counting the increase at each rising and falling edge of both channels when channel A
leads channel B. Counting the decrease at each rising and falling edge of both channels
when channel B leads channel A.

For more information, see Digital input/output specifications (p. 237).

9. Measurements 75

9.6.6 Pulse measurement tips
The PulseCount() instruction uses dedicated 32-bit counters to accumulate all counts over
the programmed scan interval. The resolution of pulse counters is one count. Counters are read
at the beginning of each scan and then cleared. Counters will overflow if accumulated counts
exceed 4,294,967,296 (232), resulting in erroneous measurements. See the CRBasic Editor help for
detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

Counts are the preferred PulseCount() output option when measuring the number of tips
from a tipping-bucket rain gage or the number of times a door opens. Many pulse-output
sensors, such as anemometers and flow meters, are calibrated in terms of frequency (Hz) so are
usually measured using the PulseCount() frequency-output option.

Use the LLAC4 module to convert non-TTL-level signals, including low-level AC signals, to TTL
levels for input to C terminals

Conflicts can occur when a control port pair is used for different instructions (TimerInput(),
PulseCount(), SDI12Recorder(), WaitDigTrig()). For example, if C1 is used for
SDI12Recorder(), C2 cannot be used for TimerInput(), PulseCount(), or
WaitDigTrig().

Understanding the signal to be measured and compatible input terminals and CRBasic
instructions is helpful. See Pulse input terminals and the input types they can measure (p. 70).

9.6.6.1 Input filters and signal attenuation
Terminals configured for pulse input have internal filters that reduce electronic noise. The
electronic noise can result in false counts. However, input filters attenuate (reduce) the amplitude
(voltage) of the signal. Attenuation is a function of the frequency of the signal. Higher-frequency
signals are attenuated more. If a signal is attenuated too much, it may not pass the detection
thresholds required by the pulse count circuitry. See Pulse measurement specifications (p. 236)
for more information. The listed pulse measurement specifications account for attenuation due
to input filtering.

9.6.6.2 Pulse count resolution
Longer scan intervals result in better resolution. PulseCount() resolution is 1 pulse per scan.
On a 1 second scan, the resolution is 1 pulse per second. The resolution on a 10 second scan
interval is 1 pulse per 10 seconds, which is 0.1 pulses per second. The resolution on a 100
millisecond interval is 10 pulses per second.

9. Measurements 76

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

For example, if a flow sensor outputs 4.5 pulses per second and you use a 1 second scan, one
scan will have 4 pulses and the next 5 pulses. Scan to scan, the flow number will bounce back and
forth. If you did a 10 second scan (or saved a total to a 10 second table), you would get 45 pulses.
The total is 45 pulses for every 10 seconds. An average will correctly show 4.5 pulses per second.
You wouldn't see the reading bounce on the longer time interval.

9.7 Vibrating wire measurements
The data logger can measure vibrating wire sensors through vibrating-wire interface modules.
Vibrating wire sensors are the sensor of choice in many environmental and industrial applications
that need sensor stability over very long periods, such as years or even decades. A thermistor
included in most sensors can be measured to compensate for temperature errors.

9.7.1 VSPECT®
Measuring the resonant frequency by means of period averaging is the classic technique, but
Campbell Scientific has developed static and dynamic spectral-analysis techniques (VSPECT) that
produce superior noise rejection, higher resolution, diagnostic data, and, in the case of dynamic
VSPECT, measurements up to 333.3 Hz. For detailed information on VSPECT, see Vibrating Wire
Spectral Analysis Technology .

9.8 Sequential and pipeline processing modes
The data logger has two processing modes: sequential mode and pipeline mode. In sequential
mode, data logger tasks run more or less in sequence. In pipeline mode, data logger tasks run
more or less in parallel. Mode information is included in a message returned by the data logger,
which is displayed by software when the program is sent and compiled, and it is found in the
Status Table, CompileResults field. The CRBasic Editor pre-compiler returns a similar message.

The default mode of operation is pipeline mode. However, when the data logger program is
compiled, the data logger analyzes the program instructions and automatically determines which
mode to use. The data logger can be forced to run in either mode by placing the
PipeLineMode or SequentialMode instruction at the beginning of the program (before the
BeginProg instruction).

For additional information, visit the Campbell Scientific blog article, "Understanding CRBasic
Program Compile Modes: Sequential and Pipeline ." Or watch an instructional video
at: http://www.campbellsci.com/videos/pipeline-sequential .

9. Measurements 77

https://s.campbellsci.com/documents/us/category-brochures/b_vspect.pdf
https://s.campbellsci.com/documents/us/category-brochures/b_vspect.pdf
https://s.campbellsci.com/documents/us/category-brochures/b_vspect.pdf
https://www.campbellsci.com/blog/crbasic-program-compile-modes
https://www.campbellsci.com/blog/crbasic-program-compile-modes
https://www.campbellsci.com/blog/crbasic-program-compile-modes
https://www.campbellsci.com/blog/crbasic-program-compile-modes
https://www.campbellsci.com/videos/pipeline-sequential

9.8.1 Sequential mode
Sequential mode executes instructions in the sequence in which they are written in the program.
After a measurement is made, the result is converted to a value determined by processing
arguments that are included in the measurement instruction, and then program execution
proceeds to the next instruction. This line-by-line execution allows writing conditional
measurements into the program.

NOTE:
The exact time at which measurements are made in sequential mode may vary if other
measurements or processing are made conditionally, if there is heavy communications
activity, or if other interrupts occur (such as accessing a Campbell Scientific memory card).

9.8.2 Pipeline mode
Pipeline mode handles measurement, most digital, and processing tasks separately, and, in many
cases, simultaneously. Measurements are scheduled to execute at exact times and with the
highest priority, resulting in more precise timing of measurements, and usually more efficient
processing and power consumption.

In pipeline mode, it will take less time for the data logger to execute each scan of the program.
However, because processing can lag behind measurements, there could be instances, such as
when turning on a sensor using the SW12() instruction, that the sensor might not be on at the
correct time to make the measurement.

Pipeline scheduling requires that the program be written such that measurements are executed
every scan. Because multiple tasks are taking place at the same time, the sequence in which the
instructions are executed may not be in the order in which they appear in the program.
Therefore, conditional measurements are not allowed in pipeline mode. Because of the precise
execution of measurement instructions, processing in the current scan (including updating public
variables and data storage) is delayed until all measurements are complete. Some processing,
such as transferring variables to control instructions, like PortSet() and ExciteV(), may not
be completed until the next scan.

When a condition is true for a task to start, it is put in a queue. Because all tasks are given the
same priority, the task is put at the back of the queue. Every 1 ms (or faster if a new task is
triggered) the task currently running is paused and put at the back of the queue, and the next
task in the queue begins running. In this way, all tasks are given equal processing time by the
data logger.

9. Measurements 78

9.8.3 Slow Sequences
Priority of a slow sequence (SlowSequence) in the data logger will vary, depending upon
whether the data logger is executing its program in pipeline mode or sequential mode. With the
important exception of measurements, when running in pipeline mode all sequences in the
program have the same priority. When running in sequential mode, the main scan has the
highest priority for measurements, followed by background calibration (which is automatically
run in a slow sequence), then the first slow sequence, the second slow sequence, and so on. The
effects of this priority are negligible; however, since, once the tasks begin running, each task is
allotted a 1 msec time slice, after which, the next task in the queue runs for 1 msec. The data
logger cycles through the queue until all instructions for all sequences are complete.

9. Measurements 79

10. Communications protocols
Data loggers communicate with data logger support software, other Campbell Scientific data
loggers, and other hardware and software using a number of protocols including PakBus,
Modbus, DNP3, CPI, SPI, and TCP/IP. Several industry-specific protocols are also supported.
CAN-bus is supported when using the Campbell Scientific SDM-CAN communications module.
See also Communications specifications (p. 239).

10.1 General serial communications 81

10.2 Modbus communications 87

10.3 Internet communications 97

10.4 MQTT 100

10.5 DNP3 communications 114

10.6 Serial peripheral interface (SPI) and I2C 115

10.7 PakBus communications 115

10.8 SDI-12 communications 116

Some communications services, such as satellite networks, can be expensive to send and receive
information. Best practices for reducing expense include:

 l Declare Public only those variables that need to be public. Other variables should be
declared as Dim.

 l Be conservative with use of string variables and string variable sizes. Make string variables
as big as they need to be and no more. The default size, if not specified, is 24 bytes, but the
minimum is 4 bytes. Declare string variables Public and sample string variables into data
tables only as needed.

 l When using GetVariables() / SendVariables() to send values between data
loggers, put the data in an array and use one command to get the multiple values. Using
one command to get 10 values from an array and swath of 10 is more efficient (requires
only 1 transaction) than using 10 commands to get 10 single values (requires 10
transactions). See the CRBasic Editor help for detailed instruction information and program
examples: https://help.campbellsci.com/crbasic/cr1000x/ .

10. Communications protocols 80

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

 l Set the data logger to be a PakBus router only as needed. When the data logger is a router,
and it connects to another router like LoggerNet, it exchanges routing information with that
router and, possibly (depending on your settings), with other routers in the network.
Network Planner set this appropriately when it is used. This is also set through the IsRouter
setting in the Settings Editor. For more information, see the Device Configuration Settings
Editor IsRouter (p. 211).

 l Set PakBus beacons and verify intervals properly. For example, there is no need to verify
routes every five minutes if communications are expected only every 6 hours. Network
Planner will set this appropriately when it is used. This is also set through the Beacon and
Verify settings in the Settings Editor. For more information, see the Device Configuration
Settings Editor Beacon() and Verify() settings.

For information on Designing a PakBus network using the Network Planner tool in LoggerNet,
watch the following video: https://www.campbellsci.com/videos/loggernet-software-network-
planner .

10.1 General serial communications
The data logger supports two-way serial communications. These communications ports can be
used with smart sensors that deliver measurement data through serial-data protocols, or with
devices such as modems, that communicate using serial data protocols.

CRBasic instructions for general serial communications include:

 l SerialOpen()
 l SerialClose()
 l SerialIn()
 l SerialInRecord()
 l SerialInBlock()
 l SerialInChk()

 l SerialOut()
 l SerialOutBlock()
 l SerialBrk()
 l SerialFlush()

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

To communicate over a serial port, it is important to be familiar with the protocol used by the
device with which you will be communicating. Refer to the manual of the sensor or device to find
its protocol and then select the appropriate options for each CRBasic parameter. See the
application note Interfacing Serial Sensors with Campbell Scientific Dataloggers for more
programming details and examples.

10. Communications protocols 81

https://www.campbellsci.com/videos/loggernet-software-network-planner
https://www.campbellsci.com/videos/loggernet-software-network-planner
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm
https://s.campbellsci.com/documents/us/technical-papers/serial.pdf
https://s.campbellsci.com/documents/us/technical-papers/serial.pdf

Configure C terminals as serial ports using Device Configuration Utility or by using the
SerialOpen() CRBasic instruction. Terminals are configured in pairs for TTL, LVTTL, RS-232,
and half-duplex RS-422 and RS-485 communications. For full-duplex RS-422 and RS-485, four
terminals are required.

Figure 10-1. RS-232 single-ended full-duplex communications

Figure 10-2. RS-485/RS-422 differential-pair full-duplex communications

10. Communications protocols 82

Figure 10-3. RS-485 differential-pair half-duplex communications

10.1.1 RS-232
RS-232 supports point-to-point communications between one base (usually the data logger) and
one external device. See Figure 10-1 (p. 82). Data bits are sent from the base to external devices
across the transmit (Tx) line with respect to DC ground. The Tx line idle state is between –25 V
and –3 V, depending on the transmitter. The transition from negative voltage to above 3 V
begins data transmission.

NOTE:
Most RS-232 devices are also compatible with the data logger using TTL-inverted
communications.

NOTE:
The data logger uses about -7 V to represent logic 1, and about 5.8 V to represent logic 0.

10. Communications protocols 83

Figure 10-4. RS-232 Tx voltage with respect to GND

10.1.2 RS-485
RS-485 supports communications between 32 base and 32 external devices. See Figure 10-3 (p.
83) and Figure 10-2 (p. 82). Differential voltage between two lines (A & B) transmit data. When the
voltage of B with respect to A is between -0.2 V and -6 V that is interpreted as logic 0. When the
differential voltage in the range of positive 0.2 V to 6 V that is interpreted as logic 1.

NOTE:
The CR1000X uses about -1 V to represent logic 0, and about 1 V to represent logic 1.

Figure 10-5. RS-485 Voltage B with respect to A

10. Communications protocols 84

10.1.3 RS-422
RS-422 communications protocol is similar to RS-485. The difference is that RS-422 ranges from
-6 V to 6 V instead of -5 V to 5 V. Also, RS-422 only supports communications from 1 base to 10
external devices, but not return communications from all 10 external devices. In full-duplex point-
to-point (1 base, 1 external) RS-422 communications, both devices can transmit and receive. Half-
duplex can be used in cases where sensors broadcast data to a receiving data logger. See Figure
10-3 (p. 83) and Figure 10-2 (p. 82).

NOTE:
Use the RS-485 communications type when setting up the data logger for RS-422
communications. Most RS-422 sensors will work with RS-485 protocol.

Figure 10-6. RS-422 Voltage B with respect to A

10.1.4 TTL
TTL supports point-to-point communications between one base and one external device. See
Figure 10-1 (p. 82). Data bits are sent from base to external device with a voltage between
transmit (Tx) and ground. The transmit line idle state is 5 V (logic 1). Data is sent after one clock
cycle once the voltage is pulled low (to 0 V).

10. Communications protocols 85

Figure 10-7. TTL Tx voltage with respect to GND

10.1.5 LVTTL
The only difference between low-voltage TTL (LVTTL) and TTL is that the voltage range is 0 V to
3.3 V. See Figure 10-1 (p. 82).

Figure 10-8. LVTTL Tx voltage with respect to GND

10.1.6 TTL-Inverted
The only difference between TTL-inverted and TTL is that the logic is inverted. The idle state for
TTL-inverted is 0 V instead of 5 V. See Figure 10-1 (p. 82). Data is sent after the voltage is pulled
high (to 5 V).

NOTE:
Many RS-232 devices are compatible with this communications protocol.

10. Communications protocols 86

Figure 10-9. TTL-inverted Tx voltage with respect to GND

10.1.7 LVTTL-Inverted
The only difference between LVTTL-inverted and TTL-inverted is that the voltage range is 0 V to
3.3 V. See Figure 10-1 (p. 82).

Figure 10-10. LVTTL-inverted Tx voltage with respect to GND

10.2 Modbus communications
The data logger supports Modbus RTU, Modbus ASCII, and Modbus TCP protocols and can be
programmed as a Modbus client (master) or Modbus server (slave). These protocols are often
used in SCADA networks. Data loggers can communicate using Modbus on all available
communications ports. The data logger conducts Modbus over TCP using an Ethernet or
Wireless connection. The data logger supports RTU and ASCII communications modes on RS-232
and RS-485 connections.

CRBasic Modbus instructions include:

 l ModbusClient()
 l ModbusServer()

10. Communications protocols 87

 l MoveBytes()

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

For additional information on Modbus, see:

 l About Modbus (p. 88)
 l Why Modbus Matters: An Introduction
 l How to Access Live Measurement Data Using Modbus
 l Using Campbell Scientific Dataloggers as Modbus Slave Devices in a SCADA Network

Because Modbus has a set command structure, programming the data logger to get data from
field instruments can be much simpler than from some other serial sensors. Because Modbus
uses a common bus and addresses each node, field instruments are effectively multiplexed to a
data logger without additional hardware.

When doing Modbus communications over RS-232, the data logger, through Device
Configuration Utility or the Settings editor, can be set to keep communications ports open and
awake, but at higher power usage. Set RS-232Power to Always on. Otherwise, the data logger
goes into sleep mode after 40 seconds of communications inactivity. Once asleep, two packets
are required before it will respond. The first packet awakens the data logger; the second packet is
received as data. This would make a Modbus client fail to poll the data logger, if not using retries.

More information on Modbus can be found at:

 l www.simplyModbus.ca/FAQ.htm
 l www.Modbus.org/tech.php
 l www.lammertbies.nl/comm/info/modbus.html

10.2.1 About Modbus
Modbus is a communications protocol that enables communications among many devices
connected to the same network. Modbus is often used in supervisory control and data
acquisition (SCADA) systems to connect remote terminal units (RTUs) with a supervisory
computer - allowing them to relay measurement data, device status, control commands, and
configuration information.

The popularity of Modbus has grown because it is freely available and because its messaging
structure is independent of the type of physical interface or connection that is used. Modbus can
coexist with other types of connections on the same physical interface at the same time. You can
operate the protocol over several data links and physical layers.

10. Communications protocols 88

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm
https://www.campbellsci.com/blog/why-modbus-matters
https://www.campbellsci.com/blog/why-modbus-matters
https://www.campbellsci.com/blog/access-live-measurement-data-using-modbus
https://www.campbellsci.com/blog/access-live-measurement-data-using-modbus
https://s.campbellsci.com/documents/us/technical-papers/dataloggers-as-modbus-slave-devices.pdf
https://s.campbellsci.com/documents/us/technical-papers/dataloggers-as-modbus-slave-devices.pdf
http://www.simplymodbus.ca/FAQ.htm
http://www.simplymodbus.ca/FAQ.htm
http://www.modbus.org/tech.php
http://www.modbus.org/tech.php
https://www.lammertbies.nl/comm/info/modbus.html
https://www.lammertbies.nl/comm/info/modbus.html

Modbus is supported by many industrial devices, including those offered by Campbell Scientific.
Not only can intelligent devices such as microcontrollers and programmable logic controllers
(PLCs) communicate using Modbus, but many intelligent sensors have a Modbus interface that
enables them to send their data to host systems. Examples of using Modbus with Campbell
Scientific data loggers include:

 l Interfacing data loggers and Modbus-enabled sensors.
 l Sending and retrieving data between data loggers and other industrial devices.
 l Delivering environmental data to SCADA systems.
 l Integrating Modbus data into PakBus networks, or PakBus data into Modbus networks.

10.2.2 Modbus protocols
There are three standard variants of Modbus protocols:

 l Modbus RTU — Modbus RTU is the most common implementation available for Modbus.
Used in serial communications, data is transmitted in a binary format. The RTU format
follows the commands/data with a cyclic redundancy check checksum.

NOTE:
The Modbus RTU protocol standard does not allow a delay between characters of 1.5
times or more the length of time normally required to receive a character. This is
analogous to “pizza” being understood, and “piz za” being gibberish. It's important to

10. Communications protocols 89

note that communications hardware used for Modbus RTU, such as radios, must
transfer data as entire packets without injecting delays in the middle of Modbus
messages.

 l Modbus ASCII — Used in serial communications, data is transmitted as an ASCII
representation of the hexadecimal values. Timing requirements are loosened, and a simpler
longitudinal redundancy check checksum is used.

 l Modbus TCP/IP or Modbus TCP — Used for communications over TCP/IP networks. The
TCP/IP format does not require a checksum calculation, as lower layers already provide
checksum protection. The packet structure is similar to RTU, but uses a different header.
Devices labeled as Modbus gateways will convert from Modbus TCP to Modbus RTU.

Campbell Scientific data loggers support Modbus RTU, Modbus ASCII, and Modbus TCP
protocols. If the connection is over IP, Campbell Scientific data loggers always use Modbus TCP.
Modbus server functionality over other comports use RTU. When acting as a client, the data
logger can be switched between ASCII and RTU protocols using an option in the
ModbusClient() instruction. See the CRBasic Editor help for detailed instruction information
and program examples: https://help.campbellsci.com/crbasic/cr1000x/ .

10.2.3 Understanding Modbus Terminology
Many of the object types are named from using Modbus in driving relays: a single-bit physical
output is called a coil, and a single-bit physical input is called a discrete input or a contact.

Information is stored in the server device in up to four different tables. Two tables store on/off
discrete values (coils) and two store numerical values (registers). The coils and registers each have
a read-only table and read/write table.

10.2.4 Connecting Modbus devices
Data loggers can communicate with Modbus on all available communications ports.
Consideration should be given to proper surge protection of any cabled connection. Between
systems of significantly different ground potential, optical isolation may be appropriate. For
additional information on grounds, see Grounds (p. 13).

The common serial interface used for Modbus RTU connections is RS-485 half-duplex, or two-
wire RS-485. This connection uses one differential pair for data, and another wire for a signal
ground. When twisted pair cable is used, the signal can travel long distances. Resistors are often
used to reduce noise. Bias resistors are used to give a clean default state on the signal lines. For
long cable lengths, termination resistors, which are usually 120 ohms, are needed to stop data

10. Communications protocols 90

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

corruption due to reflections. Signal grounds are terminated to earth ground with resistors to
prevent ground loops, but allow a common mode signal. The resistors to ground are usually
integral to the equipment. The resistive ground is labeled as RG on Campbell Scientific
equipment.

10.2.5 Modbus client-server protocol
Modbus is a client-server protocol. The device requesting the information is called the Modbus
client, and the devices supplying information are Modbus servers. In a standard Modbus
network, there is one client and up to 247 servers. A client does not have a Modbus address.
However, each Modbus server on a shared network has a unique address from 1 to 247.

A single Modbus client device initiates commands (requests for information), sending them to
one or more Modbus server devices on the same network. Only the Modbus client can initiate
communications. Modbus servers, in turn, remain silent, communicating only when responding
to requests from the Modbus client.

Every message from the client will begin with the server address, followed by the function code,
function parameters, and a checksum. The server will respond with a message beginning with its
address, followed by the function code, data, and a checksum. The amount of data in the packet
will vary, depending on the command sent to the server. Server devices only process one
command at a time. So, the client needs to wait for a response, or timeout before sending the
next command.

A broadcast address is specified to allow simultaneous communications with all servers. Because
response time of server devices is not specified by the standard, and device manufacturers also
rarely specify a maximum response time, broadcast features are rarely used. When implementing
a system, timeouts in the client will need to be adjusted to account for the observed response
time of the servers.

Campbell Scientific data loggers can be programmed to be a Modbus client or Modbus server -
or even both at the same time! This proves particularly helpful when your data logger is a part of
two wider area networks. In one it uses Modbus to query data (as a client) from localized sensors
or other data sources, and then in the other, it serves that data up (as a server) to another
Modbus client.

10.2.6 About Modbus programming
Modbus capability of the data logger must be enabled through configuration or programming.
See the CRBasic Editor help for detailed information on program structure, syntax, and each
instruction available to the data logger.

10. Communications protocols 91

CRBasic Modbus instructions include:

 l ModbusClient()
 l ModbusServer()
 l MoveBytes()

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

10.2.6.1 Endianness
Endianness refers to the sequential order in which bytes are arranged into larger numerical
values when stored in memory. Words may be represented in big-endian or little-endian format,
depending on whether bits or bytes or other components are ordered from the big end (most
significant bit) or the little end (least significant bit).

In big-endian format, the byte containing the most significant bit is stored first, then the
following bytes are stored in decreasing significance order, with the byte containing the least
significant bit stored last. Little-endian format reverses this order: the sequence stores the least
significant byte first and the most significant byte last. Endianness is used in some Modbus
programming so it is important to note that the CR1000X is a big-endian instrument.

10.2.6.2 Function codes
A function code tells the server which storage entity to access and whether to read from or write
to that entity. Different devices support different functions (consult the device documentation for
support information). The most commonly used functions (codes 01, 02, 03, 04, 05, 15, and 16)
are supported by Campbell Scientific data loggers.

Most users only require the read- register functions. Holding registers are read with function
code 03. Input registers are read with function code 04. This can be confusing, because holding
registers are usually listed with an offset of 40,000 and input registers with an offset of 30,000.
Don’t mix up the function codes. Double check the register type in the device documentation.

Function code Action Entity

01 (01 hex) Read Discrete Output Coils

05 (05 hex) Write single Discrete Output Coil

15 (0F hex) Write multiple Discrete Output Coils

02 (02 hex) Read Discrete Input

10. Communications protocols 92

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

Function code Action Entity

04 (04 hex) Read Input Registers

03 (03 hex) Read Holding Registers

06 (06 hex) Write single Holding Register

16 (10 hex) Write multiple Holding Registers

The write-register functions will only work on holding registers. Function 06 only changes one 16-
bit register, whereas function 16, changes multiple registers. Note, when writing registers, the
Variable parameter for the ModbusClient() instruction refers to a source, not a
destination.

10.2.7 Modbus information storage
With the Modbus protocol, most of the data values you want to transmit or receive are stored in
registers. Information is stored in the server device in four different entities. Two store on/off
discrete values (coils) and two store numerical values (registers). The four entities include:

 l Coils – 1-bit registers, used to control discrete outputs (including Boolean values),
read/write.

 l Discrete Input – 1-bit registers, used as inputs, read only.
 l Input Registers – 16-bit registers, used as inputs, read only.
 l Holding Registers – 16-bit registers; used for inputs, output, configuration data, or any

requirement for “holding” data; read/write.

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

10.2.7.1 Registers
In a 16-bit memory location, a 4-byte value takes up two registers. The Modbus protocol always
refers to data registers with a starting address number, and a length to indicate how many
registers to transfer.

Campbell Scientific uses 1-based numbering (a common convention for numbering registers in
equipment) in the ModbusClient() instruction. With 1-based numbering, the first data
location is referred to as register number 1. Some equipment uses 0-based numbering (check the
equipment documentation). With 0-based numbering, the first register is referred to as 0.

10. Communications protocols 93

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

Reading register numbers can be complicated by the fact that register numbers are often written
with an offset added. Input registers are written with an offset of 30000. So, the first input register
is written as 30001, with 1-based numbering. Holding registers are numbered with an offset of
40000. You must remove the offset before writing the number as the Start parameter of
ModbusClient().

There are rare instances when equipment is designed with the registers mapped including the
offset. That means 40001 in the documentation is really register number 40001. Those are rare
instances, and the equipment is deviating from standards. If 1 or 2 don’t work for the Start
parameter, try 40001 and 40002.

10.2.7.2 Coils
Discrete digital I/O channels in Modbus are referred to as coils. The term coil has its roots in
digital outputs operating solenoid coils in an industrial environment. Coils may be read only or
read/write. A read only coil would be a digital input. A read/write coil is used as an output. Coils
are read and manipulated with their own function codes, apart from the registers. Many modern
devices do not use coils at all.

When working with coils, the data logger requires Boolean variables. When reading coils, each
Boolean in an array will hold the state of one coil. A value of True will set the coil, a value of False
will unset the coil.

10.2.7.3 Data Types
Modbus does not restrict what data types may be contained within holding and input registers.
Equipment manufacturers need to indicate what binary data types they are using to store data.
Registers are 16-bit, so 32-bit data types use 2 registers each. Some devices combine more
registers together to support longer data types like strings. The ModbusClient() instruction
has a ModbusOption parameter that supports several different data types.

When data types use more than 1 register per value, the register order within the data value is
important. Some devices will swap the high and low bytes between registers. You can
compensate for this by selecting the appropriate ModbusOption.

Byte order is also important when communicating data over Modbus. Big Endian byte order is
the reverse of Little Endian byte order. It may not always be apparent which a device uses. If you
receive garbled data, try reversing the byte order. Reversing byte order is done using the
MoveBytes() instruction. There is an example in CRBasic help for reversing the bytes order of a
32-bit variable.

10. Communications protocols 94

After properly reading in a value from a Modbus device, you might have to convert the value to
proper engineering units. With integer data types, it is common to have the value transmitted in
hundredths or thousandths.

Unsigned 16-bit integer

The most basic data type used with Modbus is unsigned 16-bit integers. It is the original Modbus
data type with 1 register per value. On the data logger, declare your destination variable as type
Long. A Long is a 32-bit signed integer that contains the value received. Select the appropriate
ModbusOption to avoid post-processing.

Signed 16-bit integer

Signed 16-bit integers use 1 register per value. On the data logger, declare your destination
variable as type Long. A Long is a 32-bit signed integer that contains the value received . Select
the appropriate ModbusOption to avoid post-processing.

Signed 32-bit integer

Signed 32-bit integers require two registers per value. This data type corresponds to the native
Long variable type in Campbell data loggers. Declare your variables as type Long before using
them as the Variable parameter in ModbusClient(). Select the appropriate ModbusOption
to avoid post-processing.

Unsigned 32-bit integer

Unsigned 32-bit integers require two registers per value. Declare your variables as type Long
before using them as the Variable parameter in ModbusClient(). The Long data type is a
signed integer, and does not have a range equal to that of an unsigned integer. If the integer
value exceeds 2,147,483,647 it will display incorrectly as a negative number. If the value does not
exceed that number, there are no issues with a variable of type Long holding it.

32-Bit floating point

32-bit floating point values use 2 registers each. This is the default FLOAT data type in Campbell
Scientific data loggers. Select the appropriate ModbusOption to avoid post-processing.

10. Communications protocols 95

10.2.8 Modbus tips and troubleshooting
Most of the difficulties with Modbus communications arise from deviations from the standards,
which are not enforced within Modbus. Whether you are connecting via Modbus to a solar
inverter, power meter, or flow meter, the information provided here can help you overcome the
challenges, and successfully gather data into a Campbell data logger. Further information on
Modbus can be found at:

 l www.simplyModbus.ca/FAQ.htm
 l www.Modbus.org/tech.php
 l www.lammertbies.nl/comm/info/modbus.html

10.2.8.1 Error codes
Modbus defines several error codes, which are reported back to a client from a server.
ModbusClient() displays these codes as a negative number. A positive result code indicates
no response was received.

Result code -01: illegal function

The illegal function error is reported back by a Modbus server when either it does not support
the function at all, or does not support that function code on the requested registers. Different
devices support different functions (consult the device documentation). If the function code is
supported, make sure you are not trying to write to a register labeled as read-only. It is common
for devices to have holding registers where read-only and read/write registers are mapped next
to each other.

An uncommon cause for the -01 result is a device with an incomplete implementation of
Modbus. Some devices do not fully implement parsing Modbus commands. Instead, they are
hardcoded to respond to certain Modbus messages. The result is that the device will report an
error when you try selectively polling registers. Try requesting all of the registers together.

Result code -02: illegal data address

The illegal data address error occurs if the server rejects the combination of starting register and
length used. One possibility, is a mistake in your program on the starting register number. Refer
to the earlier section about register number and consult the device documentation for support
information. Also, too long of a length can trigger this error. The ModbusClient() instruction

10. Communications protocols 96

http://www.simplymodbus.ca/FAQ.htm
http://www.simplymodbus.ca/FAQ.htm
http://www.modbus.org/tech.php
http://www.modbus.org/tech.php
https://www.lammertbies.nl/comm/info/modbus.html
https://www.lammertbies.nl/comm/info/modbus.html

uses length as the number of values to poll. With 32-bit data types, it requests twice as many
registers as the length.

An uncommon cause for the -02 result is a device with an incomplete implementation of
Modbus. Some devices do not fully implement parsing Modbus commands. Instead, they are
hard coded to respond to certain Modbus messages. The result is that the device will report an
error when you try selectively polling registers. Try requesting all of the registers together.

Result code -11: COM port error

Result code -11 occurs when the data logger is unable to open the COM port specified. For serial
connections, this error may indicate an invalid COM port number. For Modbus TCP, it indicates a
failed socket connection.

If you have a failed socket connection for Modbus TCP, check your TCPOpen() instruction. The
socket returned from TCPOpen() should be a number less than 99. Provided the data logger
has a working network connection, further troubleshooting can be done with a computer
running Modbus software. Connect the computer to the same network and attempt to open a
Modbus TCP connection to the problem server device. Once you resolve the connection
between the computer and the server device, the connection from the data logger should work.

10.3 Internet communications
See the Communications specifications (p. 239) for a list of the internet protocols supported by
the data logger. The most up-to-date information on implementing these protocols is contained
in CRBasic Editor help.

CRBasic instructions for internet communications include:

 l EmailRelay()
 l EmailSend()
 l EmailRecv()
 l FTPClient()
 l HTTPGet()
 l HTTPOut()
 l HTTPPost()

 l HTTPPut
 l IPInfo()
 l PPPOpen()
 l PPPClose()
 l TCPOpen()
 l TCPClose()

Once the hardware has been configured, PakBus communications over TCP/IP are possible.
These functions include the following:

 l Sending programs
 l Retrieving programs

10. Communications protocols 97

 l Setting the data logger clock
 l Collecting data
 l Displaying the current record in a data table

Data logger callback to LoggerNet and data logger-to-data logger communications are also
possible over TCP/IP. For details and example programs see the CRBasic help.

See the FTP streaming technical paper for information on using FTPClient() or HTTPPut
() to stream data.

10.3.1 IP address
When connected to a server with a list of IP addresses available for assignment, the data logger
will automatically request and obtain an IP address through DHCP. Once the address is assigned,
look in the Settings Editor > Ethernet > {information box} to see the assigned IP address.

The CR1000X provides a DNS client that can query a DNS server to determine if an IP address has
been mapped to a hostname. If it has, then the hostname can be used interchangeably with the
IP address in some data logger instructions.

NOTE:
When setting a static IP address, first manually set a DNS Server Address in Settings Editor >
Advanced.

10.3.2 HTTPS server
Use Device Configuration Utility to configure the data logger to act as an HTTPS server.

10.3.3 FTP server
An FTP server facilitates file transfers. Use Device Configuration Utility to configure the data
logger to act as an FTP server. This is useful when receiving and storing images from an Ethernet
enabled device such as a camera.

Select FTPEnabled (p. 207) and assign a User Name and Password.

10. Communications protocols 98

https://s.campbellsci.com/documents/us/technical-papers/ftp-streaming.pdf
https://s.campbellsci.com/documents/us/technical-papers/ftp-streaming.pdf

Allocate memory where the received files will be stored. Often this is on the USR drive. Data
memory (p. 46)

WARNING:
Partitioning or changing the size of the USR drive will delete stored data from tables. Collect
data first.

Specify the memory drive in the path when putting or getting files. For example, to put a file
named image.jpg on the USR drive, use a command similar to put image.jpg /USR/image.jpg.

10. Communications protocols 99

NOTE:
Use FTPclient() to send files to a remote server. This is different than setting up the data
logger to act as an FTP server. See the FTP Streaming technical paper and FTP
Troubleshooting technical paper for more information.

10.4 MQTT
MQTT is an open communications protocol often used in the Internet of Things (IoT). It uses a
publish/subscribe architecture to send and receive data. A broker facilitates the communications
between publishers and subscribers by receiving published messages and distributing them to
subscribers. One advantage of MQTT is that communications are initiated by the CR1000X so
firewalls do not cause problems.

For full MQTT specifications see: https://mqtt.org/ .

10.4.1 Sending data to CAMPBELL CLOUD
CAMPBELL CLOUD (CLOUD), www.campbellsci.com/campbellcloud , is a group of
applications, one of which is an MQTT broker. Using MQTT with the CLOUD makes it easy to get
your data securely to the web. The CR1000X must have a reliable internet connection.

10.4.1.1 Configure the data logger

 1. Ensure your data logger is connected to the internet.

 2. Using Device Configuration Utility, connect to the data logger.

 3. (Recommended) On the Logger Control tab, set the Reference Clock Setting to UTC in
order to ensure correct timestamps for data ingestion by the CLOUD. Note: the preferred
timezone displayed in the CLOUD may be set in the CLOUD User Settings.

10. Communications protocols 100

https://s.campbellsci.com/documents/us/technical-papers/ftp-streaming.pdf
https://s.campbellsci.com/documents/us/technical-papers/ftp-troubleshooting
https://s.campbellsci.com/documents/us/technical-papers/ftp-troubleshooting
https://mqtt.org/
https://mqtt.org/
https://mqtt.org/
https://www.campbellsci.com/campbellcloud

 4. On the Settings Editor tab, click the MQTT sub-tab.

 5. Enable MQTT and set Campbell Cloud Enabled to Enabled. Keep all other MQTT settings as
their defaults. The CLOUD will automatically change some of these when it connects to the
CR1000X.

 6. Click Apply.

10. Communications protocols 101

 7. Wait while the data logger reboots two times. This may take up to two minutes. If your
computer has speakers turned on you may hear two distinct Windows chimes.

 8. Confirm that the CR1000X has connected to the MQTT broker by reconnecting in the
Device Configuration Utility and checking the MQTT settings. Several settings will have
been populated by the CLOUD broker. The MQTT State should read MQTT session
established and the MQTT Broker URL should read campbellcloud.io. See MQTT settings
(p. 219) for more information.

 9. Click Disconnect and close Device Configuration Utility.

10.4.1.2 Program the data logger
Use MQTTPublishTable() within a DataTable/EndTable declaration to publish stored
data via MQTT. See the CRBasic Editor help for detailed instruction information and program
examples: https://help.campbellsci.com/crbasic/cr1000x/ .

10. Communications protocols 102

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

DataTable(Five_Min,True,-1)
DataInterval(0,5,Min,10)
Average(1,Temp_C,FP2,False)
Minimum(1,BattV,FP2,False,False)
'Publish every 5 min in GeoJSON format. The last three
'parameters are optional to specify longitude, latitude,
'and altitude. Here we use NaN as placeholders for these
'values.
MQTTPublishTable(0,0,5,Min,2,NaN,NaN,NaN)

EndTable

Five minutes is the fastest recommended publishing interval in order to ensure that ingestion and
processing of data sent to the CLOUD are completed before new data is received.

10.4.1.3 Set up the CLOUD

 1. Open a web browser and go to www.campbellcloud.io .

 2. If you don't already have an account then Sign up, otherwise, LOGIN.

 3. Click ADD STATION.

 4. Click the Station tile to add a Data Source.

10. Communications protocols 103

https://www.campbellcloud.io/

 5. Click + and I don't have a claim code.

 6. Select your data logger type.

10. Communications protocols 104

 7. Expand the dialog, enter the CR1000X information. Click ... then Save.

10. Communications protocols 105

TIP:
The timing of the next step depends on the MQTTPublishTable() interval in your
CRBasic program. Allow at least one interval to elapse before proceeding. In our
example, this is five minutes. See Program the data logger (p. 102).

 8. Click the Station Name on the Station tile and edit focused measurements.

10. Communications protocols 106

 9. Select measurements to appear on the Station tile. Click .

If a list of measurements is not available and the MQTT State in the Device Configuration
Utility read MQTT session established please contact support@campbellcloud.io.

10. Communications protocols 107

mailto:support@campbellcloud.io?subject=CLOUD not retrieving focused measurements

NOTE:
It may take 30 minutes or more, depending on the CRBasic program, for data to
become available.

 10. Go to User settings > edit my settings >Timezone to change the timezone that data is
displayed, from UTC to your preferred timezone.

10. Communications protocols 108

 11. See the CAMPBELL CLOUD online help and manual for details on additional features.

10.4.2 Sending data to another MQTT broker
If you are not using the CAMPBELL CLOUD and its MQTT broker you will need to provide and
configure one. There are many available; it is recommended that you consult with an
IT professional. This example uses the public Mosquitto test broker https://test.mosquitto.org/
for testing.

For more information on MQTT topic structure see MQTT commands (p. 241).

10.4.2.1 Configure the data logger

 1. Ensure your data logger is connected to the internet.

 2. Using Device Configuration Utility, connect to the data logger.

 3. (Recommended) On the Logger Control tab, set the Reference Clock Setting to UTC in
order to ensure correct timestamps for data ingestion by the CLOUD. Note: the preferred
timezone displayed in the CLOUD may be set in the CLOUD User Settings.

10. Communications protocols 109

https://help.campbellsci.com/cloud-en/home.htm
https://test.mosquitto.org/

 4. On the Settings Editor tab, click the MQTT sub-tab.

10. Communications protocols 110

 a. Enable MQTT.

 b. Enter the Broker URL. Enter test.mosquitto.org for this example.

 c. Select Persistent for MQTT Connection type.

 d. Enter 1883 for the Port Number.

 e. Write down the MQTT Base Topic; it is case sensitive. By default it is cs/v1/.

 f. Keep all other MQTT settings as their defaults.

 5. Click Apply.

10. Communications protocols 111

10.4.2.2 Program the data logger
Use MQTTPublishTable() within a DataTable/EndTable declaration to publish stored
data via MQTT. See the CRBasic Editor help for detailed instruction information and program
examples: https://help.campbellsci.com/crbasic/cr1000x/ .

DataTable(Five_Min,True,-1)
DataInterval(0,5,Min,10)
Average(1,Temp_C,FP2,False)
Minimum(1,BattV,FP2,False,False)
Publish every 5 min in CSJSON format. The last three
parameters are optional to specify longitude, latitude, and
altitude. Here we use NaN as placeholders for these values.
MQTTPublishTable(0,0,5,Min,1,NaN,NaN,NaN)

EndTable

Five minutes is the fastest recommended publishing interval in order to ensure that ingestion and
processing of data sent to the MQTT broker are completed before new data is received.

10.4.2.3 Check broker for incoming data
To subscribe to MQTT topics an MQTT client is required. There are many available; it is
recommended that you consult with an IT professional. This example uses the Google Chrome
extension MQTTBox .

 1. Launch MQTTBox.

10. Communications protocols 112

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm
https://chrome.google.com/webstore/detail/mqttbox/kaajoficamnjijhkeomgfljpicifbkaf

 2. Configure the client.

 a. Give the MQTT client a name.

 b. Select mqtt/tcp for the Protocol.

 c. Enter test.mosquitto.org for the Host.

 d. Keep all other settings as their defaults.

 e. Click Save.

 3. Type cs/v1/# in the Topic to subscribe field to subscribe to all topics. This is the Base
MQTT Topic noted from the Device Configuration Utility > MQTT > Settings Editor.

 4. Click Subcribe.

10. Communications protocols 113

 5. Confirm data is being received.

 6. For more information on MQTT topic structure see MQTT commands (p. 241).

10.5 DNP3 communications
DNP3 is designed to optimize transmission of data and control commands from a master
computer to one or more remote devices or outstations. The data logger allows DNP3
communications on all available communications ports. CRBasic DNP3 instructions include:

10. Communications protocols 114

 l DNP()
 l DNPUpdate()
 l DNPVariable()

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

When DNPUpdate() is used to set up the data logger as a remote (slave) device, up to three
DNP3 clients (masters) are supported.

For additional information on DNP3 see:

 l DNP3 with Campbell Scientific Dataloggers
 l Getting to Know DNP3
 l How to Access Your Measurement Data Using DNP3

10.6 Serial peripheral interface (SPI) and I2C
Serial Peripheral Interface is a clocked synchronous interface, used for short distance
communications, generally between embedded devices. I2C is a multi-controller (master), multi-
peripheral (slave), packet switched, single-ended, serial computer bus. I2C is typically used for
attaching lower-speed peripheral ICs to processors and microcontrollers in short-distance, intra-
board communications. I2C and SPI are protocols supported by the operating system. See
CRBasic Editor help for instructions that support these protocols.

For additional information on I2C, see www.i2c-bus.org .

10.7 PakBus communications
PakBus is a Campbell Scientific communications protocol. By using signed data packets, PakBus
increases the number of communications and networking options available to the data logger.
The data logger allows PakBus communications on all available communications ports. For
additional information, see The Many Possibilities of PakBus Networking blog article.

Advantages of PakBus include:

 l Simultaneous communications between the data logger and other devices.
 l Peer-to-peer communications - no computer required. Special CRBasic instructions

simplify transferring data between data loggers for distributed decision making or control.
 l Data consolidation - other PakBus data loggers can be used as "sensors" to consolidate all

data into one data logger.

10. Communications protocols 115

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm
https://s.campbellsci.com/documents/us/technical-papers/dnp3-protocol.pdf
https://s.campbellsci.com/documents/us/technical-papers/dnp3-protocol.pdf
https://www.campbellsci.com/blog/getting-to-know-dnp3
https://www.campbellsci.com/blog/getting-to-know-dnp3
https://www.campbellsci.com/blog/access-measurement-data-using-dnp3
https://www.campbellsci.com/blog/access-measurement-data-using-dnp3
https://www.i2c-bus.org/
https://www.i2c-bus.org/
https://www.campbellsci.com/blog/many-possibilities-of-pakbus-networking
https://www.campbellsci.com/blog/many-possibilities-of-pakbus-networking

 l Routing - the data logger can act as a router, passing on messages intended for another
Campbell Scientific data logger. PakBus supports automatic route detection and selection.

 l Short distance networks - a data logger can talk to another data logger over distances up
to 30 feet by connecting transmit, receive, and ground wires between the data loggers.

In a PakBus network, each data logger is assigned a unique address. The default PakBus address
in most devices is 1. To communicate with the data logger, the data logger support software must
know the data logger PakBus address. The PakBus address is changed using Device Configuration
Utility, data logger Settings Editor, or PakBus Graph software.

10.8 SDI-12 communications
SDI-12 is a 1200 baud communications protocol that supports many smart sensors, probes and
devices. The data logger supports SDI-12 communications through two modes — transparent
mode and programmed mode (see SDI-12 ports (p. 16) for wiring terminal information).

Conflicts can occur when a control port pair is used for different instructions (TimerInput(),
PulseCount(), SDI12Recorder(), WaitDigTrig()). For example, if C1 is used for
SDI12Recorder(), C2 cannot be used for TimerInput(), PulseCount(), or
WaitDigTrig().

Transparent mode facilitates sensor setup and troubleshooting. It allows commands to be
manually issued and the full sensor response viewed. Transparent mode does not record data.
See SDI-12 transparent mode (p. 167) for more information.

Programmed mode automates much of the SDI-12 protocol and provides for data recording. See
SDI-12 programmed mode/recorder mode (p. 120) for more information.

CRBasic SDI-12 instructions include:

 l SDI12Recorder()
 l SDI12SensorSetup()
 l SDI12SensorResponse()

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

The data logger uses SDI-12 version 1.4.

10.8.1 SDI-12 transparent mode
All SDI-12 probes have just three wires—a signal, ground, and 12 V power line. They are
connected to the data logger according to the following table.

10. Communications protocols 116

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

Table 10-1: SDI-12 probe connections

Wire function Data logger connection

SDI-12 signal C

Shield G

Power 12V

Power ground G

System operators can manually interrogate and enter settings in probes, connected to the data
logger, using transparent mode. Transparent mode is useful in troubleshooting SDI-12 systems
because it allows direct communications with probes.

Transparent mode may need to wait for commands issued by the programmed mode to finish
before sending responses. While in transparent mode, the data logger programs may not
execute. Data logger security may need to be unlocked before transparent mode can be
activated.

Transparent mode is entered while the computer is communicating with the data logger through
a terminal emulator program such as through Device Configuration Utility or other data logger
support software. Keyboard displays cannot be used. For how-to instructions for communicating
directly with an SDI-12 sensor using a terminal emulator, watch this
video: https://www.campbellsci.com/videos/sdi12-sensors-transparent-mode .

To enter the SDI-12 transparent mode, enter the data logger support software terminal emulator:

 1. Press Enter until the data logger responds with the prompt CR1000X>.

 2. Type SDI12 at the prompt and press Enter.

 3. In response, the query Select SDI12 Port is presented with a list of available ports.
Enter the port number assigned to the terminal to which the SDI-12 sensor is connected,
and press Enter. For example, 1 is entered for terminal C1.

10. Communications protocols 117

https://www.campbellsci.com/videos/sdi12-sensors-transparent-mode

 4. An Entering SDI12 Terminal response indicates that SDI-12 transparent mode is
active and ready to transmit SDI-12 commands and display responses.

10.8.1.1 Watch command (sniffer mode)
The terminal-mode utility allows monitoring of SDI-12 traffic by using the watch command
(sniffer mode). Watch an instructional video: https://www.campbellsci.com/videos/sdi12-sensors-
watch-or-sniffer-mode or use the following instructions.

 1. Enter the transparent mode as described previously.

 2. Press Enter until a CR1000X> prompt appears.

 3. Type W and then press Enter.

 4. In response, the query Select SDI12 Port: is presented with a list of available ports.
Enter the port number assigned to the terminal to which the SDI-12 sensor is connected,
and press Enter.

 5. In answer to Enter timeout (secs): type 100 and press Enter.

 6. In response to the query ASCII (Y)?, type Y and press Enter.

 7. SDI-12 communications are then opened for viewing.

10.8.1.2 SDI-12 transparent mode commands
SDI-12 commands and responses are defined by the SDI-12 Support Group (www.sdi-12.org)
and are available in the SDI-12 Specification . Sensor manufacturers determine which
commands to support. Commands have three components:

 l Sensor address (a): A single character and the first character of the command. Sensors are
usually assigned a default address of zero by the manufacturer. The wildcard address (?) is
used in the Address Query command. Some manufacturers may allow it to be used in
other commands. SDI-12 sensors accept addresses 0 through 9, a through z, and A through
Z.

 l Command body (for example, M1): An upper case letter (the “command”) followed by
alphanumeric qualifiers.

 l Command termination (!): An exclamation mark.

An active sensor responds to each command. Responses have several standard forms and
terminate with <CR><LF> (carriage return–line feed).

10. Communications protocols 118

https://www.campbellsci.com/videos/sdi12-sensors-watch-or-sniffer-mode
https://www.campbellsci.com/videos/sdi12-sensors-watch-or-sniffer-mode
http://www.sdi-12.org/
http://www.sdi-12.org/
http://www.sdi-12.org/specification.php
http://www.sdi-12.org/specification.php

10.8.1.3 aXLOADOS! command
aXLOADOS! is an example of an SDI-12 transparent mode command. It is used to send an
operating system (OS) update from a data logger to an SDI-12 sensor.

NOTE:
Verify with the sensor manufacturer that the sensor supports this command.

Use aXLOADOS! in the following procedure to send an OS update to an SDI-12 sensor.

 1. Supply power to the data logger. If connecting via USB for the first time, you must first
install USB drivers by using Device Configuration Utility (select your data logger, then on
the main page, click Install USB Driver). Alternately, you can install the USB drivers using EZ
Setup. A USB connection supplies 5 V power (as well as a communications link), which is
adequate for setup, but a 12 V battery will be needed for field deployment.

 2. Physically connect your data logger to your computer using a USB cable, then in Device
Configuration Utility select your data logger.

 3. Copy the sensor OS file from the computer to the data logger.

 a. Select File Control > CPU: drive > Send and navigate to the file on the computer.

 b. Click Open.

 c. Click OK.

 4. Enter the transparent mode as described in SDI-12 transparent mode (p. 167).

 5. An Entering SDI12 Terminal response indicates that SDI-12 transparent mode is
active and ready to transmit SDI-12 commands and display responses.

The load OS command has the following format:

aXLOADOS Baudrate drive:filename!.

For example: 0XLOADOS 9600 CPU:0XF5BA.MOT!.

Type the command, including the ending exclamation point (!) then press Enter.

10. Communications protocols 119

 6. The screen will show OS send updates and the bytes sent will continue to increase. The
process is slow, it can take several minutes, but not hours.

 7. A SUCCESS message indicates the process is complete.

10.8.2 SDI-12 programmed mode/recorder mode
The data logger can be programmed to read SDI-12 sensors or act as an SDI-12 sensor itself. The
SDI12Recorder() instruction automates sending commands and recording responses. With
this instruction, the commands to poll sensors and retrieve data is done automatically with
proper elapsed time between the two. The data logger automatically issues retries. See CRBasic
Editor help for more information on this instruction.

Commands entered into the SDIRecorder() instruction differ slightly in function from similar
commands entered in transparent mode. In transparent mode, for example, the operator
manually enters aM! and aD0! to initiate a measurement and get data, with the operator
providing the proper time delay between the request for measurement and the request for data.
In programmed mode, the data logger provides command and timing services within a single
line of code. For example, when the SDI12Recorder() instruction is programmed with the M!
command (note that the SDI-12 address is a separate instruction parameter), the data logger
issues the aM! and aD0! commands with proper elapsed time between the two. The data logger
automatically issues retries and performs other services that make the SDI-12 measurement work
as trouble free as possible.

10. Communications protocols 120

For troubleshooting purposes, responses to SDI-12 commands can be captured in programmed
mode by placing a variable declared As String in the variable parameter. Variables not
declared As String will capture only numeric data.

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

10.8.3 Programming the data logger to act as an SDI-12
sensor

The SDI12SensorSetup() / SDI12SensorResponse() instruction pair programs the data
logger to behave as an SDI-12 sensor. A common use of this feature is to copy data from the data
logger to other Campbell Scientific data loggers over a single data-wire interface (terminal
configured for SDI-12 to terminal configured for SDI-12), or to copy data to a third-party SDI-12
recorder.

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

When programmed as an SDI-12 sensor, the data logger will respond to SDI-12 commands M, MC,
C, CC, R, RC, V, ?, and I.

When acting as a sensor, the data logger can be assigned only one SDI-12 address per SDI-12
port. For example, a data logger will not respond to both 0M! and 1M! on SDI-12 port C1.
However, different SDI-12 ports can have unique SDI-12 addresses. Use a separate
SlowSequence for each SDI-12 port configured as a sensor.

10.8.4 SDI-12 power considerations
When a command is sent by the data logger to an SDI-12 probe, all probes on the same SDI-12
port will wake up. However, only the probe addressed by the data logger will respond. All other
probes will remain active until the timeout period expires.

Example:

Probe: Water Content

Power Usage:

 l Quiescent: 0.25 mA
 l Active: 66 mA
 l Measurement: 120 mA

Measurement time: 15 s

10. Communications protocols 121

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

Timeout: 15 s

Probes 1, 2, 3, and 4 are connected to SDI-12 port C1.

The time line in the following table shows a 35-second power-usage profile example.

For most applications, total power usage of 318 mA for 15 seconds is not excessive, but if 16
probes were wired to the same SDI-12 port, the resulting power draw would be excessive.
Spreading sensors over several SDI-12 terminals helps reduce power consumption.

Table 10-2: Example power use for a network of SDI-12 probes

Time into
measurement

processes
Command

All
probes
awake

Time out
expires

Probe
1 (mA)

Probe
2 (mA)

Probe
3 (mA)

Probe
4 (mA)

Total
(mA)

Sleep 0.25 0.25 0.25 0.25 1

1 1M! Yes 120 66 66 66 318

2–14 120 66 66 66 318

15 Yes 120 66 66 66 318

16 1D0! Yes 66 66 66 66 264

17-29 66 66 66 66 264

30 Yes 66 66 66 66 264

Sleep 0.25 0.25 0.25 0.25 1

10. Communications protocols 122

11. Installation
Campbell Scientific data loggers support research and operations all over the world in a variety
of applications. The limits of the CR1000X are defined by your application needs. Therefore, every
installation will be unique. See www.campbellsci.com/solutions .

TIP:
Time spent in the office, setting up and testing hardware and software, will make time in the
field more efficient.

Recommended tools:

 l Voltmeter
 l Screwdrivers

 o Flat-blade
 o Phillips-head
 o Small flat-blade

 l Wire cutter/stripper
 l Crescent wrench
 l Pliers
 l Pad and pen
 l Laptop computer, fully charged, with software and drivers installed
 l USB cable

Tools required to install a Campbell Scientific tripod or tower:

 l Shovel
 l Rake
 l Open-end wrench set
 l Socket wrench set
 l Magnetic compass
 l Tape measure
 l Nut driver
 l Level
 l Sledgehammer
 l Pliers
 l Flat-bladed screwdrivers
 l Phillips screwdrivers

11. Installation 123

http://www.campbellsci.com/solutions

For more information, watch a video at: http://www.campbellsci.com/videos/toolbox-for-
installation-and-maintenance .

11.1 Default program
Many data logger settings can be changed remotely over a communications link. This
convenience comes with the risk of inadvertently changing settings and disabling
communications. For example, external cellular modems are often controlled by a switched
12 VDC (SW12) terminal. SW12 is normally off; so, if the program controlling SW12 is disabled,
such as by changing a setting or sending a new operating system, the cellular modem is switched
off and the remote data logger will not turn it on. This could require an on-site visit to correct the
problem unless a special program called default has been installed.

Having a default.CR1X program stored on the data logger will also ensure that a non-
compiling CRBasic program does not lock out a remote user.

NOTE:
The default program may use the extension .CR1X,.CRB or .DLD.

When a file named default.CR1X is stored on the data logger CPU: drive, it is loaded if no
other program takes priority. Program execution priorities are as follows:

 1. When the CR1000X powers up, it executes commands in the powerup.ini file (on an
attached USB drive or memory card) including commands to set the CRBasic program file
attributes to Run Now or Run On Power-up.

 2. When the CR1000X powers up, a program file marked as Run On Power-up will run. If that
program includes a file specified by the Include File setting, it will be incorporated into the
program that runs.

 3. If there is no program file marked Run Now or Run On Power-up (or if the program
selected to run cannot be compiled), the data logger will run the program specified by the
IncludeFile setting. For more information see IncludeFile (p. 208).

 4. If the IncludeFile program cannot be compiled or if no program is specified, the data
logger will attempt to run the program named default.CR1X on its CPU: drive.

 5. If there is no default.CR1X file or it cannot be compiled, the CR1000X will not
automatically run any program.

See File management via powerup.ini (p. 150) for more information.

The default.CR1X program generally contains instructions to preserve critical datalogger
settings such as communications settings, but should not be more than a few lines of code.

11. Installation 124

https://www.campbellsci.com/videos/toolbox-for-installation-and-maintenance
https://www.campbellsci.com/videos/toolbox-for-installation-and-maintenance

CRBasic Example 2: default.CR1X example

'This program turns ON the SW12 switched
'power terminal, for 30 seconds every 60 seconds.
BeginProg
Scan(1,Sec,0,0)
If TimeIsBetween (15,45,60,Sec) Then SW12(SW12_1,1)

NextScan
EndProg

Downloading operating systems over communications requires much of the available CR1000X
memory. If the intent is to load operating systems via a communications link and have a
default.CR1X file in the CR1000X, the default.CR1X program should not allocate
significant memory, as might happen by allocating a large USR: drive. Also, do not auto-allocate
tables in DataTable() instructions; if it is necessary to use DataTable() instructions, set
small fixed table sizes. Refer to Sending an operating system to a remote data logger (p. 148) for
information about sending the operating system.

Execution of default.CR1X at power-up can be aborted by holding down the DEL key on a
CR1000KD Keyboard/Display.

11.2 Data logger security
Data logger security concerns include:

 l Collection of sensitive data
 l Operation of critical systems
 l Networks that are accessible to many individuals

11.2.1 Device Configuration Utility Security Check
A Security Check is provided through Device Configuration Utility, starting with version 2.29. This
check helps you identify areas where security can be improved.

All suggestions shown in Device Configuration Utility are optional and no changes will be made
unless you make them. For example, Device Configuration Utility uses a simple set of criteria to
suggest a strong password. If you have your own criteria, you can use it. Because every
deployment can be different, Device Configuration Utility will provide you with the information
you need to ensure your data logger security is optimized for your application.

In general, green, blue, and red icons indicate password strength.

11. Installation 125

 l Green: strong password
 l Blue: weak password
 l Red: no password set

A strong password has the following:

 l Eight or more characters
 l One upper case letter
 l One lower case letter
 l One digit
 l One special character

The green, blue, and red icons may also show the potential severity of a security vulnerability.

 l Green: good, no action needed
 l Blue: advisory information
 l Red: action recommended

11.2.1.1 PakBus
PakBus encryption is the best data logger option to secure PakBus communications. Setting a
PakBus Encryption (AES-128) Key in Device Configuration Utility forces PakBus data to be
encrypted during transmission. The Security Check will check if the data logger has a PakBus
Encryption Key set and a PakBus/TCP Password.

When neither of these is set, the Security Check will indicate that action is recommended.

The Security Check will not suggest setting a PakBus/TCP password if PakBus Encryption is
already enabled. However, a PakBus/TCP password can be used with PakBus Encryption.

11.2.1.2 Web services
The Security Check will check to see if HTTP or HTTPS is enabled. If these protocols are not being
used but are enabled, we recommend disabling them.

HTTP

HTTP, enabled by default, is an insecure protocol and can allow access to data logger data,
settings, and programming. HTTP should only be enabled if it is required, and the data logger is
on a secure network. If the data logger is not using web API or a hosted web page then HTTP
should be disabled. If HTTP protocol is used, a .csipasswd file and user accounts should also
be used.

11. Installation 126

See The .csipasswd file (p. 136) and Web interface (p. 138) for more information.

HTTPS

HTTPS is a secure protocol but does allow access to data logger data, settings, and
programming. HTTPS should only be enabled if it is required. If the data logger is not using web
API or a hosted web page then HTTPS should be disabled. If HTTPS protocol is used, a
 .csipasswd file and user accounts should also be used. Expect delays when using HTTPS,
especially when first connecting.

See The .csipasswd file (p. 136) and Web interface (p. 138) for more information.

11.2.1.3 Network services
The Security Check will check to see if any of the following network services are enabled. These
services can be used to discover your data logger on an IP network. See Device Configuration
Utility > Deployment > Network Services tab, to make changes.

NOTE:
FTP, Telnet, and Ping services are disabled by default.

FTP

FTP is an insecure protocol that allows access to data logger data and files. FTP should only be
enabled if it is required. If the FTP file transfer is not needed, then FTP should be disabled. Some
data loggers support using SFTP (only as a client), this can improve file transfer security. Consider
using a public/private key pair for SFTP authentication. Load a .PEM format file through the
Device Configuration UtilitySettings Editor > Advanced tab.

 o Maximum key file size: 4 KB public, 4 KB private
 o Key exchange methods: diffie-hellman-group1-sha1, diffie-hellman-group14-sha1,

diffie-hellman-group-exchange-sha1, diffie-hellman-group-exchange-sha256
 o Host key types: ssh-rsa, ssh-dss
 o Supported ciphers: aes256-ctr, aes192-ctr, aes128-ctr, aes256-cbc, aes192-cbc, aes128-

cbc, 3des-cbc, blowfish-cbc, cast128-cbc, arcfour, arcfour128, none

Telnet

Telnet is an insecure protocol. It should only be enabled if it is required, and the data logger is on
a secure network. PakBus is the preferred way of accessing the data logger terminal interface.

11. Installation 127

Ping

Ping makes the data logger visible to network scans. It should only be enabled if it is required.

11.2.1.4 Operating System Status
The Security Check will check to see if your data logger is running the latest operating system.
Newer operating systems may have enhanced security measures. See Updating the operating
system (p. 146) for more information.

11.2.2 Other security measures reviewed by Device
Configuration Utility

Many of these settings can be accessed from the Device Configuration UtilitySettings Editor tab.
Settings are organized in tabs and can be searched for.

11.2.2.1 PakBus TCP Enabled
By default, PakBus TCP communications are enabled. Normally this would not be disabled as it
would prevent data logger support software from connecting to a data logger using TCP.

See Device Configuration Utility > Settings Editor > Network Services tab.

11.2.2.2 Account manager
The Security Check only checks password strength when entering passwords in Device
Configuration Utility for the .csipasswd file. It does no other checking.

See Device Configuration Utility > Settings Editor > Advanced tab.

11.2.2.3 IP Broadcast Filtered
Set to one if all broadcast IP packets should be filtered from IP interfaces. Do not set this if you
use the IP discovery feature of the Device Configuration Utility or of LoggerLink. If this is set to
one, the data logger will fail to respond to the broadcast requests.

See Device Configuration Utility > Settings Editor > Advanced tab.

11. Installation 128

11.2.2.4 Other communications protocols
Specific protocols such as PPP or MQTT have settings that involve security. The Security Check
does not consider these settings other than password strength.

11.2.3 TLS
Transport Layer Security (TLS) is an internet communications security protocol. TLS settings are
necessary for server applications, not for client applications. The primary reason for using TLS is
to encrypt communications between a server and its clients. Using TLS is recommended when
connecting to a data logger over an IP connection using the web interface. TLS does not affect
PakBus communications.

Example server application instructions include:

 l HTTPS server
 l DNP() using the optional DNPTLS parameter

Example client application instructions include:

 l HTTPGet(), HTTPPut() and HTTPPost()
 l EmailRelay()
 l EmailSend() and EmailRecv()
 l FTPClient()
 l MQTTConnect()
 l MQTTPublishTable()
 l MQTTPublishConstTable()

CSI Web Server can also use TLS. See Applying keys and certificates to CSI Web Server (p. 133) for
more information.

NOTE:
For enhanced security, TLS settings are only shown in Device Configuration Utility when using
a direct USB connection, or an IP connection using PakBus Encryption.

Use the following steps to configure TLS:

 1. Use the Device Configuration Utility to enable HTTPS and disable HTTP. See Deployment >
Network Services tab.

 2. Use the Device Configuration Utility to enable and set up TLS. See Deployment >
Datalogger > TLS tab.

11. Installation 129

 a. Increase the number of Max TLS Server Connections to greater than zero. Each additional
connection uses about 20 KB of memory. For general use, such as publishing web pages,
use a minimum of five connections. Add more if multiple users may access the hosted
web pages at the same time. See Web interface (p. 138)

 b. Use Set Private Key and Set Certificate to upload files in .PEM format. These can either be
self-signed or issued from a trusted 3rd party organization. See Obtaining certificate and
private key (p. 130) for more information.

 o Maximum key file size: 4 KB public, 4 KB private

Review the Will send file path message to ensure you have the correct files.

 3. Apply to save your changes.

 4. Confirm your TLS security settings by connecting to the data logger using a web browser.
See Web interface (p. 138)

NOTE:
If the certificates uploaded to the data logger are from an unknown source, such as
most self-signed certificates, the web browser will likely display a warning. If the issuer
can be trusted, this warning can be bypassed.

11.2.3.1 Obtaining certificate and private key
This section is provided as general guidance only. Have your IT department provide you with the
required certificate and key files, or work with them to obtain them.

From a Certificate Authority

Some things you will need to know before starting the process with a Certificate Authority:

 l Your website domain name, or common name
 l Proof that you control the domain. This could include the email associated with the domain

name.

11. Installation 130

The general steps when using an outside source for the certificate and keys are as follows:

 1. Select a Certificate Authority (CA) such as DigiCert, Symantec, or GoDaddy, to generate
your certificate and key files.

NOTE:
Generally there is a cost associated with the this process, and it may take several days. It
is common to refile the application several times to get the correct files in the correct
format.

 2. Create an account with your selected CA. Sign in.

 3. Generate a private key and Certificate Signing Request (CSR). Save these files to a secure
location on your computer. Some Certificate Authorities may offer to generate these for
you. If not, then they will require the CSR and private key you generated.

NOTE:
This is the private key file you will need later. If the file saved has a .txt extension,
make a copy and change the extension to .PEM.

TIP:
If your CA generates your private key and CSR, save a copy of both. For your security,
the CA will not keep a record of either the CSR or private key. If you fail to save them
you will have to generate new ones and this will take additional time.

 4. Provide proof that you control the domain. Often additional instructions are received in an
email from the CA.

 5. Receive the certificate from the CA. This may take two or more business days. Save this file
to a secure location on your computer.

 6. Verify that the key file is in .PEM format. The contents of a valid .PEM formatted key will
look similar to the following when viewed as a text file. The ----BEGIN RSA PRIVATE
KEY----- header and -----END RSA PRIVATE KEY----- footer indicate that the
key was generated in the correct format.

11. Installation 131

 7. Verify that the certificate file is in .PEM format. The contents of a valid .PEM formatted
certificate will look similar to the following when viewed as a text file. The ----BEGIN
CERTIFICATE----- header and -----END CERTIFICATE----- footer indicate that
the key was generated in the correct format.

From your IT department

If your IT department provides the key and certificate files you need to determine if the key
requires a private key password. To determine if your .PEM formatted key requires a private key
password:

 1. Open the key file in a text editor.

 2. The following header is an example of the key without a private key password.

-----BEGIN RSA PRIVATE KEY-----

MIIEpQIBAAKCAQEAo8GRTJKW+grlRfuuUNrlqCc4aodqaRnNd+L+/Wjpz

 3. The following header is an example of the key with a private key password.

-----BEGIN RSA PRIVATE KEY-----

Proc-Type: 4,ENCRYPTED

DEK-Info: DES-EDE3-CBC,556C1115CDA822F5

11. Installation 132

AHi/3++BAAKCAQEAo8GRTJKW+grlRfuuUNrlqCc4aodqaRnNd+L+/Wjpz

 4. If the key header is similar to that shown in step 3 you need to specify a private key
password. Your IT department should provide this.

NOTE:
Never specify a key password if your key does not have one.

11.2.3.2 Applying keys and certificates to CSI Web Server
The CSI Web Server runs on a computer to display projects created using RTMC or RTMC Pro in a
web browser that supports HTML5. Use the CSI Web Server Administrator to configure security.

 1. Open the CSI Web Server Administrator.

 2. Select the Configuration tab.

 3. Select the HTTPS tab.

 4. Select HTTPS Enabled.

 5. Select the Private Key File ellipsis (...) and navigate to your private key file.

 6. If your key requires a Private Key Password enter it.

 7. Select the Certificate File ellipsis (...) and navigate to your certificate file.

NOTE:
If applicable, select the single certificate file, not the certificate chain file. A certificate
chain file contains more than one certificate. To differentiate, view the files in a text
editor.

11. Installation 133

 8. Apply to save your changes.

 9. Stop the CSI Web Server Service. On the Status tab, click the web image.

 10. Click Yes.

11. Installation 134

 11. Restart the service by repeating the previous two steps.

 12. Review the Status tab for error messages.

 13. Review and test your web page.

11.2.4 Other security measures

11.2.4.1 CRBasic
Encrypt program files if they contain sensitive information. See CRBasic help FileEncrypt()
or use CRBasic Editor > File > Save and Encrypt.

Hide program files for extra protection. See CRBasic help FileManage() instruction.

11.2.4.2 Other
Monitor your data logger for changes by tracking program and operating system signatures, as
well as CPU, USR, and CRD file contents.

11. Installation 135

Secure the physical data logger and power supply under lock and key.

WARNING:
Some security features can be subverted through physical access to the data logger. If
absolute security is a requirement, the physical data logger must be kept in a secure location.

Some options to secure your data logger from mistakes or tampering include:

 l Setting a PakBus/TCP password. The PakBus TCP password controls access to PakBus
communications over a TCP/IP link. PakBusTCP passwords can be set in Device
Configuration Utility.

 l Disabling FTP or setting an FTP username and password in Device Configuration Utility.
 l Disabling HTTP/HTTPS or creating a .csipasswd file to secure HTTP/HTTPS (see The

.csipasswd file (p. 136) for more information).
 l Enabling HTTPS and disabling HTTP. To prevent data collection via the web interface, both

HTTP and HTTPS must be disabled.

For additional information on data logger security, see:

 l 4 Ways to Make your Data More Secure
 l Available Security Measures for Internet-Connected Dataloggers
 l How to Use Datalogger Security Codes
 l How Can Data be Made More Secure on a CRBasic PakBus Datalogger
 l How to Generate SFTP Keys Easily

11.2.4.3 The .csipasswd file
Basic access authentication was implemented in the form of an encrypted password file named
 .csipasswd. It defines read/write access to the web interface. A file named .csipasswd is
stored, and hidden, on the data logger CPU drive. Multiple user accounts with differing levels of
access can be defined for one data logger. Four levels of access are available:

 l Anonymous: Read-only access. This account cannot be removed, but privileges can be
disabled.

 l Read Only: Data collection is unrestricted. Clock and writable variables cannot be changed.
Programs cannot be viewed, stopped, deleted, or retrieved.

 l Read/Write: Data collection is unrestricted. Clock and writable variables can be changed.
Programs cannot be viewed, stopped, deleted, or retrieved.

11. Installation 136

http://www.campbellsci.com/blog/make-data-more-secure
http://www.campbellsci.com/blog/make-data-more-secure
http://www.campbellsci.com/blog/security-measures-for-internet-connected-dataloggers
http://www.campbellsci.com/blog/security-measures-for-internet-connected-dataloggers
http://www.campbellsci.com/blog/use-datalogger-security-codes
http://www.campbellsci.com/blog/use-datalogger-security-codes
http://www.campbellsci.com/faqs
http://www.campbellsci.com/faqs
https://www.campbellsci.com/blog/generate-sftp-keys-easily

 l All (Administrator): Data collection is unrestricted. Clock, writable variables and settings can
be changed. Programs can be viewed, stopped, deleted, and retrieved. Hidden tables can
be viewed. Files, including programs can be sent to the data logger.

NOTE:
All levels of access allow data collection.

Starting with OS version 7.0, the .csipasswd file must be updated with Device Configuration
Utility. The data logger will no longer accept .csipasswd files sent with web API commands or
from the RTMC Web Publisher. If you are using the RTMC Web Publisher to publish directly to a
data logger you will now need to configure the .csipasswd with Device Configuration Utility.

NOTE:
Ethernet over USB (RNDIS) is considered a direct communications connection. Therefore, it is
a trusted connection and Administrator privileges are automatically granted for all
functionality (csipasswd does not apply).

Create an encrypted password file or modify an existing password file using Device Configuration
Utility:

 1. Connect to your device in Device Configuration Utility.

 2. Click the Network Services tab, then the Edit .csipasswd File button.

 3. Define user accounts and access levels.

 4. Click Apply. The .csipasswd file is automatically saved to the data logger CPU drive.

When access to the data logger web interface is attempted without the appropriate security level,
the data logger will prompt for a username and password. If an invalid username or password is
entered, the data logger will default to the level of access assigned to “anonymous”. As noted
previously, anonymous is assigned a user level of read-only, though this can be changed using
Device Configuration Utility.

When a .csipasswd file is used, the PakBus/TCP Password security setting is not used when
accessing the data logger via HTTP.

CAUTION:
The .csipasswd file is not reset or deleted when setting the data logger back to factory
defaults or formatting the CPU drive.

11. Installation 137

Deprecated API functionality

Starting with OS version 7.0, the .csipasswd file must be updated with Device Configuration
Utility. The data logger will no longer accept .csipasswd files sent with web API commands or
from the RTMC Web Publisher.

See the CRBasic Editor help for information about the data logger web server and API
commands: https://help.campbellsci.com/crbasic/cr1000x/#Info/webserverapicommands1.htm

.

11.3 Web interface
For data loggers with an IP connection, the built-in web interface provides access to real-time
and stored data logger data. For more information on the web interface, watch an instructional
video at: http://www.campbellsci.com/videos/web-interface .

Read/write access to the web interface requires a .csipasswd file. See The .csipasswd file (p.
136) for more information.

NOTE:
Ethernet over USB (RNDIS) is considered a direct communications connection. Therefore, it is
a trusted connection and Administrator privileges are automatically granted for all
functionality (csipasswd does not apply).

11.4 Power budgeting
In low-power situations, the data logger can operate for several months on non-rechargeable
batteries. Power systems for longer-term remote applications typically consist of a charging
source, a charge controller, and a rechargeable battery. When ac line power is available, a VAC-
to-VDC wall adapter, charging regulator, and a rechargeable battery can be used to construct an
uninterruptible power supply (UPS).

When designing a power supply, consider worst-case power requirements and environmental
extremes. For example, the power requirement of a weather station may be substantially higher
during extreme cold, while at the same time, the extreme cold constricts the power available
from the power supply. System operating time for batteries can be estimated by dividing the
battery capacity (ampere hours) by the average system current drain (amperes).

For more information see:

11. Installation 138

https://help.campbellsci.com/crbasic/cr1000x/#Info/webserverapicommands1.htm
https://help.campbellsci.com/crbasic/cr1000x/#Info/webserverapicommands1.htm
https://help.campbellsci.com/CRBasic/CR300/Default.htm
http://www.campbellsci.com/videos/web-interface

 l Power Supplies Application Note
 l Battery Care Blog
 l Troubleshooting Your Solar Panel blog
 l Power Budget Spreadsheet
 l Power Budgeting Video

See also:

 l Power input (p. 11)
 l Power output (p. 12)
 l Power requirements (p. 229)
 l Power output specifications (p. 230)

11.5 Field work
Field installation is site- and application- specific. This section lists resources to aid with system
installation.

 l Data logger enclosures (p. 139)
 l Grounds (p. 13)
 l Electrostatic discharge and lightning protection (p. 140)
 l Weather Station Siting and Installation Technical Paper
 l Protect Station from Birds Blog
 l Tripod Manual
 l Tripod Installation Videos
 l Tower Manual (UT20 and UT30)
 l UTBASE Installation Video
 l Surge Protector Kits: Installation and Troubleshooting White Paper

11.6 Data logger enclosures
The data logger and most of its peripherals must be protected from moisture and humidity.
Moisture in the electronics will seriously damage the data logger. In most cases, protection from
moisture is easily accomplished by placing the data logger in a weather-tight enclosure with
desiccant and elevating the enclosure above the ground. Desiccant in enclosures should be
changed periodically.

WARNING:
Do not completely seal the enclosure if lead-acid batteries are present; hydrogen gas
generated by the batteries may build to an explosive concentration.

11. Installation 139

https://s.campbellsci.com/documents/us/technical-papers/pow-sup.pdf
https://s.campbellsci.com/documents/us/technical-papers/pow-sup.pdf
https://www.campbellsci.com/blog/9-tips-proper-battery-care
https://www.campbellsci.com/blog/9-tips-proper-battery-care
https://www.campbellsci.com/blog/determine-if-solar-power-has-problem
https://www.campbellsci.com/blog/determine-if-solar-power-has-problem
http://www.campbellsci.com/downloads/power-budget-spreadsheet
http://www.campbellsci.com/downloads/power-budget-spreadsheet
http://www.campbellsci.com/videos/power-budgeting
http://www.campbellsci.com/videos/power-budgeting
https://s.campbellsci.com/documents/us/technical-papers/siting.pdf
https://www.campbellsci.com/blog/protect-weather-station-from-birds
https://s.campbellsci.com/documents/us/manuals/cm110-cm115-cm120.pdf
https://s.campbellsci.com/documents/us/manuals/cm110-cm115-cm120.pdf
https://www.campbellsci.com/videos?show=&keywords=tripod&type=
https://s.campbellsci.com/documents/us/manuals/ut30.pdf
https://s.campbellsci.com/documents/us/manuals/ut30.pdf
https://www.campbellsci.com/videos/utbase
https://s.campbellsci.com/documents/us/technical-papers/surge-protector-kits.pdf
https://s.campbellsci.com/documents/us/technical-papers/surge-protector-kits.pdf

The following details a typical installation using a Campbell Scientific enclosure. The data logger
has mounting holes through which small screws are inserted into nylon anchors in the backplate.

 1. Insert the included nylon anchors into the backplate. Position them to align with the
mounting holes on the base of the data logger.

 2. Holding the data logger to the backplate, screw the screws into the nylon anchors.

See also Physical specifications (p. 229).

11.7 Electrostatic discharge and lightning
protection
WARNING:
Lightning strikes may damage or destroy the data logger, associated sensors and power
supplies.

Electrostatic discharge (ESD) can originate from several sources, the most common and
destructive are primary and secondary lightning strikes. Primary lightning strikes hit
instrumentation directly. Secondary strikes induce voltage in power lines or wires connected to
instrumentation. While elaborate, expensive, and nearly infallible lightning protection systems
are on the market, Campbell Scientific, for many years, has employed a simple and inexpensive
design that protects most systems in most circumstances. The system consists of a lightning rod,
metal mast, heavy-gauge ground wire, and ground rod to direct damaging current away from
the data logger. This system, however, is not infallible. The following image displays a typical
application of the system:

11. Installation 140

All critical inputs and outputs on the data logger are ESD protected. To be effective, the earth
ground lug must be properly connected to earth (chassis) ground.

Communications ports are another path for transients. You should provide communications
paths, such as telephone or short-haul modem lines, with spark-gap protection. Spark-gap
protection is usually an option with these products; so, request it when ordering. Spark gaps
must be connected to earth (chassis) ground.

For detailed information on grounding, see Grounds (p. 13).

11. Installation 141

12. CR1000X maintenance
Protect the data logger from humidity and moisture. When humidity levels reach the dewpoint,
condensation occurs, and damage to data logger electronics can result. Adequate desiccant
should be placed in instrumentation enclosure to provide protection, and control humidity.
Desiccant should be changed periodically.

If sending the data logger to Campbell Scientific for calibration or repair, consult first with
Campbell Scientific. If the data logger is malfunctioning, be prepared to perform some
troubleshooting procedures. See:

 l Tips and troubleshooting (p. 154)
 l Does Your Data Logger Need to be Repaired Blog
 l Troubleshooting Data Acquisition System Blog

Also, consider checking, or posting your question to, the Campbell Scientific user forum
https://www.campbellsci.com/forum . Our web site www.campbellsci.com has additional
manuals (with example programs), FAQs, specifications and compatibility information for all of
our products.

Video tutorials www.campbellsci.com/videos and blog articles www.campbellsci.com/blog
are also useful troubleshooting resources.

If calibration or repair is needed, the procedure shown on: https://www.campbellsci.com/repair
should be followed when sending the product.

12.1 Data logger calibration
Campbell Scientific recommends factory recalibration every three years. During calibration, all
the input terminals, peripheral and communications ports, operating system, and memory areas
are checked; and the internal battery is replaced. The data logger is checked to ensure that all
hardware operates within published specifications before it is returned. To request recalibration
for a product, see https://www.campbellsci.com/repair .

It is recommended that you maintain a level of calibration appropriate to the data logger
application. Consider the following factors when setting a calibration schedule:

 l The importance of the measurements
 l How long the data logger will be used

12. CR1000X maintenance 142

https://www.campbellsci.com/blog/determine-if-datalogger-needs-repairing
https://www.campbellsci.com/blog/troubleshooting-data-acquisition-systems
https://www.campbellsci.com/forum
https://www.campbellsci.com/
https://www.campbellsci.com/videos
https://www.campbellsci.com/blog
https://www.campbellsci.com/repair
https://www.campbellsci.com/repair

 l The operating environment
 l How the data logger will be handled

See also About background calibration (p. 143).

You can download and print calibration certificates for many products you have purchased by
logging in to the Campbell Scientific website and going to: https://www.campbellsci.com/calcerts .

NOTE:
Note, you will need your product's serial number to access its certificate.

Watch an instructional video: http://www.campbellsci.com/videos/calibration-certs .

12.1.1 About background calibration
The data logger uses an internal voltage reference to routinely self-calibrate and compensate for
changes caused by changing operating temperatures and aging. Background calibration
calibrates only the coefficients necessary to the running CRBasic program. These coefficients are
reported in the Status table as CalVolts(), CalGain(), CalOffset(), and CalCurrent().

Background calibration will be disabled automatically when the scan rate is too fast for the
background calibration measurements to occur in addition to the measurements in the program.
The Calibrate() instruction can be used to override or disable background calibration.
Disable background calibration when it interferes with execution of very fast programs and less
accuracy can be tolerated. With background calibration disabled, measurement accuracy over
the operational temperature range is specified as less accurate by a factor of 10. That is, over the
extended temperature range of –55 °C to 85 °C, the accuracy specification of ±0.08 % of reading
can degrade to ±0.8 % of reading with background calibration disabled. If the temperature of the
data logger remains the same, there is little calibration drift when background calibration is
disabled.

12.2 Internal battery
The lithium battery powers the internal clock and SRAM when the data logger is not powered.
This voltage is displayed in the LithiumBattery. See LithiumBattery (p. 195) field in the Status table.
Replace the battery when voltage is approximately 2.7 VDC. The internal lithium battery life is
extended when the data logger is installed with an external power source. If the data logger is
used in a high-temperature application, the battery life is shortened.

To prevent clock and memory issues, it is recommended you proactively replace the battery
every 2 to 3 years, or more frequently when operating continuously in high temperatures.

12. CR1000X maintenance 143

https://www.campbellsci.com/calcerts
http://www.campbellsci.com/videos/calibration-certs

NOTE:
The battery is replaced during regular factory recalibration, which is recommended every 3
years. For more information, see Data logger calibration (p. 142).

When the lithium battery is removed (or is depleted and primary power to the data logger is
removed), the CRBasic program and most settings are maintained, but the following are lost:

 l Run-now and run-on power-up settings.
 l Routing and communications logs (relearned without user intervention).
 l Time. Clock will need resetting when the battery is replaced.
 l Final-memory data tables.

A replacement lithium battery can be purchased from Campbell Scientific or another supplier.

 l AA, 2.4 Ah, 3.6 VDC (Tadiran TL 5903/S) for battery-backed SRAM and clock. 3-year life
with no external power source.

 See Power requirements (p. 229) for more information.

WARNING:
Misuse or improper installation of the internal lithium battery can cause severe injury. Fire,
explosion, and severe burns can result. Do not recharge, disassemble, heat above 100 °C (212
°F), solder directly to the cell, incinerate, or expose contents to water. Dispose of spent lithium
batteries properly.

NOTE:
The Status field Battery value and the destination variable from the Battery() instruction
(often called batt_volt) in the Public table reference the external battery voltage.

For additional information on the internal battery, visit the Campbell Scientific blog article, Get to
Know Your Data Logger’s Spare Tire: The Lithium Battery .

12.2.1 Replacing the internal battery
It is recommended that you send the data logger in for scheduled calibration, which includes
internal battery replacement. See Data logger calibration (p. 142).

WARNING:
Any damage made to the data logger during user replacement of the internal battery is not
covered under warranty.

12. CR1000X maintenance 144

https://www.campbellsci.com/blog/datalogger-spare-tire-lithium-battery
https://www.campbellsci.com/blog/datalogger-spare-tire-lithium-battery

 1. Remove the two screws from the back of the panel.

 2. Pull one edge of the canister away from the wiring panel to loosen it from the internal
connectors.

 3. Lift the canister edge out of the enclosure tabs.

12. CR1000X maintenance 145

 4. Remove the nuts, then open the clam shell.

 5. Remove the lithium battery by gently prying it out with a small flat-bladed screwdriver.
Replace it with a new battery.

 6. Reassemble the data logger. Take particular care to ensure the canister is reseated tightly
into the connectors by firmly pressing them together by hand.

12.3 Updating the operating system
Campbell Scientific posts operating system (OS) updates at
https://www.campbellsci.com/downloads when they become available. It is recommended
that before deploying instruments, you check operating system versions and update them as
needed. The data logger operating system version is shown in the Status table, Station Status
Summary, and Device Configuration Utility Deployment > Datalogger. An operating system may
be sent through Device Configuration Utility or through program-send procedures.

12. CR1000X maintenance 146

https://www.campbellsci.com/downloads
https://www.campbellsci.com/downloads

CAUTION:
CR1000X data loggers with Serial Numbers 34000 and newer have hardware requiring the
use of OS version 5.02 or newer.

WARNING:
Because sending an OS resets data logger memory and resets all settings on the data logger
to factory defaults, data loss will certainly occur. Depending on several factors, the data
logger may also become incapacitated until the new OS is programmed into memory.

TIP:
It is recommended that you retrieve data from the data logger and back up your programs
and settings before updating your OS. To collect data using LoggerNet, connect to your data
logger and click Collect Now . To backup your data logger, connect to it in Device
Configuration Utility, click the Backup menu and select Backup Datalogger.

12.3.1 Sending an operating system to a local data logger
Send an OS using Device Configuration Utility. This method requires a direct connection between
your data logger and computer.

 1. Download the latest Operating System at https://www.campbellsci.com/downloads .

 2. Locate the .exe download and double-click to run the file. This will extract the .obj OS file to
the C:\Campbellsci\Lib\OperatingSystems folder.

 3. Supply power to the data logger. If connecting via USB for the first time, you must first
install USB drivers by using Device Configuration Utility (select your data logger, then on
the main page, click Install USB Driver). Alternately, you can install the USB drivers using EZ
Setup. A USB connection supplies 5 V power (as well as a communications link), which is
adequate for setup, but a 12 V battery will be needed for field deployment.

 4. Physically connect your data logger to your computer using a USB cable, then open Device
Configuration Utility and select your data logger.

 5. Select the communications port used to communicate with the data logger from the COM
Port list (you do not need to click Connect).

 6. Click the Send OS tab. At the bottom of the window, click Start.

 7. On the Avoid Conflicts with the Local Server window, click OK.

 8. Navigate to the C:\Campbellsci\Lib\OperatingSystems folder.

12. CR1000X maintenance 147

https://www.campbellsci.com/downloads
https://www.campbellsci.com/downloads
https://www.campbellsci.com/downloads

 9. Ensure Datalogger Operating System Files (*.obj) is selected in the Files of type list, select
the new OS .obj file, and click Open to update the OS on the data logger.

Watch a video: Sending an OS to a Local Datalogger .

12.3.2 Sending an operating system to a remote data
logger

If you have a data logger that is already deployed, you can update the OS over a
telecommunications link by sending the OS to the data logger as a program. In most instances,
sending an OS as a program preserves settings. This allows for sending supported operating
systems remotely (check the release notes). However, this should be done with great caution as
updating the OS may reset the data logger settings, even settings critical to supporting the
telecommunication link.

The default.CR1X program can be edited to preserve critical data logger settings such as
communications settings. See Default program (p. 124) for more information.

 1. Download the latest Operating System at https://www.campbellsci.com/downloads .

 2. Locate the .exe download and double-click to run the file. This will extract the .obj OS file to
the C:\Campbellsci\Lib\OperatingSystems folder.

 3. Using data logger support software, connect to your data logger.
 l LoggerNet users, select Main and click Connect on the LoggerNet toolbar, select

the data logger from the Stations list, then click Connect .
 l PC400 users, select the data logger from the list and click Connect .

 4. Select File Control at the top of the Connect window.

 5. Click Send at the top of the File Control window.

 6. Navigate to the C:\Campbellsci\Lib\OperatingSystems folder.

12. CR1000X maintenance 148

http://www.campbellsci.com/videos/sending-an-os-to-a-local-datalogger-part-1
http://www.campbellsci.com/videos/sending-an-os-to-a-local-datalogger-part-1
http://www.campbellsci.com/downloads
http://www.campbellsci.com/downloads
http://www.campbellsci.com/downloads

 7. Ensure Datalogger Operating System Files (*.obj) is selected in the files of type list, select
the new OS .obj file, and click Open to update the OS on the data logger.

Note the following precautions when sending as a program:

 l Any peripherals being powered through the SW12 terminals will be turned off until the
program logic turns them on again.

 l Operating systems are very large files. Be cautious of data charges. Sending over a direct
serial or USB connection is recommended, when possible.

12.4 gzip
The CR1000X supports the ability to extract the contents of program, operating system, and other
files that have been created using gzip. The file name must be in the format:
filename.fileextension.gz (for example: TestPgm.CR1X.gz, CR1000X.Std.01.obj.gz, or
CR1000X.Std.01.web.obj.gz).

For more information see: www.gzip.org .

Zipping a file can significantly reduce its size, resulting in fewer bytes to transfer when sending a
zipped file to a data logger. This is especially beneficial over slow, high-latency, or costly
telecommunications links. Therefore, those using low-baud-rate radios, satellite, or restricted
cellular data plans should consider gzipping operating systems and large programs before
sending.

Compatible files can be created using any utility that supports the gzip file format. Use a file
tarball (filename.tar.gz) to compress multiple files. Several free utilities provide zipping
to these formats.

12. CR1000X maintenance 149

https://www.gzip.org/

Send the zipped file to the CPU:, CRD: or USB: drive using data logger support software. Files sent
using Connect > Send Program will be unzipped automatically. However, the data logger will not
automatically unzip files that are sent using File Control > Send File. To unzip files sent with File
Control, mark them as Run Now.

Unzipping and installing file contents takes a long time; expect several minutes for operating
systems and additional time for .web files. The details of unzipping and installing files from a
gzip file are as follows:

 1. The data logger receives the gzip file and restarts.

 2. The data logger unzips the .gz file to the same drive to which it was sent.

 3. The .tar portion of the file, if available, is processed.

 4. Operating system (.obj or .iobj files) are programmed to the respective destination.

 5. The data logger restarts.

 6. When an .obj file is involved the OS will be loaded by the boot code resulting in another
restart.

 7. Web user interface (.web) files, if available, are installed. This may take over ten minutes.

NOTE:
Compression has little effect on an encrypted program (FileEncrypt()) and on files that
already employ compression such as JPEG or MP4.

TIP:
The data logger also has the ability to compress files using GZip(). See the CRBasic Editor
help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

12.5 File management via powerup.ini
Another way to upload a program, install a data logger OS, or format a drive is to create a
powerup.ini file. The file is created with a text editor and saved to a memory card or SC115
with the associated files. Alternatively, the powerup.ini file and associated files can be saved
to the data logger using the data logger support software File Control > Send command. With
the memory card or SC115 connected, or with the powerup.ini file saved in the data logger
memory, a power cycle to the data logger begins the process chosen in the powerup.ini file.

 1. When the CR1000X powers up, it executes commands in the powerup.ini file (on an
attached USB drive or memory card) including commands to set the CRBasic program file

12. CR1000X maintenance 150

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

attributes to Run Now or Run On Power-up.
 2. When the CR1000X powers up, a program file marked as Run On Power-up will run. If that

program includes a file specified by the Include File setting, it will be incorporated into the
program that runs.

 3. If there is no program file marked Run Now or Run On Power-up (or if the program
selected to run cannot be compiled), the data logger will run the program specified by the
IncludeFile setting. For more information see IncludeFile (p. 208).

 4. If the IncludeFile program cannot be compiled or if no program is specified, the data
logger will attempt to run the program named default.CR1X on its CPU: drive.

 5. If there is no default.CR1X file or it cannot be compiled, the CR1000X will not
automatically run any program.

See Default program (p. 124) for more information.

Syntax for the powerup.ini file and available options follow.

12.5.1 Syntax
Syntax for powerup.ini is:

Command,File,Device

where,

 l Command is one of the numeric commands in the following table.
 l File is the accompanying operating system or user program file.
 l Device is the data logger memory drive to which the accompanying operating system or

user program file is copied (usually CPU). If left blank or with an invalid option, default
device will be CPU. Use the same drive designation as the transporting external device if
the preference is to not copy the file.

WARNING:
Uploading a program, installing a data logger OS, or formatting a drive may result in data
loss. Depending on several factors, the data logger may also become incapacitated for a
time. It is recommended that you retrieve data from the data logger and back up your
programs before sending a powerup.ini file; otherwise, data may be lost. To collect data using

LoggerNet, connect to your data logger and click Collect Now . To backup your data
logger, connect to it in Device Configuration Utility, click the Backup menu and select Backup
Datalogger.

12. CR1000X maintenance 151

Table 12-1: Powerup.ini commands

Command Action Details

1 Run always,
preserve data

Copies a program file to a drive and sets the program to both
Run Now and Run on Power Up. Data on a memory card from
the previously running program will be preserved if table
structures have not changed.

2 Run on
power up

Copies a program file to a drive and sets the program to Run
Always unless command 6 or 14 is used to set a separate Run
Now program.

5 Format Formats a drive.

6 Run now,
preserve data

Copies a program file to a drive and sets the program to Run
Now. Data on a memory card from the previously running
program will be preserved if table structures have not
changed.

7 Copy
support files

Copies a file, such as an Include or program support file, to
the specified drive.

9 Load OS
(File= .obj)

Loads an .obj file to the CPU drive and then loads the .obj
file as the new data logger operating system.

13 Run always,
erase data

Copies a program to a drive and sets the program to both
Run Now and Run on Power Up. Data on a memory card from
the previously running program will be erased.

14 Run now,
erase data

Copies a program to a drive and sets the program to Run
Now. Data on a memory card from the previously running
program will be erased.

15 Move file Moves a file, such as an Include or program support file, to
the specified drive.

12.5.2 Example powerup.ini files
Comments can be added to the file by preceding them with a single-quote character ('). All text
after the comment mark on the same line is ignored.

12. CR1000X maintenance 152

TIP:
Test the powerup.ini file and procedures in the lab before going to the field. Always carry
a laptop or mobile device (with data logger support software) into difficult- or expensive-to-
access places as backup.

Example: Code Format and Syntax
'Command = numeric power up command
'File = file associated with the action
'Device = device to which File is copied. Defaults to CPU
'Command,File,Device
13,Write2CRD_2.CR1X,cpu:

Example: Run Program on Power Up
'Copy program file pwrup.CR1X from the external drive to CPU:
'File will run only when the data logger is powered-up later.
2,pwrup.CR1X,cpu:

Example: Format the USR Drive

5,,usr:

Example: Send OS on Power Up
'Load an operating system (.obj) file into FLASH as the new OS
9,CR1000X.Std.01.obj

Example: Run Program from SC115 Flash Memory Drive
'A program file is carried on an SC115 Flash Memory drive.
'Do not copy program file from SC115
'Run program always, erase data.

13,toobigforcpu.CR1X,usb:

Example: Always Run Program, Erase Data
13,pwrup_1.CR1X,cpu:

Example: Run Program Now and Erase Data Now
14,run.CR1X,cpu:

12. CR1000X maintenance 153

13. Tips and troubleshooting
Start with these basic procedures if a system is not operating properly.

 1. Ensure your system is well grounded. See Grounds (p. 13). The symptoms of a poorly
grounded system range from bad measurements, to intermittent communications, to
damaged hardware.

 2. Using a voltmeter, check the voltage of the primary power source at the POWER IN
terminals on the face of the data logger, it should be 10 to 18 VDC.

 3. Check wires and cables for the following:
 l Incorrect wiring connections. Make sure each sensor and device are wired to the

terminals assigned in the program. If the program was written in Short Cut, check
wiring against the generated wiring diagram. If written in CRBasic Editor, check wiring
against each measurement and control instruction.

 l Loose connection points
 l Faulty connectors
 l Cut wires
 l Damaged insulation, which allows water to migrate into the cable. Water, whether or

not it comes in contact with wire, can cause system failure. Water may increase the
dielectric constant of the cable sufficiently to impede sensor signals, or it may
migrate into the sensor, which will damage sensor electronics.

 4. Check the CRBasic program. If the program was written solely with Short Cut, the program
is probably not the source of the problem. If the program was written or edited with
CRBasic Editor, logic and syntax errors could easily have crept in. To troubleshoot, create a
simpler version of the program, or break it up into multiple smaller units to test individually.
For example, if a sensor signal-to-data conversion is faulty, create a program that only
measures that sensor and stores the data, absent from all other inputs and data.

 5. Reset the data logger. Sometimes the easiest way to resolve a problem is by resetting the
data logger (see Resetting the data logger (p. 162) for more information).

For additional troubleshooting options, see:

13.1 Checking station status 155

13.2 Understanding NAN and INF occurrences 158

13. Tips and troubleshooting 154

13.3 Timekeeping 159

13.4 CRBasic program errors 161

13.5 Resetting the data logger 162

13.6 Troubleshooting power supplies 164

13.7 Using terminal mode 164

13.8 Ground loops 170

13.9 Improving voltage measurement quality 174

13.10 Field calibration 188

13.11 File system error codes 188

13.12 File name and resource errors 190

13.13 Background calibration errors 190

Also, consider checking, or posting your question to, the Campbell Scientific user forum
https://www.campbellsci.com/forum . Our web site www.campbellsci.com has additional
manuals (with example programs), FAQs, specifications and compatibility information for all of
our products.

Video tutorials www.campbellsci.com/videos and blog articles www.campbellsci.com/blog
are also useful troubleshooting resources.

13.1 Checking station status
View the condition of the data logger using Station Status. Here you see the operating system
version of the data logger, the name of the current program, program compile results, and other
key indicators. Items that may need your attention appear in red or blue. The following
information describes the significance of some entries in the station status window. Watch a
video at: https://www.campbellsci.com/videos/connect-station-status or use the following
instructions.

13.1.1 Viewing station status
Using your data logger support software, access the Station Status to view the condition of the
data logger.

 l From LoggerNet: Click Connect , then Station Status to view the Summary tab.
 l From PC400: Select the Datalogger menu and Station Status to view the Summary tab.

13. Tips and troubleshooting 155

https://www.campbellsci.com/forum
https://www.campbellsci.com/
https://www.campbellsci.com/videos
https://www.campbellsci.com/blog
https://www.campbellsci.com/videos/connect-station-status

13.1.2 Watchdog errors
Watchdog errors indicate that the data logger has crashed and reset itself. Experiencing
occasional watchdog errors is normal. You can reset the Watchdog error counter in the Station
Status > Status Table.

TIP:
Before resetting the counter, make note of the number accumulated and the date.

Watchdog errors could be due to:

 l Transient voltage
 l Incorrectly wired or malfunctioning sensor
 l Poor ground connection on the power supply
 l Numerous PortSet() instructions back-to-back with no delay
 l High-speed serial data on multiple ports with very large data packets or bursts of data

The error "Results for Last Program Compiled: Warning: Watchdog Timer IpTask Triggered" can
result from:

 l The IP communications on the data logger got stuck, and the data logger had to reboot
itself to recover. Or communications failures may cause the data logger to reopen the IP
connections more than usual. Check your data logger operating system version; recent
operating system versions have improved stability of IP communications.

An IP panic watchdog error may be caused by insufficient communications memory. Try
increasing the Communication Allocation field in Device Configuration Utility.

TIP:
It is good practice to always retrieve data from the data logger before changing settings;
otherwise, data may be lost. See Collecting data (p. 35) for detailed instruction.

13. Tips and troubleshooting 156

If any of these are not the apparent cause, contact Campbell Scientific for assistance (see
https://www.campbellsci.com/support). Causes that may require assistance include:

 l Memory corruption
 l Operating System problem
 l Hardware problem
 l IP communications problem

13.1.3 Results for last program compiled
Messages generated by the data logger at program upload and as the program runs are
reported here. Warnings indicate that an expected feature may not work, but the program will
still operate. Errors indicate that the program cannot run. For more information, see CRBasic
program errors (p. 161).

13.1.4 Skipped scans
Skipped scans are caused when a program takes longer to process than the scan interval allows.
If any scan skips repeatedly, the data logger program may need to be optimized or reduced. For
more information, see: How to Prevent Skipped Scans and a Sunburn .

13.1.5 Skipped records
Skipped records usually occur because a scan is skipped. They indicate that a record was not
stored to the data table when it should have been.

13.1.6 Variable out of bounds
Variable-out-of-bounds errors happen when an array is not sized to the demands of the
program. The data logger attempts to catch out-of-bounds errors at compile time. However, it is
not always possible; when these errors occur during runtime the variable-out-of-bounds field
increments. Variable-out-of-bounds errors are always caused by programming problems.

13. Tips and troubleshooting 157

https://www.campbellsci.com/support
https://www.campbellsci.com/support
https://www.campbellsci.com/blog/prevent-skipped-scans
https://www.campbellsci.com/blog/prevent-skipped-scans

13.1.7 Battery voltage
If powering through USB, reported battery voltage should be 0 V. If connecting to an external
power source, battery voltage should be reported at or near 12 V. See also:

 l Power input (p. 11)
 l Power requirements (p. 229)

13.2 Understanding NAN and INF occurrences
NAN (not a number) and INF (infinite) are data words indicating an exceptional occurrence in
data logger function or processing. INF indicates that the program has encountered an
undefined arithmetic expression, such as 0 ÷ 0. NAN indicates an invalid measurement. For more
information, see Tips and Tricks: Who's NAN? .

 NANs are expected in the following conditions:

 l Input signals exceed the voltage range chosen for the measurement.
 l An invalid SDI-12 command is sent.
 l An SDI-12 sensor does not respond or aborts without sending data.

 NAN is a constant that can be used in expressions. This is shown in the following example code
that sets a CRBasic variable to False when the wind direction is NAN:

If WindDir = NAN Then
 WDFlag = False
Else
 WDFlag = True
EndIf

If an output processing instruction encounters a NAN in the values being processed, NAN will be
stored. For example, if one measurement in a data storage interval results in NAN, then the
average, maximum and minimum will record NAN. However, because NAN is a constant, it can
be used in conjunction with the disable variable parameter (DisableVar) in output processing
instructions. Use variable = NAN in the DisableVar parameter to discard NANs from affecting
the other good values. The following example code discards NAN WindSpeed measurements
from the Minimum output:

Minimum (1,WindSpeed,FP2,WindSpeed=NAN,False)

13. Tips and troubleshooting 158

https://www.campbellsci.com/tips-nan
https://www.campbellsci.com/tips-nan

NOTE:
There is no such thing as NAN for integers. Values that are converted from float to integer will
be expressed in data tables as the most negative number for a given data type. For example,
the most negative number of data type FP2 is –7999; so, NAN for FP2 data will appear in a
data table as –7999. If the data type is Long, NAN will appear in the data table as –
2147483648.

13.3 Timekeeping
Measurement of time is an essential data logger function. Time measurement with the onboard
clock enables the data logger to run on a precise interval, attach time stamps to data, measure
the interval between events, and time the initiation of control functions. Details on clock accuracy
and resolution are available in the System specifications (p. 228). An internal lithium battery backs
the clock when the data logger is not externally powered. See Internal battery (p. 143).

13.3.1 Clock best practices
When setting the clock with LoggerNet, initiate it manually during a maintenance period when
the data logger is not actively writing to Data Tables. Click Set in the Clocks field of the LoggerNet
Connect Screen.

If you are going to use automated clock check with LoggerNet (clock settings can be found on the
LoggerNet Setup Standard View Clock tab). it is recommended that you do this on the order of
days (not hours). Set an allowed clock deviation that is appropriate for the expected jitter in the
network, and use the initial time setting to offset the clock check away from storage and
measurement intervals.

The amount of time required for a Clock Check command to reach the data logger, be
processed, and for it to send its response is called round-trip time, or time-of-flight. To calculate
an estimate of this time-of-flight, LoggerNet maintains a history (in order) of the round-trip times
for the ten previous successful clock check transactions. It adds this average to the time values
received from the data logger and subtracts it from any adjustment that it might make.

13.3.2 Time stamps
A measurement without an accurate time reference often has little meaning. Data collected from
data loggers is stored with time stamps. How closely a time stamp corresponds to the actual time
a measurement is taken depends on several factors.

13. Tips and troubleshooting 159

The time stamp in common CRBasic programs matches the time at the beginning of the current
scan as measured by the real-time data logger clock. If a scan starts at 15:00:00, data output
during that scan will have a time stamp of 15:00:00 regardless of the length of the scan, or when
in the scan a measurement is made. The possibility exists that a scan will run for some time before
a measurement is made. For instance, a scan may start at 15:00:00, execute a time-consuming
part of the program, then make a measurement at 15:00:00.51. The time stamp attached to the
measurement, if the CallTable() instruction is called from within the
Scan() / NextScan construct, will be 15:00:00, resulting in a time-stamp skew of 510 ms.

13.3.3 Avoiding time skew
Time skew between consecutive measurements is a function of settling and integration times,
ADC, and the number entered into the Reps parameter of CRBasic instructions. A close
approximation is:

time skew = reps * (settling time + integration time + ADC time) + instruction setup
time
where ADC time equals 170 µs, and instruction setup time is 15 µs.
If reps (repetitions) > 1 (multiple measurements by a single instruction), no setup time
is required. If reps = 1 for consecutive voltage instructions, include the setup time for
each instruction.

Time-stamp skew is not a problem with most applications because:

 l Program execution times are usually short; so, time-stamp skew is only a few milliseconds.
Most measurement requirements allow for a few milliseconds of skew.

 l Data processed into averages, maxima, minima, and so forth are composites of several
measurements. Associated time stamps only reflect the time of the scan when processing
calculations were completed; so, the significance of the exact time a specific sample was
measured diminishes.

Applications measuring and storing sample data wherein exact time stamps are required can be
adversely affected by time-stamp skew. Skew can be avoided by:

 l Making measurements in the scan before time-consuming code.
 l Programming the data logger such that the time stamp reflects the system time rather than

the scan time using the DataTime() instruction. See the CRBasic Editor help for detailed
instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

13. Tips and troubleshooting 160

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

13.4 CRBasic program errors
Analyze data soon after deployment to ensure the data logger is measuring and storing data as
intended. Most measurement and data-storage problems are a result of one or more CRBasic
program bugs. Watch a video: CRBasic > Common Errors - Identifying and fixing common errors
in the CRBasic programming language .

13.4.1 Program does not compile
When a program is compiled, the CRBasic Editor checks the program for syntax errors and other
inconsistencies. The results of the check are displayed in a message window at the bottom of the
main window. If an error can be traced to a specific line in the program, the line number will be
listed before the error. Double-click an error preceded by a line number and that line will be
highlighted in the program editing window. Correct programming errors and recompile the
program.

Occasionally, the CRBasic Editor compiler states that a program compiles OK; however, the
program may not compile in the data logger itself. This is rare, but reasons may include:

 l The data logger has a different operating system than the computer compiler. Check the
two versions if in doubt. The computer compiler version is shown on the first line of the
compile results. Update the computer compiler by first downloading the executable OS file
from www.campbellsci.com . When run, the executable file updates the computer
compiler. To update the data logger operating system, see Updating the operating system
(p. 146).

 l The program has large memory requirements for data tables or variables and the data
logger does not have adequate memory. This normally is flagged at compile time in the
compile results. If this type of error occurs:

 o Check the CPU drive for copies of old programs. The data logger keeps copies of all
program files unless they are deleted, the drive is formatted, or a new operating
system is loaded with Device Configuration Utility.

 o Check the USR drive size. If it is too large it may be using memory needed for the
program.

 o Ensure a memory card is available when a program is attempting to access the CRD
drive.

13. Tips and troubleshooting 161

https://www.campbellsci.com/videos?show=&keywords=crbasic+error&type=
https://www.campbellsci.com/videos?show=&keywords=crbasic+error&type=
http://www.campbellsci.com/
http://www.campbellsci.com/

13.4.2 Program compiles but does not run correctly
If the program compiles but does not run correctly, timing discrepancies may be the cause. If a
program is tight on time, look further at the execution times. Check the measurement and
processing times in the Status table (MeasureTime, ProcessTime, MaxProcTime) for all scans,
then try experimenting with the InstructionTimes() instruction in the program. Analyzing
InstructionTimes() results can be difficult due to the multitasking nature of the data
logger, but it can be a useful tool for fine-tuning a program. For more information, see Status
table system information (p. 193).

See the CRBasic Editor help for detailed instruction information and program examples:
https://help.campbellsci.com/crbasic/cr1000x/ .

13.5 Resetting the data logger
A data logger reset is sometimes referred to as a "memory reset." Backing up the current data
logger configuration before a reset makes it easy to revert to the old settings. To back up the
data logger configuration, connect to the data logger using Device Configuration Utility, and
click Backup > Back Up Datalogger. To restore a configuration after the data logger has been
reset, connect and click Backup > Restore Datalogger.

The following features are available for complete or selective reset of data logger memory:

 l Processor reset
 l Program send reset
 l Manual data table reset
 l Formatting memory drives
 l Full memory reset

13.5.1 Processor reset
To reset the processor, simply power cycle the data logger. This resets its short-term memory,
restarts the current program, sets variables to their starting values, and clears communications
buffers. This does not clear data tables but may result in a skipped record. If the data logger is
remote, a power cycle can be mimicked in a Terminal Emulator program (type REBOOT <Enter>).

13.5.2 Program send reset
Final-data memory is erased when user programs are uploaded, unless preserve / erase data
options are used and the program was not altered. Preserve / erase data options are presented

13. Tips and troubleshooting 162

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

when sending programs using File Control Send command and CRBasic Editor Compile, Save and
Send.

TIP:
It is good practice to always retrieve data from the data logger before sending a program;
otherwise, data may be lost. See Collecting data (p. 35) for detailed instruction.

When a program compiles, all variables are initialized. A program is recompiled after a power
failure or a manual stop. For instances that require variables to be preserved through a program
recompile, consider PreserveVariables().

13.5.3 Manual data table reset
Data table memory is selectively reset from:

 l Datalogger support software: Station Status > Table Fill Times tab, Reset Tables.
 l Device Configuration Utility: Data Monitor tab, Reset Table button.
 l CR1000KD Keyboard/Display add-on: Data > Reset Data Tables.

13.5.4 Formatting drives
CPU, USR, CRD (memory card required), and USB (module required) drives can be formatted
individually. Formatting a drive erases all files on that drive. If the currently running user program
is on the drive to be formatted, the program will cease running and data associated with the
program are erased. Drive formatting is performed through the data logger support software File
Control > Format command.

13.5.5 Full memory reset
Full memory reset occurs when an operating system is sent to the data logger using Device
Configuration Utility or when entering 98765 in the Status table field FullMemReset. See
FullMemReset (p. 195). A full memory reset does the following:

 l Clears and formats CPU drive (all program files erased)
 l Clears data tables
 l Clears Status table fields
 l Restores settings to default
 l Initializes system variables
 l Clears communications memory

13. Tips and troubleshooting 163

Full memory reset does not affect the CRD drive directly. Subsequent user program uploads,
however, can erase CRD. See Updating the operating system (p. 146) for more information.

13.6 Troubleshooting power supplies
Power supply systems may include batteries, charging regulators, and a primary power source
such as solar panels or ac/ac or ac/dc transformers attached to mains power. All components
may need to be checked if the power supply is not functioning properly. Check connections and
check polarity of connections.

Base diagnostic: connect the data logger to a new 12 V battery. (A small 12 V battery carrying a
full charge would be a good thing to carry in your maintenance tool kit.) Ensure correct polarity
of the connection. If the data logger powers up and works, troubleshoot the data logger power
supply.

When diagnosing or adjusting power equipment supplied by Campbell Scientific, it is
recommended you consider:

 l Battery-voltage test
 l Charging-circuit test (when using an unregulated solar panel)
 l Charging-circuit test (when using a transformer)
 l Adjusting charging circuit

If power supply components are working properly and the system has peripherals with high
current drain, such as a satellite transmitter, verify that the power supply is designed to provide
adequate power. For additional information, see Power budgeting (p. 138).

13.7 Using terminal mode
Table 13-1 (p. 165) lists terminal mode options. With exception of perhaps the C command,
terminal options are not necessary to routine CR1000X operations.

To enter terminal mode, connect a computer to the CR1000X. See Setting up communications
with the data logger (p. 21). Open a terminal emulator program from Campbell Scientific data
logger support software:

 l Connect window > Datalogger menu item> Terminal Emulator...
 l Device Configuration Utility Terminal tab

After entering a terminal emulator, press Enter a few times until the prompt CR1000X> is
returned. Terminal commands consist of specific characters followed by Enter. Sending an H and
Enter will return the terminal emulator menu.

13. Tips and troubleshooting 164

ESC or a 40 second timeout will terminate on-going commands. Concurrent terminal sessions
are not allowed and will result in dropped communications.

Terminal commands are subject to change. Please consult Campbell Scientific for assistance if
you are not familiar with the effects of a command.

Table 13-1: CR1000X terminal commands

Command Description Use

0
Scan processing time; real
time in seconds Lists technical data concerning program scans.

1 Serial FLASH data dump Campbell Scientific engineering tool

2 Read clock chip Lists binary data concerning the CR1000X clock chip.

3 Status Lists the CR1000X Status table.

4
Card status and compile
errors

Lists technical data concerning an installed memory
card.

5 Scan information Technical data regarding the CR1000X scan.

6 Raw A/D values Technical data regarding analog-to-digital
conversions.

7 VARS Lists Public table variables.

8 Suspend / start data output
Outputs all table data. This is not recommended as a
means to collect data, especially over comms. Data
are dumped as non-error checked ASCII.

9 Read inloc binary Lists binary form of Public table.

A Operating system copyright Lists copyright notice and version of operating
system.

B Task sequencer op codes Technical data regarding the task sequencer.

C Modify constant table
Edit constants defined with ConstTable /
EndConstTable. Only active when ConstTable /
EndConstTable in the active program.

D MTdbg() task monitor Campbell Scientific engineering tool

E Compile errors Lists compile errors for the current program
download attempt.

13. Tips and troubleshooting 165

Table 13-1: CR1000X terminal commands

Command Description Use

F
Settings and predefined
constants names Lists predefined constants and settings

G CPU serial flash dump Campbell Scientific engineering tool

H Terminal emulator menu Lists main menu.

I Calibration data Lists gains and offsets resulting from internal
calibration of analog measurement circuitry.

J Download file dump Sends text of current program including comments.

L Peripheral bus read Campbell Scientific engineering tool

M Memory check Lists memory-test results.

N File system information Lists files in CR1000X memory.

O Data table sizes Lists technical data concerning data-table sizes.

P Serial talk through

Issue commands from keyboard that are passed
through the logger serial port to the connected
device. Similar in concept to SDI12 Talk Through. No
timeout when connected via PakBus.

REBOOT Program recompile

Typing “REBOOT” rapidly will recompile the
CR1000X program immediately after the last letter,
"T", is entered. Table memory is retained. NOTE:
When typing REBOOT, characters are not echoed
(printed on terminal screen).

SDI12 SDI12 talk through

Issue commands from keyboard that are passed
through the CR1000X SDI-12 port to the connected
device. Similar in concept to Serial Talk Through.
See also SDI-12 transparent mode (p. 167)

T Unused

U Data recovery
Provides the means by which data lost when a new
program is loaded may be recovered. Contact
Campbell Scientific support.

V Low level memory dump Campbell Scientific engineering tool

13. Tips and troubleshooting 166

Table 13-1: CR1000X terminal commands

Command Description Use

W Comms Watch (Sniff) Enables monitoring of CR1000X communications
traffic. No timeout when connected via PakBus.

X
Peripheral bus module
identify Campbell Scientific engineering tool

13.7.1 Serial talk through and comms watch
The P: Serial Talk Through and W: Comms Watch ("sniff") modes do not have a timeout when
connected in terminal mode via PakBus. Otherwise, the timeout can be changed from the default
of 40 seconds to any value ranging from 1 to 86400 seconds (86400 seconds = 1 day).

When using options P or W in a terminal session, consider the following:

 l Concurrent terminal sessions are not allowed by the CR1000X.
 l Opening a new terminal session will close the current terminal session.
 l The data logger will attempt to enter a terminal session when it receives non-PakBus

characters on the RS-232 port or CS I/O port, unless the port is first opened with the
SerialOpen() instruction.

If the data logger attempts to enter a terminal session on the RS-232 port or CS I/O port because
of an incoming non-PakBus character, and that port was not opened using SerialOpen(), any
currently running terminal function, including the comms watch, will immediately stop. So, in
programs that frequently open and close a serial port, the probability is higher that a non-PakBus
character will arrive at the closed serial port, thus closing an existing talk-through or comms
watch session. If this occurs, use the FilesManager setting to send comms watch or sniffer to a
file.

For more information on Comms Watch, see a video
at: https://www.campbellsci.com/videos/sdi12-sensors-watch-or-sniffer-mode .

13.7.2 SDI-12 transparent mode
All SDI-12 probes have just three wires—a signal, ground, and 12 V power line. They are
connected to the data logger according to the following table.

13. Tips and troubleshooting 167

https://www.campbellsci.com/videos/sdi12-sensors-watch-or-sniffer-mode
https://www.campbellsci.com/videos/sdi12-sensors-watch-or-sniffer-mode

Table 13-2: SDI-12 probe connections

Wire function Data logger connection

SDI-12 signal C

Shield G

Power 12V

Power ground G

System operators can manually interrogate and enter settings in probes, connected to the data
logger, using transparent mode. Transparent mode is useful in troubleshooting SDI-12 systems
because it allows direct communications with probes.

Transparent mode may need to wait for commands issued by the programmed mode to finish
before sending responses. While in transparent mode, the data logger programs may not
execute. Data logger security may need to be unlocked before transparent mode can be
activated.

Transparent mode is entered while the computer is communicating with the data logger through
a terminal emulator program such as through Device Configuration Utility or other data logger
support software. Keyboard displays cannot be used. For how-to instructions for communicating
directly with an SDI-12 sensor using a terminal emulator, watch this
video: https://www.campbellsci.com/videos/sdi12-sensors-transparent-mode .

To enter the SDI-12 transparent mode, enter the data logger support software terminal emulator:

 1. Press Enter until the data logger responds with the prompt CR1000X>.

 2. Type SDI12 at the prompt and press Enter.

 3. In response, the query Select SDI12 Port is presented with a list of available ports.
Enter the port number assigned to the terminal to which the SDI-12 sensor is connected,
and press Enter. For example, 1 is entered for terminal C1.

13. Tips and troubleshooting 168

https://www.campbellsci.com/videos/sdi12-sensors-transparent-mode

 4. An Entering SDI12 Terminal response indicates that SDI-12 transparent mode is
active and ready to transmit SDI-12 commands and display responses.

13.7.2.1 Watch command (sniffer mode)
The terminal-mode utility allows monitoring of SDI-12 traffic by using the watch command
(sniffer mode). Watch an instructional video: https://www.campbellsci.com/videos/sdi12-sensors-
watch-or-sniffer-mode or use the following instructions.

 1. Enter the transparent mode as described previously.

 2. Press Enter until a CR1000X> prompt appears.

 3. Type W and then press Enter.

 4. In response, the query Select SDI12 Port: is presented with a list of available ports.
Enter the port number assigned to the terminal to which the SDI-12 sensor is connected,
and press Enter.

 5. In answer to Enter timeout (secs): type 100 and press Enter.

 6. In response to the query ASCII (Y)?, type Y and press Enter.

 7. SDI-12 communications are then opened for viewing.

13.7.2.2 SDI-12 transparent mode commands
SDI-12 commands and responses are defined by the SDI-12 Support Group (www.sdi-12.org)
and are available in the SDI-12 Specification . Sensor manufacturers determine which
commands to support. Commands have three components:

 l Sensor address (a): A single character and the first character of the command. Sensors are
usually assigned a default address of zero by the manufacturer. The wildcard address (?) is
used in the Address Query command. Some manufacturers may allow it to be used in
other commands. SDI-12 sensors accept addresses 0 through 9, a through z, and A through
Z.

 l Command body (for example, M1): An upper case letter (the “command”) followed by
alphanumeric qualifiers.

 l Command termination (!): An exclamation mark.

An active sensor responds to each command. Responses have several standard forms and
terminate with <CR><LF> (carriage return–line feed).

13. Tips and troubleshooting 169

https://www.campbellsci.com/videos/sdi12-sensors-watch-or-sniffer-mode
https://www.campbellsci.com/videos/sdi12-sensors-watch-or-sniffer-mode
http://www.sdi-12.org/
http://www.sdi-12.org/
http://www.sdi-12.org/specification.php
http://www.sdi-12.org/specification.php

13.8 Ground loops
A ground loop is a condition in an electrical system that contains multiple conductive paths for
the flow of electrical current between two nodes. Multiple paths are usually associated with the
ground or 0 V-potential point of the circuit. Ground loops can result in signal noise,
communications errors, or a damaging flow of ground current on long cables. Most often,
ground loops do not have drastic negative effects and may be unavoidable. Special cases exist
where additional grounding helps shield noise from sensitive signals; however, in these cases,
multiple ground conductors are usually run tightly in parallel without conductive shielding
material placed between the parallel grounds. If possible, ground loops should be avoided.
When problems arise in a system, ground loops may be the source of the problems.

See also Grounds (p. 13).

13.8.1 Common causes
Some of the common causes of ground loops include the following:

 l The drain wire of a shielded cable is connected to the local ground at both ends, and the
ground is already being carried by a conductor inside the cable. In this case, two wires, one
on either side of the cable shield, are connected to the ground nodes at both ends of the
cable.

 l A long cable connects the grounds of two electrical devices, and the mounting structure or
grounding rod also directly connects the grounds of each device to the local earth ground.
The two paths, in this case, are the connecting cable and earth itself.

 l When electrical devices are connected to a common metal chassis such as an instrument
tower, the structure can create a ground path in parallel to the ground wires in sensor
cables running over the structure.

 l Conductors connected to ground are found in most cables that connect to a data logger.
These include sensors cables, communications cables, and power cables. Any time one of
these cables connects to the same two endpoints as another cable, a ground loop is
formed.

13.8.2 Detrimental effects
The harm from a ground loop can be seen in different ways. One consideration is the
electromagnetically induced effect. This will manifest as AC noise or an AC pulse. As seen in
Figure 13-1 (p. 171) the parallel conductive paths form an electrical loop that acts as an antenna to
pick up electromagnetic energy.

13. Tips and troubleshooting 170

Figure 13-1. Stray AC magnetic fields picked up in loop antenna

 l Relatively small electromagnetic energy: This could come from AC current on a nearby
power cable, or RF energy transmitting through the air, and can cause electrical noise that
either corrupts an analog signal or disrupts digital communications.

 l Larger electromagnetic energy: The antenna loop scenario can have a more damaging
effect when a large current is discharged nearby. The creation of an electromagnetic pulse
can induce a surge that damages attached electronic devices.

Another way ground loops affect a system is by allowing ground current to flow between
devices. This can be either a DC or AC effect. For various reasons, the voltage potential between
two different points on the surface of the earth is not always 0 V. Therefore, when two electrical
devices are both connected to a local earth ground, there may exist a voltage difference between
the two devices. When a cable is connected between the two devices at different voltages,
physics dictates than an electrical current must flow between the two points through the cable.
See Figure 13-2 (p. 171).

Figure 13-2. Leakage current (AC or DC) from nearby load

13. Tips and troubleshooting 171

 l One effect of this DC ground current-flow is a voltage offset error in analog measurements.
Errors of this sort are usually not obvious but can have meaningful effects on
measurements.

 l For digital communications, an offset in the ground voltage reduces the dynamic range of
the digital signals. This makes them more susceptible to noise corruption. If the ground
voltage changes by one volt or more, the digital communications could stop working
because the signals no longer reach the thresholds for determining the state of each bit.

 l If the ground voltage differences reach several volts, damaging effects may occur at the
terminals of the electronics devices. Damage occurs when the maximum allowable voltage
on the internal components is exceeded.

13.8.3 Severing a ground loop
To avoid or eliminate ground loops, when they are detected, requires severing the loop.
Suggestions for severing ground loops include:

 l Connect the shield wire of a signal cable to ground only at one end of the cable. Leave the
other end floating (not connected to ground).

 l Never intentionally use the shield (or drain wire) of a cable as a signal ground or power
ground.

 l Use the mechanical support structure only as a connection for the safety ground (usually
the ground lug). Do not intentionally return power ground through the structure.

 l Do not use shielded Cat5e cables for Ethernet, CPI or EPI communications.
 l For long distance communications protocols such as RS-485, RS-422, and CAN, use a

Resistive Ground (RG) terminal for the ground connection. The RG terminal has a 100-ohm
resistor in series with ground to limit the amount of DC current that can flow between the
two endpoints while keeping the common-mode voltage in range of the transceivers. The
transceivers themselves have enhanced voltage range inputs allowing for ground voltage
differences of up to 7 V between endpoints.

 l For exceptional cases, use optical or galvanic isolation devices to provide a signal
connection without any accompanying ground connection. These should be used only
when ground loops are causing system problems and the other methods of breaking a
ground loop don’t apply. These devices add expense and tend to consume large amounts
of power.

13. Tips and troubleshooting 172

13.8.4 Soil moisture example
When measuring soil moisture with a resistance block, or water conductivity with a resistance cell,
the potential exists for a ground loop error. In the case of an ionic soil matric potential (soil
moisture) sensor, a ground loop arises because soil and water provide an alternate path for the
excitation to return to data logger ground. This example is modeled in the following image:

With Rg in the resistor network, the signal measured from the sensor is described by the
following equation:

where

 l Vx is the excitation voltage
 l Rf is a fixed resistor
 l Rs is the sensor resistance
 l Rg is the resistance between the excited electrode and data logger earth ground.

RsRf/Rg is the source of error due to the ground loop. When Rg is large, the error is negligible.
Note that the geometry of the electrodes has a great effect on the magnitude of this error. The
Delmhorst gypsum block used in the Campbell Scientific 227 probe has two concentric cylindrical
electrodes. The center electrode is used for excitation; because it is encircled by the ground
electrode, the path for a ground loop through the soil is greatly reduced. Moisture blocks that
consist of two parallel plate electrodes are particularly susceptible to ground loop problems.
Similar considerations apply to the geometry of the electrodes in water conductivity sensors.

13. Tips and troubleshooting 173

The ground electrode of the conductivity or soil moisture probe and the data logger earth
ground form a galvanic cell, with the water/soil solution acting as the electrolyte. If current is
allowed to flow, the resulting oxidation or reduction will soon damage the electrode, just as if DC
excitation was used to make the measurement. Campbell Scientific resistive soil probes and
conductivity probes are built with series capacitors to block this DC current. In addition to
preventing sensor deterioration, the capacitors block any DC component from affecting the
measurement.

13.9 Improving voltage measurement quality
The following topics discuss methods of generally improving voltage measurements:

13.9.1 Deciding between single-ended or differential measurements 174

13.9.2 Minimizing ground potential differences 176

13.9.3 Detecting open inputs 177

13.9.4 Minimizing power-related artifacts 177

13.9.5 Filtering to reduce measurement noise 179

13.9.6 Minimizing settling errors 180

13.9.7 Factors affecting accuracy 183

13.9.8 Minimizing offset voltages 184

Read More: Consult the following technical papers at www.campbellsci.com/app-notes for in-
depth treatments of several topics addressing voltage measurement quality:

 l Preventing and Attacking Measurement Noise Problems
 l Benefits of Input Reversal and Excitation Reversal for Voltage Measurements
 l Voltage Accuracy, Self-Calibration, and Ratiometric Measurements

13.9.1 Deciding between single-ended or differential
measurements

Deciding whether a differential or single-ended measurement is appropriate is usually, by far, the
most important consideration when addressing voltage measurement quality. The decision
requires trade-offs of accuracy and precision, noise cancellation, measurement speed, available
measurement hardware, and fiscal constraints.

13. Tips and troubleshooting 174

http://www.campbellsci.com/app-notes
http://www.campbellsci.com/app-notes
https://s.campbellsci.com/documents/us/technical-papers/mnoise.pdf
https://s.campbellsci.com/documents/us/technical-papers/mnoise.pdf
https://s.campbellsci.com/documents/us/technical-papers/inputrev.pdf
https://s.campbellsci.com/documents/us/technical-papers/inputrev.pdf
https://s.campbellsci.com/documents/us/technical-papers/voltaccy.pdf
https://s.campbellsci.com/documents/us/technical-papers/voltaccy.pdf

In broad terms, analog voltage is best measured differentially because these measurements
include the following noise reduction features that are not included in single-ended
measurements.

 l Passive Noise Rejection
 o No voltage reference offset
 o Common-mode noise rejection, which filters capacitively coupled noise

 l Active Noise Rejection
 o Input reversal
 o For more information, see Compensating for offset voltage (p. 186).

Reasons for using single-ended measurements, however, include:

 l Not enough differential terminals are available. Differential measurements use twice as
many analog input terminals as do single-ended measurements.

 l Rapid sampling is required. Single-ended measurement time is about half that of
differential measurement time.

 l Sensor is not designed for differential measurements. Some Campbell Scientific sensors are
not designed for differential measurement, but the drawbacks of a single-ended
measurement are usually mitigated by large programmed excitation and/or sensor output
voltages.

Sensors with a high signal-to-noise ratio, such as a relative-humidity sensor with a full-scale
output of 0 to 1000 mV, can normally be measured as single-ended without a significant
reduction in accuracy or precision.

Sensors with a low signal-to-noise ratio, such as thermocouples, should normally be measured
differentially. However, if the measurement to be made does not require high accuracy or
precision, such as thermocouples measuring brush-fire temperatures, which can exceed 2500 °C,
a single-ended measurement may be appropriate. If sensors require differential measurement,
but adequate input terminals are not available, an analog multiplexer should be acquired to
expand differential input capacity.

Because a single-ended measurement is referenced to data logger ground, any difference in
ground potential between the sensor and the data logger will result in an error in the
measurement. For more information on grounds, see Grounds (p. 13) and Minimizing ground
potential differences (p. 176).

13. Tips and troubleshooting 175

13.9.2 Minimizing ground potential differences
Low-level, single-ended voltage measurements (<200 mV) are sensitive to ground potential
fluctuation due to changing return currents from 5V,12V, SW12, and C terminals. The data logger
grounding scheme is designed to minimize these fluctuations by separating signal grounds ()
from power grounds (G). For more information on data logger grounds, see Grounds (p. 13). To
take advantage of this design, observe the following rules:

 l Connect grounds associated with 5V,12V, SW12, and C terminals to G terminals.
 l Connect excitation grounds to the nearest terminal on the same terminal block.
 l Connect the low side of single-ended sensors to the nearest terminal on the same

terminal block.
 l Connect shield wires to the terminal nearest the terminals to which the sensor signal

wires are connected.

If offset problems occur because of shield or ground wires with large current flow, tying the
problem wires into terminals next to terminals configured for excitation and pulse-count should
help. Problem wires can also be tied directly to the ground lug to minimize induced single-ended
offset voltages.

13.9.2.1 Ground potential differences
Because a single-ended measurement is referenced to data logger ground, any difference in
ground potential between the sensor and the data logger will result in a measurement error.
Differential measurements MUST be used when the input ground is known to be at a different
ground potential from data logger ground.

Ground potential differences are a common problem when measuring full-bridge sensors (strain
gages, pressure transducers, etc), and when measuring thermocouples in soil.

 l Soil Temperature Thermocouple: If the measuring junction of a thermocouple is not
insulated when in soil or water, and the potential of earth ground is, for example, 1 mV
greater at the sensor than at the point where the data logger is grounded, the measured
voltage will be 1 mV greater than the thermocouple output. With a Type T (copper-
constantan) thermocouple, 1 mV equates to approximately 25 °C measurement error.

 l External Signal Conditioner: External instruments with integrated signal conditioners, such
as an infrared gas analyzer (IRGA), are frequently used to make measurements and send
analog information to the data logger. These instruments are often powered by the same
VAC-line source as the data logger. Despite being tied to the same ground, differences in

13. Tips and troubleshooting 176

current drain and wire resistance result in different ground potentials at the two
instruments. For this reason, a differential measurement should be made on the analog
output from the external signal conditioner.

For additional information, see Minimizing offset voltages (p. 184).

13.9.3 Detecting open inputs
A useful option available to single-ended and differential measurements is the detection of open
inputs due to a broken or disconnected sensor wire. This prevents otherwise undetectable
measurement errors. Range codes appended with C enable open-input detection. For detailed
information, see the CRBasic help (VoltSE() and VoltDiff() instructions, Range
parameter)

The C option may not detect an open circuit in the following situations:

 l When the input is not a truly open circuit, such as might occur on a wet cut cable end, the
open circuit may not be detected because the input capacitor discharges to a normal
voltage through external leakage to ground within the settling time of the measurement.
This problem is worse when a long settling time is selected, as more time is given for the
input capacitors to discharge to a "normal" level.

 l If the open circuit is at the end of a very long cable, the test pulse may not charge the cable
(with its high capacitance) up to a voltage that generates NAN or a distinct error voltage.
The cable may even act as an aerial and inject noise which also might not read as an error
voltage.

 l The sensor may "object" to the test pulse being connected to its output, even for 100 µs.
There is little or no risk of damage, but the sensor output may be caused to temporarily
oscillate. Programming a longer settling time in the CRBasic measurement instruction to
allow oscillations to decay before the ADC may mitigate the problem.

13.9.4 Minimizing power-related artifacts
Some VAC-to-VDC power converters produce switching noise or AC ripple as an artifact of the
ac-to-dc rectification process. Excessive switching noise on the output side of a power supply can
increase measurement noise, and so increase measurement error. Noise from grid or mains
power also may be transmitted through the transformer, or induced electromagnetically from
nearby motors, heaters, or power lines.

High-quality power regulators typically reduce noise due to power regulation. Using the 50 Hz or
60 Hz first notch frequency (fN1) option for CRBasic analog input measurement instructions

13. Tips and troubleshooting 177

often improves rejection of noise sourced from power mains. The CRBasic standard deviation
output instruction, StdDev(), can be used to evaluate measurement noise.

The data logger includes adjustable digital filtering, which serves two purposes:

 l Arrive as close as possible to the true input signal
 l Filter out measurement noise at specific frequencies, the most common being noise at 50

Hz or 60 Hz, which originate from mains-power lines.

Filtering time is inversely proportional to the frequency being filtered.

13.9.4.1 Minimizing electronic noise
Electronic noise can cause significant error in a voltage measurement, especially when measuring
voltages less than 200 mV. So long as input limitations are observed, the PGA ignores voltages,
including noise, that are common to each side of a differential-input pair. This is the common-
mode voltage. Ignoring (rejecting or canceling) the common-mode voltage is an essential
feature of the differential input configuration that improves voltage measurements. The
following image illustrates the common-mode component (Vcm) and the differential-mode
component (Vdm) of a voltage signal. Vcm is the average of the voltages on the V+ and V– inputs.
So, Vcm = (V+ + V–)/2 or the voltage remaining on the inputs when Vdm = 0. The total voltage on
the V+ and V– inputs is given as VH = Vcm + Vdm/2, and VL = Vcm – Vdm/2, respectively.

13. Tips and troubleshooting 178

13.9.5 Filtering to reduce measurement noise
An adjustable filter is applied to analog measurements, reducing signal components at selected
frequencies. The following figure shows the filter frequency response. Using the first notch
frequency (fN1) parameter, users can select the placement of the filter notches. The first notch
falls at the specified fN1, and subsequent notches fall at integer multiples of fN1. Commonly,
fN1 is set at 50 or 60 Hz to filter 50 or 60 Hz signal components, reducing noise from ac power
mains.

Filtering comes at the expense of measurement time. The time required for filtering is equal to
1/fN1. For example, setting fN1 equal to 50 will require 1/50 sec (20 ms) for filtering. As fN1 is

13. Tips and troubleshooting 179

set to smaller values, random noise in the measurement results decreases, while measurement
time increases. The total time required for a single result includes settling + filtering + overhead.

Consult the following technical paper at www.campbellsci.com/app-notes for in-depth
treatment of measurement noise: Preventing and Attacking Measurement Noise Problems .

13.9.5.1 CR1000X filtering details
The data logger utilizes a sigma-delta ADC that outputs digitized data at a rate of 31250 samples
per second. User-specified filtering is achieved by averaging several samples from the ADC.
Recall that averaging the signal over a period of 1/fN1 seconds will filter signal components at fN1
Hz. The final result, then, is the average calculated from 31250/fN1 samples. For example, if fN1
is set to 50 Hz, 625 samples (31250 / 50) are averaged to generate the final filtered result.

The actual fN1 may deviate from the user-specified setting since a whole integer number of
samples must be averaged. For example, if fN1 is set to 60 Hz, 521 samples (31250 / 60 =
520.83) will be averaged to produce the filtered result. The rounding of 520.83 to 521 moves the
actual fN1 to 31250 / 521 = 59.98 Hz.

13.9.6 Minimizing settling errors
Settling time allows an analog voltage signal to rise or fall closer to its true magnitude prior to
measurement. Default settling times, those resulting when the SettlingTime parameter is set
to 0, provide sufficient settling in most cases. Additional settling time is often programmed when
measuring high-resistance (high-impedance) sensors, or when sensors connect to the input
terminals by long cables. The time to complete a measurement increases with increasing settling
time. For example, a 1 ms increase in settling time for a bridge instruction with input reversal and
excitation reversal results in a 4 ms increase in time to perform the instruction.

When sensors require long cable lengths, use the following general practices to minimize settling
errors:

 l Do not use leads with PVC-insulated conductors. PVC has a high dielectric constant, which
extends input settling time.

 l Where possible, run excitation leads and signal leads in separate shields to minimize
transients.

 l When measurement speed is not a prime consideration, additional time can be used to
ensure ample settling time.

13. Tips and troubleshooting 180

http://www.campbellsci.com/app-notes
http://www.campbellsci.com/app-notes
https://s.campbellsci.com/documents/us/technical-papers/mnoise.pdf
https://s.campbellsci.com/documents/us/technical-papers/mnoise.pdf

 l In difficult cases where measurement speed is a consideration, an appropriate settling time
can be determined through testing.

13.9.6.1 Measuring settling time
Settling time for a particular sensor and cable can be measured with the CR1000X. Programming
a series of measurements with increasing settling times will yield data that indicate at what
settling time a further increase results in negligible change in the measured voltage. The
programmed settling time at this point indicates the settling time needed for the sensor / cable
combination.

The following CRBasic Example: Measuring Settling Time presents CRBasic code to help
determine settling time for a pressure transducer using a high-capacitance semiconductor. The
code consists of a series of full-bridge measurements () with increasing settling times. The
pressure transducer is placed in steady-state conditions so changes in measured voltage are
attributable to settling time rather than changes in pressure.

CRBasic Example 3: Measuring settling time

'This program example demonstrates the measurement of settling time
'using a single measurement instruction multiple times in succession.
Public PT(20) 'Variable to hold the measurements
DataTable(Settle,True,100)
Sample(20,PT(),IEEE4)

EndTable
BeginProg
Scan(1,Sec,3,0)
BrFull(PT(1), 1,mV200,1,Vx1,1,2500,True,True, 100,15000,1.0,0)
BrFull(PT(2), 1,mV200,1,Vx1,1,2500,True,True, 200,15000,1.0,0)
BrFull(PT(3), 1,mV200,1,Vx1,1,2500,True,True, 300,15000,1.0,0)
BrFull(PT(4), 1,mV200,1,Vx1,1,2500,True,True, 400,15000,1.0,0)
BrFull(PT(5), 1,mV200,1,Vx1,1,2500,True,True, 500,15000,1.0,0)
BrFull(PT(6), 1,mV200,1,Vx1,1,2500,True,True, 600,15000,1.0,0)
BrFull(PT(7), 1,mV200,1,Vx1,1,2500,True,True, 700,15000,1.0,0)
BrFull(PT(8), 1,mV200,1,Vx1,1,2500,True,True, 800,15000,1.0,0)
BrFull(PT(9), 1,mV200,1,Vx1,1,2500,True,True, 900,15000,1.0,0)
BrFull(PT(10),1,mV200,1,Vx1,1,2500,True,True,1000,15000,1.0,0)
BrFull(PT(11),1,mV200,1,Vx1,1,2500,True,True,1100,15000,1.0,0)
BrFull(PT(12),1,mV200,1,Vx1,1,2500,True,True,1200,15000,1.0,0)
BrFull(PT(13),1,mV200,1,Vx1,1,2500,True,True,1300,15000,1.0,0)
BrFull(PT(14),1,mV200,1,Vx1,1,2500,True,True,1400,15000,1.0,0)
BrFull(PT(15),1,mV200,1,Vx1,1,2500,True,True,1500,15000,1.0,0)
BrFull(PT(16),1,mV200,1,Vx1,1,2500,True,True,1600,15000,1.0,0)
BrFull(PT(17),1,mV200,1,Vx1,1,2500,True,True,1700,15000,1.0,0)
BrFull(PT(18),1,mV200,1,Vx1,1,2500,True,True,1800,15000,1.0,0)
BrFull(PT(19),1,mV200,1,Vx1,1,2500,True,True,1900,15000,1.0,0)

13. Tips and troubleshooting 181

CRBasic Example 3: Measuring settling time

BrFull(PT(20),1,mV200,1,Vx1,1,2500,True,True,2000,15000,1.0,0)
CallTable Settle

NextScan
EndProg

The first six measurements are shown in the following table:

Table 13-3: Example data from Measuring settling time program

Timestamp
Record
number

PT(1)
Smp

PT(2)
Smp

PT(3)
Smp

PT(4)
Smp

PT(5)
Smp

PT(6)
Smp

8/3/2017 23:34 0 0.03638599 0.03901386 0.04022673 0.04042887 0.04103531 0.04123745

8/3/2017 23:34 1 0.03658813 0.03921601 0.04002459 0.04042887 0.04103531 0.0414396

8/3/2017 23:34 2 0.03638599 0.03941815 0.04002459 0.04063102 0.04042887 0.04123745

8/3/2017 23:34 3 0.03658813 0.03941815 0.03982244 0.04042887 0.04103531 0.04103531

8/3/2017 23:34 4 0.03679027 0.03921601 0.04022673 0.04063102 0.04063102 0.04083316

Each trace in the following image contains all twenty PT() mV/V values (left axis) for a given
record number and an average value showing the measurements as percent of final reading
(right axis). The reading has settled to 99.5% of the final value by the fourteenth measurement,
which is contained in variable PT(14). This is suitable accuracy for the application, so a settling
time of 1400 µs is determined to be adequate.

13. Tips and troubleshooting 182

13.9.7 Factors affecting accuracy
Accuracy describes the difference between a measurement and the true value. Many factors
affect accuracy. This topic discusses the effect percent-of-reading, offset, and resolution have on
the accuracy of an analog voltage measurement. Accuracy is defined as follows:

accuracy = percent-of-reading + offset

where percents-of-reading and offsets are displayed in the Analog measurement specifications
(p. 232).

NOTE:
Error discussed in this section and error-related specifications of the data logger do not
include error introduced by the sensor, or by the transmission of the sensor signal to the data
logger.

13.9.7.1 Measurement accuracy example
The following example illustrates the effect percent-of-reading and offset have on measurement
accuracy. The effect of offset is usually negligible on large signals.

13. Tips and troubleshooting 183

Example:

 l Sensor-signal voltage: approximately 1050 mV
 l CRBasic measurement instruction: VoltDiff()
 l Programmed input-voltage range (Range) : mV 5000 (±5000 mV)
 l Input measurement reversal (RevDiff): True
 l Data logger circuitry temperature: 10° C

Accuracy of the measurement is calculated as follows:

accuracy = percent-of-reading + offset

where

percent-of-reading = 1050 mV • ±0.04%

=±0.42 mV

and

offset = 0.5 µV

Therefore,

accuracy = ±(0.42 mV + 0.5 µV) = ±0.4205 mV

13.9.8 Minimizing offset voltages
Voltage offset can be the source of significant error. For example, an offset of 3 μV on a 2500 mV
signal causes an error of only 0.00012%, but the same offset on a 0.25 mV signal causes an error
of 1.2%. Measurement offset voltages are unavoidable, but can be minimized. Offset voltages
originate with:

 l Ground currents. See Minimizing ground potential differences (p. 176).
 l Seebeck effect
 l Residual voltage from a previous measurement

Remedies include:

 l Connecting power grounds to power ground terminals (G).
 l Using input reversal (RevDiff = True) with differential measurements.
 l Automatic offset compensation for differential measurements when RevDiff = False.
 l Automatic offset compensation for single-ended measurements when MeasOff =

False.
 l Using MeasOff = True for better offset compensation.

13. Tips and troubleshooting 184

 l Using excitation reversal (RevEx = True) with bridge measurements.
 l Programming longer settling times.

Single-ended measurements are susceptible to voltage drop at the ground terminal caused by
return currents from another device that is powered from the data logger wiring panel, such as
another manufacturer's communications modem, or a sensor that requires a lot of power.
Currents greater than 5 mA are usually undesirable. The error can be avoided by routing power
grounds from these other devices to a power ground G terminal, rather than using a signal
ground () terminal. Ground currents can be caused by the excitation of resistive-bridge
sensors, but these do not usually cause offset error. These currents typically only flow when a
voltage excitation is applied. Return currents associated with voltage excitation cannot influence
other single-ended measurements because the excitation is usually turned off before the data
logger moves to the next measurement. However, if the CRBasic program is written in such a way
that an excitation terminal is enabled during an unrelated measurement of a small voltage, an
offset error may occur.

The Seebeck effect results in small thermally induced voltages across junctions of dissimilar
metals as are common in electronic devices. Differential measurements are more immune to
these than are single-ended measurements because of passive voltage cancellation occurring
between matched high and low pairs such as 1H/1L. So, use differential measurements when
measuring critical low-level voltages, especially those below 200 mV, such as are output from
pyranometers and thermocouples.

When analog voltage signals are measured in series by a single measurement instruction, such as
occurs when VoltSE() is programmed with Reps = 2 or more, measurements on
subsequent terminals may be affected by an offset, the magnitude of which is a function of the
voltage from the previous measurement. While this offset is usually small and negligible when
measuring large signals, significant error, or NAN, can occur when measuring very small signals.
This effect is caused by dielectric absorption of the integrator capacitor and cannot be overcome
by circuit design. Remedies include the following:

 l Programing longer settling times.
 l Using an individual instruction for each input terminal, the effect of which is to reset the

integrator circuit prior to filtering.
 l Avoiding preceding a very small voltage input with a very large voltage input in a

measurement sequence if a single measurement instruction must be used.

13. Tips and troubleshooting 185

The following table lists some of the tools available to minimize the effects of offset voltages:

Table 13-4: Offset voltage compensation options

CRBasic
measurement

instruction

Input reversal
(RevDiff=True)

Excitation reversal
(RevEx=True)

Measure offset
during measurement

(MeasOff=True)

Measure offset
during background

calibration
(RevDiff=False)
(RevEx=False)

(MeasOff=False)

BrHalf() ü ü

BrHalf3W() ü ü

BrHalf4W() ü ü ü

BrFull() ü ü ü

BrFull6W() ü ü ü

TCDiff() ü ü

TCSe() ü ü

VoltDiff() ü ü

VoltSe() ü ü

13.9.8.1 Compensating for offset voltage
Differential measurements also have the advantage of an input reversal option, RevDiff. When
RevDiff is True, two differential measurements are made, the first with a positive polarity and
the second reversed. Subtraction of opposite polarity measurements cancels some offset
voltages associated with the measurement.

Ratiometric measurements use an excitation voltage to excite the sensor during the
measurement process. Reversing excitation polarity also reduces offset voltage error. Setting the
RevEx parameter to True programs the measurement for excitation reversal. Excitation reversal
results in a polarity change of the measured voltage so that two measurements with opposite
polarity can be subtracted and divided by 2 for offset reduction similar to input reversal for
differential measurements.

For example, if 3 µV offset exists in the measurement circuitry, a 5 mV signal is measured as 5.003
mV. When the input or excitation is reversed, the second sub-measurement is –4.997 mV.
Subtracting the second sub-measurement from the first and then dividing by 2 cancels the offset:

5.003 mV – (–4.997 mV) = 10.000 mV

13. Tips and troubleshooting 186

10.000 mV / 2 = 5.000 mV

Ratiometric differential measurement instructions allow both RevDiff and RevEx to be set
True. This results in four measurement sequences, which the data logger processes into the
reported measurement:

 l positive excitation polarity with positive differential input polarity
 l negative excitation polarity with positive differential input polarity
 l positive excitation polarity with negative differential input polarity
 l negative excitation polarity with negative differential input polarity

For ratiometric single-ended measurements, such as a BrHalf(), setting RevEx = True
results in two measurements of opposite excitation polarity that are subtracted and divided by 2
for offset voltage reduction. For RevEx = False for ratiometric single-ended measurements,
an offset-voltage measurement is determined from self-calibration.

When the data logger reverses differential inputs or excitation polarity, it delays the same settling
time after the reversal as it does before the first sub-measurement. So, there are two delays per
measurement when either RevDiff or RevEx is used. If both RevDiff and RevEx are True,
four sub-measurements are performed; positive and negative excitations with the inputs one way
and positive and negative excitations with the inputs reversed. The automatic procedure then is
as follows:

 1. Switch to the measurement terminals.
 2. Set the excitation, settle, and then measure.
 3. Reverse the excitation, settle, and then measure.
 4. Reverse the excitation, reverse the input terminals, settle, measure.
 5. Reverse the excitation, settle, measure.

There are four delays per measurement. In cases of excitation reversal, excitation time for each
polarity is exactly the same to ensure that ionic sensors do not polarize with repetitive
measurements.

Read More: The Benefits of Input Reversal and Excitation Reversal for Voltage Measurements .

13.9.8.2 Measuring ground reference offset voltage
Single-ended and differential measurements without input reversal use an offset voltage
measurement with the PGIA inputs grounded. This offset voltage is subtracted from the
subsequent measurement. For differential measurements without input reversal, this offset
voltage measurement is performed as part of the routine background calibration of the data
logger. See About background calibration (p. 143). Single-ended measurement instructions
VoltSE() and TCSe() include the MeasOff parameter determines whether the offset

13. Tips and troubleshooting 187

https://s.campbellsci.com/documents/us/technical-papers/inputrev.pdf
https://s.campbellsci.com/documents/us/technical-papers/inputrev.pdf

voltage measured is done at the beginning of the measurement instruction, or as part of self-
calibration. This option provides you with the opportunity to weigh measurement speed against
measurement accuracy. When MeasOff = True, a measurement of the single-ended offset
voltage is made at the beginning of the VoltSE() or TCSe() instruction. When MeasOff =
False, measurements will be corrected for the offset voltage determined during self-calibration.
For installations experiencing fluctuating offset voltages, choosing MeasOff = True for the
VoltSE() or TCSe() instruction results in better offset voltage performance.

If RevDiff, RevEx, or MeasOff is disabled (= False), offset voltage compensation is
automatically performed, albeit less effectively, by using measurements from the background
calibration. Disabling RevDiff, RevEx, or MeasOff speeds up measurement time; however,
the increase in speed comes at the cost of accuracy because of the following:

 l RevDiff, RevEx, and MeasOff are more effective.
 l Background calibrations are performed only periodically, so more time skew occurs

between the background calibration offsets and the measurements to which they are
applied.

NOTE:
When measurement duration must be minimal to maximize measurement frequency,
consider disabling RevDiff, RevEx, and MeasOff when data logger temperatures and
return currents are slow to change.

13.10 Field calibration
Calibration increases accuracy of a measurement device by adjusting its output, or the
measurement of its output, to match independently verified quantities. Adjusting sensor output
directly is preferred, but not always possible or practical. By adding the FieldCal() or
FieldCalStrain() instruction to a CRBasic program, measurements of a linear sensor can be
adjusted by modifying the programmed multiplier and offset applied to the measurement,
without modifying or recompiling the CRBasic program. See the CRBasic Editor help for detailed
instruction information and program examples: https://help.campbellsci.com/crbasic/cr1000x/

.

13.11 File system error codes
Errors can occur when attempting to access files on any of the available drives. All occurrences
are rare, but they are most likely to occur when using optional memory cards. Often, formatting
the drive will resolve the error. The errors display in the File Control messages box or in the

13. Tips and troubleshooting 188

https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/crbasic/cr1000x/
https://help.campbellsci.com/CRBasic/CR300/Default.htm

CardStatus field of the Status table. See Information tables and settings (advanced) (p. 191) for
more information.

 1 Invalid format
 2 Device capabilities error
 3 Unable to allocate memory for file operation
 4 Max number of available files exceeded
 5 No file entry exists in directory
 6 Disk change occurred
 7 Part of the path (subdirectory) was not found
 8 File at EOF
 9 Bad cluster encountered
 10 No file buffer available
 11 Filename too long or has bad chars
 12 File in path is not a directory
 13 Access permission, opening DIR or LABEL as file, or trying to open file as DIR or mkdir existing
file
 14 Opening read-only file for write
 15 Disk full (can't allocate new cluster)
 16 Root directory is full
 17 Bad file ptr (pointer) or device not initialized
 18 Device does not support this operation
 19 Bad function argument supplied
 20 Seek out-of-file bounds
 21 Trying to mkdir an existing dir
 22 Bad partition sector signature
 23 Unexpected system ID byte in partition entry
 24 Path already open
 25 Access to uninitialized ram drive
 26 Attempted rename across devices
 27 Subdirectory is not empty
 31 Attempted write to Write Protected disk
 32 No response from drive (Door possibly open)
 33 Address mark or sector not found
 34 Bad sector encountered
 35 DMA memory boundary crossing error
 36 Miscellaneous I/O error
 37 Pipe size of 0 requested
 38 Memory-release error (relmem)
 39 FAT sectors unreadable (all copies)

13. Tips and troubleshooting 189

 40 Bad BPB sector
 41 Time-out waiting for filesystem available
 42 Controller failure error
 43 Pathname exceeds _MAX_PATHNAME

13.12 File name and resource errors
The maximum file name size that can be stored, run as a program, or FTP transferred in the data
logger is 59 characters. If the name + file extension is longer than 59 characters, an Invalid
Filename error is displayed. If several files are stored, each with a long file name, memory
allocated to the root directory can be exceeded before the actual memory of storing files is
exceeded. When this occurs, an Insufficient resources or memory full error is displayed.

13.13 Background calibration errors
Background calibration errors are rare. When they do occur, the cause is usually an analog input
that exceeds the input limits of the data logger.

 l Check all analog inputs to make sure they are not greater than ±5 VDC by measuring the
voltage between the input and a G terminal. Do this with a multimeter.

 l Check for condensation, which can sometimes cause leakage from a 12 VDC source
terminal.

 l Check for a lose ground wire on a sensor powered from a 12V or SW12 terminal.
 l If a multimeter is not available, disconnect sensors, one at a time, that require power from 9

to 16 VDC. If measurements return to normal, you have found the cause.

13. Tips and troubleshooting 190

14. Information tables and
settings (advanced)
Information tables and settings consist of fields, settings, and system information essential to
setup, programming, and debugging of many advanced CR1000X systems. In many cases, the
info tables and settings keyword can be used to pull that field into a running CRBasic program.
There are several locations where this system information and settings are stored or changed:

 l Status table: The Status table is an automatically created data table. View the Status table
by connecting the data logger to your computer (see Making the software connection (p.
29) for more information) Station Status , then clicking the Status Table tab.

 l DataTableInfo table: The DataTableInfo table is automatically created when a program
produces other data tables. View the DataTableInfo table by connecting the data logger to
your computer (see Making the software connection (p. 29) for more information).

 o PC400 users, click the Monitor Data tab and add the DataTableInfo to display it.
 o LoggerNet users, select DataTableInfo from the Table Monitor list.

 l Settings: Settings can be accessed from the LoggerNet Connect Screen Datalogger >
Settings Editor, or using Device Configuration Utility Settings Editor tab. Clicking on a
setting in Device Configuration Utility also provides information about that setting.

 l Terminal Mode: A list of setting field names is also available from the data logger terminal
mode (from Device Configuration Utility, click the Terminal tab) using command "F".

 l Status, DataTableInfo and Settings values may be accessed programmatically using
Tablename.Fieldname syntax. For example: Variable = Settings.Fieldname.
For more information see: https://www.campbellsci.com/blog/programmatically-access-
stored-data-values .

Communications and processor bandwidth are consumed when generating the Status and other
information tables. If data logger is very tight on processing time, as may occur in very fast, long,
or complex operations, retrieving these tables repeatedly may cause skipped scans.

Settings that affect memory usage force the data logger program to recompile, which may cause
loss of data. Before changing settings, it is a good practice to collect your data (see Collecting
data (p. 35) for more information). Examples of settings that force the data logger program to
recompile:

14. Information tables and settings (advanced) 191

https://www.campbellsci.com/blog/programmatically-access-stored-data-values
https://www.campbellsci.com/blog/programmatically-access-stored-data-values
https://www.campbellsci.com/blog/programmatically-access-stored-data-values

 l IP address
 l IP default gateway
 l Subnet mask
 l PPP interface
 l PPP dial string
 l PPP dial response
 l Baud rate change on control ports
 l Maximum number of TLS server connections

 l USR drive size
 l PakBus encryption key
 l PakBus/TCP server port
 l HTTP service port
 l FTP service port
 l PakBus/TCP service port
 l PakBus/TCP client connections
 l Communications allocation

14.1 DataTableInfo table system information
The DataTableInfo table is automatically created when a program produces other data tables.
View the DataTableInfo table by connecting the data logger to your computer (see Making the
software connection (p. 29) for more information).

Most fields in the DataTableInfo table are read only and of a numeric data type unless noted.
Error counters (for example SkippedRecord) may be reset to 0 for troubleshooting purposes.

 l LoggerNet users, select DataTableInfo from the Table Monitor list.
 l PC400 users, click the Monitor Data tab and add the DataTableInfo to display it.

14.1.1 DataFillDays
Reports the time required to fill a data table. Each table has its own entry in a two-dimensional
array. First dimension is for on-board memory. Second dimension is for card memory.

14.1.2 DataRecordSize
Reports the number of records allocated to a data table.

14.1.3 DataTableName
Reports the names of data tables. Array elements are in the order the data tables are declared in
the CRBasic program.

 l String data type

14. Information tables and settings (advanced) 192

14.1.4 RecNum
Record number is incremented when any one of the DataTableInfo fields change, for example
SkippedRecord.

14.1.5 SecsPerRecord
Reports the data output interval for a data table.

14.1.6 SkippedRecord
Reports how many times records have been skipped in a data table. Array elements are in the
order that data tables are declared in the CRBasic program. Enter 0 to reset.

14.1.7 TimeStamp
Scan time that a record was generated.

 l NSEC data type

14.2 Status table system information
The Status table is an automatically created data table. View the Status table by connecting the
data logger to your computer (see Making the software connection (p. 29) for more information).

Most fields in the Status table are read only and of a numeric data type unless noted. Error
counters (for example, WatchdogErrors or SkippedScan) may be reset to 0 for troubleshooting
purposes.

Status table values may be accessed programatically using SetStatus() or
Tablename.Fieldname syntax. For example: Variable = Status.Fieldname. For
more information see: https://www.campbellsci.com/blog/programmatically-access-stored-
data-values .

14.2.1 Battery
Voltage (VDC) of the battery powering the system. Updates once per minute, when viewing the
Status table, or programatically.

14. Information tables and settings (advanced) 193

https://www.campbellsci.com/blog/programmatically-access-stored-data-values
https://www.campbellsci.com/blog/programmatically-access-stored-data-values
https://www.campbellsci.com/blog/programmatically-access-stored-data-values

14.2.2 BuffDepth
Shows the current pipeline mode processing buffer depth, which indicates how far the
processing task is currently behind the measurement task. Updated at the conclusion of scan
processing, prior to waiting for the next scan.

14.2.3 CalCurrent
Shows the offset calibration factor for the resistor used in 0-20 and 4-20 mA measurements on
RG terminals. Measured once during production calibration.

14.2.4 CalGain
Array of floating-point values reporting calibration gain (mV) for each integration / range
combination.

14.2.5 CalOffset
Displays the offset calibration factor for the different voltage ranges.

14.2.6 CalRefOffset
Displays voltage reference temperature compensation offset.

14.2.7 CalRefSlope
Displays voltage reference temperature compensation slope.

14.2.8 CalVolts
Array of floating-point values reporting a factory calibrated correction factor for the different
voltage ranges.

14.2.9 CardStatus
Contains a string with the most recent status information for the removable memory card.

 l String data type

14. Information tables and settings (advanced) 194

14.2.10 CommsMemFree
Memory allocations for communications. Numbers outside of parentheses reflect current
memory allocation. Numbers inside parentheses reflect the lowest memory size reached.

14.2.11 CompileResults
Contains messages generated at compilation or during runtime. Updated after compile and for
runtime errors such as variable out of bounds.

 l String data type

14.2.12 ErrorCalib
Number of erroneous calibration values measured. Erroneous values are discarded. Updated at
startup.

14.2.13 FullMemReset
Enter 98765 to start a full-memory reset, all data and programs will be erased.

14.2.14 LastSystemScan
Reports the time of the of the last auto (background) calibration, which runs in a hidden slow-
sequence type scan. See MaxSystemProcTime (p. 196), SkippedSystemScan (p. 199), and
SystemProcTime (p. 200).

14.2.15 LithiumBattery
Voltage of the internal lithium battery. Updated at CR1000X power up. For battery information,
see Internal battery (p. 143).

14.2.16 Low12VCount
Counts the number of times the primary CR1000X supply voltage drops below ≈9.0 VDC.
Updates with each Status table update. Reset by entering 0. Incremented prior to scan (slow or
fast) with measurements if the internal hardware signal is asserted.

14. Information tables and settings (advanced) 195

14.2.17 MaxBuffDepth
Maximum number of buffers the CR1000X will use to process lagged measurements. Enter 0 to
reset.

14.2.18 MaxProcTime
Maximum time (μs) required to run through processing for the current scan. Value is reset when
the scan exits. Enter 0 to reset. Updated at the conclusion of scan processing, prior to waiting for
the next scan.

14.2.19 MaxSystemProcTime
Maximum time (μs) required to process the auto (background) calibration, which runs in a hidden
slow-sequence type scan. Displays 0 until a background calibration runs. Enter 0 to reset.

 l Numeric data type

14.2.20 MeasureOps
Reports the number of task-sequencer opcodes required to do all measurements. Calculated at
compile time. Includes operation codes for calibration (compile time), auto (background)
calibration (system), and Slow Sequences. Assumes all measurement instructions run each scan.
Updated after compile and before running.

14.2.21 MeasureTime
Reports the time (μs) needed to make measurements in the current scan. Calculated at compile
time. Includes integration and settling time. In pipeline mode, processing occurs concurrent with
this time so the sum of MeasureTime and ProcessTime is not equal to the required scan time.
Assumes all measurement instructions will run each scan. Updated when a main scan begins.

14.2.22 MemoryFree
Unallocated final-data memory on the CPU (bytes). All free memory may not be available for data
tables. As memory is allocated and freed, holes of unallocated memory, which are unusable for
final-data memory, may be created. Updated after compile completes.

14. Information tables and settings (advanced) 196

14.2.23 MemorySize
Total final-data memory size (bytes) in the CR1000X. Updated at startup.

14.2.24 Messages
Contains a string of manually entered messages.

 l String data type

14.2.25 OSDate
Release date of the operating system in the format mm/dd/yyyy. Updated at startup.

 l String data type

14.2.26 OSSignature
Signature of the operating system.

14.2.27 OSVersion
Version of the operating system in the CR1000X. Updated at OS startup.

 l String data type

14.2.28 PakBusRoutes
Lists routes or router neighbors known to the data logger at the time the setting was read. Each
route is represented by four components separated by commas and enclosed in parentheses:
(port, via neighbor address, pakbus address, response time in ms). Updates when routes are
added or deleted.

 l String data type

14.2.29 PanelTemp
Current wiring-panel temperature (°C). Updates once per minute, when viewing the Status table,
or programatically.

14. Information tables and settings (advanced) 197

14.2.30 PortConfig
Provides information on the configuration settings (input, output, SDM, SDI-12, COM port) for C
terminals in numeric order of terminals. Default = Input. Updates when the port configuration
changes.

 l String data type

14.2.31 PortStatus
States of C terminals configured for control. On/high (true) or off/low (false). Array elements in
numeric order of C terminals. Default = false. Updates when state changes. Enter -1 to set to true.
Enter 0 to set to false.

 l Boolean data type

14.2.32 ProcessTime
Processing time (μs) of the last scan. Time is measured from the end of the EndScan instruction
(after the measurement event is set) to the beginning of the EndScan (before the wait for the
measurement event begins) for the subsequent scan. Calculated on-the-fly. Updated at the
conclusion of scan processing, prior to waiting for the next scan.

14.2.33 ProgErrors
Number of compile or runtime errors for the running program. Updated after compile.

14.2.34 ProgName
Name of current (running) program; updates at startup.

 l String data type

14.2.35 ProgSignature
Signature of the running CRBasic program including comments. Does not change with
operating-system changes. Updates after compiling the program.

14. Information tables and settings (advanced) 198

14.2.36 RecNum
Record number increments when the Status Table is requested by support software. Range = 0
to 232.

 l Long data type

14.2.37 RevBoard
Electronics board revision in the form xxx.yyy, where xxx = hardware revision number; yyy = clock
chip software revision. Stored in flash memory. Updated at startup.

 l String data type

14.2.38 RunSignature
Signature of the running binary (compiled) program. Value is independent of comments or non-
functional changes. Often changes with operating-system changes. Updates after compiling and
before running the program.

14.2.39 SerialNumber
CR1000X serial number assigned by the factory when the data logger was calibrated. Stored in
flash memory. Updated at startup.

14.2.40 SkippedScan
Number of skipped program scans (see Checking station status (p. 155) for more information)
that have occurred while running the CRBasic program. Does not include scans intentionally
skipped as may occur with the use of ExitScan and Do / Loop instructions. Updated when they
occur. Enter 0 to reset.

14.2.41 SkippedSystemScan
Number of scans skipped in the background calibration. Enter 0 to reset. See LastSystemScan (p.
195), MaxProcTime (p. 196), and SystemProcTime (p. 200).

14. Information tables and settings (advanced) 199

14.2.42 StartTime
Time (date and time) the CRBasic program started. Updates at beginning of program compile.

 l NSEC data type

14.2.43 StartUpCode
Indicates how the running program was compiled. Updated at startup. 65 = Run on powerup is
running and normal powerup occurred.

14.2.44 StationName
Station name stored in flash memory. This is not the same name as that is entered into your data
logger support software. This station name can be sampled into a data table, but it is not the
name that appears in data file headers. Updated at startup or when the name is changed. This
value is read-only if the data logger is currently running a program with a CardOut()
instruction.

 l String data type

14.2.45 SW12Volts
Status of switched, 12 VDC terminal(s). On/high (true) or off/low (false) Enter -1 to set to true.
Enter 0 to set to false. Updates when the state changes.

 l Boolean data type

14.2.46 SystemProcTime
Time (μs) required to process auto (background) calibration. Default is 0 until background
calibration runs.

14.2.47 TimeStamp
Scan-time that a record was generated.

 l NSEC data type

14. Information tables and settings (advanced) 200

14.2.48 VarOutOfBound
Number of attempts to write to an array outside of the declared size. The write does not occur.
Indicates a CRBasic program error. If an array is used in a loop or expression, the pre-compiler
and compiler do not check to see if an array is accessed out-of-bounds (i.e., accessing an array
with a variable index such as arr(index) = arr(index–1), where index is a variable). Updated at
runtime when the error occurs. Enter 0 to reset.

14.2.49 WatchdogErrors
Number of watchdog errors that have occurred while running this program. Resets automatically
when a new program is compiled. Enter 0 to reset. Updated at startup and at occurrence.

14.2.50 WiFiUpdateReq
Shows if WiFi operating system update is available. Update available (true) or not (false). Updates
when state changes.

 l Boolean data type

14.3 CPIStatus system information
The CPIStatus table is automatically created when a program uses the CPI bus. View the
CPIStatus table by connecting the data logger to your computer (see Making the software
connection (p. 29) for more information).

Most fields in the CPIStatus table are read/write and of a numeric data type unless noted. Error
counters (for example BuffErr) may be reset to 0 for troubleshooting purposes.

 l LoggerNet users, select DataTableInfo from the Table Monitor list.
 l PC400 users, click the Monitor Data tab and add DataTableInfo.

For more information on the CPI bus and how to design a CDM network, see the technical paper
at: https://s.campbellsci.com/documents/us/technical-papers/cpi-bus.pdf .

14.3.1 BusLoad
Percentage of the possible CPI network bandwidth use over the scan interval. BusLoad = Used
capacity / Maximum capacity.

14. Information tables and settings (advanced) 201

https://s.campbellsci.com/documents/us/technical-papers/cpi-bus.pdf
https://s.campbellsci.com/documents/us/technical-papers/cpi-bus.pdf

 l Read only
 l Percentage (0.000 to 100)

TIP:
Use CPISpeed() to change the CPI bit rate. The default bit rate is 250 kbps. Use a higher bit
rate if the BusLoad exceeds 75 percent.

14.3.2 ModuleReportCount
Reports the number of times measurement modules report in to the CPI bus. Modules report in
on program send or when settings in the CPIStatus table are edited remotely. Activity that could
cause the number of modules to be reported differently will cause ModuleReportCount to
increment. Also, if there are devices on the network that are connected but not active, (such as
those not in the running program) they will report in once minute, advertising their presence, and
incrementing ModuleReportCount.

14.3.3 ActiveModules
Reports the number of measurement modules that are active on the CPI bus.

 l Read only

14.3.4 BuffErr (buffer error)
Reports how many times there is an error in the buffer. Enter 0 to reset.

14.3.5 RxErrMax
Reports the maximum number of receive errors. Enter 0 to reset.

14.3.6 TxErrMax
Reports the maximum number of transmit errors. Enter 0 to reset.

14.3.7 FrameErr (frame errors)
Reports how many times a frame has an error. Enter 0 to reset.

14. Information tables and settings (advanced) 202

14.3.8 ModuleInfo array
Reports: CDM Type, Serial Number, Device Name, CPI Address, Activity, OS Version.

 l String data type
 l Read only

Possible responses and meanings in the Activity field are below:

 l Active: The module is connected to the CPI bus and is making measurements according to
the data logger program.

 l Offline: The module was present after startup but is no longer responding.
 l Unused: The module is or was connected and powered but is not included in the data

logger program.
 l Wait Config: The module has not yet responded to a data logger attempts to configure it.
 l Config Fail: The module could not be configured. A configuration error message is

appended to this response.
 l CAN Errors, resetting CPI: The CDM module is not used in the data logger program.

14.4 Settings
Settings can be accessed from the LoggerNet Connect Screen Datalogger > Setting Editor, or
using Device Configuration Utility Settings Editor tab. Settings are organized in tabs and can be
searched for.

Most Settings are read/write and of a numeric data type unless noted.

Settings may be accessed programatically using SetSetting() or Tablename.Fieldname
syntax. For example: Variable = Settings.Fieldname. For more information
see: https://www.campbellsci.com/blog/programmatically-access-stored-data-values .

NOTE:
A list of Settings fieldnames is also available from the data logger terminal mode using
command F.

14. Information tables and settings (advanced) 203

https://www.campbellsci.com/blog/programmatically-access-stored-data-values
https://www.campbellsci.com/blog/programmatically-access-stored-data-values

14.4.1 Baudrate
This setting governs the baud rate that the data logger will use for a given port in order to
support serial communications. For some ports (COM), this setting also controls whether the port
will be enabled for serial communications.

Some ports (RS-232 and CS I/O ME) support auto-baud synchronization while the other ports
support only fixed baud. With auto-baud synchronization, the data logger will attempt to match
the baud rate to the rate used by another device based upon the receipt of serial framing errors
and invalid packets.

14.4.2 Beacon
This setting, in units of seconds, governs the rate at which the data logger will broadcast PakBus
messages on the associated port in order to discover any new PakBus neighboring nodes. If this
setting value is set to a value of 0 or 65,535, the data logger will not broadcast beacon messages
on this port.

This setting will also govern the default verification interval if the value of the Verify() setting for
the associated port is zero. If the value of this setting is non-zero, and the value of the Verify
setting is zero, the effective verify interval will be calculated as 2.5 times the value for this setting.
If both the value of this setting and the value of the Verify setting is zero, the effective verify
interval will be 300 seconds (five minutes).

14.4.3 CentralRouters
This setting specifies a list of PakBus addresses for routers that are able to work as Central
Routers. By specifying a non-empty list for this setting, the data logger will be configured as a
Branch Router meaning that it will not be required to keep track of neighbors of any routers
except those in its own branch. Configured in this fashion, the data logger will ignore any
neighbor lists received from addresses in the central routers setting and will forward any
messages that it receives to the nearest default router if it does not have the destination address
for those messages in its routing table.

 l String data type

14.4.4 CommsMemAlloc
Replaces PakBusNodes. Controls the amount of memory allocated for PakBus routing and
communications in general. Increase the value of this setting if you require more memory

14. Information tables and settings (advanced) 204

dedicated to communications. Increase this value if the data logger will be used for routing a
large number of PakBus nodes (>50). Increase this value if your data logger is dropping
connections during short periods of high TCP/IP traffic. This setting will effect the values reported
in CommsMemFree (p. 195).

14.4.5 ConfigComx
Specifies the configuration for a data logger control port as it relates to serial communications. It
is significant only when the associated port baud rate setting is set to something other than
Disabled. This setting denotes the physical layer properties used for communications. It does not
indicate the port's current configuration as it relates to standard or inverted logic. Options
include:

 l RS-232: Configures the port as RS-232 with standard voltage levels.
 l TTL: The port is configured to use TTL, 0 to 5V voltage levels. By default, the port will use

inverted logic levels. Use SerialOpen() to configure this port for standard TTL logic
levels.

 l LVTTL: The port is configured to use Low Voltage TTL (LVTTL), 0 to 3.3V voltage levels. By
default, the port will use inverted logic levels. Use SerialOpen() to configure this port
for standard TTL logic levels.

 l RS-485 Half-Duplex PakBus: The port is configured as RS-485 half-duplex (two wire) and
uses the PakBus/MDROP protocol. This allows reliable PakBus peer-to-peer networking of
multiple devices including the MD485 and NL100 using the RS-485 interface.

 l RS-485 Half-Duplex Transparent: The port is configured as RS-485 half-duplex (two wire).
This setting is most commonly used when communicating with other non-PakBus RS-485
devices. Use this setting when communicating with devices such as Modbus RTUs or third-
party serial sensors with RS-485 interfaces.

 l RS-485 Full Duplex Transparent: The port is configured as RS-485 full-duplex (four wire). In
this configuration, four adjacent control ports will be required.

14.4.6 CSIOxnetEnable
Controls whether the CS I/O IP #1 or #2 TCP/IP interface should be enabled.

14.4.7 CSIOInfo
Reports the IP address, network mask, and default gateway for each of the data logger's active
network interfaces. If DHCP is used for the interface, this setting will report the value that was
configured by the DHCP server.

14. Information tables and settings (advanced) 205

 l String data type

14.4.8 DisableLithium
Controls whether the data logger will maintain its real time clock and battery backed memory
when it loses power. Setting this value to one will cause the data logger clock to lose time on
power loss. If this value is set to one, the data logger will not maintain its program or data after it
powers down.

This value is useful when the data logger needs to be stored as it will prolong the shelf life of the
lithium battery almost indefinitely.

If this value is set to one, the data logger will set it to zero when it powers up.

14.4.9 DeleteCardFilesOnMismatch
Controls the behavior of the data logger when it restarts with a different program and it detects
that data files created by the CardOut() are present but do not match the new program. If this
value is set to one, the data logger will delete these files so that new files can be stored. If set to a
value of zero, the data logger will retain the existing files and prevent any data from being
appended to these files.

14.4.10 DNS
This setting specifies the addresses of up to two domain name servers that the data logger can
use to resolve domain names to IP addresses. Note that if DHCP is used to resolve IP information,
the addresses obtained via DHCP will be appended to this list.

NOTE:
When setting a static IP address, first manually set a DNS Server Address in Settings Editor >
Advanced.

 l String data type

14.4.11 EthernetInfo
Reports the IP address, network mask, and default gateway for each of the data logger's active
network interfaces. If DHCP is used for the interface, this setting will report the value that was
configured by the DHCP server.

14. Information tables and settings (advanced) 206

 l String data type
 l Read only

14.4.12 EthernetPower
This setting specifies how the data logger controls power to its Ethernet interface. This setting
provides a means of reducing the data logger power consumption while Ethernet is not
connected. Always on, 1 Minute, or Disable.

14.4.13 FilesManager
This setting controls how the data logger will handle incoming files with specific extensions from
various sources. There can be up to four specifications. Each specification has three required
fields: PakBus Address, File Name, and Count.

 l String data type

14.4.14 FTPEnabled
Set to 1 if to enable FTP service. Default is 0.

14.4.15 FTPPassword
Specifies the password that is used to log in to the FTP server.

 l String data type

14.4.16 FTPPort
Configures the TCP port on which the FTP service is offered. The default value is usually sufficient
unless a different value needs to be specified to accommodate port mapping rules in a network
address translation firewall. Default = 21.

14.4.17 FTPUserName
Specifies the user name that is used to log in to the FTP server. An empty string (the default)
inactivates the FTP server.

 l String data type

14. Information tables and settings (advanced) 207

14.4.18 HTTPEnabled
Specifies additions to the HTTP header in the web service response. It can include multiple lines.
Set to 1 to enable HTTP (web server) service or 0 to disable it.

14.4.19 HTTPHeader
Specifies additions to the HTTP header in the web service response. It can include multiple lines.
Example: Access-Control-Allow-Origin: *

 l String data type

14.4.20 HTTPPort
Configures the TCP port on which the HTTP (web server) service is offered. Generally, the default
value is sufficient unless a different value needs to be specified to accommodate port-mapping
rules in a network-address translation firewall. Default = 80.

14.4.21 HTTPSEnabled
Set to 1 to enable the HTTPS (secure web server) service.

14.4.22 HTTPSPort
Configures the TCP port on which the HTTPS (secure web server) service is offered. Generally, the
default value is sufficient unless a different value needs to be specified to accommodate port
mapping rules in a network address translation firewall.

14.4.23 IncludeFile
This setting specifies the name of a file to be implicitly included at the end of the current CRBasic
program or can be run as the default program. In order to work as an include file, the file
referenced by this setting cannot contain a BeginProg() statement or define any variable
names or tables that are defined in the main program file.

This setting must specify both the name of the file to run as well as on the device (CPU:, USR:, or
CRD:) on which the file is located. The extension of the file must also be valid for a data logger
program (.CRB, .DLD, .CR1X).

See also File management via powerup.ini (p. 150).

14. Information tables and settings (advanced) 208

 l String data type

14.4.24 IPAddressCSIO
Arrays that specify the IP addresses of the internet interfaces that use the CS I/O bridge protocol.
If a value is specified as zero (the default), the data logger will use DHCP to configure the IP
address, network mask, and default gateway for that interface.

 l String data type

14.4.25 IPBroadcastFiltered
Set to one if all broadcast IP packets should be filtered from IP interfaces. Do not set this if you
use the IP discovery feature of the Device Configuration Utility or of LoggerLink. If this is set to
one, the data logger will fail to respond to the broadcast requests.

Default = 0.

14.4.26 IPAddressEth
Specifies the IP address for the internet interface connected via the peripheral port to devices
such as the NL115 and NL120. If this value is specified as "0.0.0.0" (the default), the data logger will
use DHCP to configure the effective value for this setting as well as the Ethernet Default
Gateway and Ethernet Subnet Mask settings. This setting is the equivalent to the
IPAddressEth status table variable.

 l String data type

14.4.27 IPGateway
Specifies the IP address of the network gateway on the same subnet as the Ethernet interface. If
the value of the Ethernet IP Address setting is set to "0.0.0.0" (the default), the data logger will
configure the effective value of this setting using DHCP.

 l String data type

14.4.28 IPGatewayCSIO
These settings specify the IP addresses of the router on the subnet to which the first or second CS
I/O bridge internet interface is connected. The data logger will forward all non-local IP packets to

14. Information tables and settings (advanced) 209

this address when it has no other route. If the CS I/O IP Address setting is set to a value of
"0.0.0.0", the data logger will configure the effective value of this setting using DHCP.

 l String data type

14.4.29 IPMaskCSIO
These settings specify the subnet masks for the CS I/O bridge mode internet interface. If the
corresponding CS I/O Address setting is set to a value of "0.0.0.0", the data logger will configure
the effective value of this setting using DHCP.

 l String data type

14.4.30 IPMaskEth
Specifies the subnet mask for the Ethernet interface. If the value of the Ethernet IP Address
setting is set to "0.0.0.0" (the default), the data logger will configure the effective value of this
setting using DHCP.

 l String data type

14.4.31 IPTrace
Discontinued; aliased to IPTraceComport

14.4.32 IPTraceCode
Controls what type of information is sent on the port specified by IPTraceComport and via Telnet.
Each bit in this integer represents a certain aspect of tracing that can be turned on or off. Values
for particular bits are described in the Device Configuration Utility. Default = 0, no messages
generated.

14.4.33 IPTraceComport
Specifies the port (if any) on which TCP/IP trace information is sent. Information type is controlled
by IPTraceCode.

14. Information tables and settings (advanced) 210

14.4.34 IsRouter
This setting controls whether the data logger is configured as a router or as a leaf node. If the
value of this setting is true, the data logger will be configured to act as a PakBus router. That is, it
will be able to forward PakBus packets from one port to another. To perform its routing duties, a
data logger configured as a router will maintain its own list of neighbors and send this list to
other routers in the PakBus network. It will also obtain and receive neighbor lists from other
routers.

If the value of this setting is false, the data logger will be configured to act as a leaf node. In this
configuration, the data logger will not be able to forward packets from one port to another and it
will not maintain a list of neighbors. Under this configuration, the data logger can still
communicate with other data loggers and wireless sensors. It cannot, however, be used as a
means of reaching those other data loggers. The default value is false.

 l Boolean data type

14.4.35 KeepAliveURL (Ping keep alive URL)
The URL to send a ping to when there has been no network activity for the KeepAliveMin interval.
If there is no ping response then the network connection is reestablished.

 l String data type

14.4.36 KeepAliveMin (Ping keep alive timeout value)
When there has been no network activity for this amount of time, in seconds, a ping will be sent
to the KeepAliveURL. Default = 0 which disables keep alive pings.

 l Long data type (allowed values: 0,5,10,15,30,60,120,180,240,300,360,480,720)

14.4.37 MaxPacketSize
Specifies the maximum number of bytes per data collection packet.

14.4.38 Neighbors
This setting specifies, for a given port, the explicit list of PakBus node addresses that the data
logger will accept as neighbors. If the list is empty (the default value) any node will be accepted

14. Information tables and settings (advanced) 211

as a neighbor. This setting will not affect the acceptance of a neighbor if that neighbor's address
is greater than 3999.

 l String data type

14.4.39 NTPServer
This setting specifies an NTP Server to be queried (once per day) to adjust the data logger clock.
This setting uses the UTC Offset setting. If UTC Offset setting is not set, it is assumed to be 0.

 l String data type

14.4.40 PakBusAddress
This setting specifies the PakBus address for this device. Valid values are in the range 1 to 4094.
The value for this setting must be chosen such that the address of the device will be unique in the
scope of the data logger network. Duplication of PakBus addresses can lead to failures and
unpredictable behavior in the PakBus network.

When a device has an allowed neighbor list for a port, any device that has an address greater
than or equal to 4000 will be allowed to connect to that device regardless of the allowed
neighbor list.

14.4.41 PakBusEncryptionKey
This setting specifies text that will be used to generate the key for encrypting PakBus messages
sent or received by this data logger. If this value is specified as an empty string, the data logger
will not use PakBus encryption. If this value is specified as a non-empty string, however, the data
logger will not respond to any PakBus message unless that message has been encrypted.

 l String data type

14.4.42 PakBusNodes
Discontinued; aliased to CommsMemAlloc

14. Information tables and settings (advanced) 212

14.4.43 PakBusPort
This setting specifies the TCP service port for PakBus communications with the data logger.
Unless firewall issues exist, this setting probably does not need to be changed from its default
value. Default 6785.

14.4.44 PakBusTCPClients
This setting specifies outgoing PakBus/TCP connections that the data logger should maintain. Up
to four addresses can be specified.

 l String data type

14.4.45 PakBusTCPEnabled
By default, PakBus TCP communications are enabled. To disable PakBus TCP communications,
set the PakBusPort setting to 65535.

14.4.46 PakBusTCPPassword
This setting specifies a password that, if not empty, will make the data logger authenticate any
incoming or outgoing PakBus/TCP connection. This type of authentication is similar to that used
by CRAM-MD5.

 l String data type

14.4.47 PingEnabled
Set to one to enable the ICMP ping service.

14.4.48 PCAP
PCAP is a packet capture (PCAP) file of network packet data (network traffic) that can be opened
by Wireshark. This setting specifies the network interface, file name, and maximum size of the
PCAP file. For example:

 l "usr:debug.pcap" saves the file to the USR drive with the file type .pcap.
 l ".ring." found in name will create new files once the file size has been reached.

"crd:debug.ring.pcap" creates crd:debug001.pcap, crd:debug002.pcap...

14. Information tables and settings (advanced) 213

 l If a number follows .ring. then only that number of files will be saved, with the oldest
deleted. For example: "usr:debug.ring.3.pcap" will save three files.

If All Networks is selected as the Network Interface and PPP/Cell is active, then separate files will
be opened for the PPP/Cell network with "ppp." prefixed on the file name.

14.4.49 pppDial
Specifies the dial string that would follow the ATD command (#777 for the Redwing CDMA).

Alternatively, this value can specify a list of AT commands where each command is separated by
a semi-colon (;). When specified in this fashion, the data logger will transmit the string up to the
semicolon, transmit a carriage return to the modem, and wait for two seconds before proceeding
with the rest of the dial string (or up to the next semicolon). If multiple semicolons are specified in
succession, the data logger will add a delay of one second for each additional semicolon.

If a value of PPP is specified for this setting, will configure the data logger to act as a PPP client
without any modem dialing. Finally, an empty string (the default) will configure the data logger to
listen for incoming PPP connections also without any modem dialing.

 l String data type

14.4.50 pppDialResponse
Specifies the response expected after dialing a modem before a PPP connection can be
established.

 l String data type

14.4.51 pppInfo
Reports the IP address, network mask, and default gateway for each of the data logger's active
network interfaces. If DHCP is used for the interface, this setting will report the value that was
configured by the DHCP server.

 l String data type
 l Read only

14.4.52 pppInterface
This setting controls which data logger port PPP service will be configured to use.

14. Information tables and settings (advanced) 214

14.4.53 pppIPAddr
Specifies the IP address that will be used for the PPP interface if that interface is active (the PPP
Interface setting needs to be set to something other than Inactive).

 l String data type

14.4.54 pppPassword
Specifies the password that will be used for PPP connections when the value of PPP Interface is
set to something other than Inactive.

 l String data type

14.4.55 pppUsername
Specifies the user name that is used to log in to the PPP server.

 l String data type

14.4.56 RouteFilters
This setting configures the data logger to restrict routing or processing of some PakBus message
types so that a "state changing" message can only be processed or forwarded by this data logger
if the source address of that message is in one of the source ranges and the destination address
of that message is in the corresponding destination range. If no ranges are specified (the default),
the data logger will not apply any routing restrictions. "State changing" message types include
set variable, table reset, file control send file, set settings, and revert settings.

If a message is encoded using PakBus encryption, the router will forward that message regardless
of its content. If, however, the routes filter setting is active in the destination node and the
unencrypted message is of a state changing type, the route filter will be applied by that end
node.

 l String data type

14.4.57 RS232Handshaking
If non-zero, hardware handshaking is active on the RS-232 port. This setting specifies the
maximum packet size sent between checking for CTS.

14. Information tables and settings (advanced) 215

14.4.58 RS232Power
Controls whether the RS-232 port will remain active even when communications are not taking
place. Note that if RS232Handshaking is enabled (handshaking buffer size is non-zero), that this
setting must be set to Yes.

 l Boolean data type

14.4.59 RS232Timeout
RS-232 hardware handshaking timeout. Specifies the time (tens of ms) that the CR1000X will wait
between packets if CTS is not asserted.

14.4.60 Security(1), Security(2), Security(3)
An array of three security codes. A value of zero for a given level will grant access to that level's
privileges for any given security code. For more information, see Data logger security (p. 125).

14.4.61 ServicesEnabled
Discontinued; replaced by/aliased to HTTPEnabled, PingEnabled, TelnetEnabled.

14.4.62 TCPClientConnections
Discontinued; replaced by / aliased to PakBusTCPClients.

14.4.63 TCP_MSS
The maximum TCP segment size. This value represents the maximum TCP payload size. It is used
to limit TCP packet size. A maximum TCP transmission unit (MTU) can be calculated by adding
the IP Header size (20 bytes), the TCP Header size (20 bytes), and the payload size.

14.4.64 TCPPort
Discontinued; replaced by / aliased to PakBusPort.

14. Information tables and settings (advanced) 216

14.4.65 TelnetEnabled
Enables (1) or disables (0) the Telnet service.

14.4.66 TLSConnections (Max TLS Server Connections)
This setting controls the number of concurrent TLS (secure or encrypted) client socket
connections that the data logger will be capable of handling at any given time. This will affect
FTPS and HTTPS services. This count will be increased by the number of DNP() instructions in the
data logger program.

This setting will control the amount of RAM that the data logger will use for TLS connections. For
every connection, approximately 20KBytes of RAM will be required. This will affect the amount of
memory available for program and data storage. Changing this setting will force the data logger
to recompile its program so that it can reallocate memory

14.4.67 TLSPassword
This setting specifies the password that will be used to decrypt the TLS Private Key setting.

 l String data type

14.4.68 TLSStatus
Reports the current status of the data logger TLS network stack.

 l String data type
 l Read only

14.4.69 USBConfig (Configure USB)
Controls the configuration of the data logger USB port. When set to a value of 1 it configures the
data logger to enumerate USB as a virtual com port only. A value of 0 (the default) causes the
data logger to enumerate as a composite device with both a virtual com port and a virtual
Ethernet port (RNDIS) available.

Default = 0.

14. Information tables and settings (advanced) 217

14.4.70 USBEnumerate
Controls the behavior of the data logger when its USB connector is plugged into the computer. If
set to a value of 1, the data logger will use its own serial number for identification in the USB
enumeration. If set to a value of 0 (the default), the data logger will use a fixed serial number in
the USB enumeration. This behavior controls whether the computer will allocate a new virtual
serial port for the data logger USB connection or will use a previously allocated (but not currently
used) virtual serial port.

Default = 0.

14.4.71 USRDriveFree
Provides information on the available bytes for the USR drive.

 l Read only

14.4.72 USRDriveSize
Specifies the size in bytes allocated for the USR: ram disk drive. This memory is allocated from the
memory that the data logger would normally use to store its compiled program or RAM based
data tables. If this setting is too large, some programs may not be able to compile on the data
logger.

Setting the USR: Drive Size setting will force the data logger to recompile its program and may
result in the loss of data.

This setting controls the amount of memory set aside for the USR: size and is only indirectly
related to the amount of storage within that file system. The amount of space available for
storing files is always going to be less than this value because of the overhead of file system
structures.

14.4.73 UTCOffset
Specifies the offset, in seconds, of the data logger's clock from Coordinated Universal Time (UTC,
or GMT). For example, if the clock is set to Mountain Standard Time in the U.S. (-7 Hours offset
from UTC) then this setting should be -25200 (-7*3600). This setting is used by the NTP Server
setting as well as EmailSend() and HTTP(), which require Universal Time in their headers. This
setting will also be adjusted by the Daylight Savings functions if they adjust the clock.

If a value of -1 is supplied for this setting, no UTC offset will be applied.

14. Information tables and settings (advanced) 218

14.4.74 Verify
This setting specifies the interval, in units of seconds, that will be reported as the link verification
interval in the PakBus hello transaction messages. It will indirectly govern the rate at which the
data logger will attempt to start a hello transaction with a neighbor if no other communications
have taken place within the interval.

14.4.75 MQTT settings
Access MQTT settings using Device Configuration Utility. Clicking on a setting in Device
Configuration Utility also provides information about that setting.

Where to find:

 l All settings: Settings Editor tab in Device Configuration Utility: MQTT tab, unless noted.

See also MQTT (p. 100).

NOTE:
A list of Settings fieldnames is also available from the data logger terminal mode using
command F.

14.4.75.1 CampbellCloudEnable (Enable or disable CAMPBELL

CLOUD)
By default, automatic connection to the CAMPBELL CLOUD to receive configuration is disabled.

 l Long data type, allowed values:
 o 0 = Disable (default)
 o 1 = Enable

14.4.75.2 CloudConfigURL (CLOUD configuration URL)
This setting is located: Settings Editor tab in Device Configuration Utility: Advanced tab.

Specifies the URL the data logger will use when it cannot connect to CAMPBELL CLOUD. This URL
is used to retrieve CLOUD configuration settings, it is ignored unless CLOUD is enabled.

 l String data type

14. Information tables and settings (advanced) 219

14.4.75.3 MQTTBaseTopic (MQTT base topic)
This is the base topic which will automatically be used. Use this setting to override the default
format: CS/{CAMPBELL CLOUD Account ID}/{MQTT Client Id}/. The CLOUD Account level is only
used when connecting to the CAMPBELL CLOUD Account.

 l String data type

14.4.75.4 MQTTCleanSession (MQTT connection)
Assigns the MQTT broker connection type. Persistent sessions save all relevant client information
on the broker. The client gets messages that it misses offline.

If the connection between the client and broker is interrupted during a Clean session, topics may
be lost and the client needs to subscribe again. The client does not get messages that it misses
offline.

 l Long data type, allowed values:
 o 0 = Clean
 o 1 = Persistent (default)

14.4.75.5 MQTTClientID (MQTT client identifier)
Unique identifier the data logger uses to connect to MQTT broker. The default is the hardware
type_serial number. Example: CR1000X_123.

 l String data type, maximum number of characters is 64

14.4.75.6 MQTTEnable (Enable or disable MQTT)
By default, MQTT is disabled.

 l Long data type, allowed values:
 o 0 = Disable (default)
 o 1 = Enable with TLS-Mutual Authentication
 o 2 = Enable with TLS
 o 3 = Enable MQTT

14. Information tables and settings (advanced) 220

14.4.75.7 MQTTEndpoint (MQTT broker URL)
Server URL for MQTT broker.

 l String data type

14.4.75.8 MQTTKeepAlive (MQTT keep alive)
When there has been no network activity for this amount of time, in seconds, a ping will be sent
to the MQTTBrokerURL. Default = 0 which disables keep alive pings. Valid values are in the range
0 to 65535.

 l Long data type

14.4.75.9 MQTTPassword (MQTT password)
Password, in association with MQTTUserName, required to connect to the MQTT broker.

 l String data type

14.4.75.10 MQTTPortNumber (MQTT port number)
Port number to connect to the MQTT broker.

 l Long data type, maximum number of characters is 256

14.4.75.11 MQTTStatusInterval (Status information publish interval)
Time (in minutes) between publishing MQTT status information. This interval determines how
often the data logger publishes to the topic: {System Base Topic/}statuslnfo. Valid values are in
the range 0 to 1440.

 l Long data type

14.4.75.12 MQTTState (MQTT state)
This is a read-only field indicating the current state of the data logger connection to the MQTT
broker.

14. Information tables and settings (advanced) 221

 l Long data type, possible results:
 o 0 = Disabled / Off
 o 8 = Disconnected. Sleeping
 o 10 = Waiting for an IP network interface
 o 11 = Connection retry wait
 o 20 = Opening TCP connection
 o 11 = TCP Open failed
 o 22 = TCP connection opened
 o 24 = Closing TCP connection
 o 26 = TCP connection closed
 o 30 = TLS handshake started
 o 31 = TLS handshake failed
 o 32 = TLS handshake success
 o 50 = MQTT session established
 o 51 = Waiting for session start response
 o 52 = Publishing
 o 100 = Onboard started
 o 101 = Onboard retry
 o 102 = Onboard processing
 o 200 = Waiting for modem startup
 o 201 = Configuring SSL
 o 202 = Configuring MQTT
 o 203 = Opening network
 o 204 = Connecting to MQTT broker

14.4.75.13 MQTTStateInterval (State publish interval)
Time (in minutes) between publishing MQTT state information. This interval determines how
often the data logger publishes to the topic: {System Base Topic/}State. Valid values are in the
range 0 to 1440. Setting the value to 0 will not disable normal state publishing activity, only
interval publishing.

14. Information tables and settings (advanced) 222

 l Long data type

14.4.75.14 MQTTUserName (MQTT user name)
User name, in association with MQTTPassword, used to connect to MQTT broker.

 l String data type, maximum number of characters is 256

14.4.75.15 MQTTWillMessage (MQTT last will message)
Message published on last will topic by broker if disconnected without a disconnect command.

 l String data type, maximum number of characters is 256

14.4.75.16 MQTTWillQoS (Quality of service)
This is an agreement that defines the guarantee of delivery for a specific message. Higher QoS
levels are more reliable, but take more time and bandwidth.

 l Long data type, allowed values:
 o 0 = At most once (default), no confirmation
 o 1 = At least once, confirmation required
 o 2 = Exactly once using a multi-step handshake

14.4.75.17 MQTTWillRetain (MQTT last will message retained by

broker)
Enables or disables the broker to retain MQTTWillMessage.

 l Long data type, allowed values:
 o 0 = Do not retain (default)
 o 1 = Retain

14.4.75.18 MQTTWillTopic (MQTT last will topic)
Broker will publish the MQTTWillMessage to this topic if disconnected without a disconnect
command.

14. Information tables and settings (advanced) 223

 l String data type, maximum number of characters is 64

14.4.76 GOES settings
Access GOES settings, using Device Configuration Utility. Clicking on a setting in Device
Configuration Utility also provides information about that setting. These settings are available for
data loggers that have a TX325 or TX326 attached.

Where to find:

 l All settings: Settings Editor tab in Device Configuration Utility: GOES tab, unless noted.

NOTE:
A list of Settings fieldnames is also available from the data logger terminal mode using
command F.

14.4.76.1 GOESComPort
Port used to communicate with the GOES transmitter.

 l Long data type; allowed values:
 o 1 = RS-232
 o 4 = CS I/O SDC7
 o 5 = CS I/O SDC8
 o 7 = CS I/O SDC10
 o 8 = CS I/O SDC11
 o 9 = COMC1
 o 10 = COMC3

14.4.76.2 GOESEnabled
Controls whether the data logger polls the GOESComPort to see if a GOES radio is attached.

 l Long data type, allowed values:
 o 0 = Disable (default). The data logger ignores all other GOES settings.
 o 1 = Enable

14. Information tables and settings (advanced) 224

14.4.76.3 GOESGainSetting
Specifies the effective antenna gain (in units of 0.1 dbi). This is the maximum specified gain for the
antenna minus the loss in the cable connecting the radio to the antenna.

 l Long data type, allowed values:
 o 0 = Disable (default). The radio will operate as if the antenna used for its original

certification is being used.
 o 1 to 140 = Enable for 300 Bps transmissions (14 dbi maximum)
 o 1 to 200 = Enable for 1200 Bps transmissions (20 dbi maximum)

14.4.76.4 GOESMsgWindow
Length, in seconds, of the assigned self-timed transmission window assigned by NESDIS (TX325)
or EUMETSAT (TX326). Valid values are in the range 1 to 110 seconds.

 l Long data type

14.4.76.5 GOESPlatformID
8-digit hexadecimal identification number assigned by NESDIS (TX325) or EUMETSAT (TX326).

 l String data type

14.4.76.6 GOESRepeatCount
Number of times within the random transmit interval that the GOES transmitter will transmit the
message data. Valid entries are 1 to 3.

 l Long data type

14.4.76.7 GOESRTBaudRate
Baud rate for the random transmissions. Valid settings are 100, 300, or 1200. The baud rate must
match the NESDIS (TX325) or EUMETSAT (TX326) channel assignment.

 l Long data type

14. Information tables and settings (advanced) 225

14.4.76.8 GOESRTChannel
Channel used for the random transmission assigned by NESDIS (TX325) or EUMETSAT (TX326).

 l Long data type, allowed values:
 o 0 = Disable (default).
 o 0 to 566 = Channel

14.4.76.9 GOESRTInterval
Average time between random transmissions. Maximum interval is 24 hours; minimum interval is
1 minute.

 l String data type entered in the format of “Hours:Minutes:Seconds”.

14.4.76.10 GOESSTBaudRate
Baud rate for self-timed transmissions. Valid settings are 300 or 1200. The baud rate must match
the NESDIS (TX325) or EUMETSAT (TX326) channel assignment.

 l Long data type

14.4.76.11 GOESSTChannel
Channel used for the self-timed transmission assigned by NESDIS (TX325) or EUMETSAT (TX326).

 l Long data type, allowed values:
 o 0 = Disable (default).
 o 0 to 566 = Channel

14.4.76.12 GOESSTInterval
Time between self-timed transmissions. Maximum interval is 14 days; minimum interval is 1
minute.

 l String data type entered in the format of “Hours:Minutes:Seconds”.

14. Information tables and settings (advanced) 226

14.4.76.13 GOESSTOffset
Time after midnight for the first self-timed transmission as assigned by NESDIS (TX325) or
EUMETSAT (TX326). Maximum offset is 23:59:59. A value of 0 results in no offset.

 l String data type entered in the format of “Hours:Minutes:Seconds”.

14. Information tables and settings (advanced) 227

15. CR1000X specifications
Electrical specifications are valid over a -40 to +70 °C, non-condensing environment, unless
otherwise specified. Extended electrical specifications (noted as XT in specifications) are valid
over a -55 to +85 °C non-condensing environment. Recalibration is recommended every three
years. Critical specifications and system configuration should be confirmed with Campbell
Scientific before purchase.

15.1 System specifications 228

15.2 Physical specifications 229

15.3 Power requirements 229

15.4 Power output specifications 230

15.5 Analog measurement specifications 232

15.6 Pulse measurement specifications 236

15.7 Digital input/output specifications 237

15.8 Communications specifications 239

15.9 Standards compliance specifications 240

15.1 System specifications
Processor: Renesas RX63N (32-bit with hardware FPU, running at 100 MHz)

Memory (see Data memory (p. 46) for more information):

 l Total onboard: 128 MB of flash + 4 MB battery-backed SRAM
 o Data storage: 4 MB SRAM + 72 MB flash (extended data storage automatically used

for auto-allocated Data Tables not being written to a card)
 o CPU drive: 30 MB flash
 o OS load: 8 MB flash
 o Settings: 1 MB flash
 o Reserved (not accessible): 10 MB flash

 l Data storage expansion: Removable microSD flash memory, up to 16 GB

Program Execution Period: 1 ms to 1 day

15. CR1000X specifications 228

Real-Time Clock:

 l Battery backed while external power is disconnected
 l Resolution: 1 ms
 l Accuracy: ±3 min. per year, optional GPS correction to ±10 µs

Wiring Panel Temperature: Measured using a 10K3A1A BetaTHERM thermistor, located between
the two rows of analog input terminals.

15.2 Physical specifications
Dimensions: 23.8 x 10.1 x 6.2 cm (9.4 x 4.0 x 2.4 in); additional clearance required for cables and
wires. For CAD files, see CR1000X Images and CAD 2D Drawings.

Weight/Mass: 0.86 kg (1.9 lb)

Case Material: Powder-coated aluminum

15.3 Power requirements
Protection: Power inputs are protected against surge, over-voltage, over-current, and reverse
power. IEC 61000-4 Class 4 level.

Power In Terminal:

 l Voltage Input: 10 to 18 VDC
 l Input Current Limit at 12 VDC:

 o 4.35 A at -40 °C
 o 3 A at 20 °C
 o 1.56 A at 85 °C

 l 30 VDC sustained voltage limit without damage. Transient voltage suppressor (TVS) diodes
at the POWER IN terminal clamps transients to 36 to 40 V. Input voltages greater than 18 V
and less than 32 V are tolerated; however, the 12 V output SW12-1 and SW12-2 are disabled
and will not function until the input voltage falls below 16 V. Sustained input voltages in
excess of 32 V can damage the TVS diodes. If the voltage on the POWER IN terminals
exceeds 19 V, power is shut off to certain parts of the data logger to prevent damaging
connected sensors or peripherals.

USB Power: Functions that will be active with USB 5 VDC include sending programs, adjusting
data logger settings, and making some measurements. If USB is the only power source, then the
CS I/O port and the 5V, 12V, and SW12 terminals will not be operational. When powered by USB
(no other power supplies connected) Status table field Battery = 0.

15. CR1000X specifications 229

https://www.campbellsci.com/cr1000x#images_

Internal Lithium Battery: AA, 2.4 Ah, 3.6 VDC (Tadiran TL 5903/S) for battery-backed SRAM and
clock. 3-year life with no external power source. See also Internal battery (p. 143).

Average Current Drain:

Assumes 12 VDC on POWER IN terminals.

 l Idle: <1 mA
 l Active 1 Hz Scan: 1 mA
 l Active 20 Hz Scan: 55 mA
 l Serial (RS-232/RS-485): Active + 25 mA
 l Ethernet Power Requirements:

 o Ethernet 1 Minute: Active + 1 mA
 o Ethernet Idle: Active + 4 mA
 o Ethernet Link: Active + 47 mA

Vehicle Power Connection: When primary power is pulled from the vehicle power system, a
second power supply OR charge regulator may be required to overcome the voltage drop at
vehicle start-up.

15.4 Power output specifications

15.4.1 System power out limits (when powered with
12 VDC)

Temperature (°C) Current limit1 (A)

–40° 4.53

20° 3.00

70° 1.83

85° 1.56
1 Limited by self-resetting thermal fuse

15.4.2 12 V and SW12 V power output terminals
12V, SW12-1, and SW12-2: Provide unregulated 12 VDC power with voltage equal to the Power
Input supply voltage. These are disabled when operating on USB power only. The 12V terminal is
limited to the current shown in the previous table.

15. CR1000X specifications 230

SW12 current limits

Temperature (°C) Current limit 1 (mA)

–40° 1310

0° 1004

20° 900

50° 690

70° 550

80° 470
1 Thermal fuse hold current. Overload causes voltage drop.
Disconnect and let cool to reset. Operate at limit if the application
can tolerate some fluctuation.

15.4.3 5 V fixed output
5V: One regulated 5 V output. Supply is shared between the 5V terminal and CS I/O DB9 5 V
output.

 l Voltage Output: Regulated 5 V output (±5%)
 l Current Limit: 230 mA

15.4.4 C as power output
Operating at the current limit is OK if voltage fluctuation can be tolerated. Drive capacity is
determined by the logic level of the VDC supply and the output resistance (Ro) of the C terminal.
It is expressed as: Vo = 5 V – (Ro • Io), where Vo is the drive limit, and Io is the current required by
the external device. For example: at the maximum current limit of 10 mA on C1 the voltage level
would reduce from 5 V to 3.5 V.

 l C Terminals:
 o Output Resistance (Ro): 150 Ω
 o 5 V Logic Level Drive Capacity: 10 mA @ 3.5 VDC; Vo = 5 V - (150 Ω •Io)
 o 3.3 V Logic Level Drive Capacity: 10 mA @ 1.8 VDC; Vo = 3.3 V - (150 Ω •Io)

15.4.5 CS I/O pin 1
5 V Logic Level Max Current: 200 mA

15. CR1000X specifications 231

15.4.6 Voltage excitation
VX: Four independently configurable voltage terminals (VX1-VX4). When providing voltage
excitation, a single 16-bit DAC shared by all VX outputs produces a user-specified voltage during
measurement only. In this case, these terminals are regularly used with resistive-bridge
measurements (see Resistance measurements (p. 61) for more information). VX terminals can also
be used to supply a selectable, switched, regulated 3.3 or 5 VDC power source to power digital
sensors and toggle control lines.

 Range Resolution Accuracy Maximum source/sink
current1

Voltage
Excitation ±4 V 0.06 mV ±(0.1% of setting

+ 2 mV) ±40 mA

Switched,
Regulated +3.3 or 5 V 3.3 or 5 V ±5% 50 mA

1 Exceeding current limits causes voltage output to become unstable. Voltage should stabilize when current is
reduced to within stated limits.

15.5 Analog measurement specifications
16 single-ended (SE) or 8 differential (DIFF) terminals individually configurable for voltage,
thermocouple, current loop, ratiometric, and period average measurements, using a 24-bit ADC.
One channel at a time is measured.

15.5.1 Voltage measurements
Terminals:

 l Differential Configuration: DIFF 1H/1L – 8H/8L
 l Single-Ended Configuration: SE1 – SE16

Input Resistance: 20 GΩ typical

Input Voltage Limits: ±5 V

Sustained Input Voltage without Damage: ±20 VDC

DC Common Mode Rejection:

 l >120 dB with input reversal
 l ≥ 86 dB without input reversal

15. CR1000X specifications 232

Normal Mode Rejection: > 70 dB @ 60 Hz

Input Current @ 25 °C: ±1 nA typical

Filter First Notch Frequency (fN1) Range: 0.5 Hz to 31.25 kHz (user specified)

Analog Range and Resolution:

 Differential with input
reversal

Single-ended and
differential without input

reversal

Notch
frequency
(fN1) (Hz)

Range1

(mV)
RMS
(µV) Bits2 RMS

(µV) Bits2

15000
±5000
±1000
±200

8.2

1.9

0.75

20

20

19

11.8

2.6

1.0

19

19

18

50/603
±5000
±1000
±200

0.6

0.14

0.05

24

23
22

0.88

0.2

0.08

23

23

22

5
±5000
±1000
±200

0.18

0.04

0.02

25

25

24

0.28

0.07

0.03

25

24

23
1 Range overhead of ~5% on all ranges guarantees that full-scale values will not cause over range

2 Typical effective resolution (ER) in bits; computed from ratio of full-scale range to RMS resolution.

3 50/60 corresponds to rejection of 50 and 60 Hz ac power mains noise.

Accuracy (does not include sensor or measurement noise):

 l 0 to 40 °C: ±(0.04% of measurement + offset)
 l –40 to 70 °C: ±(0.06% of measurement + offset)

15. CR1000X specifications 233

Voltage Measurement Accuracy Offsets:

 Typical offset (µV RMS)

Range (mV) Differential
with input reversal

Single-ended or differential
without input reversal

±5000 ±0.5 ±2

±1000 ±0.25 ±1

±200 ±0.15 ±0.5

Measurement Settling Time: 20 µs to 600 ms; 500 µs default

Multiplexed Measurement Time:

These are not maximum speeds. Multiplexed denotes circuitry inside the data logger that
switches signals into the ADC.

Measurement time = INT(multiplexed measurement time • (reps+1) + 2ms

 Differential
with input reversal

Single-ended or differential
without input reversal

Example fN11 (Hz) Time2 (ms) Time2 (ms)

15000 2.04 1.02

60 35.24 17.62

50 41.9 20.95

5 401.9 200.95
1 Notch frequency (1/integration time).

2 Default settling time of 500 µs used.

See also Voltage measurements (p. 57).

15.5.2 Resistance measurement specifications
The data logger makes ratiometric-resistance measurements for four- and six-wire full-bridge
circuits and two-, three-, and four-wire half-bridge circuits using voltage excitation. Excitation
polarity reversal is available to minimize dc error. Typically, at least one terminal is configured for
excitation output. Multiple sensors may be able to use a common excitation terminal.

15. CR1000X specifications 234

Accuracy:

Assumes input reversal for differential measurements RevDiff and excitation reversal RevEx
for excitation voltage <1000 mV. Does not include bridge resistor errors or sensor and
measurement noise.

Ratiometric accuracy, rather than absolute accuracy, determines overall measurement accuracy.
Offset is the same as specified for analog voltage measurements.

 l 0 to 40 °C: ±(0.01% of voltage measurement + offset)
 l –40 to 70 °C: ±(0.015% of voltage measurement + offset)
 l –55 to 85 °C (XT): ±(0.02% of voltage measurement + offset)

15.5.3 Period-averaging measurement specifications
Use PeriodAvg() to measure the period (in microseconds) or the frequency (in Hz) of a signal
on a single-ended channel.

Terminals: SE1-SE16

Accuracy: ±(0.01% of measurement + resolution), where resolution is 0.13 µs divided by the
number of cycles to be measured

Ranges:

 l Minimum signal centered around specified period average threshold.
 l Maximum signal centered around data logger ground.
 l Maximum frequency = 1/(2 * [minimum pulse width]) for 50% duty cycle signals

Gain
code

option

Voltage
gain

Minimum
peak to peak
signal (mV)

Maximum
peak to peak

signal (V)

Minimum
pulse width (µs)

Maximum
frequency (kHz)

0 1 500 10 2.5 200

1 2.5 50 2 10 50

2 12.5 10 2 62 8

3 64 2 2 100 5

See also Period-averaging measurements (p. 69).

15. CR1000X specifications 235

15.5.4 Current-loop measurement specifications
The data logger makes current-loop measurements by measuring across a current-sense resistor
associated with the RS-485 resistive ground terminal.

Terminals: RG1 and RG2

Maximum Input Voltage: ±16 V

Resistance to Ground: 101 Ω

Current Measurement Shunt Resistance: 10 Ω

Maximum Current Measurement Range: ±80 mA

Absolute Maximum Current: ±160 mA

Resolution: ≤ 20 nA

Accuracy: ±(0.1% of reading + 100 nA) @ -40 to 70 °C

See also Current-loop measurements (p. 59).

15.6 Pulse measurement specifications
Two inputs (P1-P2) individually configurable for switch closure, high-frequency pulse, or low-level
AC measurements. See also Digital input/output specifications (p. 237). Each terminal has its own
independent 32-bit counter.

NOTE:
Conflicts can occur when a control port pair is used for different instructions (TimerInput(),
PulseCount(), SDI12Recorder(), WaitDigTrig()). For example, if C1 is used for
SDI12Recorder(), C2 cannot be used for TimerInput(), PulseCount(), or
WaitDigTrig().

Maximum Input Voltage: ±20 VDC

Maximum Counts Per Channel: 232

Maximum Counts Per Scan: 232

Input Resistance: 5 kΩ

Accuracy: ±(0.02% of reading + 1/scan)

15.6.1 Switch closure input
Terminals: C1-C8

15. CR1000X specifications 236

Pull-Up Resistance: 100 kΩ to 5 V

Event: Low (<0.8 V) to High (>2.5 V)

Maximum Input Frequency: 150 Hz

Minimum Switch Closed Time: 5 ms

Minimum Switch Open Time: 6 ms

Maximum Bounce Time: 1 ms open without being counted

15.6.2 High-frequency input
Terminals: C1-C8

Pull-Up Resistance: 100 kΩ to 5 V

Event: Low (<0.8 V) to High (>2.5 V)

Maximum Input Frequency: 250 kHz

15.6.3 Low-level AC input
Minimum Pull-Down Resistance: 10 kΩ to ground

DC-offset rejection: Internal AC coupling eliminates DC-offset voltages up to ±0.05 VDC

Input Hysteresis: 12 mV at 1 Hz

Low-Level AC Pulse Input Ranges:

Sine wave (mV RMS) Range (Hz)

20 1.0 to 20

200 0.5 to 200

2000 0.3 to 10,000

5000 0.3 to 20,000

15.7 Digital input/output specifications
Terminals configurable for digital input and output (I/O) including status high/low, pulse width
modulation, external interrupt, edge timing, switch closure pulse counting, high-frequency pulse
counting, UART, RS-232, RS-422, RS-485, SDM, SDI-12, I2C, and SPI function. Terminals are
configurable in pairs for 5 V or 3.3 V logic for some functions.

15. CR1000X specifications 237

NOTE:
Conflicts can occur when a control port pair is used for different instructions (TimerInput(),
PulseCount(), SDI12Recorder(), WaitDigTrig()). For example, if C1 is used for
SDI12Recorder(), C2 cannot be used for TimerInput(), PulseCount(), or
WaitDigTrig().

Terminals: C1-C8

Maximum Input Voltage: ±20 V

Logic Levels and Drive Current:

Terminal pair configuration 5 V source 3.3 V source

Logic low ≤ 1.5 V ≤ 0.8 V

Logic high ≥ 3.5 V ≥ 2.5 V

C1 - C8 10 mA @ 3.5V 10 mA @ 1.85V

15.7.1 Switch closure input
Terminals: C1-C8

Pull-Up Resistance: 100 kΩ to 5 V

Event: Low (<0.8 V) to High (>2.5 V)

Maximum Input Frequency: 150 Hz

Minimum Switch Closed Time: 5 ms

Minimum Switch Open Time: 6 ms

Maximum Bounce Time: 1 ms open without being counted

15.7.2 High-frequency input
Terminals: C1-C8

Pull-Up Resistance: 100 kΩ to 5 V

Event: Low (<0.8 V) to High (>2.5 V)

Maximum Input Frequency: 250 kHz

15.7.3 Edge timing
Terminals: C1-C8

15. CR1000X specifications 238

Maximum Input Frequency: ≤ 1 kHz

Resolution: 500 ns

15.7.4 Edge counting
Terminals: C1-C8

Maximum Input Frequency: ≤ 2.3 kHz

15.7.5 Quadrature input
Terminals: C1-C8 can be configured as digital pairs to monitor the two sensing channels of an
encoder.

Maximum Frequency: 2.5 kHz

Resolution: 31.25 µs or 32 kHz

15.7.6 Pulse-width modulation
Maximum Period: 36.4 seconds

Resolution:

 l 0 – 5 ms: 83.33 ns
 l 5 – 325 ms: 5.33 µs
 l > 325 ms: 31.25 µs

See also Pulse measurements (p. 70) and Pulse measurement specifications (p. 236).

15.8 Communications specifications
A data logger is normally part of a two-way conversation started by a computer. In applications
with some types of interfaces, the data logger can also initiate the call (callback) when needed. In
satellite applications, the data logger may simply send bursts of data at programmed times
without waiting for a response.

Ethernet Port: RJ45 jack, 10/100Base Mbps, full and half duplex, Auto-MDIX, magnetic isolation,
and TVS surge protection. See also Ethernet communications option (p. 25).

Internet Protocols: Ethernet, PPP, RNDIS, ICMP/Ping, Auto-IP(APIPA), IPv4, IPv6, UDP, TCP, TLS
(v1.2), DNS, DHCP, SLAAC, Telnet, HTTP(S), SFTP, FTP(S), POP3/TLS, NTP, SMTP/TLS, SNMPv3,
CS I/O IP, MQTT

15. CR1000X specifications 239

Additional Protocols: CPI, PakBus, PakBus Encryption, SDM, SDI-12, Modbus RTU / ASCII / TCP,
DNP3, custom user definable over serial, NTCIP, NMEA 0183, I2C, SPI

USB Device: Micro-B device for computer connectivity

CS I/O: 9-pin D-sub connector to interface with Campbell Scientific CS I/O peripherals.

SDI-12 (C1, C3, C5, C7): Four independent SDI-12 compliant terminals are individually configured
and meet SDI-12 Standard v 1.4.

RS-485 (C5 to C8): One full duplex or two half duplex

RS-422 (C5 to C8): One full duplex or two half duplex

RS-232/CPI: Single RJ45 module port that can operate in one of two modes: CPI or RS-232. CPI
interfaces with Campbell Scientific CDM measurement peripherals and sensors. RS-232 connects,
with an adapter cable, to computer, sensor, or communications devices serially.

CPI: One CPI bus. Up to 1 Mbps data rate. Synchronization of devices to 5 μS. Total cable length
up to 610 m (2000 ft). Up to 20 devices. CPI is a proprietary interface for communications
between Campbell Scientific data loggers and Campbell Scientific CDM peripheral devices. It
consists of a physical layer definition and a data protocol.

Hardwired: Multi-drop, short haul, RS-232, fiber optic

Satellite: GOES, Argos, Inmarsat Hughes, Irridium

15.9 Standards compliance specifications
View compliance and conformity documents at www.campbellsci.com/cr1000x .

Shock and Vibration: MIL-STD 810G methods 516.6 and 514.6

Protection:

 l Wiring panel: IP40
 l Measurement module when connected to the wiring panel: IP65

EMI and ESD protection:

 l Immunity: Meets or exceeds following standards:
 o ESD: per IEC 61000-4-2; ±15 kV air, ±8 kV contact discharge
 o Radiated RF: per IEC 61000-4-3; 10 V/m, 80-1000 MHz
 o EFT: per IEC 61000-4-4; 4 kV power, 4 kV I/O
 o Surge: per IEC 61000-4-5; 4 kV power, 4kV I/O
 o Conducted RF: per IEC 61000-4-6; 10 V power, 10 V I/O

 l Emissions and immunity performance criteria available on request.

15. CR1000X specifications 240

https://www.campbellsci.com/cr1000x#documents_
https://www.campbellsci.com/cr1000x#documents_

Appendix A. MQTT commands
A.1 MQTT topic structure

The topic structure transitions from “coarse to fine” using the form
<groupID>/msgType/<deviceID>. This allows the configurable groupID to be defined in
a “coarse” manner, followed by a defined msgType and deviceID string. This topic naming
follows a pattern similar to the Sparkplug specification sparkplug.eclipse.org used in SCADA
applications. The Sparkplug namespace elements for a topic use the following structure:

namespace/group_id/message_type/edge_node_id/[device_id]

The message_type is fixed and provides a defined set of messages described in the Sparkplug
specification.

Following this idea and making the groupID portion of the topic structure settings inside the
data logger allows MQTT application developers to define their own “coarse to fine” topic
definitions.

The <deviceID> portion of the topic will take the form:

model/UID

Where model will be: GRANITE10, GRANITE9, GRANITE6, CR6, CR1000X, CR350.

UID (unique identifier) is a placeholder for future functionality. If the internal UID has not yet been
set the serial number will be used as the UID. If the UID is set, the default base topic will be:
cs/v2/. If not set the default will be cs/v1. This allows the MQTT broker ingestion to
differentiate between serial number and UID.

This topic structure allows the data ingestion stream to more easily route the topics published by
the data logger. Taking advantage of the MQTT broker’s topic parsing via the use of wildcards +
and #, the messages can be ingested by small function specific micro-services.

This example shows a namespace, version, msgType, model, UID, Data Source
as the “coarse to fine” transition within the topic.

cs/v2/data/model/UID/tableName

Which is a generic representation of:

<groupID>/data/<deviceID>/tableName

Appendix A. MQTT commands 241

https://sparkplug.eclipse.org/

NOTE:
Both <groupID> and <deviceID> can be defined as needed for the intended use case.

NOTE:
The MQTT api uses the camelCase naming convention. The first character of the first word is
lowercase and subsequent words within a name have the first letter capitalized. This applies
to topics as well as JSON key:value names. All characters in the MQTT topics are sent as part
of the MQTT packet; therefore, keep topic lengths to a minimum.

A.2 MQTT automatic publish topics
The data logger automatically publishes to topics:

 l <groupID>/state/<deviceID>
 l <groupID>/state/<deviceID>/watchdogEvent
 l <groupID>/state/<deviceID>/statusInfo

A.2.1 state
This topic is used as a “heartbeat” to verify that the data logger is operating properly. The interval
at which the topic is published to is controlled by the state publish interval setting. This topic is
also used to report different result information for command and control topic actions.

Example:

Topic: <groupID>/state/<deviceID>/statusInfo

JSON:
{
"clientId" : "CR1000X_A399",
"state" : "online"
}

A.2.2 statusInfo
This topic is published at program startup and contains a subset of information from the status
table.

Example:

Topic: <groupID>/state/<deviceID>/statusInfo

Appendix A. MQTT commands 242

JSON:
{
 "state" : {
 "reported" : {
 "clientId" : "CR6_966",
 "OS_Version" : "CR6.10.02.2020.12.14.0955",
 "Program_Name" : "",
 "Program_Signature" : "43690",
 "Compile_Errors" : "1",
 "Compile_Results" : "No Program",
 "Low_12volt" : "0",
 "Battery" : "11.11",
 "Skipped_Scan" : "0",
 "Watchdog_Errors" : "0"
 }
 }
}

A.2.3 watchdogEvent
If a watchdog event occurs, the data logger will reset and increment the watchdog count.
Depending on the type of watchdog, a WatchdogInfo.txt file may be created on the data logger.
When a watchdog happens a watchdog event notification will be published on the following
topic:

<groupID>/state/<deviceID>/watchdogEvent

The payload published when a watchdog event occurs is a JSON object containing the watchdog
count and the watchdog file name, if a file is present on the data logger. Under certain error
conditions, the data logger will trigger a watchdog and increment the watchdog count without
creating a watchdog file. If a watchdog file is not present, the JSON key “file” value will be an
empty string.

Below is an example of the event payload:
{
“count”: “3”,
“file”: “” (When a watchdog file is present the file name is always
WatchdogInfo.txt.)
}

Appendix A. MQTT commands 243

A.3 MQTT command and control (automatic
subscription topics)

When the data logger successfully connects to an MQTT broker, it will subscribe to a single topic
to perform command and control.

<groupID>/cc/<deviceID>/#

The command and control functionality consist of the following topics:

A.3.1 Command response 244

A.3.2 OS download 245

A.3.3 CRBasic program download 245

A.3.4 New mqtt configuration 246

A.3.5 Edit constant table (editConst) 246

A.3.6 Reboot data logger 247

A.3.7 File control 247

A.3.8 Settings 248

A.3.9 Historic Data Collection 252

A.3.10 Set Public Variable 252

A.3.11 Get Public variable 253

A.3.12 Serial talkThru 253

A.3.1 Command response
For commands that elicit a response, the response will come on either the
<groupID>/state/<deviceID> or on the targeted topic:
<groupID>/cr/<deviceID>/ccCmd. The use of state vs. cr depends on the nature of the
data returned in the response. If the response is just an acknowledgment, it is returned on
state. If there is specific information to be returned, it is published on a targeted topic.

Command and
control Topic Description

OS <groupID>/cc/<deviceID>/OS Download OS

program <groupID>/cc/<deviceID>/program Download CRBasic program

Appendix A. MQTT commands 244

Command and
control Topic Description

mqttConfig <groupID>/cc/<deviceID>/mqttConfig
Download new MQTT

configuration

fileControl <groupID>/cc/<deviceID>/fileControl Perform file control actions

editConst <groupID>/cc/<deviceID>/editConst
Update the constant

table values

setting <groupID>/cc/<deviceID>/setting
Set/Retrieve a Device
Configuration setting

historicData <groupID>/cc/<deviceID>/historicData
Retrieve past data from a

Data Table

talkThru <groupID>/cc/<deviceID>/talkThru
Perform serial talk thru to

a sensor

setVar <groupID>/cc/<deviceID>/setVar
Set a variables value in a Public,

Status or Structure table

getVar <groupID>/cc/<deviceID>/getVar Get variable from table

reboot <groupID>/cc/<deviceID>/reboot Reboot the data logger

A.3.2 OS download
An OS can be updated by publishing the following JSON object to:

<groupID>/cc/<deviceID>/OS

{
“url”: “url of OS file location”
}

Example:
{
“url” : “https://example.123.xyz”
}

A.3.3 CRBasic program download
A CRBasic Program file can be downloaded and run by publishing the following JSON object to:

Publish on <groupID>/cc/<deviceID>/program with the following JSON payload:
{
“url” : ”https://example.123.xyz”,

Appendix A. MQTT commands 245

“filename”:”MyProg.crb”
}

The data logger will issue a HTTP(s) GET to the specified URL and report success or failure on the
<groupID>/state/<deviceID> topic. If successful, the program will be set to run now
and run on power up and the data logger will restart and compile and run the program.

Example: With a GRANITE6 using the Base topic: cs/v1/ and a serial number of 123.

Publish to topic: cs/v1/cc/granite6/123/program
{
"url":"https://s3.us-west-2.amazonaws.com/bucket.cr-basic/mqttPub27.cr6?X-Amz-
Expires=3593&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-
Credential=AKIA4MADCTNFDCYIQHED/20200826/us-west-2/s3/aws4_request&X-Amz-
Date=20200826T150138Z&X-Amz-SignedHeaders=host&X-Amz-
Signature=496fccd4d14edfe39d270ccee8ae0247ee1b256d01e1810b2c288de940b58507",
"fileName":"MyPub.crb"
}

A.3.4 New mqtt configuration
The mqttConfig command is used to set up the data logger. The file received from this
command must follow the proprietary binary format expected by the parsing routine.

Example:

Publish on <groupID>/cc/<deviceID>/mqttConfig with the following JSON payload:
{
“url” : “https://example.123.xyz”
}

The data logger will issue an HTTP(s) GET to the specified URL and report success or failure on
the <groupID>/state/<deviceID> topic. Once this file is received, it will be parsed as a
binary settings file and if valid, the settings applied, and the data logger restarted.

A.3.5 Edit constant table (editConst)
To edit the constant table via MQTT, publish the new Const table values in a JSON object. The
JSON keys and the values must be a string. The string values will be converted to the appropriate
types by the data logger. Only the values to be changed are required in the JSON object.

Appendix A. MQTT commands 246

Example:

Publish on <groupID>/cc/<deviceID>/editConst with the following JSON payload:
{
“key1” : “value1”,
“key2” : “value2”,
“keyN” : “valueN”
}

The data logger will publish results on <groupID>/state/<deviceID>/.

A.3.6 Reboot data logger
To remotely reboot (restart) the data logger, use the topic
<groupID>/cc/<deviceID>/reboot with the following JSON payload:
{
"action” : "reboot",
}

The additional JSON provides more safety when rebooting.

If successful, the data logger will report on <groupID>/state/<deviceID>, that it is
rebooting:
{
"clientId" : "CR6_966",
"state" : "online",
"fileTransfer" : "Rebooting Datalogger"
}

A.3.7 File control
Use the fileControl topic to perform file manipulation commands. Part of the payload will be
the action indicating which file function to perform. Since file control, in the full context of data
logger capability, is too complex for the thing shadow, file control will be best handled while the
data logger is online. The file control functions can be automated by triggering file transfer
events via AWS lifecycle events.

Each file control action has a unique JSON object payload. Each of the unique JSON objects must
contain the cmd key and fileControl value to perform the file control functions. Each file
control function is described below:

Appendix A. MQTT commands 247

A.3.7.1 list
The data logger can store more files than can be listed in one MQTT publish packet. Therefore, a
file list request will return a list of file names containing a maximum of 4800 characters. The
names will be published on the fileList topic.

Publish on <groupID>/cc/<deviceID>/fileControl/ with the following JSON payload:
{
“action” : “list”
“drive” :”USR”, (optional – default is CPU)
}

The data logger will publish on the topic:

<groupID>/cr/<deviceID>/fileControl/list

Example:

Publish topic: cs/v2/cc/cr6/ABCDEF/fileControl

JSON:
{"action" : "List"}

Response topic: cs/v2/cr/cr6/ABCDEF/fileControl/list

JSON:
{
"drive" : "CPU",
"clientID" : "CR6_966",
"fileList" : ["simple.CR6", "spectrum_krohn_cal.crb", "spectrum_cal.crb",
"PeriodAvg_testingDaveI.CR6", "spectrum_cal_check.crb", "mqttPub27.cr6",
"WatchdogInfo.txt"]
}

A.3.8 Settings
An individual Device Configuration Utility setting can be set or published via MQTT by publishing
the following JSON object.

A.3.8.1 set
A single setting can be changed in each message. To set multiple settings, a series of messages
will be sent with the last having apply set to true.

Appendix A. MQTT commands 248

{
“action” : “set”,
“name” :”Setting name”,
“value” : “XXX”,
“apply” :”true” { this is optional }
}

The data logger will notify success or failure on the topic <groupID>/state/<deviceID>/.

Example:

Publish Topic: cs/v2/cc/cr6/ABCDEF/setting

JSON:
{"name": "PakBusAddress", "action" : "set", "value" : "3", "apply" : "true"}

Response topic: cs/v2/state/cr6/ABCDEF/
{
"clientId" : "CR6_966",
"state" : "Set Setting Succeeded"
}

{
"clientId" : "CR6_966",
"state" : "Applying Settings"
}

A.3.8.2 download from CLOUD
Send files to the CPU drive of the data logger by publishing the download URL of the file and the
file name to a topic. These can be include files which will be used by the main CRBasic program.
The CLOUD will publish one file URL at a time to a FileManager topic.

NOTE:
All include files must be downloaded before the main program can be set to run.

download

Publish on <groupID>/cc/<deviceID>/fileControl with the following JSON payload:
{
“action” : “download”,
“url” : “https://example.123.xyz”,
“fileName” : “name of local file”,
“drive” :”USR”, (optional – default is CPU)
}

Appendix A. MQTT commands 249

The data logger will perform an HTTP(s) GET to the specified URL. Any state or error information
will be published on the topic <groupID>/state/<deviceID>/.

A.3.8.3 Delete a file
Action to delete a file on the data logger. If the file being deleted is the running program, the
program will not be stopped, only the associated text file will be deleted.
{
“action” : “delete”
“filename” : “name of file on device”
“drive” :”USR”, (optional – default is CPU)
}

The data logger will publish on topic <groupID>/state/<deviceID>/.

A.3.8.4 Stop
Action to stop the currently running program.
{
“action” : “stop”
}

The data logger will publish on topic <groupID>/state/<deviceID>/.

A.3.8.5 Run
Action to stop the currently running program.
{
“action” : “run”,
“filename” : “name of file on device”
}

The data logger will publish on topic <groupID>/state/<deviceID>/.

A.3.8.6 Upload to CLOUD
Action to upload a file (HTTP PUT) from the data logger to the CLOUD. This action uses the AWS
S3 bucket pre-signed URL.
{
“action” : “upload”,
“url” : “https://example.123.xyz”,
“filename” : “name of file on device”
}

Appendix A. MQTT commands 250

The url will be used to issue HTTP(s) POST and the file will be sent. The data logger will publish
result information on topic <groupID>/state/<deviceID>/.

A.3.8.7 publish
To read the value of a setting the topic <groupID>/cc/<deviceID>/setting is used with a
payload:
{
“action” : “publish”,
“name” :”Setting name”,
}

The setting value will be published on:

<groupID>/cr/<deviceID>/setting

Example:

Publish topic: cs/v2/cc/cr6/ABCDEF/setting

JSON:
{"name" : "PakBusAddress", "action" : "Publish"}

Response topic: cs/v2/cr/cr6/ABCDEF/setting

JSON:
{
"setting" : "PakBusAddress",
"value" : " 3"
}

A.3.8.8 apply
To apply previously set settings, <groupID>/cc/<deviceID>/setting is used with a
payload:
{
“apply” :”true”
}

The data logger will notify success or failure on the topic <groupID>/state/<deviceID>. If
successful, this will commit settings to non-volatile memory and restart the data logger.

Appendix A. MQTT commands 251

A.3.9 Historic Data Collection
Historic data can be requested via MQTT by publishing the appropriate JSON payload on the
following topic:

<groupID>/cc/<deviceID>/historicData

The payload published on the topic must be in the JSON format as follows:
{
“table”: “{table name}”,
“start”: “{utc time stamp}”,
“end”: “{utc time stamp}”
}

Only data from a DataTable containing the MQTTPublishTable instruction will be
published. The data will be published in the same format as indicated in the table publish
instruction. In the case of GEOJSON, the point coordinates used when re-publishing the data will
be the latest values passed into the table publish instruction. GEOJSON coordinates are not
stored.

The historic data will be published on the following topic:

<groupID>/cr/<deviceID>/historicData/TableName

{
"cmd" : "HistoricData",
"table" : "ThirtySecond",
"start" : "2020-04-14T10:10:24.865Z",
"end" : "2020-04-14T10:20:32.176Z"
}

A.3.10 Set Public Variable
A value can be set in a CRBasic program Public table by using the a setVar topic. To set the
value of the public table variable, publish associate JSON object to the following topic.

A.3.10.1 setVar
To change a variable in the running program of the data logger publish to
<groupID>/cc/<deviceID>/getVar with a payload like:
{
"name” : "VarOne",
"Value" : "12.345"
}

The data logger will report on <groupID>/state/<deviceID>.

Appendix A. MQTT commands 252

NOTE:
The stringified value will be converted to the type of the variable by the data logger.

A.3.11 Get Public variable
A value can be set in a CRBasic programs Public table by using a getVar topic. To get the value
of the public table variable, publish associate JSON object to the following topic.

A.3.11.1 getVar
To read a variable in the running program of the data logger publish to
<groupID>/cc/<deviceID>/getVar with a payload similar to this, where VarOne is the
variable name:
{
"name” : "VarOne",
}

The data logger will report on <groupID>/state/<deviceID>.

NOTE:
The value will be converted from the type of the variable to a string by the data logger.

A.3.12 Serial talkThru
Serial talkThru allows remote interaction with sensors connected to data logger serial ports. It
works similar to the terminal mode serial talk through.

A.3.12.1 Talk through to sensor
Serial talk through is initiated by sending a JSON payload to the topic
<groupID>/cc/<deviceID>/talkThru. The data logger will transmit to the serial sensor
and receive one response. One transmission is required for each response from sensor. This
feature is not designed to sniff serial sensor output. The desired communications port must be
configured prior to using serial talk through. This command causes the data logger to enter a
“talk through session”. The session will stay active, meaning that the sensor port will remain in a
state of not transferring data through to the instructions using the port until it is aborted or times
out. The timeout associated with a talkThru session is 1 minute. If no further talkThru
commands are received within a minute, the session will end, and normal communications port

Appendix A. MQTT commands 253

operations will resume. The session can also be ended by publishing to the talkThru topic with
the JSON key value pair with the key of “abort” (the value does not matter).

The talk thru payload must follow the described format and be published to:

<groupID>/cc/<deviceID>/talkThru

{
“comPort”: “{Port Description}”,
“outString”: “{ASCII string to be sent to sensor}”,
“numberTries”: “{ASCII number string indicating number of transmissions of
outString}” (Optional),
“respDelay”: “{ASCII number string indicating time (milliseconds) to wait for the
complete response from sensor}” (Optional)
“abort” : “true”
}

A.3.12.2 TalkThru from sensor
A serial string response from a smart sensor can only be received as a response to a transmission
to a sensor. The response will be published to the following topic in the specified JSON format.

<groupID>/cr/<deviceID>/talkThru

TalkThru response JSON payload:
{
“response”: “{String response from Sensor}”
}

If an error occurred, the response will contain an error message:

 l Illegal ComPort
 l ComPort must be open to use MQTT talkThru
 l No response received

A.3.12.3 Allowable Com port values
The Com port values must follow the case shown.

 l ComRS232
 l ComC1
 l ComC3

 l ComC5
 l ComC7

Appendix A. MQTT commands 254

SDM

 l ComXX of SDM com port selected by SDM-SIO module

Appendix A. MQTT commands 255

Appendix B. Glossary
A

AC

Alternating current (see VAC).

accuracy

The degree to which the result of a measurement, calculation, or specification conforms to
the correct value or a standard.

ADC

Analog to digital conversion. The process that translates analog voltage levels to digital
values.

alias

A second name assigned to variable in CRBasic.

allowed neighbor list

In PakBus networking, an allowed neighbor list is a list of neighbors with which a device will
communicate. If a device address is entered in an allowed neighbor list, a hello exchange will
be initiated with that device. Any device with an address between 1 and 3999 that is not
entered in the allowed neighbor list will be filtered from communicating with the device
using the list.

amperes (A)

Base unit for electric current. Used to quantify the capacity of a power source or the
requirements of a power-consuming device.

analog

Data presented as continuously variable electrical signals.

Appendix B. Glossary 256

argument

Part of a procedure call (or command execution).

array

A group of variables as declared in CRBasic.

ASCII/ANSI

Abbreviation for American Standard Code for Information Interchange / American National
Standards Institute. An encoding scheme in which numbers from 0-127 (ASCII) or 0-255
(ANSI) are used to represent pre-defined alphanumeric characters. Each number is usually
stored and transmitted as 8 binary digits (8 bits), resulting in 1 byte of storage per character
of text.

asset

Primarily this is a data source such as a data logger or CR1000X. It can also be another piece
of hardware.

asynchronous

The transmission of data between a transmitting and a receiving device occurs as a series of
zeros and ones. For the data to be "read" correctly, the receiving device must begin reading
at the proper point in the series. In asynchronous communications, this coordination is
accomplished by having each character surrounded by one or more start and stop bits
which designate the beginning and ending points of the information. Also indicates the
sending and receiving devices are not synchronized using a clock signal.

AWG

AWG ("gauge") is the accepted unit when identifying wire diameters. Larger AWG values
indicate smaller cross-sectional diameter wires. Smaller AWG values indicate large-diameter
wires. For example, a 14 AWG wire is often used for grounding because it can carry large
currents. 22 AWG wire is often used as sensor wire since only small currents are carried when
measurements are made.

Appendix B. Glossary 257

B

baud rate

The rate at which data is transmitted.

beacon

A signal broadcasted to other devices in a PakBus network to identify "neighbor" devices. A
beacon in a PakBus network ensures that all devices in the network are aware of other
devices that are viable.

binary

Describes data represented by a series of zeros and ones. Also describes the state of a
switch, either being on or off.

BOOL8

A one-byte data type that holds eight bits (0 or 1) of information. BOOL8 uses less space
than the 32 bit BOOLEAN data type.

boolean

Name given a function, the result of which is either true or false.

boolean data type

Typically used for flags and to represent conditions or hardware that have only two states
(true or false) such as flags and control ports.

burst

Refers to a burst of measurements. Analogous to a burst of light, a burst of measurements is
intense, such that it features a series of measurements in rapid succession, and is not
continuous.

Appendix B. Glossary 258

C

calibration wizard

The calibration wizard facilitates the use of the CRBasic field calibration instructions FieldCal
() and FieldCalStrain(). It is found in LoggerNet (4.0 and later) or RTDAQ.

callback

A name given to the process by which the data logger initiates communications with a
computer running appropriate Campbell Scientific data logger support software. Also
known as "Initiate Comms."

CardConvert software

A utility to retrieve binary final data from memory cards and convert the data to ASCII or
other formats.

CD100

An optional enclosure mounted keyboard/display for use with data loggers.

CDM/CPI

CPI is a proprietary interface for communications between Campbell Scientific data loggers
and Campbell Scientific CDM peripheral devices. It consists of a physical layer definition and
a data protocol.

CF

CompactFlash®

code

A CRBasic program, or a portion of a program.

Collect button

Button or command in data logger support software that facilitates collection-on-demand
of final-data memory. This feature is found in PC400, LoggerNet, and RTDAQ software.

Appendix B. Glossary 259

Collect Now button

Button or command in data logger support software that facilitates collection-on-demand
of final-data memory. This feature is found in PC400, LoggerNet, and RTDAQ software.

COM port

COM is a generic name given to physical and virtual serial communications ports.

COM1

When configured as a communications port, terminals C1 and C2 act as a pair to form Com1.

command

An instruction or signal that causes a computer to perform one of its basic functions (usually
in CRBasic).

command line

One line in a CRBasic program. Maximum length, even with the line continuation characters
<space> <underscore> (_), is 512 characters. A command line usually consists of one
program statement, but it may consist of multiple program statements separated by a
<colon> (:).

CompactFlash

CompactFlash® (CF) is a memory-card technology used in some Campbell Scientific card-
storage modules.

compile

The software process of converting human-readable program code to binary machine code.
Data logger user programs are compiled internally by the data logger operating system.

conditioned output

The output of a sensor after scaling factors are applied.

Appendix B. Glossary 260

connector

A connector is a device that allows one or more electron conduits (wires, traces, leads, etc) to
be connected or disconnected as a group. A connector consists of two parts — male and
female. For example, a common household ac power receptacle is the female portion of a
connector. The plug at the end of a lamp power cord is the male portion of the connector.

constant

A packet of memory given an alpha-numeric name and assigned a fixed number.

control I/O

C terminals configured for controlling or monitoring a device.

CoraScript

CoraScript is a command-line interpreter associated with LoggerNet data logger support
software.

CPU

Central processing unit. The brains of the data logger.

cr

Carriage return.

CRBasic

Campbell Scientific's BASIC-like programming language that supports analog and digital
measurements, data processing and analysis routines, hardware control, and many
communications protocols.

CRBasic Editor

The CRBasic programming editor; stand-alone software and also included with LoggerNet,
PC400, and RTDAQ software.

Appendix B. Glossary 261

CRC

Cyclic Redundancy Check

CRD

An optional memory drive that resides on a memory card.

CS I/O

Campbell Scientific proprietary input/output port. Also, the proprietary serial
communications protocol that occurs over the CS I/O port.

CVI

Communications verification interval. The interval at which a PakBus® device verifies the
accessibility of neighbors in its neighbor list. If a neighbor does not communicate for a
period of time equal to 2.5 times the CVI, the device will send up to four Hellos. If no
response is received, the neighbor is removed from the neighbor list.

D

DAC

Digital to analog conversion. The process that translates digital voltage levels to analog
values.

data bits

Number of bits used to describe the data and fit between the start and stop bit. Sensors
typically use 7 or 8 data bits.

data cache

The data cache is a set of binary files kept on the hard disk of the computer running the data
logger support software. A binary file is created for each table in each data logger. These
files mimic the storage areas in data logger memory, and by default are two times the size of
the data logger storage area. When the software collects data from a data logger, the data is
stored in the binary file for that data logger. Various software functions retrieve data from

Appendix B. Glossary 262

the data cache instead of the data logger directly. This allows the simultaneous sharing of
data among software functions.

data logger support software

LoggerNet, RTDAQ, and PC400 - these Campbell Scientific software applications include at
least the following functions: data logger communications, downloading programs, clock
setting, and retrieval of measurement data.

data output interval

The interval between each write of a record to a final-storage memory data table.

data output processing instructions

CRBasic instructions that process data values for eventual output to final-data memory.
Examples of output-processing instructions include Totalize(), Maximize(), Minimize(), and
Average(). Data sources for these instructions are values or strings in variable memory. The
results of intermediate calculations are stored in data output processing memory to await
the output trigger. The ultimate destination of data generated by data output processing
instructions is usually final-storage memory, but the CRBasic program can be written to
divert to variable memory by the CRBasic program for further processing. The transfer of
processed summaries to final-data memory takes place when the Trigger argument in the
DataTable() instruction is set to True.

data output processing memory

Memory automatically allocated for intermediate calculations performed by CRBasic data
output processing instructions. Data output processing memory cannot be monitored.

data point

A data value which is sent to final-data memory as the result of a data-output processing
instruction. Data points output at the same time make up a record in a data table.

data table

A concept that describes how data is organized in memory, or in files that result from
collecting data in memory. The fundamental data table is created by the CRBasic program as
a result of the DataTable() instruction and resides in binary form in memory. The data table

Appendix B. Glossary 263

structure resides in the data cache, in discrete data files, and in files that result from
collecting final-data memory with data logger support software.

DC

Direct current.

DCE

Data Communications Equipment. While the term has much wider meaning, in the limited
context of practical use with the data logger, it denotes the pin configuration, gender, and
function of an RS-232 port. The RS-232 port on the data logger is DCE. Interfacing a DCE
device to a DCE device requires a null-modem cable.

desiccant

A hygroscopic material that absorbs water vapor from the surrounding air. When placed in a
sealed enclosure, such as a data logger enclosure, it prevents condensation.

Device Configuration Utility

Software tool used to set up data loggers and peripherals, and to configure PakBus settings
before those devices are deployed in the field and/or added to networks.

DHCP

Dynamic Host Configuration Protocol. A TCP/IP application protocol.

differential

A sensor or measurement terminal wherein the analog voltage signal is carried on two wires.
The phenomenon measured is proportional to the difference in voltage between the two
wires.

Dim

A CRBasic command for declaring and dimensioning variables. Variables declared with Dim
remain hidden during data logger operations.

Appendix B. Glossary 264

dimension

To code a CRBasic program for a variable array as shown in the following examples: DIM
example(3) creates the three variables example(1), example(2), and example(3); DIM
example(3,3) creates nine variables; DIM example(3,3,3) creates 27 variables.

DNP3

Distributed Network Protocol is a set of communications protocols used between
components in process automation systems. Its main use is in utilities such as electric and
water companies.

DNS

Domain name server. A TCP/IP application protocol.

DTE

Data Terminal Equipment. While the term has much wider meaning, in the limited context of
practical use with the data logger, it denotes the pin configuration, gender, and function of
an RS-232 port. The RS-232 port on the data logger is DCE. Attachment of a null-modem
cable to a DCE device effectively converts it to a DTE device.

duplex

A serial communications protocol. Serial communications can be simplex, half-duplex, or
full-duplex.

duty cycle

The percentage of available time a feature is in an active state. For example, if the data
logger is programmed with 1 second scan interval, but the program completes after only 100
milliseconds, the program can be said to have a 10% duty cycle.

E

earth ground

A grounding rod or other suitable device that electrically ties a system or device to the earth.
Earth ground is a sink for electrical transients and possibly damaging potentials, such as

Appendix B. Glossary 265

those produced by a nearby lightning strike. Earth ground is the preferred reference
potential for analog voltage measurements. Note that most objects have a "an electrical
potential" and the potential at different places on the earth - even a few meters away - may
be different.

endian

The sequential order in which bytes are arranged into larger numerical values when stored in
memory.

engineering units

Units that explicitly describe phenomena, as opposed to, for example, the data logger base
analog-measurement unit of millivolts.

ESD

Electrostatic discharge.

ESS

Environmental sensor station.

excitation

Application of a precise voltage, usually to a resistive bridge circuit.

execution interval

The time interval between initiating each execution of a given Scan() of a CRBasic program. If
the Scan() Interval is evenly divisible into 24 hours (86,400 seconds), it is synchronized with
the 24 hour clock, so that the program is executed at midnight and every Scan() Interval
thereafter. The program is executed for the first time at the first occurrence of the Scan()
Interval after compilation. If the Scan() Interval does not divide evenly into 24 hours,
execution will start on the first even second after compilation.

execution time

Time required to execute an instruction or group of instructions. If the execution time of a
program exceeds the Scan() Interval, the program is executed less frequently than
programmed and the Status table SkippedScan field will increment.

Appendix B. Glossary 266

expression

A series of words, operators, or numbers that produce a value or result.

F

FAT

File Allocation Table - a computer file system architecture and a family of industry-standard
file systems utilizing it.

FFT

Fast Fourier Transform. A technique for analyzing frequency-spectrum data.

field

Data tables are made up of records and fields. Each row in a table represents a record and
each column represents a field. The number of fields in a record is determined by the
number and configuration of output processing instructions that are included as part of the
DataTable() declaration.

File Control

File Control is a feature of LoggerNet, PC400, Device Configuration Utility, and RTDAQ data
logger support software. It provides a view of the data logger file system and a menu of file
management commands.

fill and stop memory

A memory configuration for data tables forcing a data table to stop accepting data when
full.

final-data memory

The portion of memory allocated for storing data tables. Once data is written to final-data
memory, it cannot be changed but only overwritten when it becomes the oldest data. Final-
data memory is configured as ring memory by default, with new data overwriting the oldest
data.

Appendix B. Glossary 267

final-storage data

Data that resides in final-data memory.

Flash

A type of memory media that does not require battery backup. Flash memory, however, has
a lifetime based on the number of writes to it. The more frequently data is written, the
shorter the life expectancy.

FLOAT

Four-byte floating-point data type. Default data logger data type for Public or Dim variables.
Same format as IEEE4.

FP2

Two-byte floating-point data type. Default data logger data type for stored data. While
IEEE4 four-byte floating point is used for variables and internal calculations, FP2 is adequate
for most stored data. FP2 provides three or four significant digits of resolution, and requires
half the memory as IEEE4.

frequency domain

Frequency domain describes data graphed on an X-Y plot with frequency as the X axis.
VSPECT vibrating wire data is in the frequency domain.

frequency response

Sample rate is how often an instrument reports a result at its output; frequency response is
how well an instrument responds to fast fluctuations on its input. By way of example,
sampling a large gage thermocouple at 1 kHz will give a high sample rate but does not
ensure the measurement has a high frequency response. A fine-wire thermocouple, which
changes output quickly with changes in temperature, is more likely to have a high frequency
response.

FTP

File Transfer Protocol. A TCP/IP application protocol.

Appendix B. Glossary 268

full-duplex

A serial communications protocol. Simultaneous bi-directional communications.
Communications between a serial port and a computer is typically full duplex.

G

garbage

The refuse of the data communications world. When data is sent or received incorrectly
(there are numerous reasons why this happens), a string of invalid, meaningless characters
(garbage) often results. Two common causes are: 1) a baud-rate mismatch and 2)
synchronous data being sent to an asynchronous device and vice versa.

global navigation satellite system

A satellite navigation system with global coverage such as GPS (North America), Galileo
(Europe), and BeiDou (China).

global variable

A variable available for use throughout a CRBasic program. The term is usually used in
connection with subroutines, differentiating global variables (those declared using Public or
Dim) from local variables, which are declared in the Sub() and Function() instructions.

ground

Being or related to an electrical potential of 0 volts.

ground currents

Pulling power from the data logger wiring panel, as is done when using some
communications devices from other manufacturers, or a sensor that requires a lot of power,
can cause voltage potential differences between points in data logger circuitry that are
supposed to be at ground or 0 Volts. This difference in potentials can cause errors when
measuring single-ended analog voltages.

Appendix B. Glossary 269

H

half-duplex

A serial communications protocol. Bi-directional, but not simultaneous, communications.
SDI-12 is a half-duplex protocol.

handshake

The exchange of predetermined information between two devices to assure each that it is
connected to the other.

hello exchange

In a PakBus network, this is the process of verifying a node as a neighbor.

hertz

SI unit of frequency. Cycles or pulses per second.

HTML

Hypertext Markup Language. Programming language used for the creation of web pages.

HTTP

Hypertext Transfer Protocol. A TCP/IP application protocol.

HTTPS

Hypertext Transfer Protocol Secure. A secure version of HTTP.

hysteresis

The dependence of the state of the system on its history.

Hz

SI unit of frequency. Cycles or pulses per second.

Appendix B. Glossary 270

I

I2C

Inter-Integrated Circuit is a multi-controller, multi-peripheral, packet switched, single-
ended, serial computer bus.

IEEE4

Four-byte, floating-point data type. IEEE Standard 754. Same format as Float.

Include file

A file containing CRBasic code to be included at the end of the current CRBasic program, or
it can be run as the default program.

INF

A data word indicating the result of a function is infinite or undefined.

initiate comms

A name given to a processes by which the data logger initiates communications with a
computer running LoggerNet. Also known as Callback.

input/output instructions

Used to initiate measurements and store the results in input storage or to set or read
control/logic ports.

instruction

Usually refers to a CRBasic command.

integer

A number written without a fractional or decimal component. 15 and 7956 are integers; 1.5
and 79.56 are not.

Appendix B. Glossary 271

intermediate memory

Memory automatically allocated for intermediate calculations performed by CRBasic data
output processing instructions. Data output processing memory cannot be monitored.

IP

Internet Protocol. A TCP/IP internet protocol.

IP address

A unique address for a device on the internet.

IP trace

Function associated with IP data transmissions. IP trace information was originally accessed
through the CRBasic instruction IPTrace() and stored in a string variable. Files Manager
setting is now modified to allow for creation of a file in data logger memory.

isolation

Hardwire communications devices and cables can serve as alternate paths to earth ground
and entry points into the data logger for electromagnetic noise. Alternate paths to ground
and electromagnetic noise can cause measurement errors. Using opto-couplers in a
connecting device allows communications signals to pass, but breaks alternate ground
paths and may filter some electromagnetic noise.

J

JSON

Java Script Object Notation. A data file format available through the data logger or
LoggerNet.

K

keep memory

Keep memory is non-volatile memory that preserves some settings during a power-up or
program start up reset. Examples include PakBus address, station name, beacon intervals,

Appendix B. Glossary 272

neighbor lists, routing table, and communications timeouts.

keyboard/display

The data logger has an optional external keyboard/display.

L

leaf node

A PakBus node at the end of a branch. When in this mode, the data logger is not able to
forward packets from one of its communications ports to another. It will not maintain a list of
neighbors, but it still communicates with other PakBus data loggers and wireless sensors. It
cannot be used as a means of reaching (routing to) other data loggers.

lf

Line feed. Often associated with carriage return (<cr>). <cr><lf>.

linearity

The quality of delivering identical sensitivity throughout the measurement.

local variable

A variable available for use only by the subroutine in which it is declared. The term
differentiates local variables, which are declared in the Sub() and Function() instructions,
from global variables, which are declared using Public or Dim.

LoggerLink

Mobile applications that allow a mobile device to communicate with IP, wi-fi, or Bluetooth
enabled data loggers.

LoggerNet

Campbell Scientific's data logger support software for programming, communications, and
data retrieval between data loggers and a computer.

Appendix B. Glossary 273

LONG

Data type used when declaring integers.

loop

A series of instructions in a CRBasic program that are repeated for a programmed number of
times. The loop ends with an End instruction.

loop counter

Increments by one with each pass through a loop.

LSB

Least significant bit (the trailing bit).

LVDT

The linear variable differential transformer (LVDT) is a type of electrical transformer used for
measuring linear displacement (position).

M

mains power

The national power grid.

manually initiated

Initiated by the user, usually with a Keyboard/Display, as opposed to occurring under
program control.

mass storage device

A mass storage device may also be referred to as an auxiliary storage device. The term is
commonly used to describe USB mass storage devices.

MD5 digest

16 byte checksum of the TCP/IP VTP configuration.

Appendix B. Glossary 274

micro SD

Removable memory-card technology.

milli

The SI prefix denoting 1/1000 of a base SI unit.

Modbus

Communications protocol published by Modicon in 1979 for use in programmable logic
controllers (PLCs).

modem/terminal

Any device that has the following: ability to raise the ring line or be used with an optically
isolated interface to raise the ring line and put the data logger in the communications
command state, or an asynchronous serial communications port that can be configured to
communicate with the data logger.

modulo divide

A math operation. Result equals the remainder after a division.

MQTT

An open communications protocol for the Internet of Things (IoT). MQTT is not an acronym,
it is simply the name of the protocol. Source: https://www.hivemq.com/blog/mqtt-
essentials-part-1-introducing-mqtt/

MSB

Most significant bit (the leading bit).

multimeter

An inexpensive and readily available device useful in troubleshooting data acquisition
system faults.

Appendix B. Glossary 275

multiplier

A term, often a parameter in a CRBasic measurement instruction, that designates the slope
(aka, scaling factor or gain) in a linear function. For example, when converting °C to °F, the
equation is °F = °C*1.8 + 32. The factor 1.8 is the multiplier.

mV

The SI abbreviation for millivolts.

N

NAN

Not a number. A data word indicating a measurement or processing error. Voltage
overrange, SDI-12 sensor error, and undefined mathematical results can produce NAN.

neighbor device

Device in a PakBus network that communicates directly with a device without being routed
through an intermediate device.

network

A group of stations

Network Planner

Campbell Scientific software designed to help set up datal oggers in PakBus networks so
that they can communicate with each other and the LoggerNet server. For more
information, see https://www.campbellsci.com/loggernet.

NFC

Near field communications

NIST

National Institute of Standards and Technology.

Appendix B. Glossary 276

node

Devices in a network — usually a PakBus network. The communications server dials through,
or communicates with, a node. Nodes are organized as a hierarchy with all nodes accessed
by the same device (parent node) entered as child nodes. A node can be both a parent and a
child.

NSEC

Eight-byte data type divided up as four bytes of seconds since 1990 and four bytes of
nanoseconds into the second.

null modem

A device, usually a multi-conductor cable, which converts an RS-232 port from DCE to DTE
or from DTE to DCE.

Numeric Monitor

A digital monitor in data logger support software or in a keyboard/display.

O

offset

A term, often a parameter in a CRBasic measurement instruction, that designates the y-
intercept (aka, shifting factor or zeroing factor) in a linear function. For example, when
converting °C to °F, the equation is °F = °C*1.8 + 32. The factor 32 is the offset.

ohm

The unit of resistance. Symbol is the Greek letter Omega (Ω). 1.0 Ω equals the ratio of 1.0 volt
divided by 1.0 ampere.

Ohm's Law

Describes the relationship of current and resistance to voltage. Voltage equals the product
of current and resistance (V = I • R).

Appendix B. Glossary 277

on-line data transfer

Routine transfer of data to a peripheral left on-site. Transfer is controlled by the program
entered in the data logger.

onboard

A collective term for the tasks that have to complete successfully in order for a data source
asset to be correctly configured and send data to CampbellCloud. These tasks may be
automated or require manual user input depending on the data source type. For CR1000X
data sources, these tasks include asset claiming, automated sensor identification, cellular
communications registration, secure Cloud communications, program retrieval, successful
sensor measurement, and confirmation that Cloud received data.

operating system

The operating system (also known as "firmware") is a set of instructions that controls the
basic functions of the data logger and enables the use of user written CRBasic programs.
The operating system is preloaded into the data logger at the factory but can be re-loaded
or upgraded by you using Device Configuration Utility software. The most recent data
logger operating system .obj file is available at www.campbellsci.com/downloads.

organization

An entity that uses CampbellCloud services to manage a network of stations owned by the
entity. Every user must be associated with an organization.

output

A loosely applied term. Denotes a) the information carrier generated by an electronic sensor,
b) the transfer of data from variable memory to final-data memory, or c) the transfer of
electric power from the data logger or a peripheral to another device.

output array

A string of data values output to final-data memory. Output occurs when the data table
output trigger is True.

Appendix B. Glossary 278

output interval

The interval between each write of a record to a data table.

output processing instructions

CRBasic instructions that process data values for eventual output to final-data memory.
Examples of output-processing instructions include Totalize(), Maximum(), Minimum(), and
Average(). Data sources for these instructions are values or strings in variable memory. The
results of intermediate calculations are stored in data output processing memory to await
the output trigger. The ultimate destination of data generated by data output processing
instructions is usually final-data memory, but the CRBasic program can be written to divert
to variable memory for further processing. The transfer of processed summaries to final-
data memory takes place when the Trigger argument in the DataTable() instruction is set to
True.

output processing memory

Memory automatically allocated for intermediate calculations performed by CRBasic data
output processing instructions. Data output processing memory cannot be monitored.

P

PakBus

® A proprietary communications protocol developed by Campbell Scientific to facilitate
communications between Campbell Scientific devices. Similar in concept to IP (Internet
Protocol), PakBus is a packet-switched network protocol with routing capabilities. A
registered trademark of Campbell Scientific, Inc.

PakBus Graph

Software that shows the relationship of various nodes in a PakBus network and allows for
monitoring and adjustment of some registers in each node.

parameter

Part of a procedure (or command) definition.

Appendix B. Glossary 279

PC200W

Retired basic data logger support software for direct connect.

PC400

Free entry-level data logger support software that supports a variety of communications
options, manual data collection, and data monitoring displays. Short Cut and CRBasic Editor
are included for creating data logger programs. PC400 does not support scheduled data
collection or complex communications options such as phone-to-RF.

period average

A measurement technique using a high-frequency digital clock to measure time differences
between signal transitions. Sensors commonly measured with period average include water-
content reflectometers.

peripheral

Any device designed for use with the data logger. A peripheral requires the data logger to
operate. Peripherals include measurement, control, and data retrieval and communications
modules.

PGA

Programmable Gain Amplifier

ping

A software utility that attempts to contact another device in a network.

pipeline mode

A CRBasic program execution mode wherein instructions are evaluated in groups of like
instructions, with a set group prioritization.

PLC

Programmable Logic Controllers

Appendix B. Glossary 280

Poisson ratio

A ratio used in strain measurements.

ppm

Parts per million.

precision

The amount of agreement between repeated measurements of the same quantity (AKA
repeatability).

PreserveVariables

CRBasic instruction that protects Public variables from being erased when a program is
recompiled.

print device

Any device capable of receiving output over pin 6 (the PE line) in a receive-only mode.
Printers, "dumb" terminals, and computers in a terminal mode fall in this category.

print peripheral

Any device capable of receiving output over pin 6 (the PE line) in a receive-only mode.
Printers, "dumb" terminals, and computers in a terminal mode fall in this category.

processing instructions

CRBasic instructions used to further process input-data values and return the result to a
variable where it can be accessed for output processing. Arithmetic and transcendental
functions are included.

program control instructions

Modify the execution sequence of CRBasic instructions. Also used to set or clear flags.

Program Send command

Program Send is a feature of data logger support software.

Appendix B. Glossary 281

program statement

A complete program command construct confined to one command line or to multiple
command lines merged with the line continuation characters <space><underscore> (_). A
command line, even with line continuation, cannot exceed 512 characters.

public

A CRBasic command for declaring and dimensioning variables. Variables declared with
Public can be monitored during data logger operation.

pulse

An electrical signal characterized by a rapid increase in voltage follow by a short plateau and
a rapid voltage decrease.

Q

QR code

Quick response barcode

R

ratiometric

Describes a type of measurement or a type of math. Ratiometric usually refers to an aspect
of resistive-bridge measurements - either the measurement or the math used to process it.
Measuring ratios and using ratio math eliminates several sources of error from the end
result.

recipe

A set of files that include the CR1000X program, settings and configuration for a specific
sensor and application.

record

A record is a complete line of data in a data table or data file. All data in a record share a
common time stamp. Data tables are made up of records and fields. Each row in a table

Appendix B. Glossary 282

represents a record and each column represents a field. The number of fields in a record is
determined by the number and configuration of output processing instructions that are
included as part of the DataTable() declaration.

regulator

A setting, a Status table element, or a DataTableInformation table element. Also a device for
conditioning an electrical power source. Campbell Scientific regulators typically condition ac
or dc voltages greater than 16 VDC to about 14 VDC.

resistance

A feature of an electronic circuit that impedes or redirects the flow of electrons through the
circuit.

resistor

A device that provides a known quantity of resistance.

resolution

The smallest interval measurable.

ring line

Ring line is pulled high by an external device to notify the data logger to commence
communications. Ring line is pin 3 of the CS I/O port.

ring memory

A memory configuration that allows the oldest data to be overwritten with the newest data.
This is the default setting for data tables.

ringing

Oscillation of sensor output (voltage or current) that occurs when sensor excitation causes
parasitic capacitances and inductances to resonate.

Appendix B. Glossary 283

RMS

Root-mean square, or quadratic mean. A measure of the magnitude of wave or other
varying quantities around zero.

RNDIS

Remote Network Driver Interface Specification - a Microsoft protocol that provides a virtual
Ethernet link via USB.

router

A device configured as a router is able to forward PakBus packets from one port to another.
To perform its routing duties, a data logger configured as a router maintains its own list of
neighbors and sends this list to other routers in the PakBus network. It also obtains and
receives neighbor lists from other routers. Routers maintain a routing table, which is a list of
known nodes and routes. A router will only accept and forward packets that are destined for
known devices. Routers pass their lists of known neighbors to other routers to build the
network routing system.

RS-232

Recommended Standard 232. A loose standard defining how two computing devices can
communicate with each other. The implementation of RS-232 in Campbell Scientific data
loggers to computer communications is quite rigid, but transparent to most users. Features
in the data logger that implement RS-232 communications with smart sensors are flexible.

RS-422

Communications protocol similar to RS-485. Most RS-422 sensors will work with RS-485
protocol.

RS-485

Recommended Standard 485. A standard defining how two computing devices can
communicate with each other.

Appendix B. Glossary 284

RTDAQ

Real Time Data Acquisition software for high-speed data acquisition applications. RTDAQ
supports a variety of telecommunication options, manual data collection, and extensive data
display. It includes Short Cut for creating data logger programs, as well as full-featured
program editors.

RTU

Remote Telemetry Units

Rx

Receive

S

sample rate

The rate at which measurements are made by the data logger. The measurement sample
rate is of interest when considering the effect of time skew, or how close in time are a series
of measurements, or how close a time stamp on a measurement is to the true time the
phenomenon being measured occurred. A 'maximum sample rate' is the rate at which a
measurement can repeatedly be made by a single CRBasic instruction. Sample rate is how
often an instrument reports a result at its output; frequency response is how well an
instrument responds to fast fluctuations on its input. By way of example, sampling a large
gage thermocouple at 1 kHz will give a high sample rate but does not ensure the
measurement has a high frequency response. A fine-wire thermocouple, which changes
output quickly with changes in temperature, is more likely to have a high frequency
response.

SCADA

Supervisory Control And Data Acquisition

scan interval

The time interval between initiating each execution of a given Scan() of a CRBasic program. If
the Scan() Interval is evenly divisible into 24 hours (86,400 seconds), it is synchronized with
the 24 hour clock, so that the program is executed at midnight and every Scan() Interval

Appendix B. Glossary 285

thereafter. The program is executed for the first time at the first occurrence of the Scan()
Interval after compilation. If the Scan() Interval does not divide evenly into 24 hours,
execution will start on the first even second after compilation.

scan time

When time functions are run inside the Scan() / NextScan construct, time stamps are based
on when the scan was started according to the data logger clock. Resolution of scan time is
equal to the length of the scan.

SDI-12

Serial Data Interface at 1200 baud. Communications protocol for transferring data between
the data logger and SDI-12 compatible smart sensors.

SDK

Software Development Kit

SDM

Synchronous Device for Measurement. A processor-based peripheral device or sensor that
communicates with the data logger via hardwire over a short distance using a protocol
proprietary to Campbell Scientific.

Seebeck effect

Induces microvolt level thermal electromotive forces (EMF) across junctions of dissimilar
metals in the presence of temperature gradients. This is the principle behind thermocouple
temperature measurement. It also causes small, correctable voltage offsets in data logger
measurement circuitry.

semaphore

(Measurement semaphore.) In sequential mode, when the main scan executes, it locks the
resources associated with measurements. In other words, it acquires the measurement
semaphore. This is at the scan level, so all subscans within the scan (whether they make
measurements or not), will lock out measurements from slow sequences (including the auto
self-calibration). Locking measurement resources at the scan level gives non-interrupted
measurement execution of the main scan.

Appendix B. Glossary 286

send button

Send button in data logger support software. Sends a CRBasic program or operating system
to a data logger.

sequential mode

A CRBasic program execution mode wherein each statement is evaluated in the order it is
listed in the program.

serial

A loose term denoting output of a series of ASCII, HEX, or binary characters or numbers in
electronic form.

Settings Editor

An editor for observing and adjusting settings. Settings Editor is a feature of
LoggerNet>Connect, PakBus Graph, and Device Configuration Utility.

Short Cut

A CRBasic programming wizard suitable for many data logger applications. Knowledge of
CRBasic is not required to use Short Cut.

SI

Système Internationale. The uniform international system of metric units. Specifies accepted
units of measure.

signature

A number which is a function of the data and the sequence of data in memory. It is derived
using an algorithm that assures a 99.998% probability that if either the data or the data
sequence changes, the signature changes.

simplex

A serial communications protocol. One-direction data only. Serial communications between
a serial sensor and the data logger may be simplex.

Appendix B. Glossary 287

single-ended

Denotes a sensor or measurement terminal wherein the analog voltage signal is carried on a
single wire and measured with respect to ground (0 V).

skipped scans

Occur when the CRBasic program is too long for the scan interval. Skipped scans can cause
errors in pulse measurements.

slow sequence

A usually slower secondary scan in the CRBasic program. The main scan has priority over a
slow sequence.

SMS

Short message service. A text messaging service for web and mobile device systems.

SMTP

Simple Mail Transfer Protocol. A TCP/IP application protocol.

SNP

Snapshot file.

SP

Space.

SPI

Serial Peripheral Interface - a clocked synchronous interface, used for short distance
communications, generally between embedded devices.

SRAM

Static Random-Access Memory

Appendix B. Glossary 288

start bit

The bit used to indicate the beginning of data.

state

Whether a device is on or off.

station

A group of assets

Station Status command

A command available in most data logger support software.

stop bit

The end of the data bits. The stop bit can be 1, 1.5, or 2.

string

A datum or variable consisting of alphanumeric characters.

support software

Campbell Scientific software that includes at least the following functions: data logger
communications, downloading programs, clock setting, and retrieval of measurement data.

synchronous

The transmission of data between a transmitting and a receiving device occurs as a series of
zeros and ones. For the data to be "read" correctly, the receiving device must begin reading
at the proper point in the series. In synchronous communications, this coordination is
accomplished by synchronizing the transmitting and receiving devices to a common clock
signal (see also asynchronous).

system time

When time functions are run outside the Scan() / NextScan construct, the time registered by
the instruction will be based on the system clock, which has a 10 ms resolution.

Appendix B. Glossary 289

T

table

See data table.

task

Grouping of CRBasic program instructions automatically by the data logger compiler. Tasks
include measurement, SDM or digital, and processing. Tasks are prioritized when the
CRBasic program runs in pipeline mode. Also, a user-customized function defined through
LoggerNet Task Master.

TCP/IP

Transmission Control Protocol / Internet Protocol.

TCR

Temperature Coefficient of Resistance. TCR tells how much the resistance of a resistor
changes as the temperature of the resistor changes. The unit of TCR is ppm/°C (parts-per-
million per degree Celsius). A positive TCR means that resistance increases as temperature
increases. For example, a resistor with a specification of 10 ppm/°C will not increase in
resistance by more than 0.000010 Ω per ohm over a 1 °C increase of the resistor temperature
or by more than .00010 Ω per ohm over a 10 °C increase.

Telnet

A software utility that attempts to contact and interrogate another specific device in a
network. Telnet is resident in Windows OS.

terminal

Point at which a wire (or wires) connects to a wiring panel or connector. Wires are usually
secured in terminals by screw- or lever-and-spring actuated gates with small screw- or
spring-loaded clamps.

terminal emulator

A command-line shell that facilitates the issuance of low-level commands to a data logger or
some other compatible device. A terminal emulator is available in most data logger support

Appendix B. Glossary 290

software available from Campbell Scientific.

thermistor

A thermistor is a temperature measurement device with a resistive element that changes in
resistance with temperature. The change is wide, stable, and well characterized. The output
of a thermistor is usually non-linear, so measurement requires linearization by means of a
Steinhart-Hart or polynomial equation. CRBasic instructions Therm107(), Therm108(), and
Therm109() use Steinhart-Hart equations.

throughput rate

Rate that a measurement can be taken, scaled to engineering units, and the stored in a final-
memory data table. The data logger has the ability to scan sensors at a rate exceeding the
throughput rate. The primary factor determining throughput rate is the processing
programmed into the CRBasic program. In sequential-mode operation, all processing called
for by an instruction must be completed before moving on to the next instruction.

time domain

Time domain describes data graphed on an X-Y plot with time on the X axis. Time series data
is in the time domain.

TLS

Transport Layer Security. An Internet communications security protocol.

TOA5

Also called ASCII, Long Header. Data stored in a comma separated format. Header
information for each column is included, along with field names and units of measure if they
are available. Table output ascii version 5. See the LoggerNet manual appendix for details on
differnet file formats.

TOACI1

Also called ASCII, Short Header. Data stored in a comma separated format. Header
information for each of the columns is included. Table output ASCII version 1. See the
LoggerNet manual appendix for details on differnet file formats.

Appendix B. Glossary 291

TOB1

Binary. Data stored in a binary format. Though this format saves disk storage space, it must
be converted before it is usable in other programs. Table output binary version 1. See the
LoggerNet manual appendix for details on differnet file formats.

TOB3

Binary. Data stored to a card in a binary format. Table output binary version 1. See the
LoggerNet manual appendix for details on differnet file formats.

toggle

To reverse the current power state.

TTL

Transistor-to-Transistor Logic. A serial protocol using 0 VDC and 5 VDC as logic signal levels.

Tx

Transmit

U

UART

Universal Asynchronous Receiver/Transmitter for asynchronous serial communications.

UID

Unique identifier

UINT2

Data type used for efficient storage of totalized pulse counts, port status (status of 16 ports
stored in one variable, for example) or integer values that store binary flags.

Appendix B. Glossary 292

unconditioned output

The fundamental output of a sensor, or the output of a sensor before scaling factors are
applied.

UPS

Uninterruptible Power Supply. A UPS can be constructed for most data logger applications
using ac line power, a solar panel, an ac/ac or ac/dc wall adapter, a charge controller, and a
rechargeable battery.

URI

Uniform Resource Identifier

URL

Uniform Resource Locator

user

Individuals who have been added to an organization account. Users are assigned
permissions via the Security Groups application.

user program

The CRBasic program written by you in Short Cut program wizard.

USR drive

A portion of memory dedicated to the storage of image or other files.

V

VAC

Volts alternating current.

variable

A packet of memory given an alphanumeric name.

Appendix B. Glossary 293

VDC

Volts direct current.

VisualWeather

Data logger support software specialized for weather and agricultural applications. The
software allows you to initialize the setup, interrogate the station, display data, and generate
reports from one or more weather stations.

volt meter

An inexpensive and readily available device useful in troubleshooting data acquisition
system faults.

voltage divider

A circuit of resistors that ratiometrically divides voltage. For example, a simple two-resistor
voltage divider can be used to divide a voltage in half. So, when fed through the voltage
divider, 1 mV becomes 500 µV, 10 mV becomes 5 mV, and so forth. Resistive-bridge circuits
are voltage dividers.

volts

SI unit for electrical potential.

VSPECT®

® A registered trademark for Campbell Scientific's proprietary spectral-analysis, frequency
domain, vibrating wire measurement technique.

W

watchdog timer

An error-checking system that examines the processor state, software timers, and program-
related counters when the CRBasic program is running. The following will cause watchdog
timer resets, which reset the processor and CRBasic program execution: processor bombed,
processor neglecting standard system updates, counters are outside the limits, voltage
surges, and voltage transients. When a reset occurs, a counter is incremented in the

Appendix B. Glossary 294

WatchdogTimer entry of the Status table. A low number (1 to 10) of watchdog timer resets is
of concern, but normally indicates that the situation should just be monitored. A large
number of errors (>10) accumulating over a short period indicates a hardware or software
problem. Consult with a Campbell Scientific support engineer.

weather-tight

Describes an instrumentation enclosure impenetrable by common environmental
conditions. During extraordinary weather events, however, seals on the enclosure may be
breached.

web API

Application Programming Interface

wild card

A character or expression that substitutes for any other character or expression.

X

XML

Extensible markup language.

Τ

τ

Time constant

Appendix B. Glossary 295

Limited warranty
Covered equipment is warranted/guaranteed against defects in materials and workmanship
under normal use and service for the period listed on your sales invoice or the product order
information web page. The covered period begins on the date of shipment unless otherwise
specified. For a repair to be covered under warranty, the following criteria must be met:

1. There must be a defect in materials or workmanship that affects form, fit, or function of the
device.

2. The defect cannot be the result of misuse.

3. The defect must have occurred within a specified period of time; and

4. The determination must be made by a qualified technician at a Campbell Scientific Service
Center/ repair facility.

The following is not covered:

1. Equipment which has been modified or altered in any way without the written permission of
Campbell Scientific.

2. Batteries; and

3. Any equipment which has been subjected to misuse, neglect, acts of God or damage in transit.

Campbell Scientific regional offices handle repairs for customers within their territories. Please
see the back page of the manual for a list of regional offices or visit
www.campbellsci.com/contact to determine which Campbell Scientific office serves your
country. For directions on how to return equipment, see Assistance.

Other manufacturer's products, that are resold by Campbell Scientific, are warranted only to the
limits extended by the original manufacturer.

CAMPBELL SCIENTIFIC EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Campbell Scientific hereby
disclaims, to the fullest extent allowed by applicable law, any and all warranties and conditions
with respect to the products, whether express, implied, or statutory, other than those expressly
provided herein.

Campbell Scientific will, as a default, return warranted equipment by surface carrier prepaid.
However, the method of return shipment is at Campbell Scientific's sole discretion. Campbell
Scientific will not reimburse the claimant for costs incurred in removing and/or reinstalling
equipment. This warranty and the Company’s obligation thereunder is in lieu of all other

https://www.campbellsci.com/contact

warranties, expressed or implied, including those of suitability and fitness for a particular
purpose. Campbell Scientific is not liable for consequential damage.

In the event of any conflict or inconsistency between the provisions of this Warranty and the
provisions of Campbell Scientific’s Terms, the provisions of Campbell Scientific’s Terms shall
prevail. Furthermore, Campbell Scientific’s Terms are hereby incorporated by reference into this
Warranty. To view Terms and conditions that apply to Campbell Scientific, Logan, UT, USA, see
Terms and Conditions . To view terms and conditions that apply to Campbell Scientific offices
outside of the United States, contact the regional office that serves your country.

Acknowledgements
lwIP v 2.1.1, LIBSSH2 v. 1.8.0, and Newlib

Copyright 2023 Campbell Scientific.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Mbed TLS v. 3.1.0

Copyright 2023 Campbell Scientific.

Apache License

https://www.campbellsci.com/terms#warranty
https://www.campbellsci.com/terms#warranty

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined
by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this
License.

"Source" form shall mean the preferred form for making modifications, including but not limited
to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this
License, Derivative Works shall not include works that remain separable from, or merely link (or
bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or
Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this
definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic
mailing lists, source code control systems, and issue tracking systems that are managed by, or on

http://www.apache.org/licenses/

behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding
communication that is conspicuously marked or otherwise designated in writing by the copyright
owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly
perform, sublicense, and distribute the Work and such Derivative Works in Source or Object
form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s) was submitted.
If You institute patent litigation against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form, provided
that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the
files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within such
NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and wherever such third-party notices

normally appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License.

You may add Your own attribution notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided that such additional attribution
notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms
and conditions of this License, without any additional terms or conditions. Notwithstanding the
above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the NOTICE
file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor
provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including,
without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
determining the appropriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate and
grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages,
including any direct, indirect, special, incidental, or consequential damages of any character
arising as a result of this License or out of the use or inability to use the Work (including but not
limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any
and all other commercial damages or losses), even if such Contributor has been advised of the
possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty,
indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility,

not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold
each Contributor harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the fields
enclosed by brackets "[]" replaced with your own identifying information. (Don't include the
brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We
also recommend that a file or class name and description of purpose be included on the same
"printed page" as the copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance with the License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and
limitations under the License.

Assistance
Products may not be returned without prior authorization. Please inform us before returning
equipment and obtain a return material authorization (RMA) number whether the repair is under
warranty/guarantee or not. See Limited warranty for information on covered equipment.

Campbell Scientific regional offices handle repairs for customers within their territories. Please
see the back page of the manual for a list of regional offices or visit
www.campbellsci.com/contact to determine which Campbell Scientific office serves your
country.

When returning equipment, a RMA number must be clearly marked on the outside of the
package. Please state the faults as clearly as possible. Quotations for repairs can be given on
request.

It is the policy of Campbell Scientific to protect the health of its employees and provide a safe
working environment. In support of this policy, when equipment is returned to Campbell
Scientific, Logan, UT, USA, it is mandatory that a “Declaration of Hazardous Material and
Decontamination” form be received before the return can be processed. If the form is not

http://www.apache.org/licenses/LICENSE-2.0
https://www.campbellsci.com/contact
https://www.campbellsci.com/decontamination-form
https://www.campbellsci.com/decontamination-form

received within 5 working days of product receipt or is incomplete, the product will be returned
to the customer at the customer’s expense. For details on decontamination standards specific to
your country, please reach out to your regional Campbell Scientific office.

NOTE:
All goods that cross trade boundaries may be subject to some form of fee (customs
clearance, duties or import tax). Also, some regional offices require a purchase order upfront
if a product is out of the warranty period. Please contact your regional Campbell Scientific
office for details.

Safety
DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING, USING, MAINTAINING, AND WORKING ON OR AROUND TRIPODS,
TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.
FAILURE TO PROPERLY AND COMPLETELY ASSEMBLE, INSTALL, OPERATE, USE, AND MAINTAIN TRIPODS, TOWERS, AND
ATTACHMENTS, AND FAILURE TO HEED WARNINGS, INCREASES THE RISK OF DEATH, ACCIDENT, SERIOUS INJURY, PROPERTY
DAMAGE, AND PRODUCT FAILURE. TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE HAZARDS. CHECK WITH YOUR
ORGANIZATION'S SAFETY COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED PROTECTIVE EQUIPMENT PRIOR TO
PERFORMING ANY WORK.

Use tripods, towers, and attachments to tripods and towers only for purposes for which they are designed. Do not exceed design limits.
Be familiar and comply with all instructions provided in product manuals. Manuals are available at www.campbellsci.com You are
responsible for conformance with governing codes and regulations, including safety regulations, and the integrity and location of
structures or land to which towers, tripods, and any attachments are attached. Installation sites should be evaluated and approved by a
qualified engineer. If questions or concerns arise regarding installation, use, or maintenance of tripods, towers, attachments, or electrical
connections, consult with a licensed and qualified engineer or electrician.

General
 l Protect from over-voltage.
 l Protect electrical equipment from water.
 l Protect from electrostatic discharge (ESD).
 l Protect from lightning.
 l Prior to performing site or installation work, obtain required approvals and permits. Comply with all governing structure-height

regulations, such as those of the FAA in the USA.
 l Use only qualified personnel for installation, use, and maintenance of tripods and towers, and any attachments to tripods and

towers. The use of licensed and qualified contractors is highly recommended.
 l Read all applicable instructions carefully and understand procedures thoroughly before beginning work.
 l Wear a hardhat and eye protection, and take other appropriate safety precautions while working on or around tripods and

towers.
 l Do not climb tripods or towers at any time, and prohibit climbing by other persons. Take reasonable precautions to secure tripod

and tower sites from trespassers.
 l Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical
 l You can be killed or sustain serious bodily injury if the tripod, tower, or attachments you are installing, constructing, using, or

maintaining, or a tool, stake, or anchor, come in contact with overhead or underground utility lines.
 l Maintain a distance of at least one-and-one-half times structure height, 6 meters (20 feet), or the distance required by applicable

law, whichever is greater, between overhead utility lines and the structure (tripod, tower, attachments, or tools).
 l Prior to performing site or installation work, inform all utility companies and have all underground utilities marked.

http://www.campbellsci.com/contact
http://www.campbellsci.com/contact
https://www.campbellsci.com/

 l Comply with all electrical codes. Electrical equipment and related grounding devices should be installed by a licensed and
qualified electrician.

 l Only use power sources approved for use in the country of installation to power Campbell Scientific devices.

Elevated Work and Weather
 l Exercise extreme caution when performing elevated work.
 l Use appropriate equipment and safety practices.
 l During installation and maintenance, keep tower and tripod sites clear of un-trained or non-essential personnel. Take

precautions to prevent elevated tools and objects from dropping.
 l Do not perform any work in inclement weather, including wind, rain, snow, lightning, etc.

Internal Battery
 l Be aware of fire, explosion, and severe-burn hazards.
 l Misuse or improper installation of the internal lithium battery can cause severe injury.
 l Do not recharge, disassemble, heat above 100 °C (212 °F), solder directly to the cell, incinerate, or expose contents to

water. Dispose of spent batteries properly.
Use and disposal of batteries

 l Where batteries need to be transported to the installation site, ensure they are packed to prevent the battery terminals shorting
which could cause a fire or explosion. Especially in the case of lithium batteries, ensure they are packed and transported in a way
that complies with local shipping regulations and the safety requirements of the carriers involved.

 l When installing the batteries follow the installation instructions very carefully. This is to avoid risk of damage to the equipment
caused by installing the wrong type of battery or reverse connections.

 l When disposing of used batteries, it is still important to avoid the risk of shorting. Do not dispose of the batteries in a fire as there
is risk of explosion and leakage of harmful chemicals into the environment. Batteries should be disposed of at registered
recycling facilities.

Avoiding unnecessary exposure to radio transmitter radiation
 l Where the equipment includes a radio transmitter, precautions should be taken to avoid unnecessary exposure to radiation from

the antenna. The degree of caution required varies with the power of the transmitter, but as a rule it is best to avoid getting
closer to the antenna than 20 cm (8 inches) when the antenna is active. In particular keep your head away from the antenna. For
higher power radios (in excess of 1 W ERP) turn the radio off when servicing the system, unless the antenna is installed away from
the station, e.g. it is mounted above the system on an arm or pole.

Maintenance
 l Periodically (at least yearly) check for wear and damage, including corrosion, stress cracks, frayed cables, loose cable clamps,

cable tightness, etc. and take necessary corrective actions.
 l Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS, THE
CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING FROM IMPROPER INSTALLATION, USE, OR MAINTENANCE OF TRIPODS,
TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.

Australia
Location:
Phone:
Email:
Website:

Garbutt, QLD Australia
61.7.4401.7700
info@campbellsci.com.au
www.campbellsci.com.au

Brazil
Location:
Phone:
Email:
Website:

São Paulo, SP Brazil
11.3732.3399
vendas@campbellsci.com.br
www.campbellsci.com.br

Canada
Location:
Phone:
Email:
Website:

Edmonton, AB Canada
780.454.2505
dataloggers@campbellsci.ca
www.campbellsci.ca

China
Location:
Phone:
Email:
Website:

Beijing, P. R. China
86.10.6561.0080
info@campbellsci.com.cn
www.campbellsci.com.cn

Costa Rica
Location:
Phone:
Email:
Website:

San Pedro, Costa Rica
506.2280.1564
info@campbellsci.cc
www.campbellsci.cc

France
Location:
Phone:
Email:
Website:

Montrouge, France
0033.0.1.56.45.15.20
info@campbellsci.fr
www.campbellsci.fr

Germany
Location:
Phone:
Email:
Website:

Bremen, Germany
49.0.421.460974.0
info@campbellsci.de
www.campbellsci.de

India
Location:
Phone:
Email:
Website:

New Delhi, DL India
91.11.46500481.482
info@campbellsci.in
www.campbellsci.in

South Africa
Location:
Phone:
Email:
Website:

Stellenbosch, South Africa
27.21.8809960
sales@campbellsci.co.za
www.campbellsci.co.za

Spain
Location:
Phone:
Email:
Website:

Barcelona, Spain
34.93.2323938
info@campbellsci.es
www.campbellsci.es

Thailand
Location:
Phone:
Email:
Website:

Bangkok, Thailand
66.2.719.3399
info@campbellsci.asia
www.campbellsci.asia

UK
Location:
Phone:
Email:
Website:

Shepshed, Loughborough, UK
44.0.1509.601141
sales@campbellsci.co.uk
www.campbellsci.co.uk

USA
Location:
Phone:
Email:
Website:

Logan, UT USA
435.227.9120
info@campbellsci.com
www.campbellsci.com

Campbell Scientific Regional Offices

mailto:info@campbellsci.com.au
http://www.campbellsci.com.au/
mailto:vendas@campbellsci.com.br
http://www.campbellsci.com.br/
mailto:dataloggers@campbellsci.ca
http://www.campbellsci.ca/
mailto:info@campbellsci.com.cn
http://www.campbellsci.com.cn/
mailto:info@campbellsci.cc
http://www.campbellsci.cc/
mailto:info@campbellsci.fr
http://www.campbellsci.fr/
mailto:info@campbellsci.de
http://www.campbellsci.de/
mailto:info@campbellsci.in
http://www.campbellsci.in/
mailto:sales@campbellsci.co.za
http://www.campbellsci.co.za/
mailto:info@campbellsci.es
http://www.campbellsci.es/
mailto:info@campbellsci.asia
http://www.campbellsci.asia/
mailto:sales@campbellsci.co.uk
http://www.campbellsci.co.uk/
mailto:info@campbellsci.com
http://www.campbellsci.com/

	1. Introduction
	2. Precautions
	3. Initial inspection
	4. CR1000X data acquisition system components
	4.1 The CR1000X Datalogger
	4.1.1 Overview
	4.1.2 Operations
	4.1.3 Programs

	4.2 Sensors

	5. Wiring panel and terminal functions
	5.1 Power input
	5.1.1 Powering a data logger with a vehicle
	5.1.2 Power LED indicator

	5.2 Power output
	5.3 Grounds
	5.4 Communications ports
	5.4.1 USB device port
	5.4.2 Ethernet port
	5.4.3 C terminals for communications
	5.4.3.1 SDI-12 ports
	5.4.3.2 RS-232, RS-422, RS-485, TTL, and LVTTL ports
	5.4.3.3 SDM ports

	5.4.4 CS I/O port
	5.4.5 RS-232/CPI port

	5.5 Programmable logic control

	6. Setting up the CR1000X
	6.1 Setting up communications with the data logger
	6.1.1 USB or RS-232 communications
	6.1.2 Virtual Ethernet over USB (RNDIS)
	6.1.3 Ethernet communications option
	6.1.3.1 Configuring data logger Ethernet settings
	6.1.3.2 Ethernet LEDs
	6.1.3.3 Setting up Ethernet communications between the data logger and computer

	6.2 Testing communications with EZSetup
	6.3 Making the software connection
	6.4 Creating a Short Cut data logger program
	6.5 Sending a program to the data logger

	7. Working with data
	7.1 Default data tables
	7.2 Collecting data
	7.2.1 Collecting data using LoggerNet
	7.2.2 Collecting data using PC400

	7.3 Viewing historic data
	7.4 Data types and formats
	7.4.1 Variables
	7.4.2 Constants
	7.4.3 Data storage

	7.5 About data tables
	7.5.1 Table definitions
	7.5.1.1 Header rows
	7.5.1.2 Data records

	7.6 Creating data tables in a program

	8. Data memory
	8.1 Data tables
	8.2 Memory allocation
	8.3 SRAM
	8.3.1 USR drive

	8.4 Flash memory
	8.4.1 CPU drive

	8.5 MicroSD (CRD: drive)
	8.5.1 Formatting microSD cards
	8.5.2 MicroSD card precautions
	8.5.3 Act LED indicator
	8.5.4 Card data retrieval
	8.5.4.1 Via a communications link
	8.5.4.2 Card transport to computer

	9. Measurements
	9.1 Voltage measurements
	9.1.1 Single-ended measurements
	9.1.2 Differential measurements
	9.1.2.1 Reverse differential

	9.2 Current-loop measurements
	9.2.1 Example current-loop measurement connections

	9.3 Resistance measurements
	9.3.1 Resistance measurements with voltage excitation
	9.3.2 RTD and PRT
	9.3.3 Strain measurements
	9.3.4 AC excitation
	9.3.5 Accuracy for resistance measurements

	9.4 Thermocouple Measurements
	9.5 Period-averaging measurements
	9.6 Pulse measurements
	9.6.1 Low-level AC measurements
	9.6.2 High-frequency measurements
	9.6.2.1 P terminals
	9.6.2.2 C terminals

	9.6.3 Switch-closure and open-collector measurements
	9.6.3.1 P Terminals
	9.6.3.2 C terminals

	9.6.4 Edge timing and edge counting
	9.6.4.1 Single edge timing
	9.6.4.2 Multiple edge counting
	9.6.4.3 Timer input NAN conditions

	9.6.5 Quadrature measurements
	9.6.6 Pulse measurement tips
	9.6.6.1 Input filters and signal attenuation
	9.6.6.2 Pulse count resolution

	9.7 Vibrating wire measurements
	9.7.1 VSPECT®

	9.8 Sequential and pipeline processing modes
	9.8.1 Sequential mode
	9.8.2 Pipeline mode
	9.8.3 Slow Sequences

	10. Communications protocols
	10.1 General serial communications
	10.1.1 RS-232
	10.1.2 RS-485
	10.1.3 RS-422
	10.1.4 TTL
	10.1.5 LVTTL
	10.1.6 TTL-Inverted
	10.1.7 LVTTL-Inverted

	10.2 Modbus communications
	10.2.1 About Modbus
	10.2.2 Modbus protocols
	10.2.3 Understanding Modbus Terminology
	10.2.4 Connecting Modbus devices
	10.2.5 Modbus client-server protocol
	10.2.6 About Modbus programming
	10.2.6.1 Endianness
	10.2.6.2 Function codes

	10.2.7 Modbus information storage
	10.2.7.1 Registers
	10.2.7.2 Coils
	10.2.7.3 Data Types
	Unsigned 16-bit integer
	Signed 16-bit integer
	Signed 32-bit integer
	Unsigned 32-bit integer
	32-Bit floating point

	10.2.8 Modbus tips and troubleshooting
	10.2.8.1 Error codes
	Result code -01: illegal function
	Result code -02: illegal data address
	Result code -11: COM port error

	10.3 Internet communications
	10.3.1 IP address
	10.3.2 HTTPS server
	10.3.3 FTP server

	10.4 MQTT
	10.4.1 Sending data to CAMPBELL CLOUD
	10.4.1.1 Configure the data logger
	10.4.1.2 Program the data logger
	10.4.1.3 Set up the CLOUD

	10.4.2 Sending data to another MQTT broker
	10.4.2.1 Configure the data logger
	10.4.2.2 Program the data logger
	10.4.2.3 Check broker for incoming data

	10.5 DNP3 communications
	10.6 Serial peripheral interface (SPI) and I2C
	10.7 PakBus communications
	10.8 SDI-12 communications
	10.8.1 SDI-12 transparent mode
	10.8.1.1 Watch command (sniffer mode)
	10.8.1.2 SDI-12 transparent mode commands
	10.8.1.3 aXLOADOS! command

	10.8.2 SDI-12 programmed mode/recorder mode
	10.8.3 Programming the data logger to act as an SDI-12 sensor
	10.8.4 SDI-12 power considerations

	11. Installation
	11.1 Default program
	11.2 Data logger security
	11.2.1 Device Configuration Utility Security Check
	11.2.1.1 PakBus
	11.2.1.2 Web services
	HTTP
	HTTPS

	11.2.1.3 Network services
	FTP
	Telnet
	Ping

	11.2.1.4 Operating System Status

	11.2.2 Other security measures reviewed by Device Configuration Utility
	11.2.2.1 PakBus TCP Enabled
	11.2.2.2 Account manager
	11.2.2.3 IP Broadcast Filtered
	11.2.2.4 Other communications protocols

	11.2.3 TLS
	11.2.3.1 Obtaining certificate and private key
	From a Certificate Authority
	From your IT department

	11.2.3.2 Applying keys and certificates to CSI Web Server

	11.2.4 Other security measures
	11.2.4.1 CRBasic
	11.2.4.2 Other
	11.2.4.3 The .csipasswd file
	Deprecated API functionality

	11.3 Web interface
	11.4 Power budgeting
	11.5 Field work
	11.6 Data logger enclosures
	11.7 Electrostatic discharge and lightning protection

	12. CR1000X maintenance
	12.1 Data logger calibration
	12.1.1 About background calibration

	12.2 Internal battery
	12.2.1 Replacing the internal battery

	12.3 Updating the operating system
	12.3.1 Sending an operating system to a local data logger
	12.3.2 Sending an operating system to a remote data logger

	12.4 gzip
	12.5 File management via powerup.ini
	12.5.1 Syntax
	12.5.2 Example powerup.ini files

	13. Tips and troubleshooting
	13.1 Checking station status
	13.1.1 Viewing station status
	13.1.2 Watchdog errors
	13.1.3 Results for last program compiled
	13.1.4 Skipped scans
	13.1.5 Skipped records
	13.1.6 Variable out of bounds
	13.1.7 Battery voltage

	13.2 Understanding NAN and INF occurrences
	13.3 Timekeeping
	13.3.1 Clock best practices
	13.3.2 Time stamps
	13.3.3 Avoiding time skew

	13.4 CRBasic program errors
	13.4.1 Program does not compile
	13.4.2 Program compiles but does not run correctly

	13.5 Resetting the data logger
	13.5.1 Processor reset
	13.5.2 Program send reset
	13.5.3 Manual data table reset
	13.5.4 Formatting drives
	13.5.5 Full memory reset

	13.6 Troubleshooting power supplies
	13.7 Using terminal mode
	13.7.1 Serial talk through and comms watch
	13.7.2 SDI-12 transparent mode
	13.7.2.1 Watch command (sniffer mode)
	13.7.2.2 SDI-12 transparent mode commands

	13.8 Ground loops
	13.8.1 Common causes
	13.8.2 Detrimental effects
	13.8.3 Severing a ground loop
	13.8.4 Soil moisture example

	13.9 Improving voltage measurement quality
	13.9.1 Deciding between single-ended or differential measurements
	13.9.2 Minimizing ground potential differences
	13.9.2.1 Ground potential differences

	13.9.3 Detecting open inputs
	13.9.4 Minimizing power-related artifacts
	13.9.4.1 Minimizing electronic noise

	13.9.5 Filtering to reduce measurement noise
	13.9.5.1 CR1000X filtering details

	13.9.6 Minimizing settling errors
	13.9.6.1 Measuring settling time

	13.9.7 Factors affecting accuracy
	13.9.7.1 Measurement accuracy example

	13.9.8 Minimizing offset voltages
	13.9.8.1 Compensating for offset voltage
	13.9.8.2 Measuring ground reference offset voltage

	13.10 Field calibration
	13.11 File system error codes
	13.12 File name and resource errors
	13.13 Background calibration errors

	14. Information tables and settings (advanced)
	14.1 DataTableInfo table system information
	14.1.1 DataFillDays
	14.1.2 DataRecordSize
	14.1.3 DataTableName
	14.1.4 RecNum
	14.1.5 SecsPerRecord
	14.1.6 SkippedRecord
	14.1.7 TimeStamp

	14.2 Status table system information
	14.2.1 Battery
	14.2.2 BuffDepth
	14.2.3 CalCurrent
	14.2.4 CalGain
	14.2.5 CalOffset
	14.2.6 CalRefOffset
	14.2.7 CalRefSlope
	14.2.8 CalVolts
	14.2.9 CardStatus
	14.2.10 CommsMemFree
	14.2.11 CompileResults
	14.2.12 ErrorCalib
	14.2.13 FullMemReset
	14.2.14 LastSystemScan
	14.2.15 LithiumBattery
	14.2.16 Low12VCount
	14.2.17 MaxBuffDepth
	14.2.18 MaxProcTime
	14.2.19 MaxSystemProcTime
	14.2.20 MeasureOps
	14.2.21 MeasureTime
	14.2.22 MemoryFree
	14.2.23 MemorySize
	14.2.24 Messages
	14.2.25 OSDate
	14.2.26 OSSignature
	14.2.27 OSVersion
	14.2.28 PakBusRoutes
	14.2.29 PanelTemp
	14.2.30 PortConfig
	14.2.31 PortStatus
	14.2.32 ProcessTime
	14.2.33 ProgErrors
	14.2.34 ProgName
	14.2.35 ProgSignature
	14.2.36 RecNum
	14.2.37 RevBoard
	14.2.38 RunSignature
	14.2.39 SerialNumber
	14.2.40 SkippedScan
	14.2.41 SkippedSystemScan
	14.2.42 StartTime
	14.2.43 StartUpCode
	14.2.44 StationName
	14.2.45 SW12Volts
	14.2.46 SystemProcTime
	14.2.47 TimeStamp
	14.2.48 VarOutOfBound
	14.2.49 WatchdogErrors
	14.2.50 WiFiUpdateReq

	14.3 CPIStatus system information
	14.3.1 BusLoad
	14.3.2 ModuleReportCount
	14.3.3 ActiveModules
	14.3.4 BuffErr (buffer error)
	14.3.5 RxErrMax
	14.3.6 TxErrMax
	14.3.7 FrameErr (frame errors)
	14.3.8 ModuleInfo array

	14.4 Settings
	14.4.1 Baudrate
	14.4.2 Beacon
	14.4.3 CentralRouters
	14.4.4 CommsMemAlloc
	14.4.5 ConfigComx
	14.4.6 CSIOxnetEnable
	14.4.7 CSIOInfo
	14.4.8 DisableLithium
	14.4.9 DeleteCardFilesOnMismatch
	14.4.10 DNS
	14.4.11 EthernetInfo
	14.4.12 EthernetPower
	14.4.13 FilesManager
	14.4.14 FTPEnabled
	14.4.15 FTPPassword
	14.4.16 FTPPort
	14.4.17 FTPUserName
	14.4.18 HTTPEnabled
	14.4.19 HTTPHeader
	14.4.20 HTTPPort
	14.4.21 HTTPSEnabled
	14.4.22 HTTPSPort
	14.4.23 IncludeFile
	14.4.24 IPAddressCSIO
	14.4.25 IPBroadcastFiltered
	14.4.26 IPAddressEth
	14.4.27 IPGateway
	14.4.28 IPGatewayCSIO
	14.4.29 IPMaskCSIO
	14.4.30 IPMaskEth
	14.4.31 IPTrace
	14.4.32 IPTraceCode
	14.4.33 IPTraceComport
	14.4.34 IsRouter
	14.4.35 KeepAliveURL (Ping keep alive URL)
	14.4.36 KeepAliveMin (Ping keep alive timeout value)
	14.4.37 MaxPacketSize
	14.4.38 Neighbors
	14.4.39 NTPServer
	14.4.40 PakBusAddress
	14.4.41 PakBusEncryptionKey
	14.4.42 PakBusNodes
	14.4.43 PakBusPort
	14.4.44 PakBusTCPClients
	14.4.45 PakBusTCPEnabled
	14.4.46 PakBusTCPPassword
	14.4.47 PingEnabled
	14.4.48 PCAP
	14.4.49 pppDial
	14.4.50 pppDialResponse
	14.4.51 pppInfo
	14.4.52 pppInterface
	14.4.53 pppIPAddr
	14.4.54 pppPassword
	14.4.55 pppUsername
	14.4.56 RouteFilters
	14.4.57 RS232Handshaking
	14.4.58 RS232Power
	14.4.59 RS232Timeout
	14.4.60 Security(1), Security(2), Security(3)
	14.4.61 ServicesEnabled
	14.4.62 TCPClientConnections
	14.4.63 TCP_MSS
	14.4.64 TCPPort
	14.4.65 TelnetEnabled
	14.4.66 TLSConnections (Max TLS Server Connections)
	14.4.67 TLSPassword
	14.4.68 TLSStatus
	14.4.69 USBConfig (Configure USB)
	14.4.70 USBEnumerate
	14.4.71 USRDriveFree
	14.4.72 USRDriveSize
	14.4.73 UTCOffset
	14.4.74 Verify
	14.4.75 MQTT settings
	14.4.75.1 CampbellCloudEnable (Enable or disable CAMPBELL CLOUD)
	14.4.75.2 CloudConfigURL (CLOUD configuration URL)
	14.4.75.3 MQTTBaseTopic (MQTT base topic)
	14.4.75.4 MQTTCleanSession (MQTT connection)
	14.4.75.5 MQTTClientID (MQTT client identifier)
	14.4.75.6 MQTTEnable (Enable or disable MQTT)
	14.4.75.7 MQTTEndpoint (MQTT broker URL)
	14.4.75.8 MQTTKeepAlive (MQTT keep alive)
	14.4.75.9 MQTTPassword (MQTT password)
	14.4.75.10 MQTTPortNumber (MQTT port number)
	14.4.75.11 MQTTStatusInterval (Status information publish interval)
	14.4.75.12 MQTTState (MQTT state)
	14.4.75.13 MQTTStateInterval (State publish interval)
	14.4.75.14 MQTTUserName (MQTT user name)
	14.4.75.15 MQTTWillMessage (MQTT last will message)
	14.4.75.16 MQTTWillQoS (Quality of service)
	14.4.75.17 MQTTWillRetain (MQTT last will message retained by broker)
	14.4.75.18 MQTTWillTopic (MQTT last will topic)

	14.4.76 GOES settings
	14.4.76.1 GOESComPort
	14.4.76.2 GOESEnabled
	14.4.76.3 GOESGainSetting
	14.4.76.4 GOESMsgWindow
	14.4.76.5 GOESPlatformID
	14.4.76.6 GOESRepeatCount
	14.4.76.7 GOESRTBaudRate
	14.4.76.8 GOESRTChannel
	14.4.76.9 GOESRTInterval
	14.4.76.10 GOESSTBaudRate
	14.4.76.11 GOESSTChannel
	14.4.76.12 GOESSTInterval
	14.4.76.13 GOESSTOffset

	15. CR1000X specifications
	15.1 System specifications
	15.2 Physical specifications
	15.3 Power requirements
	15.4 Power output specifications
	15.4.1 System power out limits (when powered with 12 VDC)
	15.4.2 12 V and SW12 V power output terminals
	15.4.3 5 V fixed output
	15.4.4 C as power output
	15.4.5 CS I/O pin 1
	15.4.6 Voltage excitation

	15.5 Analog measurement specifications
	15.5.1 Voltage measurements
	15.5.2 Resistance measurement specifications
	15.5.3 Period-averaging measurement specifications
	15.5.4 Current-loop measurement specifications

	15.6 Pulse measurement specifications
	15.6.1 Switch closure input
	15.6.2 High-frequency input
	15.6.3 Low-level AC input

	15.7 Digital input/output specifications
	15.7.1 Switch closure input
	15.7.2 High-frequency input
	15.7.3 Edge timing
	15.7.4 Edge counting
	15.7.5 Quadrature input
	15.7.6 Pulse-width modulation

	15.8 Communications specifications
	15.9 Standards compliance specifications

	Appendix A. MQTT commands
	A.1 MQTT topic structure
	A.2 MQTT automatic publish topics
	A.2.1 state
	A.2.2 statusInfo
	A.2.3 watchdogEvent

	A.3 MQTT command and control (automatic subscription topics)
	A.3.1 Command response
	A.3.2 OS download
	A.3.3 CRBasic program download
	A.3.4 New mqtt configuration
	A.3.5 Edit constant table (editConst)
	A.3.6 Reboot data logger
	A.3.7 File control
	A.3.7.1 list

	A.3.8 Settings
	A.3.8.1 set
	A.3.8.2 download from CLOUD
	download

	A.3.8.3 Delete a file
	A.3.8.4 Stop
	A.3.8.5 Run
	A.3.8.6 Upload to CLOUD
	A.3.8.7 publish
	A.3.8.8 apply

	A.3.9 Historic Data Collection
	A.3.10 Set Public Variable
	A.3.10.1 setVar

	A.3.11 Get Public variable
	A.3.11.1 getVar

	A.3.12 Serial talkThru
	A.3.12.1 Talk through to sensor
	A.3.12.2 TalkThru from sensor
	A.3.12.3 Allowable Com port values

	Appendix B. Glossary

