

CR9000X Measurement and
Control System

Revision: 4/12

C o p y r i g h t © 1 9 9 5 - 2 0 1 2
C a m p b e l l S c i e n t i f i c , I n c .

Warranty
The CR9000X Measurement and Control System is warranted for thirty-six
(36) months subject to this limited warranty:

“PRODUCTS MANUFACTURED BY CAMPBELL SCIENTIFIC, INC. are
warranted by Campbell Scientific, Inc. (“Campbell”) to be free from defects in
materials and workmanship under normal use and service for twelve (12)
months from date of shipment unless otherwise specified in the corresponding
Campbell pricelist or product manual. Products not manufactured, but that are
re-sold by Campbell, are warranted only to the limits extended by the original
manufacturer. Batteries, fine-wire thermocouples, desiccant, and other
consumables have no warranty. Campbell's obligation under this warranty is
limited to repairing or replacing (at Campbell's option) defective products,
which shall be the sole and exclusive remedy under this warranty. The
customer shall assume all costs of removing, reinstalling, and shipping
defective products to Campbell. Campbell will return such products by surface
carrier prepaid within the continental United States of America. To all other
locations, Campbell will return such products best way CIP (Port of Entry)
INCOTERM® 2010, prepaid. This warranty shall not apply to any products
which have been subjected to modification, misuse, neglect, improper service,
accidents of nature, or shipping damage. This warranty is in lieu of all other
warranties, expressed or implied. The warranty for installation services
performed by Campbell such as programming to customer specifications,
electrical connections to products manufactured by Campbell, and product
specific training, is part of Campbell’s product warranty. CAMPBELL
EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Campbell is not liable for any special, indirect,
incidental, and/or consequential damages.”

Assistance
Products may not be returned without prior authorization. The following
contact information is for US and international customers residing in countries
served by Campbell Scientific, Inc. directly. Affiliate companies handle
repairs for customers within their territories. Please visit
www.campbellsci.com to determine which Campbell Scientific company serves
your country.

To obtain a Returned Materials Authorization (RMA), contact CAMPBELL
SCIENTIFIC, INC., phone (435) 227-9000. After an applications engineer
determines the nature of the problem, an RMA number will be issued. Please
write this number clearly on the outside of the shipping container. Campbell
Scientific's shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#_____
815 West 1800 North
Logan, Utah 84321-1784

For all returns, the customer must fill out a "Statement of Product Cleanliness
and Decontamination" form and comply with the requirements specified in it.
The form is available from our web site at www.campbellsci.com/repair. A
completed form must be either emailed to repair@campbellsci.com or faxed to
(435) 227-9106. Campbell Scientific is unable to process any returns until we
receive this form. If the form is not received within three days of product
receipt or is incomplete, the product will be returned to the customer at the
customer's expense. Campbell Scientific reserves the right to refuse service on
products that were exposed to contaminants that may cause health or safety
concerns for our employees.

CR9000X Table of Contents
PDF viewers: These page numbers refer to the printed version of this document. Use the
PDF reader bookmarks tab for links to specific sections.

Quick Start.. QS-1
QS1. Setting Up... QS-2

QS1.1 Installing RTDAQ.. QS-2
QS1.2 Opening Enclosure... QS-2
QS1.3 Connecting the RS232 Port/ Card Installation....................... QS-2
QS1.4 Powering the Logger.. QS-3
QS1.5 Setting Up Serial Communications....................................... QS-3
QS1.6 Setting Up IP Communications ... QS-9

QS2. Program Generator Basics .. QS-12
QS2.1 Program Generator Summary Window................................ QS-12
QS2.2 Program Generator Configuration Window......................... QS-13
QS2.3 Program Generator Scan Window QS-14
QS2.4 Program Generator Output Table Window.......................... QS-15
QS2.5 Program Generator Special Configuration........................... QS-16
QS2.6 Program Generator: Save and Download QS-17

QS3. RealTime Monitoring ... QS-18
QS5. View Data... QS-20
QS6. Comparison of CR9032 and CR9031... QS-21

Overview... OV-1
OV1. Physical Description ..OV-2

OV1.1 Basic System ...OV-2
OV1.2 Measurement Modules ..OV-7
OV1.3 Communication Interfaces ..OV-20

OV2. Memory and Programming Concepts ..OV-20
OV2.1 Memory ...OV-20
OV2.2 Measurements, Processing, Data Storage............................OV-21
OV2.3 Data Tables..OV-21

OV3. Commonly Used Peripherals ...OV-22
OV4. Support Software ...OV-23
OV5. Specifications...OV-27

1. Installation...1-1
1.1 Enclosure .. 1-1

1.1.1 Connecting Sensors... 1-1
1.1.2 Quick Connectors ... 1-1
1.1.3 Junction Boxes.. 1-2

1.2 System Power Requirements and Options.. 1-3
1.2.1 Power Supply and Charging Circuitry .. 1-3
1.2.2 Connecting to Vehicle Power Supply ... 1-5
1.2.3 Solar Panels... 1-6
1.2.4 External Battery Connection... 1-6
1.2.5 Safety Precautions... 1-7

i

CR9000X Table of Contents

1.3 Humidity Effects and Control ... 1-7
1.3.1 Desiccant ... 1-7
1.3.2 Nitrogen Purging... 1-7

1.4 Recommended Grounding Practices ... 1-8
1.4.1 Protection from Lightning... 1-8
1.4.2 Operational Input Voltage Limits: Effect on Measurements....... 1-8

1.5 Use of Digital Control Ports for Switching Relays............................... 1-9

2. Data Storage and Retrieval 2-1
2.1 Memory/Data Storage in CR9000X.. 2-1

2.1.1 Internal Flash Memory .. 2-1
2.1.2 Internal Synchronous DRAM.. 2-1
2.1.3 PCMCIA PC Card... 2-1

2.2 Internal Data Format ... 2-2
2.2.1 NAN and ±INF.. 2-3

2.3 Data Collection ... 2-5
2.3.1 The Collect Menu.. 2-5
2.3.2 Table Monitor Window Save to File... 2-7
2.3.3 File Control Files Retrieval ... 2-7
2.3.4 Logger Files Retrieval Via PCMCIA PC Card 2-8
2.3.5 Converting File Format .. 2-9

2.4 Data Format on Computer... 2-10
2.4.1 Data File Header Information ... 2-10
2.4.2 TOA5 ASCII File Format ... 2-13
2.4.3 TOB1 Binary File Format ... 2-14
2.4.4 TOB3 Binary File Format ... 2-14

3. CR9000X Measurement Details 3-1
3.1 Measurements using the CR9041 A/D.. 3-1

3.1.1 Analog Voltage Measurement Sequence 3-1
3.1.2 Single Ended and Differential Voltage Measurements 3-3
3.1.3 Signal Settling Time.. 3-8
3.1.4 Thermocouple Measurements ... 3-10
3.1.5 Bridge Resistance Measurements.. 3-18
3.1.6 Measurements Requiring AC Excitation................................... 3-20
3.1.7 Influence of Ground Loop on Measurements 3-20

3.2 CR9058E Isolation Module Measurements .. 3-21
3.2.1 CR9058E Supported Instructions.. 3-22
3.2.2 CR9058E Sampling, Noise and Filtering 3-24
3.2.3 CR9058E; Hard Setting the Filter Order................................... 3-27

3.3 CR9052 Filter Module Measurements .. 3-30
3.4 Pulse Count Measurements ... 3-35

3.4.1 CR9070 PulseCount Resolution.. 3-35
3.4.2 CR9071E PulseCount Resolution ... 3-37
3.4.3 CR9071E TimerIO for Measuring Frequency Inputs................ 3-38
3.4.4 High Frequency Pulse Measurements 3-38

4. CRBasic – Native Language Programming 4-1
4.1 Introduction to Writing CR9000X Programs.. 4-1

4.1.1 ShortCut .. 4-1
4.1.2 Program Generator .. 4-1

ii

CR9000X Table of Contents

4.1.3 CRBasic Program Editor... 4-2
4.1.4 Programming CRBASIC's "Basics":... 4-3

4.2 CRBasic Programming ... 4-6
4.2.1 Fundamental elements of CRBASIC include: 4-6
4.2.2 Numerical Entries ... 4-7
4.2.3 Programming Structure ... 4-7
4.2.4 Declarations .. 4-11
4.2.5 Constants... 4-19
4.2.6 Flags.. 4-19
4.2.7 Parameter Types.. 4-20
4.2.8 Data Tables ... 4-20
4.2.9 Measurement Timing and Processing 4-24
4.2.10 CRBasic Measurement Instructions.. 4-29
4.2.11 Expressions ... 4-34

4.3 Program Access to Data Tables .. 4-39

5. Program Declarations ..5-1

6. Data Table Declarations and Output Processing
Instructions ...6-1

6.1 Data Table Declaration ... 6-1
6.2 Trigger Modifiers ... 6-2
6.3 Export Data Instructions ... 6-11
6.4 Output Processing Instructions ... 6-13

7. Measurement Instructions7-1
7.1 Voltage Measurements ... 7-3
7.2 Thermocouple Measurements... 7-5
7.3 Resistive Bridge Measurements.. 7-9

7.3.1 Electrical Bridge Circuits.. 7-9
7.3.2 Bridge Excitation .. 7-9
7.3.3 Half Bridges .. 7-10
7.3.4 Full Bridges... 7-13

7.4 Self Measurements.. 7-15
7.5 Peripheral Devices .. 7-16
7.6 Pulse/Timing/State Measurements... 7-36
7.7 Serial Sensors ... 7-42
7.8 CR9052DC & CR9052IEPE Filter Module.. 7-43

8. Processing and Math Instructions8-1

9. Datalogger Control ...9-1
9.1 Program Structure/Control.. 9-1
9.2 Datalogger Status/Control .. 9-27
9.3 File Control... 9-53

10. Custom Keyboard Display Menus.......................10-1

iii

CR9000X Table of Contents

iv

11. String Functions .. 11-1
11.1 Expressions with Strings... 11-1

11.1.1 Constant Strings .. 11-1
11.1.2 Add Strings ... 11-1
11.1.3 Subtraction of Strings.. 11-1
11.1.4 String Conversion to/from Numeric.. 11-1
11.1.5 String Comparison Operators.. 11-2
11.1.6 Sample () Type Conversions and other Output Processing

Instructions .. 11-2
11.2 String Manipulation Functions.. 11-2

Appendices

A. Keywords and Predefined Constants....................A-1

B. Filter Module Available Scan RatesB-1

C. PC/CF Card Information..C-1

D. Status Table ...D-1

E. Glossary ...E-1
E.1 Terms... 1
E.2 Concepts .. 11

E.2.1 Accuracy, Precision, and Resolution ... 11

Index...Index-1

Quick Start

QS-1

Quick Start

QS1. Setting Up
QS1.1 Installing RTDAQ

A CD with one licensed copy of RTDAQ is provided with every CR9000X.
Locate and install RTDAQ onto a computer with Windows 2000, XP, or
Vista. It is best to install RTDAQ in a sub folder called RTDAQ under a
CampbellSci directory in your root directory.

QS1.2 Opening Enclosure

The CR9000XC and the
CR9000X with Environmental
Enclosure have air-tight seals. It
may be required to press the gas
relief valve on the side of the
enclosure to equalize the internal
and atmospheric pressures in
order to open the enclosure.

QS1.3 Connecting the RS232 Port/ Card Installation

CR9032 CPU

RS-232 CS I/O ETHERNET CARD PC-CARD

MADE IN USA

STATUS

Top of Card Faces Down

CONTROL

SDM +12 G C1 C2 C3

A nine pin serial cable is supplied with your CR9000X. Plug one end into
your laptop COM port and the other to the CR9032 module's RS232 nine pin
communication port.

If you have either a Type II
Flash card or a compact flash
card, format it (CR9000X
accepts FAT16 or FAT32
formats) and install it into the
PC card slot, face down.

When using a Card, the process to remove it is to press
the "Card Removal" button and wait for the Card
Status Led to turn green.

CARD STATUS LED:
Not Lit: No card detected.
Red: Accessing the card
Yellow: Corrupt Card, Error

Card Status LED

Card Removal
Button

Green: Can safely remove card

QS-2

Quick Start

QS1.4 Powering the Logger

A universal power adapter that can convert 120/240 AC to the required DC
voltage is supplied with the CR9000X(C). The adapter has a Limo
connector which mates with the CR9011 Power Supply module. Connect
the Limo connectors and plug the adapter into the AC wall outlet. The
Charge LED should turn red. You are now ready to power up the CR9000X
with the On/Off toggle switch.

QS1.5 Setting Up Serial Communications
Connect a straight through RS-232 cable from your computers serial port to
the RS-232 port on the CR9032. Start up RTDAQ. You should see the
Window shown below. Click on the Icon with a data logger + sign to start
the Wizard to set up a new CR9000X.

Limo connector for
connection to universal AC
power adapter.

On/Off Switch

Click on to set up
a CR9000X datalogger.

Power and Charge
LED Lights

QS-3

Quick Start

The wizard will prompt you sequentially through the settings required for
your RS232 communication set-up. In this window, scroll down through
the logger types and select the CR9000X. You can enter a descriptive
name for the datalogger set-up. It should be noted that this name is used
solely for the software and does not affect the "Station Name" internal of
the logger.

Select the
CR9000X and
enter a name for
the logger set-up.

Click on Next.

Select "Direct Connect" for your communication mode.

QS-4

Quick Start

Select the computer COM Port that you will be using to communicate
with the logger. Only COM ports which are recognized and made
available by the PC's operating system will be listed.

Enter 4 seconds for the Com Port Communication Delay. Click "Next".

Select the
COM Port
from the pull
down list, and
enter 4 seconds
for the Port
Comm Delay.

Enter the Baud Rate supported by your computer, up to 115200 baud.
Enter 3 or 4 seconds for the Extra Response Time and 0 for the Max
Time On-Line. Click on "Next".

Select the desired
Baud Rate
Enter 3 for the
Extra Response
Time
Enter 0 for the
Max Time On-
line.

QS-5

Quick Start

This next window has a Synopsis of your selected options. Verify that it
has the requisite settings and click on "Next".

You will now have the option to Test your Communications link. If you
are connected to a logger, select "Yes", and click on "Next". If you are not
connected to a logger, click on "Finish".

QS-6

Quick Start

If you have set up the communication link correctly, you should see this
screen. Click on "Next".

The next window is for setting your logger's clock. You have the option to
enter an offset to account for a Time Zone difference between what your
PC is set to and the time zone where the logger will be located. Click on
"Set Datalogger Clock" and then "Next".

QS-7

Quick Start

In this next window, the Station Name internal of the logger (Status Table)
is shown and can be modified if desired. A program can also be sent to the
logger if desired. For now, click on "Next".

You are now finished setting up your communication link. Click on
"Finish" and you will be prompted to stay connected to the logger. Click
on "Yes".

QS-8

Quick Start

QS1.6 Setting Up IP Communications
Once serial communications has been established, the CR9000X's IP can be
set. First you have to be connected to the CR9000X through the RS232
port. Next go into RTDAQ's Terminal Mode window
(Datalogger/Terminal Emulator). Click on "Open Terminal" in the "I/O
Port" section and then press <enter> recursively until the "CR9000X"
prompt appears. Press C and <enter>. If you delay for too long, you may
need to press <enter> to re-invoke the CR9000X prompt. The CR9000X's
IP port settings will be shown. To change any of the settings, type in the
associated number, enter the new setting and press <enter>. Once
complete, type in 6 (Save and Exit). Press <enter> until you get the
CR9000X prompt and type in C and <enter> to verify new settings.

For communications across a LAN, or through the Internet, a straight CAT
5 Ethernet cable should be used. For hooking up directly to your PC's
Ethernet port, a CAT 5 Ethernet crossover cable is required.

After the CR9000X's IP settings have been set, you will need to add another
logger communication station, this time setting it up for IP communications
instead of serial communications. Before RTDAQ will allow you to set up
another station, it will be necessary to "Disconnect" from the Serial
Connected Logger (station that we just created). To start, press the Icon
with a data logger + sign to start the Station set-up wizard again. This time
select "IP Port" for the Communication Mode. Once you have setup the IP
station, if communication is still not established, read the section QS1.6.1,
"IP Port Set-up Tips".

To change a setting, type in the associated number and
press <enter>.

First, click on "Open Terminal". Next press <enter>
until the CR9000X prompt is returned. Type in "C"
and <enter> and the CR9000X's I/P port setting will
be returned.

In this example, a 3 (IP Address) was typed in. The
CR9000X responded with the its current IP address and the
software is waiting for a new IP address to be entered.
After changes are made and entered, enter 6 and hit
<enter> to "Save" the new values to the logger.

QS-9

Quick Start

QS1.6.1 IP Port Setup Tips
If you are hooking up one or more CR9000Xs on to a Local Area
Network, we recommend that you obtain from your IT department a
value for the SubNet mask and a fixed range of IP addresses for the(se)
CR9000X(s). This will ensure that you are operating within the
requirements set by your IT department, and should eliminate conflicts with
other Ethernet devices on your LAN. No two devices may share an IP
address.

Many Networks are configured to provide dynamic IP addressing (every
time you log onto the Network, your PC is assigned a new IP address). If
your computer is set-up for Dynamic IP addressing, when it is booted up
without being connected to your LAN, its IP address will be set to
000.000.000.000. This setting disables the IP port and network routing for
your computer; i.e. you will not be able to communicate with the
CR9000X. If the computer is booted while connected to the LAN and
receives an IP address, this address should remain in effect until the
computer is rebooted. You can determine whether or not your PC is set-up
for Dynamic Addressing, as well as the current IP address and Subnet Mask
settings for the computer, by going to your Control Panel: Control
Panel/Network Connections/Local Area Network/Properties/ scroll to
Internet Protocol and click on Properties. If "Obtain an IP address
automatically" is clicked on, then your PC is set-up for Dynamic IP
addressing. If the PC was booted up without being connected to the LAN,
remove this selection and enter a IP address and mask.

See Section QS1.6.1.1 Subnet Mask and IP Settings for more on IP
Address and Mask settings.

It should be noted that the CR9000X requires a static IP address. If the
CR9000X will be hooked up to a LAN, this static IP address should be
provided by the IT department. Although the CR9000X may have left
the manufacturer with an IP address and Subnet Mask, these values should
be changed for communications on your LAN.

If you are communicating with the CR9000X using a computer that is never
hooked up to a Network, you can easily choose the Mask and IP addresses
for the CR9000X and the PC. The same mask should be used for both the
CR9000X and the PC. An example of a good Mask setting is
255.255.255.0. Using this Mask setting, the first three bytes of the PC's and
the CR9000X's IP addresses would need to be set to identical values while
the fourth byte could be set to anything from 0 to 255 (example: PC IP
address set to 223.240.0.1 and the CR9000X set to 223.240.0.2). After
changing the computer's IP port settings, you will need to re-boot before the
new settings will be activated. The PC's and CR9000X's IP addresses
cannot be identical.

QS-10

Quick Start

QS1.6.1.1 Subnet Mask and IP Settings

The SubNet Mask is a decimal equivalent of a 4-byte binary address. For
any bit set high in the computer's Mask, the corresponding bit in the IP
addresses, for devices that will be communicating with each other, must be
identical.

Example: A PC's SubNet Mask is set to 255.255.240 (binary representation:
is 11111111.11111111.11110000.00000000). For two devices to
communicate, the first two bytes of their IP addresses must be identical.
The first 4 bits of the third byte must also match. So if the third byte for the
PC's IP address is set to 192 (11000000), then any other device that is to
communicate with this PC would need to have the third byte set to
1100XXXX (first 4 bits identical). For this example, a third byte of
11000001 (193) or 11000011 (195) would work. Even 11000000 (192)
would work as long as the fourth byte is not identical for the two devices.
As the PC's Mask fourth byte is all zeros, none of its bits for the two
devices' IP addresses need to match.

It should be remembered that two devices on a network, or that will be
communicating with each other, should not have identical IP addresses. So
for the Subnet Mask of 255.255.240.0, one example of a good pair of IP
addresses is 128.255.192.1 and 128.255.192.2.

If the PC has a fixed IP address, set the CR9000X's Mask to the value of
the PC's SubNet mask, and use the above to determine the CR9000X's IP
address. Example, the PC mask is 255.255.255.0, and its IP address is
192.168.240.3. Valid IP address for the logger would be
192.168.240.XXXX, with XXXX ranging from 0 to 255 with the exception
of 3 (cannot be identical).

If you are using a computer that will be hooked up to a Network, then your
IT people should provide you information on what values you should use
for the SubNet mask and the IP address.

QS-11

Quick Start

QS2. Program Generator Basics
QS2.1 Program Generator Summary Window

Access RTDAQ's Program Generator for the CR9000X using the green
calculator ICON at the right of the main tool bar. If a CR5000 Program
Generator window is invoked, click on File/New/CR9000X.

This Summary window will be shown.

Click on Configuration to enter your
Loggers configuration.

QS-12

Quick Start

QS2.2 Program Generator Configuration Window

Colors match the colors of the module names to
the right. The modules must be inserted into the
slot shown.

Enter the size of the PCMCIA memory card used in
the CR9032 module's PC card slot. This value will
be used to estimate the amount of remaining
memory in the Output Tables window.

When checked, these
boxes create the code to
perform special
functions. We will be
selecting some of these
later.

Enter a 2 for the
CPU Type
(CR9032 CPU).

Enter the number
and type of
modules that you
will be using in
your CR9000X.

Click on Done
to save your
selections.

QS-13

Quick Start

QS2.3 Program Generator Scan Window

Enter 100 for the number of Scans
to Buffer. This sets the number
of scans that processing can la
measurements without having
skipped scans (loss of data). The
number of Scans to Buffer is
limited by the available memory

g

in SRAM

Click on Done
to save your
selections.

SCAN RATE
The values entered here set the scan rate of the program which determines how often the
measurements are made. You may use the scroll bar to set the time value or type the numeric time
value directly into the Scan Interval box. Enter 10 in the Scan Interval box and select mSeconds for
the units. This will create a program that scans 100 times a second.

QS-14

Quick Start

QS2.4 Program Generator Output Table Window

Click on Enable to set-up a Data Table. Click
in the Table Name box and enter a name for
your Data Table (up to 8 characters).

Each table interval is
independently set or
Synchronized to the
program scan interval.
Select mSecs and
enter 50 in the
numeric box (output
to the Table at a rate
of 20 Hz).

Select the
media where
the DataTable
is to be stored

Check the Auto Size box. This will cause the CR9000X to allocate
the largest possible table size for the media selected at compile time.
Specified table sizes will be allocated first, then memory for the
auto-size tables will be allocated to fill at nearly the same time.

Output tables are the data bases created by the CR9000X. They may either
reside within the CR9000X memory or on PCMCIA cards, and may be
accessed with the real-time capabilities of the RTDAQ software. The
Program Generator allows you to create and configure up to 6 tables. Click
on Done after the Data Table is set up.

QS-15

Quick Start

QS2.5 Program Generator Special Configuration
Next we will go back into the Configuration window to enable the
monitoring of the CR9000X's battery.

Click on Main
Battery Volts and
Main Battery
Current to invoke
the output dialogue
box.

Click on Done after
setting up the Battery
measurements.

Click on Public
and Average.

QS-16

Quick Start

QS2.6 Program Generator: Save and Download
Now we are ready to download the program into the CR9000X.

Click on
Save and Send.

Select a name for the program and "Save" it to a directory on your
computer.

Click on Run Now, Run On Power Up, and Erase all
card data files. Then Click Send.

QS-17

Quick Start

QS3. RealTime Monitoring
The Table Monitor window can be accessed from RTDAQ's "Monitor
Data" tab. From the Icons available, select Table Monitor. Up to three
Tables can be displayed on a single instance of a Table Monitor window.
Simply select the Table(s) to monitor from the pull down list.

Select Public and Batt from the pull
down list of available Data Tables.

QS-18

Quick Start

QS4. Data Collection
The Collect window can be accessed from RTDAQ's Collect Data tab.

There are options for setting-up the collection mode, the file mode, and file
format for the data collection process. The file name and path can also be
set here. The default path and name would be:

C:\CampbellSci\RTDAQ\LoggerName_TableName.dat; where
LoggerName = The name user defined name in RTDAQ's network

map.
TableName = The name of the data table in the logger.

Select

AS
w/ Time Stamps and
Record Numbers.

Click off Select All,
select the Batt Data
Table from the list
and then click
Start Collectio

All the Data,
Create New File and

CII Data

on
n.

Once the collection is complete, a Data Collection Results window will
appear. Highlight the Table Batt and click on View File.

Highlight
Batt, and then
click on
ViewFile.

QS-19

Quick Start

QS5. View Data
The ViewPro utlitity can also be accessed from RTDAQ's main toolbar:
Tools\ViewPro. ViewPro includes a full set of graphing capabilities.
Select one or two columns and click on the Line Graph Icon.

Highlight BattVolt & BattCurr columns
and click on the Line Graph icon.

Right click on trace name and select "Edit Selection"
to change trace properties and set up the X axis.

QS-20

Quick Start

QS6. Comparison of CR9032 and CR9031
Processor

Memory

QS-21

Quick Start

Communication Ports

Peripheral Compatibility

QS-22

Quick Start

PC-Card LED Indicator Status

Instruction Set
The CR9031 and CR9032 have similar instruction sets, and many existing
CR9000 programs will function properly without modifications. The
CR9032 includes additional instructions that support capabilities not
provided in the CR9031. Also, some of the CR9031’s instructions have
been modified or removed, and programs containing those instructions will
need to be revised.

New Instructions

QS-23

Quick Start

Modified or Removed Instructions
Existing CR9000 programs that include one or more of the following
instructions will need to be revised if the CR9000 is upgraded to a
CR9000X (i.e., the CR9031 module is replaced with the CR9032).

QS-24

Overview
The CR9000X is a modular, multi-processor system that provides precision measurement
capabilities in a rugged,stand-alone, battery-operated package. The system makes
measurements at a rate of up to 100 K samples/second with 16-bit resolution. The
CR9000X Base System includes CPU, power supply, and A/D modules. Up to nine I/O
modules are inserted in the CR9000X, or up to five I/O modules are inserted into the
CR9000XC, to configure a system for specific applications. The on-board, BASIC-like
programming language includes data processing and analysis routines. RTDAQ
Windows™ Software provides program generation and editing, data retrieval, and
realtime monitoring. LoggerNet software can be used for multiple station applications
requiring modem communications and/or where schedule data collection to a PC is
required.

CR9000

AC ADAPTOR

FIGURE OV1-1. CR9000X Measurement and Control System

OV-1

Overview

OV1. Physical Description
OV1.1 Basic System

The basic CR9000X system includes a CR9011 Power supply module, a
CR9032 CPU module, and a CR9041 A/D module. These are installed into a
mother board in an enclosure. Also included in all CR9000X base systems is a
battery, and a wall charger.

There are two sizes of base systems to choose from. The CR9000XC compact
version comes in an aluminum enclosure and can accommodate up to 5
measurement modules. The CR9000X full size chassis can be configured with
a lab enclosure or a fiberglass environmental enclosure and can accommodate
up to 9 measurement modules.

The CR9000XC includes a 7 AHr lithium battery. The CR9000X full size
logger includes two 7 AHr batteries. It is recommended to keep these
batteries from reaching a state of deep discharge (10.5 V) which can damage
the cells.

CR9011 Power Supply Module and AC Adapter

9011 POWER SUPPLY

POWER
ON OFF CHARGE(9-18VDC)

<0.8V

CHARGE

>2.0V

12VOUT POWER UP

MADE IN USA

FIGURE OV1-4. CR9011

The CR9011 Power Supply Module provides regulated power to the CR9000X
from either the internal battery modules or from the 9 to 18 VDC (fuse and
diode protected) charge inputs. It also regulates battery charging (up to 2
amps) from power supplied by the AC adapter, a DC input, or other external
sources. The AC adapter may be used where AC power is available (100 - 240
volts) to provide power to the CR9000X and charge its batteries.

High Current Demand Applications
A DC source with voltage in the range of 9 to 18 VDC will charge the internal
lead acid batteries and power the CR9000X provided sufficient current is
available and the system is set-up to use 3 amps or less. If the CR9000X
system configuration requires greater than 3 amps, consult a CSI applications
engineer for information about the CR9011 Power Supply High-Current
modification.

LEDs There are 2 LEDs: Power and Charge. The Power LED is red if
the logger is powered up. The Charge LED is red to indicate the
presence of a charging source for the batteries.

On/Off The ON/Off toggle switch is used to manually power up and down
the logger. It should be noted that if the toggle switch is in the ON
position, but the Power LED is dark, it could either mean that there

OV-2

Overview

is no power available, the logger has been shut down through
software control or that the internal fuse is blown.

Charge There are two connections, in parallel, for hooking up a 9 to 18
VDC charging source. These connections are fuse and diode
protected. The CR9011's 12VOUT supply is current limited to 300
mA. If a peripheral requires more current, the CR9032 SDM 12
volt out can source up to 1.85 amps.

>2.0V The CR9011 has a relay that allows shutting off power under
program control. The Power Up inputs allow an external signal to
awaken the CR9000X from a powered down state (see the
PowerOff topic in Section 9 9.2 Data Logger Status/ Control).
When the CR9000X is in this "Power Off" state, the On/Off switch
is in the ON position but the internal relay is open and the power
LED is not lit. If the ">2" input has a voltage greater than 2 volts
applied to it (most common usage is 12 Volts), the CR9000X will
awake, load the program in memory and run.

<0.8V If the <0.8 input is shorted to ground during the CR9000X's 2 to 5
second initialization during power-up, any program set to Run On
Powerup will be disabled. This is useful if a program is in some
endless loop and communications cannot be established. Can also
be used to wake up a logger that has been shut down through
software control.

In addition to regulating and supplying power to the logger, the CR9011 keeps
track of the date and time. If the CR9000X system's CR9011 module is
swapped out, the Date/Time will need to be reset. The clock is powered off the
main 12 volt batteries. In addition, there are two backup power sources for the
clock, a lithium battery and a super capacitor, both located on the CR9011
board.

The run time attributes (Run Now, Run on Powerup ..) of the program files are
also stored on the CR9011. If the CR9011 in the system is swapped out for
a different CR9011, the run time attribute settings will no longer be valid
and will need to be reset by the user.

MEASUREMENTS:
Battery (voltage and current)

CONTROL:
PowerOff
Program Run Attributes
ClockSet

See Section 1.2 System Power Requirements and Options for additional
details.

OV-3

Overview

CR9032 CPU Module

CR9032 CPU

RS-232 CS I/O ETHERNET CARD PC-CARD

MADE IN USA

STATUS

Top of Card Faces Down

CONTROL

SDM +12 G C1 C2 C3

FIGURE OV1-2. CR9032

The CR9032 CPU Module provides system control, processing, and
communication. The CR9032 CPU module is the main processor for the
datalogger as well as memory for program storage and buffering data. The
main processor is a 180 MHz Hitachi SH-4 microprocessor. The module has
128 MB SDRAM and 2 MB Flash EEPROM. 128 KB of the Flash memory is
reserved for program storage.

The 128 MB of SDRAM is not battery backed and that data that
is stored there will be lost when the logger is powered down or
experiences a watchdog reset.

NOTE

CRITICAL DATA SHOULD BE STORED ON THE
PCMCIA CARD.

The CR9032 CPU Module provides the following:

SDM Ports C1 through C3 are used for communication with SDM (Synchronous Device
for Measurements) peripherals such as the SDM-CAN or SDM-SIO4. The
SDM 12 volt supply is current limited to 1.85 amps and can be used to power
other peripherals besides SDM devices.

RS232 The Datalogger RS-232 port can function as either a DCE (Data
Communication Equipment such as a modem) or DTE (Data Terminal
Equipment such as a computer) device. For the Datalogger RS-232 port to
function as a DTE device, a null modem cable is required. The most common
use of the Datalogger's RS-232 port is a connection to a computer DTE device.
A standard DB9-to-DB9 cable can connect the computer DTE device to the
Datalogger DCE device. Pins 1, 4, 6 and 9 function differently than a standard
DCE device. This is to accommodate a connection to a modem or other DCE
device via a null modem. Pin configuration for the CR9000X RS-232 9-pin
port is listed in TABLE OV1-1.

TABLE OV1-1. Datalogger RS-232 Pin-Out

PIN

DCE
Function

Logger
Function

I/O

Description

1 DCD DTR (tied to pin 6) O* Data Terminal Ready
2 TXD TXD O Asynchronous data Transmit
3 RXD RXD I Asynchronous data Receive
4 DTR N/A X* Not Connected
5 GND GND GND Ground
6 DSR DTR O* Data Terminal Ready
7 CTS CTS I Clear to send
8 RTS RTS O Request to send
9 RI RI I* Ring

OV-4

Overview

* Different pin function compared to a standard DCE device. These pins will
accommodate a connection to modem or other DCE devices via a null modem
cable.

I/O Descriptors: O = Signal Out of the CR1000 to a RS-232 device;
 I = Signal Into the CR1000 from a RS-232 device,
 X = Signal has no connection (floating)

CS I/O CSI 9 Pin port for communications with CSI's peripherals (such as the DSP4).
Table OV1-2 lists the pin configuration for the CR9000X CS I/O port.

TABLE C-1. CS I/O Pin Description

O = Signal Out of the CR9000X to a peripheral.
I = Signal Into the CR9000X from a peripheral.

PIN ABR I/O Description

1 5 V O 5V: Sources 5 VDC, used to power peripherals.

2 SG Signal Ground: Provides a power return for pin 1 (5V),
and is used as a reference for voltage levels.

3 RING I Ring: Raised by a peripheral to put the CR9000X in the
telecommunications mode.

4 RXD I Receive Data: Serial data transmitted by a peripheral are
received on pin 4.

5 ME O Modem Enable: Raised when the CR9000X determines
that a modem raised the ring line.

6 SDE O Synchronous Device Enable: Used to address
Synchronous Devices (SDs), and can be used as an enable
line for printers.

7 CLK/HS I/O Clock/Handshake: Used with the SDE and TXD lines to
address and transfer data to SDs. When not used as a
clock, pin 7 can be used as a handshake line (during printer
output, high enables, low disables).

8 +12 VDC

9 TXD O Transmit Data: Serial data are transmitted from the
CR9000X to peripherals on pin 9; logic low marking (0V)
logic high spacing (5V) standard asynchronous ASCII, 8
data bits, no parity, 1 start bit, 1 stop bit, 300, 1200, 2400,
4800, 9600, 19,200, 38,400, 115,200 baud (user
selectable).

Ethernet Supports 10BaseT or 100baseT communications. An Ethernet crossover
cable is required for hooking up directly to a computer.

There are two LEDs on the Ethernet port. The LED on the lower left of the
port indicates communication speed. If hooked into a 10BaseT link it will be
dark, if hooked into a 100BaseT link it will be lit green.The LED on the lower
right of the port indicates communication traffic. If communications is active,
it should be flashing yellow.

PC Card The CR9000X has a built in PCMCIA card slot that can support cards up to 2
GB in size with a status LED and control button. Removing a card while it is
active can corrupt the data and potentially damage the card. Press Card
removal button and wait for LED to turn green before removing Card. Do not
switch off the power (CR9011 Module) while the cards are present and active

OV-5

Overview

(Press card button prior to flipping the power switch). If the logger is powered
off using software control (PowerOff instruction), the data buffered in the CPU
is flushed to the card and the Logger is shut down properly.

DO NOT POWER DOWN LOGGER WHILE PCMCIA CARD
IS ACTIVE.

NOTE

LED code description:
Dark: No card detected or formatted card present without errors
Yellow: Either no card or corrupt card with program trying to access the card
Red: Accessing the card
Green: Can safely remove the card

Only Industrial grade PC cards should be used. They can operate over a wider
temperature range, have better vibration and shock resistance, have faster
read/write times, and can withstand more write cycles than the commercial
grade cards. It should be remembered that a system is only as good as its
weakest link. Do not buy a cheap memory card to store data for a test whose
results are important.

See Appendix C PC/CF Card Information for details on selecting memory card.

Up to a total of 30 data tables, each capable of storing data at different rates,
can be created between the CPU's SDRAM and the PC Card. Data Tables
created on the PC cards will also have a buffer table created in SDRAM. The
size of this buffer can either be manually or auto allocated.

MEASUREMENTS/INSTRUCTIONS THAT DIRECTLY UTLIZE THE
CPU HARDWARE OR COMMUNICATIONS OPTION:

CardOut Output Data to PC Card
CS7500 Open Path CO2/H20 Sensor
CSAT3 CSI Sonic Anemometer
DSP4 DSP4 Heads up Display
SDMA04 Analog Voltage Output Peripheral
SDMCANBus CANBus Interface Peripheral
SDMCD16AC I/O Port Peripheral used for controlling relays
SDMCVO4 Analog Current and Voltage Output Peripheral
SDMINT8 Interval Timer Peripheral
SDMIO16 Control Port Expansion device
SDMSIO4 Serial Input/Output Peripheral
SDMSW8A Switch Closure Measurement Peripheral

CR9041 A/D and Amplifier Module

CR9041 A D

CR9000X
MEASUREMENT & CONTROL SYSTEM

LOGAN, UTAH MADE IN USA

FIGURE OV1-3. CR9041

The CR9041 A/D and Amplifier Module provides signal conditioning and 16
bit, 100 kHz A/D conversions.

OV-6

Overview

OV1.2 Measurement Modules

CR9050(E) Analog Input Module

9050 ANALOG INPUT W RTD

SE

DIF
1

1

H

2

L
2

3

H

4

L
3

5

H

6

L
4

7

H

8

L
5

9

H

10

L
6

11

H

12

L
7

13

H

14

L
8

15

H

16

L
9

17

H

18

L
10

19

H

20

L
11

21

H

22

L
12

23

H

24

L
13

25

H

26

L
14

27

H

28

L

MADE IN USA

FIGURE OV1-5. CR9050

The only difference between a CR9050 and a CR9050E is that the CR9050E is
an "Easy Connect" module type, and includes a CR9050EC. Both the
CR9050E and the CR9051E use the same CR9050EC Easy Connect module
(See Figure OV1-6). The CR9050E typically remains in the CR9000(X)
chassis while each CR9050EC remains connected to the sensors. This allows
one CR9000(X) system to be moved from location to location and be quickly
connected to the sensors on-site.

The CR9050(E) Analog Input Module has 14 differential inputs for measuring
voltages up to ±5 V. Each differential input can be, independently, configured
as two Single Ended inputs. Next to each differential channel, is an analog
ground input. All analog grounds on all CR9050(E), CR9051E, CR9055(E),
CR9060, CR9070, and CR9071E modules in a CR9000X chassis are common.

Sensor

Diff. Channel H

Diff. Channel L.

Differential Channel 1 through 14

Sensor wired up as a Differential (DIF) input

Each differential analog input can, independently, be setup as 2 single-ended
inputs.

Sensor

S.E. Channel

Ground

Single Ended Channel 1 through 28

Sensor wired up as a Single Ended (SE) input

All inputs on the CR9050(E), CR9051E, and CR9055(E) modules are
multiplexed through the single 16 bit A/D on the CR9041 A/D module. The
maximum aggregate throughput for all channels on all modules is 100,000
samples per second. Resolution on the most sensitive range is 1.6 μV.

OV-7

Overview

Full Scale Maximum
Range Resolution Throughput
± 5000 mV 158 uV 100 KHz
± 1000 mV 32 uV 100 KHz
± 200 mV 6.3 uV 100 KHz
± 50 mV 1.6 uV 50 KHz

The CR9050(E) operational input voltage limits are ± 5 volts with reference to
datalogger ground. Voltages exceeding ±9 V with reference to datalogger
ground may cause errors on other channels. When the logger is powered off,
the CR9050(E)'s input impedance drops drastically.

The CR9050(E) contains an on-board PRT, located at the top center of the
module, which provides the reference temperature for thermocouple
measurements. A heavy copper grounding bar and connectors combined with
the aluminum case help to reduce temperature gradients for accurate
thermocouple measurements. If the logger is in an environment that is
experiencing rapid temperature fluctuations, it is recommended that the
CR9000X be insulated to reduce the temperature gradient along the copper bar.
This is true for all modules used to measure thermocouples.

CR9050 SUPPORTED MEASUREMENT INSTRUCTIONS:
Voltage

VoltDiff Differential Voltage
VoltSe Single-Ended Voltage
TCDiff Differential Thermocouple
TCSE Single Ended Thermocouple

Bridge measurements (also requires CR9060 Excitation Module)
BrFull Full Bridge
BrFull6W 6 Wire Full Bridge
BrHalf Half Bridge
BrHalf3W 3 Wire Half Bridge
BrHalf4W 4 Wire Half Bridge

Self measurements (reference PRT for thermocouple measurements)
ModuleTemp Module Temperature

See Section 3.1 Measurements using the CR9041 A/D for measurement details.

See Section 7 Measurement Instructions for Instruction details.

The CR9051E is recommended over the CR9050E for
applications where fault voltages beyond ±9 V could come in
contact with the inputs, or when the CR9000X could be powered
off while still connected to sensors that have power applied to
them.

NOTE

OV-8

Overview

CR9051E Fault Protected 5 V Analog Input Module

FIGURE OV1-6. CR9051E with CR9050EC

The number of channels are the same as for the CR9050(E) Analog Input
Module. This module includes an Easy Connect (CR9050EC) that can quickly
be removed from the CR9000X chassis. The CR9050EC contains the PRT that
is used to provide the reference temperature for thermocouple measurements.

All inputs on the CR9050(E), CR9051E, and CR9055(E) modules are
multiplexed through the single 16 bit A/D on the CR9041 A/D module. The
maximum aggregate throughput for all channels on all modules is 100,000
samples per second. Resolution on the most sensitive range is 1.6 μV.

Full Scale Maximum
Range Resolution Throughput
± 5000 mV 158 uV 100 KHz
± 1000 mV 32 uV 100 KHz
± 200 mV 6.3 uV 50 KHz
± 50 mV 1.6 uV 50 KHz

Although the measurable voltage range with respect to data logger ground is
±5 V, the same as the CR9050, the CR9051E's input channels are fault-
protected so as to permit over-voltages between +50 V and –40 V without
corruption of measurements on other input channels.

Another difference from the CR9050(E) module is that the CR9051E's input
channels become open switches when the CR9000X is powered off.

The CR9051E supports the same instruction set as the CR9050.

See Section 3.1 Measurements using the CR9041 A/D for measurement details.

See Section 7 Measurement Instructions for Instruction details.

OV-9

Overview

CR9052DC Anti-Alias Filter Module with DC Excitation

CR9052DC MADE IN USA

CR9052EC
FILTER MODULE CONNECTOR DC EXCITATION MADE IN USA

FIGURE OV1-7. CR9052DC with CR9052EC

The CR9052DC is a high-performance Fast Fourier Transform (FFT) spectrum
analyzer and anti-alias Finite Impulse Response filter module. Each
CR9052DC includes one CR9052EC. Additional CR9052ECs can be
purchased separately. The CR9052DC typically remains in the CR9000(X)
chassis while each CR9052EC remains connected to sensors. This allows one
CR9000(X) system to be moved from location to location and be quickly
connected to the sensors on-site.

The module includes six anti-aliased, differential analog measurement
channels, each channel having its own programmable gain amplifier, pre-
sampling analog filter, and 16 bit sigma-delta analog to digital converter. \

The Differential channels cannot be configured as two Single
Ended inputs.

NOTE

The CR9052DC can burst measurements to its on-board, 8-million sample
buffer at 50,000 measurements per second per channel. Using the FFT
spectrum analyzer mode, the module's DSP can provide real-time spectra from
"seamless", anti-aliased, 50-kHz, 2048-point time-series snapshots for each of
its six analog input channels. The decimated data can be downloaded to an
appropriate PC card at an aggregate rate of 300,000 measurements per second.

It has differential input ranges from ±20 mV to ±5 V and operational input
voltage limits of -5 to +15 VDC. Inputs outside of this range will return either
erroneous measurements or NAN.

Inputs outside of the range of -40VDC to +50VDC can compromise the
integrity of the measurements for all of the inputs on this and other modules in
the CR9000X chassis, as well as possibly damaging the system and creating
communication problems between the logger and PC.

Each input channel has both regulated constant voltage excitation (VEX) and
regulated constant current excitation (IEX) channels. These can be used for
ratiometric bridge measurements. The corresponding Current Return (IRTN)
or Voltage Return (VRTN) must be used for the input of the ground side of

OV-10

Overview

the bridge. See figure OV1-8 for an example of how to wire up a full
Wheatstone bridge using the VEX output and VRTN return channels.

VEEEXXX

VRTN

VIN+

VIN-

FIGURE OV1-8. Wiring a Wheatstone bridge

Channel Description

VEX Regulated DC voltage output. Can be set to 5 VDC or 10 VDC
and can source up to 85 mA. Must use the VRTN input for the
voltage return.

IEX Regulated 10 mA DC current output. Has a compliance voltage
of 12 Volts. Must use the IRTN input for the voltage return.

VIN+ High side of the differential voltage input for measurement.

VIN- Low side of the differential voltage input for measurement.

VRTN Return, or ground plane, for VEX

IRTN Return, or ground plane, for IEX

System analog ground. Same reference ground as grounds on the
CR9050 and CR9060. Used mainly for shield drain.

It should be noted that the raw value returned from the VoltFilt measurement
is in millivolts. This is true even when measuring an electrical bridge that is
excited using one of the excitation options supplied by the CR9052DC
module. If it is desired to have a ratio-metric value returned (mVolts per
Volt), the applicable multiplier will need to be applied.
For example, if 5 volts were used to excite the Wheatstone bridge depicted in
Figure OV1-8, a multiplier of 0.2 (1/5) would need to be applied to have a
ratio-metric value returned.
The CR9052DC supports Hanning, Hamming, Blackman, and Kaiser-
Bessel windowing. Windowing may be shut off if desired. The CR9052DC
can also implement A, B, or C spectral weighting for all spectral output
modes as defined in the IEC 60651 international standard. It also supports 1/N
octave analysis (such as the 1.3 octave analysis) for acoustic applications.
CR9052DC SUPPORTED MEASUREMENT INSTRUCTIONSS:

VoltFilt Differential Filter Measurement
FFTFilt Differential FFT Measurement

See Section 3.3 CR9052 Filter Module Measurements for measurement details.

See Section 7 Measurement Instructions for Instruction details.

OV-11

Overview

CR9052IEPE Anti-Alias Filter Module

CR9052IEPE MADE IN USA

OPEN

CH 1

SHORT

OPEN

CH 2

SHORT

OPEN

CH 3

SHORT

OPEN

CH 4

SHORT

OPEN

CH 5

SHORT

OPEN

CH 6

SHORT

FIGURE OV1-9. CR9052IEPE

The The CR9052IEPE module allows direct connection of Internal Electronics
Piezo-Electric (IEPE) accelerometers and microphones to CR9000X
dataloggers. A CR9052IEPE has six channels. Each channel has a BNC
connector, an open circuit indicator LED, and a short circuit indicator LED
which can indicate if the channel is over-or under-driven. Each channel has a
built-in constant current source, which is software programmable to 0, 2, 4, or
6 mA.

OPEN LED input Resistance code description:

 Programmed Current Level
 2 mA 4 mA 6mA
Red (Open): > 15 KOhm > 7.8 KOhm > 5.2 KOhm
Green(connected): < 15 KOhm < 7.7 KOhm < 5.2 KOhm

SHORT LED input Resistance code description:

 Programmed Current Level
 2 mA 4 mA 6mA
Red (Short): < 1 KOhm < 500 Ohm < 300 Ohm
Green(connected): > 1 KOhm > 500 Ohm > 300 Ohm

The CR9052IEPE can burst measurements to its on-board, 8-million sample
buffer at 50,000 measurements per second per channel. Using the FFT
spectrum analyzer mode, the module's DSP can provide real-time spectra from
"seamless", anti-aliased, 50-kHz, 2048-point time-series snapshots for each of
its six analog input channels. The decimated data can be downloaded to an
appropriate PC card at an aggregate rate of 300,000 measurements per second.

MEASUREMENTS:
VoltFilt Differential Filter Measurement
FFTFilt Differential FFT Measurement

The CR9052IEPE module measurements have two programmable time
constants available: 5 seconds and 0.5 seconds.

See Section 3.3 CR9052 Filter Module Measurements for measurement details.

See Section 7 Measurement Instructions for Instruction details.

OV-12

Overview

CR9055(E) 50-Volt Analog Input Module

9055 50V ANALOG INPUT

SE

DIF
1

1

H

2

L
2

3

H

4

L
3

5

H

6

L
4

7

H

8

L
5

9

H

10

L
6

11

H

12

L
7

13

H

14

L
8

15

H

16

L
9

17

H

18

L
10

19

H

20

L
11

21

H

22

L
12

23

H

24

L
13

25

H

26

L
14

27

H

28

L

MADE IN USA

FIGURE OV1-10. CR9055

The only difference between a CR9055 and a CR9055E is that the CR9055E is
an "Easy Connect" module type, and includes a CR9055EC (See Figure OV1-
6). The CR9055E typically remains in the CR9000(X) chassis while each
CR9055EC remains connected to the sensors. This allows one CR9000(X)
system to be moved from location to location and be quickly connected to the
sensors on-site.

The CR9055(E) 50-Volt Analog Input Module has 14 differential or 28 single-
ended inputs for measuring voltages up to ±50 V. Resolution on the most
sensitive range is 16 μV. The CR9055 has an operational input voltage limit
range of ±50 V.

Full Scale Maximum
Range Resolution Throughput
± 50.0 V 1580 uV 50 KHz
± 10.0 V 320 uV 50 KHz
± 2.0 V 63 uV 25 KHz
± 0.5 V 16 uV 25 KHz

All inputs on the CR9050(E) and CR9051E modules are multiplexed through
the single 16 bit A/D on the CR9041 A/D module. The maximum aggregate
throughput for all channels on all modules is 100,000 samples per second. The
higher range codes are simply accomplished through the use of a voltage
divider network.

CR9055(E) SUPPORTED MEASUREMENT INSTRUCTIONS:
VoltDiff Differential Voltage
VoltSe Single-Ended Voltage
TCDiff Differential Thermocouple
TCSE Single Ended Thermocouple

Normally thermocouple measurements would be made on the CR9050 Analog
Input Module (±5 Volt) because of its greater resolution, however they can be
made with the CR9055(E) using the 0.5 V range if the ±50 V operational
voltage range is necessary and a CR9058E Isolation module is not available.
The 16 μV resolution corresponds to about 0.41 degrees C resolution for the
measurement.

As the CR9055(E) does not have a PRT for measuring the
reference temperature for the thermocouple measurement, either
an adjacent CR9050 or CR9051E module's reference
temperature can be used. If there are temperature gradients in
the chassis, this will lead to additional measurement errors.

NOTE

OV-13

Overview

CR9058E Isolation Module

CR9058E 60V ISOLATED ANALOG INPUT MODULE W/RTD MADE IN USA

CR9058EC
60V ISOLATED ANALOG INPUT CONNECTOR FOR CR9058E MADE IN USA

FIGURE OV1-9. CR9058E with CR9058EC

The CR9058E is a 10-channel, differential input isolation module. One
CR9058EC Easy Connector Module is included with the CR9058E; additional
CR9058ECs can be purchased as accessories. The CR9058E typically remains
in the CR9000(X) chassis while the CR9058EC remains connected to sensors.
This allows one CR9000(X) system to be moved from location to location and
be quickly connected to the sensors on-site.

Next to each channel is an isolated ground. The CR9058E ten input channels
cannot be configured as Single Ended inputs. Each channel has a 24-bit A/D
converter which supplies input isolation for up to ±60 VDC continuous
operational voltage conditions. Inputs with voltages greater than 469 VDC
with respect to data logger ground can damage the logger. The full-scale
ranges available are ±60 VDC, ±20 VDC, and ±2 VDC with a resolution to 2
μVolts. Due to its superb signal to noise ratio, and good resolution, an
accurate thermocouple measurement can be made on the 2 Volt range code.

The measurement speed for the CR9058E is lower than the other CR9000X
modules, but this is somewhat offset by the fact that all of the channels are
sampled simultaneously:

Full Scale Maximum Maximum
Range Resolution Throughput
± 60 V 300 uV 650 Hz
± 10 V 100 uV 650 Hz
± 2 V 10 uV 650 Hz

CR9058E SUPPORTED MEASUREMENT INTRUCTIONS:
ModuleTemp Module Temperature
VoltDiff Differential Voltage
VoltSe Single-Ended Voltage

See Section 3.2 CR9058E Isolation Module Measurements for measurement details.

See Section 7 Measurement Instructions for Instruction details.

OV-14

Overview

CR9060 Excitation Module

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 3 6 82 4 5 7

9060 EXCITATION C.A.O. SWITCHED EXCITATION DIGITAL CONTROL OUTPUT
MADE
IN USA

FIGURE OV1-11. CR9060

The CR9060 is the Excitation Module for the CR9000X Measurement and
Control System. The CR9060 module has 6 Continuous Analog Outputs
(CAO), 10 Switched Excitation, and 8 Control Ports.

CAOs: The CR9060 Excitation Module has six continuous analog outputs with
individual digital-to-analog converters for PID Algorithm, waveform
generation, and excitation for bridge measurements. The six CAOs can be
controlled independently, or can be turned on simultaneously.

Switched Excitation: The CR9060 also has ten switched excitation channels
that provide precision voltages for bridge measurements. Only 1 switched
excitation is active at a time, where all 6 of the CAOs can be turned on
simultaneously. The advantage of using switched excitation is that it requires
less power and it reduces, or eliminates, self-heating sensor errors, as the on
time of the excitation is limited.

The ten switched and six continuous analogue output excitation channels can
be set to any value within the range of ±5 VDC with a compliance current of
50 mA. Again, only one switched excitation can be on at a time.

Control Ports: The CR9060 also has 8 built in control ports (output only).
These can be set to TTL levels (0 Volts or 5 Volts). These ports can be used to
activate external relays, or simply to toggle the state of LEDs for monitoring
purposes. The output resistance of these ports is 100 ohms, so the current drive
is rather limited.

CR9060 Supported measurement Instructions

BrFull Requires CR9050(1) Full Bridge
BrFull6W Requires CR9050(1) 6 Wire Full Bridge
BrHalf Requires CR9050(1) Half Bridge
BrHalf3W Requires CR9050(1) 3 Wire Half Bridge
BrHalf4W Requires CR9050(1) 4 Wire Half Bridge

CR9060 Supported control Instructions

Excite Sets a CAO or Switched Excite Channel
PortSet Sets the logic level of a Single Control Port
WriteIO Sets the logic level of a group of Control Ports

See Section 3.1.5 Bridge Resistance Measurements for measurement details.

See Section 7 Measurement Instructions for Measurement Instruction details.

See Section 9.2 Data Logger Status/Control for Control Instruction details.

OV-15

Overview

CR9070 Counter - Timer / Digital I/O Module — Obsolete

9070 COUNTER & DIGITAL I O

1 2
DIGITAL I/O

4 5 7 8 9 10 12 13 15 16 1 2 3 4 5 6 7 8 9 10 11 12

MADE IN USA

3 6 11 14
LOW LEVEL AC SWITCH CLOSURRE

FIGURE OV1-12. 9070

The CR9070 has been replaced by the CR9071E, which provides better over-
voltage protection, increased channel-to-channel cross-talk isolation, interval
(edge) timing with 40 nanosecond resolution, and a Wait Digital Trigger
function.

The CR9070 Pulse Module has 16 Digital I/O channels and 12 Pulse channels
with 16 bit accumulators. The CR9070 is used for Pulse measurements, as
well as state monitoring and control.

CHANNEL DESCRIPTION

Digital I/O The CR9070 has 16 Digital I/O ports selectable, under program control, as
binary inputs or control outputs. These ports have multiple function capability
including: edge timing, TTL signal period or frequency measurements, device
driven interrupts, and, as shown in Figure OV1-13, state monitoring and
control (i.e.: turning on/off devices and monitoring whether the device is On or
Off). The Edge Timing resolution is limited to the logger's Scan Interval.

Digital I/O Ports Used to Control/Monitor Pump

 C1 - Used as input to monitor pump status.
 C2 - Used as output to switch power to a pump via a solid state relay.

FIGURE OV1-13. Control and monitoring of a device using digital I/O
ports

OV-16

Overview

Pulse Counting
The CR9070 has 12 Pulse input channels with 16 bit counters. These channels
count on the rising edge of the input signal and can be configured to output
Counts or Signal Frequency. The maximum input voltage allowed on these
channels is ± 20 volts. The resolution of the frequency measurement is 1/scan
interval (e.g., a PulseCount instruction in a 1 second scan has a frequency
resolution of 1 Hz, a 0.5 second scan gives a resolution of 2 Hz, and a 1 ms
scan gives a resolution of 1000 Hz). The resolution can be increased through
using the running average parameter of the PulseCount instruction. The
resultant measurement will bounce around by the resolution.

These twelve channels are further segmented based on the input signal's
characteristics.

Channels 1-8: The first 8 Pulse input channels can be configured as Low
Level AC inputs to count the frequency of low level AC
signals from such sensors as a magnetic pickups. The
minimum input voltage that can be counted is 20 mV RMS
with a max frequency of 10 KHz. With input amplitudes
greater than 50 mV RMS, up to 20 KHz signals can be read.
The maximum allowable input voltage for this or the high
frequency mode is 20 VDC.

Channels 1 through 8 can also be configured to measure
"High Frequency" pulses, which are signals that have
transitions from below 1.5 volts to above 3.5 volts. High
Level Frequency input up to 5 MHz can be measured. If
possible, it is preferable to place Low Level measurement
inputs and high frequency measurement inputs on opposite
ends of the module to eliminate the possible of crosstalk.

Channels 9-12: The last 4 Pulse channels (9-12) can be configured as Switch
Closure inputs. The dry contact switch should be connected
between the Pulse port and ground. When the switch is open,
the port is pulled to 5 volts through a 100 kohm pull up
resistor. Maximum frequency : 100 Hz.

Channels 9 through 12 can also be configured to measure
"High Frequency" pulses, which are signals that have
transitions from below 1.5 volts to above 3.5 volts. High
Level Frequency input up to 5 MHz can be measured.

CR9070 SUPPORTED MEASUREMENT/CONTROL INSTRUCTIONS:
PulseCount Count Pulses or Frequency
ReadI/O Read State of I/O Channels
TimerIO Interval and Timing Measurements
WriteI/O Set State of I/O Channels

See Section 3.4 Pulse Count Measurements for measurement details.

See Section 7 Measurement Instructions for Measurement Instruction details.

See Section 9.2 Data Logger Status/ Control for Control Instruction details.

OV-17

Overview

CR9071E Counter and Digital I/O Module

CR9071E COUNTER MADE IN USA

CR9071EC
COUNTER & DIGITAL I/O MADE IN USA

FIGURE OV1-13. CR9071E

The CR9071E is an "Easy Connect" module type, and includes a CR9071EC
(See Figure OV1-6). The CR9071E typically remains in the CR9000(X)
chassis while each CR9071EC remains connected to the sensors. This allows
one CR9000(X) system to be moved from location to location and be quickly
connected to the sensors on-site.

This module is the direct replacement module for the CR9070. It has improved
resolution, channel isolation, over-voltage input protection, as well as new
functionality.

The CR9071E Pulse Module has 16 Digital I/O channels and 12 Pulse
channels with 32 bit accumulators. The CR9071 is used for Pulse
measurements, as well as state monitoring and control.

CHANNEL DESCRIPTION
Digital I/O The CR9071E has 16 Digital I/O ports selectable, under program control, as

binary inputs or control outputs. These ports have multiple function capability
including: edge timing, TTL signal period or frequency measurements, device
driven interrupts, and, as shown in Figure OV1-13, state monitoring and
control (i.e.: turning on/off devices and monitoring whether the device is On or
Off). The Edge Timing resolution is 40 nanoseconds.

Digital I/O Ports Used to Control/Monitor Pump

 C1 - Used as input to monitor pump status.
 C2 - Used as output to switch power to a pump via a solid state relay.

FIGURE OV1-13. Control and monitoring of a device using digital I/O
ports

OV-18

Overview

Pulse Counting

The CR9071E has 12 Pulse input channels with 32 bit counters. These
channels count on the falling edge of the input signal and can be configured to
output in Counts or Signal Frequency. The maximum input voltage allowed on
these channels is ± 20 volts. The resolution of the frequency measurement is
40 nanoseconds.

These twelve channels are further segmented based on the input signal's
characteristics.

Channels 1-8: The first 8 Pulse input channels can be configured as Low
Level AC inputs to count the frequency of low level AC
signals from such sensors as a magnetic pickups. The
minimum input voltage that can be monitored is 25 mV RMS
with a max frequency of 10 KHz. With input amplitudes
greater than 50 mV RMS, up to 20 KHz signals can be read.
The maximum allowable input voltage for this or the high
frequency mode is 20 VDC.

Channels 1 through 8 can also be configured to measure
"High Frequency" pulses, which are signals that have
transitions from below 1.5 volts to above 3.5 volts. High
Level Frequency input up to 1 MHz can be measured.

Channels 9-12: The last 4 Pulse channels (9-12) can be configured as Switch
Closure inputs. The dry contact switch should be connected
between the Pulse port and ground. When the switch is open,
the port is pulled to 5 volts through a 100 kohm pull up
resistor. Maximum frequency : 100 Hz.

Channels 9 through 12 can also be configured to measure
"High Frequency" pulses, which are signals that have
transitions from below 1.5 volts to above 3.5 volts. High
Level Frequency input up to 1 MHz can be measured.

CR9071 SUPPORTED MEASUREMENT/CONTORL INSTRUCTIONS:
PulseCount Count Pulses or Frequency
ReadI/O Read State of I/O Channels
TimerIO Interval and Timing Measurements
WaitDigTrig Trigger Measurement Scan
WriteI/O Set State of I/O Channels

OV-19

See Section 3.4 Pulse Count Measurements for measurement details.

See Section 7 Measurement Instructions for Measurement Instruction details.

See Section 9.2 Data Logger Status/ Control for Control Instruction details.

Overview

OV1.3 Communication Interfaces
The CR9000X's CPU module (CR9032) has built-in RS-232 and Ethernet
ports, thus eliminating the need for expensive external communication
interfaces.

Using the CR9000X's RS232 port, any terminal emulator program can be used
to set up the CR9000X's IP address parameters. Hyper Terminal is an example
of an available terminal emulator. The computer's RS232 port settings that
should be used are listed below:

Bits per Second: 115,200
Data bits: 8
Parity: None
Stop bits: 1
Flow control: Hardware

RTDAQ's Terminal Mode can also be used. Set the Comm window to your
computer’s Comm port and set the baud rate to 115200. With a serial cable
hooked between your PC's and CR9000X's RS-232 ports, press the test button
to ensure that you have established communications. Close the Comm window
and open RTDAQ's terminal emulator (Data Logger/Terminal Mode). Click in
the Low Level I/O box. Press enter a few times until a CR9000> prompt is
returned. Press C and enter. It may be required to do this recursively because
of the short time out period. The IP port configuration options will be shown.

See Sections QS1.5 Setting Up Serial Communications and QS1.6 Setting Up
IP Communications for information about setting up the IP Port.

OV2. Memory and Programming Concepts
OV2.1 Memory

The CR9032 CPU Module in the CR9000X base system has 128 MB SDRAM
and 2 MB Flash EEPROM. The operating system, user program listing(s), and
calibration files are stored in the flash EEPROM. 128 Kbytes of flash memory
is allocated for program storage. When the CR9000X is powered up, the
operating system, the compiled program, and any calibration files are uploaded
into SDRAM.

The amount of available memory in flash for program storage may be viewed,
using LoggerNet or RTDAQ, in the File Control window or in the Status
Table. Amount of available memory for data tables on the CPU can be viewed
in the Status Table. Additional data storage is available through the use of a
PCMCIA memory card using the built-in card slot.

It should be noted that the 128 MB SDRAM is volatile. If the
logger experiences a power failure or a watchdog error, all data
stored in SDRAM will be lost. CRITICAL DATA SHOULD
BE STORED ON THE PCMCIA CARD.

NOTE

See Section 2 Data Storage and Retrieval for more on Data Storage and
Logger Memory.

OV-20

Overview

OV2.2 Measurements, Processing, Data Storage
The CR9000X divides a program into two tasks. The measurement task
manipulates the measurement and control hardware on a rigidly timed
sequence. The processing task processes and stores the resulting
measurements and makes the decisions to actuate controls.

The measurement task stores raw Analog to Digital Converter (ADC) data
directly into memory. As soon as the data from a scan is in memory, the
processing task starts. There are at least two Scan buffers allocated for this
raw ADC data (additional buffers can be allocated under program control),
thus the buffer from one scan can be processed while the measurement task is
filling another.

When a program is compiled, the measurement tasks are separated from the
processing tasks. When the program runs, the measurement tasks are
performed at a precise rate, ensuring that the measurement timing is exact and
invariant.

Processing Task: Measurement Task:

OV2.3 Data Tables
The CR9000X can store individual measurements or it may use its extensive
processing capabilities to calculate averages, maxima, minima, histograms,
FFTs, etc., on periodic or conditional intervals. Data are stored in tables such
as listed in Table OV2-1. The values to output are selected when running the
program generator or when writing a datalogger program directly.

Table OV2-1. Typical Data Table

TOA4 StnName Temp
TIMESTAMP RECORD RefTemp_Avg TC_Avg(1) TC_Avg(2) TC_Avg(3) TC_Avg(4) TC_Avg(5) TC_Avg(6)
TS RN DegC DegC DegC degC degC degC degC
 Avg Avg Avg Avg Avg Avg Avg
2004-02-16 15:15:04.61 278822 31.08 24.23 25.12 26.8 24.14 24.47 23.76
2004-02-16 15:15:04.62 278823 31.07 24.23 25.13 26.82 24.15 24.45 23.8
2004-02-16 15:15:04.63 278824 31.07 24.2 25.09 26.8 24.11 24.45 23.75
2004-02-16 15:15:04.64 278825 31.07 24.21 25.1 26.77 24.13 24.39 23.76

See Section 2.4 Data Format on Computer for additional details on Logger
Memory and Data Structure.

Digital I/O task
Read and writes to ports and counters on CR9071

 (ReadIO, WriteIO, TimerIO)

Processes measurements
Determines controls (port states) to set next scan

 Stores data

Analog measurement and excitation sequence and
timing
Sets ports on 9060 Excitation Module (SetPort)
Sends interrupt to Processor task that reads and sets
ports/counters.
Polls CR9052 and CR9058 for Data

OV-21

Overview

OV3. Commonly Used Peripherals

DEPICTION DEVICE DESCRIPTION FUNCTION

SDM-AO4 Four Channel
Analog Out

Independent CAOs updated by the logger.
Max current that can be sourced is 1 mA

SDM-CAN CANBus interface CANBus data can be stored and synchronized
with measurements made by the logger.

SDM-CD16AC 16 Channel
AC/DC Controller

16 relays to control power to up to 16 external
devices. Max. 5 A @ 30 Vdc, 0.3 A @ 110 Vdc,
 5 A @ 125 Vac, or 5A @ 277 Vac.

16 Channel Digital 16 Digital Outputs that can be set to 0 or 5 Volts

SDM-SIO4 4 Channel Serial
Input/Output

Four configurable serial RS232 ports that
communicate with intelligent sensors, display
boards, printers, satellite links, etc.

SDM-SW8A 8 Channel
Switch Closure

8 Channel pulse count module that can calculate
state, duty cycle, or counts.
Maximum input frequency: 100 Hz

AM25T
25 Channel
Multiplexer for
Thermocouples

Solid state multiplexer, with a PRT, for measuring
thermocouple outputs. Can also be used to
multiplex voltages (cannot be used for currents).

AM16/32
16 Bank (4 Wires) or
32 Bank (2 wires)
Multiplexer

Mechanical relay multiplexer that can be configured
as 16 banks of 4 lines or as 32 banks of 2 lines.
Commonly used for bridge measurements.

GPS16-HVS
Geographical
Position
Reciever

Consists of a receiver and an integrated antenna.
Receives signals from GPS satellites for calculating
positionand velocity.

TIMS
Terminal
Input
Modules

Molded components that supply completion
resistors for resistive bridge measurements, or, act
as voltage dividers or current shunts.

SDM-CD16D Control Port Module Can source up to 100mA, allowing direct control
of low voltage valves, relays, etc.

SDM-CVO4
4 Channel Current
or Voltage Output
Module

Independently program each channel to output:
0 to 10 Vdc (2.5 mV resolution) or
0 to 20 mA (5 micro-Amp resolution).

SDM-INT8 8 Channel Timer
Pulse Counter

The INT8 calculates period, pulse width, frequency,
counts, or time interval with a 1 microsec
resolution.
Maximum time interval of 16.7 seconds.

OV-22

Overview

OV4. Support Software
PC / Windows® compatible software products are available from Campbell
Scientific to facilitate CR1000 programming, maintenance, data retrieval, and
data presentation. PC200W and ShortCut are designed for novice integrators,
but have features useful in some applications. PC400, RTDAQ, and
LoggerNetTM provide increasing levels of power required for advanced
integration, programming and networking applications. Support software for
PDA and Linux applications are also available.

PC200W

PC200W utilizes an intuitive user interface to support direct serial
communication to the CR9000X via COM / RS-232 ports. It sends programs,
collects data, and facilitates monitoring of digital measurement and process
values. PC200W is available at no charge from the Campbell Scientific web
site.

ShortCut is included as the only means for Programming the Loggers. This
package does not include the CRBasic Editor.

PC400

PC400 is a mid-level software suite. It includes CRBASIC Editor, EDLOG
editor, ShortCut Program generator, point-to-point communications over
several communications protocols, simple real-time digital and graphical
monitors, and report generation. PC400 supports all contemporary dataloggers
and many retired dataloggers (e.g., CR510, CR23X, CR10X).

PC400 does not support scheduled collection or multi-mode communication
networks.

RTDAQ

RTDAQ is targeted for industrial and other high-speed data acquisition
applications. It includes real time windows for monitoring FFTs, Histograms,
Rainflow Histograms, X/Y Plots, and dynamic plotting windows for fast
updates. It includes Program Generators for the CR5000 and CR9000X data
loggers for easy pick n click programming as well as the CRBasic editor for
more complex programming .

RTDAQ supports all contemporary dataloggers but does not support Legacy
loggers (e.g., 21X, CR7, CR510, CR23X, CR10X), nor does it support the
CR9000 (it does support the CR9000X).

RTDAQ does not support scheduled collection or multi-mode communication
networks.

OV-23

Overview

LoggerNetTM Suite
The LoggerNetTM suite utilizes a client-server architecture that facilitates a
wide range of applications and enables tailoring software acquisition to
specific requirements. Table OV4-1 lists features of LoggerNetTM products
that include the LoggerNetTM server. Table OV4-2 lists features of
LoggerNetTM products that require the LoggerNetTM server as an additional
purchase.

TABLE OV4-1. LoggerNetTM Products that Include the LoggerNetTM

Server

LoggerNetTM Datalogger management, programming, data
collection, scheduled data collection, network
monitoring and troubleshooting, graphical data
displays, automated tasks, data viewing and
post-processing.

LoggerNetTM Admin All LoggerNetTM features plus network
security, manages the server from a remote PC,
runs LoggerNetTM as a service, exports data to
third party applications, launches multiple
instances of the same client, e.g., two or more
functioning Connect windows.

LoggerNetTM Remote Allows management of an existing
LoggerNetTM datalogger network from a
remote location, without investing in another
complete copy of LoggerNetTM Admin.

LoggerNetTM-SDK Allows software developers to create custom
client applications that communicate through a
LoggerNetTM server with any datalogger
supported by LoggerNetTM. Requires
LoggerNetTM.

LoggerNetTM Server – SDK Allows software developers to create custom
client applications that communicate through a
LoggerNetTM server with any datalogger
supported by LoggerNetTM. Includes the
complete LoggerNetTM Server DLL, which can
be distributed with the custom client
applications.

LoggerNetTM Linux Includes LoggerNetTM Server for use in a
Linux environments and LoggerNetTM Remote
for managing the server from a Windows
environment.

OV-24

Overview

TABLE OV4-2. LoggerNetTM Clients

(these require, but do not include, the LoggerNetTM Server)

Baler Handles data for third-party application feeds.

RTMCRT RTMC viewer only.

RTMC Web Server Converts RTMC graphics to HTML.

RTMC Pro Enhanced version of RTMC.

LoggerNetTMData Displays / Processes real-time and historical
data.

CSI OPC Server Feeds data into third-party OPC applications.

Short Cut
Short Cut utilizes an intuitive user interface to create CR9000X program code
for common measurement applications. It presents lists from which sensors,
engineering units, and data output formats are selected. It features “generic”
measurement routines, enabling it to support many sensors from other
manufacturers. Programs created by Short Cut are automatically well
documented and produce examples of CRBASIC programming that can be
used as source or reference code for more complex programs edited with
CRBASIC Editor.

Short Cut is included with PC200W, Visual Weather, PC400, RTDAQ, and
LoggerNetTM and is available at no charge from the Campbell Scientific web
site.

View Pro
View Pro lets you examine data files (*.DAT files) and display data, raw text,
or tabular format, record by record. It can create graphs that display multiple
traces of data. View Pro also supports the viewing of specialized data storage
such as FFTs and histograms.

RTMC (Real-Time Monitoring and Control)
RTMC is used to create customized displays of realtime data, flags, and ports.
It provides digital, tabular, graphical, and Boolean data display objects, as well
as alarms. Sophisticated displays can be organized on multi-tabbed windows.

RTMC is bundled in RTDAQ, LoggerNet, LoggerNetData, and LoggerNet
Admin software packages.

RTMC Pro
RTMC Pro is an enhanced version of the RTMC client. RTMC Pro provides
additional capabilities and more flexibility, including multi-state alarms, email
on alarm conditions, hyperlinks, and FTP file transfer.

OV-25

Overview

RTMCRT
RTMCRT allows you to view and print multi-tab displays of real-time data.
The displays are created in RTMC or RTMC Pro.

RTMC Web Server
RTMC Web Server converts real-time data displays into HTML files, allowing
the displays to be shared via an Internet browser. For security reasons, all
interactive controls are disabled.

Software Development Kits (SDKs)
Campbell Scientific software development kits (SDKs) permit software
developers to create custom applications that communicate with our
dataloggers.

OV-26

Overview

OV5. Specifications

OV-27

Overview

CR9052DC & CR9052IEPE Specifications

OV-28

Overview

CR9052DC & CR9052IEPE Specifications (continued)

OV-29

Overview

OV-30

Section 1. Installation

1.1 Enclosure
The CR9000X is equipped with either the –L option laboratory case or the –F
option fiberglass case. There is also the CR9000XC, which is a compact
version that will only hold five I/O modules. The laboratory case can be used
in a clean, dry, indoor environment or mounted in an enclosure. The fiberglass
case provides a self-contained field enclosure. Campbell Scientific does not
punch holes in the fiberglass case because it is our experience that most users
like to customize the wire entry locations for their applications.

During the manufacturing of the fiberglass case, the base and lid are formed
together to ensure a perfectly matched fit. A six-digit serial number is stamped
into the extruded aluminum rims on both the base and lid. When more than
one CR9000X is owned, care should be taken to avoid a mismatch which could
prevent a gas-tight seal. (Note that there is a pressure release valve on the
enclosure. If you have difficulty removing the lid, try pressing the release
valve to equalize the pressure differential between the case and atmosphere.)

1.1.1 Connecting Sensors
The CR9000X input modules use screw terminals for connecting sensor wires
(Figure 1.1-1). Terminals for individual wires provide the most flexibility for
connection to the wide range of sensors the CR9000X is used to measure as
well as allowing the simplest field repair of the wire termination (strip and
twist or tin).

1.1.2 Quick Connectors
Some customers who use CR9000Xs for numerous tests requiring the same or
similar sets of sensors have found it useful to pre-wire the CR9000X to a set of
plug-in quick connectors that mate with those installed on their sensors. Most
of the CR9000X's modules have quick connect options (EC option when
ordering, i.e. CR9051EC)) for this type of applications. Customers can either
use these or build their own bulkhead type connectors that can be installed
either in the aluminum wiring panel cover or in the fiberglass case (Figure
1.1-2).

1-1

Section 1. Installation

Strip
0.5”

FIGURE 1.1-1. CR9000X input terminals

FIGURE 1.1-2. Bulkhead connectors installed in CR9000X cover

1.1.3 Junction Boxes
Individual sensor leads (and multiconductor cables) may be routed directly
from the sensor locations to the CR9000X or routed to a junction box and then
to the CR9000X. When sensors are spread out over a large area, a junction
box provides a convenient method for changing sensors in one location
quickly. Junction boxes can also provide more localized protection against
instrumentation damage as a result of lightning induced high voltages.
Junction boxes should be sealed adequately to limit air exchange and stocked
with fresh desiccant (Section 1.3). When used for thermocouple lead wires
junction boxes need to be insulated to reduce thermal gradients (Section 3.4).

1-2

Section 1. Installation

1.2 System Power Requirements and Options
The standard CR9000X is equipped with two sealed lead acid battery packs
and charging circuitry for charging the batteries from a 9-18 volt DC input.
The charging input can come from 120/240 VAC line power via the universal
AC power adapter (included with CR9000X), vehicular 12 V power sources,
solar panels, et cetera. When fully charged, the internal batteries of the
CR9000X are capable of providing 13-14 Amp-hours, between 4 and 13 hours
of operation in a typical application where the CR9000X is active continuously
(not powering itself down).

1.2.1 Power Supply and Charging Circuitry
The CR9011 Power Supply Module has two CHARGE inputs, wired in
parallel, for connecting a DC Power source: either the plug connector used
with the AC adapter or the screw terminals. A DC source with voltage in the
range of 9 to 18 VDC will charge the internal lead acid batteries and power
CR9000X provided sufficient current is available and the system is setup to
use 3 amps or less (see Table 1.2-2 Current required by CR9000X modules).
If the CR9000X system configuration requires greater than 3 amps, consult a
Campbell Scientific applications engineer for information on the CR9011
Power Supply High-Current modification. The voltage is automatically
stepped up to an adequate voltage for charging. A temperature compensated
charging regulator circuit regulates the charging voltage supplied to the lead
acid batteries and the CR9000X. The charging circuitry operates with the
ON/OFF switch in either position. The charging circuitry is NOT designed to
charge a large external 12 V battery as it is current limited to 2 amps.

Power for running the CR9000X and charging the internal batteries from AC
line power can be provided via the CR9000X's universal AC adapter through
the power input connector located on the 9011 Power Supply Module. The
universal adapter converts 100–240 VAC 50–60 Hz to 17.5 VDC.

On the left end of the Power Supply Module there are two LEDs: Power and
Charge. The charge LED is lit when there is sufficient power connected to
charge the batteries. Power to the CR9000X is controlled by the ON/OFF
toggle switch. The power LED is lit when the CR9000X is on. It goes off
when the switch is in the off position, when the CR9000X is powered off
under program control (PowerOff instruction), or when there is insufficient
voltage to run the system.

The lead acid battery packs are located at each end of the CR9000X (Figure
1.2-1).

CR9000

FIGURE 1.2-1. CR9000X battery pack

1-3

Section 1. Installation

TABLE 1.2-1. CR9000X Battery and Charging Circuitry Specifications

CR9000X WITH STANDARD BATTERIES (4):
Battery life, no supplemental
charge

13 hours to 10.5 V (assuming 1A current)

Voltage at full discharge 10.5 volts
Recharge time
(AC Adapter input)

9 hours from 100% discharge

 5 hours from 50% discharge.
Individual Batteries
Type Yuasa NP7-6
Nominal Voltage 6 Volts
Nominal Capacity 20 hr rate of 350 mA to 5.25 V, 7 Ahr
 10 hr rate of 650 mA to 5.25 V, 6.5 Ahr
Operating Temperature range:
Charge –15 to 50 ºC
Discharge –20 to 60 ºC
Shelf Life @ 20 ºC:
1 month 97%
3 months 91%
6 months 85%
Life Expectancy:
Standby 3 to 5 years
Cycle use
100% depth of discharge 250 cycles
50% depth of discharge 550 cycles
30% depth of discharge 1200 cycles
Number of batteries 4
CHARGING CIRCUIT
Type Controlled voltage with temperature

compensated voltage regulation
Charging Current limited to 2 Amps max
POWER SUPPLY TRANSFORMER
Input Voltage 100-240 VAC,

50-60 Hz
Input Current 1.4 A maximum
Output Voltage 17.5 VDC
Output Current 3.5 A maximum

At typical CR9000X current demand, the batteries are 100%
discharged at a system battery voltage of 10.5 V. Discharging
the batteries below this voltage damages the cells. As can be
seen from the above table, battery life expectancy decreases with
depth of discharge.

NOTE

CSI'S WARRANTY DOES NOT COVER BATTERIES.

Avoid deep discharge states by measuring and monitoring the battery voltage
(BattVolt instruction) as part of the collected data and periodically checking
the voltage record to be sure the batteries and charging system are working
correctly.

1-4

Section 1. Installation

All external charging devices must be disconnected from the CR9000X in
order to measure the true voltage level of the internal batteries.

This CR9000X current drain depends on the number and type of modules
installed, the sensors excited, and the scan interval and measurements made.
The current drain of a specific CR9000X can be approximated from the
information provided in Table 1.2-2.

TABLE 1.2-2. Current required (at 12 VDC Input) by CR9000X modules

Model No. Module Quiescent
Current

Current During
Measurement

CR9032
CR9041
CR9011

CPU Module
A/D Module
Power Supply Module

410 mA 485 mA

CR9050(E)
CR9051E

Analog Input Module 0 mA 15 mA

CR9052DC

DC Filtered Analog
Input Module

5 mA if not
programmed

500 mA + 1.5 (sum of
excitation currents on
channels)

CR9052IEPE Integrated Electronics
Piezo-Electric (IEPE)
Filtered Analog Input
Module

5 mA if not
programmed

6 Channels Programmed
Excite off: 760 mA
Excite 2 mA: 840 mA
Excite 4 mA: 920 mA
Excite 6 mA: 1000 mA

CR9055 50–Volt Analog Input
Module

0 mA 15 mA

CR9058E 60 V Isolation Module 5 mA 360 mA
CR9060 Excitation Module 108 mA 125 mA +1.5 (excitation

currents on channels)
CR9070 Counter–Timer

Module
0 mA 80 mA

CR9071E Counter–Timer
Module

25 mA 35 mA

As an example, the current drain of a CR9000X System containing the base
system (CPU Module, A/D Module, and Power Supply Module: 410 mA / 485
mA) one CR9060 Excitation Module (108 mA / 125 mA, this does not include
the current required for exciting the sensors), two CR9070 Counter/Timer
Modules (0 mA / 30 mA), and four CR9050 Analog Input Modules (0 mA / 60
mA) is about 518 mA between measurement scans and 700 mA during
measurement. If it was active measuring close to 100 percent of the time, fully
charged internal batteries (14 A-hr) would be depleted to a full SAFE
discharge level (10.5 V) in about 20 hours. If the CR9000X system
configuration requires greater than 3 amps, consult a Campbell Scientific
applications engineer for information on the CR9011 Power Supply High-
Current modification.

1.2.2 Connecting to Vehicle Power Supply
A vehicle 12 Volt electrical system can be connected directly to the charge
input on the Power Supply Module. The Power Supply Module will step the
voltage from the vehicle up or down to the proper voltage for charging the

1-5

Section 1. Installation

CR9000X batteries. The input is diode protected so the CR9000X batteries
will not leak power to the vehicle if the vehicle's battery is low.

Because the charge input supplies power to charge the CR9000X batteries (up
to two amps when discharged) as well as power for the CR9000X, the current
drawn from the vehicle could be in excess of three amps.

1.2.3 Solar Panels
In a remote installation, large solar panels, in conjunction with large external
batteries and an external regulator/charging circuit, may be used to power the
CR9000X. It may be required to periodically power down the logger to give
the batteries time to recharge. Contact a Campbell Scientific application
engineer for help in configuring a solar powered CR9000X installation.

1.2.4 External Battery Connection
An external battery may be used in place of the internal lead acid batteries of
the CR9000X. The external battery is connected using a special cable
(connector P/N 8879) that is plugged into the CR9000X in place of a standard
battery pack (Figure 1.2-2). It should be noted that the charging circuitry for
the batteries is current limited to 2 amperes.

Reverse polarity protection is NOT provided on these
terminals and CR9000X damage will occur if external
power is connected with reverse polarity.

CAUTION

CSI recommends using 16 AWG lead wires or larger when connecting an
external battery to the CR9000X.

FIGURE 1.2-2 Connector for external battery

1-6

Section 1. Installation

1.2.5 Safety Precautions
There are inherent hazards associated with the use of sealed lead acid batteries.
Under normal operation, lead acid batteries generate a small amount of
hydrogen gas. This gaseous by-product is generally insignificant because the
hydrogen dissipates naturally before buildup to an explosive level (4%) occurs.
However, if the batteries are shorted or overcharging takes place, hydrogen gas
may be generated at a rate sufficient to create a hazard. Because the potential
for excessive hydrogen buildup does exist, CSI makes the following
recommendations:

1. A CR9000X equipped with standard lead acid batteries should NEVER
be used in environments requiring INTRINSICALLY SAFE
EQUIPMENT.

2. When attaching an external battery to the CR9000X, insulate the bare lead
ends to protect against accidental shorting while routing the power leads.

3. When the CR9000X is to be located in a gas-tight enclosure or used in a
gas-tight mode with the standard ENVIRONMENTALLY SEALED
FIBERGLASS CASE, the internal lead acid batteries SHOULD BE
REMOVED and an external battery substituted.

1.3 Humidity Effects and Control
The CR9000X system is designed to operate reliably under environmental
conditions where the relative humidity inside its enclosure does not exceed
90% (noncondensing). Condensing humidity may result in damage to IC
chips, microprocessor failure and/or measurement inaccuracies due to
condensation on the various PC board runners. Effective humidity control is
the responsibility of the user and is particularly important in environments
where the CR9000X is exposed to salty air.

Two humidity control methods are:
1. the use of desiccant
2. nitrogen purging

1.3.1 Desiccant
As a minimal precaution, the packets of HUMI-SORB desiccant shipped with
the CR9000X should be placed inside the case. These packets should be
routinely replaced. Obviously, the desiccant requires more frequent attention
in environments where the relative humidity is high.

1.3.2 Nitrogen Purging
Several CSI customers have had success in preventing humidity-related
equipment malfunctions in harsh environments by allowing nitrogen gas to
slowly bleed into the datalogger enclosure. The sensor leads, power cables,
etc. are routed to the terminal blocks of the datalogger through simple,
inexpensive conduit elbows which are left unplugged. A nitrogen bottle is
then left at the field site with its regulator valve slightly open so that nitrogen is
allowed to escape slowly through a rubber tube which is routed along with the
sensor leads through the conduit elbows into the CR9000X enclosure.

1-7

Section 1. Installation

Equipment required for this method of humidity control generally can be
obtained from any local welding supply shop and includes a nitrogen bottle,
regulator with tube adapter (content gauge, optional), hose clamp and a
suitable length of small diameter rubber tubing. Nitrogen bottles are available
in various sizes and capacities. The size of the nitrogen bottle used depends on
the transport facilities available to and from the field site and on the time
interval between visiting the site. Where practical, larger nitrogen bottles
should be used to reduce cost and refilling frequency.

1.4 Recommended Grounding Practices
1.4.1 Protection from Lightning

Primary lightning strikes are those where the lightning hits the datalogger or
sensors. Secondary strikes occur when the lightning strikes somewhere near
the lead in wires and induces a voltage in the wires. All input and output
connections in the I/O module are protected using spark gaps. This transient
protection is useless if there is not a good connection between the CR9000X
and earth ground.

All dataloggers in use in the field should be grounded. A 12 AWG or larger
wire should be run from the grounding terminal on the right side of the I/O
module case to a grounding rod driven far enough into the soil to provide a
good earth ground.

A modem/phone line connection to the CR9000X provides another pathway
for transients to enter and damage the datalogger. The phone lines should have
proper spark gap protection at or just before the modem at the CR9000X. The
phone line spark gaps should also have a solid connection to earth ground.

1.4.2 Operational Input Voltage Limits: Effect on Measurements
A difference in ground potential between a sensor or signal conditioner and the
CR9000X can offset the measurement. A differential voltage measurement
gets rid of offset caused by a difference in ground potential. However, in order
to make a differential measurement, the inputs must be within the CR9000X's
operational input voltage range of ±5V (+15/-5 for the CR9052E module,
±50V for the 9055 module, or ±60V for the CR9058E module).

The operational input voltage limit is the voltage range, relative to CR9000X
ground, within which both inputs of a differential measurement must lie, in
order for the differential measurement to be made. For example, if the high
side of a differential input is at 4 V and the low side is at 3.1 V relative to
CR9000X ground, there is no problem, a measurement made on the ± 1000
mV range would indicate a signal of 1 V. However, if the high input is at 5.8
V and the low input is at 4.8 V, the measurement cannot be made because the
high input is outside of the CR9000X operational voltage range.

See Section 3.1.2 Single Ended and Differential Voltage Measurements for
more material about Input Limits and Common Mode voltage.

1-8

Section 1. Installation

Sensors that have a floating output or are not referenced to ground through a
separate connection may need to have one side of the differential input
connected to ground to ensure the signal remains within the operational
voltage range.

Problems with exceeding the operational input voltage range may be
encountered when the CR9000X is used to read the output of external signal
conditioning circuitry if a good ground connection does not exist between the
external circuitry and the CR9000X. When operating where AC power is
available, it is not always safe to assume that a good ground connection exists
through the AC wiring. If a CR9000X is used to measure the output from a
laboratory instrument (both plugged into AC power and referencing ground to
outlet ground), it is best to run a ground wire between the CR9000X and the
external circuitry. Even with this ground connection, the ground potential of
the two instruments may not be at exactly the same level, which is why a
differential measurement is desired.

1.5 Use of Digital Control Ports for Switching Relays
The digital control outputs on the CR9060 Excitation Module and the I/O
channels on the CR9070/CR9071E Counter Timer Module may be used to
actuate controls, but because of current supply limitations, the output ports are
not used directly to drive a relay coil. Relay driver circuitry is used to switch
current from another source to actually power the relay. These relays may be
used for activating an external power source to run a fan motor or for altering
an external circuit as a means of multiplexing signal lines, etc. CSI's Model
A21REL-12 and A6 REL12 are Relay Controllers using a 12 VDC source for
switching the relays. Solid state relays that may be controlled with a 0-5 V
logic signal are also available for switching AC or DC power.

Figure 1.5-1 is a schematic representation of a typical external coil driven relay
configuration which may be used in conjunction with one of the CR9000Xs
digital control output ports. The example shows a DC fan motor and 12 V
battery in the circuit. This particular configuration has a coil current limitation
of 75 mA because of the NPN Medium Power Transistors used (Part No.
2N2222).

FIGURE 1.5-1. Typical connection for activating/powering external
devices, using a digital control output port and relay driver

1-9

Section 1. Installation

1-10

Section 2. Data Storage and Retrieval
The CR9000X can store individual measurements or it may use its extensive processing
capabilities to calculate averages, maxima, minima, histograms, FFTs, etc., on periodic
or conditional intervals. Data are stored in tables. For simplicity, RTDAQ's Program
Generator allows a maximum of eight data tables (up to 30 Tables can be created using
the CRBasic editor). The number of tables and the parameters to store in each table
are selected when running the program generator (Overview) or when writing a
datalogger program directly (Sections 4 – 9).

2.1 Memory/Data Storage in CR9000X
2.1.1 Internal Flash Memory

The 2 Mbytes of Internal Flash Memory is reserved for the CR9000X's
operating system, user created programs, and sensor calibration factor files.
128 Kbytes of the Flash Memory are explicitly reserved for the Program
Files and the sensor calibration files. Sensor calibration files can be created
using the CalFile or FieldCal instructions. These files can be accessed
using RTDAQ's or LoggerNet's File Control window.

2.1.2 Internal Synchronous DRAM
The CR9032 has 128 MB of Internal SDRAM. This is volatile memory and
should normally only be used as a buffer area for Data Tables being written
to the PC card. Data in SDRAM are lost if the CR9000X is powered down
due to power loss, by switching off the power switch, or with the PowerOff
instruction. In the CRBASIC program, the DataTable instruction sets the
memory allocation in the CPU for the data table/buffer area. The
maximum number of data tables that can be accessed by the datalogger is
30.

2.1.3 PCMCIA PC Card
The CR9000X's CR9032 CPU Module has a built-in PC card slot allowing
the expansion of the CR9000X’s memory capacity using Type I, II, or III
PCMCIA Cards. SRAM, ATA Flash, and ATA hard disk cards, up to 2
GB in size, are supported. Compact Flash cards can be used via a Compact
Flash Adapter (contact Campbell Scientific). It should be noted that ATA
hard disks cards cannot withstand the environmental temperature range of
the CR9000X’s specifications. The Cards normally should be formatted
using a FAT32 format. If possible, it is better to format the cards using
the CR9000X (File Control window).

See Appendix C: PC/CF Card Information for information on
recommended cards.

Data Tables can be stored to a PC card by including the CardOut
instruction within the Data table declaration. When using a PCMCIA card,
the DataTable instruction's Size parameter sets the size of the buffer area

2-1

Section 2. Data Storage and Retrieval

located in the CPU DRAM and the CardOut instruction's size parameter
sets the actual memory allocated for the Data Table on the PC Card.

See the CardOut topic in Section 6.3 Export Data Instructions for
additional material on the CardOut instruction.

When a card is removed for data retrieval, new data will still be buffered to
the CPU's DRAM, up to the number of records specified by the DataTable
instruction's "Size" parameter. When the same card is reinserted the
buffered records that were not previously written to a card will be written
to the Data Table file located on the card. If a newly formatted card is
inserted, the Data Table structure will be created, and the buffered records
that have not previously been written to a Card will be written to the Card.

See Section 2.3.3 Logger Files Retrieval for additional material on data
retrieval using a PC card.

Using RTDAQ or LoggerNet, data stored on cards can be retrieved through
one of your computer's communication ports tied to the CR9000X, or by
removing the card and inserting it in a PC card slot in a computer. Proper
procedure should be followed when removing the PC card to insure that the
buffered data is flushed to the card and the card is not being accessed when
the card is removed.

If the proper steps are not taken when removing the card, the card
could be corrupted resulting in data loss.

See Section 2.3.4.1: Removing PC Card from CR9000X.

The Data Tables are stored on the card in a TOB3 binary format. CSI's
ViewPro and Split utilities support this format. For all other uses, the data
will need to be converted using CSI's Card Convert utility or the Collect
Data window. Converting the data directly from the PC Card, using the
computer's PC card slot, is usually much faster than retrieving it through
CR9000X using RTDAQ's Collect Data window.

See Section 2.3.5 Converting File Format.

2.2 Internal Data Format
Data are stored internally in a binary format. Variables and calculations are
performed internally in IEEE 4 byte floating point or in 32 bit Long Format
with some operations calculated in double precision. Variables can be
declared using one of four formats. In addition, there are eight data types
(FP2, IEEE4 (float), Long (ULong), UINT2, Bool4 (Boolean), Bool8,
NSEC, and String) used to store data. The output data format is selected
in the instruction that outputs the data. The four byte integer format
(LONG) is used by the CR9000X for storing time (two 4 byte integers) and
record number. Within the CR9000X, time is stored as integer seconds and
nanoseconds into the second since midnight, the start of 1990.

See Table 4.2.4-1 Data Types in Section 4.2.4 Declarations.

2-2

Section 2. Data Storage and Retrieval

2.2.1 NAN and ±INF
NAN (not-a-number) and ±INF (infinite) are data words indicating an
anomaly has occurred in datalogger function or processing. NAN is a
constant that can be used in expressions such as shown in Example 2.2-1.

If WindDir = NAN Then
 WDFlag = True
Else
 WDFlag=False
EndIf

EXAMPLE 2.2-1. Using NAN in an Expressions

NAN can also be used in the disable parameter in output processing
instructions. For example, using the following syntax, any NANs would
not be included in the average compilation.

 Average(1,Source,FP2,Source=NAN).

2.2.1.1 Analog Measurements and NAN
NAN indicates that an operation or instruction failed to return a valid
result.

When NAN results from analog voltage measurements, it indicates an
voltage over-range error wherein the input voltage exceeds the
programmed input range.

If an analog channel is open (inputs not connected but “floating” or
broken), the inputs can remain floating near the voltage that they were last
connected to or they can gradually build up a static charge. This can result
in a measurement result of NAN or a measurement reading that looks good,
but is erroneous. In addition, sensors that have a floating output (output is
not referenced to a ground, such as a thermocouple) can float out of range
of the logger's operational voltage limits resulting in a measurement result
of NAN.

See Section 3.1.2.2 Differential Voltage Range for information on using
the C option on range codes to null the static charge.

To make a differential measurement, voltage inputs must be within the
CR9000X operational input voltage limits of ±5 V. If either the high side
or the low side of a differential measurement is outside of this range, either
a NAN or an erroneous value can be returned by the measurement.

See Section 3.1.2.2 Differential Voltage Range for information on the R
option used on Range Codes to insure that NAN is returned rather than an
erroneous result.

2-3

Section 2. Data Storage and Retrieval

2.2.1.2 Floating Point Math, NAN, and ±INF
Table 2.2-1 lists math expressions, their CRBASIC form, and IEEE
floating point math result loaded into variables declared as FLOAT or
STRING.

TABLE 2.2-1. Math Expressions and CRBASIC Results

Expression CRBASIC Expression Result
0 / 0 0 / 0 NAN

∞-∞ (1 / 0) - (1 / 0) NAN

(-1)∞ -1 ^ (1 / 0) NAN

0 * (-∞) 0 * (-1 * (1 / 0)) NAN

±∞/±∞ (1 / 0) / (1 / 0) NAN

1∞ 1 ^ (1 / 0) NAN

0 *∞ 0 * (1 / 0) NAN

x / 0 1 / 0 INF

x / -0 1 / -0 INF

-x / 0 -1 / 0 -INF

-x / -0 -1 / -0 -INF

∞0 (1 / 0) ^ 0 INF

0∞ 0 ^ (1 / 0) 0

00 0 ^ 0 1

NAN and ±INF are presented differently depending on the declared
variable data type. Further, they are recorded differently depending on the
final storage data type chosen compounded with the declared variable data
type used as the source.

For example, INF in a variable declared as LONG is represented by the
integer -2147483648. When that variable is used as the source, the final
storage word when sampled as UINT2 is stored as 0. See Table 2.2-2
below.

TABLE 2.2-2. Variable and Final Storage Data Types with NAN and ±INF

Variable Test Variable's Final Storage Data Type & associated stored value
Type Expression Value FP2 IEEE4 UINT2 STRING BOOL LONG

1 / 0 INF INF INF 65535 +INF TRUE 2,147,483,647
As FLOAT 0 / 0 NAN NAN NAN 0 NAN TRUE -2,147,483,648

1 / 0 2,147,483,647 7999 2.147484E+09 65535 2147483647 TRUE 2,147,483,647
As LONG 0 / 0 -2,147,483,648 -7999 -2.147484E+09 0 -2147483648 TRUE -2,147,483,648

1 / 0 TRUE -1 -1 65535 -1 TRUE -1 As
BOOLEAN 0 / 0 TRUE -1 -1 65535 -1 TRUE -1

1 / 0 +INF INF INF 65535 +INF TRUE 2,147,483,647
As STRING 0 / 0 NAN NAN NAN 0 NAN TRUE -2,147,483,648

2-4

Section 2. Data Storage and Retrieval

2.3 Data Collection
Data can be transferred into a computer using either RTDAQ or LoggerNet
via a communications link or by transferring a PC card from the CR9000X
to the computer. There are four ways to collect data using the RTDAQ
software:

1. The Collect menu is used to collect any or all stored data Tables and
is used for most archival purposes.

2. In RTDAQ’s Table Monitor RealTime window there is a "Save To
File" check box. Data stored in Logger memory for the selected table
are also stored to a file on the PC while the "Save To File" box is
checked.

3. File Control under the Datalogger menu has the option of retrieving a
file from a PC card. This can be used to retrieve a data file in the raw
TOB3 binary format.

4. When the CR9000X is used without a computer in the field, or large
data files are collected on a PC card, the PC card can be transported
to the computer with the data on it.

The format of the data files on the PC card is different than the data file
formats created by RTDAQ when the Collect or Save to file options are
used. Data files retrieved from the Logger Files screen or read directly
from the PC card generally need to be converted into another format to be
used.

See Section 2.3.5 Converting File Format for information on the Convert
Utility.

2.3.1 The Collect Menu
When the Collect Data tab is selected, RTDAQ displays the Collect Data
dialog box (Figure 2.3-1).

FIGURE 2.3-1. Collect Data dialog box

2-5

Section 2. Data Storage and Retrieval

2.3.1.1 Collect Mode
The Collect Mode allows the user to select what data records to collect.
The most common Collect Modes are to collect All the Data and/or Data
Since Last collection. The other options require more knowledge of the
data set that is being stored.

All the Data –
Collects the entire table stored in the CR9000X. RTDAQ gets the
current record number from the table in the CR9000X and then
retrieves the oldest record in the table up to the current record
number.

Data Since Last Collection –
Select this option to only collect new data that was recorded since
the last time that data was collected from this Table using this
RTDAQ Station. RTDAQ has tracking pointers that stores the
last record number collected, and will collect, starting from the
next sequential record, up to the current record.

Data from Selected Data and Time –
Allows you to specify a time frame for data collection. When this
option is selected, the Starting Date/Time and Ending Date/Time
fields will be enabled.

Newest Number of Records –
If a specific number of the most recent records is desired, select
this option and enter the number of most recent records desired to
retrieve into the Number of Records box.

Specific Records –
Select this option if a number of records, starting with a specified
record number, is desired. Enter the Starting Record number
and the Number of Records to collect.

2.3.1.2 File Mode
The File Mode options allow the user to select how he wants to manage the
file in which the data is collected to.

Create New File –
Leaves any existing files intact and creates a new file whose
default filename will include the date and time of file creation.
(The new filename will be the specified filename with
_yyyy_mm_dd_hh_mm_ss appended to the end. For example, a
file created on Jan 27, 2007 at 4:04:15 PM with a specified
filename of CR1000_FFT.dat will be created as
CR10000_FFT_2007_01_27_16_04_15.dat.)

Append to End of File –
Adds new data to the end of the existing data file. If the header of
the existing data file does not match the collected data (for
example, a field has been added to the table) or if a different file
format is specified, the existing data file will be backed up to
filename.backup. Only the currently collected data will be

2-6

Section 2. Data Storage and Retrieval

contained in the specified filename. If no file with the specified
filename exists, a new file will be created.

OverWrite Existing File –
Overwrites the existing file with a new file, keeping the same
nomenclature. The data in the original file will be irrevocably
lost.

If no file with the specified filename exists, a new file will be
created.

2.3.1.3 File Format
The File Format options allow the user to choose whether to store the data
in a binary format in a ASII format.

ASCII Table Data (TOA5) –
Data is stored in a comma separated format. Header information
for each of the columns is included, along with field names and
units of measure if they are available.

See Section 2.4.2: TOA5 ASCII File Format.

Binary Table Data (TOB1) –
Data is stored in a binary format. Though this format saves disk
storage space, it must be converted before it is usable in most
other programs.

See Section 2.4.3 TOB1 Binary File Format.

2.3.2 Table Monitor Window Save to File
In RTDAQ’s Table Monitor RealTime window there is a "Save To File"
check box. Data stored to the Data Table in Logger memory while the box
is checked are also stored to a file on the PC. If communications cannot
keep up with the measurement rate, there will be holes (missing data) in the
data files.

This feature is provided to allow the user to start and stop collecting data
for some event without leaving the real-time window. Check this box to
write the current table to a file in the computer. Writing begins with the
current record and continues until the "Save To File" box is unchecked or
until the window is closed. The default path for the file created with this
option is C:\CampbellSci\RTDAQ\"Station Name"\"DataTable".dat, where
"Station Name" is the name for the station in RTDAQ's tree listing of
stations, and "TableName" is the name of the data table being monitored.

2.3.3 File Control Files Retrieval
The File Control window under RTDAQ's DataLogger menu allows the
user to check the programs stored in CPU Flash memory and the files
stored on the PCMCIA cards. Any of the files shown in logger files can be
copied to the computer by highlighting the file and pressing the retrieve
button. Data files in the CR9000X CPU's memory are not shown.

2-7

Section 2. Data Storage and Retrieval

FIGURE 2.3-2. Logger Files dialog box

To retrieve a Data File from the PC Card, first highlight "CRD" under the
Device column. Select the File that you wish to retrieve and click on the
"Retrieve" button. The retrieved data file is stored on the computer in the
same form that it was stored on the PC card (TOB3). This format generally
needs to be converted to another format for analysis. Note that this is the
raw file format, and the complete amount of memory allocated for that file
will be retrieved (whether it has had data written to it or not).

2.3.4 Logger Files Retrieval Via PCMCIA PC Card
When the CR9000X is used without a computer in the field, or large data
files are collected on a PC card, the PC card can be transported to the
computer with the data on it. Data stored on the card is in the TOB3 binary
format, and will need to be converted to another format for most uses.

See Section 2.3.5 Converting File Format.

2.3.4.1 Removing PC Card from CR9000X
The CR9032 contains one slot for a Type I/II/III PCMCIA card. The LED
indicates the status of the card.

• Not lit: no card detected or formatted card present without errors.
• red: accessing the card.
• yellow: card not present and program has a CardOut instruction or

card is present but corrupt.
• green: can safely remove card.

To remove a card, press the Control button next to the status LED to power
down the card. The LED will turn green for 10 seconds. Remove the card
while the LED is green. The card will be reactivated if not removed.

Removing a card while it is active can cause garbled
data and can actually damage or corrupt the card. Do
not switch off the power (9011 Module) while the cards
are present and active.

CAUTION

When the PC card is inserted in a computer, the data files can be copied to
another drive or used directly from the PC card just as one would from any

2-8

Section 2. Data Storage and Retrieval

other disk. In most cases, however, it will be necessary to convert the file
format before using the data.

It is usually better to format the card, after the data has been retrieved from
it, prior to inserting it back into the logger. This will insure that memory is
available on the Card for the program to create the File structure for its
requisite Data Tables.

2.3.5 Converting File Format
The CR9000X stores data on its CPU and on PC cards in a TOB3 Format.
TOB3 is a binary format that incorporates features to improve reliability of
the data storage. TOB3 allows the accurate determination of each record’s
time without the space required for individual time stamps.

This raw TOB3 format is the only format that includes any FileMarks that
have been written to the Tables. When converting the data table, it can be
separated out into multiple data files based on the location of these file
marks. If is desire to utilize FileMarks, it must be done using the raw
TOB3 file, either using a file from the Card, or a file that has been
retrieved using the File Control window.

See the FileMark topic in Section 9.1, Program Structure/Control.

FIGURE 2.3-3. File Conversion dialog box

RTDAQ’s file converter will convert TOB1 binary files to ASCII, array
compatible CSV, or CSIXML files. It can convert TOB3 binary files to all
of these plus to the TOB1 file format.

The Convert Data Files utility is under RTDAQ's Tools menu. Data can
be converted with or without Time Stamps and/or Record Numbers.

2-9

Section 2. Data Storage and Retrieval

2.4 Data Format on Computer
The format of the converted file stored on computer can be either ASCII or
Binary depending on the file type selected in the Convert/Collect data
dialog box. Files collected using the Save to File feature in the Table
Monitor window are always stored in ASCII format.

The file formats are described below:

ASCII, TOA5 -
Data is stored in a comma separated format. Header
information for each of the columns is included, along with
field names and units of measure if they are available.

Binary, TOB1 or TOB3 -
Data is stored in a binary format. Though this format saves
disk storage space, it must be converted before it is usable in
most programs.

Array Compatible CSV -
Data is stored in a user-defined comma separated format. This
option can be used to produce output files that are similar to
those created by mixed array dataloggers.

CSI XML -
Data is stored in XML format with Campbell Scientific defined
elements and attributes.

2.4.1 Data File Header Information
Every data file stored on disk has an ASCII header at the beginning. The
header gives information on the file format, datalogger type, and the
program used to collect the data. Figure 2.4.1 is a sample header where
the text in the header is a generic name for the information contained in the
header. The entries are described following the figure.

LINE 1: "File Format","Station Name","Logger Model","CPU Serial No.","OS
Version","Program File","Program File Signature ","Table Name"

LINE 2: "TIMESTAMP","RECORD","Field Name","Field Name","Field Name"
LINE 3: "TS","RN","Field Units","Field Units","Field Units"
LINE 4: "","","Processing Type","Processing Type","Processing Type "
LINE 5: "Data Type","Data Type","Data Type","Data Type","Data Type"
LINE 6: timestamp,record number,field data,field data,field data,

FIGURE 2.4-1. Header information

LINE 1 "File Format"
The format of the file on disk. TOA5 is an ASCII format. TOB1 AND
TOB3 are Binary formats.
"Station Name"
The station name stored in logger memory.
"Logger Model"
The datalogger model that the data was collected from.

2-10

Section 2. Data Storage and Retrieval

"CPU Serial Number"
The serial number of the logger that the data was collected from. This is
the serial number of the CR9000X's CPU.
"Operating System Version"
The operating system version used in the logger.

"Program File"
The name of the program file that was running when the data were created.
"Program File Signature"
The signature of the program file that created the data.
"Table Name"
The data table name as stored in the Logger.

LINE 2 "Time Stamp" (or "Seconds" and "NanoSeconds" in TOB1 Files)
TimeStamp column. "TimeStamp" is shown for column header.

"Record"
Record Number column. "Record" is shown for column header.

"Field Name"
The Field Name for the variable whose data is listed in this column. Each
field that is written to the table will have a column. The Field Name is
created by the CR9000X by appending an underscore (_) and a three
character mnemonic, representing the output processing, to the name of the
Variable that is being stored.

See Table 4.3-1 Output Processing Abbreviations for a listing of the
mnemonics.

See the FieldNames topic in Section 6.4 Output Processing Instructions
and the Alias topic in Section 5 Program Declarations.

LINE 3 "TS" or "Seconds" and "NanoSeconds" in TOB1 Files)
Placeholder for timestamp column(s).

Field Units
The units for the fields in the data table. Units are assigned in the program
with the Units declaration.

LINE 4 "" (,, in TOB1 Files)
Comma separated double quotations (or just commas in the case of the
TOB1 format) are used as placeholder(s) for Timestamp column(s).

"" (, in TOB1 Files)
Comma separated double quotations (or just commas in the case of the
TOB1 format) are used as a placeholder for the Record Number column.

Field Processing
The output processing that was used when the field was stored. Examples:

Smp = Sample Avg = Average

See Section 4.3 Program Access to Data Tables for a list of the 3 letter
mnemonics.

2-11

Section 2. Data Storage and Retrieval

LINE 5 Field Data Type
This header line is only in TOB1 and TOB3 binary formats and identifies
the data type for each of the fields in the data table. Data types include
FP2, IEEE4 (float), Long (ULong), UINT2, Bool4 (Boolean), Bool8,
NSEC, and String.

See "Table 4.2.4 Data Types" located in Section 4.2.4.4.

LINE 6 Time Stamp
This field is the date and time stamp for this record. It indicates the time,
according to the logger clock, that each record was stored. It is actually
stored in the Binary format as the Seconds and Nanoseconds since Jan. 1,
1990.

Record Number
This field is the record number of this record. The number will increase up
to 232 and then start over with zero. The record number will also start over
at zero if the table is reset.

Field Data
This is the data for each of the fields in the record.

All of the Data File structure format examples that follow in this section
were created with the program listed in Example Program 2.4-1.

SlotConfigure(9050)
Public TC(4) : Units TC = Deg_F 'Declare Var array for TCs
Public TRef(1) : Units TRef = Deg_C 'Declare Reference Temp
Public Flag(8) 'Declare General Purpose Flags

DataTable(TEMP,True,-1) 'Name, Trigger, auto size
 DataInterval(0,10,mSec,100) '10 mS rate, 100 lapses, autosize
 CardOut(0,-1) 'PC card , Ring, Auto-size
 Sample (1,TRef(),IEEE4) '1 Rep, Source,IEEE4
 Average(4,TC(),FP2,False) '4 Reps,Source,FP2,Enabled
EndTable 'End of table TEMP

BeginProg 'Program begins here
 Scan(5,mSec,100,0) 'Scan once every 5 mSecs
 ModuleTemp(TRef(),1,4,20) 'Make measurements
 TCDiff(TC(),4,mV50C,4,1,TypeT,TRef(1),True,40,70,1.8,32)
 If Flag(1) Then CallTable TEMP 'Call Data Table Temp
 Next Scan 'Loop up for the next scan
EndProg 'Program ends here

Example Program 2.4-1: Data.C9X program file that created all
example data files in this section

2-12

Section 2. Data Storage and Retrieval

2.4.2 TOA5 ASCII File Format
 TOA5 data files are stored in a comma separated format. Header
information for each of the columns is included, along with field names and
units of measure if they are available. TOA5 file formats can be created
with or without Time Stamps and Record Numbers.

Figure 2.4-2 shows an example of a data file collected as TOA5 with time
stamps and record numbers. The Data file was collected using RTDAQ's
collection window.

"TOA5","LogName","CR9000X","1045","CR9000X.STD05","CPU:Data.C9X","2373","Temp"
"TIMESTAMP","RECORD","TRef","TC_Avg(1)","TC_Avg(2)","TC_Avg(3)","TC_Avg(4)"
"TS","RN","deg_C","deg_F","deg_F","deg_F","deg_F"
"","","Smp","Avg","Avg","Avg","Avg"
"2009-10-27 16:40:43.42",0,29.94,25.6,25.36,25.48,25.4
"2009-10-27 16:40:43.43",1,29.93,25.6,25.36,25.41,25.35

FIGURE 2.4-2. TOA5 with timestamps and record numbers

Figure 2.4-3 shows how the data from Figure 2.4-2 might look when
imported into a spreadsheet.

TOA5 LogName CR9000X 1045 CR9000X.STD.05 CPU:Data.C9X 2373 Temp
TIMESTAMP RECORD TRef TC_Avg(1) TC_Avg(2) TC_Avg(3) TC_Avg(4)
TS RN Deg_C Deg_F Deg_F Deg_F Deg_F
 Smp Avg Avg Avg Avg
2009-10-27 16:40:43.42 0 29.94 25.6 25.36 25.48 25.4
2009-10-27 16:40:43.43 1 29.93 25.6 25.36 25.41 25.35

FIGURE 2.4-3. Spreadsheet of TOA5 with timestamps and record
numbers.

Figure 2.4-4 shows the same data table collected as TOA5 without Time
Stamps or Record Numbers.

"TOA5","LogName","CR9000X","1045","CR9000X.STD.05","CPU:Data.C9X","2373","Temp"
"TRef","TC_Avg(1)","TC_Avg(2)","TC_Avg(3)","TC_Avg(4)"
"Deg_C","Deg_F","Deg_F","Deg_F","Deg_F"
"Smp","Avg","Avg","Avg","Avg"
29.94,25.6,25.36,25.48,25.4
29.93,25.6,25.36,25.41,25.35

FIGURE 2.4-4. TOA5 without timestamps and record numbers

Figure 2.4-5 shows how the TOA5 data without Timestamps and Record
Numbers from Figure 2.4-4 might look when imported into a spreadsheet.

TOA5 LogName CR9000X 1045 CR9000X.STD.05 CPU:DAT.C9X 2373 Temp
TRef TC_Avg(1) TC_Avg(2) TC_Avg(3) TC_Avg(4)
Deg_C Deg_C Deg_F Deg_F Deg_F
Smp Smp Avg Avg Avg
29.94 25.6 25.36 25.48 25.4
29.93 25.6 25.36 25.41 25.35

FIGURE 2.4-5. Spreadsheet of TOA5 without timestamps and
record numbers

2-13

Section 2. Data Storage and Retrieval

2.4.3 TOB1 Binary File Format
The TOB1 binary file format is typically only used when it is essential to
minimize the file size or when other software requires, or more readily
accepts, this format over ASCII (such as DaDisp) . Campbell Scientifics'
ViewPro and Split utilities directly support TOB1 file formats.

Files can be collected as TOB1 through the collect menu in RTDAQ or
LoggerNet software support packages. The Card Convert utility can also
convert TOB3 data files into TOB1 data files.

Figure 2.4-6 is a sample of a data file that was generated using Example
Program 2.4-1 and collected as TOB1 Binary with time stamps.

"TOB1","LogName","CR9000X","1045","CR9000X.STD.05","CPU:Data.C9X",2373,Temp
"SECONDS","NANOSECONDS","RECORD","TRef","TC_Avg(1)","TC_Avg(2)","TC_Avg(3)","TC_Avg(4)
"
"SECONDS","NANOSECONDS","RN","Deg_C","Deg_F","Deg_F","Deg_F","Deg_F"
"","","","Smp","Avg","Avg","Avg","Avg","Avg"
"WLONG","WLONG","WLONG","IEEE4","FP2","FP2","FP2","FP2"
(data lines are binary and not directly readable)

FIGURE 2.4-6. TOB1 with timestamps and record numbers

Figure 2.4-7 shows the same data file collected as TOB1 w/o time stamps.

"TOB1","LogName","CR9000X","1045","CR9000X.STD.05","CPU:Data.C9X",2373,Temp
"TRef","TC_Avg(1)","TC_Avg(2)","TC_Avg(3)","TC_Avg(4)"
"Deg_C","Deg_F","Deg_F","Deg_F","Deg_F"
"Smp","Avg","Avg","Avg","Avg","Avg"
"IEEE4","FP2","FP2","FP2","FP2"
(data lines are binary and not directly readable)

FIGURE 2.4-7 TOB1 without timestamps and record numbers

2.4.4 TOB3 Binary File Format
Data Files that are created internal of the CR9000X, either on the CPU or
on the PC card, are stored in the raw TOB3 binary format. The only way
to access this raw TOB3 file, without converting it to another format, is
directly from the PC card (copying or accessing), or through retrieving the
file using the File Control utility in RTDAQ or LoggerNet. It should be
noted that FileMarks that have been written to data files can only be
processed using this raw TOB3 binary file.

The File header information of the TOB3 format differs slightly from the
other data file formats. Figure 2.4-8 lists the information included in the
TOB3 file header.

2-14

Section 2. Data Storage and Retrieval

LINE 1: "File Format","Station Name","Logger Model","CPU Serial No.","OS Version",
"Program File","Program File Signature", "File Creation Time"

LINE 2: "Table Name","Record Interval","Data Frame Size","Intended Table Size",
"Validation Stamp","Frame time resolution"

LINE 3: "Field Name","Field Name","Field Name","Field Name","Field Name"
LINE 4: "Field Units","Field Units","Field Units","Field Units","Field Units"
LINE 5: "Process Type","Process Type","Process Type","Process Type","Process Type"
LINE 5: "Data Type","Data Type","Data Type","Data Type","Data Type"

FIGURE 2.4-8. TOB3 file header information

Figure 2.4-9 is an illustration of a TOB3 data file that was created using the
Example Program listed in Example Program 2.4-1.

"TOB3","LogName","CR9000X","1045","CR9000X.STD.05","CPU:Data.C9X",2373,"2009-10-27 16:40:14"
"Temp","10 MSEC","1024","2574034","34004","Sec10Usec"," 0"," 625511219","0677345253"
"TRef","TC_Avg(1)","TC_Avg(2)","TC_Avg(3)","TC_Avg(4)"
"Deg_C","Deg_F","Deg_F","Deg_F","Deg_F"
"Smp","Avg","Avg","Avg","Avg"
"IEEE4l","FP2","FP2","FP2","FP2"
(data lines are binary and not directly readable)

FIGURE 2.4-9. TOB3 data file example

TOB3 data are stored in fixed size “frames” that generally contain a
number of records. The size of the frames is a function of the record size.
The frames are time stamped, allowing the calculation of time stamps for
their records. If there is a lapse in periodic interval records that does not
occur on a frame boundary, an additional time stamp is written within the
frame and its occurrence noted in the frame boundary. This additional time
stamp takes up space that would otherwise hold data.

When TOB3 files are converted to another format, the number of records
may be greater or less than the number requested in the data table
declaration. There are always at least two additional frames of data
allocated. When the file is converted these will result in additional records
if no lapses occurred. If more lapses occur than were anticipated, there
may be fewer records in the file than were allocated.

2-15

Section 2. Data Storage and Retrieval

2-16

Section 3. CR9000X Measurement
Details

3.1 Measurements using the CR9041 A/D
The CR9050(E), CR9051E, and the CR9055(E) modules all use the A/D
module to digitize their analog measurements. Section 3.1 documents
measurement details for the measurements made using these modules. The
Filter module (CR9052) and the Isolation Module (CR9058E) both have an
A/D converter for each channel. The analog inputs are digitized by the
modules (the CR9041 A/D module is not used) and the digital data is sent
directly to the CR9000X’s CPU module. The differences in measurement
details for these modules are covered in Sections 3.2 and 3.3. The
measurement details for the CR9070 and CR9071 Pulse modules are covered
in Section 3.4.

3.1.1 Analog Voltage Measurement Sequence
The CR9000X measures analog voltages with a sample and hold analog to
digital (A/D) conversion. The signal at a precise instant is sampled and this
voltage is held or "frozen" while the digitization takes place. The A/D
conversion is made with a 16 bit successive approximation technique which
resolves the signal voltage to approximately one part in 62,500 of the full scale
range (e.g., for the ±5000 mV range, 10 V/62,500 = 160 µV). The analog
measurements are multiplexed through a single A/D converter with a
maximum conversion rate of 100,000 per second or one every 10 µs.

The timing of the CR9000X measurements is precisely controlled by the task
sequencer, a combination of components that switches the measurement
circuitry on a rigid schedule that is determined at compile time and loaded into
the task sequencer's memory. The basic tick of the task sequencer
measurement clock may be thought of as 10 µs. The minimum time between
measurements is 10 µs. When voltage signals are measured at a 10
µs/measurement rate, every 10 µs the task sequencer holds the signal from one
channel and then switches to the next channel. When the signal is held, the
A/D converter goes to work and ships the result off to the transputer memory.

The instructions executed by the task sequencer (e.g., hold, turn on the
excitation, switch to the next channel, etc.) take 400 ηs each. When measuring
every 10 μs, after holding for one measurement, the task sequencer switches to
the next channel (400 ηs), waits 9200 ηs, then holds for the next measurement
(400 ηs).

Changing voltage ranges requires one 10 μs tick; the task sequencer sets up the
new voltage range then delays until the next 10 μs boundary before switching
to the first channel. This only occurs before the first measurement within a
scan or when the voltage range actually changes. Using two different voltage
measurement instructions with the same voltage range takes the same
measurement time as using one instruction with two repetitions. (This is

3-1

Section 3. CR9000X Measurement Details

not the case in the CR10, 21X and CR7 dataloggers where there is always a
setup time for each instruction.)

There are four parameters in the measurement instructions that may vary the
sequence and timing of the measurement. These are options to reverse the
polarity of the excitation voltage (RevEx), reverse the high and low
differential inputs (RevDiff), to set the time to wait between switching to a
channel and making a measurement (Delay), and the length of time to integrate
a measurement (Integ).

3.1.1.1 Reversing Excitation or the Differential Input
Reversing the excitation polarity or the differential input are techniques to
cancel voltage offsets that are not part of the signal. For example, if there is a
+5 μV offset, a 5 mV signal will be measured as 5.005 mV. When the input is
reversed, the measurement will be -4.995 mV. Subtracting the second
measurement from the first and dividing by 2 gives the correct answer: 5.005-
(-4.995)=10, 10/2=5. Most offsets are thermocouple effects caused by
temperature gradients in the measurement circuitry or wiring.

Reversing the excitation polarity cancels voltage offsets in the sensor, wiring,
and measurement circuitry. One measurement is made with the excitation
voltage with the polarity programmed and a second measurement is made with
the polarity reversed. The excitation "on time" for each polarity is exactly the
same to ensure that ionic sensors do not polarize with repetitive measurements.

Reversing the inputs of a differential measurement cancels offsets in the
CR9000X measurement circuitry. One measurement is made with the high
input referenced to the low input and a second with the low referenced to the
high.

3.1.1.2 Delay
When the CR9000X switches to a new channel or switches on the excitation
for a bridge measurement, there is a finite amount of time required for the
signal to reach its true value. Delaying between setting up a measurement
(switching to the channel, setting the excitation) and making the measurement
allows the signal to settle to the correct value. The default CR9000X delays,
10 μs for the 5000 and 1000 mV ranges and 20 μs for the 200 and 50 mV
ranges, are the minimum required for the CR9000X to settle to within its
accuracy specifications. Additional delay is necessary when working with
high sensor resistances or long lead lengths (higher capacitance). It is also
possible to shorten the delay on the 200 and 50 mV ranges to 10 μs when
speed and resolution is more important than high accuracy. Using a delay
increases the time required for each measurement.

When the CR9000X Reverses the differential input or the excitation polarity, it
delays the same time after the reversal as it does before the first measurement.
Thus there are two delays per channel when either RevDiff or RevEx is used.
If both RevDiff and RevEx are selected, there are four measurement segments,
positive and negative excitations with the inputs one way and positive and
negative excitations with the inputs reversed. The CR9000X switches to the
channel:

3-2

Section 3. CR9000X Measurement Details

 sets the excitation, delays, measures,
 reverses the excitation, delays, measures,
 reverses the excitation, reverses the inputs, delays, measures,
 reverses the excitation, delays, measures.

Thus there are four delays per channel measured.

3.1.1.3 Integration
With the CR9050 and CR9055 analog input modules, there is no analog
integration of the signal and minimal filtering from the 422 ohm series resistor
and 0.001 μF capacitor to ground that protect the input. The signal is sampled
when the task sequencer issues a hold command and any noise that may be on
the signal becomes part of the measured voltage. The rapid sample is a
necessity for high speed measurements. Integrating the signal will reduce
noise. When lower noise measurements are needed or speed is not an issue,
integration can be specified as part of the measurement.

The CR9000X uses digital integration. An integration time in microseconds
(10 μs resolution) is specified as part of the measurement instruction. The
CR9000X will repeat measurements every 10 μs throughout the integration
interval and store the average as the result of the measurement.

The random noise level is decreased by the square root of the number of
measurements made. For example, the input noise on the ±5000 mV range
with no integration (one measurement) is 105 μV RMS; integrating for 40 μs
(four measurements) will cut this noise in half (105/(√4)=52.5).

One of the most common sources of noise is not random but is 60 Hz from AC
power lines. An integration time of 16,670 μs is equal to one 60 Hz cycle.
Integrating for one cycle will integrate the AC noise to 0.

The integration time specified in the measurement instruction is used for each
segment of the measurement. Thus, if reversing the differential input or
reversing the excitation is specified, there will be two integrations per channel;
if both reversals are specified, there will be four integrations.

3.1.2 Single Ended and Differential Voltage Measurements
A single-ended measurement is made on a single input which is measured
relative to ground. A differential measurement measures the difference in
voltage between two inputs. Twice as many single ended measurements can
be made per Analog Input Module.

There are two sets of channel numbers on the Analog Input
Modules. Differential channels (1-14) have two inputs: high (H)
and low (L). Either the high or low side of a differential channel
can be used for a single ended measurement. The single-ended
channels are numbered 1-28.

NOTE

3-3

Section 3. CR9000X Measurement Details

The CR9000X incorporates a programmable gain input instrumentation
amplifier, as illustrated in FIGURE 3.1.2-1. The voltage gain of the
instrumentation amplifier is determined by the user selected range code
associated with voltage measurement instructions. The instrumentation
amplifier can be configured to measure either single-ended (SE) or differential
(DIFF) voltages.

For SE measurements the voltage to be measured is connected to the H input
while the L input is internally connected to the signal ground () on the
wiring panel. CRBasic instructions BRHalf, BRHalf6W, TCSE, and VoltSE
perform Single Ended voltage measurements.

For DIFF measurements, the voltage to be measured is connected between the
H and L inputs on the instrumentation amplifier. CRBasic instructions
BrFull(), BrFull6W(), BrHalf4W(), TCDiff(), and VoltDiff() perform DIFF
voltage measurements.

FIGURE 3.1.2-1. Programmable gain instrumentation amplifier

An instrumentation amplifier processes the difference between the H and L
inputs, while rejecting voltages that are common to both with respect to the
CR9000X ground. FIGURE 3.1.2-2 illustrates the instrumentation amplifier
with the input signal decomposed into a common-mode voltage (Vcm) and a
DIFF mode voltage (Vdm). The common-mode voltage is the average of the
voltages on the H and L inputs, i.e., Vcm = (VH + VL)/2, which can viewed as
the voltage remaining on both the H and L inputs when the DIFF voltage
(Vdm) equals 0. The voltage on the H and L inputs is given as VH = Vcm +
Vdm/2, and VL = Vcm – Vdm/2, respectively.

FIGURE 3.1.2-2. Programmable gain instrumentation amplifier with
input signal decomposition

3-4

Section 3. CR9000X Measurement Details

Input Limits
The Input Limit specifies the voltage range, relative to CR9000X ground,
which both H and L input voltages must be within in order to be processed
correctly by the instrumentation amplifier. The Input Limits for the
CR9050(E) and CR9051E modules are ±5 V . The Input Limits for the
CR9055(E) modules are ±50 V. Differential measurements in which the H or
L input voltages are beyond the INPUT LIMITs may suffer from undetected
measurement errors.

Example 3.1.2-2: Lets take the case of a type K thermocouple
at about 246 degrees C (thermoelectric voltage of 10 mV) that is
floating with a static charge of 1000 mV. In this case, Vcm = 1000
mV, Vdm= 10 mV, VH = 995 mV, and VL = 1005 mV. A valid
measurement can be made using the mV50 range code because the
1000 mV static charge is within the common mode range, the Diff
voltage is below 50 mV, and the total voltage on both the H (VH)
and L (VL)inputs are within the ±5 V Input Limits of the
CR9050.

It should be noted that the term “Common-mode Range”, which defines the
valid range of common-mode voltages, is often used instead of “Voltage Input
Limits.” For DIFF voltages that are small compared to the Input Limits, the
Common-mode Range is essentially equivalent to the Input Limits. Yet as
shown in FIGURE 3.1.1-2, the Common-mode Range = ±⎪Input Limits –
Vdm/2⎪, indicating a reduction in Common-mode Range for increasing DIFF
signal amplitudes. For example, with a 5000 mV DIFF signal, the Common-
mode Range is reduced to ±2.5 V, whereas the voltage Input Limits are
always ±5 V. Hence, the term INPUT LIMITS is used in place of the
widely used term, Common-mode range.

Because a single ended measurement is referenced to CR9000X ground, any
difference in ground potential between the sensor and the CR9000X will result
in an error in the measurement. For example, if the measuring junction of a
copper-constantan thermocouple, being used to measure soil temperature, is
not insulated and the potential of earth ground is 1 mV greater at the sensor
than at the point where the CR9000X is grounded, the measured voltage would
be 1 mV greater than the thermocouple output, or approximately 25 oC high.
Another instance where a ground potential difference creates a problem is in a
where external signal conditioning circuitry is powered from the same source
as the CR9000X. Despite being tied to the same ground, differences in current
drain and lead resistance result in different ground potential at the two
instruments. For this reason, a differential measurement should be made on an
analog output from the external signal conditioner. Differential measurements
MUST be used when the low input is known to be different from ground, such
as the output from a full bridge.

3.1.2.1 Single Ended Voltage Range
The voltage range for single ended measurements is the range in which the
input voltage must be, relative to CR9000X ground, for the measurement to be
made.

The resolution (the smallest difference that can be detected) for the A/D
conversion is a fixed percentage of the full scale range. To obtain the best

3-5

Section 3. CR9000X Measurement Details

resolution, select the smallest range that will cover the voltage output by the
sensor. For example, the resolution of an A/D conversion made on the ± 50
mV range is 1.6 μV; the resolution on the ±5000 mV range is 160 μV. A
copper-constantan thermocouple outputs a voltage of about 40 μV / °C
(difference in temperature between the measurement and reference junction).
The temperature resolution on the ± 50 mV range is 0.04 degrees (1.6 μV /
40 μV / 1°C); the resolution on the ±5000 mV range is 4 degrees (160 μV /
40 μV / °C). Because the smallest ± 50 mV range will allow a 1250 degree
difference (0.05 V / 0.00006 V), which is greater than the sensor capability
(-200 to 400 degrees C) there is no reason to use a larger range.

3.1.2.2 Differential Voltage Range
When a differential voltage measurement is made, the high (H) input is
referenced to the low (L) input. To obtain the best resolution, select the
smallest range that will cover the voltage output by the sensor as described for
single ended voltage measurements above.

Range Code C option: Open Sensor Detect
Sensors that have a floating output (the output is not referenced to ground
through a separate connection, such as thermocouples) may float outside of the
Input Limits, causing measurement problems. For example, a larger static
charge in Example 3.1.2-1 could result in an invalid thermocouple
measurement. Hence, the ability to null any residual common-mode voltage
prior to measurement is useful in order to pull the H and L Instrumentation
Amp inputs within the ±5 V Input Limits. Adding a “C” to the end of the
range code (i.e. mV50C) enables the nulling of the common-mode voltage
prior to a differential measurement for the ±50 mV and ±200 mV input ranges.

The “C” range code option results in a brief internal connection of the H and L
inputs of the IA to 2800 mV and ground, respectively, while still connected to
the sensor to be measured. The resulting internal common-mode voltage is ≈
1400 mV, which is well within the ±5 V Input Limits. Upon disconnecting the
internal 2800 mV and ground connections, the associated input is allowed to
settle to the desired sensor voltage and the voltage measurement is made. If the
associated input is open (floating), the input voltages will remain near the 2800
mV and ground, resulting in an over range (NAN) on the ±50 mV and ±200
mV input ranges. If the associated sensor is connected and functioning
properly, a valid measured voltage will result. When this option is selected,
the time required for each measurement will be increased by 10 micro-seconds.

Example 3.1.2-2: Start with example 3.1.2-1. If the static
charge were to build up to 5000 mV, with a thermoelectric voltage
of 10 mV the VH would equal 5005 mV. This is above the Input
Limit of 5000 mV, and a reliable measurement cannot be made on
the CR9050 or CR9051E modules without pulling the inputs to
within the allowable Input Limit range. If the 50mVC, Open Sense
Detect, range code, were utilized, the input voltages would be
pulled within the Input Levels and a good measurement could be
made.

3-6

Section 3. CR9000X Measurement Details

The C option has the added benefit of being able to detect an open input (e.g.,
broken thermocouple). The H input is connected to a voltage approximately
2.8 V above the L input so that an open input will result in an over range on
the ±200 mV and ±50 mV input ranges. With an open input the high and low
inputs are floating independently and remain close to the values they reached
while connected to the excitation, over ranging voltage ranges up to ±200 mV
and causing Not a Number (NAN) to be returned for the result.

Input Limit check, R option :
As previously mentioned, input voltages in which VH or VL are beyond the
±5V Input Limits may suffer from undetected measurement errors. The “R”
range code option (e.g., mV1000R) invokes SE measurements of both VH and
VL after the associated differential voltage measurement. If either VH or VL is
found to be outside the Input Limit range, then a NAN is returned for the
measured result instead of a possible erroneous value. To avoid misleading
data, either be sure that the inputs are within the Input Limits with respect to
the CR9000X analog ground, or use the voltage range R option to check
common mode range.

Example 3.1.2-3: If VH of a differential input is at 4.3 V and VL is at 3.4
V relative to CR9000X ground, a sound measurement can be made. A
measurement made on the CR9050 module using the mV1000 range code
option range will return 900 mV. However, if the high input is at 5.6 V
and the low input is at 4.8 V, the measurement result returned could either
be NAN or some erroneous numeric. If the mV1000R range code option
were utilized, it would force a result of NAN to be returned rather than
possibly allowing a bogus value to be returned.

“C” and “R” Range Combination
The “C” and “R” options can both be utilized for a given VoltDiff and TCDiff
instruction combined (e.g., mV200CR). For a “CR” range code option, the “C”
portion is first performed, followed by the associated differential voltage
measurement, followed by the “R” portion of the measurement. A NAN result
indicates either a sensor over range, an open input, or that VH and/or VL
exceeded the ± 5 V Input Limits when using the “CR” range code option.

Problems with exceeding the Input Limits may be encountered when the
CR9000X is used to read the output of external signal conditioning circuitry if
a good ground connection does not exist between the external circuitry and the
CR9000X. When operating where AC power is available, it is not always safe
to assume that a good ground connection exists through the AC wiring. If a
CR9000X is used to measure the output from a laboratory instrument (both
plugged into AC power and referencing ground to outlet ground), it is best to
run a ground wire between the CR9000X and the external circuitry. Even with
this ground connection, the ground potential of the two instruments may not be
at exactly the same level, which is why a differential measurement is desired.

A differential measurement has the option of reversing the inputs to cancel
offsets as described in Section 3.1.1.1. The maximum offset when the inputs
are reversed on a differential measurement offset is about one quarter what it is
on a single ended or one way differential.

3-7

Section 3. CR9000X Measurement Details

Sustained voltages in excess of ±20 V on the CR9050 Module
inputs or ±150 V on the CR9055 Module inputs will damage the
CR9000X circuitry.

NOTE

3.1.3 Signal Settling Time
Whenever an analog input is switched into the CR9000X measurement
circuitry prior to making a measurement, a finite amount of time is required for
the signal to stabilize at it's correct value. The rate at which the signal settles is
determined by the input settling time constant which is a function of both the
source resistance and input capacitance. The CR9000X delays after switching
to a channel to allow the input to settle before initiating the measurement. The
default delays used by the CR9000X are 10 µs on the ±5000 and ±1000 mV
ranges and 20 µs on the ±200 and ±50 mV range. This settling time is the
minimum required to allow the input to settle to the resolution specification.
The additional wire capacitance associated with long sensor leads can increase
the settling time constant to the point that measurement errors may occur.
There are three potential sources of error which must settle before the
measurement is made:

1. The signal must rise to its correct value.

2. A small transient caused by switching the analog input into the
measurement circuitry must settle.

3. When a resistive bridge measurement is made using a switched excitation
channel, a larger transient caused when the excitation is switched must
settle.

MINIMIZING SETTLING ERRORS
When long lead lengths are mandatory, the following general practices can be
used to minimize or measure settling errors:

1. When measurement speed is not a prime consideration, additional delay
time can be used to ensure ample settling time.

2 When making fast bridge measurements, use the continuous excitation
channels (1-6) to excite the bridges so the excitation doesn't have to settle
before each measurement.

3. Where possible run excitation leads and signal leads in separate shields to
minimize transients.

4. DO NOT USE WIRE WITH PVC INSULATED CONDUCTORS. PVC
has a high dielectric which extends input settling time.

5. Use the CR9000X to measure the input settling error associated with a
given configuration. Stabilize the sensor so that its output is not
changing. Program the CR9000X to make the measurement with the
delay you would like to use and a second time with a much longer delay
that ensures adequate settling time. The difference between the two
measurements is the error due to inadequate settling time.

3-8

Section 3. CR9000X Measurement Details

Settling time for a particular sensor and cable can be measured with the
CR9000x. Programming a series of measurements with increasing settling
times will yield data that indicates at what settling time a further increase
results in negligible change in the measured voltage. The programmed
settling time at this point indicates the true settling time for the sensor and
cable combination.

Example 3.1.3-1 presents CRBASIC code to help determine settling time
for a pressure transducer with 200 feet of cable. The code consists of a
series of full-bridge measurements (BrFull ()) with increasing settling
times. The pressure transducer is placed in steady-state conditions so
changes in measured voltage are attributable to settling time rather than
changes in the measured pressure.

EXAMPLE 3.1.3-1. CRBASIC Code: Measuring Settling Time

'CR9000X Series Datalogger
'Program to measure the settling time of a sensor
'measured with a differential voltage measurement

Public PT(20) 'Variable to hold the measurements

DataTable (Settle,True,100)
 Sample (20,PT(),IEEE4)
EndTable

BeginProg
 Scan (1,Sec,3,0)
 BrFull (PT(1),1,mV7_5,4,1,5,1,1,5000,True,True,100,250,1.0,0)
 BrFull (PT(2),1,mV7_5,4,1,5,1,1,5000,True,True,200,250,1.0,0)
 BrFull (PT(3),1,mV7_5,4,1,5,1,1,5000,True,True,300,250,1.0,0)
 BrFull (PT(4),1,mV7_5,4,1,5,1,1,5000,True,True,400,250,1.0,0)
 BrFull (PT(5),1,mV7_5,4,1,5,1,1,5000,True,True,500,250,1.0,0)
 BrFull (PT(6),1,mV7_5,4,1,5,1,1,5000,True,True,600,250,1.0,0)
 BrFull (PT(7),1,mV7_5,4,1,5,1,1,5000,True,True,700,250,1.0,0)
 BrFull (PT(8),1,mV7_5,4,1,5,1,1,5000,True,True,800,250,1.0,0)
 BrFull (PT(9),1,mV7_5,4,1,5,1,1,5000,True,True,900,250,1.0,0)
 BrFull (PT(10),1,mV7_5,4,1,5,1,1,5000,True,True,1000,250,1.0,0)
 BrFull (PT(11),1,mV7_5,4,1,5,1,1,5000,True,True,1100,250,1.0,0)
 BrFull (PT(12),1,mV7_5,4,1,5,1,1,5000,True,True,1200,250,1.0,0)
 BrFull (PT(13),1,mV7_5,4,1,5,1,1,5000,True,True,1300,250,1.0,0)
 BrFull (PT(14),1,mV7_5,4,1,5,1,1,5000,True,True,1400,250,1.0,0)
 BrFull (PT(15),1,mV7_5,4,1,5,1,1,5000,True,True,1500,250,1.0,0)
 BrFull (PT(16),1,mV7_5,4,1,5,1,1,5000,True,True,1600,250,1.0,0)
 BrFull (PT(17),1,mV7_5,4,1,5,1,1,5000,True,True,1700,250,1.0,0)
 BrFull (PT(18),1,mV7_5,4,1,5,1,1,5000,True,True,1800,250,1.0,0)
 BrFull (PT(19),1,mV7_5,4,1,5,1,1,5000,True,True,1900,250,1.0,0)
 BrFull (PT(20),1,mV7_5,4,1,5,1,1,5000,True,True,2000,250,1.0,0)
 CallTable Settle
 NextScan
EndProg

3-9

Section 3. CR9000X Measurement Details

Each trace in Figure 3.1-1, Settling Time for Pressure Transducer, contains all
20 PT() values for a given record number, along with an averaged value
showing the measurements as percent of final reading. The reading has settled
to 99.5% of the final value by the fourteenth measurement, PT(14). This is a
suitable accuracy for the application, so a settling time of 1400 μs is
determined to be adequate.

Settling Time

0.036

0.037

0.038

0.039

0.04

0.041

0.042

0.043

0.044

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (x100 us)

m
V/

Vo
lt

85

87

89

91

93

95

97

99

%
 o

f F
in

al
 V

al
ue

Series1
Series2
Series3
Series4
Series5
Average %

FIGURE 3.1.3-1. Settling time for pressure transducer

3.1.4 Thermocouple Measurements
A thermocouple consists of two wires, each of a different metal or alloy, which
are joined together at each end. If the two junctions are at different
temperatures, a voltage proportional to the difference in temperatures is
induced in the wires. When a thermocouple is used for temperature
measurement, the wires are soldered or welded together at the measuring
junction. The second junction, which becomes the reference junction, is
formed where the other ends of the wires are connected to the measuring
device. (With the connectors at the same temperature, the chemical
dissimilarity between the thermocouple wire and the connector does not induce
any voltage.) When the temperature of the reference junction is known, the
temperature of the measuring junction can be determined by measuring the
thermocouple voltage and adding the corresponding temperature difference to
the reference temperature.

The CR9000X determines thermocouple temperatures using the following
sequence. First the temperature of the reference junction is measured. If the
reference junction is the CR9000X Analog Input Module, the temperature is
measured with the PRT in the CR9050 Analog Input Module (ModuleTemp
instruction). The reference junction temperature in oC is stored and then
referenced by the thermocouple measurement instruction (TCDiff or TCSE).
The CR9000X calculates the voltage that a thermocouple of the type specified

3-10

Section 3. CR9000X Measurement Details

would output at the reference junction temperature if its reference junction
were at 0 oC, and adds this voltage to the measured thermocouple voltage. The
temperature of the measuring junction is then calculated from a polynomial
approximation of the NIST TC calibrations.

3.1.4.1 Error Analysis
The error in the measurement of a thermocouple temperature is the sum of the
errors in the reference junction temperature, the thermocouple output
(deviation from standards published in NIST Monograph 175), the
thermocouple voltage measurement, and the linearization error (difference
between NIST standard and CR9000X polynomial approximations). The
discussion of errors which follows is limited to these errors in calibration and
measurement and does not include errors in installation or matching the sensor
to the environment being measured.

Reference Junction Temperature with CR9050

The PRT in the CR9000X is mounted on the circuit board near the center of
the CR9050 terminal strip. This resistance temperature device (RTD) is
accurate to ±0.1 oC over the CR9000X operating range.

The error in the reference temperature measurement is a combination of the
error in the thermistor temperature and the difference in temperature between
the module thermistor and the terminals the thermocouple is connected to.
When using the CR9051E, the insulated cover for the CR9051EZ connector
should always be used when making thermocouple measurements. It insulates
the terminals from drafts and rapid fluctuations in temperature as well as
conducting heat to reduce temperature gradients. Also, the foam block that
was supplied with the CR9000X should be utilized to minimize temperature
gradients.

The I/O Module was designed to minimize thermal gradients. It is encased in
an aluminum box which is thermally isolated from the CR9000X fiberglass
enclosure. Measurement modules have aluminum mounting plates extending
beyond the edges of the circuit cards that provide thermal conduction for rapid
equilibration of thermal gradients. Sources of heat within the CR9000X
enclosure exist due to power dissipation by the electronic components or
charging batteries. In a situation where the CR9000X is at an ambient
temperature of approximately 20oC and no external temperature gradients
exist, the temperature gradient between one end of an Analog Input module to
the other is likely to be less than 0.1°C.

The gradient from one end of the I/O Chassis to the other, is likely to be about
4°C. The end of the enclosure with the CPU Module will be warmer due to
heat dissipated by the processor.

For the best accuracy, use the temperature of each CR9050 module as the
reference temperature for any thermocouples attached to it. Given the above
conditions, this would keep the reference junctions within 0.05°C of the
temperature of the RTD. When making more thermocouple measurements
than can be accomplished on a single CR9050 module, it is faster to measure
the temperature of one CR9050 module and use it for all thermocouples. If

3-11

Section 3. CR9000X Measurement Details

speed is more important than the reduced accuracy, the temperature of a single
CR9050 module can be used for thermocouples connected to other modules.

A foam block that fits under the terminal cover is sent with the CR9000X.
When installed, this block insulates and limits air circulation around the
terminals. This helps to limit temperature gradients on the analog input
modules, particularly when the CR9000X is subjected to rapid temperature
changes and/or convective air currents.

Figure 3.1.4-1 shows the thermocouple temperature errors experienced on
different channels of the CR9051E analog module when a CR9000X, in a lab
enclosure with the foam block inserted under the lid, was subjected to an
abrupt change in temperature. The logger was enclosed in 1 mil plastic, to keep
convective air currents from directly impinging on the logger surfaces, and
placed inside a test chamber. Throughout the test, channels 1, 7, and 14 of the
CR9051E module were used to measure the temperature of an ice bath. The
Logger was soaked until it reached -40 ˚C and then the chamber was cycled
from -40 ˚C to 60 ˚C in 12 minutes. The measured temperature of the ice bath
was compared with the actual temperature, which was measured using an
independent, calibrated device. The measurement errors on Channels 1, 7, and
14 are plotted against the left axis. The reference temperature (PRT_Ref) of the
CR9051E and the ambient chamber temperature are plotted against the right
axis.

‐4

‐3

‐2

‐1

0

1

0 0.25

0.5

0.75

1 1.25

1.5

1.75

2 2.25

2.5

2.75

3 3.25

3.5

3.75

4 4.25

4.5

4.75

Time (hrs)

Ch
an
ne
ls
(?
C)

Te
m
pe
ra
tu
re
 D
iff
er
en
ce

‐60
‐40
‐20
0

20
40
60
80

Ch
am

be
r /

 P
RT
_R
ef
 (
?C
)

Channel 1

Channel 7

Channel 14

Chamber_Ambient

PRT_Ref

FIGURE 3.1.4-1. Thermocouple temperature errors during rapid
temperature change

Thermocouple Limits of Error

The standard reference which lists thermocouple output voltage as a function
of temperature (reference junction at 0oC) is the National Institute of Standards
and Technology Monograph 175 (1993). The American National Standards
Institute has established limits of error on thermocouple wire which is accepted
as an industry standard (ANSI MC 96.1, 1975). Table 3.1.4-1 gives the ANSI
limits of error for standard and special grade thermocouple wire of the types
accommodated by the CR9000X.

3-12

Section 3. CR9000X Measurement Details

TABLE 3.1.4-1. Limits of Error for Thermocouple Wire (Reference
Junction at 0oC)

 Limits of Error
Thermocouple Temperature (Whichever is greater)

Type Range oC Standard Special
T -200 to 0 ± 1.0oC or 1.50%
 0 to 350 ± 1.0oC or 0.75% ± 0.5oC or 0.4%
J 0 to 750 ± 2.2oC or 0.75% ± 1.1oC or 0.4%
E -200 to 0

 0 to 900
± 1.7oC or 1.00%
± 1.7oC or 0.50%

± 1.0oC or 0.4%

K -200 to 0
 0 to 1250

± 2.2oC or 2.00%
± 2.2oC or 0.75%

± 1.1oC or 0.4%

N -270 to 0
 0 to 1300

± 2.2oC or 2.00%
± 2.2oC or 0.75%

± 1.1oC or 0.4%

R or S 0 to 1450 ± 1.5oC or 0.25% ± 0.6oC or 0.1%
B 800 to 1700 ± 0.5% Not Estab.

When both junctions of a thermocouple are at the same temperature there is no
voltage produced (law of intermediate metals). A consequence of this is that a
thermocouple can not have an offset error; any deviation from a standard
(assuming the wires are each homogeneous and no secondary junctions exist)
is due to a deviation in slope. In light of this, the fixed temperature limits of
error (e.g., ±1.0 °C for type T as opposed to the slope error of 0.75% of the
temperature) in the table above are probably greater than one would experience
when considering temperatures in the environmental range (i.e., the reference
junction, at 0 °C, is relatively close to the temperature being measured, so the
absolute error - the product of the temperature difference and the slope error -
should be closer to the percentage error than the fixed error). Likewise,
because thermocouple calibration error is a slope error, accuracy can be
increased when the reference junction temperature is close to the measurement
temperature. For the same reason differential temperature measurements, over
a small temperature gradient, can be extremely accurate.

In order to quantitatively evaluate thermocouple error when the reference
junction is not fixed at 0 oC, one needs limits of error for the Seebeck
coefficient (slope of thermocouple voltage vs. temperature curve) for the
various thermocouples. Lacking this information, a reasonable approach is to
apply the percentage errors, with perhaps 0.25% added on, to the difference in
temperature being measured by the thermocouple.

Accuracy of the Thermocouple Voltage Measurement

The accuracy of a CR9000X voltage measurement is specified as 0.07% the
measured voltage plus 4 A/D counts of the range being used to make the
measurement. The input offset error reduces to 1 A/D count if a differential
measurement is made utilizing the option to reverse the differential input.

For optimum resolution, the ±50 mV range is used for all but high
temperature measurements (Table 3.1.4-2). The input offset error dominates
the voltage measurement error for environmental measurements. A
temperature difference of 40 to 60 °C between the measurement and reference

3-13

Section 3. CR9000X Measurement Details

junctions is required for a thermocouple to output 2.285 mV, the voltage at
which 0.07% of the reading is equal to 1 A/D count (1.6 mV).

For example, assume that a type T thermocouple is used to measure a
temperature of 45 °C and that the reference temperature is 25 °C. The voltage
output by the thermocouple is 830.7 µV. At 45 degrees a type T thermocouple
outputs 42.4 µV per oC. The possible slope error in the voltage measurement
is 0.0007x830.7 µV = 0.58 µV or 0.014 oC (0.58/42.4). An A/D count on the
±50 mV range is worth 1.6 µV or 0.038 oC. Thus, the possible error due to the
voltage measurement is 0.166 oC on a single-ended or non-reversing
differential, or 0.052 oC with a reversing differential measurement. The value
of using a differential measurement with reversing input to improve accuracy
is readily apparent.

The error in the temperature due to inaccuracy in the measurement of the
thermocouple voltage is worst at temperature extremes, particularly when the
temperature and thermocouple type require using the 200 mV range.

For example, assume type K (chromel-alumel) thermocouples are used to
measure temperatures around 1300 oC. The TC output is on the order of 52
mV, requiring the ±200 mV input range. At 1300 oC, a K thermocouple
outputs 34.9 µV per oC. The possible slope error in the voltage measurement
is 0.0007x52 mV = 36.4 µV or 1.04 oC (36.4/34.9). An A/D count on the 200
mV range is worth 6.3 µV or 0.18 oC. Thus, the possible error due to the
voltage measurement is 1.77 oC on a single-ended or non-reversing
differential, or 1.22 oC with a reversing differential measurement.

TABLE 3.1.4-2. Voltage Range for maximum

Thermocouple resolution

Thermocouple
Type and

temperature
range oC

Temperature
range for ±50

mV range

Temperature
range for ±200

mV range

T -270 to 400 -270 to 400 not used
E -270 to 1000 -270 to 660 >660
K -270 to 1372 -270 to 1230 >1230
J -210 to 1200 -210 to 870 > 870
B 0 to 1820 0 to 1820 not used
R -50 to 1768 -50 to 1768 not used
S -50 to 1768 -50 to 1768 not used
N -270 to 1300 -270 to 1300 not used

When the thermocouple measurement junction is in electrical contact with the
object being measured (or has the possibility of making contact) a differential
measurement should be made. If the voltage potential exceeds the common
mode range of the CR9050 module (e.g., the +12 V terminal of an automotive
battery) it is possible to use the 9055 ±50 V Analog Input Module to make the
Thermocouple measurement. The resolution and noise level are much worse
than with the CR9050 Module. The ±500 mV range offers the best resolution,
1 A/D count is 16 µV, about 0.4 oC for most thermocouples.

3-14

Section 3. CR9000X Measurement Details

Noise on Voltage Measurement

The input noise on the ±50 mV range for a measurement with no integration is
4 µV RMS. On a type T thermocouple (approximately 40 µV/oC) this is 0.1
oC. Note that this is an RMS value, some individual readings will vary by
greater than this. By integrating for 500 µs (50 samples) the noise level is
reduced to 0.6 µV RMS (4/√50=0.6). If a 500 µs integration is combined with
reversing the differential input, there are 100 samples in the measurement and
the noise level is reduced to 0.4 µV RMS.

Thermocouple Polynomial: Voltage to Temperature

NIST Monograph 175 gives high order polynomials for computing the output
voltage of a given thermocouple type over a broad range of temperatures. In
order to speed processing and accommodate the CR9000X's math and storage
capabilities, four separate 6th order polynomials are used to convert from volts
to temperature over the range covered by each thermocouple type. Table
3.1.4-3 gives error limits for the thermocouple polynomials.

TABLE 3.1.4-3. Limits of Error on
CR9000X Thermocouple Polynomials

(Relative to NIST Standards)

TC
Type

Range oC

Limits of Error oC

T -270 to 400
 -270 to - 200 +18@ -270
 -200 to -100 ±0.080
 -100 to 100 ±0.001
 100 to 400 ±0.015

J -150 to 760 ±0.008
 -100 to 300 ±0.002

E -240 to 1000
 -240 to - 130 ±0.400
 -130 to 200 ±0.005
 200 to 1000 ±0.020

K - 50 to 1372
 - 50 to 950 ±0.010
 950 to 1372 ±0.040

Reference Junction Compensation: Temperature to Voltage

The polynomials used for reference junction compensation (converting
reference temperature to equivalent TC output voltage) do not cover the entire
thermocouple range. Substantial errors will result if the reference junction
temperature is outside of the linearization range. The ranges covered by these
linearizations include the CR9000X environmental operating range, so there is
no problem when the CR9000X is used as the reference junction. External
reference junction boxes however, must also be within these temperature
ranges. Temperature difference measurements made outside of the reference

3-15

Section 3. CR9000X Measurement Details

temperature range should be made by obtaining the actual temperatures
referenced to a junction within the reference temperature range and subtracting
one temperature from the other. Table 3.1.4-3 gives the reference temperature
ranges covered and the limits of error in the linearizations within these ranges.

Two sources of error arise when the reference temperature is out of range. The
most significant error is in the calculated compensation voltage, however error
is also created in the temperature difference calculated from the thermocouple
output.

For example, suppose the reference temperature for a measurement on a type
T thermocouple is 300 °C. The compensation voltage calculated by the
CR9000X corresponds to a temperature of 272.6 °C, a -27.4 °C error. The
type T thermocouple with the measuring junction at 290 °C and reference at
300 °C would output -578.7 µV; using the reference temperature of 272.6 °C,
the CR9000X calculates a temperature difference of -10.2 °C, a -0.2 °C error.
The temperature calculated by the CR9000X would be 262.4 °C, 27.6 °C low.

TABLE 3.1.4-4. Reference Temperature
Compensation Range and Polynomial

Error Relative to NIST Standards

Type Range oC Limits of Error oC

T -100 to 100 ± 0.001
J -150 to 296 ± 0.005
E -150 to 206 ± 0.005
K - 50 to 100 ± 0.01

Error Summary

The magnitude of the errors described in the previous sections illustrate that
the greatest sources of error in a thermocouple temperature measurement with
the CR9000X are likely to be due to the limits of error on the thermocouple
wire and in the reference temperature determined with the CR9050 RTD.
Errors in the thermocouple and reference temperature linearizations are
extremely small, and error in the voltage measurement is negligible.

To illustrate the relative magnitude of these errors in the environmental range,
we will take a worst case situation where all errors are maximum and additive.
A temperature of 45 oC is measured with a type T (copper-constantan)
thermocouple, using the ±50 mV range with reverse differential. As shown
earlier in this section, the voltage measurement error would be 0.166oC. The
RTD is 25 oC but is indicating 25.1 oC, and the terminal that the thermocouple
is connected to is 0.05 oC cooler than the RTD, resulting in a reference
temperature error of 0.15oC.

3-16

Section 3. CR9000X Measurement Details

3-17

TABLE 3.1.4-5. Example of Errors in Thermocouple Temperature

Source Error: oC : % of Total Error
 Single-Ended or single

Differential
Reversing Differential
w:500 µs Integration

 ANSI TC
Error (1oC)

TC Error 1%
Slope

ANSI TC Error
(1oC)

TC Error 1%
Slope

Reference
Temp.

0.150o : 10.6% 0.150o : 24.3% 0.150o : 12.3% 0.150o : 36.2%

TC Output 1.000o : 70.5% 0.200o : 32.3% 1.000o : 82.4% 0.200o : 48.3%
Voltage
Measurement

0.166o : 11.7% 0.166o : 26.8% 0.052o : 4.3% 0.052o : 12.6%

Noise 0.100o : 7% 0.100o : 16.2% 0.010o : 0.8% 0.010o : 2.4%
Reference
Linearization

0.001o : 0.1% 0.001o : 0.2% 0.001o : 0.1% 0.001o : 0.25%

Output
Linearization

0.001o : 0.1% 0.001o : 0.2% 0.001o : 0.1% 0.001o : 0.25%

Total Error 1.418o : 100% 0.618o : 100% 1.214o : 100% 0.414o: 100%

3.1.4.2 Use of External Reference Junction or Junction Box
An external junction box is often used to facilitate connections and to reduce
the expense of thermocouple wire when the temperature measurements are to
be made at a distance from the CR9000X. In most situations it is preferable to
make the box the reference junction in which case its temperature is measured
and used as the reference for the thermocouples and copper wires are run from
the box to the CR9000X. Alternatively, the junction box can be used to couple
extension grade thermocouple wire to the thermocouples being used for
measurement, and the CR9000X I/O Module used as the reference junction.
Extension grade thermocouple wire has a smaller temperature range than
standard thermocouple wire, but meets the same limits of error within that
range. The only situation where it would be necessary to use extension grade
wire instead of a external measuring junction is where the junction box
temperature is outside the range of reference junction compensation provided
by the CR9000X. This is only a factor when using type K thermocouples,
where the upper limit of the reference compensation linearization is 100 oC and
the upper limit of the extension grade wire is 200 oC. With the other types of
thermocouples the reference compensation range equals or is greater than the
extension wire range. In any case, errors can arise if temperature gradients
exist within the junction box.

Figure 3.1.4-2 illustrates a typical junction box. Terminal strips will be a
different metal than the thermocouple wire. Thus, if a temperature gradient
exists between A and A' or B and B', the junction box will act as another
thermocouple in series, creating an error in the voltage measured by the
CR9000X. This thermoelectric offset voltage is a factor whether or not the
junction box is used for the reference. This offset can be minimized by making
the thermal conduction between the two points large and the distance small.
The best solution in the case where extension grade wire is being connected to
thermocouple wire would be to use connectors which clamped the two wires in
contact with each other.

Section 3. CR9000X Measurement Details

CR9000

H

L

A' A

B' B

Junction Box

TC

FIGURE 3.1.4-2. Diagram of junction box

An external reference junction box must be constructed so that the entire
terminal area is very close to the same temperature. This is necessary so that a
valid reference temperature can be measured and to avoid a thermoelectric
offset voltage which will be induced if the terminals at which the thermocouple
leads are connected (points A and B in Figure 3.4-1) are at different
temperatures. The box should contain elements of high thermal conductivity,
which will act to rapidly equilibrate any thermal gradients to which the box is
subjected. It is not necessary to design a constant temperature box, it is
desirable that the box respond slowly to external temperature fluctuations.

Radiation shielding must be provided when a junction box is installed in the
field. Care must also be taken that a thermal gradient is not induced by
conduction through the incoming wires. The CR9000X can be used to
measure the temperature gradients within the junction box.

3.1.5 Bridge Resistance Measurements
There are five bridge measurement instructions included in the standard
CR9000X software. Figure 3.5-1 shows the circuits that would typically be
measured with these instructions. In the diagrams, X is the result from the
measurement, the resistors labeled Rs would normally be the sensors and those
labeled Rf would normally be fixed resistors. Circuits other than those
diagrammed could be measured, provided the excitation and type of
measurements were appropriate.

All of the bridge measurements have the option (RevEx) to make one set of
measurements with the excitation as programmed and another set of
measurements with the excitation polarity reversed. The offset error in the two
measurements due to thermal emfs can then be accounted for in the processing
of the measurement instruction. The excitation channel maintains the
excitation voltage until the hold for the analog to digital conversion is
completed. When more than one measurement per sensor is necessary (four
wire half bridge, three wire half bridge, six wire full bridge), excitation is
applied separately for each measurement. For example, in the four wire half
bridge when the excitation is reversed, the differential measurement of the
voltage drop across the sensor is made with the excitation at both polarities and
then excitation is again applied and reversed for the measurement of the
voltage drop across the fixed resistor.

Calculating the actual resistance of a sensor which is one of the legs of a
resistive bridge usually requires additional processing following the bridge
measurement instruction. In addition to the schematics of the typical bridge
configurations, Figure 3.1.5-1 lists the calculations necessary to compute the
resistance of any single resistor, provided the values of the other resistors in
the bridge circuit are known.

3-18

Section 3. CR9000X Measurement Details

Electrical Bridge Circuits & Equations

BrHalf

X = result w/mult = 1, offset = 0

X
V

V

R

R Rx

s

s f
= =

+
1

BRHalf Equations

()

R R
X

X

R
R X

R

s f

f
s

s

=
−

=
−

1

1

BrHalf3W

X = result w/mult = 1, offset = 0

X
V V

V V

R

RX

s

f
=

−

−
=

2 2 1

1

BRHalf3W Equations

R R X

R R X
s f

f s

=

= /

BrHalf4W

H

L
H

L

X = result w/mult = 1, offset = 0

X
V

V

R

R
s

f
= =2

1

BRHalf4W Equations

R R X

R R X
s f

f s

=

= /

BrFull

H
L

BrFull6W

H
L

H
L

X = result w/mult = 1, offset = 0

X
V

V

R

R R

R

R Rx
= =

+
−

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟1000 10001 3

3 4

2

1 2

X = result w/mult = 1, offset = 0

X
V

V

R

R R

R

R R
= =

+
−

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟1000 10002

1

3

3 4

2

1 2

BRFull and BRFull6W
Equations

()
()

()

()

X X R R R

R
R X

X

R
R X

X

X X R R R

R
R X

X

R
R X

X

1 3 3

1
2 1

1

2
1 1

1

2 2 1

3
4 2

2

4
3 2

2

1000

1

1

1000

1

1

= − + +

=
−

=
−

= + +

=
−

=
−

/ /

/ /

4

2

X1 and X2 are intermediate
variables for equation
solution.

FIGURE 3.1.5-1. Circuits used with bridge measurement instructions

3-19

Section 3. CR9000X Measurement Details

3.1.6 Measurements Requiring AC Excitation
Some resistive sensors require AC excitation. These include electrolytic tilt
sensors, soil moisture blocks, water conductivity sensors and wetness sensing
grids. The use of DC excitation with these sensors can result in polarization,
which will cause an erroneous measurement, and may shift the calibration of
the sensor and/or lead to its rapid decay.

Other sensors like LVDTs (without built in electronics) require an AC
excitation because they rely on inductive coupling to provide a signal. DC
excitation would provide no output.

Any of the bridge measurements can reverse excitation polarity to provide AC
excitation and avoid ion polarization. The frequency of the excitation can be
determined by the delay and integration time used with the measurement. The
highest frequency possible is 50 kHz, the excitation is switched on and then
reversed 10 µs later when the first measurement is held and then is switched
off after another 10 µs when the second measurement is held (i.e., reverse the
excitation, 10 µs delay, no integration).

A switched excitation channel (7-16 on the CR9060 Module)
should be used when AC excitation is required because it will be
switched out as soon as the measurement is completed. The
continuous excitation channels (1-6 on the CR9060 Module)
should not be used because they retain the last voltage
programmed (i.e., after reversing the excitation, the channel
would be left at the reversed polarity voltage until the next
instruction that acted on the excitation channel).

 TIP

3.1.7 Influence of Ground Loop on Measurements
When measuring soil moisture blocks or water conductivity the potential exists
for a ground loop which can adversely affect the measurement. This ground
loop arises because the soil and water provide an alternate path for the
excitation to return to CR9000X ground, and can be represented by the model
diagrammed in Figure 3.1.7-1.

FIGURE 3.1.7-1. Model of resistive sensor with ground loop

3-20

Section 3. CR9000X Measurement Details

In Figure 3.1.7-1, Vx is the excitation voltage, Rf is a fixed resistor, Rs is the
sensor resistance, and RG is the resistance between the excited electrode and
CR9000X earth ground. With RG in the network, the measured signal is:

 ()V V
R

R R R R Rx
s

s f s f G
1 = + + /

 [3.1.7-1]

RsRf/RG is the source of error due to the ground loop. When RG is large the
equation reduces to the ideal. The geometry of the electrodes has a great effect
on the magnitude of this error. The Delmhorst gypsum block used in the 227
probe has two concentric cylindrical electrodes. The center electrode is used
for excitation; because it is encircled by the ground electrode, the path for a
ground loop through the soil is greatly reduced. Moisture blocks which consist
of two parallel plate electrodes are particularly susceptible to ground loop
problems. Similar considerations apply to the geometry of the electrodes in
water conductivity sensors.

The ground electrode of the conductivity or soil moisture probe and the
CR9000X earth ground form a galvanic cell, with the water/soil solution acting
as the electrolyte. If current was allowed to flow, the resulting oxidation or
reduction would soon damage the electrode, just as if DC excitation was used
to make the measurement. Campbell Scientific probes are built with series
capacitors in the leads to block this DC current. In addition to preventing
sensor deterioration, the capacitors block any DC component from affecting
the measurement.

3.2 CR9058E Isolation Module Measurements
Each CR9058E input channel has its own 24 bit sigma delta analog to digital
converter taking approximately 10,417 measurements per second, or one
measurement sample per 96 microseconds. The effective resolution at this
sample rate is 18.7 bits, or +/- 10 microvolts when using the +/- 2 Volt range,
because of the inherent noise of the A/D converter and noise from other
sources. The effective resolution can be dramatically improved through
filtering, and/or integrating, multiple measurements. Thus, noise reduction and
measurement speed can be traded off using the Integration parameter. Noise is
reduced by approximately the square root of the number of samples within the
integration time. Thus, if the integration time is set to 9600 versus 96
microseconds, noise should be reduced approximately by a factor of ten . This
approximation assumes that the noise is white noise, which is not entirely true
because some of the noise is due to interference from sources at fixed
frequencies. Noise reduction by filtering can go just so far, and the best the
CR9058E can achieve is approximately 21 bits of resolution (+/- 2 micro-volts
on the 2 Volt range).

The CR9058E isolated input module is similar in operation to the CR9050
analog input module except for:

• The CR9058E has ten differential input channels instead of 14 differential
/ 28 single-ended inputs.

• The CR9058E has different voltage ranges: +/- 60 Volts DC, +/- 20 Volts
DC, and +/- 2 Volts DC.

3-21

Section 3. CR9000X Measurement Details

• The CR9058E has a slower maximum scan rate than the CR9050, but
this is somewhat balanced by the fact that the CR9058E measures all of its
channels simultaneously, as each channel has its own 24 bit sigma delta
analog to digital converter. Conversely, the measurements from the
CR9050(E) are multiplexed sequentially through a single A to D
converter.

3.2.1 CR9058E Supported Instructions
The CR9058E currently supports three CR9000X measurement instructions:

1. VoltDiff (Dest, Reps, Range, ASlot, DiffChan, RevDiff, Settle, Integ,
Mult, Offset)

2. TCDiff (Dest, Reps, Range, ASlot, DiffChan, TCType, TRef, RevDiff,
Settle, Integ, Mult, Offset)

3. ModuleTemp (Dest, Reps, ASlot, Integ)

3.2.1.1 CR9058 setup variances with the CR9050/CR9051E
These instructions operate the same as with the CR9050 with these differences:

• DiffChan must be within 1..10.

• VoltDiff supports these voltage ranges: V2 (+/- 2 Volts DC), V2C (+/- 2
Volts with open channel checking), V20 (+/- 20 Volts DC), and V60
(+/- 60 Volts DC).

• TCDiff will work with the same range settings as the VoltDiff instruction,
but only V2 (no open thermocouple checking) or V2C (+/-2 volt range
with open thermocouple checking) should be used with TCDiff due to
resolution concerns. When the range is set = V2C, an open circuit will
report an over-range condition to the CR9000X.

• The Settle time parameter is unused.

• The minimum scan interval when using VoltDiff or TCDiff , without
input reversal, for the CR9058E is 1520 microseconds for integration
times under 192 microseconds. If the integration time is greater than 192
microseconds, then the minimum scan interval is 1320 + integration time
(microseconds).

• The minimum scan interval when using VoltDiff or TCDiff , with input
reversal, for the CR9058E is 3880 microseconds for integration times
under 192 microseconds. If the integration time is greater than 192
microseconds, then the minimum scan interval is 3680 + (2 x integration
time) in microseconds.

• If open circuit detection is selected for the 2 volt range (range code =
V2C), add 1520 microseconds to the minimum scan time calculated above.
If an insufficient Scan Interval is set in the program, the CR9000 will
report an error code at compile time.

• The Integ parameter in VoltDiff and in TCDiff (not in ModuleTemp) can
be set to –1, -2, -3, -4, or -5 and the CR9058E will set the corresponding
Sinc filter order to 1, 2, 3, 4, or 5. The integration time will be maximized

3-22

Section 3. CR9000X Measurement Details

for the given Sinc filter and scan interval. The integration and Sinc filter
order that a given CR9058E is using can be seen through RTDaq's
terminal mode window (DataLogger/Terminal Emulator) or any other
terminal emulator. Click on "Open Terminal" and next hit Enter several
times until the CR9000> prompt is returned. Type in "4" and enter. The
CR9058Es' slot numbers, integration times, and Sinc filters will be
returned.

In most applications, when manually selecting the Sinc filter
order, we recommend using the Fifth Order (-5) in order to
minimize signal attenuation at lower frequencies, and to
improve the filtering of higher order frequencies (See Section
3.2.3 "Hard Setting the Filter Order"). One exception to this is
for applications requiring a notch filter: it will be necessary to
set the integration time corresponding to the frequency that is
desired to be filtered.

 NOTE

• A CR9058E can only have one integration time per scan interval that
applies to all ten of its channels. If multiple measurement instructions
within a scan are tied to a single CR9058E module, and they don’t all have
the same Integ time parameter, then a compile error will occur.

• The Integ parameter in the VoltDiff and TCDiff instructions, within the
constraints listed above, can be used to adjust the measurement frequency
response. For example, for both 60 Hz and 50 Hz rejection the Integ
parameter could be set = 300,000 microseconds.

• Input reversal (for offset cancellation) isn’t individually selectable
within the ten channels of a CR9058E module. If any one channel of a
CR9058E’s ten input channels has input reversal selected, by setting
the Rev parameter of the VoltDiff or TCDiff instruction to true, input
reversal will be applied to all ten channels. If other VoltDiff or
TCDiff instructions tied to this module within the same scan don’t
have the Rev parameter set True, then a compile error will occur.

• The CR9058E ModuleTemp measurement is independent of the isolated
input measurements. The CR9058E ModuleTemp measurement method is
identical to that of the CR9051E, using a platinum resistance thermometer
to obtain the thermocouple reference junction temperature at the EZ-
connect terminal module.

• Because heat is generated within the CR9058E, a thermal gradient can
develop across the EZ-connect terminal block which can produce errors in
thermocouple measurements. To minimize this error, keep the CR9058EC
covers in place. Also, type E or K thermocouples are better than type T
because type T thermocouples have a copper conductor which is an
excellent conductor of heat increasing the thermal gradient across the
terminal block.

• Each channel has an H (high) input terminal, a L (low) terminal, and a G
(isolated ground) terminal. The isolated ground terminals are not
connected to the CR9000X system ground. The isolated ground terminal
can be used to connect the shield of a shielded cable. Also, when un-
shielded thermocouples are used, the G terminal can be tied to the H or L
terminal to reduce noise in the readings.

3-23

Section 3. CR9000X Measurement Details

• The CR9058E does not directly support Bridge measurements, but Bridge
type measurements can be performed through using the CR9060's CAOs
or external excitation and adjusting the multiplier according to the
excitation level.

3.2.2 CR9058E Sampling, Noise and Filtering
The ten analog to digital converters are re-synchronized at the beginning of
each scan. There is a minimum 1320 microseconds of over-head associated
with this process and other tasks. Therefore the scan, or Subscan, period for
the CR9058E must be greater than 1320 microseconds + the user set
integration time. Since the minimum integration time is 192 (two measurement
samples 96 microseconds apart), the minimum Scan period for the CR9058E is
1520 microseconds. The integration time (microseconds) divided by 96
determines the number of measurements taken during a scan. If reverse
measurement is set true, and/or Open Sense range (V2C) option is selected,
then the over-head will be increased. The CR9058E has a digital signal
processor that performs “Sinc-n” filtering of the analog to digital converter
results to reduce noise. At compile time, unless the Sinc-n filter order is
specified by the user, the CR9058E computes the order of the Sinc-n filter
based on the integration time and Scan interval. The more samples available,
the higher the order of Sinc-n filter is implemented up to an order of five. The
equation used to calculate the filter is:

Eq.3.2.1
()
()SampleTimeIntegTime

SampleTimeAvailTimerfilterorde
−
−

=

where:

AvailTime = Scan (or Subscan) Interval with the following adjustments:

Subtract off 1520 microseconds if range code v2C is used.

Divide by 2 and subtract off 420 microseconds if input reversal is true.

Subtract off another 1320 microseconds

If resulting AvailTime < 200 microseconds, the user entered scan
interval must be increased.

IntegTime = user entered Integration time in microseconds.

SampleTime = 96 (microseconds)

A first order Sinc filter can be thought of as a simple average of the samples.
The number of values that will be included in the average is dictated by the
integration time (IntegTime/SampleTime). Higher order Sinc filters can be
thought of as running averages feeding running averages. The number of
values used for the running averages at each stage will be the same. Figure
3.2.2-1 is a depiction of a 5th order Sinc filter having a 288 (3 x 96) uSec
integration.

3-24

Section 3. CR9000X Measurement Details

The integration and Sinc filter order that a given CR9058E is
using can be seen through RTDaq's terminal mode window
(DataLogger/ Terminal Emulator) or any other terminal
emulator. Click on "Open Terminal", then hit "Enter" several
times until the CR9000> prompt is returned. Type in "4" and
enter. The CR9058Es' slot numbers, integration times, and Sinc
filters will be returned.

 TIP

FIGURE 3.2.2-1. Depiction of a 5th order Sinc filter

As shown, the number of samples required to feed a fifth order Sinc filter with
an integration of 288 uSec is 11. The number of samples required for filter
orders of 2 and above can be calculated using equation 3.2.2.

Eq. 3.2.2 () 1)1
96

(+−=
IntegTimerFilterOrdemplesNumberofSa

The CR9058 firmware limits the number of samples to 680 in order to reduce
the amount of time required to compute the weighting coefficients. If the
calculated NumberofSamples is greater than 680, then the Filter order is
incrementally reduced until either the Number of Samples is less than 680, or
the Filter Order is 1. A filter order of 1, simple averaging, does not require
storing multiple values.

Solving equation 3.2.2 for the maximum integration time based on the filter
order results in:

Eq. 3.2.3 96)1(∗
+

=
rFilterOrde

fSamplesMaxNumberoIntegermeMaxIntegTi

Or 96)1680(∗
+

=
rFilterOrde

IntegermeMaxIntegTi

3-25

Section 3. CR9000X Measurement Details

This results in the following maximum integration times for the given Filter
orders (Filter order 1 has no limit as it does not require storing multiple
values):

Filter Order 2: 32,640 uSec Filter Order 4: 16,320 uSec

Filter Order 3: 21,792 uSec Filter Order 5: 13,056 uSec

The equations used to plot the frequency responses for Charts 3.2.2-1 & 3.2.2-2:

Eq. 3.2.4 Sinc Filter Order N:
()

()

N

Freq
FreqSinsponselative ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×
×

=
π
πReRe

C H AR T 3 .2 .2 -1
F R E Q U E N C Y R E S P O N S E O F S Y N C F IL T E R O R D E R S 1 - 5

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

0 1 2 3 4 5 6

F R E Q U E N C Y
N O R M A L IZ E D T O (1 /IN T E G R AT IO N T IM E)

R
EL

 R
ES

PO
N

SE

S y n c O rd e r 1

S y n c O rd e r 5

Chart 3.2.2-1 shows the frequency responses times for the Sinc filters available
for the CR9058E. As can be seen, the 1st order Sinc filter does not filter out
the higher frequency components of the input signal. This could result in
higher frequency signals being aliased back to lower frequencies. While the
5th order Sinc filter does a fairly good job filtering out higher order
frequencies, the trade off is that it also attenuates the signal at lower
frequencies as can be seen in Chart 3.2.2-2.

These plots assume equal integration times for all filter orders,
so the 5th order Sinc filter would require 5 times the measurement
time as the 1st order Sinc filter.

NOTE

3-26

Section 3. CR9000X Measurement Details

C H A R T 3 .2 .2 -2
F R E Q U E N C Y R E S P O N S E O F S Y N C F IL T E R O R D E R S 1 T H R O U G H 5

0 .91

0 .92

0 .93

0 .94

0 .95

0 .96

0 .97

0 .98

0 .99

1 .00

1 .01

0 .00 0 .01 0 .02 0 .03 0 .04 0 .05 0 .06 0 .07 0 .08 0.09 0 .10

F R E Q U E N C Y
N O R M AL IZ E D T O (1 /IN T E G R AT IO N T IM E)

R
EL

R

ES
PO

N
SE

S yn c _o rd er_ 1

S yn c _o rd er_ 2

S yn c _o rd er_ 3

S yn c _o rd er_ 4

S yn c _o rd er_ 5

3.2.3 CR9058E; Hard Setting the Filter Order
Rather than letting the CR9058E firmware select the filter order based on the
integration time and scan interval, the user can hard set the filter order that will
be used by the CR9058E. If the Integration time parameter is set = -1, the filter
order is set to 1. If the Integration parameter is set to -2, -3, -4, or -5, then the
Sinc filter is forced to the corresponding filter order, 2,3,4,or 5 and the
integration time is maximized for the selected filter order. The resulting
integration time for a Sinc filter of order 1 would be about five times the
integration time available for a Sinc filter of order 5. For Chart 3.2.2-1 and
Chart 3.2.2-2, we have set the total available time for integration to be 1
"Period". Given the same Scan Interval (AvailTime), we have approximated
that a Sinc filter order 2 would have an integration time of Period/2, filter order
3: Period/3, filter order 4: Period/4, and filter order 5 would have an
integration time of Period/5. While this is not exact, it is a good approximation
for integration periods greater than 1 mSec. The actual method for determining
the integration time will be covered later.

Chart 3.2.3-1 shows the signal attenuation traces plotted against the signal
frequency (normalized to 1/(Period)). As can be seen, the 5th order Sinc filter
does a far better job of filtering out higher order frequencies than the lower
order sinc filters.

3-27

Section 3. CR9000X Measurement Details

Chart 3.2.3-1 Log Plot of Filter Response Based on Scan Interval

In addition, due to using smaller integration times, the fifth order Sinc filter
attenuates the signal less at the lower frequencies. The attenuation versus Sinc
filter order is plotted in Chart 3.2.3-2.

Chart 3.2.3-2 Linear Plot of Filter Response Based on Scan Interval

3-28

Section 3. CR9000X Measurement Details

Due to the minimized signal attenuation at lower frequencies,
and the improved filtering of the higher order frequencies, when
manually selecting the Sinc filter order, we recommend using the
Fifth Order for most applications.

TIP

The actual method used for determining integration time follows:

1. First we determine the time available (AvailTime) for measurement
integration/filtering.

AvailTime = Scan or Subscan Interval (micro-seconds) with the
following adjustments:

Subtract off 1520 microseconds if range code v2C is used.

Divide by 2 and subtract off 420 microseconds if input reversal is
true.

Subtract off another 1320 microseconds

If resulting AvailTime < (FilterOrder +1) * 96 microseconds, the
user entered scan interval must be increased.

2. Next we calculate N, the number of 96 micro-second (CR9058 base
sample time) integrated values that will be averaged together before the
Sinc-n filter is applied. The CR9058 firmware limits the Number of
Samples that are feed to the filter to 680. This is done to reduce the
amount of time required to compute the weighting coefficients for the
samples that are fed to the Sinc-n filter.

As shown previously, when setting the integration time, the filter order
would be incrementally reduced to limit the number of samples to 680
(covered in section 3.2.2). In the case where the Filter order is hard set,
another method is used to constrain the number of samples: Groups of
samples may be pre-averaged, so that no more than 680 samples go to the
filter, and yet we can integrate over the full available time.

Equation 3.2.5 is used to calculate N, the number of pre-averages.

1680/ +⎟⎟
⎠

⎞1
96⎜⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −=

uSec
AvailTimeIntegerN

 Eq 3.2.5

3. Using the calculated available time (AvailTime) and number of pre-averages
(N) along with the Filter Order, the integration time can be calculated:

()NuSecrFilterOrde
NuSec

AvailTimeIntegerIntegTime ××⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

×
= 961/1

96

 Eq 3.2.6

3-29

Section 3. CR9000X Measurement Details

OS returned Filter Order and Integration:
The integration and Sinc filter order that a given CR9058E is using can be
determined through RTDaq's terminal mode window (Datalogger/Terminal
Emulator). Click on "Open Terminal". Next, hit Enter several times until the
CR9000> prompt is returned. Type in "4" and enter. The CR9058Es' slot
numbers, integration times, and Sinc filters will be returned.

Example 3.2.1: Given a scan rate of 2 seconds (2000000 microseconds),
what integration time and sinc-n filter order should be used in a
CR9058 to provide 60 Hz rejection? It is desired to filter out higher
order frequencies (higher than 60 Hz) as well. Input reversal and open
thermocouple checking should be used.

 The AvailTime is computed by these steps:

Start with the Scan Interval (2,000,000 uSec) with the following
adjustments:

Subtract off 1520 microseconds because range code v2C is used.
(=1998480)

Divide by 2, subtract 420 microseconds because input reversal is used.
(=998820)

Subtract off another 1320 microseconds. (997500)

AvailTime = ((2,000,000 -1520)/2 - 420) - 1320 = 997,500 micro-
seconds

For 60 Hz rejection, the integration time should be a multiple of 1/60 seconds
(16667 microseconds) and the integration step size (96 microseconds). The
smallest number that meets this criteria is 300,000 microseconds. Given the
AvailTime of 997,500 microseconds, we could select 300,000 or 600,000 or
900,000 microseconds for the integration period.

Solving for the Filter Order using Eq. 3.2.2, setting the NumberofSamples to
680 (max) and using an IntegTime of 300,000 uSec (minimum value for this
example), results in a maximum Filter Order of 1.

Eq. 3.2.3 also shows that any integration time greater than 32,640
microseconds results in a filter order of 1. In order to utilize all of the available
time, we decide to use the 900,000 micro-second integration time. The
measurement instruction would look like:

'VoltDiff(Dest, Reps, Range, ASlot, DiffChan, RevDiff, Settle, Integ, Mult, Offset)

VoltDiff(IBlk18(), 10, v2c, 8, 1, 1, 0, 900000, 1.0, 0)

3.3 CR9052 Filter Module Measurements
Each CR9052 module has six differential analog measurement channels with
programmable input ranges from ±20 mV to ±5 V. Each channel has its own
programmable-gain instrumentation amplifier, pre-sampling analog filter, and
sigma-delta analog-to-digital converter.

3-30

Section 3. CR9000X Measurement Details

All CR9052 channels in a single CR9000X chassis are sampled
simultaneously (channel to channel sampling simultaneity of less than 100
nanoseconds).

The CR9052 takes measurement samples at 3.2 MHz and implements anti-
aliasing, using programmable, real-time, low-pass, finite impulse response
(FIR) filters. An on-board digital signal processor (DSP) collects alias-free,
50-kHz samples from each of the module's sigma-delta converters, and then
applies real-time, programmable low-pass filtering and decimation to anti-alias
and down-sample the data to the selected measurement rate, selectable from 5
Hz to 50 kHz.

The CR9052 can also accumulate snapshots of anti-aliased time-series, Fourier
transform them into frequency spectra, and send the resulting real-time spectra
to the CR9000X's main processor.

The CR9052 can burst measurements to its on-board, 8-million sample buffer
at 50,000 measurements per second per channel. Using the FFT spectrum
analyzer mode, the module's DSP can provide real-time spectra from
"seamless", anti-aliased, 50-kHz, 2048-point time-series snapshots for each of
its six analog input channels. The decimated data can be downloaded to an
appropriate PC card at an aggregate rate of 300,000 measurements per second.

The CR9052 filter's pass-band ripple is less than ±0.01 dB (0.1 percent), and
the stop-band attenuation exceeds 90 dB (1/32,000). The FIR filter's transition
band has a steep roll-off, with the stop-band frequency starting a factor of 1.24
above the pass-band frequency. In comparison, the stop-band frequency of an
ideal eight-pole Butterworth filter with the same ripple and attenuation starts a
factor of 5.81 above its pass-band frequency. See Chart 3.3-1 for comparison.

Chart 3.3-1 FIR Filter versus 8-Pole Butterworth Roll-off

3-31

Section 3. CR9000X Measurement Details

The digital implementation of the CR9052 FIR filters maintains a group delay
that is independent of frequency (linear phase response). In addition, the
digital filter performance does not change with time, temperature, or
component tolerances. The on-board DSP automatically chooses the
appropriate low-pass filter to anti-alias the input data for the user's desired
measurement rate. If desired, users may load their own coefficients into the
on-board DSP to tailor the FIR filter's frequency response to their own needs
(band pass, band reject, etc.).

CR9052IEPE DC Frequency Response

The CR9052IEPE module has two programmable time constants available: 5
seconds and 0.5 seconds. The advantage of the 0.5 second time constant is that
if you have a step in the voltage (either from a shock to the sensor or when
initially supplying excitation) it will only take 0.5 seconds for 63% of the
voltage step to discharge, while with the 5 second time constant, it would take
5 seconds. See Chart 3.3-2 Step Discharge Rate.

Chart 3.3-2 Step Discharge Rate

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

-1 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

S E C O N D S

V/
V_

ST
EP

 R
ES

PO
N

SE

T a u = 5 .0 S e c o n d s
T a u = 0 .5 S e c o n d s

T im e C o n s ta n t
= 5 S e c o n d s

T im e C o n s ta n t
= 0 .5 S e c o n d s

The advantage of the 5.0 second time constant is that it will not result in lower
frequencies being attenuated as much (3 dB at 0.03 Hz) as the 0.5 second time
constant (3 dB at 0.3 Hz). See Chart 3.3-3 Frequency Response for
attenuation plot comparison.

3-32

Section 3. CR9000X Measurement Details

Chart 3.3-3 Frequency Response

0

0 .2

0 .4

0 .6

0 .8

1

1 .0 E -0 4 1 .0 E -0 3 1 .0 E -0 2 1 .0 E -0 1 1 .0 E + 0 0 1 .0 E + 0 1 1 .0 E + 0 2 1 .0 E + 0 3 1 .0 E + 0 4 1 .0 E + 0 5

F re q u e n c y (L o g S c a le)

R
el

 R
es

po
ns

e

T a u = 5 .0 S e c o n d s
T a u = 0 .5 S e c o n d s

T im e C o n s ta n t
= 5 S e c o n d s

T im e C o n s ta n t
= 0 .5 S e c o n d s

The time constant used is determined by the VoltFilt's
"Excitation" parameter setting.

TIP

WINDOWING

The FFT option allows radix-two (2n, where n = 5, 6, …16) transform lengths
ranging from 32 to 65,536 samples (allowing the user to set up the
measurement to have the appropriate Bin resolution). Users can optionally
apply a Hanning, Hamming, Blackman-Harris, or one from a selection of
Kaiser-Bessel beta choices, window function to their time series before
transforming them. The beta (Kaiser-Bessel) allows the user to trade spectral
leakage for spectral resolution. Table 3.3-1 shows the maximum out of band
leakage and the full width, half of maximum (FWHM) spectral resolution
monitoring a monochromatic signal using four different betas. Chart 3.3-4
shows graphically the bin resolution (or bin smearing effect) for no
windowing, the Hanning window and 4 Kaiser-Bessel betas.

Table 3.3-1. Spectral Leakage vs. Resolution

BETA

MAXIMUM LEAKAGE
(dB)

SPECTRAL RESOLUTION
(BINS)

8 -63 2.25
10 -74 2.50
12 -95 2.75
14 -110 3.00

3-33

Section 3. CR9000X Measurement Details

CHART 3.3-4 COMPARISION OF SPECTRAL RESOLUTION FOR
VARIOUS WINDOWING FUNCTIONS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

253 254 255 256 257 258 259 260 261

FREQUENCY BIN

PE
A

K
 S

IG
N

A
L

No Window

Hanning Window

Kaiser Window, Beta=8

Kaiser Window, Beta=10

Kaiser Window, Beta=12

Kaiser Window, Beta=14

Hanning

Kaiser, Beta = 14

No Windowing

Using a Kaiser-Bessler with a beta of around 12 results in a spectral leakage
that best matched the attenuation of the CR9052's anti-aliasing filters.
Although this spreads the FWHM of a single line source to 2.75 bins, this can
be compensated for by increasing the length (or number of bins) of the FFT
because the windowing spreads the signal across a finite number of bins, not
across an absolute frequency range.

SPECTRAL OUTPUT

The CR9052 offers a variety of spectrum normalizations, including real and
imaginary, amplitude and phase, power, power spectral density (PSD), and
decibels (dB). In addition, the CR9052 can combine adjacent spectral bins into
a single bin to decrease the size of the final spectrum. A built-in function
selects an exponentially increasing spectral bin width to give 1/n octave
analyses, where n can vary from 1 to 12. A single programming step with
either the CRBasic programming language or the CR9000X program generator
configures the FFT spectrum analyzer options.

The module has superior noise performance, with an input-referred noise of
eight nano-volts per root hertz (8 nV/Hz1/2) for the ± 20 mV input range. On
the ± 20 mV input range, the total noise for a 20 kHz bandwidth is less than
1.4 uV, and for a 1 Hz bandwidth, 250 nV. The programmable anti-alias filter
allows users to trade bandwidth for noise, or vice versa. The DSP's floating-
point numeric implementation of the FIR anti-alias filters and Fourier
transforms preserve this low-noise performance. A 2048-point FFT gives an
instantaneous dynamic range exceeding 126 dB (an amplitude ratio of 2x106),
and the 65,536-point FFT gives an instantaneous dynamic range exceeding 140
dB (an amplitude ratio of 1x107). Real-time digital temperature compensation
ensures gain accuracy (±0.03 percent of reading) and offset accuracy (±0.03

3-34

Section 3. CR9000X Measurement Details

percent of full-scale) throughout the -40° to 70° C operating temperature
range.

The combined capabilities of the CR9052 and the CR9000X offer numerous
measurement and data processing possibilities. For example, this combination
allows users to mix high-speed, anti-aliased measurements and spectra from
accelerometers, strain gages, and microphones with slower measurements from
thermocouples, pressure transducers, and serial data streams. The general-
purpose programmability of the CR9000X allows users to process their data
before saving it to data tables. For example, users may save measured data
only if the amplitude of a specific acoustic frequency exceeds some threshold,
or only if an acoustic spectral component correlates to measurements from
other sensors.

3.4 Pulse Count Measurements
The PulseCount measurement instruction can be setup to either output total
counts or frequency/period. If the number of counts is the desired output (i.e.,
the number of times a door opens, the number of tips of a tipping bucket rain
gage), the PulseCount's POption parameter should be set to 0 to program the
instruction to return counts. It should be noted that the CR9070 PulseCount
instruction counts rising edges, while the CR9071E counts falling edges.

Many pulse output type sensors (e.g., anemometers and flow-meters) are
calibrated in terms of frequency (counts/second). For these, the PulseCount
instruction should be programmed to return frequency. The accuracy of these
measurements is not only related to the number of pulses per desired
engineering units, but is also related to the resolution of the time interval over
which the frequency input is measured.

Resolution Example

One pulse per every two feet traveled along with a frequency measurement
resolution of 0.1 Hz results in a velocity resolution of 0.2 feet/second (2
ft/pulse x 0.1 pulse/sec.)

Skipped scans can result in erroneous readings when using either
the CR9070 or CR9071E module. Always use at least 500
buffers in the Scan instruction. Also, it is not recommended to
use the Average output processing instruction on the frequency
results from a PulseCount instruction, unless the input signal's
frequency is far greater than the program Scan frequency.

NOTE

3.4.1 CR9070 PulseCount Resolution
The resolution of the pulse counters is one count. With the POption parameter
set to 1, the resolution of the calculated frequency depends on the scan
interval: frequency resolution = 1/scan interval (e.g., a PulseCount instruction
in a 1 second scan has a frequency resolution of 1 Hz, a 0.5 second scan gives
a resolution of 2 Hz, and a 1 ms scan gives a resolution of 1000 Hz). The
resultant measurement will bounce around by the resolution.

3-35

Section 3. CR9000X Measurement Details

For example, if you are scanning a 2.5 Hz input once a second, in some
intervals there will be 2 counts and in some 3 as shown in Figure 3.4.1-1. If
the pulse measurement is averaged for a long enough duration, the result will
approach the correct value.

3 2 3 2

Signal

Scans

FIGURE 3.4.1-1. Varying counts within pulse interval

The resolution gets much worse when short intervals are used with higher
speed measurements. As an example, assume that engine RPM is being
measured from a signal that outputs 30 pulses per revolution. At 2000 RPM,
the signal has a frequency of 1000 Hz (2000 RPM x (1 min/60 s)x30=1000).
The multiplier to convert from frequency to RPM is 2 RPM/Hz (1 RPM/(30
pulses/60s) = 2). At a 1 second scan interval, the resolution is 2 RPM.
However, if the scan interval were 1 ms, the resolution would be 2000 RPM.
At the 1 ms scan, if every thing was perfect, each interval there would be 1
count. However, a slight variation in the frequency might cause 2 counts
within one interval and none in the next, causing the result to vary from 0 to
4000 RPM!

The POption parameter in the PulseCount instruction can be used to set an
interval period for a running average computation of the frequency output from
the sensor.

Example: Scan Rate of 10 mSec is required for other measurements. The
output from the Pulse sensor will vary from 1000 Hz to 10 Hz. Set the
POption parameter to 1000 (mSec), resulting in a resolution of 1 Hz, and
the instruction returns a running average of the Pulse outputs (getting 100
samples/second) over a 1 second period. This would smooth the output.

If the input signal's period is greater than the scan rate, with a POption of 1 (no
running average), the Scan frequency (not input frequency) will be returned at
the scan when the pulse edge is encountered. The following scans will return
zeros until another edge is seen.

Example: Scan Rate = 2 mSec (500 Hz), input signal is 250 Hz, the
output from the instruction will show as 500 Hz one scan, 0 Hz the next
Scan, then 500 Hz, 0 Hz, ...

When using a running average whose duration is shorter than the input signal
period, the output from the running average will become the Scan frequency
at the scan when the edge is encountered. It will stay at this value until either
more than 1 edge is encountered in the running average time period or, if
another edge is not encountered before the time period of the running average
is exceeded, the output will fall off to zero.

It should be noted that averaging the Pulses over a specified duration not only
attenuates the peaks/valleys (smoothing out the data), but also inserts a phase

3-36

Section 3. CR9000X Measurement Details

shift or delay into the stored data. For instance, if a POption of 2000 (2 second
average) were used on a vehicle speed measurement, and the vehicle came to a
sudden stop, the output from the instruction would stay at the frequency from
the last pulse edge for the 2 second running average interval after the vehicle
stopped. If an over-range condition occurs when the running averaging is in
use, the over-range value will be included in the average for the duration of the
averaging period (e.g., with a 1000 millisecond running average, the over-
range will be the value from the PulseCount instruction until 1 second has
passed.

3.4.2 CR9071E PulseCount Resolution
At the beginning of each scan, the CR9000X interrogates the accumulators'
registers for the number of pulses (N) since the previous scan and resets the
counters. The CR9071E also returns the time of the last pulse before the start
of the previous scan, as well as the time of the last pulse during the previous
scan. The CR9000X calculates the time period (P) between these edges with a
40 nanosecond resolution. It then calculates the frequency by dividing the
number (N) of pulses by the time period over which the pulses took place.

For example, refer to Figure 3.4.2-1. Let us assume that the Scan period is 1
mSec. At the beginning of Scan 3, The time (P)eriod between the falling edge
of the last pulse in Scan 1 and the last pulse in Scan 2 would be calculated (lets
say P = 1200 uSec). The (N)umber of edges, which equals 3,would be divided
by P. So we would get 3/(0.0012) to get a frequency result of 2.50 kHz.

421

P E R I O D (P)

S C A N #
3

 E 1 E 2 E 3

FIGURE 3.4.2-1. Frequency calculation for the CR9071E

The resolution of the CR9071E's PulseCount frequency option, rather than
being tied to the Scan interval or the duration of the instruction's running
average (POption parameter), is dependant on the input signal frequency and
the 40 nanosecond timing resolution. The resolution can be determined using
equation 3.4.2-1.

Eq. 3.4.2-1)
)(

(
E

RPP
E

R
FR

+×
=

where:

FR = Resolution of the frequency measurement (Hz)

R = Timing Resolution of the period measurement = 40 x 10-9seconds

P = Period of input signal (seconds); for a 1000 Hz signal P = 1/1000 = 0.001 S

3-37

Section 3. CR9000X Measurement Details

E = # of Rising edges per Scan or 1, whichever is greater. (For a 1000 Hz
input signal E would be 500 given a 0.5 second scan, or 5000 given a 5.0
second scan). If E is less than 1, use a value of 1 for E.

For example, if the input signal frequency was 1000 Hz and the Scan period
was 0.1 Seconds, then the signal’s period (P) would be 0.001 Seconds
(1/1000Hz), and E, or number of pulses per Scan, would be 100 (Signal
Freq/Scan freq = 1000 Hz/10 Hz = 100).

FreqResolution = [(40 x 10-9)/100]/[((0.001(0.001 + 40 x 10-9 /100)
 = ~ 0.0004 Hz

As shown in this example, the Frequency resolution can be improved beyond
the basic resolution through having multiple edges (pulses) per scan (scan
interval to signal period ratio). The same advantage can be realized through
setting up a running average using the PulseCount instruction's POption.

If the input signal's period is greater than the scan rate, with a POption of 1 (no
running average), the correct frequency will be returned at the scan when the
pulse edge is encountered. The following scans will return zeros until another
edge is seen.

The maximum period that can be measured with the CR9071E is about 171.7
seconds (32 bit counter with a 40 nanosecond resolution: 232 x 40 E-9).

When using a running average whose duration is shorter than the input signal
period, the output from the running average will become the correct value at
the scan when the edge is encountered. It will stay at this value until either
another edge is encountered or, if another edge is not encountered before the
time period of the running average is exceeded, the output will fall off to zero.

3.4.3 CR9071E TimerIO for Measuring Frequency Inputs
Another method for measuring frequency is to use the TimerIO instruction
with one of the Pulse channels on the CR9071E Pulse. The value returned can
be programmed to be the input signal's period in milliseconds (40 nanosecond
resolution), or the signal's frequency in Hz. The advantage of using the
TimerIO instruction over the PulseCount instruction is, that the measured
frequency result will stay at the last recorded value until another edge is
encountered or the 2.6 second timeout period is exceeded. After 2.6 seconds
without another edge, the output from the instruction will change to NAN.

Resolution for the CR9071E TimerIO instruction is the same as for its
PulseCount instruction. See Section 3.4.2 for discussion on measurement
resolution.

3.4.4 High Frequency Pulse Measurements
All twelve pulse channels of the CR9070 and CR9071E can be configured for
high frequency inputs. The signal is fed through a filter with a time constant of
200 (τ = 200 nanoseconds) nanoseconds to remove higher frequency noise. It
is then fed through a Schmitt circuit to convert the signal to a square wave, and
to guard against false triggers when the signal is hovering around the threshold
level. In the High Frequency mode, the input signal to the Schmitt trigger
must rise from below 1.5 volts to above 3.5 volts in order to trigger an output.
Due to the attenuation caused by the filter on the front side of the Schmitt

3-38

Section 3. CR9000X Measurement Details

circuit, a larger input voltage transition is required for higher frequencies. The
transition required for the input of the Schmitt trigger can be viewed as 2.5
volts ± 1 volt (from below 1.5 volt to above 3.5 volt). The equation to
calculate the amount that the signal is attenuated by the front end filter is:

()()()221
1

fV
V

In

Out

πτ+
=

VOut is the voltage level leaving the filter (level into the Schmitt circuit) when
VIn is the input voltage. VOut must be at minimum 1 volt for the Schmitt
circuit to trigger an output.

Chart 3.4.4-1 Required Transition Voltage for High Frequency Pulse

0.6

0.8

1

1.2

1.4

1.6

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1100000

Signal Frequency (Hz)

±V
 T

ra
ns

is
tio

n
(C

en
te

re
d

at
 2

.5
 V

ol
t) RequiredTransition Voltage

Chart 3.4.4-1 plots the trace for the minimum transition voltage about 2.5 volts
against the input signal frequency. To demonstrate how to use this plot, for a
input frequency of 1 MHz, the voltage signal, centered about 2.5 volts, must
have a transition of ± 1.6 volts in order to trigger the Schmitt circuit. In other
words, the signal must rise from below 0.9 volts (2.5 volts minus 1.6 volts) to
above 4.1 volts (2.5 volts plus 1.6 volts) for a pulse to be counted.

The input voltage range for the Pulse channels is ±20 V.
Voltages outside of this range can damage the logger.

NOTE

I/O 1 – 16

When using the CR9071E's I/O ports for pulse timing (TimerIO instruction),
the positive threshold voltage is 3.5 V and the negative threshold voltage is 1
V. The maximum input voltage allowed is 5.5 volts and the minimum voltage
allowed is -0.5 V. Voltages outside of this range can damage the CR9071E.

3-39

Section 3. CR9000X Measurement Details

3-40

Section 4. CRBasic – Native Language
Programming
The CR9000X is programmed in a language that has some similarities to a structured basic.
There are special instructions for making measurements and for creating tables of output
data. The results of all measurements are assigned variables (given names). Mathematical
operations are written out much as they would be algebraically. This section describes a
program, its syntax, structure, and sequence.

4.1 Introduction to Writing CR9000X Programs
Programs are created with either Short Cut, Program Generator, or the
CRBASIC Editor. Short Cut is available at no charge at www.campbellsci.com.
The Program Generator is a utility included with PC9000 and RTDaq. The
CRBASIC Editor is a utility included in PC400, PC9000, RTDaq, and
LoggerNet Datalogger Support Software Suites.

4.1.1 ShortCut
Short Cut is an easy-to-use, menu-driven utility included in PC200, PC400,
LoggerNet, and RTDaq software packages. It presents the user with lists of
predefined measurement, processing, and control algorithms from which to
choose. The user makes choices and Short Cut writes the CRBASIC code
required to perform the tasks. Short Cut creates a wiring diagram to simplify
connection of sensors and external devices.

For many complex applications, Short Cut can be a good place to start. When
as much information as possible is entered, Short Cut will create a program
template from which to work, already formatted with most of the proper
structure, measurement routines, and variables. The program can then be edited
further using the CRBASIC Program Editor.

4.1.2 Program Generator
The CR9000X Program Generator is an easy-to-use pick and click
programming tool included as a utility in RTDaq. It presents the user with lists
of predefined measurement, processing, and control algorithms from which to
choose and supports most commercially available sensors. It allows the user to
customise measurements, and provides multiple output formats including
Rainflow Histograms, FFTs, Standard Deviation etc. It can set-up automatic
field calibrations for sensors and set-up trigger conditions for data storage,
collecting both pre-trigger and post-trigger records. The Program Generator
creates the CRBasic code, an Output Data Information file, as well as a wiring
diagram that can be printed to take into the field. The Quickstart Tutorial,
works through a measurement example using the Program Generator.

For many complex applications, one of these Program Builders is a good place
to start. When as much information as possible is entered, either will create a
program template from which to work, already formatted with most of the

4-1

http://www.campbellsci.com/

Section 4. CRBasic – Native Language Programming

proper structure, measurement routines, and variables. The program can then
be edited further using CRBASIC Program Editor.

4.1.3 CRBasic Program Editor
CR9000X application programs are written in a variation of BASIC (Beginner’s
All-purpose Symbolic Instruction Code) computer language, CRBASIC
(Campbell Recorder BASIC). The CRBASIC Editor is a text editor that
facilitates creation and modification of the ASCII text file that constitutes the
CR9000X application program. CRBASIC Editor is available as part of PC400,
PC9000, RTDAQ, or LoggerNet datalogger support software packages.

The Instruction Panel on the right side is a list that comprises the instructions
for the CR9000X. Instructions can be selected from this list or entered directly
into the program entry window on the left. The Message Area is normally not
visible until you compile a program. Online help can be invoked by hitting F1
or by clicking on the "Help" button in the dialogue box. Each instruction's help
includes an example program. See the Software manual for a complete
description of the CRBasic editor.

4-2

Section 4. CRBasic – Native Language Programming

4.1.3.1 Inserting Comments into Program
Comments are non-functioning text placed within the body of a program to
document or clarify program algorithms.

As shown in Example 4.1.3-1, comments are inserted into a program by
preceding the comment with a single quote ('). Comments can be entered either
as independent lines or following CR9000X code. When the CR9000X
compiler sees the single quote it ignores the rest of the line.

EXAMPLE 4.1.3-1. CRBASIC Code: Inserting Comments
'Declaration of variables starts here.
Public Start(6) 'Declare the start time array

See Software manual or CRBasic on line help for more information.

4.1.4 Programming CRBASIC's "Basics":
There are multiple steps that need to be complete before a program is started.

1) Know your APPLICATION. Decide what parameters need to be
measured. Examples include temperature, pressure, strain, displacement,
and the list goes on. Document how many points or sensors, for each
parameter to be monitored, will be required.

EXAMPLE: Need 3 temperatures, two pressures

2) Know your SENSOR. Select the sensors that will meet the needs of step 1.
What is the output for each sensor type (Pulse, Differential Analog
Voltage, Single Ended Analog Voltage, Ratio-metric Analog Voltage
output requiring excitation ...). Once the sensor output is determined,
additional clarifiers are usually needed. Examples include:

 Analog: What is the Full Scale output (sensor max voltage output)
 What are the Excitation requirements
 Pulse: TTL output? (0-5 volt square wave signal)
 Low level AC (zero crossing)?

It should be noted that to get the full scale voltage output of a ratio-metric
output (mV/V) sensor, you must multiple the rated mV/V by the excitation
voltage. In the example below, Pressure transducer #1 has a full scale
output of 2 mV/V. With an excitation voltage of 5 VDC, this results in a
full scale output voltage of 10 mV.

EXAMPLE Con't:
 Temperature: Type K thermocouples
 Highest T: 1500 F; voltage output < 34 mV
 Pressure: Excite both with 5 Volts DC
 Transducer #1 Full Scale Output: 2 mV/V @ 100 psi
 Transducer #2 Full Scale Output: 3 mV/V @ 600 psi

3) Know your DESIRED DATA FORMAT. Assign names or descriptors to
each of the sensors. Decide what engineering units you want to store the
data in, and determine the required scalars to apply to the raw sensor
output. Determine the fastest measurement rate required for the collection
of sensors (may need to store temperature data at one rate and vibration

4-3

Section 4. CRBasic – Native Language Programming

data at another rate), as well as the rate that you wish to store the different
measurement parameters.

The raw output for thermocouples measured by CSI loggers, is degrees
Celsius. The raw output for a bridge measurement is mV per Volt
excitation.

EXAMPLE Con't Full Scale Storage
 Sensor# Alias Units Mult Offset Output Rate
 Type K#1 Ambient Degrees F 1.8 32 34 mV 10 Hz
 Type K#2 InletT Degrees F 1.8 32 34 mV 10 Hz
 Type K#3 OutletT Degrees F 1.8 32 34 mV 10 Hz
 Pressure #1 InletP PSI 50 0 2 mV/V 100 Hz
 Pressure #2 OutletP PSI 200 0 3 mV/V 100 Hz

4) Know your PROGRAMMING TOOLS. Now that the system
requirements are known, you will need to decide which programming tool
to use. SCWin is the most basic, and has limited capabilities. The
CR9000X Program Generator is also a "pick and click" programming tool,
but has more capability, and thus more complexity, than ShortCut. Both of
these tools have good help files/tutorials and are fairly straight forward, so
their use is not covered in this section. If you wish to use the Program
Generator, a good resource is the Quick Start Tutorial at the beginning of
this manual. For most applications, it is recommended to start with the
Program Generator or ShortCut to develop the basics or skeleton of the
program and then modify, if required, using the third option for
programming: the CRBasic editor. Now that we now the system
requirements, we are ready to start programming.

5) Know your PROGRAMMING STRUCTURE. Read Section 4.2.3 and
review its examples to learn the basic structure for a CRBasic program.

6) Know your VARIABLES. Read Section 4.2.4.1 through Section 4.2.4.3
and Section 4.2.5. Define the constants that will be used for scaling the
output from the sensors to the desired engineering units. Declare the
variables that will be used to receive the measured output from the sensors.
Declare the engineering units. If using arrays, declare aliases for the
elements of the arrays. Using a Colon (:) between instructions to insert
multiple instructions on a single line. Unique names can be assigned to
variable array elements using the Alias instruction.

‘Define Constants
Const TCMult = 1.8 : Const TCOffset = 32
Const P1Mult = 50 : Const P1Offset = 0
Const P2Mult = 200 : Const P2offset = 0
‘Define Public Variables
Public RefTemp, TC(3) 'Variable for ref temp & 3 Element array for
temperatures
Public Press(2) 'Declare 2 Element array for pressures
‘Declare Units
Units RefTemp = degC : Units TC = degF : Units Press = psi
‘Declare Aliasess
Alias TC(1) = Ambient : Alias TC(2) = InletT : Alias TC(3) = OutletT
Alias Press(1) = InletP : Alias Press(2) = OutletP

4-4

Section 4. CRBasic – Native Language Programming

7) Know your DATA STORAGE. Read Section 4.2.8. Define the Data
Tables and the data that will be stored in them. Can have multiple data
tables with the same or different storage rates. It is recommended to store
all final data on PCMCIA memory cards. Label the Data Tables.

‘Define Data Tables Constants
DataTable (Temps,1,-1)
 CardOut (0 ,-1)
 DataInterval (0,100,mSec,10)
 Sample (1,RefTemp,IEEE4)
 Sample (3,TC(),IEEE4)
EndTable

DataTable (Pressure,1,-1)
 CardOut (0 ,-1)
 DataInterval (0,10,mSec,10)
 Sample (2,Press(),IEEE4)
EndTable

8) Know your MEASUREMENT RATE. Read 4.2.9.1. Define the
measurement rate using the Scan instruction. The rate must be at least as
fast as the highest measurement storage rate required (100 Hz or 10
milliseconds for our example case). Must call the Data Tables from the
running Scan in order to process the measured values.

‘Setup Main Program Scan
BeginProg
 Scan (10,mSec,0,0)
 CallTable Temps
 CallTable Pressure
 NextScan
EndProg

9) Know your MEASUREMENT INSTRUCTIONS. Read Section 4.2.10
for information on thermocouple measurements and for an example of a
simple program. Read Section 7.4 for information on Full Bridge
measurements. Section 7 covers other measurement types as well. Do not
forget that thermocouple measurements require a reference junction
temperature measurement (use the ModuleTemp instruction).

‘Setup Main Program Scan
BeginProg
 Scan (10,mSec,0,0)
 ModuleTemp (RefTemp,1,4,0)
 TCDiff (TC(),3,mV50C,4,1,TypeK,RefTemp,True ,40,100, TCMult,TCOffset)
 BrFull (Press(1),1,mV50,4,4,5,7,1,5000,True ,True ,30,100,P1Mult,P1Offset)
 BrFull (Press(2),1,mV50,4,4,5,7,1,5000,True ,True ,30,100,P2Mult,P2Offset)
 CallTable Temps
 CallTable Pressure
 NextScan
EndProg

4-5

Section 4. CRBasic – Native Language Programming

10) Put together what you know, and you have a working program:

 ‘Define Constants
Const TCMult = 1.8 : Const TCOffset = 32
Const P1Mult = 50 : Const P1Offset = 0
Const P2Mult = 200 : Const P2offset = 0
 ‘Define Public Variables
Public RefTemp, TC(3) 'Variable for ref temp & 3 Element array for temperatures
Public Press(2) 'Declare 2 Element array for pressures
 ‘Declare Units
Units RefTemp = degC : Units TC = degF : Units Press = psi
 ‘Declare Aliasess
Alias TC(1) = Ambient : Alias TC(2) = InletT : Alias TC(3) = OutletT
Alias Press(1) = InletP : Alias Press(2) = OutletP
 ‘Define Data Tables Constants
DataTable (Temps,1,-1)
 CardOut (0 ,-1)
 DataInterval (0,100,mSec,10)
 Sample (1,RefTemp,IEEE4)
 Sample (3,TC(),IEEE4)
EndTable
DataTable (Pressure,1,-1)
 CardOut (0 ,-1)
 DataInterval (0,10,mSec,10)
 Sample (2,Press(),IEEE4)
EndTable

BeginProg ‘Setup Main Program Scan
 Scan (10,mSec,0,0)
 ModuleTemp (RefTemp,1,4,0)
 TCDiff (TC(),3,mV50C,4,1,TypeK,RefTemp,True ,40,100, TCMult,TCOffset)
 BrFull (Press(1),1,mV50,4,4,5,7,1,5000,True ,True ,30,100,P1Mult,P1Offset)
 BrFull (Press(2),1,mV50,4,4,5,7,1,5000,True ,True ,30,100,P2Mult,P2Offset)
 CallTable Temps
 CallTable Pressure
 NextScan
EndProg

4.2 CRBasic Programming
4.2.1 Fundamental elements of CRBASIC include:

• Variables – named program elements, with reserved memory locations,
into which are stored values that may vary during program execution.
Values are typically the result of measurements and processing. Variables
are given an alphanumeric name and can be dimensioned into arrays of
related data.

• Constants – named program elements, with reserved memory locations,
into which are stored values that cannot vary during program execution.
Constants are given alphanumeric names and assigned values at the
beginning declaration section of a CRBASIC program.

4-6

Section 4. CRBasic – Native Language Programming

Keywords and predefined constants are reserved for internal
CR9000X use. If a user programmed variable happens to be a
keyword or predefined constant, a runtime or compile error will
occur. To correct the error, simply change the variable. CRBasic
Help also has the list of keywords and pre-defined constants.

NOTE

See Appendix A Keywords and Predefined Constants for a list of keywords
and pre-defined constants.

• Common instructions – Instructions and operators used in most BASIC
languages, including program control statements, and logic and
mathematical operators.

• Special instructions – Instructions unique to CRBASIC, including
measurement instructions that access measurement channels, and
processing instructions that compress many common calculations used in
CR9000X dataloggers.

These four elements must be properly placed within the program structure.

4.2.2 Numerical Entries
In addition to entering regular base 10 numbers there are 3 additional ways to
represent numbers in a program: scientific notation, binary, and hexadecimal
(Table 4.2.2-1).

TABLE 4.2.2-1 Formats for Entering
Numbers in CRBasic

Format Example Base10 Value
Standard 6.832 6.832
Scientific notation 5.67E-8 5.67X10-8
Binary: &B1101 13
Hexadecimal &HFF 255

The binary format makes it easy to visualize operations where the ones and
zeros translate into specific commands. For example, a block of ports can be
set with a number, the binary form of which represents the status of the ports
(1= high, 0=low). To set ports 1, 3, 4, and 6 high and 2, 5, 7, and 8 low; the
number is &B00101101. The least significant bit on the right represents port 1.
This is much easier to visualize than entering 72, the decimal equivalent.

4.2.3 Programming Structure
A typical CRBasic program contains:
 a) Variable Declarations
 b) Data Table Definitions
 c) Subroutine Definitions (The use of subroutines is optional)
 d) Program(s) including the Scan Interval, Measurements, Processes, Controls, and calls to

Data Tables

4-7

Section 4. CRBasic – Native Language Programming

The structure of a CRBasic program requires that variables and subroutines be
defined before they can be used. The best way to do this is to put all the
variable declarations and output table definitions at the beginning, followed by
the subroutines, and then the program. Table 4.2.3-1 describes the structure of
a typical CR9000X program. Example Program 4.2.3-1 and 4.2.3-2 show
examples of following correct program structure.

TABLE 4.2.3-1: Program Structure
Declarations Define datalogger memory usage. Declare constants, variables,

aliases, units, and data tables.

Declare constants Declare fixed constant variables to their values

Declare Public variables Declare & dimension Public Variables(variables that will be
viewable using real-time monitoring during program execution)

Dimension variables Declare & dimension variables not viewable during program
execution.

Define Aliases Assign aliases names to variables.

Define Units Assign engineering units to variable (optional). Units are strictly for
documentation. The CR9000X makes no use of Units nor checks
Unit accuracy.

Define data tables. Describe, in detail, stored data tables.

Process/store trigger Set when the data should be stored. Are they stored when some
condition is met? Are data stored on a fixed interval? Are they
stored on a fixed interval only while some condition is met?

Table size Set the size of the table in CR9000X RAM

Other on-line storage devices Should the data also be sent to PC card or Flash memory?

Processing of Data What data are to be output (current value, average, maximum,
minimum, etc.)

Define Subroutines If there is a process or series of calculations that need to be repeated
several times in the program, it can be packaged in a subroutine
and called when needed rather than repeating all the code each
time. Can include measurement Scans for conditional
measurements

Begin Program BeginProgram defines the beginning of the statements that define
datalogger actions

Set scan interval The Scan instruction sets the interval for a series of measurements

Measurements Enter the measurements to make

Processing Enter any additional processing

Initiate controls Check measurements and Initiate controls if necessary

Call Data Table(s) Declared Data Tables must be called to process and store data

NextScan Loop back (and wait if necessary) for the next scan

End Program

4-8

Section 4. CRBasic – Native Language Programming

EXAMPLE PROGRAM 4.2.3-1 CRBasic Program Structure‘Declarations

‘Define Constants
Const RevDiff 1
Const Del 0
Const Integ 0
Const Mult 1
Const Offset 0

‘Define Public Variables
Public RefTemp
Public TC(6), TAvg
Public Flag(8)

‘Declare Units
Units RefTemp=degC
Units TC=degC

‘Define Data Tables
DataTable (Temp,1,2000)
 DataInterval(0,10,msec,10)
 Average(1,RefTemp,fp2,0)
 Average(6,TC(),fp2,0)
EndTable

‘Begin Program

Declare constants

Declarations
Declare public variables ,
dimension array, and
declare units.

Define Data Table
for storing data results

BeginProg
Scan(1,MSEC,0,0)
 ModuleTemp(RefTemp,1,4,0)
 TCDiff(TC(),6,mV50C,4,1,TypeT,RefTemp,RevDiff,Del,Integ,Mult,Offset)
 CallTable Temp
NextScan
EndProg

Measure Scan loop

Call Data Table

4-9

Section 4. CRBasic – Native Language Programming

EXAMPLE PROGRAM 4.2.3-2. CRBasic Program Structure

' Program name: EXAMPLE.C9X
'DECLARATIONS
Public VBlk1(1) 'Block1 dimensioned source
Dim OVBlk1(1) 'Block1 dimensioned offset
Units VBlk1 = psi 'Block1 default units (psi)
Public Flag(8) 'General Purpose Flags
Alias VBlk1(1) = Press_1 'Assign alias name "Press_1" to VBlk1(1)

'OUTPUT SECTION
DataTable(Table1,True,-1) 'Trigger, auto size
 DataInterval(0,1,Sec,100) '1 Sec interval, 100 lapses, autosize
 CardOut(0,-1) 'PC card , size Auto
 Sample (1,VBlk1(),IEEE4) '1 Reps,Source,Res
EndTable 'End of table Table1

'SUBROUTINES
Sub Zero8 'Begin zero measure routine
 Scan(5,mSec,0,100) 'Scan 100 times. 1.00 Seconds.
 VoltDiff(OVBlk1(),1,mV50,4,1,True,0,100,-5,0)
 Next Scan 'Loop up for the next scan
 Flag(8) = False 'Reset Flag(8)
End Sub 'End gauge zero measure routine

'PROGRAM: MAIN SEQUENCE
BeginProg 'Program begins here
 OVBlk1(1) = 1 'Initialize offset value
 'MainSequence
 Scan(5,mSec,0,0) 'Scan once every 10 mSecs, non-burst
 VoltDiff(VBlk1(),1,mV50,4,1,True,0,100,5,OVBlk1(1)) 'Measurement
 If Flag(8) Then Zero8 'Go do Zero8 subroutine
 CallTable Table1 'Output Control
 Next Scan 'Loop up for the next scan

'LOW PRIORITY
 'BackgroundSequence
 SlowSequence 'Used for slow measurements
 Dim TripVolt 'Dimension TripVolt
 Scan(1,Sec,0,0) 'Scan once every 1 second
 Battery(TripVolt,0) 'Battery voltage measurement
 If TripVolt < 11.5 Then
 PowerOff(0,0,Min) 'Test for less than 11.5 volts
 Endif
 Next Scan 'Loop up for the next scan
EndProg 'Program ends here

4-10

Section 4. CRBasic – Native Language Programming

4.2.4 Declarations
Pre-defined constants, Public variables, Dim variables, Aliases, Units, Data
Tables, and Subroutines are all declared at the beginning of a CRBASIC
program. All variables/constants used in a CRBasic program must be declared.
See Table 4.2.7-1 Rules for Names for nomenclature rules.

4.2.4.1 Variables
A variable is a packet of memory, given an alphanumeric name, through which
pass measurements and processing results during program execution. Variables
are declared either as Public or Dim at the discretion of the programmer.
Variables declared using the Public instruction can be viewed through the
CR1000KD or software numeric monitors. Variables declared using the Dim
instruction cannot be monitored in real time unless they are stored to an Output
table.

4.2.4.2 Variable Arrays
When a variable is declared, several variables of the same root name can also be
declared. This is done by placing a suffix of “(x)” on the alphanumeric name,
which creates an array of x number of variables that differ only by the
incrementing number in the suffix. For example, rather than declaring four
similar variables as follows,

Public TempC1
Public TempC2
Public TempC3

simply declare a variable array as shown below:
Public TempC(3),

This creates in memory the four variables TempC(1), TempC(2), and
TempC(3). References to the array with empty brackets is the same as
referencing the first element of the array; i.e: TempC() and TempC(1) can be
used interchangeably. Unique names can be given to these array elements using
the Alias instruction.

A variable array is useful in program operations that affect many variables in
the same way. EXAMPLE 4.2.4-1 shows program code using a variable array
to reduce the amount of code required to convert four temperatures from
Celsius degrees to Fahrenheit degrees.

EXAMPLE 4.2.4-1. CRBASIC Code: Using a variable array in calculations.
Public TRef, TempC(4), TempF(4)
Alias TempF(1) = Radiator_In : Alias TempF(2) = Radiator_Out
Alias TempF(3) = Air_Intake : Alias TempF(2) = Exhaust
Dim T
BeginProg
 Scan (1,Sec,0,0)
 ModuleTemp (TRef,1,4,40)
 TCDiff (TempC(),4,mV50C,4,1,TypeT,TRef,True ,30,100,1.0,0)
 For T = 1 To 4
 TempF(T) = TempC(T) * 1.8 + 32
 Next
 NextScan
EndProg

4-11

Section 4. CRBasic – Native Language Programming

4.2.4.3 Dimensions
Occasionally, a multi-dimensioned array is required for an application.
Dimensioned arrays can be thought of just as length, area, and volume
measurements are thought of. A single dimensioned array, declared as
VariableName(x), with (x) being the index, can be thought of as x number of
variables is a series. The array can be declared using either a Public or a Dim
instruction. A two-dimensional array, declared as

Public VariableName(x,y), or

Dim VariableName(x,y),

with (x,y) being the indices, can be thought of as (x) * (y) number of variables
in a square x-by-y matrix. Three-dimensional arrays (VariableName (x,y,z),
(x,y,z) being the indices) have (x) * (y) * (z) number of variables in a cubic x-
by-y-by-z matrix. Dimensions greater than three are not permitted by
CRBASIC. Strings can be declared at a maximum of two dimensions. The
third dimension is used internally for accessing characters within a string.

When using variables in place of integers as the dimension indices, as shown in
Example 4.2.4-2, declaring the indices as Long variables is recommended as
doing so allows for much more efficient use of CR9000X resources.

EXAMPLE 4.2.4-2. Using Variable Array Dimension Indices
Dim aaa As Long
Dim bbb As Long
Dim ccc As Long
Public VariableName(4,4,4) as Float

BeginProg
 aaa = 3 : bbb = 2 : ccc = 4
 Scan()
 VariableName(aaa,bbb,ccc) = 2.718
 NextScan
EndProg

4.2.4.4 Data Types
The declaration of variables (via the DIM or the PUBLIC statement) allow an
optional type descriptor AS that specifies the data type. The default data type,
without a descriptor, is IEEE4 floating point (FLOAT). The four declared data
types are FLOAT, LONG, BOOLEAN, and STRING. Stored data has
additional data type options FP2, UINT2, BOOL8, and NSEC. Table 4.2.4-1
lists details for the available data types for both variable declaration format as
well as data storage format. The data type for data storage is determined by a
parameter in the output processing instructions. Example:

 Sample (Reps, Variable, FP2)

4-12

Section 4. CRBasic – Native Language Programming

TABLE 4.2.4-1. Data Types

Code Data Format Where Used Word
Size

Range Resolution

FP2 CSI Floating
Point

Output Data Storage 2 bytes ±7999 13 bits
(about 4 digits)

IEEE4 or
FLOAT

IEEE 4 Byte
Floating Point

Output Data Storage,
Variable Declaration

4 bytes ±1.4 x 10-45 to
±3.4 x 1038

24 bits
(about 7 digits)

LONG 4 Byte Signed
Integer

Output Data Storage,
Variable Declaration

4 bytes -2,147,483,648
to
+2,147,483,647

1 bit (1)

UINT2 2 Byte Unsigned
Integer

Output Data Storage 2 bytes 0 to 65535 1 bit (1)

BOOLEAN 4 byte Signed
Integer

Output Data Storage,
Variable Declaration

4 bytes 0, -1 True or False
(-1 or 0)

BOOL8 1 byte Boolean Output Data Storage 1 byte 0, -1 True or False
(-1 or 0)

NSEC Time Stamp Output Data Storage 8 byte seconds since
1990

1 nanoseconds

STRING ASCII String Output Data Storage,
Variable Declaration

Set by
program

4.2.4.5 Data Type Operational Detail
BOOLEAN “AS BOOLEAN” specifies the variable as a 4 byte Boolean. Boolean variables

are typically used for flags and to represent conditions or hardware that have
only 2 states (e.g., On/Off, Ports). A Boolean variable uses the same 32 bit
long integer format as a LONG but can set to only one of two values: True,
which is represented as –1, and false, which is represented with 0. To save
memory space, consider using BOOL8 format instead.software to display it as
an ON/OFF, TRUE/FALSE , RED/BLUE, etc.

Public Switches(8) AS Boolean, FLAGS(16) AS Boolean

BOOL8 Used for data storage only. A one byte variable that hold 8 bits (0 or 1) of
information. BOOL8 uses less space than 32-bit BOOLEAN data type, since
32 bits of information are stored in four 8-bit Boolean bytes. Repetitions in
output processing data table instructions must be integrally divisible by two,
since an odd number of bytes cannot be stored in a data table. When
converting from a LONG or a FLOAT to a BOOL8, only the least significant 8
bits are used, i.e., only the modulo 256 is used. When LoggerNet retrieves a
BOOL8 data type, it splits it apart into 8 fields of true or false when storing or
displaying. BOOL8 conserves CR9000X memory which results in less band
width being used when data are collected via telecommunications.

EXAMPLE 4.2.4-3 programs the CR9000X to monitor the state of 32 ‘alarms’
as a tutorial exercise. The alarms are toggled by manually entering zero or
non-zero (e.g., 0 or 1) in each public variable representing an alarm. Samples
of the four FlagsBool variables are stored in data table “Bool8Data” as four 1-
byte values. When programming, remember that aliasing can be employed to
make the program and data more understandable for a particular application.

4-13

Section 4. CRBasic – Native Language Programming

EXAMPLE 4.2.4-3. Programming with Bool8 and a bit-shift operator.
Public Alarm(32)
Public Flags As Long
Public FlagsBool8(4) As Long

DataTable (Bol8Data,True,-1)
 DataInterval (0,1,Sec,10)
 Sample(2,FlagsBool8(1),Bool8) 'store bits 1 through 16 in columns 1 through 16 of data file
 Sample(2,FlagsBool8(3),Bool8) 'store bits 17 through 32 in columns 17 through 32 of data file
EndTable

BeginProg
 Scan (1,Sec,3,0)

 'Reset all bits each pass before setting bits selectively
 'Set bits selectively. Hex used to save space.
 'Logical OR bitwise comparison
 'If bit in OR bit in The result
 'Flags Is Bin/Hex Is Is
 '---------- ---------- ----------
 '0 0 0
 '0 1 1
 '1 0 1
 '1 1 1
 ' Binary equivalent of Hex:
 If Alarm(1) Then Flags = Flags OR &h1 ' &b1
 If Alarm(2) Then Flags = Flags OR &h2 ' &b10
 If Alarm(3) Then Flags = Flags OR &h4 ' &b100
 If Alarm(4) Then Flags = Flags OR &h8 ' &b1000
 If Alarm(5) Then Flags = Flags OR &h10 ' &b10000
 If Alarm(6) Then Flags = Flags OR &h20 ' &b100000
 If Alarm(7) Then Flags = Flags OR &h40 ' &b1000000
 If Alarm(8) Then Flags = Flags OR &h80 ' &b10000000
 If Alarm(9) Then Flags = Flags OR &h100 ' &b100000000
 If Alarm(10) Then Flags = Flags OR &h200 ' &b1000000000
 If Alarm(11) Then Flags = Flags OR &h400 ' &b10000000000
 If Alarm(12) Then Flags = Flags OR &h800 ' &b100000000000
 If Alarm(13) Then Flags = Flags OR &h1000 ' &b1000000000000
 If Alarm(14) Then Flags = Flags OR &h2000 ' &b10000000000000
 If Alarm(15) Then Flags = Flags OR &h4000 ' &b100000000000000
 If Alarm(16) Then Flags = Flags OR &h8000 ' &b1000000000000000
 If Alarm(17) Then Flags = Flags OR &h10000 ' &b10000000000000000
 If Alarm(18) Then Flags = Flags OR &h20000 ' &b100000000000000000
 If Alarm(19) Then Flags = Flags OR &h40000 ' &b1000000000000000000
 If Alarm(20) Then Flags = Flags OR &h80000 ' &b10000000000000000000
 If Alarm(21) Then Flags = Flags OR &h100000 ' &b100000000000000000000
 If Alarm(22) Then Flags = Flags OR &h200000 ' &b1000000000000000000000
 If Alarm(23) Then Flags = Flags OR &h400000 ' &b10000000000000000000000
 If Alarm(24) Then Flags = Flags OR &h800000 ' &b100000000000000000000000
 If Alarm(25) Then Flags = Flags OR &h1000000 ' &b1000000000000000000000000
 If Alarm(26) Then Flags = Flags OR &h2000000 ' &b10000000000000000000000000
 If Alarm(27) Then Flags = Flags OR &h4000000 ' &b100000000000000000000000000
 If Alarm(28) Then Flags = Flags OR &h8000000 ' &b1000000000000000000000000000
 If Alarm(29) Then Flags = Flags OR &h10000000 ' &b10000000000000000000000000000
 If Alarm(30) Then Flags = Flags OR &h20000000 ' &b100000000000000000000000000000
 If Alarm(31) Then Flags = Flags OR &h40000000 ' &b1000000000000000000000000000000
 If Alarm(32) Then Flags = Flags OR &h80000000 '&b10000000000000000000000000000000

 'Note: &HFF = &B11111111. By shifting at 8 bit increments along 32-bit ‘Flags’ (Long data
type)
 'the first 8 bits in the four Longs FlagsBool8(4) are loaded with alarm states. Only the
first
 '8 bits of each Long ‘FlagsBool8’ are stored when converted to Bool8.
 'Logical AND bitwise comparison
 'If bit in OR bit in The result
 'Flags Is Bin/Hex Is Is
 '---------- ---------- ----------
 '0 0 0
 '0 1 0
 '1 0 0
 '1 1 1
 FlagsBool8(1) = Flags AND &HFF 'AND 1st 8 bits of "Flags" & 11111111
 FlagsBool8(2) = (Flags >> 8) AND &HFF 'AND 2nd 8 bits of "Flags" & 11111111
 FlagsBool8(3) = (Flags >> 16) AND &HFF 'AND 3rd 8 bits of "Flags" & 11111111
 FlagsBool8(4) = (Flags >> 24) AND &HFF 'AND 4th 8 bits of "Flags" & 11111111
 CallTable(Bol8Data)
 NextScan
EndProg

4-14

Section 4. CRBasic – Native Language Programming

FP2 Used for data storage only. While IEEE 4 byte floating point is used for
variables and internal calculations, FP2 is adequate for most stored data. FP2
provides 3 or 4 significant digits of resolution, and requires half the data
storage memory of the IEEE 4 numeric format (2 bytes verses 4 bytes).

TABLE 4.2.4-2. Resolution and Range Limits of FP2 Data

Zero Minimum Magnitude Maximum Magnitude

0.000 ±0.001 ±7999.

The resolution of FP2 is reduced to 3 significant digits when the first (left
most) digit is 8 or greater (Table 4.2.4-3). Thus, it may be necessary to use
IEEE4 format or an offset to maintain the desired resolution of a measurement.
For example, if water level is to be measured and stored to the nearest 0.01
foot, the level must be less than 80 feet for low-resolution format to display the
0.01-foot increment. If the water level is expected to range from 50 to 90 feet
the data can be formatted as IEEE4.

TABLE 4.2.4-3. FP2 Decimal Location
Absolute Value Decimal Location

 0 to 7.999 X.XXX

 8 to 79.99 XX.XX

 80 to 799.9 XXX.X

800 to 7999. XXXX.

FLOAT “AS FLOAT” specifies the default IEEE4 Standard 754 data type. If no data
type is explicitly specified with the AS statement, then FLOAT is assumed.
IEEE4 has 24 bits of resolution. Less processing is required when storing data
in IEEE4, because the logger does not have to convert the value (internal
operations are done in IEEE4).

Public Z, RefTemp, TCTemp(3)
Public X AS FLOAT

LONG “AS LONG” specifies the variable as a 32 bit long integer, ranging from –
2,147,483,648 to +2,147,483,647 (31 bits plus the sign bit). There are two
possible reasons a user would do this: (1) speed, since the OS can do math on
integers faster that with floats, and (2) resolution, since the LONG has 31 bits
compared to the 24 bits in the IEEE4. It is not always suitable for data storage
as the fractional portion of the value is lost.
Examples:

Dim I AS LONG
Public LongCounter AS LONG

NSEC
NSEC data type consists of 8 bytes divided up as 4 bytes of seconds since 1990
and 4 bytes of nanoseconds into the second. NSEC is used when a LONG
variable being sampled is the result of the RealTime () instruction, or when the
sampled variable is a LONG storing time since 1990, such as results when time-
of-maximum or time-of-minimum is requested. Used for data storage only.

4-15

Section 4. CRBasic – Native Language Programming

Specific uses include:
• Placing a timestamp in a second position in a record.

• Accessing a timestamp from a data table and subsequently storing it as part
of a larger data table. Maximum, Minimum, and FileTime instructions
produce a timestamp that may be accessed from the program after being
written to a data table. The time of other events, such as alarms, can be
stored using the RealTime instruction.

• Accessing and storing a timestamp from another datalogger in a PakBus
network.

NSEC is used in a CRBASIC program one of the following three ways. In all
cases, the time variable is only sampled with Sample () instruction reps = 1.

• Time variable dimensioned to (1). If the variable array (must be LONG) is
dimensioned to 1, the instruction assumes that the variable holds seconds
since 1990 and microseconds into the second is 0. In this instance, the
value stored is a standard datalogger timestamp rather than the number of
seconds since January 1990. Example 4.2.4-5 shows NSEC used with a
time variable array of (1).

• Time variable dimensioned to (2). If the variable array (must be LONG) is
dimensioned to two, the instruction assumes that the first element holds
seconds since 1990 and the second element holds microseconds into the
second. shows NSEC used with a time variable array of (2). Example 4.2.4-
6 is an example.

• Time variable dimensioned to (7). If the variable array (FLOAT or LONG)
is dimensioned to 7, and the values stored are year, month, day of year,
hour, minutes, seconds, and milliseconds. Example 4.2.4-7 shows NSEC
used with a time variable array of (7).

EXAMPLE 4.2.4-5 CRBASIC Code: Using NSEC data type on a 1 element array.
'Variable, TimeVar(1) is dimensioned to 1 so the value is seconds since Jan.1, 1990
Public Ptemp
Public TimeVar (1) As Long

DataTable (FirstTable,True,-1)
 DataInterval (0,1,Sec,10)
 Sample (1,PTemp,FP2)
EndTable

DataTable (SecondTable,True,-1)
 DataInterval (0,5,Sec,10)
 Sample (1,TimeVar,Nsec)
EndTable

BeginProg

 Scan (1,Sec,0,0)
 TimeVar = FirstTable.TimeStamp
 CallTable FirstTable
 CallTable SecondTable
 NextScan

EndProg

4-16

Section 4. CRBasic – Native Language Programming

EXAMPLE 4.2.4-6 CRBASIC Code: Using NSEC data type on a 2 element array.
'Because the variable is dimensioned to 2, NSEC assumes TimeOfMaxVar(1) = seconds since
00:00:00 1 'January 1990, and TimeOfMaxVar(2) = μsec into a second.

Public PtempC, MaxVar, TimeOfMaxVar(2) As Long

DataTable (FirstTable,True,-1)
 DataInterval (0,1,Min,10)
 Maximum (1,PTempC,FP2,False,True)
EndTable

DataTable (SecondTable,True,-1)
 DataInterval (0,5,Min,10)
 Sample (1,MaxVar,FP2)
 Sample (1,TimeOfMaxVar,Nsec)
EndTable

BeginProg
 Scan (1,Sec,0,0)
 PanelTemp (PTempC,250)
 MaxVar = FirstTable.PTempC_Max
 TimeOfMaxVar = FirstTable.PTempC_TMx
 CallTable FirstTable
 CallTable SecondTable
 NextScan
EndProg

EXAMPLE 4.2.4-6 CRBASIC Code: Using NSEC data type with a 7 element time array.
A timestamp is retrieved into variable rTime(1) through rTime(9) as year, month, day, hour, minutes,
seconds, and microseconds using the RealTime () instruction. The first seven time values are copied
to variable rTime2(1) through rTime2(7).

Public rTime(9) As Long '(or Float)
Public rTime2(7) As Long '(or Float)
Dim x

DataTable (SecondTable,True,-1)
 DataInterval (0,5,Sec,10)
 Sample (1,rTime,Nsec)
 Sample (1,rTime2,Nsec)
EndTable

BeginProg
 Scan (1,Sec,0,0)
 RealTime (rTime)
 For x = 1 To 7
 rTime2(x) = rTime(x)
 Next
 CallTable SecondTable
 NextScan
EndProg

4-17

Section 4. CRBasic – Native Language Programming

STRING “AS STRING * size” specifies the variable as a string of ASCII characters,
NULL terminated, with size specifying the maximum number of characters in
the string. The minimum string datum size (regardless of word length), and the
default if size is not specified, is 16 bytes or characters. A string conveniently
handles alphanumeric variables associated with serial sensors, dial strings, text
messages, etc.

Strings can be dimensioned only up to 2 dimensions instead of the 3 allowed
for other data types. (This is because the least significant dimension is actually
used as the size of the string.)

Public FirstName AS STRING * 20
Public LastName AS STRING * 20

UINT2 Used for data storage only. Typical uses are for efficient storage of totalized
pulse counts, port status (e.g. 16 ports on an SDM-IO16 stored in one variable)
or integer values that store binary flags.

Float values are converted to integer UINT2 values as if using the INT
function. Values may need to be range checked since values outside the range
of 0-65535 will yield UINT2 data that is probably unusable. NAN values are
stored as 65535.

Binary format is useful when loading the status (1 = high, 0 = low) of multiple
flags or ports into a single variable, e.g., storing the binary number
&B11100000 preserves the status of flags 8 through 1. In this case, flags 1 - 5
are low, 6 - 8 are high. Program Code Example 4.2.4-8 shows an algorithm that
loads binary status of flags into a LONG integer variable.

EXAMPLE 4.2.4-8 CRBASIC Code: Program to load binary information into a single
variable.

Public FlagInt As Long
Public Flag(8) As Boolean
Public I

DataTable (FlagOut,True,-1)
 Sample (1,FlagInt,UINT2)
EndTable

BeginProg
 Scan (1,Sec,3,0)
 FlagInt = 0
 For I = 1 To 8
 If Flag(I) = true then
 FlagInt = FlagInt + 2 ^ (I - 1)
 EndIf
 Next I
 CallTable FlagOut
 NextScan
EndProg

4-18

Section 4. CRBasic – Native Language Programming

4.2.5 Constants
A constant can be declared at the beginning of a program to assign an
alphanumeric name to be used in place of a value so the program can refer to
the name rather than the value itself. Using a constant in place of a value can
make the program easier to read and modify, and more secure against
unintended changes. Constants can be changed while the program is running if
they are declared using the ConstTable/EndConstTable instruction. See
Example 4.2.5-1.

Programming Tip: Using all uppercase for constant names may make them
easier to recognize.

EXAMPLE 4.01. CRBASIC Code: Using the Const Declaration
Public MTempC, PTempF
ConstTable
 Const CTOF_MULT = 1.8
 Const CTOF_OFFSET = 32
EndConstTable
BeginProg
 Scan (1,Sec,0,0)
 ModuleTemp (MTempC,1,4,250)
 MTempF = MTempC * CTOF_MULTult + CTOF_OFFSET
 NextScan
EndProg

4.2.6 Flags
Flags are a useful program control tool. While any variable of any data type
can be used as a flag, using Boolean variables, especially variables named
“Flag”, works best. If the value of the variable is -1 the flag is high. If the value
of the variable is 0 the flag is low (Section 4.6). CSI's logger support software
looks for the variable array with the name Flag when the option to display flag
status is used in one of the real time screens. EXAMPLE 4.0-1 shows an
example using flags to change the word in string variables.

EXAMPLE 4.0-1. CRBASIC Code: Flag Declaration and Use
Public Flag(8) As Boolean
Public FlagReport(2) As String
BeginProg
 Scan (1,Sec,0,0)
 If Flag(1) = True Then
 FlagReport(1) = "High"
 Else
 FlagReport(1) = "Low"
 EndIf
 If Flag(2) = True Then
 FlagReport(2) = "High"
 Else
 FlagReport(2) = "Low"
 EndIf
 NextScan
EndProg

4-19

Section 4. CRBasic – Native Language Programming

4.2.7 Parameter Types
Many instructions have parameters that allow different types of inputs. Allowed
input types are specifically identified in the description of each instruction in
CRBASIC Editor Help and in the manual section covering that instruction.

Table 4.2.7-1 list the maximum length and allowed characters for the names for
Variables, Arrays, Constants, etc.

TABLE 4.2.7-1. Rules for Names
Name for Maximum Length

(number of characters)
Allowed characters

Variable or Array 16
Constant 16
Alias 16
Data Table Name 8
Station Name 8
Field name 16

Letters A-Z, upper or lower
case, dollar sign “$”,
underscore “_”, and numbers
0-9. The name must start
with a letter, “$”, or “_”.

CRBasic is not case
sensitive.

4.2.7.1 Expressions in Parameters
Many parameters allow the entry of expressions. If an expression is a
comparison, it will return -1 if the comparison is true and 0 if it is false (see
Section 4.2.11.4 Logical Expressions). Example 4.2.7-1 shows an example of
the use of expressions in parameters in the DataTable instruction, where the
trigger condition is entered as an expression. Suppose the variable TC is a
thermocouple temperature:

Example 4.2.7-1 Use of Expressions in Parameters
‘DataTable (Name, TrigVar, Size)
DataTable (Temp, TC > 100, 5000)

When the data table trigger variable is set as “TC > 100", then a TC temperature
> 100 will set the trigger to true and measurement data will be stored in the
Data Table.

4.2.8 Data Tables
Data Tables – Defines the data to store and the media it should be stored to.

Data are stored in tables as directed by the CRBASIC program. A data table is
created by a series of CRBASIC instructions entered after variable declarations
but before the BeginProg instruction. These instructions include:

DataTable ()
 Output Trigger Condition(s)
 Optional Export Data Instructions
 Output Processing Instructions
EndTable

A data table is essentially a file that resides in CR9000X memory and or
PCMCIA card. The file is written to each time the DataTable output is
triggered. The trigger that initiates data storage is tripped either by the
CR9000X’s clock, or by an event, such as a high temperature. Up to 30 data

4-20

Section 4. CRBasic – Native Language Programming

tables can be created by the program. The data tables may store individual
measurements, individual calculated values, or summary data such as averages,
maxima, or minima to data tables.

Each data table has overhead information, referred to as "Table Definitions",
that becomes part of the ASCII file header when data are downloaded to a PC.
Overhead information includes:

• table format
• datalogger type, serial number, and operating system version,
• name and signature of the CRBASIC program running in the datalogger
• name of the data table (limited to 8 characters)
• alphanumeric field names to attach at the head of data columns
• user defined units for the output fields
• output processing information (max, min, sample, etc.)

See Section 2.4 Data Format on Computer for more information.

Data storage follows a fixed structure in the CR9000X in order to optimize the
time and space required. Data are stored in tables such as shown in Table
4.2.8-1.

Table 4.2.8-1 Data Table Example
TOA5 StnName CR9000X Serial# OSVersion ProgName ProgSignature Table1
TIMESTAMP RECORD RefTemp_Avg TC_Avg(1) TC_Avg(2) TC_Avg(3) TC_Avg(4) TC_Avg(5) TC_Avg(6)
TS RN DegC DegC DegC degC degC degC degC
 Avg Avg Avg Avg Avg Avg Avg
1995-02-16 15:15:04.61 278822 31.08 24.23 25.12 26.8 24.14 24.47 23.76
1995-02-16 15:15:04.62 278823 31.07 24.23 25.13 26.82 24.15 24.45 23.8
1995-02-16 15:15:04.63 278824 31.07 24.2 25.09 26.8 24.11 24.45 23.75
1995-02-16 15:15:04.64 278825 31.07 24.21 25.1 26.77 24.13 24.39 23.76

The user's program determines the values that are stored and their sequence.
The CR9000X automatically assigns names to each field in the data table. In
the above table, TIMESTAMP, RECORD, RefTemp_Avg, and TC_Avg(1) are
fieldnames. The fieldnames are a combination of the variable name (or alias if
one exists) and an underscore and three letter mnemonic (_avg, _smp, _std) for
the processing instruction that output the data. Alternatively, the FieldNames
instruction can be used to override the default names.

See Section 4.3 Program Access to Data Tables for a list of 3 letter
mnemonics.

The data table header also has a row that lists units for the output values. The
units must be declared for the CR9000X to fill this row out (e.g., Units
RefTemp = DegC). The units are optional and are strictly for the user's
documentation; the CR9000X makes no checks on their accuracy.

The table depicted in Table 4.2.8-1 is the result of the data table construct
shown in Example 4.2.8-1.

EXAMPLE 4.2.8-1: CRBasic Code: Data Table
DataTable (Table1,1,2000)
 DataInterval(0,10,msec,10)
 Average(1,RefTemp,fp2,0)
 Average(6,TC(1),fp2,0)
EndTable

4-21

Section 4. CRBasic – Native Language Programming

4.2.8.1 DataTable/EndTable
Values in variables are temporary and will be lost when the program ends or as
they are updated with new values. Data Tables are used to make a permanent
record of what values have been measured or obtained. Once these items are
stored in a table, they can then be retrieved from the datalogger to files on the
PC during data collection.

All data table descriptions begin with DataTable and end with EndTable.
Within the DataTable/EndTable construct are instructions that dictate what to
store, where to store it, and that can modify the trigger conditions under which
output occurs. The table must be called by the program, from within a
Scan/NextScan, using a CallTable instruction in order for the output processing
to take place.

The DataTable instruction has three parameters: a user specified name for the
table, a trigger condition, and the size to make the table in CR9000X RAM.
Entering a negative number for the size will auto-size the table to take as much
memory as is available.

DataTable(Name, Trigger, Size)
DataTable (Temp,1,2000)

The trigger condition may be a variable, expression, or constant. The trigger is
true if it is not equal to 0. Data are output if the trigger is true and there are no
other conditions to be met. No output occurs if the trigger is false (=0). The
example creates a table name Temp, outputs any time other conditions are met,
and retains 2000 records in RAM. It should be noted that Tables in Logger
RAM memory is volatile, once the program is stopped, or power is lost, data in
logger memory Data Tables will be irretrievable.

See Section 6.1 Data Table Declaration for information on DataTable/EndTable.

4.2.8.2 Data Table Trigger Modifiers
Trigger Modifier instructions, which modify the conditions under which data
are stored, follow the DataTable instruction. Examples of some common
Trigger Modifier instructions include DataInterval, DataEvent and FillStop.

See Section 6.2 Trigger Modifiers for information on Trigger Modifier
instructions.

DataInterval instruction has four parameters: the time into the interval, the
interval on which data are stored, the units for time, and the number of lapses or
gaps in the interval to keep track of.

EXAMPLE 4.2.8-2: CRBasic Code: DataInterval
DataTable(Table1,True,2000)
 'DataInterval(TintoInt, Interval, Units, Lapses)
 DataInterval(1,24,Hour,10)

The Interval parameter specifies how frequently the data will be stored. The
TIntoInt (time into interval) specifies an offset after the specified interval. For
example, if the Interval argument is set at 24, the TIntoInt is set to 1, and the
Units is set to Hours, data storage will occur at 1:00 AM every morning (1 hour
into a 24 hour period). If the TIntoInt is set to 0, data storage will occur at the

4-22

Section 4. CRBasic – Native Language Programming

top of the Interval. Example 4.2.8-2 outputs at 10 msec time after the top of the
100 mSec interval, and the table will keep track of 10 lapses (10 lapses is a
standard value if unsure of the value to use -

See Section 6.2 Data Table Trigger Modifiers.

4.2.8.3 Data Table Export Instructions
CardOut is the most commonly used Table Export instruction. This instruction
is used to store the data to a flash memory card. The CardOut instruction has
two parameters, StopRing & Size.

EXAMPLE 4.2.8-3; CardOut
DataTable(Table1,True,2000)
 DataInterval(0,100,msec,10)
 'CardOut(StopRing,Size)
 CardOut(0,-1)

Set StopRing to 0 for ring memory (when Table is full, oldest data will start to
be over-written), or to 1 for setting up a Table as Fill and Stop(when Table is
full, no new data will be written to Table until it is reset). The size parameter
sets the number of records to allocate memory for. Enter a -1 to set the size to
auto-allocate. If set to auto-allocate, all memory that remains after creating
fixed-sized tables will be allocated to this table. If multiple DataTables are
declared with a -1 for size, the available memory will be divided among the
tables. The datalogger attempts to allocate memory to the tables so that all
tables are filled at the same time. Enter -1000 to set the size of the table on the
card to the size of the table in the datalogger's memory.

It should be noted that the Table is created both in datalogger RAM and on the
Card when CardOut is used. The size of the Table in RAM is specified in the
DataTable instruction (2000 records in the case of Example 4.2.8-3). This is
the number of records available for collection if a memory card is not used
(card not inserted, corrupt card, full card, card with same Table name from a
different program). When a memory card is used, this sets the size of the buffer
in logger memory. If the memory card is removed (retrieving data for
example), the logger will continue to write data to this buffer at the DataTable
output rate. When a memory card is reinserted, this buffered data will be written
to the memory card.

Memory cards are hot swappable. When inserting a card into a logger with a
running program, make sure that either the card is formatted, or it is a card that
was used in the same logger with the identical program running (no changes to
program). Prior to removing a memory card, press the white "Card Control"
button and wait for the LED to turn green. The LED color code is described
below:

Dark: No card detected or formatted card present without errors
Yellow: Either no card or corrupt card with program trying to access the card
Red: Accessing the card
Green: Can safely remove the card

See Section 6.3 Export Data Instructions for information on Table Export
instructions.

4-23

Section 4. CRBasic – Native Language Programming

4.2.8.4 Data Output Processing Instructions
The output processing instructions included in a data table declaration
determine the values that are stored to the data table. The most commonly used
output processing instructions are Average, Maximum, Minimum, and Sample.
The table must be called by the program, using the CallTable instruction,
in order for the output processing to take place. When the Data Table is
called via the CallTable instruction, the data storage processing instructions
process the variables' current values. If the trigger conditions for the Table are
true, the processed values are stored to the data table and the output processing
is reset.

See Section 6.4 Output Processing for information on Data Processing
instructions.

Average is an output processing instruction that will output the average of a
variable over the output interval. The parameters are repetitions - the number of
elements in an array for which to calculate the averages, the Source variable or
array to average, the data format (see Table 4.5-1) to store the result in, and a
disable variable that allows excluding readings from the average if conditions
are not met. A reading will not be included in the average if the disable
variable is not equal to 0. In the following program snippet, averages for the
RefTemp variable, and the 6 elements of the TC() variable array are stored to
the Data Table as a single record every 100 milliseconds.

When using an Output processing instruction like Average, the table
should be called more frequently than Table output occurs so that more
than one value will be included in the average computation. For instance, in
Example 4.2.8-4, the Table output rate is once every 100 milliseconds. If the
Table is only called, using the CallTable instruction, once every 100
milliseconds, the computed average for each output would only use a single
sample. But, if the Table were called once every 10 milliseconds, the average
would be computed using 10 values.

EXAMPLE 4.2.8-4: CRBasic Code: Average Output Instruction
DataTable(Table1,True,2000)
 DataInterval(0,100,msec,10)
 CardOut(0,-1)
 'Average(Reps, Source, DataType,
DisableVar)
 Average(1,RefTemp,fp2,0)
 Average(6,TC(1),fp2,0)
EndTable

4.2.9 Measurement Timing and Processing
All variables, Data Tables, Subroutines, Functions must be defined prior to the
BeginProg instruction within the CRBasic structure. The executable program
begins with BeginProg and ends with EndProg. The measurements, processing,
and calls to output tables bracketed by the Scan and NextScan instructions
determine the sequence and timing of the datalogging.

4-24

Section 4. CRBasic – Native Language Programming

4.2.9.1 Scan Instruction
The Scan instruction determines how frequently the measurements within the
scan are made. The Scan instruction has four parameters. The Interval is the
interval between scans. Units are the time units for the interval. The maximum
scan interval is one minute and the minimum scan interval is 10 microseconds.
The BufferSize is the size, in number of Scans, of the buffer in RAM which
will hold the raw measurements. Using a buffer allows the processing in the
Scan to lag behind the measurements without affecting the measurement timing.
Count is the number of scans to make before proceeding to the instruction
following NextScan. A count of 0 means to continue looping forever (or
until ExitScan, Subroutine Call, Slow Sequence power down, etc.).

Scan(Interval, Units, BufferSize, Count)
Scan(1,MSEC,3,0)

In Example 4.2.9-1 the scan is 1 millisecond, processing can lag behind
measurements by three scans, and the measurements and output continue
indefinitely.

EXAMPLE 4.2.9-1: CRBasic Code: Scan

BeginProg 'Beginning of Executable Portion
 Scan(1,mSec,3,0)
 'Measurements and processing here
 CallTable Table1 'Call Data Table
 NextScan ‘Loop up for next Scan
EndProg

See Section 9.1 Program Structure/Control for information on the Scan
instruction.

4.2.9.2 SubScan
If used, the SubScan /NextSubScan instructions must be placed within the
Scan/NextScan construct in a CRBasic program. It gives the user the ability to
make measuremements/processing at a faster or slower rate than the main Scan
Rate. This is especially important when making measurements using the
CR9052 Filter module or the CR9058E Isolation module.

There are three unique types of SubScans: the Filter Module subScan, the
Isolation Module subscan, and the Measurement loop subscan. All three
types use the same SubScan/EndSubScan instructions, they just vary in how
they are setup. The parameters of the SubScan instruction are SubInterval,
Units, SubRatio:

SubScan(SubInterval,Units,Subratio)
 Measurements
 Processing and Table Calls
EndSubScan

See Section 9.1 Program Structure/Control for information on the SubScan
instruction.

4-25

Section 4. CRBasic – Native Language Programming

4.2.9.2.1 CR9052DC/CR9052IEPE Filter Module SubScan
Any SubScan that includes a VoltFilt or a FFTFilt measurement instruction is
considered a Filter Module SubScan. Only one of these two measurement
instructions should be placed in a single Filter SubScan construct. Also, a
single CR9052 module can only support one measurement rate, so one
CR9052 cannot support both instruction types in a single program. For
this same reason, measurements for a single CR9052 cannot be placed
inside and outside of a SubScan. Normally all measurements for each
CR9052 are placed in a single SubScan/NextSubScan loop. Multiple
SubScans can exist within a given Scan when using multiple CR9052 modules.

The parameters for the CR9052 Subscan are:

SubInterval: Constant that dictates the scan interval of the filter module
whose instructions are within the SubScan. Must be one of
the legal Scan intervals for the CR9052 (see Appendix B for
list of available scan intervals). Also, the interval of the main
Scan where the Subscan resides must be an integral multiple
of the SubScan interval. Minimum SubScan value is 20
microseconds, maximum is 200 milliseconds

Units: Units used for the SubInterval.

SubRatio Integral ratio of the main Scan interval to the SubScan
interval.

When the program contains a VoltFilt instruction within a
SubScan, the Filter module will buffer the Scans to its onboard
memory. When using CR9052s with Scan rates faster than 1000
Hz, the CR9052s' measurement instructions should be placed in a
SubScan construct and the main Scan buffer parameter should be
set to as high a value as possible for more efficient transferring of
data from the Filter buffer to the CR9032 CPU.

NOTE

Example program 4.2.9-2 sets up a Filter module to make 1000 Hz
measurements (once a second) using a SubScan within a main Scan of 1 Hz.
Note the high number of Scan buffers created by the Scan instruction.

Example Program 4.2.9-2: SubScan with VoltFilt
Public Accel
DataTable (Main1,1,-1)
 DataInterval (0,0,0,100) 'Synch the output rate to the SubScan rate
 Sample (1,Accel,IEEE4)
EndTable
BeginProg
 Scan (1,Sec,1000000,0) 'Scan once a second, 1,000,000 Scan buffers
 SubScan (1,mSec,1000) '1000/1 SubScan/Scan ratio
 VoltFilt (Accel(),1,mV200,5,1,2,7,1.0,0)
 CallTable Main1 'Call Table from SubScan to output at its rate.
 NextSubScan
 NextScan
EndProg

4-26

Section 4. CRBasic – Native Language Programming

4.2.9.2.2 CR9058E Isolation Module SubScan or SuperScan
This type of SubScan was created for the Isolation module so that Isolation
measurements could be performed at a slower rate than the main Scan rate. The
measurement instructions set-up for a CR9058E will be run in parallel to the
other measurement instructions within the Scan (CR9058E includes it own
processor and data buffer area). Any SubScan that has a negative number for
the SubScan SubRatio parameter is a considered a SuperScan (SubScan
that has an Interval greater than the main Scan interval). Only VoltDiff
and TCDiff instructions are supported by the CR9058E Isolation module. You
cannot run measurements for a single CR9058E module both inside and outside
of a SubScan, as all measurements for a given module must have the same Scan
Interval.

The syntax for this type of SubScan would be SubScan(0,0,-j), where j is the
ratio of the SubScan Interval to the main Scan Interval. The parameters for the
CR9052 Subscan:

SubInterval: Enter 0

Units: Enter 0.

SubRatio Must be a negative number and is the integral ratio of the
SubScan interval to the main Scan interval.

Only one Superscan can exist in each main Scan structure. NOTE

You can run analog voltage measurements using the CR9050/CR9051E inside
of a SuperScan frame. Because of this, and the fact that the CR9058E isolation
module's measurement instructions (VoltDiff & TCDiff) are also used for the
CR9050/ CR9051E modules, it is advised to use the SlotConfigure instruction
so that the CRBasic pre-compiler can catch syntax errors associated with the
module type.

See example 4.2.9-3 for an example program using a CR9058E and a CR9050
in the same SuperScan construct. Note that we can also measure another
channel on the CR9050 outside of the SuperScan, although it is not allowed to
measure CR9058E module channels both inside and outside of a SuperScan
construct.

Example Program 4.2.9-3: SubScan with CR9058E Measurements
SlotConfigure (9050,9058) '
Public V9050(2), V9058(8)
DataTable (Main1,1,1000)
 DataInterval (0,0,0,100) 'Synch the output rate to the SubScan rate
 Sample (8,V9058,IEEE4)
 Sample (2,V9050,IEEE4)
EndTable
BeginProg
 Scan (1,mSec,10,0) 'Scan once a mSec, 10 Scan buffers
 SubScan (0,0,-100) '100/1 Scan ratio/SubScan
 VoltDiff (V9058(),1,V2,5,1,True ,0,-5,1.0,0)
 VoltDiff (V9050(1),1,mV50,4,1,-1,0,0,1.0,0)
 NextSubScan
 VoltDiff (V9050(2),1,mV50,4,2,-1,0,0,1.0,0) 'Measure next channel on

9050
 CallTable Main1 'Call Table from main Scan to output at its rate.
 NextScan
EndProg

4-27

Section 4. CRBasic – Native Language Programming

4.2.9.2.3 Measurement Loop SubScan
This SubScan type is similar to a simple for-next loop, only it can encase
measurement instructions. This SubScan does not run in parallel with the other
instructions in the Scan but, runs through the SubScan the dictated number of
times and then moves on to the next instruction. Thus, sufficient measurement
time is required in the main Scan to run through the SubScan measurements the
number of times specified by the SubScan's SubRatio parameter, along with any
other measurement instructions within the main Scan.

SubInterval: To run at the fastest rate, enter zero for the SubInterval. If it
is desired to run through the Subscan at a specific interval,
then the interval can be entered.

Units: Units used for the SubInterval.
SubRatio The number of times to run through the SubScan before

moving onto the next instruction.
Example Program 4.2.9-4 is a program that runs through a SubScan
measurement loop 10 times. The same channel is measured 10 times, with a 1
mSec lag between each measurement (based on SubScan interval). After
running through the SubScan 10 times, the Spatial average of the 10
measurement values is computed and stored, along with the 10 raw values.

Example Program 4.2.9-4: Measurement Loop SubScan
Public Volt(10), Vavg, I
DataTable (Main1,1,1000)
 DataInterval (0,0,0,100) 'Synch the output rate to the main Scan rate
 Sample (1,VAvg,IEEE4) 'Output avg of 10 measurements 1 mSec apart
 Sample (10,Volt(),IEEE4) 'Output 10 measurements, 1 mSec apart
EndTable
BeginProg
 Scan (10,mSec,10,0) 'Scan once a mSec, 10 Scan buffers
 I = 0
 SubScan (1,mSec,10) 'Run through SubScan 10 times, 1 mSec apart
 I = I + 1 '10 Volt measurements on same channel
 VoltDiff (Volt(I),1,mV5000,4,1,True,0,100,1.0,0)
 NextSubScan
 AvgSpa (VAvg,10,Volt()) 'Spatial Avg on 10 SubScan measurements
 CallTable Main1 'Call Table from main Scan to output at its rate.
 NextScan
EndProg

4.2.9.3 SlowSequence
It is possible to run a secondary Scan at a slower rate, simultaneously with the
main Scan. This is done through setting up a SlowSequence program area with
its own Scan instruction. Measurements that are not needed at the rate of the
primary scan interval can be entered into this SlowSequence Scan.

See Section 9.1 Program Structure/Control for information on SlowSequence
Scans.

The most common use of the SlowSequence Scan is for performing temperature
calibration using the BiasComp and Calibrate instructions. BiasComp Measures
bias current and adjusts the bias current DACS accordingly. The Calibration
instruction is used to force calibration of the analog channels under program
control to compensate for errors in voltage measurements due to temperature
swings.

4-28

Section 4. CRBasic – Native Language Programming

In most applications, it is highly recommended to perform background
calibration in the SlowSequence Scan. If calibration is not done as part of the
program, a typical shift in the calibration is 0.01 % per degree C change from
the temperature at which the program compile calibration occurred.

See Section 9.2 DataLogger Status/Control for information on Calibrate &
BiasComp.

Example program 4.2.9-5 has a SlowSequence program area with a
Scan/NextScan bracketing the Calibrate and BiasComp instructions.

Example Program 4.2.9-5
Public Accel
DataTable (Main1,1,-1)
 DataInterval (0,0,0,100) 'Synch the output rate to the SubScan rate
 Sample (1,Accel,IEEE4)
EndTable
'PROGRAM: MAIN SEQUENCE
BeginProg
 Scan (1,Sec,1000000,0) 'Scan once a second, 1,000,000 Scan buffers
 SubScan (1,mSec,1000) '1000/1 SubScan/Scan ratio
 VoltFilt (Accel(),1,mV200,5,1,2,7,1.0,0)
 CallTable Main1 'Call Table from SubScan to output at its rate.
 NextSubScan
 NextScan
'LOW PRIORITY BACKGROUND SEQUENCE
 SlowSequence 'Used for slow measurements/Background Calibration
 Scan(10,Sec,0,0) 'Scan once every 10 seconds
 Calibrate 'Corrects ADC offset and gain
 BiasComp 'Corrects ADC bias current
 Next Scan 'Loop up for the next scan
EndProg

4.2.10 CRBasic Measurement Instructions
CRBasic includes instructions specifically designed for making measurements
and storing the result to variables. Each instruction has a keyword name and a
series of parameters that contain the information needed to complete the
measurement. Measurement instructions must be placed within a
Scan/NextScan construct. This section will cover a couple measurement
instructions to give examples on how to set up a program.

See Section 7 Measurement Instructions for information on Measurement
instructions.

4.2.10.1 ModuleTemp Measurement Instruction
The instruction for measuring the temperature of the CR9050 modules reference
PRT is: ModuleTemp (Dest,Reps,Slot,Integ)

ModuleTemp is the keyword name of the instruction. The four parameters
associated with ModuleTemp are:

Destination: the name of the variable in which to put the temperature
Reps: the number of modules you want to measure the PRTs of,
Slot the slot number where the first module resides, and
Integration: the length of time to integrate the measurement.

4-29

Section 4. CRBasic – Native Language Programming

To send the PRT temperature of the module in the forth slot to the variable
RefTemp (using a 100 microsecond measurement integration time) the code is:

ModuleTemp(RefTemp, 1, 4, 100)

4.2.10.2 TCDiff Measurement Instruction
The TCDiff instruction makes temperature measurements using a thermocouple
connected to a differential channel of CR9050/CR9051E or CR9058 modules
installed in the CR9000X datalogger.

TCDiff automatically converts the voltage measured between the leads of the
thermocouple into its native output of degrees Celsius using the result from the
ModuleTemp for its reference temperature. This automatic conversion is done
using a polynomial specific to the types of metals contained in the wire leads of
the thermocouple.

The TCDiff instruction has this structure:

TCDiff (Dest, Reps, Range, ASlot, DiffChan, TCType, TRef, RevDiff, Settle,
Integ, Mult, Offset)

Dest Name of the variable (array) in which to store the measurement
results. The Dest variable array must be dimensioned large
enough to hold the results of the number of measurements
specified by the Reps parameter, starting with the element of the
array specified in the Destination parameter.

For example, if TC(4) was entered for the Destination element,
the Reps parameter was set to 3, and DiffChan was set to 10, then
the measurement result from differential channel 10 would be
placed in the 4th element of the TC array (TC(4)), the
measurement result from differential channel 11 would be placed
in the 5th element of the TC array (TC(5)), and the measurement
result from differential channel 12 would be placed in the 6th
element of the TC array (TC(6)). So the TC variable array would
need to be declared with minimum of 6 elements (Public TC(6)).

Rep Number of thermocouples to measure. Will fill sequential
elements of the Dest variable array with the measurement results
from sequential differential channels starting with the channel
specified by the DiffChan parameter.

If Reps requires the use of multiple modules, the modules must
reside in sequential slots in the CR9000X chassis. Reps cannot
roll to another module when using CR9058E Isolation modules.

Range Voltage range to make the measurement on. For the best
measurement resolution, the smallest range code that will
encompass the output from the sensor should be selected.

It depends on which analog input module that is being used as to
what voltage ranges are available.

For most thermocouple measurements, the output from the sensor
will never exceed 50 mV. The exceptions for this are when using
Type E thermocouples in temperatures greater than 1220 degrees
F (660 degrees C), and Type K thermocouples in temperatures

4-30

Section 4. CRBasic – Native Language Programming

greater than 2250 degrees F (1230 degrees C). For these
conditions a range code of 200 mV should be used.

If a voltage range code is selected for a voltage measurement and
the incorrect module is in the CR9000 slot selected for that
measurement, then a compile error will be generated upon
download. The CRBasic pre-compiler cannot determine which
module should be in each slot, and will not generate an error
code, unless the Configuration instruction is used at the top of the
program.

See Section 3.1.2.2 Differential Voltage Range for information on Range
options.

ASlot Slot number where the first module resides. If more than one
module is required for a single measurmeent instruction, they
must reside in sequential slots.

See Section 9.1 Program Structure/Control for information on SlotConfigure.

DiffChan Channel on which first measurement should be made

TCType Supports type T, E, K, J, B, R, S, & N thermocouples. A single
TCDiff instruction can only measure one type of thermocouple.

TRef Variable that holds the result of the module's PRT temperature
measurement from the ModuleTemp instruction. Used as the
reference junction for the thermocouple measurements.

See Section 3.1.4 Thermocouple Measurements for information on TRef.

RevDiff Set true to reverse the inputs of a differential measurement and
make a second measurement. The sign corrected average of these
two measurements is used for the result. This removes any
voltage offset errors due to the logger measurement circuitry,
including common mode errors. If this option is selected, the
measurement time will be doubled.

See Section 3.1.1.1 Reversing Excitation or the Differential Input for
information on RevDiff.

4-31

Section 4. CRBasic – Native Language Programming

Settle Time, in microseconds, to delay between setting up a
measurement and taking the measurement reading. Will increase
the measurement time of each sensor by the amount of delay set.
Minimum delay for the 5000 mV and 1000 mV ranges is 10
microseconds, and the minimum delay for the 200 mV and 50 mV
ranges is 20 microseconds.

See Section 3.1.1.2 Delay for more information on Settle.

Integ The integration time in microseconds (10 microseconds
resolution) for the signal being measured. The datalogger will
repeat measurement samples every 10 microseconds throughout
the sampling interval (with the appropriate Delay at the beginning
and between RevDiff and RevEx if used) and output the average.
If a value of 100 is inserted into the integration parameter, then
the datalogger would take 10 A/D conversion samples. Each
sample will be separated from the previous sample by 10
microseconds. The resulting value, that is written to the Dest
parameter variable, will be the average of the 10 samples.

The random noise level is decreased by the square root of the
number of measurements made. For example, the input noise on
the ±5000 mV range with no integration (one measurement) is 90
μV RMS; integrating for 40 μs (four measurements) will cut this
noise in half (90/(√4)=45).

One of the most common sources of noise is not random but is 60
Hz from AC power lines. An integration time of 16,670 μs is
equal to one 60 Hz cycle. Integrating for one cycle will filter the
60 Hz AC noise to 0.

CR9058E has a 96 microsecond resolution and all channels on a
CR9058 module must have same integration.

See Section 3.1.1.3 Integration for information on Integration.

Mult/Offset The Mult and Offset parameters are each a constant (ex: 5),
variable (ex: mult), array (ex: mult()), or expression (ex: (5 +
mult)) by which to scale the results of the measurement. The raw
output from the TCDiff instruction is in degrees Celsius. If other
engineering units than Celsius is desired, a multiplier and offset
other than 1 and 0 can be used.

If variable arrays are used for the multiplier and offset parameters
in measurements that use repetitions, the instruction will
automatically step through the multiplier and offset arrays as it
steps through the channels. This allows a single measurement
instruction to measure a series of individually calibrated sensors,
applying a unique calibration to each sensor.

The Mult() and Offset() variable arrays will need to be
dimensioned large enough to accommodate the number of Reps
specified for the measurement instruction.

4-32

Section 4. CRBasic – Native Language Programming

If the multiplier and/or offset are specified by a constant, a single
element variable (not an array), or a specific element of an array
(Mult(2)), then the same multiplier and/or offset are used for each
repetition.

If you want to step through from a specific array element other
than the first element, you must insert empty parenthesis
following the parameter: Mult(2)(). Mult() results in the same
action as Mult(1)() (steps through the array starting with the first
element).

Example 4.2.10-1 sets up a single VoltSE measurement to
measure 3 sensors that all have unique calibration factors.

EXAMPLE 4.2.10-1 Multiplier and Offset Arrays
BeginProg
 'Calibration factors:
 Mult(1)=0.123 : Offset(1)= 0.23
 Mult(2)=0.115 : Offset(2)= 0.234
 Mult(3)=0.114 : Offset(3)= 0.224
 Scan(100,mSec,0,0)

 VoltSE(Pressure(),3,mV1000,6,1,30,100,Mult(),Offset())
 Next Scan
EndProg

Example 4.2.10-2 measures 6 Type T thermocouples at 1000 Hz,
sends the results to a variable array (TC(6)) in engineering units
Celsius, and stores the data in a data table called Table1.

EXAMPLE 4.2.10-2; CRBasic Code: TCDiff
Public RefTemp, TC(6), Tavg
Public Flag(1)

DataTable(Table1,True,2000)
 DataInterval(0,100,msec,10)
 CardOut(0,-1)
 Average(1,RefTemp,fp2,0)
 Average(6,TC(),fp2,0)
EndTable

BeginProg
 Scan(1,MSEC,3,0)
 ModuleTemp(RefTemp,1,4,0)
 TCDiff(TC(),6,mV50,4,1,TypeT,RefTemp,1,30,40,1,0)
 TAvg = (TC(1) + TC(2) + TC(3))/3
 If Tavg > 80 then Flag(1) = True
 CallTable Table1 'Call Data Table
 NextScan ‘Loop up for next Scan
EndProg

Data TableSetup

Declare Variables

Scan loop

4-33

Section 4. CRBasic – Native Language Programming

4.2.11 Expressions
An expression is a series of words, operators, or numbers that produce a value
or result. Expressions are evaluated from left to right, with deference to
precedence rules. Table 4.2.11-1 lists the order of precedence for the operators
supported by the CR9000X. The result of each stage of the evaluation is of
type Long (integer) if the variables are of type Long (constants are integers) and
the functions give integer results, such as occurs with INTDV (). If part of the
equation has a floating point variable or constant, or a function that results in a
floating point, the rest of the expression will be evaluated using floating point
math, even if the final function is to convert the result to an integer; e.g. INT
((rtYear-1993)*.25). This is a critical feature to consider when:

1) trying to use Long integer math to retain numerical resolution beyond the
limit of floating point variables (24 bits), or

2) if the result is to be tested for equivalence against another value.

Table 4.2.11-1 Precedence ranking of operators

Rank Symbols Functions

1 ^ Raise to power
2 +, -

NOT
Positive, Negative
Logical Negation

3 *, /
INTDV, MOD

Multiply, Divide
Integer division, Modulo divide

4 +, -,
+, &

Addition, Subtraction,
String concatenation

5 =, <>
<, <=
>, >=
IS

Equal, Not equal
Less than, Less than or equal
Greater than, Greater than or equal
Select Case

6 <<, >>
AND, OR
XOR, IMP
EQV

Bit shift right, Bit shift left
Logical conjunction, Logical disjunction
Logical exclusion, Logical implication
Bit wise comparision

Two types of expressions, mathematical and logical, are used in CRBASIC. A
useful property of expressions in CRBASIC is that they are equivalent to and
often interchangeable with their results.

Consider the expressions:

x = (z * 1.8) + 32 (a mathematical expression)
If x = 23 then y = 5 (logical expression)

The variable x can be omitted and the expressions combined and written as:

If (z * 1.8 + 32 = 23) then y = 5

4-34

Section 4. CRBasic – Native Language Programming

4.2.11.1 Floating Point Arithmetic

Variables and calculations are performed internally in single precision IEEE4
byte floating point with some operations calculated in double precision.

Single precision float has 24 bits of mantissa. Double precision
has a 32-bit extension of the mantissa, resulting in 56 bits of
precision. Instructions that use double precision are AddPrecise,
Average, AvgRun, AvgSpa, CovSpa, MovePrecise, RMSSpa,
StdDev, StdDevSpa, and Totalize.

NOTE

Floating point arithmetic is common in many electronic computational systems,
but it has pitfalls high-level programmers should be aware of. Several sources
discuss floating point arithmetic thoroughly. One readily available source is the
topic “Floating Point” at Wikipedia.org. In summary, CR9000X programmers
should consider at least the following:

• Floating point numbers do not perfectly mimic real numbers.

• Floating point arithmetic does not perfectly mimic true arithmetic.

• Avoid use of equality in conditional statements. Use >= and <= instead.
For example, use “If X => Y, then do” rather than using, “If X = Y, then
do”.

• When programming extended cyclical summation of non-integers, use the
AddPrecise() instruction. Otherwise, as the size of the sum increases,
fractional addends will have ever decreasing effect on the magnitude of the
sum, because normal floating point numbers are limited to about 7 digits of
resolution.

4.2.11.2 Mathematical Operations
Mathematical operations are written out much as they are algebraically. For
example, to convert Celsius temperature to Fahrenheit, the syntax is:
TempF = TempC * 1.8 + 32
With the CR9000X there may be 5 or 50 temperature (or other) measurements.
Rather than have 50 different names, a variable array with one name and 50
elements may be used. A thermocouple temperature might be declared simply
with the Public instruction:
 Public TCTemp(50).
With an array of 50 elements the names of the individual temperatures are
TCTemp(1), TCTemp(2), TCTemp(3), ... TCTemp(50). The array notation
allows compact code to perform operations on all the variables. Example
4.2.11-1 shows example code to convert twenty temperatures in a variable array
from C to F:

EXAMPLE 4.2.11-1. CRBasic Code: Use of variable arrays .

For I=1 to 50
 TCTemp(I)=TCTemp(I)*1.8+32
Next I

4-35

Section 4. CRBasic – Native Language Programming

4.2.11.3 Expressions with Numeric Data Types
FLOATs, LONGs and Booleans are cross-converted to other data types, such as
FP2, by using “=”

4.2.11.3.1 Boolean from FLOAT or LONG

When a FLOAT or LONG is converted to a Boolean as shown in EXAMPLE
4.0-2, zero becomes False (0) and non-zero becomes True (-1).

EXAMPLE 4.0-2. CRBASIC Code: Conversion of FLOAT / LONG to
Boolean
Public Fa AS FLOAT, Fb AS FLOAT, L AS LONG
Public Ba AS Boolean, Bb AS Boolean, Bc AS Boolean
BeginProg
 Fa = 0
 Fb = 0.125
 L = 126
 Ba = Fa ‘This will set Ba = False (0)
 Bb = Fb ‘This will Set Bb = True (-1)
 Bc = L ‘This will Set Bc = True (-1)
EndProg

4.2.11.3.2 FLOAT from LONG or Boolean

When a LONG or Boolean is converted to FLOAT, the integer value is loaded
into the FLOAT. Booleans will be converted to -1 or 0 depending on whether
the value is non-zero or zero. LONG integers greater than 24 bits (16,777,215;
the size of the mantissa for a FLOAT) will lose resolution when converted to
FLOAT.

4.2.11.3.3 LONG from FLOAT or Boolean

Booleans will be converted to -1 or 0. When a FLOAT is converted to a
LONG, it is truncated. This conversion is the same as the INT function. The
conversion is to an integer equal to or less than the value of the float (e.g., 4.6
becomes 4, -4.6 becomes -5).

If a FLOAT is greater than the largest allowable LONG (+2,147,483,647), the
integer is set to the maximum. If a FLOAT is less than the smallest allowable
LONG (-2,147,483,648), the integer is set to the minimum.

4.2.11.3.4 Integers in Expressions

LONGs are evaluated in expressions as integers when possible. Example
4.2.11-3 illustrates evaluation of integers as LONGs and FLOATs.

4-36

Section 4. CRBasic – Native Language Programming

EXAMPLE 4.2.11-3 . CRBASIC Code: Evaluation of Integers
Public X, I AS Long
BeginProg
 I = 126
 X = (I+3) * 3.4 ‘I+3 is evaluated as an integer then converted
 'to FLOAT before it is multiplied by 3.4
EndProg

4.2.11.3.5 Constants Conversion

Constants are not declared with a data type, so the CR9000X assigns the data
type as needed. If a constant (either entered as a number or declared with
CONST) can be expressed correctly as an integer, the compiler will use the type
that is most efficient in each expression. The integer version will be used if
possible, i.e., if the expression has not yet encountered a float. EXAMPLE
4.0-4 lists a programming case wherein a value normally considered an inte
10, is assigned by the CR9000X to be As Float.

ger,

EXAMPLE 4.0-4. CRBASIC Code: Constants to LONGs or FLOATs
Public I AS Long
Public A1, A2
CONST ID = 10
BeginProg
 A1 = A2 + ID
 I = ID * 5
EndProg

In EXAMPLE 4.0-4, I is an integer. A1 and A2 are Floats. The number 5 is
loaded As Float to add efficiently with constant ID, which was compiled As
Float for the previous expression to avoid an inefficient run time conversion
from integer to float before each floating point addition.

4.2.11.4 Logical Expressions
Several different words, such as High / Low, On / Off, Yes / No, Set / Reset,
Trigger / Do Not Trigger, get used interchangeably with True / False to describe
a condition or the result of a test. However, the CR9000x understands only
True / False or -1 / 0.

The CR9000X represents “true” with “-1” because AND / OR operators are the
same for logical statements and binary bitwise comparisons. In the binary
number system internal to the CR9000X, “-1” is expressed with all bits equal to
1 (11111111). “0” has all bits equal to 0 (00000000). When -1 is ANDed with
any other number, the result is the other number. This ensures that if the other
number is non-zero (true), the result will be non-zero. The CR9000X evaluates
an expression as True if it is not equal to 0 and as False if equal to 0.

Using TRUE or FALSE conditions with logic operators such as AND and OR,
logical expressions can be encoded into a CR9000X program to perform
general logic functions, facilitating conditional processing and control
applications.

4-37

Section 4. CRBasic – Native Language Programming

The following commands and logical operators are used to construct logical
expressions.
 IF AND OR
 NOT XOR IIF

Conditional tests can require the CR9000X to evaluate an expression and take
one path if the expression is true and another if the expression is false. For
example:

 If X>=5 then Y=0

will set the variable Y to 0 if X is greater than or equal to 5. The CR9000X can
also evaluate expressions linked with multiple ands or ors:

 If X>=5 and Z=2 then Y=0

will only set Y=0 if both X>=5 and Z=2 are true.

 If X>=5 or Z=2 then Y=0

will set Y=0 if either X>=5 or Z=2 is true.

See Section 8 Processing and Math Functions for more information on If,
Not, And, Or, Xor, & IIF.

4.2.11.5 String Expressions
CRBASIC allows the addition or concatenation of string variables to variables
of all types using & and + operators. To ensure consistent results, use “&”
when concatenating strings. Use “+” when concatenating strings to other
variable types. Example 4.2.11-5 demonstrates CRBASIC code for
concatenating strings and integers.

EXAMPLE 4.2.11-5 CRBASIC Code: String and Variable Concatenation
'Declare Variables
Dim Wrd(8) As String * 10
Public Phrase(2) As String * 80
Public PhraseNum(2) As Long
'Declare Data Table
DataTable (Test,1,-1)
 DataInterval (0,15,Sec,10)
 Sample (2,Phrase,String) 'Write phrases to data table "Test"
EndTable
BeginProg 'Program
 Scan (1,Sec,0,0)
 'Assign strings to String variables
 Wrd(1) = " " : Wrd(2) = "Good" : Wrd(3) = "morning" : Wrd(4) = "Don't"
 Wrd(5) = "do" : Wrd(6) = "that" : Wrd(7) = "," : Wrd(8) = "Dave"
 'Assign integers to Long variables
 PhraseNum(1) = 1:PhraseNum(2) = 2
 'Concatenate string "1 Good morning, Dave"
 Phrase(1) = PhraseNum(1)+Wrd(1)&Wrd(2)&Wrd(1)&Wrd(3)&Wrd(7)&Wrd(1)&Wrd(8)
 'Concatenate string "2 Don't do that, Dave"
 Phrase(2) = PhraseNum(2)+Wrd(1)&Wrd(4)&Wrd(1)&Wrd(5)&Wrd(1)&Wrd(6)&Wrd(7)&Wrd(1)&Wrd(8)
 CallTable Test
 NextScan
EndProg

4-38

Section 4. CRBasic – Native Language Programming

4.3 Program Access to Data Tables
Data stored in a table can be accessed from within the program. The format
used is:

Tablename.Fieldname_PRC(index,recordsback)

Where

Tablename The name of the table in which the desired value is stored. The
table can be a user defined table or the Status table.

Fieldname The name of the field in the table and is always an array even if
it consists of only one variable.

_PRC Abbreviation for the field processing used in the storage
process. For example, PRC = AVG when the Average data
processing instruction is used. Do not use an _PRC for Sample
processing, or for retrieving data from the Status Table. See
Table 4.3-1 for a list of these abbreviations.

Index Specifies the array element from which to retrieve the data and
must always be specified. Use 1 if the FieldName is a single
element array.

Recordsback The number of records back in the data table from the current
time (1 is the most recent record stored, 2 is the record stored
prior to the most recent) to retrieve. A negative number can be
entered for the RecordsBack parameter to specify the time, in
seconds since 1990.

A use example for this syntax would be to calculate the change in an average
output between two records. For Example Program 4.2.10-2, to find the change
in the 100 millisecond average between the most recent average and the average
that was stored 101 records earlier for TC(1), you could insert following code
into the program:

 Tdiff=Table1.TC_Avg(1,1)–Table1.TC_Avg(1,101)

TABLE 4.3-1 Output Processing Abbreviations
PRC

Abbreviation
Output

Processing Name
PRC

Abbreviation
Output

Processing Name

Avg Average MMT Moment
Cov Covariance RFH RainFlow Histogram
Etsz ET Rso Solar Radiation
FFT FFT None required Sample
H4D Histogram4D SMM Sample at Max or Min
Hst Histogram Std Standard Deviation
LCr Level Crossing TMx Time of Max
Max Maximum TMn Time of Min
Med Median Tot Totalize
Min Minimum WVc WindVector

If a time of minimum or maximum is returned by Tablename.Fieldname, the
time is reflected in seconds since 1990. However, if FieldNameIndex is entered
as a negative value, then time is reflected in usec since 1990. This time value
can be converted to a standard datalogger timestamp if the variable is declared
as a Long and is Sampled into a table using the NSEC data format.

4-39

Section 4. CRBasic – Native Language Programming

In addition to accessing the data actually stored in a table, there are some
pseudo fields related to the data table that can be retrieved:

Tablename.EventEnd(1,1) is only valid for a data table using the DataEvent
instruction, and is only updated when the Table is called.
Tablename.EventEnd(1,1) = -1 (True) TableName.EventEnd = -1 (true) during
a scan when the last record of the data storage event occurs and = 0 (false)
during all other scans. This construct should be placed after the CallTable
instruction for the Table in question. The WorstCase example in Section 6.2
illustrates the use of this syntax.

 Tablename.EventCount(1,1) is only valid for a data table using the DataEvent
Instruction. Tablename.EventCount(1,1) = the number of events that have been
completed in the table. An event is complete when the table has stopped storing
data for the event.

Tablename.Output(1,1) = -1 if data were output to the table the last time the
table was called, or = 0 if data were not output. The result from this instruction
is only updated when the table is called.

Tablename.Record(1,n) = the record number of the record output n records
ago.

Tablename.Tablesize(1,1) = the size of the table in records.

Tablename.Timestamp(m,n) = element m of the timestamp output n records
ago. where:The TableName.TimeStamp(m,n) syntax returns the time into an
interval or a timestamp for the record n number of records ago. The name of the
DataTable is entered in place of the TableName parameter. TableName is
limited to 20 characters. The type of timestamp returned is based on the option
specified for m and the format of the variable in which the timestamp is stored:
The timestamp returned has a 10 micro-second resolution.

Syntax: TimeVariable = TableName.TimeStamp(1,1)

When the variable where the timestamp will be stored is declared as a Float or
Long, the result returned is:

timestamp(0,n) = seconds since 1970
timestamp(1,n) = seconds since 1990
timestamp(2,n) = seconds into the current year
timestamp(3,n) = seconds into the current month
timestamp(4,n) = seconds into the current day
timestamp(5,n) = seconds into the current hour
timestamp(6,n) = seconds into the current minute
timestamp(7,n) = microseconds into the current second

When the variable where the timestamp will be stored is declared as a String,
the result returned is the timestamp using the specified formats below:

timestamp(1,n) = “MM/DD/YYYY hh:mm:ss.sssss
timestamp(3,n) = “DD/MM/YYYY hh:mm:ss.sssss”
timestamp(4,n) = "CCYY-MM-DD hh:mm:ss.sssss"

4-40

Section 4. CRBasic – Native Language Programming

where:
M = Month
D = D
Y = Year
C = Century
hh = Hour
mm = Minute
ss.sssss = Seconds (10 microsecond resolution)

Tablename.TableFull(1,1) = -1 (True)or 0 (False) to indicate if a “Fill and
Stop” table is full, or if a “Ring” memory table has begun overwriting its oldest
data. 0 (False) indicates the table is not full/overwriting. -1 (True) indicates
that the table is full/overwriting.

Example program 4.3-1 tracks # of data table events, tracks whether data was
stored during the current scan interval, sets Flag(2) to True if the Data Table
becomes full, and tracks the number of records written to the table with the
variable RecordNum. It also uses the RecordNum value to ensure that enough
records have been written to the table to compare the current value of TC(1)
with the value of TC(1) 100 records back.

EXAMPLE 4.3-1; CRBasic Code: Data Table Access
Public RefTemp, TC(6)
Public EventNum, Flag(8)

DataTable(Table1,True,2000)
 DataEvent(50,TC(1)>100,TC(2)<50,100)
 DataInterval(0,100,msec,10)
 CardOut(0,-1)
 Average(1,RefTemp,fp2,0)
 Average(6,TC(),fp2,0)
EndTable

BeginProg
 Scan(1,MSEC,3,0)
 ModuleTemp(RefTemp,1,4,0)
 TCDiff(TC(),6,mV50,4,1,TypeT,RefTemp,1,30,40,1,0)
 CallTable Table1 'Call Data Table
 EventNum = Table1.EventCount(1,1) 'Track # of data trigger events
 If Table1.Output(1,1) then Flag(1)=-1 else Flag(1)=0 'Set Flag(1) based on if data was stored this Scan
 If Table1.TableFull(1,1) then Flag(2)=-1 else Flag(2)=0 'Set Flag(2) based on if Table is full
 RecordNum = Table1.Record(1,1) 'Track # records written to Table
 If RecordNum > 100 then ' If sufficient records then:
 Tdiff = Table1.TC_Avg(1,1) - Table1.TC_Avg(1,101) 'Diff between the current TC(1) value and the
 Endif 'TC(1) value from 100 records back calculated
NextScan ‘Loop up for next Scan
EndProg

4-41

Section 4. CRBasic – Native Language Programming

4-42

Section 5. Program Declarations
Constants (and pre-defined constants), Variables, Constants, Aliases, Units, Data
Tables, Functions, and Subroutines must be declared before being used in a
CRBasic program. They are normally declared at the beginning of a CRBASIC
program.

The Declarations instructions include:
Public makes the variable available in the Public table
Dim declares variables and variable arrays
Const declares symbolic constants for use in place of numeric entries
Alias assigns a second name to a variable
StationName sets the station name (up to 64 characters)
Units assign a label to identify the units to a variable
Function Declares a user defined Function.
Sub Declares a Subroutine.

Data Tables must also be declared in the program, using the DataTable instruction,
prior to calling the Data Table from the body of the main program. Data Tables
and their structures are covered in Section 6 Data Table Declarations and
Output Processing Instructions.

See Section 4.2.4 Declarations for additional Information.

ALIAS
Used to assign a second name to a variable.

Syntax
Alias VariableA = VariableB

Remarks
Alias allows assigning a second name to a variable. Within the datalogger
program, either name can be used. Only the alias is available for Public variables.
The alias is also used as the root name for datatable fieldnames.

With aliases the program can have the efficiency of arrays for measurement and
processing yet still have individually named measurements.

A swath of data can be Aliased by assigning a dimension to the AliasName

Example: ALIAS VariableName(3) = AliasName(2); will result in
VariableName(3) being aliased with AliasName(1)
VariableName(4) being aliased with AliasName(2)

Alias Declaration Example

The example shows how to use the Alias declaration.

Dim TCTemp(4)
Alias TCTemp(1) = CoolantT
Alias TCTemp(2) = ManifoldT
Alias TCTemp(3) = ExhaustT
Alias TCTemp(4) = CatConvT

5-1

Section 5. Program Declarations

AS
The declaration of variables (via the DIM or the PUBLIC statement) allow an
optional type descriptor AS that specifies the data type. The default data type,
without a descriptor, is IEEE4 floating point (FLOAT). The data types are
FLOAT, LONG, BOOLEAN, and STRING.

AS FLOAT specifies the default IEEE4 data type. If no data type is explicitly
specified with the AS statement, then FLOAT is assumed.

Public Z, RefTemp, TCTemp(3)
Public X AS FLOAT

AS LONG specifies the variable as a 32 bit long integer, ranging in values
from –2,147,483,648 to +2,147,483,647 (31 bits plus the sign bit). There are
two possible reasons a user would do this:

1, Speed, since the OS can do math on integers faster that with floats.
2. Resolution, LONG has 31 bits compared to the 24 bits in the IEEE4.

Dim I AS LONG
Public LongCounter AS LONG

AS BOOLEAN specifies the variable as a 4 byte Boolean. Boolean variables
are typically used for flags and to represent conditions or hardware that have
only 2 states (e.g., On/Off, Ports). A Boolean variable uses the same 32 bit
long integer format as a LONG but can set to only one of two values: True,
which is represented as –1, and false, which is represented with 0. The
Boolean data type allows application software to display it as an ON/OFF,
TRUE/FALSE , RED/BLUE, etc.

Public Switches(8) AS BOOLEAN, FLAGS(16) AS BOOLEAN

AS STRING * size specifies the variable as a string of ASCII characters,
NULL terminated, with size specifying the maximum number of characters in
the string. A string is convenient for handling serial sensors, dial strings, text
messages, etc.

String arrays can only have up to 2 dimensions instead of the 3 allowed for
other data types. (This is because the least significant dimension is actually
used as the size of the string.)

Public FirstName AS STRING * 20
Public LastName AS STRING * 20

5-2

Section 5. Program Declarations

CONST
Declares symbolic constants for use in place of values.

Syntax
Const constantname = expression [, constantname = expression] . . .

Remarks
THE CONST STATEMENT HAS THESE PARTS:

Part Description
constantname Name of the constant.
expression Expression assigned to the constant. It can consist of literals

(such as 1.0), other constants, or any of the arithmetic or logical
operators.

Tip Constants can make your programs self-documenting and easier
to modify. Unlike variables, constants can't be inadvertently
changed while your program is running.

Caution Constants must be defined before referring to them.

Tip Use all uppercase letters for constant names to make them easy
to recognize in your program listings.

Const Declaration Example

The example uses Const to define the symbolic constant PI.

Const PI = 3.141592654 'Define constant.

CONSTTABLE/ENDCONSTTABLE
Used to declare one or more constants that can be changed using the
CR1000KD keyboard display. The program is then recompiled with the new
values.

Syntax
ConstTable
 Const A = value
 Const B = value
EndConstTable
Remarks
The ConstTable declaration should appear in the declarations section of the
program, prior to the start of the main program. The intent of this declaration is
to define one or more constants in the program that will be listed in a special
table in the datalogger, and which can be edited using the CR1000KD
Keyboard display, and the program recompiled to use the new values.
Recompiling the program in this manner will reset the data tables stored in the
datalogger’s CPU and may make the Data Tables stored on a card unusable (if
the Data Table Header is changed), so all data should be collected before
editing a value in the constant table.

5-3

Section 5. Program Declarations

The constant table is accessed by using the CR1000KD keyboard display
(Configure, Settings menu). A Constant Table menu item will exist only if the
ConstTable/EndConstTable declaration has been used in the program.

The ConstTable allows a way to have a value that is changeable in an
instruction parameter that requires a constant (for instance, the interval for the
Scan instruction will not accept a variable). For users who are familiar with
CR10X, CR23X, and CR510 dataloggers, the ConstTable is similar to the *4
Table functionality.

ConstTable Example

This example uses ConstTable to change the Scan Rate of the program and the
integration time for the TCDiff instruction.

ConstTable
 Const ScanRate = 10
 Const Integ = 40
EndConstTable
Const Reps = 5
Public TRef, TCDiff(reps)

DataTable (Test,1,-1)
 DataInterval (0,60,Sec,10)
 Sample (1,TRef,FP2)
 Sample (Reps,TCDest(),FP2)
EndTable

'Main Program
BeginProg
 Scan (ScanRate,Sec,0,0)
 ModuleTemp(MTemp,1,4,250)
 TCDiff(TCDest(),Reps,mV50C,4,1,TypeT,Tref,0,0,Integ,1.0,0)
 CallTable Test
 NextScan
EndProg

DIM
The Dim statement is used to declare variables and variable arrays, and
allocate storage space for these variables.

Syntax
Dim VarName (size subscripts) Or

Dim VarName (size subscripts) As Type Or

Dim VarName (size subscripts) As Type = {3,6,2, . , , ,5}[initialise values]

Remarks
In CRBasic, ALL variables MUST be declared. Variables are typically declared at
the beginning of the program and are initialized to a value of 0 unless otherwise
declared.

5-4

Section 5. Program Declarations

Variables declared using the Dim statement cannot be viewed using the
datalogger's keyboard display or in a software package's numeric monitor. To
make variables available for display, use the Public declaration.

A Dim statement can be used for each variable declared, or multiple variables
can be defined on one line with one Dim statement. If the latter is done, the
variables should be separated by a comma (e.g., "Dim Scratch1, Scratch2,
Test" declares three variables). A variable array is created by following the
variable name with the number of elements enclosed in parenthesis (e.g., Dim
Temp(3) creates Temp(1), Temp(2), and Temp(3)). Two- and three-
dimensional arrays can also be defined. A declaration of Dim Temp(3,3,3)
would create 27 variables: Temp(1,1,1), Temp(1,1,2), Temp(1,1,3),
Temp(1,2,1), Temp(1,2,2) … Temp(3,3,3). In the program, the array can be
referenced using the multi-dimensional form, or using an index into the array.

Variables declared by Dim within a subroutine or function are local to that
subroutine or function. The same variable name can be used within other
subroutines or functions or as a global variable without conflict.

THE DIM STATEMENT HAS THESE PARTS:

VarName This parameter is the name for the defined variable. Variables names can be up
to 16 characters in length. Note, however, when outputting the variable to a
data table, the suffix containing the output type (e.g., _avg) is appended to the
end of the variable name. Therefore, to stay within the 16 character limit, most
variables should be no more than 12 characters (which allows for the 4
additional characters that may be needed for output processing identifiers).

Size The size parameter is optional. It is used to set up the dimensions of a variable
array. The maximum number of array dimensions allowed in a Dim statement
is three (two if setting up an array of Strings). If you attempt to dimension a
variable higher than three dimensional, an error will occur.

For example:

Dim Flow(8,3,5) would create a three-dimensional array called Flow that has
8x3x5 or 120 elements.

Dim TCTemp(9) would create a one-dimensional array with 9 elements called
TCTemp.

The Option Base for dimensions is always 1; therefore, the lowest number in a
dimension is 1 and not 0. If a variable is dimensioned to a size that is too small
for its use in the program, a "Variable out of bounds" error will be returned
when the program is compiled by the datalogger.

As Type The Dim instruction can be used with the optional As Type descriptor to
define the data format for the variable (e.g., DIM Flag1 As BOOLEAN). The
four data types are:

Float: The default IEEE4 data type; a 32-bit floating-point with a 24-bit
mantissa data type. Float gives a range of roughly -3x10^34 to 3x10^34 with
about seven digits of precision. If no data type is specified, Float is used.

Long: Sets the variable to a 32-bit long integer, ranging from -2,147,483,648
to +2,147,483,647 (31 bits plus the sign bit).

Boolean: Sets the variable to a 4-byte Boolean. Boolean variables are typically
used for flags and to represent conditions or hardware that have only 2 states

5-5

Section 5. Program Declarations

(e.g., On/Off, Ports). A Boolean variable uses the same 32-bit long integer
format as a Long but can set to only one of two values: True, which is
represented as –1, and false, which is represented with 0.

String * size: Sets the variable to a string of ASCII characters, NULL
terminated, with size specifying the maximum number of characters in the
string (note that the null termination character counts as one of the characters
in the string). The size argument is optional. The minimum string size, and the
default if size is not specified, is 16 (15 usable bytes and 1 terminating byte).
String size is allocated in multiples of 4 bytes. Thus, a string declared as 18
bytes will actually be 20 bytes (19 usable bytes and 1 terminating byte). A
string is convenient in handling serial sensors, dial strings, text messages, etc.

As a special case, a string can be declared as String * 1. This allows the
efficient storage of a single character. The string will take up 4 bytes in
memory and when stored in a data table, but it will hold only one character.

Strings can be dimensioned only up to 2 dimensions instead of the 3 allowed
for other data types. (This is because the least significant dimension is actually
used as the size of the string.) To begin reading or modifying a string at a
particular location into the string, enter the location or begin reading a string at
a particular character, enter the character as a third dimension; e.g.,
String(x,y,n) where n is the desired character.

See Section 4.2.4.5 Data Type Operational Detail for in-depth discussion
about the data types supported by the CR9000X.

Initialize Variables can be initialized when declared. For example:

Dim MyVar = 3.5 or Dim MyVar = {3.5}

Dim MyArray(3) = {3, 6, 9}

The braces are optional if a scalar is being initialized or if only the first
variable in an array is being initialized.

When declaring a data type for the variable, the variable is declared before
initialization:

Dim StringVar as String * 30 = "Test String"

For all arrays, including multi-dimensional arrays, the least significant
elements are initialized first. In other words, if the array is not fully initialized,
the first elements will be initialized first, and the remainder will be initialized
to the default value of 0:

Dim Array (2,3) = (1,2,3,4)

Results in ,
Array(1,1) = 1
Array(1,2) = 2
Array(1,3) = 3
Array(2,1) = 4
Array(2,2) = 0
Array(2,3) = 0

5-6

Section 5. Program Declarations

FUNCTION, EXITFUNCTION, END FUNCTION
Declares the name, variables, and code that form a user defined Function.

Syntax
Function FunctionName [(Optional VariableList)] As DataType
 [DIM] Declare local variables, Optional
 [statementblock]
 [Return (expression)]
 [ExitFunction] Optional
 [statementblock]
EndFunction

Remarks
Functions with their parameters are called just like built in functions; i.e., by
simply using their name with parameters anywhere within an expression (see
example below). When calling a function, closing parenthesis must be used
even if the function has no parameters. The parenthesis indicate a call to the
function. If parenthesis are omitted, the last value returned by the function is
used rather than the function running again. One difference between a Sub and
a Function is a Function returns a value, whereas a subroutine does not. By
default, the Function value returned is a Float, but it can be specified as a
String (with an optional * size), Long, or Boolean in the Function routine by
using the AS Datatype after the Function Name (and parameters if used) of the
Function Declaration (example: "Function Name(parameters) AS Long").

Functions can be nested a maximum of two deep. If a function declaration
contains a call to another function, which in turn contains a call to a function, a
compiler error is returned. Only one instance of a function can run at any given
time.

A Function call includes the ability to pass in optional parameters. As with a
subroutine declaration, the Function routine parameter list describes local
parameters and optionally their type (Float, Long, Boolean, String). If not
specified, the default parameter type is Float. The number and sequence of the
program variables/values in the Function call must match the number and
sequence of the variable list in the Function declaration. The Function call
parameter values are copied into the Function's local parameter list. Unlike a
Subroutine Call, even if the local variables are modified in the Function
routine, these changes are not passed back to the Function call parameter
variables.

5-7

Section 5. Program Declarations

THE FUNCTION DECLARATION STATEMENT HAS THESE PARTS:

Part Description

Function Marks the beginning of a Function.

FunctionName The FunctionName argument provides the name for the
Function. The field length is limited to 16 characters.
Function names follow the same rules that constrain the
names of other variables.

VariableList List of variables that are passed to the Function when it is
called. The list of variables to pass is optional. The
advantage of passing variables is that the Function can be
used to operate on whatever program variable(s) is passed.
Multiple variables are separated by commas. The variable
type can be declared as Float, Long, String, or Boolean.
To declare the type, use the "AS" command. The
following construct sets Var1 as a String with 20
characters, Var2 as a Long, and the value returned by the
Function as a Boolean variable type:

 Function FunctionName(Var1 as String * 20,
Var2 as Long) as Boolean.

If 'AS Type' is not specified for a variable, the default
parameter type is Float. When a function is called, the
parameters are copied into the Function's local parameter
list, as is the case when subroutines are called. However,
unlike subroutines which copy the local parameter values
back out to any variables that were passed in, Functions
do not write over (pass back) values to the list of variables
in the Call expression. A Function simply returns a value
to be used by the expression that invoked the function the
same way a built in function would.

statementblock Any group of statements that are executed within the body
of the Function.

Return(expression) Causes an immediate exit from a Function. The value
returned by the Function is determined by the expression
listed as part of the Return instruction. An alternative
method of returning a value is to assign an expression to
the Function's name, as is done in the example code
above: Secant = 1/Cos(F_Angle). If neither method is
used, then NAN will be returned.

ExitFunction Causes an immediate exit from the Function. Any number
of ExitFunction statements can appear anywhere in a
Function. If a value assignment has not been made to the
Function (see Return) prior to encountering the
ExitFunction command, the Function will return NAN.

EndFunction Marks the end of the Function. If a value assignment has
not been made to the Function (see Return) prior to

5-8

Section 5. Program Declarations

encountering the EndFunction command, the Function will
return NAN.

Function Example
'In this example, Function Secant calculates the secant of an angle. Note
'that the Angle variable's value, in the main Scan, would not be modified
'by the Function call.
AngleDegrees
Public Angle, Var, Secant, X, Y
Function Secant(F_Angle as Float) as Float
 Dim F_Angle
 Secant = 1/Cos(F_Angle)
EndFunction

BeginProg
 X=1 : Y = 1 ' Initialise X, and Y so the angle is 45 degrees
 Scan(1,Sec,3,0)
 Angle = ATN2(X,Y)
 Var = Secant(Angle)
 NextScan
EndProg

PUBLIC
Like the Dim statement, the Public statement is used to declare variables and
variable arrays, and allocate storage space for these variables. The difference is
that variables declared using the Public statement can be monitored at the
measurement scan rate using the various CSI software packages through the Public
Table.

Syntax
Public VarName (size subscripts) Or

Public VarName (size subscripts) As Type Or

Public VarName (size subscripts) As Type = {3,6,2, . , , ,5}[initialise values]

Remarks
In CRBasic, ALL variables MUST be declared. Variables are typically declared
at the beginning of the program and the default value is initialized to a value of 0
unless otherwise declared.

A Public statement can be used for each variable declared, or multiple
variables can be defined on one line with one Public statement. If the latter is
done, the variables should be separated by a comma (e.g., "Public Scratch1,
Scratch2, Test" declares three variables). A variable array is created by
following the variable name with the number of elements enclosed in
parenthesis (e.g., Public Temp(3) creates Temp(1), Temp(2), and Temp(3)).
Two- and three-dimensional arrays can also be defined. A declaration of Dim
Temp(3,3,3) would create 29 variables: Temp(1,1,1), Temp(1,1,2),
Temp(1,1,3), Temp(1,2,1), Temp(1,2,2) … Temp(3,3,3). In the program, the
array can be referenced using the multi-dimensional form, or using an index
into the array.

5-9

Section 5. Program Declarations

Variables declared by Public within a subroutine or function are local to that
subroutine or function. The same variable name can be used within other
subroutines or functions or as a global variable without conflict.

THE PUBLIC STATEMENT HAS THESE PARTS:

VarName This parameter is the name for the defined variable. Variables names can be up
to 16 characters in length. Note, however, when outputting the variable to a
data table, the suffix containing the output type (e.g., _avg) is appended to the
end of the variable name. Therefore, to stay within the 16 character limit, most
variables should be no more than 12 characters (which allows for the 4
additional characters that may be needed for output processing identifiers).

Size The size subscript parameters are optional. They are used to set up the
dimensions of a variable array. The maximum number of array dimensions
allowed in a Public statement is three (two if setting up an array of Strings). If
you attempt to dimension a variable higher than three dimensional, an error
will occur.

For example:

Public Flow(8,3,5) would create a three-dimensional array called Flow that
has 8 x 3 x 5, or 120 elements.

Public TCTemp(9) would create a one-dimensional array with 9 elements
called TCTemp.

The Option Base for dimensions is always 1; therefore, the lowest number in a
dimension is 1 and not 0. If a variable is dimensioned to a size that is too small
for its use in the program, a "Variable out of bounds" error will be returned
when the program is compiled by the datalogger.

As Type The Public instruction can be used with the optional As Type descriptor to
define the data format for the variable (e.g., PUBLIC Flag1 As BOOLEAN).
The four data types are:

Float: The default IEEE4 data type; a 32-bit floating-point with a 24-bit
mantissa data type. Float gives a range of roughly -3x10^34 to 3x10^34 with
about seven digits of precision. If no data type is specified, Float is used.

Long: Sets the variable to a 32-bit long integer, ranging from -2,147,483,648
to +2,147,483,647 (31 bits plus the sign bit).

Boolean: Sets the variable to a 4-byte Boolean. Boolean variables are typically
used for flags and to represent conditions or hardware that have only 2 states
(e.g., On/Off, Ports). A Boolean variable uses the same 32-bit long integer
format as a Long but can set to only one of two values: True, which is
represented as –1, and false, which is represented with 0.

String * size: Sets the variable to a string of ASCII characters, NULL
terminated, with size specifying the maximum number of characters in the
string (note that the null termination character counts as one of the characters
in the string). The size argument is optional. The minimum string size, and the
default if size is not specified, is 16 (15 usable bytes and 1 terminating byte).
String size is allocated in multiples of 4 bytes. Thus, a string declared as 18
bytes will actually be 20 bytes (19 usable bytes and 1 terminating byte). A
string is convenient in handling serial sensors, dial strings, text messages, etc.

5-10

Section 5. Program Declarations

As a special case, a string can be declared as String * 1. This allows the
efficient storage of a single character. The string will take up 4 bytes in
memory and when stored in a data table, but it will hold only one character.

Strings can be dimensioned only up to 2 dimensions instead of the 3 allowed
for other data types. (This is because the least significant dimension is actually
used as the size of the string.) To begin reading or modifying a string at a
particular location into the string, enter the location or begin reading a string at
a particular character, enter the character as a third dimension; e.g.,
String(x,y,n) where n is the desired character.

See Section 4.2.4.5 Data Type Operational Detail for in-depth discussion
about the data types supported by the CR9000X.

Initialize Variables can be initialized when declared. For example:

Public MyVar = 3.5 or Public MyVar = {3.5}

Public MyArray(3) = {3, 6, 9}

The braces are optional if a scalar is being initialized or if only the first
variable in an array is being initialized.

When declaring a data type for the variable, the variable is declared before
initialization:

Public StringVar as String * 30 = "Test String"

For all arrays, including multi-dimensional arrays, the least significant
elements are initialized first. In other words, if the array is not fully initialized,
the first elements will be initialized first, and the remainder will be initialized
to the default value of 0:

Public Array (2,3) = (1,2,3,4)

Results in ,
Array(1,1) = 1
Array(1,2) = 2
Array(1,3) = 3
Array(2,1) = 4
Array(2,2) = 0
Array(2,3) = 0

StationName
Sets the station name. Limited to 8 characters.

Syntax
StationName StaName

Remarks
StationName is used to set the datalogger station name with the program. The
station name is displayed by RTDaq and stored in the data table headers
(Section 2.4). The Station Name can be changed from the Logger's Status
Table. Changing the Station Name is not a legal procedure if the running
program stored data to a PC card.

5-11

Section 5. Program Declarations

SUB, EXIT SUB, END SUB
Declares the name, variables, and code that form a Subroutine.

Syntax
Sub SubName [(VariableList)]
 [statementblock]
 [Exit Sub]
 [statementblock]
End Sub

A Subroutine is a separate procedure that is called by the main program using a
Call statement. A Subroutine can take arguments, perform a series of
statements, and change the value of its arguments. However, a Subroutine can't
be used in an expression. You can call a Subroutine using the name followed
by the variable list.

See the Call topic in Section 9.1 Program Structure/ Control for specific
information on how to call Subroutines.

Subroutines must be declared before they are called in the program. The code
for a Subroutine cannot be contained within the code for another Subroutine;
however, a Subroutine can be called by another Subroutine. If one Subroutine
calls another, the second Subroutine must be placed in the code before the
Subroutine that calls it. Subroutines cannot be used in an expression.

Because of how data is buffered in the task sequencer, a subroutine call should
be the last item in the main body of the program. Measurement instructions
should never follow a call to a subroutine; doing so could result in bad data.

The Scan/NextScan instruction loop can be used within a Subroutine using a
different execution interval than the main program.

Variables declared by Dim within a subroutine or function are local to that
subroutine or function. The same variable name can be used within other
subroutines or functions or as a global variable without conflict. Variables used
as parameters to a subroutine or function are also local.

When a Subroutine is called from the Main Program Scan, a skipped scan will
occur if there is not sufficient time for the Subroutine
measurements/processing in addition to the main scan's
measurement/processing time requirements.

Caution Subroutines can be recursive; that is, they can call themselves to perform a
given task. However, recursion can lead to strange results.

THE SUB STATEMENT HAS THESE PARTS:

Part Description

Sub Marks the beginning of a Subroutine.

5-12

Section 5. Program Declarations

SubName The SubName argument provides the name for the
procedure. The field length is limited to 16 characters.
Subroutine names follow the same rules that constrain the
names of other variables.

VariableList List of variables that are passed to the Subroutine when it is
called. Multiple variables are separated by commas. The
variable type can be declared as Float, Long, String, or The
list of Subroutine variables to pass is optional. Subroutines
can operate on the global program variables declared by the
Public or Dim statements. The advantage of passing
variables is that the subroutine can be used to operate on
whatever program variable is passed (see example).

When the Subroutine is called, the call statement must list
the program variables or values to pass into the subroutine
variable. The number and sequence of the program
variables/values in the call statement must match the number
and sequence of the variable list in the sub declaration.
Changing the value of one of the variables in this list inside
the Subroutine changes the value of the variable passed into
it in the calling procedure. (CRBasic passes all arguments
into a subroutine by reference (that is, a reference to the
memory location of the variable is passed, rather than an
actual value). Therefore, if the value of an argument is
changed by the subroutine, the change will take effect in the
main program as well.)

The call may pass constants or expressions that evaluate to
constants (i.e., do not contain a variable) into some of the
variables. If a constant is passed, the “variable” it is passed
to becomes a constant and cannot be changed by the
subroutine. If constants will be passed, the subroutine
should not attempt to change the value of the “variables”
that they will be passed into.

statementblock Any group of statements that are executed within the body
of the Subroutine.
Boolean. Float is used for the default type if not declared.
To declare the type, use the "AS" command:

 Sub SubName(Var1 as String * 20, Var2 as Long).

Exit Sub Causes an immediate exit from a Subroutine. Program

execution continues with the statement following the
statement that called the Subroutine. Any number of Exit
Sub statements can appear anywhere in a Subroutine.

End Sub Marks the end of a Subroutine.

5-13

Section 5. Program Declarations

Subroutine Example
'CR9000X
''Declare Variables used in Program:
Public RefT, TC(4),I
DataTable (TempsC,1,-1) 'Data output in deg C
 DataInterval (0,5,Min,10)
 Average (1,RefT,FP2,0)
 Average (4,TC(),FP2,0)
EndTable
DataTable (TempsF,1,-1) 'Data output in F after conversion
 DataInterval (0,5,Min,10)
 Average (1,RefT,FP2,0)
 Average (4,TC(),FP2,0)
EndTable

Sub ConvertCtoF (Tmp) 'Sub to convert temp in degrees C to degrees F
 Tmp = Tmp*1.8 +32
EndSub
BeginProg
 Scan (1,Sec,3,0)
 'Measure Temperatures (module + 4 thermocouples) in deg C
 ModuleTemp (RefT,1,1,250)
 TCDiff (TC(),4,mV50C,1,1,TypeT,RefT,True ,0,250,1.0,0)
 'Call Output Table for C
 CallTable TempsC
 'Convert Temperatures to F using Subroutine:
 Call ConvertCtoF(RefT) 'Subroutine call using Call statement
 For I = 1 to 4
 ConvertCtoF(TC(I)) 'Subroutine call without Call statement
 Next I
 'Call Output Table for F:
 CallTable TempsF
 NextScan
EndProg

UNITS
Used to assign a unit name to a field associated with a variable.

Syntax
Units Variable = UnitName

Remarks
Units allows assigning a unit name to a variable. Maximum field length for
the Units declaration is 11 characters. Units are displayed on demand in the
real-time windows of RTDaq. The unit name also appears in the header of the
output files and in the Data Table Info file of RTDaq. The unit name is a text
field that allows the user to label data. The units are strictly for the user’s
documentation. CRBasic and the CR9000X make no checks on their accuracy.

Example
Dim TCTemp(1)
Units TCTemp(1) = Deg_C

5-14

Section 6. Data Table Declarations and
Output Processing Instructions
6.1 Data Table Declaration

DataTable(Name, TrigVar, Size)

output trigger modifier (optional)
export data destinations (optional)
output processing instructions

EndTable

The DataTable instruction marks the beginning of a block of instructions
which specify and control the outputs for the given table. It has three
parameters: a user specified name for the table, a trigger condition, and the size
to make the table in SDRAM. EndTable is used to mark the end of a data table
declaration.

All Data Tables must be defined in the declaration's portion of the program
(prior to BeginProg).

Parameter
& Data Type

Enter DATATABLE PARAMETERS
Name The name for the data table. The table name is limited to eight characters.
TrigVar The name of the variable to test for the trigger. If True (non-zero), new data will be written to the Table

as long as any other Trigger Modifiers are true. If False (zero), then when the Table is called, the current
values for the variables, based on the Data Processing Instructions, will be processed but a new data
record will not be stored to the Table. Trigger modifiers add additional conditions.

Constant Value Result
Variable, or 0 Do not trigger
Expression ≠ 0 Trigger
Size
Constant

The size to make the data table. The number of data sets (records) to allocate memory for in static
RAM. Each time a variable or interval trigger occurs, a line (or row) of data is output with the number
of values determined by the output Instructions within the table. This data is called a record. The total
number of records stored equals the size..

 Note Enter a negative number and all remaining memory (after creating fixed size data tables) will
be allocated to the table or partitioned between all tables with a negative value for size. The
partitioning algorithm attempts to have the tables fill at the same time.

Output trigger modifiers (e.g., DataInterval, DataEvent) can be used within
the DataTable declaration. The most commonly used trigger modifier
instruction is the DataInterval instruction, which is used to set a fixed time
interval for data storage. The DataEvent instruction is used to conditionally
start and stop storing data to a DataTable based on some logical condition.
See Section 6.2.

Export instructions (e.g., CardOut, DSP4) are used to store data in or direct
data to other hardware. See Section 6.3.

Output processing instructions (e.g. Sample, Average) determine the data set
stored to the table. See Section 6.4.

See Section 4.2.8 Data Tables for further reading.

6-1

Section 6. Data Table Declarations and Output Processing Instructions

6.2 Trigger Modifiers
DataInterval (TintoInt, Interval, Units, Lapses)

The DataInterval instruction is used to set the time interval for storing data to
an output table based on the datalogger's real-time clock. DataInterval is
inserted into a data table declaration following the DataTable instruction to
establish a fixed interval table and/or to force the tracking of Data Table Lapses
(Skipped Records). The resulting fixed interval table can require less memory
than a conditional table because a Time Stamp and Record number do not
have to be stored with each record.

DataInterval does not override the Trigger in the DataTable instruction. If
the Trigger is not set always true by entering a constant, it is a condition that
must be met in addition to the time interval before data will be stored. If a
record is not written at the programmed interval, the logger recognizes it as a
Lapse and the Skipped record counter in the Status Table is incremented.

Interval determines how frequently data are stored to the table. It must be an
integral multiple of the interval of the Scan that called it. The interval is
synchronized with the real time clock. Entering zero (0) for the Interval sets it
equal to the scan Interval.

TintoInt allows the user to set the time into the Interval, or offset relative to
real time, at which the output occurs. For example, 360 (TintoInt) minutes into
a 720 (Interval) minute (Units) interval specifies that output should occur at
6:00 (6 AM, 360 minutes from midnight) and 18:00 (6 PM, 360 minutes from
noon). Enter 0 to keep output on the even interval.

 Lapses is used to allocate additional memory for the tracking of lapses
(skipped records). A Lapse is any discontinuity in the DataTable records’
time intervals. Lapses can be the result of skipped scans, event driven tables,
and/or logic in the calling of the data table from the program. For example, if
the data output is controlled by the Trigger parameter (e.g., a user flag) in the
DataTable instruction as well as by the DataInterval instruction, a lapse
would occur each time the trigger was false at the time of the DataInterval's
output interval. It should be noted that if multiple data storage intervals are
skipped sequentially, it is a single lapse.

The CR9000X stores a timestamp and record number in the header of each of
the Table’s data frames. A data frame is usually around one KByte of memory.
Data tables using the DataInterval instruction allow for a more efficient use of
memory because, instead of storing time stamps and record numbers with every
record, they use the data frame’s timestamp and record number information. As
each new record is written to the data table, the datalogger checks to insure that
a Lapse has not occurred. If a Lapse has occurred, a 16 byte sub-header with
Time Stamp/Record Number information is inserted into the data frame before
the record is written. When the data are retrieved to the computer, the time
stamp and record number are calculated, using the data frame headers (and sub
headers if lapses have occurred), and stored with each record.

The Lapse parameter specifies the number of sub-headers for which additional
memory will be allocated. The allocation is an integral number of data frames.
For example, if the Lapse parameter were set to 400, the minimum memory

6-2

Section 6. Data Table Declarations and Output Processing Instructions

required would be 6400 bytes (Lapse x 16 Bytes/Sub-header = 6400 bytes). If
the data frames were 1 kByte, then 7 additional data frames would be allocated
for the Data Table.

If more lapses occur than have been allocated for, new Lapse
sub-headers will still be inserted into the data frames using up
memory that was originally allocated for data records. The
consequence of this is that the actual number of records written to
the data table may be less than what was specified in the
DataTable and/or CardOut instructions.

NOTE

Entering 0 for the Lapses parameter forces every record to include a
record number and timestamp, requiring an additional 16 bytes per
record. If data storage space is not an issue, this option should be used.

Entering a negative number for the Lapses parameter
sets the CR9000X not to adjust for lapses. Only the periodic
data frame header time stamps (approximately once per 1
KByte of data) are inserted. If a lapse occurs, a sub-header
with time stamp will NOT be inserted, and the timestamps
for subsequent records in that data frame will be generated
incorrectly at data collection.

CAUTION

Parameter
& Data Type

Enter DATAINTERVAL PARAMETERS
TintoInt
Constant

The time into the interval (offset to the interval) at which the table is to be output. The units for time are
the same as for the interval.

Interval
Constant

Enter the time interval on which the data in the table is to be recorded. The interval may be in µseconds,
milliseconds, seconds, minutes, hours or days, whichever is selected with the Units parameter. Enter 0
to make the data interval the same as the scan interval.

Units The units for the time parameters, PowerOff is the only instruction that uses hours or days.
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 Microseconds
 MSEC 1 Milliseconds
 SEC 2 Seconds
 MIN 3 Minutes
 HR 4 Hours
 Day 5 Days

As each new record is stored, time is checked to ensure that the interval is correct. The datalogger keeps
track of lapses or discontinuities in the data.
Lapse Value Result
Lapses > 0 If table record number is fixed, number of additional data frames allocated to

data table if memory is available. If record number is auto-allocated, no
memory is added to table.

Lapses = 0 Timestamp always stored with each record.

Lapses
Constant

Lapses < 0 When lapse occurs, sub-header w/ timestamp not inserted. Record timestamps
calculated at data extraction may be in error.

6-3

Section 6. Data Table Declarations and Output Processing Instructions

OpenInterval
When the DataInterval instruction is included in a data table, the CR9000X
uses only values from within an interval for time series processing (e.g.,
average, maximum, minimum, etc.). When data are output every interval, the
output processing instructions reset each time output occurs. To ensure that
data from previous intervals are not included in a processed output, processing
is reset any time an output interval is skipped. (An interval could be skipped
because the table was not called or another trigger condition was not met.) The
CR9000X resets the processing the next time that the table is called after an
output interval is skipped. If this next call to the table is on a scheduled
interval, it will not output. Output will resume on the next interval. (If Sample
is the only output processing instruction in the table, data will be output any
time the table is called on the interval because sampling uses only the current
value and involves no processing.)

OpenInterval is used to modify an interval driven table so that time series
processing in the table will include all values input since the last time the table
output data. Data will be output whenever the table is called on the output
interval (provided the other trigger conditions are met), regardless of whether or
not output occurred on the previous interval.

OpenInterval Example:
In the following example, 5 thermocouples are measured every 500
milliseconds. Every 10 seconds, while Flag(1) is true, the averages of the
reference and thermocouple temperatures are output. The user can toggle
Flag(1) to enable or disable the output. Without the OpenInterval Instruction,
the first averages output after Flag(1) is set high would include only the
measurements within the previous 10-second interval. This is the default and is
what most users desire. With the OpenInterval in the program (remove the
initial single quote (‘) to uncomment the instruction) all the measurements made
while the flag was low will be included in the first averages output after the flag
is set high.

6-4

Section 6. Data Table Declarations and Output Processing Instructions

Const RevDiff 1 'Reverse input to cancel offsets
Const Del 0 'Use default delay
Const Integ 0 'Use default Integration
Public RefTemp 'Declare the variable used for reference temperature
Public TC(5) 'Declare the variable used for thermocouple measurements
Public Flag(8)
Units RefTemp=degC '
Units TC=degC

DataTable (AvgTemp,Flag(1),1000) 'Output when Flag(1)=true
 DataInterval(0,10,sec,10) 'Output every 10 seconds(while Flag(1)=true)
 'OPENINTERVAL 'Uncomment to include data while Flag(1)=false in next
Avg
 Average(1,RefTemp,IEEE4,0)
 Average(5,TC,IEEE4,0)
EndTable

BeginProg
 Scan(500,mSec,0,0)
 ModuleTemp(RefTemp,1,5,30)
 TCDiff(TC(),5,mV50C,5,9,TypeT,RefTemp,RevDiff,Del,Integ,1,0)
 CallTable AvgTemp
 NextScan
EndProg

DataEvent (PreTrigRecs, StartTrig, StopTrig, PostTrigRecs)
Used to set a trigger to start storing records and another trigger to stop storing
records within a table. The number of records before the start trigger and the
number of records after the stop trigger can also be set. A Filemark (Section 9)
is automatically stored in the table between each event if the file is stored on a
PCMCIA card. The Data Table can be parsed out into multiple files based on
the FileMark locations.

For a Single Trigger data event, enter the start trigger condition and simply
enter True for the Stop Trigger. The normal record count for a Single Trigger
Data Event is the number of pre-trigger records requested + 1 (the start trigger
record) + the number of post-trigger records requested.

For a Dual Trigger data event, both the start trigger condition and the stop
trigger condition logic must be entered. The normal record count for a Dual
Trigger Data Event is the number of pre-trigger records requested + 1 (the
start trigger record) + the number of records until the Stop trigger evaluates as
true + 1 (the stop trigger record) + the number of post-trigger records requested.

It should be noted that, for a given DataTable, a new event cannot be
Triggered while an event is being captured. Also, if an event occurs before the
requisite number of pre-trigger records have passed since the last trigger, the
logger will still not write the same records to the DataTable twice. This may
result in Events having a smaller number of records than expected (see
examples). The events can be parsed out into separate files through the use of
the Convert Utility, by processing the FileMarks, if the Table is stored to a
PCMCIA Card.

6-5

Section 6. Data Table Declarations and Output Processing Instructions

The following examples show how triggered output, that is capturing pre-
trigger data, can have varying number of records based on when a trigger
occurs.

Chart 6.2-1 Triggered Data Example 1

Triggered Data Example 1: Chart 6.2-1 depicts a signal that is being
conditionally stored to a DataTable with a single trigger condition that is
evaluated as true when the signal is greater than 4 volts. The DataTable is set
to collect 10 records before and 10 records after the trigger (a maximum of 21
records will be stored per event). As can be seen, only 5 records were available
before the first trigger occurred. This resulted in only 16 records being stored
for the first event. In this example, subsequent events had 21 records.

Chart 6.2-2 Triggered Data Example 2

Triggered Data Example 2: Chart 6.2-2 depicts a signal that is again triggering
output at 4 volts. The trigger is set to capture 10 records before and 30 records
after the event evaluates as true. Again, only 5 records were available before the
first trigger occurred. This results in only 36 records being stored for the first
event. The next trigger occurs before 10 records have passed, resulting in 36
records, counting the trigger record, being sorted. In this example, subsequent
events all have 36 records because the signal is synchronised with the triggers,
and there are always only 5 records available for pre-trigger capture.

6-6

Section 6. Data Table Declarations and Output Processing Instructions

Chart 6.2-3 Triggered Data Example 3

Triggered Data Example 3: Chart 6.2-3 depicts a signal that is being feed to a
DataTable that is triggered when the signal is greater than 4 volts. The
DataTable is set-up to store 10 pre-trigger records and 40 post-trigger records.
Again, only 5 records were available before the first trigger occurred. This
results in 46 records being stored for the first event. The next trigger occurs
immediately after the first event. This results in 0 pre-trigger, the trigger, and 40
post-trigger records being stored for this event (total of 41 records). The next
trigger does not occur until Sample #114, allowing for 10 pre-trigger records,
the trigger, and 40 post trigger records being stored (total of 51 records).

Parameter Enter DATAEVENT PARAMETERS
PreTrigRecs
Constant

The number of records to store before the Start Trigger.

StartTrig The variable or expression test to Trigger copying the pre trigger records into the data table and
start storing each new record..

Variable, or Value Result
Expression 0 Do not trigger
 ≠ 0 Trigger
StopTrig
Variable,
Expression or
Constant

The variable, expression or constant to test to stop storing to the data table. The CR9000X does
not start checking for the stop trigger until after the Start Trigger occurs. A non-zero (true)
constant may be used to store a fixed number of records when the start trigger occurs (total
number of records = PreTrigRecs+ 1 record for the trigger +PostTrigRecs.). Zero (false) could
be entered if it was desired to continuously store data once the start trigger occurred.

 Value Result
 0 Do not trigger
 ≠ 0 Trigger
PostTrigRecs
Constant

The number of records to store after the Stop Trigger occurs.

6-7

Section 6. Data Table Declarations and Output Processing Instructions

DataEvent Example:
The start trigger for the event is when TCTemp(1) > 30 degrees C. The stop trigger is when
TCTemp(1) < 29 degrees C. The event has 20 pre-trigger records and 10 post-trigger records.

Const RevDiff 1 ‘Reverse input to cancel offsets
Const Del 0 'Use default delay
Const Integ 0 'Use default integration
Public RefTemp 'Declare the variable used for reference temperature
Public TC(5) 'Declare the variable used for thermocouple measurements
Units RefTemp=degC
Units TC=degC
DataTable (Event,1,1000)
 DataInterval(0,00,msec,10) 'Set the sample interval equal to the scan
 DATAEVENT(20,TC(1)>30,TC(1)<29,10) '20 records before TC(1)>30, and
 ‘after TC(1)<29 store 10 more records
 Sample(1,RefTemp,IEEE4) 'Sample the reference temperature
 Sample(5,TC,IEEE4) 'Sample the 5 thermocouple temperatures
EndTable
BeginProg
 Scan(500,mSec,0,0)
 ModuleTemp(RefTemp,1,5,30)
 TCDiff(TC(),5,mV50C,5,9,TypeT,RefTemp,RevDiff,Del,Integ,1,0)
 CallTable Event
 NextScan
EndProg

FillStop
DataTables are by default ring memory where, once full, new data are written
over the oldest data. Entering FillStop into a data table declaration sets the
CPU memory for the Datatable as fill and stop. Once the DataTable is filled,
no more data are stored until the DataTable has been reset. The DataTable
can be reset from within the program by executing the ResetTable instruction.
Tables can also be reset from RTDAQ's Status Table window
(Datalogger/Status Table).

See the CardOut instruction for instructions on setting memory allocated for
DataTables on a PC card as Fill and Stop.

If either the CPU (FillStop instruction) or the Card is set to "fill
and stop", when either media is filled, the writing to the Table in
both will be stopped. Data storage will not resume until the
DataTable has been reset, either under program control using the
CardFlush instruction, or through the Status window in one of
CSI's software packages.

NOTE

FillStop Example:
DataTable (Temp,1,2000)
 DataInterval(0,10,msec,10)
 FILLSTOP ' the table will stop collecting data after 2000 records.
 Average(1,RefTemp,fp2,0)
 Average(6,TC(1),fp2,0)
EndTable

6-8

Section 6. Data Table Declarations and Output Processing Instructions

WorstCase (TableName, NumCases, MaxMin, Change, RankVar)
The WorstCase instruction allows for saving the most significant or “worst-
case” events in separate, cloned, data tables.

To use the WorstCase instruction, the user must create a DataTable
(TableName) that is sized to hold one event. This table acts as the event buffer.
This table may use the DataEvent instruction or some other condition to
determine when an event is stored. The significance of an event is determined
by a numerical ranking of the RankVar. The RankVar's value is set by a user
created algorithm (see example program).

Multiple WorstCase events can be saved. The number of WorstCase events is
specified with the NumCases variable. A separate Data Table is automatically
created for each of the WorstCase events. These Data Tables use the name of
the test Data Table with a two-digit number appended to the end (i.e., a Data
Table named Evnt would have WorstCase Data Tables named Evnt01, Evnt02,
Evnt03…). It should be noted that the same data will not be written to two
WorstCase Tables. So if a trigger has occurred without the requisite # of pre-
trigger records since the last event, the DataTable will not have the specified #
of records. See the DataEvent topic in Section 6.2 Trigger Modifiers.

An additional Data Table that has "WC" appended to the end of the test Data
Table name (e.g., EvntWC for a Data Table named Evnt) is created. This "WC"
Data Table holds the values of the rank variables for each of the WorstCase
Data Tables, and the times that they were last written to.

When WorstCase is executed, it checks the ranking variable and performs the
following:

When checking for Max Worst Cases (MaxMin option set to 1), if the
current value of the ranking variable has a higher value than the lowest
ranked WorstCase clone's recorded ranking variable, then the new data in
the event DataTable will replace the data in this Data Table clone.

When checking for Min Worst Cases (MaxMin option set to 0), if the
current value of the ranking variable has a lower value than the highest
ranked WorstCase clone's recorded ranking variable, then the new data in
the event DataTable will replace the data in this Data Table clone.

WorstCase must be used with data tables sent to the CPU. It will not work if
the event table is sent to the PC card (CardOut).

6-9

Section 6. Data Table Declarations and Output Processing Instructions

Parameter
& Data Type

Enter WORSTCASE PARAMETERS
TableName
name

The name of the data table to clone. The length of this name should be 4 characters or less so the
complete names of the worst case tables are retained when collected (see NumCases).

NumCases The number of “worst” cases to store. This is the number of clones of the data table to create. The
cloned tables use the name of the table being cloned (up to the first 6 characters) plus a 2 digit number
(e.g., Evnt01, Evnt02, Evnt03, …). The numbers give the tables unique names, they have no
relationship to the ranking of the events. RTDAQ uses this same name modification when creating a
new data file for a table. To avoid confusion and ambiguous names when collecting data with RTDAQ,
keep the base name four characters or less (4character base name + 2 digit case identifier + 2 digit
collection identifier = 8 character maximum length).

MaxMin A code specifying whether the maximum or minimum events should be saved.
Constant Value Result
 0 Min, save the events using minimum ranking; (i.e., Keep track of the

RankVar associated with each event stored. If a new RankVar is less
than the highest ranked minimum event, copy this highest ranked
minimum event over with the new minimum event).

 1 Max, save the events associated with the maximum ranking; i.e., copy
if the new RankVar is greater than previous lowest ranking variable
(over event with previous minimum)

Change
Constant

The minimum change that must occur in the RankVariable before a new worst case is stored.

RankVar
Variable

The Variable to rank the events by.

WorstCase Example
This program demonstrates the Worst Case Instruction. The trigger for the start of a data event is when TC(1) exceeds
30 degrees C. To use the worst case instruction with events of varying duration, the event table size must be selected
to accommodate the maximum duration expected (or needed).The ranking criteria is the max temperature that TC(1)
sees during the triggered event. The greater the temperature the “worse” the event.

Const RevDiff= 1 : Const Del= 40 : Const Integ= 70 : Const NumCases= 5 : Const Max= 1
Public RefTemp, TC(5) : Units RefTemp=degC : Units TC=degC
Public I, MaxTemp 'Declare index and the ranking variable

DataTable (Evnt,1,10)
 DataInterval(0,0,msec,10) 'Set the sample interval equal to the scan
 DataEvent(1,TC(1)>30,-1,8) '1 records before TC(1)>30, 8 records after TC(1)>30
 Sample(1,RefTemp,IEEE4) 'Sample the reference temperature
 Sample(5,TC,IEEE4) 'Sample the 5 thermocouple temperatures
EndTable

BeginProg
 Scan(500,mSec,0,0)
 ModuleTemp(RefTemp,1,4,30)
 TCDiff(TC(),5,mV50C,4,1,TypeT,RefTemp,RevDiff,Del,Integ,1,0)
 CallTable Evnt
 If Evnt.EventEnd(1,1) 'Check if an Event just Ended
 MaxTemp = 0 'Initialize MaxTemp below lowest threshold possible
 For I = 1 To 10 'Loop through TC measurements to find event max
 If Evnt.TC(1,I) > MaxTemp Then MaxTemp = Evnt.TC(1,I)
 Next I
 WORSTCASE(Evnt,NumCases,Max,0,MaxTemp) 'Check for worst case
 EndIf
 NextScan
EndProg

6-10

Section 6. Data Table Declarations and Output Processing Instructions

6.3 Export Data Instructions
CardFlush

Used to force buffered data in the CR9000X internal memory, that is associated
with any Data Tables that are setup to be stored on the PC Card, to be
immediately written to the PC Card.

Care should be taken when using this instruction, as every time the CPU is
Flushed, a complete Card data frame is used, regardless of the amount of data
being written. This is not only an inefficient use of memory, but can also result
in the premature degradation of the Card storage media.

This instruction does not replace pressing the Card Control button
prior to removing the card. If CardFlush is executed and the card
removed without pressing the Control button, the data will be
available on the card for conversion but the same card cannot be
reinserted unless all the files are deleted.

NOTE

CardOut (StopRing, Size)

Used to send output data to the PCMCIA card. This instruction creates a data
table on the PCMCIA card. CardOut must be entered within each data table
declaration that is to be stored to the PCMCIA card.

If Ring is selected for the StopRing option, once full, the newest data are
written over the oldest. Selecting FillStop sets the Card memory for the
datatable as fill and stop. Once the table is filled, no more data are stored until
the table has been reset. The table can be reset from within the program by
executing the ResetTable instruction. Tables can also be reset from RTDAQ's
Status Table window (Datalogger/Status Table).

If either the CPU (FillStop instruction) or the Card is set to "fill
and stop", when either media is filled, the writing to the Table in
both will be stopped. Data storage will not resume until the Table
has been reset.

NOTE

6-11

Section 6. Data Table Declarations and Output Processing Instructions

Parameter
& Data Type

Enter CARDOUT PARAMETERS

StopRing
Constant

A code to specify if the Data Table on the PCMCIA card is fill and stop or ring (newest
data overwrites oldest).

 Value Result
0 Ring

 1 Fill and Stop
Size
Constant

The size to make the data table. The number of data sets (records) to allocate memory for
in the PCMCIA card. Each time a variable or interval trigger occurs, a line (or row) of
data is output with the number of values determined by the output Instructions within the
table. This data is called a record.
Note: Enter a negative number and all remaining memory (after creating fixed size data
tables) will be allocated to the table or partitioned between all tables with a negative value
for size. The partitioning algorithm attempts to have the tables fill at the same time. Enter
-1000 to set the size of the table on the card to the size of the table in the datalogger's
memory.

DSP4 (FlagVar, Rate)

This instruction is used to send data to the DSP4. If this instruction appears
inside a DataTable declaration, the DSP4 can display the fields of that
DataTable. To view the Public DataTable (variables declared with the Public
instruction), place the DSP4 instruction in the Declaration program area, but
not inside of a DataTable construct.

The Instruction can only be used once in a program; hence, only
the public variables or a single Data Table can be viewed.

NOTE

Parameter
& Data Type

Enter DSP4 PARAMETERS
FlagVar
Array

The variable array to use for the 8 flags that can be displayed and toggled by the DSP4. A value of 0 =
low; ≠0 = high. If the array is dimensioned to less than 8, the DSP4 will only work with the flags up to
the declared dimension. The array used for flags in the Real Time displays of RTDAQ is Flag (8).

Rate
Constant

How frequently to send new values to the DSP4 in milliseconds.

Example
DataTable(MAIN, 1, 2222) 'Trigger set, 2222 Records
 DataInterval(0, TBLINT1, UNITS1, 100) '200 mSec, 100 lapses
 Maximum(Reps, Tblk1(), FP2, 0, 0) 'Reps,Source,Res,Disable,Time of Max/Min
 Minimum(Reps, Tblk1(), FP2, 0, 0) 'Reps,Source,Res,Disable,Time of Max/Min
 Average(Reps, Tblk1(), FP2, 0) 'Reps,Source,Res,Disable
 DSP4(Flag, 200) 'DSP4 displays MAIN, updates every 200 mS
EndTable 'End of table MAIN

6-12

Section 6. Data Table Declarations and Output Processing Instructions

6.4 Output Processing Instructions
Average (Reps, Source, DataType, DisableVar)

This instruction stores the average value over the output interval for the source
variable or each element of the array specified.

Parameter Enter AVERAGE PARAMETERS
Reps Constant The number of averages to calculate. When Reps is greater than one, the source must be an array.
Source Var. The name of the Variable that is to be averaged.
DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 UINT2 21 2 Byte unsigned integer
 Long 20 4 Byte Integer value
DisableVar
Constant, Var.,
or Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
Example:When the disable variable is ≠0 the current input is not included in the average. The average
that is stored is the average of the inputs that occurred while the disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input

Covariance (NumVals, Source, DataType, DisableVar, NumCov)
Calculates the covariance of values in an array over time. The Covariance of
X and Y is calculated as:

()
2

111),(
n

YX

n

YX
YXCov

n

i
i

n

i
i

n

i
ii ∑∑∑

===
⋅

−
⋅

=

where is the number of values processed over the output interval and
and Y are the individual values of

n
i

X i

X and Y .

Parameter Enter COVARIANCE PARAMETERS
NumVals Const The number of elements in the array to include in the covariance calculations
Source
Variable Array

The array that contains the values from which to calculate the covariances. If the covariance
calculations are to start at some element of the array later than the first, include the element number
in the source (e.g., X(3)).

DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 UINT2 21 2 Byte unsigned integer
 Long 20 4 Byte Integer value
DisableVar A non-zero value will disable intermediate processing: input is not included in the Covariance.
Constant, Value Result
Variable, or 0 Process current input
Expression ≠ 0 Do not process current input
NumCov
Constant

The number of covariances to calculate. The maximum number of covariances is Z/2*(Z+1). Where
Z= NumVals. If X(1) is the first specified element of the source array, the covariances are
calculated and output in the following sequence: X_Cov(1)…X_Cov(Z/2*(Z+1)) = Cov[X(1),X(1)],
Cov[X(1),X(2)],…Cov[X(1),X(Z)],…Cov[X(2),X(2)], Cov[X(2),X(Z)],…Cov[X(Z),X(Z)].

6-13

Section 6. Data Table Declarations and Output Processing Instructions

FFT (Source, DataType, N, Tau, Units, Option)
The FFT function performs a Fast Fourier Transform on a time series of
measurements stored in an array. It can also perform an inverse FFT,
generating a time series from the results of an FFT. Depending on the output
option chosen, the output can be: 0) The real and imaginary parts of the FFT;
1) Amplitude spectrum. 2) Amplitude and Phase Spectrum; 3) Power
Spectrum; 4) Power Spectral Density (PSD); or 5) Inverse FFT.

Parameter
& Data Type

Enter FFT PARAMETERS
Source
Variable

The name of the Variable array that contains the input data for the FFT.

DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 UINT2 21 2 Byte unsigned integer
 Long 20 4 Byte Integer value
N
Constant

Number of points in the original time series. The number of points must be a power of 2 (i.e., 512, 1024,
2048, etc.).

Tau
Constant

The sampling interval of the time series.

Units The units for Tau.
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 Microseconds
 MSEC 1 Milliseconds
 SEC 2 Seconds
 MIN 3 Minutes
Options to indicate what values to calculate and output.

Constant Code Result
 0

1
2

3

4

5

FFT. The output is (N/2)+1 complex data points, i.e., the real and imaginary parts of the
FFT. The first pair is the DC pair; the last pair is the Nyquist pair. Zero is seen for the DC
and Nyquist imaginary components.

Amplitude spectrum. The output is N/2+1 magnitudes. With Acos(wt); A is magnitude.

Amplitude and Phase Spectrum. The output is N/2+1 pairs of magnitude and phase; with
Acos(wt - φ); A is amplitude, φ is phase (-π,π). The first pair is the DC pair; the last pair is
the Nyquist pair. Pi is seen for their imaginary component.

Power Spectrum. The output is (N/2)+1 values normalized to give a power spectrum.
With Acos(wt - φ), the power is A2 / 2. The summation of the N/2 values yields the total
power in the time series signal.
Power Spectral Density (PSD). The output is (N/2)+1 values normalized to give a power
spectral density (power per herz). The Power Spectrum multiplied by T = N*tau yields the
PSD. The integral of the PSD over a given bandwidth yields the total power in that band.
Note that the bandwidth of each value is 1/T Hertz.
Inverse FFT. The input is (N/2)+1 complex numbers, organized as in the output of option
0, which is assumed to be the transform of some real time series. The output is the time
series whose FFT would result in the input array.

6-14

Section 6. Data Table Declarations and Output Processing Instructions

T = N*tau: the length, in seconds, of the time series.
Processing field: “FFT,N,tau,option”. Tick marks on the x axis are 1/(N*tau)
Herz. N/2 values, or pairs of values, are output, depending upon the option
code.

Normalization details:
 Complex FFT result i, i = 1 .. N/2: ai*cos(wi*t) + bi*sin(wi*t).
 wi = 2π(i-1)/T.
 φi = atan2(bi,ai) (4 quadrant arctan)
 Power(1) = (a12 + b12)/N2 (DC)
 Power(i) = 2*(ai2 + bi2)/N2 (i = 2..N/2, AC)
 PSD(i) = Power(i) * T = Power(i) * N * tau
 A1 = sqrt(a12 + b12)/N (DC)
 Ai = 2*sqrt(ai2 + bi2)/N (AC)
Notes:
• Power is independent of the sampling rate (1/tau) and of the number of

samples (N).
• The PSD is proportional to the length of the sampling period (T=N*tau),

since the “width” of each bin is 1/T.
• The sum of the AC bins (excluding DC) of the Power Spectrum is the

Variance (AC Power) of the time series.
• The factor of 2 in the Power(i) calculation is due to the power series being

mirrored about the Nyquist frequency N/(2*T); only half the power is
represented in the FFT bins below N/2, with the exception of DC
component. Hence, DC does not have the factor of 2.

• The Inverse FFT option assumes that the data array input is the transform
of a real time series. Filtering can be performed by performing an FFT on
a data set, zeroing certain frequency bins, and then taking the Inverse FFT.
Interpolation is performed by taking an FFT, zero padding the result, and
then taking the Inverse FFT of the larger array. The resolution in the time
domain is increased by the ratio of the size of the padded FFT to the size of
the unpadded FFT. This can be used to increase the resolution of a
maximum or minimum, as long as aliasing is avoided.

6-15

Section 6. Data Table Declarations and Output Processing Instructions

FFT Example
Const Size_FFT 16
Const PI 3.141592
Const CycleperT 2
Const Amplitude 3
Const DC 7
Const Opt_FFT 0
Dim i
Public x(SIZE_FFT),y(SIZE_FFT)

DataTable(Amp,1,1) 'Amplitude Spectrum
 FFT(x,fp2,SIZE_FFT,10 msec,1)
EndTable

DataTable(AmpPhase,1,1) 'Amplitude & Phase Spectrum
 FFT(x,fp2,SIZE_FFT,10 msec,2)
EndTable

DataTable(power,1,1) 'Power Spectrum
 FFT(x,fp2,SIZE_FFT,10 msec,3)
EndTable

DataTable(PSD,1,1) 'Power Spectral Density
 FFT(x,fp2,SIZE_FFT,10 msec,4)
EndTable

DataTable(FFT,1,1) 'Real & Imaginary
 FFT(x,IEEE4,SIZE_FFT,10 msec,0)
EndTable

DataTable(IFFT,1,1) 'inverse FFT
 FFT(y,IEEE4,SIZE_FFT,10 msec,5)
EndTable

BeginProg
 Scan(10, msec,0,SIZE_FFT)
 i=i+1
 X(i) = DC + Sin(PI/8+2*PI*CYCLESperT*i/SIZE_FFT) *
 AMPLITUDE + Sin(PI/2+PI*i)
 Next Scan
 CallTable(Amp)
 CallTable(AmpPhase)
 CallTable(Power)
 CallTable(PSD)
 CallTable(FFT)
 for i = 1 to SIZE_FFT ' get result back into y()
 y(i) = FFT.x_fft(i,1)
 next
 CallTable(IFFT) ' inverse, result is the same as x()

EndProg

6-16

Section 6. Data Table Declarations and Output Processing Instructions

FieldNames “list of fieldnames”
The FieldNames instructions may be used to override the fieldnames that the
CR9000X generates for results sent to the data table. Fieldnames must
immediately follow the output instruction creating the data fields. Fieldnames
are limited to 19 characters. Individual names may be entered for each result
generated by the previous output instruction or an array may used to name
multiple fields.

When the program is compiled, the CR9000X will determine how
many fields are created. If the list of names is greater than the
number of fields the extra names are ignored. If the number of
fields is greater than the number names in the list of fieldnames,
the default names are used for the remaining fields.

NOTE

When the program is compiled, the CR9000X will determine how many fields
are created. If the list of names is greater than the number of fields the extra
names are ignored. If the number of fields is greater than the number names in
the list of fieldnames, the default names are used for the remaining fields.

Example 1
Sample(4, Temp(1), IEEE4)
FieldNames “IntakeT, CoolerT, PlenumT, ExhaustT”

The 4 values from the variable array temp are stored in the output table with the
names IntakeT, CoolerT, PlenumT, and ExhaustT.

Example 2
Sample(4, Temp(1), IEEE4)
FieldNames “IntakeT, CoolerT”

The 4 values from the variable array Temp are stored in the output table with 2
individual names and the remainder of the default array Temp:
IntakeT, CoolerT, Temp(3), and Temp(4),

Example 3
Sample(4, Temp(1), IEEE4)
FieldNames “IntakeT(2)”

The 4 values from the variable array Temp are stored in the output table with
IntakeT, an array of 2, and the remainder of the default array Temp:
IntakeT(1), IntakeT(2), Temp(3), and Temp(4),

Fieldnames can also be used to put the programmer’s description of the field
into the “Process” field. The description for each field is entered using a colon
and description following the fieldname.

FieldNames(“fieldname1:Description1,fieldname2:Description2,…”)

The ‘ : ’ character indicates the start of the description. Descriptions can have
any characters in them except commas. The description is optional.

6-17

Section 6. Data Table Declarations and Output Processing Instructions

The description is appended to the variable's Processing field (e.g. Avg, Smp) in
the Data Table header.

The maximum size of the Processing Field is 64 characters. This leaves up to
60 characters for the description. A compile error is issued if the user’s
description won’t fit.

Histogram (BinSelect, DataType, DisableVar, Bins, Form, WtVal, LowLim,
UpLim)

The Histogram instruction processes input data as either a standard histogram
(frequency distribution) or a weighted value histogram.

The standard histogram is a representation of the frequency distribution, within
a set of sub-ranges or bins, of the BinSelect variable value. A bin value is
incremented whenever the BinSelect input falls within the sub-range associated
with that bin and the DisableVar parameter is false. To create a standard
histogram, enter a constant for the WtValue parameter. Set the WtValue to 1
in order to increment one of the bins by 1 each time the Data Table is called.

At the time of output, the value that is stored to the data table for each bin can
be either, the current incremented value (set the second digit of the Form
variable to 1) or, the value divided by the summation of all the bin values
(second digit of the Form variable is set to 0). Enter 1 for the WtValue
parameter and 0 for the second digit of the Form parameter to output the
fraction of the frequency that the bin select value was within the bin range (sum
of all bin values will be 1). Set WtValue to 100 in order to output in
percentage (sum of all bins will be 100).

Use a variable for the WtVal parameter to create a weighted value histogram. .
The weighted value histogram, instead of adding a constant value to a bin, adds
the current value of the WtVal variable each time the instruction is executed.
The sub-range that the BinSelect's value is in determines the bin to which the
weighted value is added. As with the standard histogram, when the histogram
is stored to the data table, the value accumulated in each bin can be output or,
the bin values can be divided by the summation of all of the bins' values
(determined by the Form argument). A common use of a closed form weighted
value histogram is the wind speed rose. Wind speed values (the weighted value
input) are accumulated into corresponding direction sectors (Bin Select input).

At the user's option, the histogram may be either closed or open. The open
form includes all values below the lower range limit in the first bin and all
values above the upper range limit in the last bin. When the BinSelect
variable's value is NAN, the open form will increment the upper bin. The
closed form excludes any values falling outside the histogram range. It should
be noted that when using closed form, and setting up the histogram to divide by
total counts, that the time that the BinSelect value is out side of the histogram's
range will be ignored.

For example: Histogram is set up as closed form and the WtValue is set at 100.
If the BinSelect value is outside of the histogram's range 50% of the time (50%
of the time, none of the bin values are being incremented), the accumulated
total output of all of the bin's values will still add up to 100. For this example,
let us assume that Bin 4 has a value of 30. This could lead someone to believe

6-18

Section 6. Data Table Declarations and Output Processing Instructions

that the value of BinSelect was within Bin 4's range 30 percent of the time of
the Data Table's output rate. In reality, it is only 1/2 of that (15% of the time)
because 50% of the time, none of the bin's values are being incremented.

The difference between the closed and open form is shown in the following
example for temperature values:

Lower range limit 10° C
Upper range limit 30° C
Number of bins 10
 Closed Form Open Form
Range of first bin 10 to <12° < 12°
Range of last bin 28 to <30° > 28°

Parameter
& Data Type

Enter HISTOGRAM PARAMETERS
BinSelect
Variable or
Array

The variable that is tested to determine which bin is selected. The histogram 4D instruction requires an
array dimensioned with at least as many elements as histogram dimensions.

DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 UINT2 21 2 Byte unsigned integer
 Long 20 4 Byte Integer value
DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not included in the histogram. The
histogram that is eventually stored includes the inputs that occurred while the disable variable was 0. The
Disable variable can be used to remove NANs from the results of the histogram (use "BinSelect = NAN"
for the DisableVar expression).
Special use case: Set equal to 12345 and the histogram will reset after it outputs.

 Set equal to -12345 and the histogram will reset immediately.
 Value Result
 0 Process current input
 ≠ 0 Do not process current input
Bins
Constant

The number of bins or subranges to include in the histogram bin select range. The width of each
subrange is equal to the bin select range (UpLim - LowLim) divided by the number of bins.

Form
Constant

The Form argument is 3 digits - ABC

 Code Form
 A = 0 Reset histogram after each output.
 A = 1 Do not reset histogram.

See DisableVar for
override function

 B = 0 Divide bins by total count.
 B = 1 Output total in each bin.
 C = 0 Open form. Include outside range values in end bins.
 C = 1 Closed form. Exclude values outside range.
 101 means: Do not reset. Divide bins by total count. Closed form.
WtVal
Constant or
Variable

The variable name of the weighted value. Enter a constant for a frequency distribution of the BinSelect
value.

LowLim
Constant

The lower limit of the range covered by the bin select value.

UpLim
Constant

The upper limit of the range of the bin select value.

6-19

Section 6. Data Table Declarations and Output Processing Instructions

Histogram4D (BinSelect, DataType, DisableVar, Bins1, Bins2, Bins3,
Bins4, Form, WtVal, LowLim1, UpLim1, LowLim2, UpLim2, LowLim3,
UpLim3, LowLim4, UpLim4)

Processes input data as either a standard histogram (frequency distribution) or a
weighted value histogram of up to 4 dimensions. For a 2-D histogram, enter 1
for the Bins2 and Bins3 parameters. For a 3-D histogram, enter 1 for the Bins4
parameter.

The description of the Histogram instruction also applies to the Histogram4D
instruction. The difference is that the Histogram4D instruction allows up to
four bin select inputs (dimensions). The bin select values are specified as
variable array. Each of the bin select values has its own range and number of
bins.

Output: For a 4Dim histogram with # of Bins in each dimension as follows:
of Bins in first Dimension (Bins1) = B1
of Bins in second Dimension (Bins2) = B2
of Bins in third Dimension (Bins3) = B3
of Bins in fourth Dimension (Bins4) = B4

The total number of bins is the product of the number of bins in each dimension
(B1 x B2 x B3 x B4). The output would be arranged sequentially in the order:

[Bin(1,1,1,1), Bin(1,1,1,2), … Bin(1,1,1,B4), Bin(1,1,2,1), Bin(1,1,2,2), ...
Bin(1,1,2,B4), Bin(1,1,3,1), Bin(1,1,3,2) ... Bin(1,1,3,B4) ... Bin(1,1,B3,1),
Bin(1,1,B3,2), ... Bin(1,1,B3,B4), Bin(1,2,1,1), Bin(1,2,1,2), ...
Bin(1,2,1,B4), Bin(1,2,2,1), ... Bin(1,2,2,B4), Bin(1,2,3,1), Bin(1,2,3,2), ...
Bin(1,2,B3,1), Bin(1,2,B3,2) ... Bin(1,2,B3,B4), Bin(1,3,1,1), Bin(1,3,1,2), ...
Bin(1,B2,B3,B4), Bin(2,1,1,1), ... Bin(B1,B2,B3,B4).

So if B1 = B2 = B3 = B4 = 2 (2 Bins in each dimension) then the output order
would be:

Bin(1,1,1,1), Bin(1,1,1,2), Bin(1,1,2,1), Bin(1,1,2,2),
Bin(1,2,1,1), Bin(1,2,1,2), Bin(1,2,2,1), Bin(1,2,2,2),
Bin(2,1,1,1), Bin(2,1,1,2), Bin(2,1,2,1), Bin(2,1,2,2),
Bin(2,2,1,1), Bin(2,2,1,2), Bin(2,2,2,1), Bin(2,2,2,2)

Histogram4D Output Example
Public mAmps
Public Volts
Dim Bin(2)
Units Bin = Percent
DataTable ("HIST4D",1,100) 'Output Table
 DataInterval(0,1,Sec,100)
 HISTOGRAM4D(Bin(), IEEE4, 0, 2, 4, 0, 0, 001, 100, 12, 14, -25, 3000, 0, 0, 0, 0)
EndTable
BeginProg
 Scan (1, mSec,0,0)
 Battery(Volts, 0) 'main battery volts
 Battery(mAmps, 1) 'main battery current
 Bin(1) = Volts
 Bin(2) = mAmps
 CallTable HIST4D
 Next Scan
EndProg

6-20

Section 6. Data Table Declarations and Output Processing Instructions

LevelCrossing (Source, DataType, DisableVar, NumLevels, 2ndDim,
CrossingArray, 2ndArray, Hysteresis, Option)

Processes data with the Level Crossing counting algorithm.
Parameter
& Data Type

Enter LEVELCROSSING PARAMETERS
Source
Variable or
Array

The variable that is tested to determine if it crosses the specified levels. If a two dimensional level
crossing is selected, the source must be an array. The second element of the array (or the next element
beyond the one specified for the source) is the variable that is tested to determine the second dimension
of the histogram.

DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 UINT2 21 2 Byte unsigned integer
 Long 20 4 Byte Integer value
DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not included in the histogram. The
histogram that is eventually stored includes the inputs that occurred while the disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input
NumLevels
Constant

The number levels on which to count crossings. This is the number of bins in which to store the number
of crossings for the associated level. The actual levels are input in the Crossing Array. A count is added
to a bin when the Source goes from less than the associated level to greater than the associated level
(Rising edge or positive polarity). Or if Falling edge or negative polarity is selected, a count occurs if
the source goes from greater than the level to less than the level.

2ndDim
Constant

The second dimension of the histogram. The total number of bins output = NumLevels*2ndDim. Enter
1 for a one dimensional histogram consisting only of the number of level crossings. If 2ndDim is greater
than 1, the element of the source array following the one tested for level crossing is used to determine
the second dimension.

Crossing
Array
Arrayt

The name of the Array that contains the Crossing levels to check. Because it does not make sense to
change the levels while the program is running, the program should be written to load the values into the
array once before entering the scan.

2ndArray
Array

The name of the Array that contains the levels that determine the second dimension. Because it does not
make sense to change the levels while the program is running, the program should be written to load the
values into the array once before entering the scan.

Hysteresis
Constant

The minimum change in the source that must occur for a crossing to be counted.

Optiont The Option code is 3 digits - ABC

Constant Code Form
 A = 0 Count on falling edge (source goes form > level to <level)
 A = 1 Count on rising edge (source goes from < level to >level)
 A = 2 Standard. Counts when the signal crosses positive and zero crossing

levels while rising (positive slope), and when the signal crosses
negative crossing levels while falling (negative slope).

 B = 0 Reset histogram counts to 0 after each output.
 B = 1 Do not reset histogram; continue to accumulate counts.
 C = 0 Divide count in each bin by total number of counts in all bins.
 C = 1 Output total counts in each bin.
 101 means: Count on rising edge, reset count to 0 after each output, output counts.

6-21

Section 6. Data Table Declarations and Output Processing Instructions

The output from a LevelCrossing instruction is a one or two dimensional Level
Crossing Histogram. The first dimension is the levels crossed; the second
dimension, if used, is the value of a second input at the time the crossings were
detected. The total number of bins in the histogram = NumLevels*2ndDim.
For a one dimensional level crossing histogram, enter 1 for 2ndDim.

The source value may be the result of a measurement or calculation. Each time
the data table with the Level Crossing instruction is called, the source is
checked to see if its value has changed more then the hysteresis from the
previous value and, if so, has the signal crossed any of the specified crossing
levels. Only when the value of the first Source element crosses one or more
of the levels set by the Crossing Array, is the count of one or more
(dependent on how many levels were crossed) of the histogram bins
incremented. The second Source element is compared to the values in the
SecondArray only when a level crossing by the first source element has
occurred.

Histogram's First Dimension: The first dimension of the histogram is broken
up into discrete Crossing Levels according to the values in the Crossing
Array. The number of Crossing Levels is set by the NumLevels argument.
Therefore, the Crossing Array must be dimensioned to at least the value of the
NumLevels argument.

Histogram's Second Dimension: If a two dimensional Level Crossing
histogram is desired, then the 2ndDim argument (sets the number of Boundary
level values that the second Source element will be compared to) must be
greater than one. The second dimension boundary levels are set by the values
in the 2ndArray. The 2ndArray must be dimensioned to at least the value of
the 2ndDim argument.

Crossing and Boundary Levels: The crossing levels (CrossingArray) for the
first source element and the upper boundary levels (SecondArray) for the
second source element are not specified in the LevelCrossing instruction, but
are contained in variable arrays. This allows the levels to be spaced in any
manner the programmer desires. If a second array is used (SecondDim > 1,
with values loaded into SecondArray), a two dimensional histogram is created.
The levels should be loaded into the arrays sequentially from the lowest
values to the highest.

The array specifying the boundaries of the second dimension is loaded with the
upper limits for each bin. The first bin of the second dimension is always
“open”. Any value less than the specified boundary is included in this bin. The
last bin of the second dimension is always “closed”. It only includes values
that are less than its upper boundary and greater than or equal to the upper
boundary of the previous bin. If you want the histogram to be “open” on both
ends of the second dimension, enter an upper boundary for the last bin that is
greater than any possible second dimension source value.

The hysteresis determines the minimum change in the input that must occur
before a crossing is counted. If the value is too small, “crossings” could be
counted which are in reality just noise. For example, suppose 5 is a crossing
level. If the input is not really changing but is varying from 4.999 to 5.001, a
hysteresis of 0 would allow all these crossings to be counted. Setting the
hysteresis to 0.1 would prevent this noise from causing counts.

6-22

Section 6. Data Table Declarations and Output Processing Instructions

The value of each element (bin) of the histogram can be either the actual
number of times the signal crossed the level associated with that bin, or it can
be the fraction of the total number of crossings counted that were associated
with that bin (i.e., number of counts in the bin divided by total number of
counts in all bins).

Output: If the number of Level Crossing values equals L (NumLevels = L),
and the number of secondary ranges equals R (SecondDim = R), then the total
number of bins would be the product of L and R. The output is arranged
sequentially in the order [Bin(1,1), Bin(1,2), … Bin(1,R), Bin(2,1), Bin(2,2),
Bin(2,3), … Bin(L,1), Bin(L,2) …. Bin(L,R)]. Shown in a two dimensional
array, the output would look like:

 2nd Dimensional Values
 Bin(1,1), Bin(1,2) Bin(1,R)
 Bin(2,1), Bin(2,2) Bin(2,R)

 Level ·· ·
 Crossing · ·
 Values · ·
 Bin(L,1), Bin(L,2) Bin(L,R)

0
0.5

1
1.5

2
2.5

3
3.5

0 1 2 3 4 5 6
Sample Number

Si
gn

al
 L

ev
el

FIGURE 6.4-1. Example Crossing Data

One Dim Level Crossing Example: As an example of the level crossing
algorithm, assume we have a one dimension 3 bin level crossing histogram (the
second dimension =1) and are counting crossings on the rising edge. The
crossing levels are 1, 1.5, and 3. Figure 6.4-1 shows some example data.

Going through the data point by point:

Point

Source

Action

Bin 1
(level=1)

Bin 2
(level=1.5)

Bin 3
(level=3)

1 0.5 First value, no counts 0 0 0

2 1.2 Signal crossed 1, 1 count to bin 1 1 0 0
3 1.4 No levels crossed, no counts 1 0 0
4 0.3 Falling level crossing, no counts 1 0 0
5 3.3 Add one count to first, second, and third

bins, the signal crossed 1, 1.5 and 3.
2 1 1

6-23

Section 6. Data Table Declarations and Output Processing Instructions

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

Sample Number

Si
gn

al
 L

ev
el

Crossing Levels
Crossing Source
2nd Dim Boundary
2ndDim Source

FIGURE 6.4-2. Crossing Data with Second Dimension Value

2 Dim Level Crossing Example: Figure 6.4-2 depicts the data input for a two
dimensional level crossing histogram that has three level crossing values (1,
1.5, 3) and three SecondDim values (1.25, 2.25, 3.25). This results in a level
crossing histogram having 9 bins. In this example, a count would go to bin:

Bin(1,1) when LC Crosses 1 and 2nd Value < 1.25
Bin(1,2) when LC Crosses 1 and 1.25 ≤ 2nd Value < 2.25
Bin(1,3) when LC Crosses 1 and 2.25 ≤ 2nd Value < 3.25
Bin(2,1) when LC Crosses 1.5 and 2nd Value < 1.25
Bin(2,2) when LC Crosses 1.5 and 1.25 ≤ 2nd Value < 2.25
Bin(2,3) when LC Crosses 1.5 and 2.25 ≤ 2nd Value < 3.25
Bin(3,1) when LC Crosses 3 and 2nd Value < 1.25
Bin(3,2) when LC Crosses 3 and 1.25 ≤ 2nd Value < 2.25
Bin(3,3) when LC Crosses 3 and 2.25 ≤ 2nd Value < 3.25

Using the sample data depicted in Figure 6.4-2, the values loaded in to the
LevelCrossing bins are as listed under Action below:

 Crossing 2nd Dim
Point Source Source Action
 1 0.5 0.7 First value, no counts
 2 1.2 1.8 Add 1 count to Bin(1,2). LC signal crossed1,

2nd value = 1.8
 3 1.4 0.7 No levels crossed, no counts
 4 0.3 0.7 Falling Edge crossing, no counts
 5 3.3 2.7 Add 1 to Bins(1,3),(2,3),&(3,3). LC signal

crossed 1,1.5, & 3, 2nd value=2.7

6-24

Section 6. Data Table Declarations and Output Processing Instructions

Maximum (Reps, Source, DataType, DisableVar, Time)
This instruction stores the Maximum value that occurs in the specified Source
variable over the output interval. Time of maximum value(s) is Optional
output information, which is selected by entering the appropriate code in the
time parameter. NANs are ignored by this output processing instruction.

Parameter Enter MAXIMUM PARAMETERS
Reps
Constant

The number of maximum values to determine. When repetitions are greater than 1, the source must be
an array..

Source
Variable

The name of the Variable that is the input for the instruction.

DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 UINT2 21 2 Byte unsigned integer
 Long 20 4 Byte Integer value
DisableVar
Constant,
Variable, or

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not checked for a new maximum. The
maximum that is eventually stored is the maximum that occurred while the disable variable was 0.

Expression Value Result
 0 Process current input
 ≠ 0 Do not process current input
Time Option to store time of Maximum. When time is output, the maximums for all reps are output first

followed by the respective times at which they occurred.
Constant Value Result
 0 Do not store time
 1 Store time Time of max is stored in the NSec format.

Median
The Median instruction stores the median value over time of a variable to an
output table.

Syntax
Median(Reps, Source, MaxN, DataType, DisableVar)
Remarks
Median is an output instruction that is included within a data table declaration.
Each time the DataTable is called and the DisableVar is False, the current
Source value is stored to an array in internal memory. This array is
dimensioned with MaxN number of elements. Therefore, no more than MaxN
values are retained in memory. If MaxN + 1 number of stored values is reached
before the DataTable output is triggered, then the oldest stored value in the
array will be discarded.

When the DataTable's output condition is True, the instruction outputs the
Median of the values in memory to the DataTable, and then memory for the
instruction is cleared. If the number of values for which the median is
calculated is an even number, the two median values will be averaged.

NANs and +INFs are considered to be the most minimum values in the
determination of the Median.

6-25

Section 6. Data Table Declarations and Output Processing Instructions

Parameter &
Data Type

Enter MEDIAN PARAMETERS
Reps
Constant

Number of variables for which to calculate a median (separate median will be calculated
for each variable). If Reps parameter is greater than 1, an array must be specified for
Source. If not, a Variable Out of Bounds error will be returned when the program is
compiled.

Source Variable
Array

The name of the variable(s) for which the median(s) should be calculated.

MaxN Variable
Array

The maximum number of values, for each median, that the datalogger should maintain in
memory for the instruction, from which the median will be calculated.

DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 UINT2 21 2 Byte unsigned integer
 Long 20 4 Byte Integer value
DisableVar A non-zero value will disable intermediate processing: input is not included in the

Covariance.
Constant, Value Result
Variable, or 0 Process current input
Expression ≠ 0 Do not process current input

Minimum (Reps, Source, DataType, DisableVar, Time)
This instruction stores the Minimum value that occurs in the specified Source
variable over the output interval. Time of minimum value(s) is optional output
information, which is selected by entering the appropriate code in the time
parameter. NANs are ignored by this output processing instruction.

Parameter
& Data Type

Enter MINIMUM PARAMETERS
Reps
Constant

The number of minimum values to determine. When repetitions are greater than 1, the source must be an
array..

Source
Variable

The name of the Variable that is the input for the instruction.

DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 UINT2 21 2 Byte unsigned integer
 Long 20 4 Byte Integer value
DisableVar
Constant,
Variable, or

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not checked for a new minimum. The
minimum that is eventually stored is the minimum that occurred while the disable variable was 0.

Expression Value Result
 0 Process current input
 ≠ 0 Do not process current input
Time
Constant

Option to store time of Minimum. When time is output, the minimum values for all repetitions are
output first followed by the times at which they occurred.

 Value Result
 0 Do not store time
 1 Store time Time of max is stored in the NSec format

6-26

Section 6. Data Table Declarations and Output Processing Instructions

Moment
The Moment instruction is used to output the mathematical moment of a value
over the output interval. Orders 2 through 5 are supported by this instruction.

Syntax
Moment(Reps, Source, Order, DataType, DisableVar)

Parameter Enter MOMENT PARAMETERS
Reps
Constant

Number of values for which to calculate a moment. If the Reps parameter is greater than 1, an array must
be specified for Source or a Variable Out of Bounds error will be returned when program is compiled.

Source (Var) Name of the variable for which a moment should be saved.
Order The Order parameter is the order of polynomial to be used when calculating the moment.
Constant or Order Description
Variable 2 sum over i (x(i) - Mean)^2 .This moment may also be used to calculate the variance
 3 sum over i (x(i) - Mean)^3. This moment may also be used to calculate the skewness
 4 sum over i (x(i) - Mean)^4. This moment may also be used to calculate the kurtosis
 5 sum over i (x(i) - Mean)^5. This moment may also be used to calculate Univariate and

Multivariate Non-normal Distributions
DataType
Constant

The DataType parameter is used to select the format in which to save the data.

DisableVar
Const, Var, Exp

Used to determine whether the current measurement is included in the output saved to the DataTable. 0 =
Process current measurement; non-zero = Do not process current measurement.

RainFlow (Source, DataType, DisableVar, MeanBins, AmpBins, LowerLimit,
UpperLimit, MinAmp, Form)

Processes data with the Rainflow counting algorithm, essential to estimating
cumulative damage fatigue to components undergoing stress/strain cycles. The
algorithm is based on the work done by Stephen Downing and Darrell Socie,
which is documented in Volume 4 Issue 1 of the International Journal of
Fatigue (Jan 1982).

The input signal is processed into either a one or a two dimensional Rainflow
Histogram. The first dimension represents the amplitude of the closed loop
cycle (i.e., the distance between peak and valley); the second, optional,
dimension is the mean of the cycle (i.e., [peak value + valley value]/2). To
perform a 1 dimensional histogram (based solely on the Amplitude of the
cycles), enter 1 for the MeanBins parameter .

The value recorded in each element (bin) of the histogram can either be the
actual number of closed loop cycles that had the amplitude and mean value
associated with that bin, or the ratio of the number of cycles having mean and
amplitude values in the specific bin's range with respect to the total number of
cycles that were counted (i.e. : number of cycles in bin divided by total number
of cycles counted).

The range sizes for the Amplitude Bins are calculated by dividing the
difference between the upper (UpperLim) and lower (LowerLim) limits of the
Mean bins by the number of amplitude ranges (AmpDim).

The MeanBin's range sizes are calculated, similar to the Amp's range size, by
dividing the difference between the upper (UpperLim) and lower (LowerLim)
limit values for the Mean Bins by the number of mean ranges (MeanDim). The
actual range values start at the lower limit (LowLim).

6-27

Section 6. Data Table Declarations and Output Processing Instructions

Output Generated: The number of elements in the output array that is stored to
the Data Table is equal to (Number of Mean Bins) x (Number of Amplitude
Bins). If the number of mean ranges equals M, and the number of amplitude
ranges equals A, then the output is arranged sequentially in the order

[C(1,1), C(1,2), … C(1,A), C(2,1), C(2,2), … C(M,1), C(M,2) … C(M,A)].

Shown in a two dimensional array, the output would look like:

 # of Amplitude Range Values
C1,1 C1,2 . . . C1,A
C2,1 C2,2 . . . C2,A

of

 M
ea

n
R

an
ge

s
CM,1 CM,2 . . . CM,A

The minimum distance between peak and valley, MinAmp, determines the
smallest amplitude cycle that will be counted. The distance should be less than
the amplitude bin width ([UpperLimit - LowerLimit]/no. amplitude bins) or
cycles with amplitudes in the range of the first bin will not be counted.
However, if the MinAmp value is set too small, processing time will be
consumed counting "cycles" which are in reality just noise.

The histogram can have either open or closed form. In the open form, an cycle
that has an amplitude greater than the range of the maximum bin is counted in
one of the maximum Amp bins. Also, a cycle that has a mean value less than
the lower limit or greater than the upper limit is counted in one of the minimum
or maximum mean bins. In the closed form, a cycle that is beyond the
amplitude or mean limits is not counted.

Rainflow Example: Parameter Settings
Set Mean's LowerLimit to -500 LowLim = -500
Set Mean's UpperLimit to 500 UpLim = 500
The number of mean rows is 2 MeanDim = 2
The number of amplitude columns is 5 AmpDim = 5
Data Type IEEE4
Disable Variable (don't process NANs) Souce = NAN in DisableVar
Don't reset, output total, open form Form = 110

The instruction would look like:
RainFlow (Source, IEEE4, Source = NAN, 2, 5, -500,500, 10, 110)

Resultant Amplitude Bin Settings
Full amplitude range is 1000: 500 - (-500) = 1000.
Individual amplitude column size is 200: 1000/5 = 20.
1rst column includes cycles with amplitude values: 0 ≤ A < 200
2nd column includes cycles with amplitude values: 20 ≤ A < 400
3rd column includes cycles with amplitude values: 40 ≤ A < 600
4th column includes cycles with amplitude values: 60 ≤ A < 800
5th column includes cycles with amplitude values: 80 ≤ A < 1000

Resultant Mean Row Settings
Full mean range is 1000 500 - (-500) = 1000.
Individual mean bin row range is 500 1000/2 = 500.
1rst row includes cycles having mean values: -500 ≤ M < 0
2nd row includes cycles having mean values: 0 ≤ M < 500

6-28

Section 6. Data Table Declarations and Output Processing Instructions

Given this, the count would be output to bin:
C(1,1) when 0 ≤ Amp < 200 and -500 ≤ Mean < 0
C(1,2) when 200 ≤ Amp< 400 and -500 ≤ Mean < 0
C(1,3) when 400 ≤ Amp < 600 and -500 ≤ Mean < 0
C(1,4) when 600 ≤ Amp < 800 and -500 ≤ Mean < 0
C(1,5) when 800 ≤ Amp < 1000 and -500 ≤ Mean < 0
C(2,1) when 0 ≤ Amp < 200 and 0 ≤ Mean < 500
C(2,2) when 200 ≤ Amp< 400 and 0 ≤ Mean < 500
C(2,3) when 400 ≤ Amp < 600 and 0 ≤ Mean < 500
C(2,4) when 600 ≤ Amp < 800 and 0 ≤ Mean < 500
C(2,5) when 800 ≤ Amp < 1000 and 0 ≤ Mean < 500

Shown in a Table format:
 Amplitude Column Bin Ranges
Mean Range 0 to 200 200 to 400 400 to 600 600 to 800 800 to 1000

-500 to 0
BIN 1 :
C(1,1)

BIN 2 :
C(1,2)

BIN 3 :
C(1,3)

BIN 4 :
C(1,4)

BIN 5 : C(1,5)

0 to 500
BIN 6 :
C(2,1)

BIN 7 :
C(2,2)

BIN 8 :
C(2,3)

BIN 9 :
C(2,4)

BIN 10 :
C(2,5)

Rainflow Example Continued: Assume a member is going through a stress
cycle with peaks and values shown in the graph below, using the instruction set-
up as shown previous in this example.

CYCLIC STRESS

100

-500

450

50

200

-300

100

-500

-600

-400

-200

0

200

400

600

0 1 2 3 4 5 6 7 8 9

Peak Values

St
re

ss
/S

tr
ai

n
Va

lu
es

The first stress cycle that would be counted is from 50 to 200 as shown below.
The amplitude of this stress cycle is 150 and the mean is 125, so the count
would go into bin 6, the cycle removed, and the 450 point would be connected
to the -300 point.

CYCLIC STRESS

100

-500

450

50

200

-300

100

-500

-600

-400

-200

0

200

400

600

0 1 2 3 4 5 6 7 8 9

Peak Values

St
re

ss
/S

tr
ai

n
Va

lu
es

CYCLIC STRESS

100

-500

450

-300

100

-500

-600

-400

-200

0

200

400

600

0 1 2 3 4 5 6 7 8 9

Peak Values

St
re

ss
/S

tr
ai

n
Va

lu
es

6-29

Section 6. Data Table Declarations and Output Processing Instructions

The next stress cycle to get counted would be the -300 to 100 cycle depicted
below. It would have an amplitude value of 400 and a mean value of -200, thus
a count would be added to bin 3. A new vector from 950 to 0 would be drawn.

CYCLIC STRESS

100

-500

450

-300

100

-500

-600

-400

-200

0

200

400

600

0 1 2 3 4 5 6 7 8 9

Peak Values

St
re

ss
/S

tr
ai

n
Va

lu
es

CYCLIC STRESS

100

-500

450

-500

-600

-400

-200

0

200

400

600

0 1 2 3 4 5 6 7 8 9

Peak Values

St
re

ss
/S

tr
ai

n
Va

lu
es

At this point, we are out of new data points, and we will assume that the Data
Table's output has been triggered. We would bring across the 100 and -500
points to finish off the output for the rainflow histogram. We would count a
stress cycle from -500 to 100 that has an amplitude value of 600 and a mean
value of -200, resulting in a count being added to Bin 3. We would then add
one last stress cycle from -500 to 450, with an amplitude value of 950 and a
mean value of -25. This count would go into bin 5.

CYCLIC STRESS

-500

450

-500

100

-500

-600

-400

-200

0

200

400

600

0 2 4 6 8 10 12 1

Peak Values

St
re

ss
/S

tr
ai

n
Va

lu
es

Starting
Point

4

The result of these counts is shown in the table below:

 Amplitude Column Bin Ranges
Mean Range 0 to 200 200 to 400 400 to 600 600 to 800 800 to 1000

-500 to 0
BIN 1 :

0
BIN 2 :

0
BIN 3 :

2
BIN 4 :

0
BIN 5 :

1

0 to 500
BIN 6 :

1
BIN 7 :

0
BIN 8 :

0
BIN 9 :

0
BIN 10 :

0

The record stored to the Data Table would look something like:

Time Stamp, Record Number, 0,0,2,0,1,1,0,0,0,0

6-30

Section 6. Data Table Declarations and Output Processing Instructions

Parameter
& Data Type

Enter RAINFLOW PARAMETERS
Source
Variable

The variable that is tested to determine which bin is selected

DataType A code to select the data storage format. Read more: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 UINT2 21 2 Byte unsigned integer
 Long 20 4 Byte Integer value
DisableVar
Constant,
Variable, or

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not included in the histogram. The
histogram that is eventually stored includes the inputs that occurred while the disable variable was 0. The
Disable variable can be used to remove NANs from the results of the histogram (use "Source = NAN"
for the DisableVar expression). Special use case: Set equal to 12345 and the histogram will reset
after it outputs. Set equal to -12345 and the histogram will reset immediately.

Expression Value Result
 0 Process current input
 ≠ 0 Do not process current input
MeanBins
Constant

The number of bins or subranges to sort the mean value of the signal during a stress strain cycle into.
Enter 1 to disregard the signal value and only sort by the amplitude of the signal. The width of each
subrange is equal to the HiLimit - LowLimit divided by the number of bins. The lowest bin’s minimum
value is the low limit and the highest bin’s maximum value is the High limit

AmpBins
Constant

The number of bins or subranges to sort the amplitude of a stress strain cycle into. The width of each
subrange is equal to the HiLimit - LowLimit divided by the number of bins.

LowLim
Constant

Enter the lowest input signal anticipated. Used for the floor of the lowest Mean Range. The difference
between the LowLimit and UpLimit is divided by the # of Amp Bins to get the Amp Bin ranges.

UpperLim
Constant

Enter the highest input signal anticipated. Used for the ceiling of the highest Mean Range. The
difference between the LowLimit and UpLimit is divided by the # of Amp Bins to get the Amp Bin
ranges.

MinAmp
Constant

The minimum amplitude that a stress strain cycle must have to be counted.

Form The Form code is 3 digits - ABC
Constant Code Form
 A = 0 Reset histogram after each output.
 A = 1 Do not reset histogram.
 B = 0 Divide bins by total count.
 B = 1 Output total in each bin.
 C = 0 Open form. Include outside range values in end bins.
 C = 1 Closed form. Exclude values outside range.
 101 means: Do not reset. Divide bins by total count. Closed form.

SampleFieldCal

This instruction stores the most recent value(s) in the FieldCal file to a data
table. Normally, the NewFieldCal function is used as the trigger in the
DataTable instruction to trigger the Table output when a new FieldCal function
has been performed. See the FieldCal in Section 9.2 Datalogger
Status/Control for program example.

6-31

Section 6. Data Table Declarations and Output Processing Instructions

Sample (Reps, Source, DataType)
This instruction stores the current value(s) at the time of output from the
specified variable or array.

Parameter
& Data Type

Enter SAMPLE PARAMETERS
Reps
Constant

The number of values to sample. When repetitions are greater than 1, the source must be an array.

Source
Variable

The name of the Variable to sample.

DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 BOOL8 17 1 Byte Boolean value
 Long 20 4 Byte Integer value
 Nsec 8 Byte timestamp
 String Size set by variable declaration in program
 UINT2 21 2 Byte Unsigned integer

SampleMaxMin (Reps, Source, DataType, DisableVar)
The SampleMaxMin instruction is used to sample one or more variable(s)
when another variable (or any variable in an array of variables) reaches its
maximum or minimum for the defined output period.

The SampleMaxMin instruction is placed inside a DataTable declaration,
following the Maximum or Minimum instruction that will be used trigger the
sample. SampleMaxMin samples whenever a new maximum or minimum is
detected in the preceding instruction. When a new sample is taken, the previous
value(s) are discarded. The sample(s) recorded in the data table will be those
recorded when the maximum or minimum, for the output interval, occurred.

The number of values output by SampleMaxMin is determined only by its
source and destination parameters; not by repetitions in the preceding
instruction. When the Repetitions parameter for the preceding Maximum or
Minimum instruction is greater than 1, SampleMaxMin will sample whenever
a new maximum or minimum occurs in any of the variables in the
Maximum/Minimum source array. To ensure the sample is taken only when a
new maximum or minimum occurs in a single specific variable, the preceding
Maximum or Minimum instruction must have repetitions=1.

6-32

Section 6. Data Table Declarations and Output Processing Instructions

Parameter
& Data Type

Enter SAMPLEMAXMIN PARAMETERS

Reps
Constant

The number of values to sample. When repetitions are greater than 1, the source
must be an array.

Source
Variable

The Source is the name of the variable or variable array that is sampled when a
new maximum or minimum occurs for the preceding Maximum or Minimum
instruction.

DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Entry Description
IEEE4 IEEE four-byte floating point
FP2 Campbell Scientific two-byte floating point
UINT2 2 Byte unsigned integer

Constant

Long 32 bit long integer
DisableVar
Constant,
Variable or

The DisableVar is a Constant, Variable, or Expression that is used to determine
whether the current measurement is included in the values to evaluate for a
maximum or minimum
Value Result
0 Process current input

Expression

≠0 Do not process current input

StdDev (Reps, Source, DataType, DisableVar)
StdDev calculates the standard deviation of the Source(s) over the output
interval.

δ() / /x x x N Ni i
i

i N

i

i N
= −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟=

=

=

=

∑∑ 2

1

2

1

1

2

()δwhere x is the standard deviation of x, and N is the number of samples

6-33

Section 6. Data Table Declarations and Output Processing Instructions

Parameter
& Data Type

Enter STDDEV PARAMETERS
Reps
Constant

The number of standard deviations to calculate. When repetitions are greater than 1, the source must be
an array.

Source
Variable

The name of the Variable that is the input for the instruction.

DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 UINT2 21 2 Byte unsigned integer
 Long 20 4 Byte Integer value
DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not included in the standard deviation.
The standard deviation that is eventually stored is the standard deviation of the inputs that occurred
while the disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input

Totalize (Reps, Source, DataType, DisableVar)
The Totalize instruction is used to store the total(s) of the values of the
source(s) over the given output interval.

Parameter
& Data Type

Enter TOTALIZE PARAMETERS
Reps
Constant

The number of totals to calculate. When repetitions are greater than 1, the source must be an array.

Source
Variable

The name of the Variable that is the input for the instruction.

DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 UINT2 21 2 Byte unsigned integer
 Long 20 4 Byte Integer value
DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs are processed.
For example, when the disable variable is ≠0 the current input is not included in the total. The total that
is eventually stored is the total of the inputs that occurred while the disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input

6-34

Section 6. Data Table Declarations and Output Processing Instructions

WindVector (Repetitions, Speed/East, Direction/North, DataType,
DisableVar, Subinterval, SensorType, OutputOpt)

WindVector processes wind speed and direction from either polar (wind speed
and direction) or orthogonal (fixed East and North propellers) sensors. It uses
the raw data to generate the mean wind speed, the mean wind vector magnitude,
and the mean wind vector direction over an output interval. Two different
calculations of wind vector direction (and standard deviation of wind vector
direction) are available, one of which is weighted for wind speed.

When used with polar sensors, the instruction does a modulo divide by 360 on
wind direction, which allows the wind direction (in degrees) to be 0 to 360, 0 to
540, less than 0, or greater than 540.

The ability to handle a negative reading is useful where a difficult
to reach wind vane is improperly oriented. For example, a vane
outputs 0 degrees at a true reading of 340 degrees. The simplest
solution is to enter an offset of -20 in the instruction measuring
the wind vane, which results in 0 to 360 degrees following the
modulo divide.

NOTE

When a wind speed sample is 0, the instruction uses 0 to process scalar or
resultant vector wind speed and standard deviation, but the sample is not used
in the computation of wind direction. The user may not want a sample less than
the sensor threshold used in the standard deviation. If this is the case, Write the
datalogger program to check wind speed, and if it is less than the threshold set
the wind speed variable equal to 0 prior to calling the data table.

Parameter
& Data Type

Enter WINDVECTOR PARAMETERS

Repetitions
Constant

Number of wind vector averages to calculate.

Speed/East
Dir/North
Vars or Array

The source variables for wind speed and direction or, in the case of orthogonal sensors,
East and North wind speeds. If repetitions are greater than 1 the source variables must be
arrays containing elements for all repetitions.

DataType A code to select the data storage format. Read More: See Section 4.2.4.4 Data Types
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point
 UINT2 21 2 Byte unsigned integer
 Long 20 4 Byte Integer value
DisableVar
Constant,
Variable, or
Expression

A non-zero value will disable intermediate processing. Normally 0 is entered so all inputs
are processed. For example, when the disable variable is �0 the current input is not
included in the total. The total that is eventually stored is the total of the inputs that
occurred while the disable variable was 0.

 Value Result
 0 Process current input
 ≠ 0 Do not process current input
Subinterval
Constant

Number of samples per sub-interval calculation. Enter 0 for no sub-interval calculations.

SensorType The type of wind sensors
Constant Value Sensor Type
 0 Speed and Direction
 1 East and North

6-35

Section 6. Data Table Declarations and Output Processing Instructions

OutputOpt Value Outputs (for each rep)
Constant 0 1. Mean horizontal wind speed, S.

2. Unit vector mean wind direction, Θ1.
3. Standard deviation of wind direction, σ(Θ1).

Standard deviation is calculated using the Yamartino algorithm. This option
complies with EPA guidelines for use with straight-line Gaussian dispersion
models to model plume transport.

 1 1. Mean horizontal wind speed, S.
Unit vector mean wind direction, Θ1.

 2 1. Mean horizontal wind speed, S.
2. Resultant mean wind speed, U .
3. Resultant mean wind direction, Θu.
4. Standard deviation of wind direction, σ(Θu).

This standard deviation is calculated using Campbell Scientific's wind speed
weighted algorithm.

Use of the Resultant mean horizontal wind direction is not recommended for
straight-line Gaussian dispersion models, but may be used to model transport
direction in a variable-trajectory model.

Standard deviation can be processed one of two ways: 1) using every sample
taken during the output period (enter 0 for the Subinterval parameter), or 2) by
averaging standard deviations processed from shorter sub-intervals of the
output period. Averaging sub-interval standard deviations minimizes the effects
of meander under light wind conditions, and it provides more complete
information for periods of transition1.

Standard deviation of horizontal wind fluctuations from sub-intervals is
calculated as follows:

σ(Θ)=[((σΘ1)2+(σΘ2)2 ...+(σΘM)2)/M]1/2

where σ(Θ) is the standard deviation over the output interval, and σΘ1 ... σΘM
are sub-interval standard deviations.

A sub-interval is specified as a number of scans. The number of scans for a
sub-interval is given by:

Desired sub-interval (secs) / scan rate (secs)

For example if the scan rate is 1 second and the Data Interval is 60 minutes, the
standard deviation is calculated from all 3600 scans when the sub-interval is 0.
With a sub-interval of 900 scans (15 minutes) the standard deviation is the
average of the four sub-interval standard deviations. The last sub-interval is
weighted if it does not contain the specified number of scans.

Measured raw data:
Si = horizontal wind speed
Θi = horizontal wind direction
Uei = east-west component of wind
Uni = north-south component of wind
N = number of samples

1 EPA On-site Meteorological Program Guidance for Regulatory Modeling
Applications.

6-36

Section 6. Data Table Declarations and Output Processing Instructions

Calculations:

The calculations performed under the hood by the WindVector
instruction are described below for informational purposes only.

NOTE

FIGURE 6.4-2. Input Sample Vectors

In Figure 6.4-2, the short, head-to-tail vectors are the input sample vectors
described by and si Θ i , the sample speed and direction, or by Uei and Uni, the
east and north components of the sample vector. At the end of output interval
T, the sum of the sample vectors is described by a vector of magnitude U and
direction Θu. If the input sample interval is t, the number of samples in output
interval T is N T t= / . The mean vector magnitude is U U N= / .

Scalar mean horizontal wind speed, S:

S=(Σsi)/N
where in the case of orthogonal sensors:

Si=(Uei
2+Uni

2)1/2

Unit vector mean wind direction, Θ1:

Θ1=Arctan (Ux/Uy)
where

Ux=(Σsin Θi)/N
Uy=(Σcos Θi)/N

or, in the case of orthogonal sensors

Ux=(Σ(Uei/Ui))/N
Uy=(Σ(Uni/Ui))/N

where Ui=(Uei
2+Uni

2)1/2

Standard deviation of wind direction, σ(Θ1), using Yamartino algorithm:

σ(Θ1)=arc sin(ε)[1+0.1547 ε3]
where,

ε=[1-((Ux)2+(Uy)2)]1/2

sn

Θu
s 2

North

U
s 4

ss 31

East

6-37

Section 6. Data Table Declarations and Output Processing Instructions

and Ux and Uy are as defined above.

Resultant mean horizontal wind speed, : U

=(Ue2+Un2)1/2 U

Un U

Ue

FIGURE 6.4-3. Mean Wind Vector

where for polar sensors:
Ue=(ΣSi Sin Θi)/N
Un=(ΣSi Cos Θi)/N

or, in the case of orthogonal sensors:
Ue=(ΣUei)/N
Un=(ΣUni)/N

Resultant mean wind direction, Θu:

Θu=Arctan (Ue/Un)

Standard deviation of wind direction, σ(Θu), using Campbell Scientific
algorithm:

σ(Θu)=81(1- U

Cos U / s ; where i i(') '

/S)1/2

The algorithm for σ(θu) is developed by noting (Figure 6.4-4) that

 Θ Θ Θ Θi i i u= = −

U Ui

uΘ 'iΘ

si

FIGURE 6.2-3. Standard Deviation of Direction

The Taylor Series for the Cosine function, truncated after 2 terms is:

 Cos (') (') /Θ Θi i≅ −1 22

6-38

Section 6. Data Table Declarations and Output Processing Instructions

For deviations less than 40 degrees, the error in this approximation is less than
1%. At deviations of 60 degrees, the error is 10%.

The speed sample may be expressed as the deviation about the mean speed,

s s' Si i= +

Equating the two expressions for Cos (θ‘) and using the previous equation for
; si

1 22− = +(') / / (')Θi i iU s S

(')Θi
2

(') / (') '/ '/Θ Θi i i iU S s S s S2 22 2 2= − − +

(')Θi
2

Solving for , one obtains;

 i

Summing over N samples and dividing by N yields the variance of Θu.
Note that the sum of the last term equals 0.

 (()) (') / (/) ((') ') /σ Θ Θ Θu N U S s NSi i i
i

N

i

N
2 2 2

11
2 1= = − −

==
∑∑

) /Θ s NS∑ ((') 'i i
2The term, , is 0 if the deviations in speed are not

correlated with the deviation in direction. This assumption has been verified in
tests on wind data by CSI; the Air Resources Laboratory, NOAA, Idaho Falls,
ID; and MERDI, Butte, MT. In these tests, the maximum differences in

 σ σ() ((') /) () ((/))/ /Θ Θ Θu N u U Si= = −∑ 2 1 2 1 22 1 and

have never been greater tan a few degrees.

The final form is arrived at by converting from radians to degrees (57.296
degrees/radian).

σ () ((/)) (/)/ /Θu U S U S= − = −2 1 81 11 2 1 2

6-39

Section 6. Data Table Declarations and Output Processing Instructions

6-40

7-1

Section 7. Measurement Instructions

7.1 Voltage Measurements
VoltDiff – Differential Voltage Measurement... 7-3
VoltSE – Single-ended Voltage Measurement .. 7-4

7.2 Thermocouple Measurements
Measure the output of thermocouples and convert to temperature.
TCDiff – Differential Voltage Measurement of Thermocouple 7-5
TCSE – Single-ended Voltage Measurement of Thermocouple.................. 7-7

7.3 Resistance Bridge Measurements
7.3.1 Electric Bridge Circuits ... 7-9
7.3.2 Bridge Excitation ... 7-9
7.3.3 Half Bridges... 7-10
7.3.4 Full Bridges ... 7-13

7.4 Self Measurements
Battery – Measures Battery Voltage or Current .. 7-15
ModuleTemp – Measures the Temperature of the 9050 Analog Input
Module (used as a reference for thermocouple measurements)................. 7-15
Calibrate – Adjusts the Calibration for Analog Measurements 7-15
BiasComp – Adjusts Analog Input Bias Current Compensation............... 7-15
InstructionTimes - measures time of program instructions 7-15

7.5 Peripheral Devices
AM25T .. 7-16
CS7500 (LI7500)... 7-18
CSAT3... 7-19
SDMAO4... 7-19
SDMCAN .. 7-19
SDMCD16AC ... 7-26
SDMCVO4 .. 7-26

Section 7. Measurement Instructions

7-2

SDM-INT8 Interval Timer... 7-27
SDM-SIO4 - Serial Input Multiplexer ... 7-31
SDM-SW8A - Switch Closure... 7-31
SDMSpeed ... 7-32
SDMTrigger... 7-32
SDMX50 -TRD100 Multiplexer.. 7-33
TDR100 ... 7-34

7.6 Pulse/Timing/State
PulseCount-Pulse/Frequency-Measurement-on-CR9070/CR9071E

Counter-Timer Digital I/O Module ... 7-36
PulseCountReset–Resets-Pulse-Counters .. 7-37
ReadIO –Reads State of Digital I/O Ports on CR9070/CR9071E Module 7-39
TimerIO–Measures-Time-Between-Edges-on-CR9070/CR9071E............ 7-40
WriteIO – Sets Digital Outputs on CR9070/CR9071E Module 7-42

7.7 Serial Sensors
SerialInput –Sets up RS232 port for comms.. 7-42

7.8 CR9052DC & CR9052IEPE Filter Module
VoltFilt... 7-44
SubScan ... 7-46
Filter Module Memory Buffer ... 7-48
FFTFilt ... 7-49
FFTSample... 7-62

Section 7. Measurement Instructions

7-3

7.1 Voltage Measurements
VoltDiff (Dest, Reps, Range, ASlot, DiffChan,

RevDiff, SettlingTime, Integ, Mult, Offset)
Parameter
& Data Type

Enter VOLTDIFF PARAMETERS

Dest
Variable or
Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all of the Reps.

Reps
Constant

The number of repetitions for the measurement.

Range The voltage range for the measurement.
Constant ± 5 Volt Analog Input

Module (Raw output: mVolt)
± 50 Volt Analog Input
Module (Raw Output: Volt,
except mV500 Range: mV)

CR9058E* Isolation Module (Raw
Output: mVolt)

 Alpha
Code

Num
Code

R *
Option
Code

Voltage
Range
(±mV)

Alpha
Code

Num
Code

R *
Option
Code

Voltage
Range

±

Alpha
Code

Num
Code

R * Option
Code

Voltage Range

mV5000 0 100 5000 V50 6 N/A 50 V V60 24 N/A ± 60 V
mV1000 1 101 1000 V10 7 N/A 10 V V20 25 N/A ± 20 V
mV200 4 104 200 V2 10 N/A 2 V V2 10 N/A ± 2 V
mV50 5 105 50 mV500 11 N/A 500 mV V2C 22 N/A ± 2 V

mV200C 16 116 200 Alpha Codes ending with a C signify that the channel will be pulled into

See Section
3.1.2.2 for
more info on
the C & R
range code
options. mV50C 17 117 50 Operational Input Voltage Limits & checked for open input. See Section 3.1.2.2

Differential Voltage Range for details.
ASlot
Constant

The number of the slot that holds the Analog Input Module to be used for the measurement.

DiffChan
Constant

The differential channel number on which to make the first measurement. When Reps are used,
subsequent measurements will be made on the sequential differential channels. Enter a negative number
to dwell on that channel for the number of measurements specified by the Reps parameter (except for
CR9058E).

RevDiff
Constant

Option to reverse inputs to cancel offsets. The sign corrected average of these measurements is used in
the result. This technique cancels voltage offsets in the measurement circuitry but requires twice as
much time to complete the measurement. (CR9058E: All channels on a module must have same setting.)

 Value Description
 0 Inputs are not reversed.
 1 A second measurement is made after reversing the inputs
SettlingTime
Constant

The time in microseconds to delay between setting up a measurement (switching to the channel, setting
the excitation) and making the measurement (10 microsecond resolution). See Section 3.1.3 Signal
Settling Time. Enter 0 when using the CR9058E (Settling Time not used).

Entry

Voltage
 Range

Delay

CR9055 Voltage
Range

Delay

 0 ± 50 mV 20 µS (default) ± 0.5V 40 µS (default)
 0 ± 200 mV 20 µS (default) ± 2 V 40 µS (default)
 0 ± 1000 mV 10 µS (default) ± 10 V 30 µS (default)
 0 ± 5000 mV 10 µS (default) ± 50 V 30 µS (default)
 > 0 all Truncate to closest 10 µS all Truncate to closest 10 µS
Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).
CR9058E*:100 microsecond resolution. All channels on a CR9058 module must have same integration.

Mult, Offset
Constant,
Variable,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. See the measurement
description for the units of the raw result; a multiplier of one and an offset of 0 are necessary to output in
the raw units. CR9050, CR9051E, and CR9058E raw output is in mVolts. CR9055(E) raw output is in
mVolts for the 500 mV range and Volts for all other ranges.

Section 7. Measurement Instructions

7-4

Place an R at the end of the range code (ex: mV50CR) in order to
perform an Input Voltage Limit check before making the measurement.
If the input is out of Input Voltage Limit, a NAN will be returned.

Example: VoltDiff (Dest,Reps,mV50CR,ASlot,Channel,True,Settle,Integ,Mult,Offset)

See Section 3.1.2.2 Diff. Voltage Range for details on the R, Input Limit
check, option.

Enter -1, -2, -3, -4 or -5 for the integration parameter when using a
CR9058E and the filter order will be set to 1, 2, 3, 4, or 5. The
integration time will automatically be set to the maximum allowed for
the given Scan Interval and filter order.

See Section 3.2 CR9058E Isolation Module Measurements for details.

Remarks: With a multiplier of 1 and an offset of 0, the result is in millivolts or
volts depending on the range selected. This instruction measures the voltage
difference between the High and Low inputs of a differential channel. Both
the high and low inputs must be within ± 5V of the datalogger's ground.

See the Input Limits Topic in Section 3.1.2 SE and DIFF Voltage
Measurements.

Sensor

Diff. Channel H

Diff. Channel L.

See Section 3.1.2.2 Differential Voltage Range for in-depth coverage of the
Differential Measurement process.

VoltSE (Dest, Reps, Range, ASlot, SEChan, SettlingTime, Integ, Mult,
Offset)

Sensor

S.E. Channel

Ground

This instruction measures the voltage at a single ended input with respect to
ground. With a multiplier of one and an offset of 0, the result is in millivolts
or volts depending on the range selected.

See Section 3.1.2.1 Single Ended Voltage Range for in-depth coverage of the
Single Ended Measurement process.

R*:

CR9058E*:

Section 7. Measurement Instructions

7-5

Parameter
& Data Type

Enter VOLTSE PARAMETERS

Dest
Var. or Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all the Reps.

Reps
Constant

The number of repetitions for the measurement.

Range The voltage range for the measurement. V ranges output volts, mV ranges output millivolts.
Constant ± 5 Volt Analog Input Module ± 50 Volt Analog Input Module
 Alpha

Code
Numeric
Code

Voltage
Range

Alpha
Code

Numeric
Code

Voltage
Range

 mV5000 0 ± 5000 mV V50 6 ± 50 V
 mV1000 1 ± 1000 mV V10 7 ± 10 V
 mV200 4 ± 200 mV V2 10 ± 2 V
 mV50 5 ± 50 mV mV500 11 ± 500 mV

Aslot
Constant

The number of the slot that holds the Analog Input Module to be used for the measurement.

SEChan
Constant

The single-ended channel number on which to make the first measurement. When Reps are used,
subsequent measurements will be made on the sequential single-ended channels. Enter a negative
number to dwell on that channel for the number of measurements specified by the Reps parameter
(except for CR9058E).

SettlingTime
Constant

The time in microseconds to delay between setting up a measurement (switching to the channel, setting
the excitation) and making the measurement (10 microsecond resolution). See Section 3.1.3 Signal
Settling Time.

Entry

Voltage Range

Delay

CR9055
Voltage Range

Delay

 0 ± 50 mV 20 µS (default) ± 0.5V 40 µS (default)
 0 ± 200 mV 20 µS (default) ± 2 V 40 µS (default)
 0 ± 1000 mV 10 µS (default) ± 10 V 30 µS (default)
 0 ± 5000 mV 10 µS (default) ± 50 V 30 µS (default)
 > 0 all Truncate to closest 10 µS all Truncate to closest 10 µS
Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).
See Section 3.1.1.3 Integration for more information on Integration.

Mult, Offset
Constant, Var.,
Array,
Expression

A multiplier and offset by which to scale the raw results of the measurement. See the measurement
description for the units of the raw result; a multiplier of one and an offset of 0 are necessary to output in
the raw units.

7.2 Thermocouple Measurements
TCDiff (Dest, Reps, Range, ASlot, DiffChan, TCType, TRef, RevDiff,

SettlingTime, Integ, Mult, Offset)
Diff. Chanel H

Diff. Chanel L
Thermocouple

This instruction measures a thermocouple with a differential voltage
measurement and calculates the thermocouple temperature (°C) for the
thermocouple type selected. The instruction adds the measured voltage to the
voltage calculated for the reference temperature relative to 0° C, and converts
the combined voltage to temperature in °C. The mV50C and mV200C ranges
briefly (10 µs) connect the differential input to reference voltages prior to
making the voltage measurement to insure that it is within the Input Voltage
Limit range and to test for an open thermocouple.

Section 7. Measurement Instructions

7-6

Parameter Enter TCDIFF PARAMETERS
Dest
Var. or Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all of the Reps.

Reps
Constant

The number of repetitions for the measurement.

Range* The voltage range for the measurement. TCDiff raw output is Celsius.
Constant ± 5 Volt Analog Input

Module
± 50 Volt Analog Input
Module

CR9058E* Isolation Module

 Alpha
Code

Num
Code

R *
Option
Code

Voltage
Range
(±mV)

Alpha
Code

Num
Code

R *
Option
Code

Voltage
Range

±

Alpha
Code

Num
Code

R * Option
Code

Voltage Range

mV5000 0 100 5000 V50 6 N/A 50 V V60 24 N/A ± 60 V
mV1000 1 101 1000 V10 7 N/A 10 V V20 25 N/A ± 20 V
mV200 4 104 200 V2 10 N/A 2 V V2 10 N/A ± 2 V
mV50 5 105 50 mV500 11 N/A 500 mV V2C 22 N/A ± 2 V

mV200C 16 116 200 Alpha Codes ending with a C signify that the channel will be pulled into

See Section
3.2.2 for
more info on
the C & R
range code
options. mV50C 17 117 50 Operational Input Voltage Limits & checked for open input.

See Section 3.1.2.2 Differential Voltage Range for details.
ASlot
Constant

The number of the slot that holds the Analog Input Module to be used for the measurement.

DiffChan
Constant

The differential channel number on which to make the first measurement. When Reps are used, subsequent
measurements will be automatically made on the sequential differential channels. Enter a negative number to
dwell on that channel for the number of measurements specified by the Reps parameter (except for CR9058E).

TCType The code for the thermocouple type.

Constant Alpha Code Numeric Code Thermocouple Type
 TypeT 0 Copper Constantan
 TypeE 1 Chromel Constantan
 TypeK 2 Chromel Alumel
 TypeJ 3 Iron Constantan
 TypeB 4 Platinum Rhodium
 TypeR 5 Platinum Rhodium
 TypeS 6 Platinum Rhodium
 TypeN 7 Nicrosil-Nisil (NiCRSi-NiSiMg)
TRef
Variable

The name of the variable that is the reference temperature for the thermocouple measurements.

RevDiff
Constant

Option to reverse inputs to cancel offsets. The sign corrected average of these measurements is used in
the result. This technique cancels voltage offsets in the measurement circuitry but requires twice as
much time to complete the measurement. (CR9058E: All channels on a module must have same setting.)

 Value
 0 Inputs are not reversed.
 1 A second measurement is made after reversing the inputs
SettlingTime
Constant

The time in microseconds to delay between setting up a measurement (switching to the channel, setting
the excitation) and making the measurement (10 microsecond resolution).
See Section 3.1.3 Signal Settling Time. Enter 0 when using the CR9058E (Settling Time not used).

Entry

Voltage
 Range

Delay

CR9055 Voltage
Range

Delay

 0 ± 50 mV 20 µS (default) ± 0.5V 40 µS (default)
 0 ± 200 mV 20 µS (default) ± 2 V 40 µS (default)
 0 ± 1000 mV 10 µS (default) ± 10 V 30 µS (default)
 0 ± 5000 mV 10 µS (default) ± 50 V 30 µS (default)
 > 0 all Truncate to closest 10µS all Truncate to closest 10 µS
Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).
CR9058E*:100 microsecond resolution. All channels on a CR9058 module must have same integration.

Mult, Offset
Constant, Var,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. The raw output for the
TCDiff instruction is in degrees C. A multiplier of 1.8 and an offset of 32 will convert the temperature
to degrees F.

Section 7. Measurement Instructions

7-7

Although all range codes are shown in the table, due to resolution issues, not
all range codes are usable.

CR9050/CR9051E modules: only the 50 mV and 200 mV voltage ranges
should be used. The 200 mV range basic resolution is 6.3 uV which
corresponds to ~0.3 degrees F using Type T thermocouples.
CR9058E: Only the 2 volt range should be used. Its basic resolution is 10
uV which corresponds to about 0.5 degrees F using Type T thermocouples.
CR9055(E): It is not recommended to use this module for thermocouple
measurements. It does not have a reference RTD, and the best basic
resolution, using the 500 mVolt range, is 16 uV which corresponds to a
resolution of about 0.8 degrees F when using Type T thermocouples.

Place an R at the end of the range code (ex: 50mVCR) in order to perform an
Input Voltage Limit check before making the measurement. If the input is out
of Input Voltage Limit, a NAN will be returned.

See Section 3.1.2.2 Differential Voltage Range for R, Input Limit check,
option.

Enter -1, -2, -3, -4 or -5 for the integration parameter when using a
CR9058E and the filter order will be set to 1, 2, 3, 4, or 5. The
integration time will be set to the maximum allowed for the given Scan
Interval and filter order.

See Section 3.2 CR9058E Isolation Module Measurements for details.

See Section 3.1.4 for a study of TC measurements and error analysis.

See Section 3.1.2.2 Differential Voltage Range for in-depth coverage of the
Differential Measurement process.

TCSE (Dest, Reps, Range, ASlot, SEChan, TCType, TRef, SettlingTime,
Integ, Mult, Offset)

S.E. Chanel

Ground
Thermocouple

This instruction measures a thermocouple with a single-ended voltage
measurement and calculates the thermocouple temperature (°C) for the
thermocouple type selected. The instruction adds the measured voltage to the
voltage calculated for the reference temperature relative to 0° C, and converts
the combined voltage to temperature in °C.

Single Ended TC measurements are notorious for having issues
with ground offsets. For this reason, it is recommended to use
the TCDiff instruction and perform the measurement
differentially for the most accurate thermocouple measurement.

NOTE

Range*:

R*:

CR9058E*:

Section 7. Measurement Instructions

7-8

 Parameter Enter TCSE PARAMETERS
Dest
Var. or Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all the Reps.

Reps
Constant

The number of repetitions for the measurement.

*Range The voltage range for the measurement. TCSE raw output is in Celsius.
Constant ± 5 Volt Analog Input Module ± 50 Volt Analog Input Module
 Alpha

Code
Numeric
Code

Voltage
Range

Alpha
Code

Numeric
Code

Voltage
Range

 mV5000 0 ± 5000 mV V50 6 ± 50 V
 mV1000 1 ± 1000 mV V10 7 ± 10 V
 mV200 4 ± 200 mV V2 10 ± 2 V
 mV50 5 ± 50 mV mV500 11 ± 500 mV

Aslot
Constant

The number of the slot that holds the Analog Input Module to be used for the measurement.

SEChan
Constant

The single-ended channel number on which to make the first measurement. When Reps are used,
subsequent measurements will be made on sequential single-ended channels. Enter a negative number to
dwell on that channel for the number of measurements specified by the Reps parameter (except for
CR9058E).

TCType The code for the thermocouple type.
Constant Alpha Code Numeric Code Thermocouple Type
 TypeT 0 Copper Constantan
 TypeE 1 Chromel Constantan
 TypeK 2 Chromel Alumel
 TypeJ 3 Iron Constantan
 TypeB 4 Platinum Rhodium
 TypeR 5 Platinum Rhodium
 TypeS 6 Platinum Rhodium
 TypeN 7 Nicrosil-Nisil (NiCRSi-NiSiMg)
TRef
Variable

The name of the variable that is the reference temperature for the thermocouple measurements.

SettlingTime
Constant

The time in microseconds to delay between setting up a measurement (switching to the channel, setting
the excitation) and making the measurement (10 microsecond resolution)
See Section 3.1.3 Signal Settling Time.

Entry

Voltage Range

Delay

CR9055
Voltage Range

Delay

 0 ± 50 mV 20 µS (default) ± 0.5V 40 µS (default)
 0 ± 200 mV 20 µS (default) ± 2 V 40 µS (default)
 0 ± 1000 mV 10 µS (default) ± 10 V 30 µS (default)
 0 ± 5000 mV 10 µS (default) ± 50 V 30 µS (default)
 > 0 all Truncate to closest 10 µS all Truncate to closest 10 µS
Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).
See Section 3.1.1.3 Integration for more information on Integration.

Mult, Offset
Constant, Var,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. The raw result of the
TCDiff instruction is in degrees C. A multiplier of 1.8 and an offset of 32 will convert the temperature
to degrees F.

*Range: See notes in TCDiff section.

See Section 3.1.4 Thermocouple Measurements for an in-depth study of TC
measurements and an error analysis for them.

See Section 3.1.2.1 Single Ended Voltage Measurements for in-depth
coverage of the Single Ended Measurement process.

Section 7. Measurement Instructions

7-9

7.3 Resistive Bridge Measurements
7.3.1 Electrical Bridge Circuits

Electrical bridge circuits are used to determine the electrical resistance of a
sensor. Bridge measurements combine an excitation with voltage
measurements and are used to measure sensors that change resistance in
response to the phenomenon being measured.

There are various standard bridge measurement instructions that the CR9000X
supports. These instructions include three half bridge and two full bridge
(Wheatstone Bridge) measurements. Through the use of these circuits,
multiple sensor types are supported. For instance, a short list of the sensors
that the full bridge instructions are used for include RTDs, thermistors,
potentiometers, resistive accelerometers, load cells, scales, pressure
transducers, and multiple types of strain gage measurement circuits (1/4 Bridge
strain, half bridge Strain, and Full bridge strain circuits).

Electrical bridge sensors require either regulated current or voltage excitation,
and the means to read the analogue voltage output from the bridge circuit.
This section covers measurements using the CR9060 to supply the regulated
voltage excitation and the CR9050(E) or CR9051E to measure the output from
the bridge circuit. Bridge measurements can also be performed using the
CR9052DC Filter module. The CR9052DC has a dedicated, regulated, voltage
and current excitation source for each differential analogue input channel.

See Section 7.8 CR9052DC and CR9052IEPE Filter Module for more
information on making measurements using the CR9052DC.

See Section 3.1.5 Bridge Resistance Measurements for more information on
Bridge Circuits.

7.3.2 Bridge Excitation
Bridge measurements require excitation. The CR9060 module supplies this for
the CR9000X bridge measurements. Each CR9060 module has 10 Switched
excitation channels and 6 Continuous Excitation Outputs (CAOs). Each of
these can source up to 50 milliamperes. Care should be taken not to exceed the
drive capabilities of the excitation channels.

The current required for a specific sensor can be determined by dividing the
excitation voltage by the sensor's smallest expected resistance value. For
example, if a sensor's lowest resistance would be 200 ohms, and the sensor is
excited with 5 Volts, then the current would be 5/200 = 0.025 amperes or 25
milliamperes. So 1 excitation channel could be used to excite two of these
sensors.

The Bridge measurement instructions all include a Measurement per Excitation
(MesPEx) parameter. This is used to set the number of sensors to excite with
the same excitation channel before automatically advancing to the next
excitation channel when using a single Bridge Instruction with multiple
repetitions. Care should be taken that the total current requirement for all of
the sensors hooked to each individual excitation channel does not exceed 50
mA. This can be accomplished through limiting the number of sensors
hooked to an individual excitation channel, or through limiting the excitation

Section 7. Measurement Instructions

7-10

voltage to excite the sensors hooked up to an excitation channel. See examples
below.

Example 1: Bridge type: Full Bridge strain, using 350 ohm gauges resulting in
a total bridge resistance of 350 ohms. If using 5000 mV excitation, how many
gauges can be connected to each excitation channel?

ExVolt
SensorRPortMaxISensor ×

=#

5.3
5000

35050# =
×

=
mV

ohmmASensor

We can Excite 3 Sensors with 5000 mV.

Example 2: Bridge type: Same as Example 1. If it is required to use 4 gauges
per excitation channel, what is the maximum excitation voltage that can be
used?

#Sensor
SensorRPortMaxIExVolt ×

=

mVohmmAExVolt 4375
4
35050

=
×

=

See Section 3.1.5 Bridge Resistance Measurements and 3.1.6 Measurements
Requiring AC Excitation for more information on Bridge Excitation.

7.3.3 Half Bridges

BrHalf (Dest, Reps, Range, ASlot, SEChan, ExSlot, ExChan, MesPEx,
ExmV, RevEx, SettlingTime, Integ, Mult, Offset)

X = result w/mult = 1, offset = 0

X
V
V

R
R RX

S

S f
= =

+
1

()
s

s
f

fs

R
XRR

X
XRR

−
=

−
=

1
1

This Instruction applies an excitation voltage, delays a specified time and then
makes a single ended voltage measurement. The result with a multiplier of 1
and an offset of 0 is the ratio of the measured voltage divided by the excitation
voltage.

See Section 3.1.5 Bridge Resistance Measurements for more information.

Section 7. Measurement Instructions

7-11

BrHalf3W (Dest, Reps, Range, ASlot, SEChan, ExSlot, ExChan, MesPEx,
ExmV, RevEx, SettlingTime, Integ, Mult, Offset)

X = result w/mult = 1, offset = 0

X
V V

V V
R
RX

S

f
=

−
−

=
2 2 1

1

R R X

R R X
s f

f s

=

= /

This Instruction is used to determine the ratio of the sensor resistance to a
known resistance using a separate voltage sensing wire from the sensor to
compensate for lead wire resistance.

The measurement sequence is to apply an excitation voltage and make two
voltage measurements on two adjacent single-ended channels: the first on the
reference resistor and the second on the voltage sensing wire from the sensor.
The two measurements are used to calculate the resulting value (multiplier = 1,
offset = 0) that is the ratio of the voltage across the sensor to the voltage across
the reference resistor.

See Section 3.1.5 Bridge Resistance Measurements.

BrHalf4W (Dest, Reps, Range1, Range2, ASlot, DiffChan, ExSlot, ExChan,
MesPEx, ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)

X = result w/mult = 1, offset = 0

X
V
V

R
R

S

f
= =2

1

R R X

R R X
s f

f s

=

= /

This Instruction applies an excitation voltage and makes two differential
voltage measurements, then reverses the polarity of the excitation and repeats
the measurements. The measurements are made on sequential channels. The
result is the voltage measured on the second channel (V2) divided by the
voltage measured on the first (V1). The connections are made so that V1 is the
voltage drop across the fixed resistor (Rf), and V2 is the drop across the sensor
(Rs). The result with a multiplier of 1 and an offset of 0 is V2 / V1 which
equals Rs/Rf.

See Section 3.1.5 Bridge Resistance Measurements.

Section 7. Measurement Instructions

7-12

Parameter Enter BRHALF, BRHALF3W, BRHALF4W PARAMETERS
Dest
Var. or Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in an
array with the variable name. An array must be dimensioned to have elements for all the Reps.

Reps Constant The number of repetitions for the measurement.
Range The voltage range for the measurement.
Constant ± 5 Volt Analog Input Module ± 50 Volt Analog Input Module
 Alpha

Code
Numeric
Code

Voltage
Range

Alpha
Code

Numeric
Code

Voltage
Range

 mV5000 0 ± 5000 mV V50 6 ± 50 V
 mV1000 1 ± 1000 mV V10 7 ± 10 V
 mV200 4 ± 200 mV V2 10 ± 2 V
 mV50 5 ± 50 mV mV500 11 ± 500 mV
ASlot
Constant

The number of the slot that holds the Analog Input Module to be used for the measurement.

SEChan
Constant

The single-ended channel number on which to make the first measurement. When Reps are used, subsequent
measurements will be made on sequential single-ended channels.
Burst Option: Enter a negative number to dwell on the specified channel for the # of measurements specified
by the Reps parameter (except for CR9058E). When using burst option, the MesPEx parameter must be set to
the same value as the Reps parameter and a CAO should be used for excitation.

ExSlot
Constant

The slot that holds the Excitation Module for the measurement.

ExChan Enter the excitation channel number to excite the first measurement.
Constant Channels Result
 1 - 6 Continuous analog output channels, will remain at the excitation voltage set by the

instruction unless a subsequent instruction changes their voltage

 7 - 16 Switched excitation channels, are switched to the excitation voltage for the
measurement and switched off between measurements.

MesPEx
Constant

The number of sensors to excite with the same excitation channel before automatically advancing to the next
excitation channel. To excite all sensors with one excitation channel, MesPEx should equal Reps.

ExmV
Constant

The excitation voltage in millivolts. Allowable range ± 5000 mV. RevEx may be used to excite with both a
positive and negative polarity to cancel offset voltages.

RevEx Option to reverse excitation to cancel offsets. See Section 3.1.1.1 Reversing Excitation or Differential Input.
Constant Value Result
 0 Excite only with the excitation voltage entered
 1 A second measurement is made with the voltage polarity reversed.
RevDiff Option to reverse inputs to cancel offsets. See Section 3.1.1.1 Reversing Excitation or Differential Input.
Constant Value Result
 0 Signal is measured with the high side referenced to the low
 1 A second measurement is made after reversing the inputs
SettlingTime
Constant

The time in microseconds to delay between setting up a measurement (switching to the channel, setting the
excitation) and making the measurement (10 microsecond resolution).See Section 3.1.3 Signal Settling Time

Entry

Voltage Range

Delay

CR9055
Voltage Range

Delay

 0 ± 50 mV 20 µS (default) ± 0.5V 40 µS (default)
 0 ± 200 mV 20 µS (default) ± 2 V 40 µS (default)
 0 ± 1000 mV 10 µS (default) ± 10 V 30 µS (default)
 0 ± 5000 mV 10 µS (default) ± 50 V 30 µS (default)
 > 0 all Truncate to closest 10 µS all Truncate to closest 10 µS
Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).
See Section 3.1.1.3 Integration for more information on Integration.

Mult, Offset
Constant, Var.,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement.
The raw result with a multiplier of 1 and an offset of 0 is VOut/VEX for the BrHalf instruction, and is
VRS/VRF for the BRHalf3W and BrHalf4W bridge configurations. See text above to convert this over to
sensor resistance value.

Section 7. Measurement Instructions

7-13

7.3.4 Full Bridges
BrFull (Dest, Reps, Range, ASlot, DiffChan, ExSlot, ExChan, MesPEx,

ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)

X = result w/mult = 1, offset = 0
 (Ratio-metric measurement)

⎟⎟
⎠

⎞
+

−⎜⎜
⎝

⎛
+

==
21

2

43

31 10001000
RR

R
RR

R
V
VX

X

Equations below are based on
X.

()
A

ARR −
=

12
1

A
ARR

−
=

1
1

2

B
BRR
−

=
1

4
3

()
B

BRR −
=

13
4

This Instruction applies an excitation voltage to a full bridge and makes a
differential voltage measurement of the bridge output. The resulting value
(multiplier = 1, offset = 0) is the measured voltage in millivolts divided by the
excitation voltage in volts (i.e., millivolts per volt).

See Section 3.1.5 Bridge Resistance Measurements.

BrFull6W (Dest, Reps, Range1, Range2, ASlot, DiffChan, ExSlot, ExChan,
MesPEx, ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)

X = result w/mult = 1, offset = 0
 (Ratio-metric measurement)

X
V
V

R
R R

R
R R

= =
+

⎛

⎝
⎜ −

+

⎞

⎠
⎟1000 10002

1

3

3 4

2

1 2

Equations below are based on X

()
A

ARR −
=

12
1

A
ARR

−
=

1
1

2

B
BRR
−

=
1

4
3

()
B

BRR −
=

13
4

This Instruction applies an excitation voltage and makes two differential voltage
measurements. The measurements are made on sequential channels. The result is
the voltage measured on the second channel (V2) divided by the voltage measured
on the first (V1). The result is 1000 times V2 / V1 or millivolts output per volt of
excitation. The connections are made so that V1 is the measurement of the voltage
drop across the full bridge, and V2 is the measurement of the bridge output.

Section 7. Measurement Instructions

7-14

Parameter Enter BRIDGEFULL & BRIDGEFULL6W PARAMETERS
Dest
Var. or Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in an
array with the variable name. An array must be dimensioned to have elements for all the Reps.

Reps Constant The number of repetitions for the measurement or instruction.
Range The voltage range for the measurement.
Constant ± 5 Volt Analog Input Module ± 50 Volt Analog Input Module
 Alpha

Code
Numeric
Code

Voltage
Range

Alpha
Code

Numeric
Code

Voltage
Range

 mV5000 0 ± 5000 mV V50 6 ± 50 V
 mV1000 1 ± 1000 mV V10 7 ± 10 V
 mV200 4 ± 200 mV V2 10 ± 2 V
 mV50 5 ± 50 mV mV500 11 ± 500 mV
ASlot
Constant

The number of the slot that holds the Analog Input Module to be used for the measurement.

DiffChan
Constant

The differential channel number on which to make the first measurement. When Reps are used, subsequent
measurements will be made on sequential differential channels.
Burst Option: Enter a negative number to dwell on the specified channel for the # of measurements specified
by the Reps parameter (except for CR9058E). When using burst option, the MesPEx parameter must be set to
the same value as the Reps parameter and a CAO should be used for excitation.

ExSlot
Constant

The slot that holds the Excitation Module for the measurement.

ExChan Enter the excitation channel number to excite the first measurement.
Constant Channels Result
 1 - 6 Continuous analog output channels, will remain at the excitation voltage set by the

instruction unless a subsequent instruction changes their voltage

 7 - 16 Switched excitation channels, are switched to the excitation voltage for the
measurement and switched off between measurements.

MesPEx
Constant

The number of sensors to excite with the same excitation channel before automatically advancing to the next
excitation channel. To excite all sensors with one excitation channel, MesPEx should equal Reps.

ExmV
Constant

The excitation voltage in millivolts. Allowable range ± 5000 mV. RevEx may be used to excite with both a
positive and negative polarity to cancel offset voltages.

RevEx Option to reverse excitation to cancel offsets. See Section 3.1.1.1 Reversing Excitation or Differential Input.
Constant Value Result
 0 Excite only with the excitation voltage entered
 1 A second measurement is made with the voltage polarity reversed.
RevDiff Option to reverse inputs to cancel offsets. See Section 3.1.1.1 Reversing Excitation or Differential Input.
Constant Value Result
 0 Signal is measured with the high side referenced to the low
 1 A second measurement is made after reversing the inputs
SettlingTime
Constant

The time (microseconds) to delay between setting up a measurement (switching to the channel, setting the
excitation) and making the measurement (10 microsecond resolution). See Section 3.1.3 Signal Settling Time

Entry

Voltage Range

Delay

CR9055
Voltage Range

Delay

 0 ± 50 mV 20 µS (default) ± 0.5V 40 µS (default)
 0 ± 200 mV 20 µS (default) ± 2 V 40 µS (default)
 0 ± 1000 mV 10 µS (default) ± 10 V 30 µS (default)
 0 ± 5000 mV 10 µS (default) ± 50 V 30 µS (default)
 > 0 all Truncate to closest 10 µS all Truncate to closest 10 µS
Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).
See Section 3.1.1.3 Integration for more information on Integration.

Mult, Offset
Constant, Var.,
Array,
Expression

A multiplier and offset by which to scale the raw results of the measurement.
The result with a multiplier of 1 and an offset of 0, is the measured voltage in millivolts divided by the
excitation voltage in volts (i.e., millivolts per volt).

Section 7. Measurement Instructions

7-15

7.4 Self Measurements
Battery (Dest, BattOpt)

This instruction reads the voltage or current of the battery powering the system
or the voltage of the backup lithium battery. The units for battery voltage are
volts; current is in milliamperes.

ModuleTemp (Dest, Reps, ASlot, Integ)
This instruction measures the temperature, in °C, of the specified CR9050(E),
CR9051E, or CR9058E input module's RTD.

Parameter Enter BATTERY, MODULETEMP PARAMETERS
Dest
Var or Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all the Reps.

BattOpt The code indicating the desired measurement.
Constant Code Measurement
 0 Main battery voltage, volts
 1 Main battery current, milliamperes
 2 Memory backup battery (lithium), volts
Reps
Constant

The number of repetitions for the measurement or instruction. If reps is greater than 1, the first element
of the Dest array will hold the temperature for the module in the specified Aslot and the modules'
temperatures in the sequentially following slots will be loaded into the corresponding elements of the
Dest array.

ASlot
Constant

The number of the slot that holds the first Analog Input Module to be used for the measurement.

Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).
The CR9000X will repeat measurements every 10 microseconds throughout the integration interval (with
the appropriate Delay at the beginning and between RevDiff and RevEx if used) and output the average.
The random noise level is decreased by the square root of the number of measurements made. An
integration time of one 60 Hz cycle (16,670 microseconds) will cancel 60 Hz noise. Enter 0 for no
integration and the fastest measurements. See Section 3.1.1.3 Integration for more information.

Calibrate
The Calibration instruction is used to force calibration of the analog channels
under program control.

See the Calibrate topic in Section 9.2 Data Logger Status/Control.

BiasComp
The BiasComp instruction adjusts the input bias current compensation.

See the BiasComp topic in Section 9.2 Data Logger Status/Control.

InstructionTimes (Dest)
The InstructionTimes instruction returns the execution time of each
instruction in the program.

The InstructionTimes instruction loads the Dest array with execution times
for each instruction in the program (in microseconds). InstructionTimes must
appear before the BeginProg statement in the program.

Section 7. Measurement Instructions

7-16

Each element in the array corresponds to a line number in the program. To
accommodate all of the instructions in the program, the array must be
dimensioned to a number greater than or equal to the total number of lines in
the program, including blank lines and comments. The Dest array must also be
dimensioned as a long integer (e.g., Public Array(20) AS LONG).

The execution time for an instruction may vary. For instance, it
may take longer to execute instructions when the datalogger is
communicating with another device.

7.5 Peripheral Devices
AM25T (Dest, Reps, Range, AM25TChan, ASlot, DiffChan, TCType, Tref,

ExCardSlot, ClkPort, ResPort, ExChan, RevDiff, SettlingTime, Integ,
Mult, Offset)

This Instruction controls the AM25T Multiplexer.

Parameter Enter AM25T PARAMETERS
Dest
Var. or Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all the Reps.

Reps
Constant

The number of repetitions for the measurement. For analog measurements, entering reps as a negative
number forces all reps to be on the same channel except for with CR9058E module.
Note: Enter 0 to only measure the output from the PRT.

Range The voltage range for the measurement. V ranges output volts, mV ranges output millivolts.
Constant ± 5 Volt Analog Input

Module
± 50 Volt Analog Input
Module

 Alpha
Code

Num
Code

R *
Option
Code

Voltage
Range
(±mV)

Alpha
Code

Num
Code

R *
Option
Code

Voltage
Range

±

mV5000 0 100 5000 V50 6 N/A 50 V
mV1000 1 101 1000 V10 7 N/A 10 V
mV200 4 104 200 V2 10 N/A 2 V
mV50 5 105 50 mV500 11 N/A 500 mV

mV200C 16 116 200 Alpha Codes ending with a C signify that the channel will be pulled into

See Section
3.2.2 for more
info on the C
& R range
code options.

mV50C 17 117 50 Operational Input Voltage Limits & checked for open input. See Section 3.1.2.

AM25TChan
Constant

The input channel on the AM25T for the first measurement

ASlot
Constant

The number of the slot that contains the CR9050 Module used to measure the AM25T reference
temperature and connected sensors.

DiffChan
Constant

The channel number on the CR9050 Module that will be used to make the actual measurements from the
AM25T.

TCType The code for the thermocouple type.

Constant Alpha Code Numeric Code Thermocouple Type
 mV -1 Output mV
 TypeT 0 Copper Constantan
 TypeE 1 Chromel Constantan
 TypeK 2 Chromel Alumel
 TypeJ 3 Iron Constantan
 TypeB 4 Platinum Rhodium
 TypeR 5 Platinum Rhodium
 TypeS 6 Platinum Rhodium

NOTE

Section 7. Measurement Instructions

7-17

Parameter Enter AM25T PARAMETERS
TRef
Variable

The variable whose value is used for the reference temperature for the thermocouple measurements. If
the ExChan parameter is set to set to non-zero, the measured value of the PRT will be loaded into this
variable. If EXChan is set to 0, the current TRef value will be used as the reference temperature.

ExCardSlot
Constant

The number of the slot that contains the CR9060 Module used to Clock and Reset the multiplexer and to
provide excitation for the reference temperature PRT.

ClkPort
Constant

The Digital Output port number on the CR9060 Module that will be used to clock the AM25T. One
clock port may be used with several AM25Ts.

ResPort
Constant

The Digital Output port number on the CR9060 Module that will be used to enable and reset the
AM25T. Each AM25T must have it's own unique Reset line.

ExChan
Constant

The Excitation Channel number on the CR9060 Module that will be used to provide excitation for the
PRT reference temperature measurement. If 0 is entered, the PRT is not measured.

RevDiff
Constant

Option to reverse inputs to cancel offsets. This technique cancels voltage offsets in the measurement
circuitry but requires twice as much time to complete the measurement.

 Value
 0 Inputs are not reversed.
 1 A second measurement is made after reversing the inputs
SettlingTime
Constant

The time in microseconds to delay between setting up a measurement (switching to the channel, setting
the excitation) and making the measurement (10 microsecond resolution).
The minimum recommended Delay for AM25T measurements is 70 µS.

Entry

Voltage
 Range

Delay

CR9055
Voltage Range

Delay

 0 ± 50 mV 20 µS (default) ± 0.5V 40 µS (default)
 0 ± 200 mV 20 µS (default) ± 2 V 40 µS (default)
 0 ± 1000 mV 10 µS (default) ± 10 V 30 µS (default)
 0 ± 5000 mV 10 µS (default) ± 50 V 30 µS (default)
 > 0 all Truncate to closest 10 µS all Truncate to closest 10 µS
Integ
Constant

The integration time in microseconds for each of the channels measured (10 microseconds resolution).
The minimum recommended Integration time for AM25T measurements is 70 µS.

Mult, Offset
Constant, Var,
Array,Express.

A multiplier and offset by which to scale the raw results of the measurement. For example, the TCDiff
instruction measures a thermocouple and outputs temperature in degrees C. A multiplier of 1.8 and an
offset of 32 will convert the temperature to degrees F.

R*: Place an R at the end of the range code (ex: 50mVCR) in order to perform an Input Voltage Limit check
before making the measurement.

See Section 3.1.2 SE and Diff. Voltage Measurements for details on the R,
Input Limit check, option.

This instruction cannot be used in a SubScan or in a
SlowSequence Scan.

'This example demonstrates using the AM25T thermocouple multiplexer with the CR9000X.
'\\\\\\\\\\ VARIABLES and CONSTANTS //////////
Const AM25TChan = 1 'starting channel in AM25T
Const ESlot = 6 '9060 module slot
Const Clk = 1 '9060 Digital Control Output port
Const Res = 2 '9060 Digital Control Output port
Const EChan = 10 '9060 Excitation Channel
Const Integ = 500 'integration time in uSecs of each AM25T measurements
Public RefT, Mux(25)
DataTable(MUXTC, 1, 2000)
 Sample(MuxReps,Mux(),FP2)
EndTable
BeginProg
 Scan (200, mSec, 0, 0)
 AM25T(Mux(), 25, mV50, 1, 5, 14, TypeT, RefT, ESlot, , Clk, Res, EChan, 0, 140,70 , 1, 0)
 CallTable MUXTC
 NextScan
EndProg

NOTE

Section 7. Measurement Instructions

7-18

CS7500 (Dest, Reps, SDMAddres, CS7500Cmd)
Communicates with the LI7500 open path CO2 and H2O sensor. See LI7500
manual for more information.

This instruction cannot be used in a SubScan.

Parameter
& Data Type

Enter CS7500 PARAMETERS

Dest The Dest parameter is the input variable name in which to store the data
from each LI7500 associated with this instruction. The length of the input
variable array will depend on the number of Repetitions and on the selected
Command.

 Command Input Variable Length per LI7500
 0 and 1 2
 2 4
 3 3
 4 11
 5 3
Reps The Reps parameter determines the number of LI7500 gas analyzers with

which to communicate using this instruction. The LI7500s must have
sequential SDM addresses if the Reps parameter is greater than 1.

SDMAddres The SDMAddres parameter defines the address of the LI7500 with which to
communicate. Valid SDM addresses are 0 through 14. Address 15 is
reserved for the SDMTrigger instruction. If the Reps parameter is greater
than 1, the datalogger will increment the SDM address for each subsequent
LI7500 that it communicates with.

The SDM address is entered as a base 10 number, unlike older, jumper-
settable SDM instruments that used base 4.

CS7500Cmd The CS7500Cmd parameter requests the data to be retrieved from the
sensor. The command is sent first to the device specified by the
SDMAddress parameter. If the Reps parameter is greater than 1, subsequent
LI7500s will be issued the command with each rep. The results for the
command will be returned in the array specified by the Dest parameter. A
numeric code is entered to request the data:

 Code Description
 0 Get CO2 & H2O molar density (mmol/m3)
 1 Get CO2 & H2O absorptance
 2 Get internal pressure estimate (kPa), auxiliary measurement A,

auxiliary measurement B, and cooler voltage (V)

 3 Get cell diagnostic value, output bandwidth (Hz), and
programmed delay [230 + (delay * 6.579)] (msec)

 4 Get all data (CO2 molar density (mmol/m3), H2O molar density
(mmol/m3), CO2 absorptance, H2O absorptance, internal
pressure estimate (kPa), auxiliary measurement A, auxiliary
measurement B, cooler voltage (V), cell diagnostic value, output
bandwidth (Hz), and programmed delay [230 + (delay * 6.579)]
(msec))

 5 Get CO2 & H2O molar density (mmol/m3) and internal
pressure estimate (kPa)

NOTE

Section 7. Measurement Instructions

7-19

CSAT3 (Dest, Reps, Address, Command)
Communicates with the CSAT3 three dimensional sonic anemometer. See
CSAT3 manual for more information.

This instruction cannot be used in a SubScan.

SDMAO4 (Source, Reps, SDMAddress)
This instruction is used to set the voltage on a SDM-AO4 four channel analog
output device. The SDM-AO4 can supply -5000 to +5000 mVolts with a
compliance current of about 1 mAmp (see SDM-AO4 manual for details). The
Source value should be scaled to values from -5000 to +5000 in order to use
the full voltage range available. If the Source value is above (below) 5000 (-
5000), the SDM-AO4's corresponding channel voltage will be set to +5000
mV (-5000 mV).

Parameter
& Data Type

Enter SDMA04 PARAMETERS

Source
Variable or
Array

The Source parameter is a variable array that holds the values for the
voltages (millivolts) that will be output by each channel of the device
(Source(1) sets channel1, Source(2) sets channel2, etc.).This parameter must
be an array dimensioned to the size of the Reps.

Reps
Constant

The Reps parameter determines the number of SDM-AO4 output channles
that will be set using this instruction. If this parameter is greater than four
(i.e., voltage is being set for more than one SDM-AO4 device), values will
be sent to the next consecutively addressed SDM-AO4 device. In this case,
the SDM-AO4s must have sequential SDM addresses.

SDMAddress
Constant

The SDMAddress parameter defines the address of the SDM-AO4 that the
instruction will set. Valid SDM addresses are 0 through 14. Address 15 is
reserved for the SDMTrigger instruction.

This instruction cannot be used in a SubScan.

SDMCAN (Dest, SDMAddress, TimeQuanta, TSEG1, TSEG2, ID, DataType,
StartBit, NumBits, NumVals, Multiplier, Offset)

The SDMCAN instruction is used to measure and control the SDM-CAN
interface.

SDMCAN instructions for a “specific” SDM address must all
use the same TimeQuanta, TSeg1 and TSeg2 bit timing
parameters. CAN identifiers for a “specific” SDM-CAN must
all be 11bit or 29bit (cannot mix identifier types).

Multiple SDMCAN instructions may be used within a program. At datalogger
program compile time, the details of each instance of the instruction are sent to
each SDM-CAN as a configuration file. In the subsequent run-time
encounters of each instruction, data is transferred between the datalogger and
the SDM-CAN(s).

NOTE

NOTE

NOTE

Section 7. Measurement Instructions

7-20

This instruction cannot be used in a SubScan .

The SDMCAN instruction has the following parameters:

Parameter Enter SDMCAN PARAMETERS
Dest

The Dest parameter is a variable array in which to store the results of the
measurement. It must be an array of sufficient size to hold all of the values
that will be returned by the function chosen (defined by the DataType
parameter).

SDMAddress

The SDMAddress parameter defines the address of the SDM-CAN with
which to communicate. Valid SDM addresses are 0 through 14. Address 15
is reserved for the SDMTrigger instruction.
The SDM address is entered as a base 10 number, unlike older, jumper-
settable SDM instruments that used base 4.

TimeQuanta

Three time segments are used to set the bit rate and other timing parameters
for the CAN-bus network, TimeQuanta, TSEG1, and TSEG2. These
parameters are entered as integer numbers. The relationship between the
three time segments is defined as:

t t t tbit q TSEG TSEG= + +1 2

The first time segment, the synchronization segment (S-SG), is defined by
the TimeQuanta parameter. To calculate a suitable value for TiimeQuanta,
use the following equation:

TimeQuanta t q= * *8 106

where tq = the TimeQuanta. There are between 8 and 25 time quanta in the
bit time. The bit time is defined as 1/baud rate.

TSEG1

The second time segment, TSEG1, is actually two time segments known as
the propagation segment and phase segment one. The value entered is
determined by the characteristics of the network and the other devices on the
network. It can be calculated as:

T t tSEG TSEG q1 1= /

TSEG2

The third time segment, TSEG2 (the phase segment two), is defined by the
TSEG2 parameter. The value of TSEG2 can be calculated using the
equation:

T t tSEG TSEG q2 2= /

The relative values of TSEG1 and TSEG2 determine when the SDM-CAN
samples the data bit.

ID

Each device on a CAN-bus network prefaces its data frames with an 11 or
29 bit identifier. The ID parameter is used to set this address. The ID is
entered as a single decimal equivalent. Enter a positive value to signify a 29
bit ID or a negative value to signify an 11 bit ID.

DataType

The DataType parameter defines what function the SDMCAN instruction
will perform. This instruction can be used to collect data, buffer data for
transmission to the CAN-bus, transmit data to the CAN-bus, read or reset
error counters, read the status of the SDM-CAN, read the SDM-CAN's OS
signature and version, send a remote frame, or read or set the SDM-CAN's
internal switches. Enter the numeric value for the desired option:

NOTE

Section 7. Measurement Instructions

7-21

Parameter Enter SDMCAN PARAMETERS
DataType Value Description
Continued 1 Retrieve data; unsigned integer, most significant byte first
 2 Retrieve data; unsigned integer, least significant byte first
 3 Retrieve data; signed integer, most significant byte first
 4 Retrieve data; signed integer, least significant byte first
 5 Retrieve data; 4-byte IEEE floating point number; most significant byte first
 6 Retrieve data; 4-byte IEEE floating point number; least significant byte first
 7 Build data frame in SDM-CAN memory; unsigned integer, most significant

byte first. Overwrite existing data.
 8 Build data frame in SDM-CAN memory; unsigned integer, least significant

byte first. Overwrite existing data.
 9 Build data frame in SDM-CAN memory; signed integer, most significant

byte first. Overwrite existing data.
 10 Build data frame in SDM-CAN memory; signed integer, least significant

byte first. Overwrite existing data.
 11 Build data frame in SDM-CAN memory; 4-byte IEEE floating point

number; most significant byte first. Overwrite existing data.
 12 Build data frame in SDM-CAN memory; 4-byte IEEE floating point

number; least significant byte first. Overwrite existing data.
 13 Build data frame in SDM-CAN memory; unsigned integer, most significant

byte first. Logical "OR" with existing data.
 14 Build data frame in SDM-CAN memory; unsigned integer, least significant

byte first. Logical "OR" with existing data.
 15 Build data frame in SDM-CAN memory; signed integer, most significant

byte first. Logical "OR" with existing data.
 16 Build data frame in SDM-CAN memory; signed integer, least significant

byte first. Logical "OR" with existing data.
 17 Build data frame in SDM-CAN memory; 4-byte IEEE floating point

number; most significant byte first. Logical "OR" with existing data.
 18 Build data frame in SDM-CAN memory; 4-byte IEEE floating point

number; least significant byte first. Logical "OR" with existing data.
 19 Transmit data value to the CAN-bus; unsigned integer, most significant byte

first.
 20 Transmit data value to the CAN-bus; unsigned integer, least significant byte

first.
 21 Transmit data value to the CAN-bus; signed integer, most significant byte

first.
 22 Transmit data value to the CAN-bus; signed integer, least significant byte

first.
 23 Transmit data value to the CAN-bus; 4-byte IEEE floating point number;

most significant byte first.
 24 Transmit data value to the CAN-bus; 4-byte IEEE floating point number;

least significant byte first.
 25 Transmit previously built data frame to the CAN-bus.
 26 Set up previously built data frame as a Remote Frame Response.
 27 Read Transmit, Receive, Overrun, and Watchdog errors. The errors are

placed consecutively in the array specified by the Dest parameter.
 28 Read Transmit, Receive, Overrun, and Watchdog errors. The errors are

placed consecutively in the array specified by the Dest parameter. Reset
error counters to 0 after reading.

Section 7. Measurement Instructions

7-22

Parameter Enter SDMCAN PARAMETERS
DataType
Continued

29 Read SDM-CAN status; result is placed into the array specified in the Dest
parameter. The result codes are as follows:

 Status Description
 0000 The SDM-CAN is involved in bus activities; error counters are less

than 96.
 0001 The SDM-CAN is involved in bus activities; one or more error

counters is greater than or equal to 96.
 0002 The SDM-CAN is not involved in bus activities; error counters are

less than 96.
 0003 The SDM-CAN is not involved in bus activities; one or more error

counters is greater than or equal to 96.
 30 Read SDM-CAN operating system and version number; results are placed in

two consecutive array variables beginning with the variable specified in the
Dest parameter.

 31 Send Remote Frame Request.
 32 Set SDM-CAN's internal switches. The code is stored in the array specified in

the Dest parameter and is entered in the form of ABCD.
 Switch Code Description
 A 0 Currently not used; set to 0.
 B 0 SDM-CAN returns the last value captured from the

network, even if that value has been read before (default).
 B 1 SDM-CAN returns -99999 if a data value is requested by

the datalogger and a new value has not been captured from
the network since the last request.

 B 2-9 Currently not used.
 C 0 Disable I/O interrupts (default).
 C 1 Enable I/O interrupts, pulsed mode.
 C 2 Enable I/O interrupts, fast mode.
 C 3-7 Currently not used.
 C 8 Place the SDM-CAN into low power stand-by mode
 C 9 Leave switch setting unchanged.
 D 0 Listen only (error passive) mode. CAN transmissions are

not confirmed.
 D 1 Transmit once. Data will not be retransmitted in case of

error or loss of arbitration. Frames received without error
are acknowledged.

 D 2 Self-reception. A frame transmitted from the SDM-CAN
that was acknowledged by an external node will also be
received by the SDM-CAN but no retransmission will
occur in the event of loss of arbitration or error. Frames
received correctly from an external node are acknowledged.

 D 3 Normal, retransmission will occur in the event of loss of
arbitration or error. Frames received correctly from an
external node are acknowledged. This is the typical setting
to use if the SDM-CAN is to be used to transmit data.

 D 4 Transmit once; self-test. The SDM-CAN will perform a
successful transmission even if there is no acknowledgment
from an external CAN node. Frames received correctly
from an external node are acknowledged.

Section 7. Measurement Instructions

7-23

Parameter Enter SDMCAN PARAMETERS
DataType
Continued

32

Set SDM-CAN's internal switches. The code is stored in the array specified in
the Dest parameter and is entered in the form of ABCD.

 Switch Code Description
 D 5 Self-reception; self -test. The SDM-CAN will perform

a successful transmission even if there is no
acknowledgment from an external CAN node. Frames
received correctly from an external node are
acknowledged. SDM-CAN will receive its own
transmission.

 D 6 Normal; self-test. The SDM-CAN will perform a
successful transmission even if there is no
acknowledgment from an external CAN node. Frames
received correctly from an external node are
acknowledged.

 D 7 Not defined.
 D 8 Not defined.
 D 9 Leave switch setting unchanged.
 33 Read SDM-CAN's internal switches. Place results in the array specified in

the Dest parameter.
 61 “High Speed Block Mode” version of DataType 1,

Retrieve data; unsigned integer, most significant byte first.

 62 “High Speed Block Mode” version of DataType 2,

Retrieve data; unsigned integer, least significant byte first.

 63 “High Speed Block Mode” version of DataType 3,

Retrieve data; signed integer, most significant byte first.

 64 “High Speed Block Mode” version of DataType 4,

Retrieve data; signed integer, least significant byte first.

 65 “High Speed Block Mode” version of DataType 5,

Retrieve data; 4-byte IEEE floating point number; most significant byte
first.

 66 “High Speed Block Mode” version of DataType 6,

Retrieve data; 4-byte IEEE floating point number; least significant byte
first.

StartBit

The StartBit parameter is used to identify the least significant bit of the data value
within the CAN data frame to which the instruction relates. The bit number can range
from 1 to 64 (there are 64 bits in a CAN data frame). The SDM-CAN adheres to the
ISO standard where the least significant bit is referenced to the right most bit of the
data frame. If a negative value is entered, the least significant bit is referenced to the
left most bit of the data frame.

Section 7. Measurement Instructions

7-24

Parameter Enter SDMCAN PARAMETERS
NumBits

The NumBits parameter is used to specify the number of bits that will be used in a
transaction. The number can range from 1 to 64 (there are 64 bits in a CAN data
frame).
The SDM-CAN can be configured to notify the datalogger when new data is
available by setting a control port high. This allows data to be stored in the
datalogger tables faster than the program execution interval. This interrupt function is
enabled by entering a negative value for this parameter.
Note: This parameter may be overridden by a fixed number of bits, depending
upon the data type selected.

NumVals

The NumVals parameter defines the number of values (beginning with the value
stored in the Dest array) that will be transferred to or from the datalogger during one
operation. For each value transferred, the Number of Bits (NumBits) will be added to
the Start Bit number so that multiple values can be read from or stored to one data
frame.

Mult,
Offset

The Mult and Offset parameters are each a constant, variable, array, or expression by
which to scale the results of the measurement.

This instruction cannot be used in a SubScan.

SDMCAN Example 1

The following example reads a 16-bit engine speed value from a CAN-bus
network running at 250K baud.

'------------------------- Physical Network Parameters ------------
'Set SDM-CAN to 250K
Const TQUANT=4 : Const TSEG1=5 : Const TSEB2=2
'___________________ SDMCAN Block1_____________________
'Collect and retrieve 16-bit data value
'Data Type 1, unsigned integer, most significant byte first
Const CANREP1=1 'Repetitions
Const ADDR1=0 'Address of SDM-CAN module
Const DTYPE1=1 'Data values to collect
Const STBIT1=33 'Start position in data frame
Const NBITS1=16 'Number of bits per value
Const NVALS1=1 'Number of values
Const CMULT1=0.4 'Multiplier
Const COSET1=0 'Offset
Dim CANBlk1(CANREP1) 'Dimensioned Dest
 ' \ \ \ \ \ \ \ \ \ \ \ \ Aliases and other Variables / / / / / / / /
Alias Canblk1(1)=Engine_Speed

' \ \ \ \ \ \ \ \ \ \ \ \ \ PROGRAM / / / / / / / / / / / / / / / / /
BeginProg
 Scan(1,2,0,0)
 '____________________ CAN Blocks_______________________
 'Retrieve Data from CAN-bus network
 SDMCAN (CANBLK1(), ADDR1, TQUANT, TSEG1, TSEG2,217056256,

DTYPE1, STBIT1, NBITS1, NVALS2, CMJLT1, COSET1)
 Next Scan
EndProg

NOTE

Section 7. Measurement Instructions

7-25

SDMCAN Example 2
The following example uses the request/receive capability of the SDMCan to
request a data frame with an 11 bit identifier in the Slow Sequence Scan.

' /////////////////////// DECLARATIONS \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
'_________________________ Volt Block 1 _________________________
Public VBlk1(1): Units VBlk1 = mVolts
' _____________ CANBUS _________________________/
'Setup SDMCANBus Address and CAN Network Communication Values
Const CanAddress=0 : Const CanQuanta=1 : Const CanSeg1=5 : Const CanSeg2=2
Public CanSwitchTx, CanSwitchRx 'Config values to send (Tx) and confirm (Rx) on SDM-CAN
Public Can001(1) : Units Can001 = kPAbsolute : Alias Can001(1) = P0BIntakeMAP
Public Flag(8) 'General Purpose Flags
'\\\\\\\\\\\\\\\\\\\\\\\\ OUTPUT SECTION ////////////////////////
DataTable(Table1,True,-1) 'Trigger, auto size
 DataInterval(0,1,Sec,100) '1 Sec interval, 100 lapses, autosize
 Sample (1,VBlk1(),IEEE4) '1 Reps,Source,Res
 Sample (1,Can001(),IEEE4) '1 Reps,Source,Res
EndTable 'End of table Table1
'\\\\\\\\\\\\\\\\\\\\\\\\\\\\ PROGRAM ////////////////////////////
BeginProg
 'Preliminary CanBUS Configuration Scan(s)
 CanSwitchTx=0004 'EnableTransmit, UseOldData
 Scan(1,Sec,0,10) 'Set Switches - NAN and TxEnable
 'CANBUS ID 1 = Config SDM-CAN, DataType32 = SetSwitch, NumVals = 1
 SDMCAN(CanSwitchTx,CanAddress,CanQuanta,CanSeg1,CanSeg2,1,32,0,0,1,1.0,0.0)
 'CANBUS ID 1 = Config SDM-CAN, DataType33 = ReadSwitch, NumVals = 1
 SDMCAN(CanSwitchRx,CanAddress,CanQuanta,CanSeg1,CanSeg2,1,33,0,0,1,1.0,0.0)
 If CanSwitchRx = CanSwitchTx Then ExitScan ' Exit Scan once setting is verified
 NextScan
 ' \\\\\\\\\\\\\\\\\\\\\ MAIN SCAN ///////////////////////////
 Scan(10,mSec,10,0) 'Scan once every 10 mSecs, non-burst
 VoltDiff(VBlk1(),1,17,4,1,True,30,100,1,0)
 CallTable Table1
 Next Scan 'Loop up for the next scan
 SlowSequence 'Used for slow measurements
 Dim idx 'Index for looping through Rx Retries
 Public ByteTx(8),ByteRx(8) 'Intermediate Transmit and Receive placeholders
 Do 'For CANBUS TxRx, we need mult, repeating scans
 Scan(20,mSec,0,1) ' Back Ground Calibration Scan once during every Do-loop
 Calibrate 'Corrects ADC offset and gain
 BiasComp 'Corrects ADC bias current
 Next Scan 'Loop up for the next scan
 'Setup Transmit Data Frame: &H02010B0000000000 for J1979 Legislative PID $0B
 'This request is for the Intake manifold absolute pressure.
 ByteTx(8)=&H02 : ByteTx(7)=&H01 : ByteTx(6)=&H0B : ByteTx(5)=&H00
 ByteTx(4)=&H00 : ByteTx(3)=&H00 : ByteTx(2)=&H00 : ByteTx(1)=&H00
 SDMCan(ByteTx(),CanAddress,CanQuanta,CanSeg1,CanSeg2,-&H7DF,19,1,8,8,1,0)
 For idx=0 to 50 'Look for the Rx that matches the Tx 50 times
 Delay(1,20,mSec) 'Wait for 20msec - timing issue
 SDMCan(ByteRx(),CanAddress,CanQuanta,CanSeg1,CanSeg2,-&H7E8,1,1,8,8,1,0)
 'Check the Rx value just obtained; if it matches &HXX410BXXXXXXXXXX -decode it
 If (ByteRx(6) = &H0B) And (ByteRx(7) = &H41) Then
 'DataType=1, StartBit=33, NumberofBits=8, NumberofValues=1, Mult=1, Offset=0
 SDMCan(Can001(),CanAddress,CanQuanta,CanSeg1,CanSeg2,-&H7E8,1,33,8,1,1,0)
 ExitFor
 EndIf
 Next idx 'Return for next time through the loop
 Loop 'Loop back to the "DO"
EndProg 'Program ends here

Section 7. Measurement Instructions

7-26

SDMCD16AC (Source, Reps, SDMAddress)
The SDMCD16AC instruction is used to control an SDM-CD16AC, SDM-
CD16, or SDM-CD16D 16 channel relay/control port device.

A port on an SDM-CD16xx is enabled/disabled (turned on or off) by sending a
value to it using the SDMCD16AC instruction. A non-zero value will turn the
port on; a zero value will turn it off. The values to be sent to the SDM-CD16xx
are held in the Source array.

This instruction cannot be used in a SubScan.

Parameter
& Data Type

Enter SDMCD16AC PARAMETERS

Source
Array

An array, dimensioned as Float, Long, or Boolean, which holds the values
that is sent to the SDM-CD16AC to enable/disable its ports. An SDM-
CD16AC has 16 ports. Normally, the source array should be dimensioned to
16 times the number of Repetitions (the number of SDM-CD16AC devices
to be controlled). As an example, with the array CDCtrl(32), the value held
in CDCtrl(1) will be sent to port 1, the value held in CDCtrl(2) will be sent
to port 2, etc. The value held in CDCtrl(32) would be sent to port 16 on the
second SDM-CD16AC.
If the Source parameter is defined as a Long variable that is dimensioned
less than 16 * Reps, then the Source will act as a binary control for the
instruction whose bits 0..15 will specify control ports 1..16, respectively. In
this instance, Source(1) will be used for the first rep, Source(2) will be used
for the second, etc.

Reps
Constant

The Reps parameter is the number of SDM-CD16AC devices to be
controlled with this instruction.

SDMAddress
Constant

The address of the first SDM-CD16AC that will be controlled with this
instruction. Valid SDM addresses are 0 through 15. If the SDMTrigger
instruction is used in the program, address 15 should not be used. If the
Reps parameter is greater than 1, the datalogger will increment the SDM
address for each subsequent device that it communicates with.

SDMCVO4 (Source, Reps, SDMAddress, Mode)
The SDMCVO4 instruction controls the SDM-CVO4, which outputs a voltage
or a current. Internal jumpers are used to set the mode for the device, but the
jumpers can be overridden with the Mode parameter in this instruction.

This instruction cannot be used in a SubScan.

NOTE

NOTE

Section 7. Measurement Instructions

7-27

The SDMCVO4 instruction has the following parameters:

Parameter
& Data Type

Enter SDMCVO4 PARAMETERS

Source
Variable or
Array

The Source parameter is a variable array that holds the values for the
voltages (millivolts) or currents (microamps) that will be output by each
channel of the device (Source(1) sets channel 1, Source(2) sets channel 2,
etc.). When outputting a voltage, the variable must be within the range of 0
to 10,000. When outputting a current, the variable must be within the range
of 0 to 20,000.

This parameter must be an array dimensioned to the size of the Reps
parameter.

Reps
Constant

The Reps parameter indicates the number of channels to set to the defined
voltage or current. Additional SDM-CVO4 devices can be controlled by one
SDMCVO4 instruction by assigning them consecutive addresses and setting
the Reps parameter to a value equal to the total number of channels of all
devices (e.g., to set all four channels on two devices, set the Reps parameter
to 8).
If the 4Reps parameter is set to 0, power to the device will be turned off.

SDMAddress
Constant

The SDMAddress parameter defines the address of the SDM-AO4 that the
instruction will set. Valid SDM addresses are 0 through 14. Address 15 is
reserved for the SDMTrigger instruction

SDMAddress
Constant

The SDMAddress parameter defines the address of the SDM-CVO4 which
will be affected by this instruction. Valid SDM addresses are 0 through 14.
Address 15 is reserved for the SDMTrigger instruction.
Note: CRBasic dataloggers use base 10 when addressing SDM devices.

SDMINT8 INTERVAL TIMER
Used to control the SDM-INT8, an 8 Channel Interval Timer module, using the
CR9000X.

This instruction cannot be used in a SubScan.

Syntax
SDMINT8 (Dest, Address, Config8_5, Config4_1, Funct8_5, Funct4_1,

OutputOpt, CaptureTrig, Mult, Offset)

NOTE

Section 7. Measurement Instructions

7-28

Remarks
This Instruction allows the use of the SDM-INT8, 8 Channel Interval Timer,
with the CR9000X. The SDM-INT8 is a Synchronous Device for the
Measurement of Intervals, counts between events, frequencies, periods, and/or
time since an event. See the SDM-INT8 manual for more information about its
capabilities.

This instruction must NOT be placed inside a conditional
statement or SubScan.

Parameter Enter SDMINT8 PARAMETERS
Dest
Variable or
Array

The array where the results of the instruction are stored. For all output options except
Capture All Events, the Dest argument should be a one dimensional array with as many
elements as there are programmed SDM-INT8 channels. If the "Capture All Events"
OutputOption is selected, then the Dest array must be two dimensional. The magnitude of
first dimension should be set to the number of functions (up to 8), and the magnitude of the
second dimension should be set to at least the number of events to be captured. The values
will be loaded into the array in the sequence of all of the time ordered events captured from
the lowest programmed channel to the time ordered events of the highest programmed
channel.

Address
Constant

The INT8 is addressable using internal jumpers. The jumpers are set at the factory for address
00. See Appendix A of the INT8 manual for details on changing the INT8 address.

Config8_5
Config4_1
Constants

Each of the 8 input channels can be configured for either high or low level voltage inputs, and
for rising or falling edges. Config8_5 is a four digit code to configure the INT8's channels 5
through 8. Config4_1 is a four digit code to configure the INT8's channels 1 through 4. The
digits represent the channels in descending order left to right. For example, the code entered
for Config8_5 to program channels 8 and 6 to capture the rising edge of a high level voltage,
and channels 5 and 7 to capture the falling edge of a low level voltage would be "0303". See
section 2 of the INT8 manual for requirements of high and low level voltage signals.

 Digit Edge
 0 High level, rising edge
 1 High level, falling edge
 2 Low level, rising edge
 3 Low level falling edge
Funct8_5
Funct4_1
Constants

Each of the 8 input channels can be independently programmed for one of eight different
timing functions. Funct8_5 is a four digit code to program the timing functions of INT8
channels 5 through 8. Funct4_1 is a four digit code to program the timing functions of SDM-
INT8 channels 1 through 4. See section 5.3 of the INT8 manual for further details.

 Digit Results
 0 None
 1 Period (msec) between edges on this channel
 2 Frequency (kHz) of edges on the channel
 3 Time between an edge on the previous channel and the edge on this channel

(msec)
 4 time between an edge on channel 1 and the edge on this channel (msec)
 5 Number of edges on channel 2 between the last edge on channel 1 and the edge

on this channel using linear interpolation
 6 Low resolution frequency (kHz) of edges on this channel
 7 Total number of edges on this channel since last interrogation
 8 Integer number of edges on channel 2 between the last edge on channel 1 and the

edge on this channel.

NOTE

Section 7. Measurement Instructions

7-29

Parameter
& Data Type

Enter SDMINT8 PARAMETERS

 For example, 4301 in the second function parameter means to return 3 values: the period for
channel 1, (nothing for channel 2) the time between an edge on channel 2 and an edge on
channel 3, and the time between an edge on channel 1 and an edge on channel 4. The values
are returned in the sequence of the channels, 1 to 16.
Note: the destination array must be dimensioned large enough to hold all the functions
requested.

OutputOpt Code to select one of the five different output options. The Output Option that is selected will
be applied to the data collection for all of the SDM-INT8 channels. The numeric code for
each option is listed below with a brief explanation of each. See the SDM-INT8 manual for
detailed explanations of each option.

 Code Result
 0: Average of the event data since the last time that the INT8 was interrogated by the

datalogger. If no edges were detected, 0 will be returned for frequency and count
functions, and 99999 will be returned for the other functions. The INT8 ceases to
capture events during communications with the logger, thus some edges may be
lost.

 32768 Continuous averaging, which is utilized when input frequencies have a slower
period than the execution interval of the datalogger. If an edge was not detected
for a channel since the last time that the INT8 was polled, then the datalogger will
not update the input location for that channel. The INT8 will capture events even
during communications with the datalogger.

 nnnn Averages the input values over "nnnn" milliseconds. The datalogger program is
delayed by this instruction while the INT8 captures and processes the edges for
the specified time duration and sends the results back to the logger. If no edges
were detected, 0 will be returned for frequency and count functions, and 99999
will be returned for the other functions.

 -nnnn Instructs the SDM-INT8 to capture all events until "nnnn" edges have occurred on
channel 1, or until the logger addresses the SDM-INT8 with the CaptureTrig
argument true, or until 8000 (storage space limitation) events have been captured.
When the CaptureTrig argument is true, the SDM-INT8 will return up to the last
nnnn events for each of the programmed SDM-INT8 channels, reset its memory
and begin capturing the next nnnn events. The Dest array must be dimensioned
large enough to receive the captured events.

 -9999 Causes the INT8 to perform a self memory test. The signature of the SDM-
INT8's PROM is returned to the datalogger.

 RESULT CODE DEFINITION
 0 Bad ROM
 -0 Bad ROM, & bad RAM
 Positive integer ROM signature, good RAM
 Negative integer ROM signature, bad RAM
CaptureTrig
Constant,Va.r
or Expression

This argument is used when the "Capture All Events" output option is used. When
CaptureTrig is true, the SDM-INT8 will return the last nnnn events.

Mult, Offset
Constant,
Variable,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. See the
measurement description for the units of the raw result; a multiplier of one and an offset of 0
are necessary to output in the raw units. For example, the TCDiff instruction measures a
thermocouple and outputs temperature in degrees C. A multiplier of 1.8 and an offset of 32
will convert the temperature to degrees F.

Section 7. Measurement Instructions

7-30

SDMIO16 (Dest, Status, Address, Command, ModePorts 16-13, ModePorts
12-9, ModePorts 8-5, ModePorts 4-1, Mult, Offset)

The SDMIO16 instruction is used to set up and measure an SDM-IO16 control
port expansion device. See the SDM-IO16 Manual for more complete details.

Syntax
SDMIO16(Dest, Status,Address,Command, ModePorts 16-13,

ModePorts 12-9, ModePorts 8-5, ModePorts 4-1, Mult, Offset)

Remarks
The ports on the SDM-IO16 can be configured for either input or output.
When configured as input, the SDM-IO16 can measure the logical state of
each port, count pulses, and measure the frequency of and determine the duty
cycle of applied signals. The module can also be programmed to generate an
interrupt signal to the datalogger when one or more input signals change state.
When configured as an output, each port can be set to 0 or 5 V by the
datalogger. In addition to being able to drive normal logic level inputs, when
an output is set high a ‘boost’ circuit allows it to source a current of up to 100
mA, allowing direct control of low voltage valves, relays, etc.

This instruction must NOT be placed inside a conditional
statement or SubScan.

Parameter
& Data Type

Enter SDMIO16 PARAMETERS

Dest
Variable or Array

The Dest parameter is a variable or variable array in which to store the results of the
measurement (Command codes 1 - 69, 91, 92, 99) or the Source value for the Command
Codes (70 - 85, 93 - 98). The variable array for this parameter must be dimensioned to
accommodate the number of values returned (or sent) by the instruction.

Status
Variable

The Status parameter is used to hold the result of the command issued by the instruction. If
the command is successful a 0 is returned; otherwise, the value is incremented by 1 with
each failure.

Address
Constant

The SDM address for the SDM-SIO4 (0-14)

Command
Constant

The Command parameter is used to set up the SDM-IO16. See the SDMIO16 manual or
the CRBasic editor help for more details.

Mode The SIO4 port the instruction applies to.
Constant Cod

e
Port Code Port

 1 Output Logic Low 6 Undefined
 2 Output Logic High 7 Undefined
 3 Input Switch Closure, 3.17 mS debounce

filter
8 Undefined

 4 Input Digital interrupt enabled, no debounce
filter

9 No change

 5 Input Switch Closure interrupt enabled
Mult, Offset
Constant,
Variable, Array, or
Expression

A multiplier and offset by which to scale the results. A multiplier of one and an offset of 0
are necessary to store the values as received.

NOTE

Section 7. Measurement Instructions

7-31

SDMSIO4 (Dest, Reps, Address, Mode, Command, FirstOp, SecOp,
ValuesPerRep, Mult, Offset)

This Instruction communicates with theSDM-SIO4 Serial Input Multiplexer.
See the SDM-SIO4 Manual for details.

Parameter
& Data Type

Enter SDMSIO4 PARAMETERS

Dest
Variable or Array

The Variable in which to store the results of the instruction or, when the instruction is used
to send data, this array becomes the data to send. When Reps or multiple values per rep
are used, the results are stored in an array with the variable name.
The Dest array must be dimensioned to have elements for Reps multiplied by Values per
Rep.

Reps
Constant

The number of repetitions for the measurement or instruction.

Address
Constant

The address for the SDM-SIO4 (0-14)

Mode The SIO4 port the instruction applies to.
Constant Code Port
 1 Send/Receive Port 1
 2 Send/Receive Port 2
 3 Send/Receive Port 3
 4 Send/Receive Port 4
 5 Send to all four ports (global)
Command,
FirstOp, SecOp
Constants1

Commands to SDM-SIO4. See SDM-SIO4 Manual

ValuesPerRep
Constant

How many values to send or receive

Mult, Offset
Constant,
Variable, Array,
or Expression

A multiplier and offset by which to scale the results. A multiplier of one and an offset of 0
are necessary to store the values as received. For example, the TCDiff instruction
measures a thermocouple and outputs temperature in degrees C. A multiplier of 1.8 and an
offset of 32 will convert the temperature to degrees F.

SDMSW8A (Dest, Reps, SDMAddress, FunctOp, SW8AStartChan, Mult,
Offset)

The SDMSW8A instruction is used to control the SDM-SW8A Eight-Channel
Switch Closure module, and store the results of its measurements to a variable
array.

This instruction must NOT be placed inside a conditional
statement or in a SubScan.

NOTE

Section 7. Measurement Instructions

7-32

Parameter
& Data Type

Enter SDMSW8A PARAMETERS

Dest
Variable or Array

The variable in which to store the results of the SDM-SW8A measurement. The variable
array for this parameter must be dimensioned to the number of Reps.

Reps
Constant

The number of channels that will be read on the SDM-SW8A. If (StartChan +Reps –1) is
greater than 8, measurement will continue on the next sequential SDM-SW8A. In this
instance, the addresses of the SDM devices must be consecutive.

SDMAddress
Constant

The address of the first SDM-SW8A with which to communicate. Valid SDM addresses
are 0 through 15. If the SDMTrigger instruction is used in the program, address 15 should
not be used. If the Reps parameter used more channels than are available on the first SDM-
SW8A, the datalogger will increment the SDM address for each subsequent device that it
communicates with.

FunctOp The FunctOp is used to determine the result that will be returned by the SDM-SW8A.
Constant Numeric

Code

Function

 0 Returns the state of the signal at the time the instruction is executed. A zero (0)
is stored for low and a one (1) is stored for high.

 1 Returns the duty cycle of the signal. The result is the percentage of time the
signal is high during the scan interval.

 2 Returns a count of the number of positive transitions of the signal.
 3 Returns a value indicating the condition of the module:
 positive integer: ROM and RAM are good
 negative value: RAM is bad
 Zero: ROM is bad

SDMSpeed (BitPeriod)

Changes the rate period that the CR9000X uses to clock the SDM data.
Slowing down the clock rate may be necessary when long cables lengths are
used to connect the CR9000X and SDM devices.

Parameter
& Data Type

Enter SDMSPEED PARAMETER

BitPeriod
Constant or
variable

The default bit period is 28.8 microseconds if the SDMSpeed instruction is not in the program.

If 0 is used for the argument the bit period will be 3.2 microseconds, the minimum allowable.
Maximum bit period is 800 microseconds.
Resolution is 3.2 microseconds.

The bit rate in the SDMSpeed instruction is calculated as:

bit_rate (microseconds)=INT((k*10)/32)*Resolution

where k is the value entered in BitPeriod. The datalogger will round down to the next faster
bit rate.

Section 7. Measurement Instructions

7-33

SDMTrigger
When SDMTrigger is executed, the CR9000X sends a "measure now" group
trigger to all connected SDM devices. SDM stands for Synchronous Device
for Measurement. SDM devices make measurements independently and send
the results back to the datalogger serially.

The SDMTrigger instruction allows the CR9000X to synchronize when the
measurements are made. Subsequent Instructions communicate with the SDM
devices to collect the measurement results. Not all SDM devices support the
group trigger; check the manual on the device for more information.

SDMX50 (SDMAddress, Channel)
SDMX50 allows individual multiplexer switches to be activated independently
of the TDR100 Instruction.

SDMX50 is useful for selecting a particular probe to troubleshoot or to
determine the apparent cable length.

Because it is usually easy to hear the multiplexer(s) switch, the SDMX50
instruction is a convenient method to test the addressing and wiring of a level
of multiplexers: Program the datalogger to scan every few seconds with the
SDM address for the multiplexer(s) and channel 8.

The Instruction always starts with channel 1 and switches through the channels
to get to the programmed channel. Switching to channel 8 will cause the most
prolonged noise.

Remember each multiplexer level has a different SDM Address. Level 1
multiplexers should be set to the address 1 greater than the TDR100, Level 2
multiplexers should be set to the address 2 greater than the TDR100 and Level
3 multiplexers should be set to the address 3 greater than the TDR100. If the
SDMX50 multiplexers for a given level are connected and have their addresses
set correctly they should all switch at the same time.

Parameter
& Data Type

Enter

SDMAddress
Constant

The SDMAddress of the SDMX50 to switch. Valid SDM addresses are 0
through 14.

Channel
Constant

The SDMX50 channel to switch to (1-8)

Section 7. Measurement Instructions

7-34

TDR100 (Dest, SDMAddress, Option, Mux/ProbeSelect, WaveAvg, Vp,
Points, CableLength, WindowLength, ProbeLength, ProbeOffset,
Mult, Offset)

This instruction can be used to measure one TDR probe connected to the
TDR100 directly or multiple TDR probes connected to one or more SDMX50
multiplexers.

Parameter
& Data Type

Enter TDR100 PARAMETERS

Dest The Dest parameter is a variable or variable array in which to store the
results of the measurement. The variable must be dimensioned to
accommodate all of the values returned by the instruction, which is
determined by the Option parameter.

SDMAddress The SDMAddress parameter defines the address of the TDR100 with which
to communicate. Valid SDM addresses are 0 through 14. Address 15 is
reserved for the SDMTrigger instruction. If the Reps parameter is greater
than 1, the datalogger will increment the SDM address for each subsequent
TDR100 that it communicates with.

Note: CRBasic dataloggers are programmed using the base 10 address (0-
14) Edlog programmed dataloggers (e.g., CR10X, CR23X) used base 4

Option The Option parameter determines the output of the instruction.
 Code Description
 0 Measure La/L (ratio of apparent to physical probe rod length)
 1 Collect Waveform values - Outputs reflection waveform values as

an array of floating point numbers with a range of -1 to 1. The
waveform values are prefaced by a header containing values of key
parameters for this instruction (averaging, propagation velocity,
points, cable length, window length, probe length, probe offset,
multiplier, offset)

 2 Collect Waveform plus First Derivative - Returns (2*n-5)+9 values
where n is the number of waveform reflection values specified by
the Points parameter.

 3 Measure Electrical Conductivity - Outputs a value that when
multiplied by the Multiplier parameter determines soil bulk
electrical conductivity in S/m.

Mux/
ProbeSelect

The Mux/Probe Select parameter is used to define the setup of any
multiplexers and attached probes in the system. The addressing scheme
used is ABCR, where A = level 1 multiplexer channel, B = level 2
multiplexer channel, C = level 3 multiplexer channel, and R = the number of
consecutive probes to be read, starting with the channel specified by the
ABC value (maximum of 8). 0 is entered for any level not used.

Section 7. Measurement Instructions

7-35

Parameter
& Data Type

Enter TDR100 PARAMETERS

WaveAvg The WaveAvg parameter is used to define the number of waveform
reflections averaged by the TDR100 to give a single result. A waveform
averaging value of 4 provides good signal-to-noise ratio under typical
applications. Under high noise conditions averaging can be increased. The
maximum averaging possible is 128.

Vp The Vp parameter allows you to enter the propagation velocity of a cable
when using the instruction to test for cable lengths or faults. Vp adjustment
is not necessary for soil water content or electrical conductivity
measurement and should be set to 1.0 for output Option 1, 2, or 3.

Points The Points parameter is used to define the number of values in the displayed
or collected waveform (20 to 2048). An entry of 251 is recommended for
soil water measurements. The waveform consists of the number of Points
equally spaced over the WindowLength.

CableLength The CableLength parameter is used to specify the cable length, in meters, of
the TDR probes. If a 0 is entered for the Option parameter, cable length is
used by the analysis algorithm to begin searching for the TDR probe. If a 1
or 2 is entered for the Option parameter, cable length is the distance to the
start of the collected waveform.

The value used for CableLength is best determined using PCTDR100 with
the Vp = 1.0. Adjust the CableLength and WindowLength values in
PCTDR100 until the probe reflection can be viewed. Subtract about 0.5
meters from the distance associated with the beginning of the probe
reflection.

Note that the specified CableLength applies to all probes read by this
instruction; therefore, all probes must have the same cable lengths.

WindowLength The WindowLength parameter specifies the length, in meters, of the
waveform to collect or analyze. The waveform begins at the CableLength
and ends at the CableLength + WindowLength. This is an apparent length
because the value set for Vp may not be the actual propagation velocity. For
water content measurements, the WindowLength must be large enough to
contain the entire probe reflection for probes with 20 to 30 cm rods. A Vp =
1 and Window length = 5 is recommended.

ProbeLength The ProbeLength parameter specifies the length, in meters, of the probe rods
that are exposed to the medium being measured. The value of this
parameter only has an affect when Option 0, La/L, is used for the
measurement.

ProbeOffset The ProbeOffset is an apparent length value used to correct for the portion
of the probe rods that may be encapsulated in epoxy and not surrounded by
soil or other medium being measured. This value is supplied by Campbell
Scientific for the probes we manufacture. The value of this parameter only
has an affect when Option 0, La/L, is used for the measurement.

Mult, Offset The Mult and Offset parameters are each a constant, variable, array, or
expression by which to scale the results of the measurement.

Section 7. Measurement Instructions

7-36

7.6 Pulse/Timing/State Measurements

PulseCount (Dest, Reps, PSlot, PChan, PConfig, POption, Mult, Offset)
 The PulseCount instruction sets up pulse measurements using the twelve 16
bit counter channels on the CR9070 or the twelve 32 bit counters channels on
the CR9071E Counter module. There are three pulse types or configurations
that may be measured using these Counter modules:

High Frequency: All twelve pulse channels can be configured for high frequency inputs. This
configuration is used for the higher frequency pulse inputs (up to 1 MHz). The
pulse count is incremented when the signal rises from below 1.5 VDC to above
3.5 VDC. Because of the input filter's 200 nanosecond time constant, higher
frequencies will require larger input transitions. The minimum pulse width that
can be detected is 500 ns. The maximum input voltage is ± 20 V.

Low Level AC: The first 8 frequency input channels can be configured for low level ac inputs.
This option is used to count the frequency of low level ac signals from such
sensors as a magnetic pick up. The minimum input voltage that can be
counted is 25 mV RMS and the signal must be zero crossing. At this
minimum voltage, frequencies up to 10 kHz can be measured. For input voltage
greater than 50 mV, frequencies up to 20 kHz can be measured. Again, the
maximum input voltage is 20 V.

Switch Closure: Channels 9 through 12 can be configured as Switch Closure inputs. The switch
closure (dry contact) should be connected between the pulse channel and
ground. When the contact is open, the pulse channel is pulled to 5 volts
through a 100 kOhm pull up resistor. When the contact is closed, the pulse
channel is pulled to ground. The count is incremented when the channel is
pulled high. The minimum switch close time is 5 msec. The minimum switch
open time is 5 msec. The maximum bounce time without being counted is 1
msec open.

Using the Poption parameter, you can configure the output as Counts,
Frequency over the scan interval, or as a Running Average Frequency for a set
duration.

This instruction must not be placed inside a conditional
statement, SubScan, or in a Slow Sequence Scan.

The PulseCount instruction must be executed once before the
pulse or control port is ready for input. This may be of particular
concern for programs with long scan intervals. For example, the
PulseCount instruction will not yield a valid output until the turn
of the second hour if the PulseCount instruction is used within a
program with a scan interval of 1 hour.

See Section 3.4 Pulse Count Measurements for additional measurement
information.

NOTE

Section 7. Measurement Instructions

7-37

Parameter
& Data Type

Enter PULSECOUNT PARAMETERS

Dest
Variable or
Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all the Reps.

Reps
Constant

The number of repetitions for the measurement or instruction.

PSlot
Constant

The number of the slot that holds the 9070/9071E Counter Timer Module for the measurement.

Pconfig A code specifying the type of pulse input to measure.
Constant Code Pulse Channels Input Configuration
 0 1 - 12 High Frequency
 1 1 - 8 Low Level AC
 1 9 - 12 Switch Closure
Poption
Constant

A code that determines if the raw result (multiplier = 1, offset = 0) is returned as counts or frequency.
The running average can be used to smooth out readings when a low frequency relative to the scan rate
causes large fluctuations in the measured frequency from scan to another.

 Code Result
 0 Counts
 1 Frequency (Hz) counts/scan interval in seconds
 >1 Running average of frequency. The number entered is the time period over

which the frequency is averaged in milliseconds.

Mult, Offset
Constant,
Variable,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. See the measurement
description for the units of the raw result; a multiplier of one and an offset of 0 are necessary to output in
the raw units. For example, the TCDiff instruction measures a thermocouple and outputs temperature in
degrees C. A multiplier of 1.8 and an offset of 32 will convert the temperature to degrees F.

PulseCountReset
The PulseCountReset instruction is used to reset the pulse counters and the
running averages used in the pulse count instruction. It resets all counters in
all installed CR9070/CR9071E Counter and Digital I/O modules. The
CR9070's 16 bit counters can count up to decimal 65535. More counts than
65535 result in an over-range condition. The CR9071E's 32 bit counters can
count up to 4.29 billion before over-ranging. This should never occur within a
Scan because at the maximum input frequency of 1 MHz, it would take almost
72 minutes before it fills, while the CR9000X's maximum scan rate is 1
minute.

At the beginning of each scan, the CR9000X reads the counts accumulated
since the last scan and then resets the counter. If the scans stop, as in a
program with more that one Scan loop in the Main Program, or in a program
that calls an external subroutine, the counter continues to accumulate counts
until the Scan with the PulseCount instruction is reentered. This can lead to
erroneous high values when outputting frequency, as the output is:

CR9070: The pulse count difference from the previous scan divided
by the scan interval.

CR9071E The pulse count divided by the time between the last pulse
of the scan before exiting the Scan and the last pulse before
the ExitScan on NextScan of the Scan in the Subroutine.

The error can be greatly magnified when the time duration is over the 171
second limit of the pulse counter timer.

Section 7. Measurement Instructions

7-38

See Section 3.4 Pulse Count Measurements for more info on PulseCount.

If the running averaging is in use, the over-range or erroneous high pulse count
value will be included in the average for the duration of the averaging period
(e.g., with a 1000 millisecond running average, the over-range will be the
value from the PulseCount(...) instruction until 1 second has passed).

When using multiple scans within the main program area, resetting the
counters and averages with the PulseCountReset instruction prior to restarting
the Scan avoids this (see PulseCountReset Example 1 below).

For cases involving Scans that have calls to subroutines, the
PulseCountReset should be placed in a conditional prior to the PulseCount
instruction, and the Subroutine call should be placed after the PulseCount
instruction. If possible, calls to DataTables that store the results from the
PulseCount instruction should be placed prior to the Subroutine call (see
PulseCountReset Example 2 below).

The first Scan after the PulseCountReset instruction is
encountered, the PulseCount destination variable’s value remains
unchanged from its previous value. If this variable’s value is
used for logic control, it may need to be changed through
program control to 0 or NAN (example programs set it to 0.

This instruction cannot be used in a SubScan or Slow Sequence
Scan.

PulseCountReset Example 1
Public PulseHz, Flag(8) 'Declare Public Variables

DataTable (Table1,Flag(3) = False,-1) 'Define Data Tables
 DataInterval (0,0,0,10)
 Sample (1,PulseHz,IEEE4)
EndTable

'Main Program
BeginProg
 Do
 Scan(1,Sec,0,0)
 ‘Insert Measurement Instructions Here
 If NOT Flag(1) Then
 ExitScan
 EndIf
 Flag(3) = True ‘Disable output with first scan
 NextScan
 PulseHz = 0 ‘Set PulseCount variable value to 0
 PULSECOUNTRESET ‘Reset Pulse Counters prior to entering scan
 Scan (1,Sec,100,0)
 PulseCount (PulseHz,1,6,1,0,2000,1,0)
 CallTable Table1
 If Flag(1) Then ExitScan
 Flag(3) = False
 NextScan
 Loop
EndProg

NOTE

Section 7. Measurement Instructions

7-39

PulseCountReset Example 2
Public PulseHz, Flag(8) 'Declare Variables
DataTable (Table1,Flag(3) = False,-1) 'Define Data Tables
 DataInterval (0,0,0,10)
 Sample (1,PulseHz,IEEE4)
EndTable
Sub Sub1 'Define Subroutines
 Scan (1,Sec,3,0)
 'Enter Measurement Instructions Here
 If NOT Flag(1) Then ExitScan
 NextScan
 Flag(3) = True ‘Controls 1rst Data Output and Reset
 PulseHz = 0 ‘Set PulseCount Variable’s value to 0
EndSub
'Main Program
BeginProg
 Scan (1,Sec,100,0)
 If Flag(3) Then
 PulseCountReset
 EndIf
 PulseCount (PulseHz,1,6,1,0,2000,1,0)
 CallTable Table1
 Flag(3) = False
 If Flag(1) Then Sub1
 NextScan
EndProg

ReadIO (Dest, PSlot, Mask)

The ReadIO instruction is used to read the status of selected digital I/O
channels (ports) on the CR9070/CR9071E Counter - Timer / Digital I/O
Module. There are 16 ports on the CR9070/CR9071E. The status of these
ports is considered to be a binary number with a high port (+3.5V to +5 V)
signifying 1 and a low port (-0.5V to +1.2 V) signifying 0. For example, just
looking at the first 8 ports, if ports 1 and 3 are high and the rest low, the binary
representation is 00000101, or 5 decimal.

The Mask parameter is used to select which of the ports to read. It is a binary
representation of the ports. If a port position is set to 1, the datalogger reads the
status of the port. If a port position is set to 0 the datalogger ignores the status
of the port. The Mask is "anded" with the port status. The "and" operation
returns a 1 for a digit if the Mask digit and the port status are both 1, and a 0 if
either or both is 0.

CRBasic allows the entry of numbers in binary format by preceding the
number with "&B". For example, if the Mask is entered as &B100 (leading
zeros can be omitted in binary format just as in decimal) and ports 3 and 1 are
high, the result of the instruction will be 4 (decimal, binary = 100). If port 3 is
low, the result would be 0.

ReadIO Example

ReadIO(Port3, 6, &B100) ' read port 3 on the CR9070/CR9071E card in slot 6
 ' if port 3 is high then Port3 = 4, if port 3 is low then Port3 = 0

Section 7. Measurement Instructions

7-40

Parameter

& Data Type
Enter READIO PARAMETERS

Dest
Variable or
Array

The Variable in which to store the results of the instruction. When Reps are used the results are stored in
an array with the variable name. An array must be dimensioned to have elements for all the Reps.

PSlot
Constant

The number of the slot that holds the 9070 Counter Timer Module for the measurement.

Mask
Constant

The Mask allows the read or write to only act on certain ports. The Mask is ANDed with the value
obtained from the 9070 when reading and ANDed with the source before writing.

This instruction must NOT be placed inside a conditional
statement or in a SubScan.

TimerIO (Dest, PSlot, Edges 16–9, Edges 8–1, Function 16–9,
Function 8–1, AllDoneFlag)

The TimerIO instruction is used to measure the time between edges (state
transitions) on the digital I/O channels of the CR9070/CR9071E Counter and
Digital I/O Module as well as on the Pulse channels on the CR9071E module.
The transitions can be either on the rising edge (low to high) or falling edge
(high to low) of the signal. The states are nominally 0 V low and 5 V high.
When TimerIO is the only measurement in a scan and the time since previous
channel is measured on 4 channels, the fastest interval is approximately 140
microseconds. A single Instruction cannot rep from one module to the
next.

There are six functions that can be performed:
1. The period (msec) of the signal on a channel (CR9070 or CR9071E)

2. The frequency (hertz) of the signal (CR9071E only)

3. The time (msec) since an edge on the previous channel (1 number lower) to an
edge on the specified channel. (CR9070 or CR9071E)

4. The time (msec) from an edge on channel 1 to an edge on the specified
channel. (CR9070 or CR9071E)

5. Number of edges since last execution. (CR9071E P1-P12 only)

6. Number of edges since last edge on channel 1 (CR9071E P1-P12 only).

Only one function may be programmed per channel. The number of values
returned is determined by the number of channels for which a result is
requested.

This instruction must NOT be placed inside a conditional
statement or in a SubScan.

P1 - P12 When using the CR9071E's Pulse channels for timing measurements, the
resolution is 40 nanoseconds and the maximum measurable period is 2
seconds. If using function codes 3 or 4 (timing between edges on two
channels), the input signals on the two channels whose edges you are

NOTE

NOTE

Section 7. Measurement Instructions

7-41

comparing should either be periodic, or have periods less than the Program
Scan rate. If neither of these conditions are met, the error in the measurement
of the time between edges on the two channels could be up to 1/2 of the Scan
rate.

If using function codes 1 or 2 (return period or frequency of signal), the time
of the last edge prior to the beginning of the scan, and the time of the last edge
of the scan are measured, with a resolution of 40 nanoseconds, and the
difference is divided by the number of edges that occurred within the scan.
This feature eliminates the issues with the resolution of pulse measurements
that are present when using the PulseCount instruction.

See Section 3.4 Pulse Count Measurements for more on the PulseCount
frequency resolution).

I/O 1 - 16 When using the I/O channels with a constant for the AllDoneFlag, the logger
will stay within the instruction until it has results for all measurements
requested. This can result in skipped scans if the input signal frequency is
slow. The resolution is approximately 10 microseconds + 15 microseconds x
the number of results requested.

Pulse channels (P1 thru P12) and I/O channels cannot be
programmed with a single instruction.

Parameter
& Data Type

Enter TIMERIO PARAMETERS

Dest
Var. or Array

Array for results of the measurements.

Pslot
Constant

The slot that the CR9070/CR9071E module is in.

Edges
Constant

There are two Edge parameters, 8 digits each, one digit is for either each of the 16 I/O channels on the
CR9070/CR9071E Module when programmed with a 0 or a 1, or for the 12 pulse channels when
programmed with a 2, 3, 4, or 5. Each digit configures the respective channel to count a transition on the
rising edge (from <1.5V to >3.5V) or on the falling edge (from >3.5V to <1.5V).

 Digit Edge
 0 Falling, IO channel, I/O 1 to I/O 16
 1 Rising, IO channel, I/O 1 to I/O 16
 2 Falling, high freq, CR9071E pulse channel only: P1 to P12
 3 Rising, high freq, CR9071E pulse channel only: P1 to P12
 4 Falling, CR9071E Pulse channels only.

P1 to P8:low level ac; P9-P12:switch closure

 5 Rising, CR9071E Pulse channels only.
P1 to P8:low level ac. P9 to P12:switch closure

 The first edge parameter is either for I/O channels 16 to 9 or for Pulse channels 12 to 9 (descending
order) depending on the edge code used. The second edge parameter is either for I/O channels 8 to 1 or
for Pulse channels 8 to 1. The digits represent the channels in descending order left to right. For
example, 00000101 in the second edge parameter means channels 1 and 3 count rising edges and
channels 2 and 4-8 are to count falling edges (this could also be specified as 101, the leading zeros do
not need to be entered). Separate instructions are required when programming both I/O and Pulse
channels for TimerIO functions. See PulseCount for description of high freq, low level ac, and switch
closure inputs. Instruction cannot rep over to another module.

NOTE

Section 7. Measurement Instructions

7-42

Parameter
& Data Type

Enter TIMERIO PARAMETERS

Function Two parameters, 8 digits each, one digit to program results for each channel.
Constant Digit Results
 0 None
 1 Period (msec)
 2 Frequency (CR9071E P1 to P12 only)
 3 time since previous channel (msec)
 4 time since channel 1 (msec)
 5 count since last execution (CR9071E Pulse Channels only)
 6 count since channel 1 (CR9071E Pulse Channels only)

The digits correspond to the channels using the same layout outlined for the edge parameter. The first
Function parameter is either for I/O channels 16 to 9 or for Pulse channels 12 to 9 (descending order)
depending on the edge code used. The second Function parameter is either for I/O channels 8 to 1 or for
Pulse channels 8 to 1. The digits represent the channels in descending order left to right.

Example 1: 00000211 in the second Function parameter sets up the module to return 3 values:
1. The period of the input signal on channel 1
2. The period of the input signal on channel 2
3. The frequency of the input signal on channel 3.

This could also be specified as 211 (the leading zeros do not need to be entered).

Example 2: 00004301 in the second Function parameter sets up the module to return 3 values:
1. The period for channel 1
2. The time between an edge on channel 2 and an edge on channel 3
3. The time between an edge on channel 1 and an edge on channel 4.

The values are returned in the sequence of the channels, 1 to 16.
Note: The destination array must be dimensioned large enough to hold all the functions requested.

AllDoneFlag
Constant or
Variable

If a variable is entered for the AllDoneFlag parameter, the variable will be set to True (-1.0)
when all the functions have a value. This allows a user program to test when its experiment is
complete. If a constant rather than a variable is entered, then the task sequencer will stay in
this instruction until values can be returned for all channels.

WriteIO (PSlot, Mask, Source)
WriteIO is used to set the status of selected digital I/O channels (ports) on the
CR9070/CR9071E Counter - Timer / Digital I/O Module or the CR9060’s
control ports.

See the WriteIO topic in Section 9.2 Data Logger Status/Control for more
complete info on this instruction.

See the PortSet topic in Section 9.2 Data Logger Status/Control for setting
the Output channels on the CR9060.

7.7 Serial Sensors
SerialInput(Dest, MaxValues, TerminateChar, FilterString)

The SerialIn instruction is used to set up the RS232 port for receiving
incoming serial data. This instruction has limited functionality and has never
been fully implemented. Campbell Scientific recommends that a SDM-SIO4
be utilized when measuring serial sensors with the CR9000X.

Section 7. Measurement Instructions

7-43

See the SDM-SIO4 topic in Section 7.5 5 Peripheral Devices.

Syntax
SerialInput (Dest, MaxValues, TerminationChar, FilterString)

Remarks
Incoming data is written to the destination array until the TerminationChar is
received or the MaxValues is met. SerialInput is used to read the output from a
serial sensor connected to the logger's RS232 port.

Parameter
& Data Type

Enter SERIALINPUT PARAMETERS

Dest
Variable or Array

The Variable array in which to store the values received from the serial sensor. The variable array
should be dimensioned large enough to accept all of the values being read (Max_Values parameter).

MaxValues
Constant

Maximum number of characters that will be transmitted between the FilterString and the Termination

TerminateChar
Constant

The character that will be used to mark the end of the transmitted string. This number must be less
than 128.

FilterString
Constant

String of characters used to mark the beginning of the data transmitted from the serial sensor.

SerialInput Example
'Declare Variables
Public ser_vals(12)
Public Count
Const MAXVALUES = 12 'max number of values
Const TERMCHAR = 13 'carriage return, must be <128
BeginProg
 Scan(1,sec,0,0)
 SERIALINPUT(ser_vals,MAXVALUES,TERMCHAR,$JNK)
 count = count + 1
 NextScan
EndProg

7.8 CR9052DC & CR9052IEPE Filter Module
The CR9052DC is a six-channel, analog-input module that includes
programmable anti-alias filtering with a dc excitation daughter board. The
excitation options include constant 10 VDC, 5 VDC or 10 mA selections.

The CR9052IEPE is a 6 channel filter module that provides direct connection
of Internal Electronics Piezo-Electric (IEPE) accelerometers and microphones
through BNC connections. The CR9052IEPE module utilizes our CR9052
anti-aliasing filter module motherboard with an IEPE current source excitation
daughter board with AC coupling. Constant current excitation of 2 mA, 4 mA,
or 6 mA is available.

Customers with either module excitation configuration may send them to CSI
to have the other excitation board installed and have the new configuration
calibrated. Either filter module configuration can provide filtered voltage
measurements or spectra from Fast Fourier Transforms of the voltage
measurements.

See Section 3.3 CR9052 Filter Module Measurements for measurement details.

Section 7. Measurement Instructions

7-44

The filter module collects alias-free, 50-kHz samples from each of its six
analog-to-digital converters; applies additional real-time, finite-impulse-
response filtering, and decimates (down samples) the 50-kHz data to the
programmed scan rate. The Filter Module supports 726 different scan intervals
including the basic ones shown in the table below. For scan intervals not
listed, enter the scan interval desired, download the program, and the logger
will return suggested operational scan intervals close to the one that was
entered.

See Appendix B for a list of all available scan intervals.

Scan Interval Scan Rate

 20 μs 50 kHz

 40 μs 25 kHz

 100 μs 10 kHz

 200 μs 5 kHz

 400 μs 2.5 kHz

 1 ms 1000 Hz

 2 ms 500 Hz

 4 ms 250 Hz

 10 ms 100 Hz

 20 ms 50 Hz

 40 ms 25 Hz

 100 ms 10 Hz

 200 ms 5 Hz

VoltFilt (Dest, Reps, Range, FSlot, Chan, FiltOption, Excitation, Mult,
Offset)

The VoltFilt instruction is used to obtain voltage measurements from the
CR9052 Filter Module in much the same way as the VoltDiff instruction is
used with the CR9050 module. The program scan interval (or the SubScan
Interval: see the SubScan topic in Section 9.1 Program Structure/Control)
determines the filter module output interval. Data are passed from the Filter
Module to the CR9000X CPU for processing and final storage at this scan
interval. There is the option of turning on a fixed excitation. No ratiometric
scaling (as in the bridge measurement instructions) is applied when the
excitation is on; the VoltFilt instruction always returns millivolts scaled by the
multiplier and offset.

This instruction must NOT be placed inside a conditional
statement or Slow Sequence Scan.

NOTE

Section 7. Measurement Instructions

7-45

Parameter Enter VOLTFILT PARAMETERS
Dest
Variable,Array

The Variable to store the results of the instruction. When Reps are used the results are stored in an
array with the variable name. An array must be dimensioned to have elements for all Reps.

Reps
Constant

The number of times to repeat the measurement on subsequent CR9052 channels..

Range The voltage range for the measurement. The CR9052 normally replaces out-of-range
measurements with not-a-number (NaN) which is displayed in RTDaq's real time windows as
Range?. Users may choose to have out-of-range measurements to be replaced by the analog-to-
digital converter saturation value with a special code in FiltOption.

Constant Alpha
Code

Numeric
Code

Voltage
Range

Module Excitation
Board Supported

 mV5000 0 ± 5000 mV CR9052DC, CR9052IEPE
 mV1000 1 ± 1000 mV CR9052DC, CR9052IEPE
 mV200 4 ± 200 mV CR9052DC
 mV50 5 ± 50 mV CR9052DC
 mV20 6 ± 20 mV CR9052DC
Fslot
Constant

The number of the slot that holds the CR9052 Module to be used for the measurement.

Chan
Constant

The CR9052 channel number on which to make the first measurement. When Reps are used,
subsequent measurements will be automatically made on the following differential channels.

FiltOption
Constant

The sample ratio for the measurement (how many measurements are made within one cycle of the
highest frequency in the pass band). The sample ratio determines the top of the pass-band (FPASS)
and the beginning of the stop-band (FSTOP) of the anti-aliasing low-pass filter relative the sample
rate (FSAMPLE). The sample rate is the inverse of the scan interval in the CRBASIC program.
FiltOption must be the same for all channels of a single CR9052 Filter Module. Out-of-range
measurements may be replaced by the analog-to-digital converter saturation value by adding 1000
to the FiltOption codes shown below.

 NumericCode Sampling Ratio FPASS FSTOP
 2 2.5 FSAMPLE/2.5 FSAMPLE/2.01
 5 5 FSAMPLE/5 FSAMPLE/3.37
 10 10 FSAMPLE/10 FSAMPLE/5.08
 20 20 FSAMPLE/20 FSAMPLE/6.81
 1* 2.155 23.2 Khz 26.8 kHz
 *Option 1 has no additional filtering beyond the CR9052DC analog front-end and the sigma-delta

A/D converter, thus freeing the CR9052DC on-board digital signal processor for additional
processing. FSAMPLE must be 50 kHz to use this filter option.

Excitation
Constant

The continuous, dc, output for the excitation channel(s). If Reps is greater than one, then the same
excitation will be output on sequential excitation channels.

 Numeric Code Alpha Code Output Level IEPE Freq. Response

CR9052IEPE 900 (905) None None τ = 0.5 Sec (τ = 5.0 Sec)
CR9052IEPE 605 None Constant 6 mA 0.3 Hz to 20 kHz (τ = 5.0 Sec)
CR9052IEPE 405 None Constant 4 mA 0.3 Hz to 20 kHz (τ = 5.0 Sec)
CR9052IEPE 205 None Constant 2 mA 0.3 Hz to 20 kHz (τ = 5.0 Sec)
CR9052IEPE 600 None Constant 6 mA 3.0 Hz to 20 kHz (τ = 0.5 Sec)
CR9052IEPE 400 None Constant 4 mA 3.0 Hz to 20 kHz (τ = 0.5 Sec)
CR9052IEPE 200 None Constant 2 mA 3.0 Hz to 20 kHz (τ = 0.5 Sec)
CR9052DC 7 V10 Constant 10 V DC N/A
CR9052DC 5 None Constant 5 V DC N/A
CR9052DC 2 None Constant 10 mA N/A
CR9052DC 1 None None N/A
Mult, Offset
Constant,Variable,
Array, Expression

A multiplier and offset by which to scale the measurement. A multiplier of one and an offset of 0
will return the measurement in millivolts.

Section 7. Measurement Instructions

7-46

The following example program measures 6 channels on the CR9052DC using the VoltFilt instruction.

' CR9052 example program #1
'' Measure six channels at 1 kHz on +/- 5000 mV range with 5-Volt excitation.
‘ Sample ratio is 2.5: top of pass band is 1 kHz / 2.5 = 400 Hz.
‘ CR9052 is in slot 8.
Public sig_in (6)
Units sig_in = mV
Public flag (1)
DataTable (FiltData, flag (1), -1) ' save to final storage if flag (1) = True
 Sample (6, sig_in(1),IEEE4)
EndTable
BeginProg
 Scan(1, msec, 0,0)
' VoltFilt (Destination, Reps, Range, Fslot, Chan, FiltOption, Excitation, Mult, Offset)
 VOLTFILT (sig_in(1), 6, mV5000, 8, 1, 2, 5, 1.0, 0.0)
 CallTable FiltData
 Next Scan
EndProg

SubScan (SubInterval, Units, SubRatio)
The SubScan instruction makes it possible to measure CR9052 inputs at one
rate and measurements on other modules at a slower rate, all within the same
scan structure. The number of SubScans that will be buffered is the product of
the SubRatio parameter and the Scan's Buffer parameter. When the program
contains a VoltFilt instruction within a SubScan, the Filter module will buffer
the Scans to its onboard memory. If the main Scan instruction specifies more
scans to buffer than available CR9052 memory, an error message will be
returned at compile time. You cannot run measurements for a single CR9052
module both inside and outside of a SubScan, as all measurements for a given
module must have the same Scan Interval and Sample Ratio.

See the SubScan Topic in Section 9.1 Program Structure/Control for more
information on setting up measurements in SubScans.

This instruction cannot be used in a Slow Sequence Scan.

Parameter
& Data Type

Enter SUBSCAN PARAMETERS

SubInterval
Constant

The time interval at which to run the subscan. The interval must be one of the valid intervals
for the CR9052 module: 20, 40, 100, 200, or 400 microseconds or 1, 2, 4, 10, 20, 40, 100, or
200 milliseconds. When used with the CR9052 Filter Module, the interval of the scan that
contains the SubScan must be an integral multiple of the SubScan interval.

Units The units for the Interval
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 Microseconds
 MSEC 1 Milliseconds
SubRatio
Constant

The subscan will run SubRatio times each time the scan runs. When SubScan is used with the
CR9052 Filter Module (the only use as of March 2001) this parameter is redundant but must
be entered anyway. (The Scan interval must be an integral multiple of the SubScan interval or
a compile error will occur. SubRatio is the ratio between the scan interval and the subscan
interval.)

NOTE

Section 7. Measurement Instructions

7-47

The following program uses the SubScan to combine 2.5 kHz filtermodule measurements with 10 Hz
measurements on a CR9050 card.

' CR9052 example program #2
'
' Measure 2 channels on the CR9050 at 10 Hz on the +/- 5000 mV range.
' Measure six channels on the CR9052DC at 2.5 kHz on +/- 5000 mV range with 5-Volt excitation.
' Sample ratio is 2.5: top of pass band is 2.5 kHz / 2.5 = 1 kHz.
' CR9052 is in slot 8.
' Turn on flag 1 on to save instantaneous data to output table.

const stats_interval = 2 ' time period over which to compute stats, in seconds

Public Flt_in (6)
units Flt_in = mV
Public Alg_in (2)
units Alg_in = mV
Public flag (1)

'Filter Module Filter Option
const SmplRat_2_5 = 2 'Fpass = Fsr/2.5 = 1/(T_scan*2.5)

'------------------- Data Tables -------------
DataTable (FiltData, flag (1), -1) ' save to final storage if flag (1) = True
 Sample (6, Flt_in(1),IEEE4)
EndTable

DataTable (AlgData, flag (1), -1) ' save to final storage if flag (1) = True
 Sample (2, Alg_in(1),IEEE4)
EndTable

'------------------- Program------------------
BeginProg
 Scan (100, msec, 0, 0)
 VoltDiff (Alg_in(1), 2, mV5000, 6, 1, False, 0, 0, 1.0, 0.0)
 CallTable AlgData
 SubScan (400, usec, 250)
' VoltFilt (Destination, Reps, Range, FSlot, Chan, FiltOption, Excitation, Mult, Offset)
 VOLTFILT (Flt_in(1), 6, mV5000, 8, 1, SmplRat_2_5, 5, 1.0, 0.0)
 CallTable FiltData
 Next SubScan
 Next Scan

 SlowSequence
 Scan (1, Sec, 0, 0)
 Calibrate ' run calibrations for cr9050 measurements
 BiasComp
 Next Scan
EndProg

Section 7. Measurement Instructions

7-48

Filter Module Memory Buffer
Each CR9052 Filter Module includes an 8 million sample (32-Mbyte) memory
buffer. Experimenters may use this memory to increase CR9052DC
measurement rates to 50 ksamples/sec per channel (20 kHz for CR9052IEPE),
giving a sustained aggregate sample rate of 300 ksamples/sec for a single Filter
Module, 600 ksamples/sec for two Filter Modules, etc. The 8-Msample buffer
allows 26.7-second recordings for six channels running at 50 kHz, 80-second
recordings for two channels running at 20 kHz, etc. Because each CR9052DC
Filter Module includes its own memory buffer, the total buffer capacity
increases as experimenters add additional Filter Modules within the CR9000X
chassis.

The Filter Module will buffer the number of scans specified in the main Scan
instruction to its on-board memory . When the program contains a VoltFilt
instruction within a SubScan, the total number of subscans that will be
buffered is the ratio of subscans to scans times the buffer parameter in the Scan
instruction. If the main Scan instruction specifies more scans to buffer than
there is memory available on the CR9052, an error message will be returned at
compile time.

The following example program uses the SubScan instruction to buffer
measurements into the CR9052DC burst memory.

' CR9052 example program #4
' Measure 6 channels on the CR9052 at 25 kHz on the +/- 5000 mV range with
' buffering to the CR9052 memory.
' Trigger when channel 1 exceeds 4000 mV, or when flag 1 is on.
' Subsequent recordings are appended to end of the preceding recording in table FiltData.
const cr9052_slot = 8
Public Flt_in (6)
units Flt_in = mV
Public flag (1)
'------------------- Data Tables -------------
DataTable (FiltData, True, -1)
 DataInterval (0, 0, usec, 100) 'do not explicitly save the time stamp with each record,
 ' data can still be collected to the PC with time stamps
 CardOut(0, -1) ' data table is ring memory, maximum size
 Sample (6, Flt_in(1), ieee4)
EndTable
'------------------- Program----------------
BeginProg
 ResetTable (FiltData) ' start with fresh data table
 while (True)
 Scan(1, msec, 1000, num_scans) '1000 scans will be buffered
 SubScan (40, usec, 25) 'Subscan/scan ratio = 25 so 25,000 subscans get buffered
' VoltFilt (Dest, Reps, Range, FSlot, Chan, FiltOption, Excit, Mult, Offset)
 VOLTFILT(Flt_in(1), 6,mV5000, 8, 1, 2, 1, 1.0, 0.0)
 CallTable FiltData
 Next SubScan
 Next Scan
 Flag(1) = False ' turn flag 1 off to eliminate multiple manual triggers
 wend
EndProg

Section 7. Measurement Instructions

7-49

FFTFilt (Dest, Reps, Range, Fslot, Channel, FiltOption, Excitation, Mult,
FSampRate, FFTLen, TSWindow, SpectOption, Fref, SBin, ILow,
IHigh)

The CR9052 filter module can perform real-time fast Fourier transform (FFT)
analyses on the voltages measured on its inputs, and then pass the resulting
spectra to the CR9000X CPU for further processing and storage into data
tables. The FFT operation is specified with the FFTFilt instruction.

This instruction cannot be used in a SubScan or Slow Sequence
Scan.

With the VoltFilt instruction the Scan (or SubScan) interval determines the
rate at which individual measurements are passed to the CPU. With FFTFilt
the Scan interval is how often an entire spectrum for each channel is sent to the
CPU. The sample rate for the FFT time-series is set within the instruction.

FFTFilt can provide spectra from “seamless” time-series snapshots if the Scan
interval is set equal to it’s minimum value: the FFT length divided by the time-
series sample rate (i.e., measurements are continuously sampled, an FFT is
calculated each time the required number of measurements are sampled, no
samples are missed.) When the scan interval is greater than this minimum
value there will be gaps between acquiring the FFT time series.

The first eight parameters of the FFTFilt instruction are similar to the first
eight parameters of VoltFilt. The Fslot, FiltOption, FSampRate, and
FFTLen parameters must be the same for all channels of a single CR9052DC
module. The other parameters may be unique for each channel.

Parameter
& Data Type

Enter FFTFILT PARAMETERS
Dest
Variable or
Array

The Variable in which to store the results of the instruction. Because FFTFilt returns all or
part of an entire spectrum (see ILow and IHigh) for each Rep, Dest usually must be an array.

Reps
Constant

The number of times to repeat the measurements and subsequent FFTs on consecutive
CR9052DC channels. Spectra from multiple Reps are placed head-to-tail in the Dest array.

Range
Constant

The voltage range for the measurement. The CR9052 normally replaces out-of-range
measurements with not-a-number (NaN) which is displayed in RTDaq's realtime windows as
Range?. Users may choose to have out-of-range measurements to be replaced by the analog-
to-digital converter saturation value with a special code in FiltOption.

 Alpha Code Numeric Code Voltage
Range

Module Excitation
Board Supported

 mV1000 0 ± 5000 mV CR9052DC, CR9052IEPE
 mV1000 1 ± 1000 mV CR9052DC, CR9052IEPE
 mV200 4 ± 200 mV CR9052DC
 mV50 5 ± 50 mV CR9052DC
 mV20 6 ± 20 mV CR9052DC

Fslot
Constant

The number of the slot that holds the CR9052 Module to be used for the measurement.

Chan
Constant

The CR9052 channel number on which to make the first measurement. When Reps are used,
subsequent measurements will be automatically made on the following differential channels.

NOTE

Section 7. Measurement Instructions

7-50

Parameter
& Data Type

Enter FFTFILT PARAMETERS
FiltOption
Constant

The sample ratio for the measurement (how many measurements are made within one cycle of the
highest frequency in the pass band). The sample ratio determines the top of the pass-band (FPASS)
and the beginning of the stop-band (FSTOP) of the anti-aliasing low-pass filter relative the sample
rate (FSAMPLE). The sample rate is the inverse the scan interval in the CRBASIC program.
FiltOption must be the same for all channels of a single CR9052DC Filter Module. The CR9052
normally replaces out-of-range measurements with not-a-number (NaN) which is displayed in
RTDaq's realtime windows as Range?. Out-of-range measurements may be replaced by the
analog-to-digital converter saturation value by adding 1000 to the FiltOption codes shown
below.

 Numeric Code Sampling Ratio FPASS FSTOP
 2 2.5 FSAMPLE/2.5 FSAMPLE/2.01
 5 5 FSAMPLE/5 FSAMPLE/3.37
 10 10 FSAMPLE/10 FSAMPLE/5.08
 20 20 FSAMPLE/20 FSAMPLE/6.81
 1* 2.155 23.2 Khz 26.8 kHz
 FiltOption 1 is available only when FsampRate is 50 kHz. At this sample rate, no additional

filtering beyond that provided by the CR9052DC hardware is required to anti-alias the data.
Because the CR9052DC processor is not performing additional anti-alias filtering, this
FiltOption increases the CR9052DC’s FFT throughput. To achieve spectra from seamless
snapshots with FsampRate equal to 50 kHz on six channels, FiltOption must be 1.

Excitation
Constant

The continuous, dc, output level for the excitation channel(s). If Reps is greater than one, then the
CR9052 Module drives the same excitation level on sequential excitation outputs.

 Numeric Code Alpha Code Output Level IEPE Freq. Response
CR9052IEPE 900 (905) None None τ = 0.5 Sec (τ = 5.0 Sec)
CR9052IEPE 605 None Constant 6 mA 0.3 Hz to 20 kHz (τ = 5.0 Sec)
CR9052IEPE 405 None Constant 4 mA 0.3 Hz to 20 kHz (τ = 5.0 Sec)
CR9052IEPE 205 None Constant 2 mA 0.3 Hz to 20 kHz (τ = 5.0 Sec)
CR9052IEPE 600 None Constant 6 mA 3.0 Hz to 20 kHz (τ = 0.5 Sec)
CR9052IEPE 400 None Constant 4 mA 3.0 Hz to 20 kHz (τ = 0.5 Sec)
CR9052IEPE 200 None Constant 2 mA 3.0 Hz to 20 kHz (τ = 0.5 Sec)
CR9052DC 7 V10 Constant 10 V DC
CR9052DC 5 None Constant 5 V DC
CR9052DC 2 None Constant 10 mA
CR9052DC 1 None None
Mult
Constant,Variable,
Array, Expression

A factor by which to multiply the raw time-series voltage measurements. Mult-1 provides the
reference value for the deciBell (dB) spectral option.

FsampRate
Constant

The sample rate in samples per second, at which the CR9052 will collect time series data before
performing the FFT. FsampRate must be the same for all channels in a CR9052 module. Some
of the available rates are shown below:

 FsampRate Sample Rate Sample Interval
 50000 50 kHz 20 μs
 25000 25 kHz 40 μs
 10000 10 kHz 100 μs
 5000 5 kHz 200 μs
 2500 2.5 kHz 400 μs
 1000 1 kHz 1 ms
 500 500 Hz 2 ms
 250 250 Hz 4 ms
 100 100 Hz 10 ms
 50 50 Hz 20 ms

Section 7. Measurement Instructions

7-51

Parameter
& Data Type

Enter FFTFILT PARAMETERS
FFTLen
Constant

The length of (number of points in) the time series snapshot on which to perform the FFT. If the
scan period equals FFTLen/FsampRate, then the consecutive time series

 FFTLen
 65536
 32768
 16384
 8192
 4096
 2048
 1024
 512
 256
 128
 64
 32

snapshots processed into spectra are “seamless”. If the scan period is greater
than FFTLen/FsampRate, then the time series snapshots will have gaps
between them. A compile error occurs if the scan Period is less than
FFTLen/FsampRate

The FFT throughput for transforms of 2048 points or less is much higher than
the throughput for transforms longer than 2048 points. The CR9052DC can
produce spectra from seamless 50-kHz snapshots on six channels for FFTLen
equal to 2048 or less. The CR9052DC can produce spectra from seamless 50-
kHz snapshots on two channels for any FFTLen.

TSWindow
Constant

TSWindow designates whether the CR9052 should apply a window (also known as a taper, or
apodization) function to the time series snapshot before performing the FFT. Typical window
functions give more weight to the middle of the time series while tapering the ends to avoid
spectral leakage caused by a non-integral number of periods of a repetitive signal in the snapshot.

 Numeric Code Window Function
 0 None
 1 Hanning
 2 Hamming
 3 Blackman
 4nn Kaiser-Bessel nn: represents Beta (β) nn range: 5 - 16 (integer)
SpectOption Designates the output option for the computed spectrum.
Constant Numeric Code Spectra Result Maximum Spectrum Length
 0 Real and Imaginary (FFTLen/2 + 1) pairs
 1 Amplitude (FFTLen/2 + 1) values
 2 Amplitude and Phase (FFTLen/2 + 1) pairs
 3 Power Spectrum (FFTLen/2 + 1) values
 4 Power Spectral Density

Function
(FFTLen/2 + 1) values

 6 RMS Amplitude (FFTLen/2 + 1) values
 7 DeciBels (FFTLen/2 + 1) values
 CR9052 users may apply predefined spectral weighting functions to their output spectra with the

SpecOption. The CR9052 can implement A, B, and C spectral weighting for all spectral output
modes as defined in the IEC 60651 international standard. To select A-weighted spectra, add 10
to the SpecOption parameter. To select B-weighted spectra, add 20 to the SpecOption parameter.
To select C-weighted spectra, add 30 to the SpecOption parameter.Add 100 to the 100 to the
SpectOption codes above and the original time series data will be returned along with the
spectrum. The CR9000X places the time series data in the array Dest immediately following the
spectrum. When this option is enabled, Dest must be dimensioned large enough to hold this
additional time series data. If Reps is more than one, the CR9000X places the spectrum for the
first channel in Dest, followed by the time series for the first channel. Next, the CR9000X places
the spectrum for the second channel in Dest, followed by the time series for the second channel,
etc.

Section 7. Measurement Instructions

7-52

Parameter
& Data Type

Enter FFTFILT PARAMETERS
FRef Constant Reference Frequency for Logarithmic rebinning. Set to 0 for linear or no rebinning.
SBin Constant For linear rebinning: the number of adjacent spectral bins to combine. For logarithmic

rebinning: the number of bins per octave in the rebinned spectrum. Set to 0 or 1 for no
rebinning. The DC component, bin 0, is left alone and not combined with other bins. Bin
combination starts with the first AC component. Combining bins is not allowed for the Real
and Imaginary or Amplitude and Phase spectral options.

ILow, IHigh
Constants

ILow and IHigh make it possible to return a subset of the spectrum that results from the
Spectral option and bin combining specified by the previous parameters. I is the bin number.
ILow is the number of first bin to return, IHigh the number of the last bin to return. To get all
the components set ILow equal to the lowest bin number and IHigh to the maximum bin
number. With linear spectral bins (Fref = 0), the lowest bin number is 0 and the highest bin
number is the integer portion of FFTLen/(2*Sbin). See the text for details and logarithmic
rebinning (Fref≠0).

Window Function

TSWindow is a constant designating whether the CR9052 should apply a
window (also known as taper, or apodization) function to the time series
snapshot before performing the FFT. Typical window functions give more
weight to the middle of the time series while tapering the ends to avoid spectral
leakage caused by a non-integral number of periods of a repetitive signal in the
snapshot.

The CR9052 applies the selected window function by multiplying each point
of the original time series by the corresponding point of the window function.
Because this windowing process removes some of the original signal variation,
the CR9052 uses the following procedure to correct the resulting spectra.

The CR9052 first computes the mean and standard deviation of the original
time series for use in additional processing. Next, the CR9052 subtracts the
mean from each point of the original time series, and then multiplies the mean-
subtracted time series by the selected window function. The CR9052 then
computes the standard deviation of this windowed time series. The CR9052
then computes the FFT of the windowed time series, and multiplies each ac
component of the complex spectrum by the ratio of the standard deviations of
the time series computed before and after the window function was applied.
The CR9052 then sets the dc component of the spectrum to the mean of the
original time series, normalized for the FFT length.

The CR9052 computes the Hanning window function from:

⎟
⎠
⎞

⎜
⎝
⎛

−
−

1
2cos5.05.0

N
kπ

 for ()10 −≤≤ Nk .

N is the length of the original time series (FFTLen).

Section 7. Measurement Instructions

7-53

The CR9052 computes the Hamming window function from:

⎟
⎠
⎞

⎜
⎝
⎛

−
−

1
2cos46.054.0

N
kπ

 for ()10 −≤≤ Nk .

The CR9052 computes the Blackman window function from

⎟
⎠
⎞

⎜
⎝
⎛

−
+⎟

⎠
⎞

⎜
⎝
⎛

−
−

1
4cos08.0

1
2cos5.042.0

N
k

N
k ππ

 for ()10 −≤≤ Nk .

The Kaiser-Bessel window function is calculated using:

()β

β

0

2

2
1
2

1

0

I

1I
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
− −

−

N

Nk

for ()10 −≤≤ Nk

where ()0I is the modified zeroth order Bessel function and

where 5 ≥ β(integer) ≥ 16

 Spectral Options
The CR9052DC supports the following spectral options. The first five spectral
options are the same as the CR9000X FFT instruction. RMS Amplitude and
Decibels are new for the FFTFilt instruction.

 Real and Imaginary
The real and imaginary option returns the raw real (r) and imaginary (i)
components from the FFT. The FFT calculation produces FFTLen/2 +1 pairs
of real and imaginary components. ILow and IHigh, described below,
determine which of these pairs of values are loaded into the destination array
by FFTFilt.

 Amplitude
The amplitude option returns the amplitude of each spectral component. The
FFT calculation produces FFTLen/2 +1 amplitude components. ILow and
IHigh ,described below, determine the number of values returned by FFTFilt.
The amplitude of a sinusoid represented by ()tA ωcos is A. The CR9052DC

computes the amplitude from:
N

ir 222 +

for all components except the dc and Nyquist components. The dc and Nyquist

components are computed from
N

ir 22 +
.

N is the length of the original time series (FFTLen). The units of the
amplitude spectrum are mV.

Section 7. Measurement Instructions

7-54

 Amplitude
The amplitude and phase option returns the amplitude as described above, plus

the phase in radians given by: ⎟
⎠
⎞

⎜
⎝
⎛−

r
i1tan .

The FFT calculation produces FFTLen/2 +1 pairs of amplitude and phase
components. ILow and IHigh, described below, determine which of these
pairs of values are returned by FFTFilt. The phase is between -π and π.

 Power
The power spectrum option gives the power for each of the spectral
components. The FFT calculation produces FFTLen/2 +1 power components.
ILow and IHigh, described below, determine the number of values returned by

FFTFilt. The CR9052DC computes the power from:
()

2

222
N

ir +

for all spectral components except the dc and Nyquist components. The dc

component is computed from
()

2

22

N
ir +

,

and the Nyquist component is computed from
()

2

22

2N
ir +

.

The sum of all of the ac components of the power spectrum gives the variance
of the original time series. The units of the power spectrum are ()2mV .

 Power Spectral Density
The power spectral density (PSD) function normalizes the power spectrum by
the bandwidth of each spectral component. The FFT calculation produces
FFTLen/2 +1 PSD components. ILow and IHigh, described below, determine
the number of values returned by FFTFilt. The CR9052DC computes the psd

from:
()

SRfN
ir 222 +

for all components except the dc and Nyquist components. fSR is the sample
rate of the original time series (FSampRate). The dc component is computed

from:
()

SRfN
ir 22 +

,

and the Nyquist component is computed from:
()

SRfN
ir

2

22 +
.

The integral of the PSD over all of the ac components gives the variance of the

original time series. The units of the PSD are
()

Hz
mV 2

.

RMS Amplitude
The RMS (root-mean-square) amplitude is computed from the square root of
the power spectrum for all spectral components, or equivalently, the amplitude
spectrum divided by the 2 for all ac components. The dc component of
RMS amplitude spectrum is the same as the dc component of the amplitude
spectrum. The FFT calculation produces FFTLen/2 +1 RMS amplitude
components. Spectral binning and ILow and IHigh, described below,

Section 7. Measurement Instructions

7-55

determine the number of values returned by FFTFilt. The units of the RMS
amplitude spectrum are mV RMS.

 deciBell

The deciBell (dB) spectrum normalizes the RMS amplitude spectrum

according to ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

refA
A

10log02

where A is value from the RMS amplitude spectrum, and refA is RMS

amplitude reference level. The inverse of the multiplier parameter (Mult-1) of
the FFTFilt instruction gives Aref . Because the square of the RMS amplitude

is equal to power, an equivalent normalization to dB is ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

refP
P

10log01

where P is the value from the power spectrum, and refP is power reference

level. The square of the inverse of the multiplier parameter (Mult-2) gives

refP . The multiplier parameter of the FFTFilt performs two functions for the

dB spectrum option. The first function is to convert the raw signal
measurements from mV to the units in which the dB reference is specified, and
the second function gives the dB reference. For example, users may convert
signals from a microphone to sound pressure level (SPL) spectra in dB relative

to 20 μPascals RMS, by setting Mult to:
RMS Pascals1020 6−×

k

where k is the microphone calibration in Pascals per mV. The FFT calculation
produces FFTLen/2 +1 deciBell components. ILow and IHigh, described
below, determine the number of values returned by FFTFilt. The dB spectrum
is unitless.

FFT Spectral Bins

The FFT calculation produces N/2 +1 spectral bins, where N is the number of
points in the original time series. These bins may contain a single value (i.e.,
amplitude) or a pair of values (i.e., Real and Imaginary). Each of these bins
represents a frequency range. Let i be the bin number, ranging from 0 for the
DC component to N/2 for the highest frequency range. The center frequency of

each range is: () i
N
f

if SR
c =

where SRf is the sample rate of the time series processed by the FFT

(parameter FSampRate), and N is the length of the FFT (parameter
FFTLen). ()0cf is the center frequency of the first spectral component

calculated by the FFT, ()1cf is the center frequency of the second spectral
component, and so on.

Section 7. Measurement Instructions

7-56

The difference between the center frequencies of adjacent spectral bins is

N
f SR , and bandwidth of each bin is also

N
f SR .

The results described above are returned by the FFTFilt Instruction when Fref
is set to zero, SBin is either zero or one, ILow is 0, and IHigh equals N/2.
ILow and IHigh refer to the bin numbers of the first and last bins to load into
the destination array. For example, if the number of points in the original time
series, N=1024 then the resulting FFT would have 1024/2 +1 = 513 bins
numbered from 0 to 512. To get the entire FFT, ILow would be set to 0 and
IHigh would be set to 512.

ILow and IHigh can be used to return only a part of the spectrum. For
example, If only the higher frequencies were of interest, say bin 200 to bin
512, ILow could be set to 200 and IHigh to 512.

In terms of frequency:

To limit the lower end of the spectrum, select a minimum frequency of interest,

lowf , and then set Ilow to: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
low

SR

f
f
Nround ,

where ()xround is x rounded to the nearest integer.

To limit the upper end of the spectrum, select a maximum frequency of

interest, highf , and then set IHigh to: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
high

SR

f
f
Nround .

Not saving the higher frequency bins is particularly useful if you are used to
using some of the rules of thumb on over sampling that evolved to avoid
aliasing higher frequencies present because of the prolonged rolloff of analog
filters. For example, suppose you are interested in frequencies up to 1 kHz. To
get a 5 times oversample, FSampRate of 5 kHz is used with FiltOpt sampling
ratio = 5 and N=1024. The bin containing the 1 kHz information will be
Round((1024/5000)x1000) = 205. Bins containing spectra beyond the filter
stop frequency of 5000/3.37 = 1484 Hz will be drastically attenuated (≥ 90
dB). The bin containing the stop frequency is: I = Round ((1024/5000)x1484)
= 304). Set IHigh to bin 205 and only spectra up to 1 kHz will be returned. Set
IHigh to 304 get the spectra through the filter roll off but discard the 208 bins
containing spectra beyond the stop frequency.

The total number of spectral components (spectral pairs for real and
imaginary, or amplitude and phase, spectral options) loaded into the
destination array by FFTFilt is IHigh - ILow + 1. Note that the bin numbers
ILow and IHigh are not the same as the array index numbers of the destination
array. For example, with a single (1Rep) 1024 point Amplitude FFT, if all the
bins were returned (ILow=0, and I High=512) into the destination:
FFTResult(1), FFTResult(1) would equal the amplitude for bin 0,
FFTResult(2) = bin(1), … FFTResult(513) = bin(512). If ILow were set equal
200 and IHigh equal 512, then FFTResult(1) = bin(200), FFTResult(2) =
Bin(201), … FFTResult(313) = bin(512).

Section 7. Measurement Instructions

7-57

Frequency Range

 Maximum Frequency
The maximum non-attenuated frequency in the FFT is a function of the
Sampling Frequency, SRf , (FSampRate) and the Filter option (FiltOption)

The maximum frequency in the spectrum calculated by an FFT is half the
sampling frequency (2/SRf). This is also called the Nyquist frequency.

FSampRate must be at least twice the maximum frequency of interest, highf .

Any frequencies higher than the Nyquist frequency that were present in the
time series will be aliased, contributing to the lower frequency components.
Aliasing is not a concern with the CR9052 because the Pass frequency and the
stop frequency are both less than FSampRate/2 for all filter options except 1.
Alaising is not a problem with filter option 1 because any signals in the
transition band up to the stop frequency of 26.8 kHz will be alaised to
frequencies higher than the pass frequency of 23.2 kHz.

The pass frequency (FPASS) is the maximum frequency that is not attenuated by
the filter. Be sure that the selected filter option FiltOption in combination with
FSampRate makes FPASS greater than or equal to the maximum frequency of
interest, highf . (i.e., that passhigh ff ≤).

One effect of the filter option used is on the number of spectral bins calculated
by the FFT beyond the pass frequency. The pass frequency is defined in terms
of the sampling ratio, sampR , the ratio of the sample rate to the pass frequency :

sampSRpass Rff /= . For the smallest sampling ratio of 2.5, the number of

bins representing frequencies greater than passf is approximately 20% of the

bins calculated by the FFT. This goes up to 90% of the calculated bins for the
maximum sampling ratio of 20. It is easy to set IHigh to not return bins
beyond passf . However, the fewer calculations required for the same

maximum frequency, passff =max , when using a sampling ratio of 2.5 vs a

sampling ratio of 20 may make the difference between seamless and
intermittent FFTs if the FFT length has to be increased at the higher sample
rate to obtain the desired minimum frequency.

 Minimum Frequency
Once FsampRate is selected to include the highest frequency of interest,
FFTLen can be set to determine the lowest non-zero frequency.

The lowest frequency AC component of an FFT (bin 1 in the description of the

FFT Spectra above) has a center frequency, ()
N
f

N
f

f SRSR
c =×= 11 .

Where SRf is the sample rate (FsampRate, samples/second) and N is the
number of samples (FFTLen). This frequency is the reciprocal of the time
required to complete the sampling. In other words, exactly one cycle of this
low frequency is completed in the time it takes to sample the time series for the

Section 7. Measurement Instructions

7-58

FFT. To be sure the spectrum output by the FFT includes the lowest frequency

of interest, lowf , set N (FFTLen) so that: low
SR f

N
f

≤ .

Frequency Resolution

Frequency resolution goes hand in hand with the minimum frequency. The

difference between the center frequencies of adjacent spectral bins is
N
f SR ,

and bandwidth of each bin is also
N
f SR .

For a given sample rate, SRf , if better frequency resolution is required (i.e.,
more bins, each covering a narrower frequency range) increase the number of
points in the FFT, N. If less resolution is required (i.e., fewer bins each
covering a wider frequency range) decrease the number of points in the FFT or
(to keep the minimum frequency from slipping into the DC bin) combine bins
as described below.

Spectral ReBinning

An FFT spectrum can be “rebinned” into a spectrum containing fewer bins
where each of the new bins contains a component that covers the frequency
range of the bins that were combined. The dc component (bin 0 of the original
FFT) is not combined with other bins but may be returned with a linear
rebinned spectrum. The first bin to be combined is the first ac component. Bins
can be combined in two different ways:

1)Linearly with the resulting bins all having a fixed bandwidth equal to the
distance between center frequencies of adjacent bins (as in a the spectrum
created by the FFT).

2) Logarithmically with the bandwidth increasing with frequency.

The mathematical operations to combine bins depends on the spectrum type
(SpectOption). Amplitude, RMS amplitude, and dB spectra are combined by
summing the power in the adjacent bins and then converting this summed
power to the desired spectrum type (amplitude, RMS amplitude, or dB). Power
spectral density (PSD) functions are combined by averaging adjacent
frequency-normalized bins into to give the frequency-normalized result.
Combining Real and Imaginary, or Amplitude and Phase spectra is not
allowed.

Fref and SBin are constants that determine the type of spectral binning. ILow
and IHigh are constants that determine which part of the rebinned spectrum is
returned.

Section 7. Measurement Instructions

7-59

 Linear Spectral Rebinning

Linear spectral rebinning combines the spectral components from a fixed
number of adjacent bins into a single component of the final spectrum. Linear
spectral rebinning is selected by setting Fref equal to zero and SBin to two or
more. The parameter SBin determines the number of bins to combine.

Let i be the bin number of the rebinned spectrum. The center frequency of
each spectral component with linear spectral rebinning is

() ⎟
⎠
⎞

⎜
⎝
⎛ −

−×=
2

1bin
bin

SR
c

S
Si

N
f

if

Where i ranges from 0 for the DC component to Floor ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
× binS
N

2

for the bin containing the highest frequency component. where the ()xFloor

is the largest integer that is not greater than x , SRf is sample rate of the

original time series (parameter FSampRate), N is the length of the FFT
(parameter FFTLen), and binS is the number of bins to combine (parameter
SBin).

The difference between the center frequencies of adjacent spectral components

after linear spectral rebinning is bin
SR S
N
f

, and bandwidth of each spectral

component (except the dc component) is also bin
SR S
N
f

. The bandwidth of the

dc component is
N
f SR .

As with the original FFT results, ILow and IHigh . determine which part of
the rebinned spectrum to return. To return the entire spectrum, set ILow to its
minimum value, 0, and IHigh to its maximum value. The maximum IHigh is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
× binS

N
2

floor

where the ()xfloor is the largest integer that is not greater than x . To limit
the lower end of the spectrum, users first select a minimum frequency of

interest, lowf , and then set ILow to ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

×
2

11round bin

SR

low

bin

S
f

fN
S

,

where ()xround is x rounded to the nearest integer. To limit the upper end

of the spectrum, users select a maximum frequency of interest, highf , and then

set

Section 7. Measurement Instructions

7-60

IHigh to: ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

×

2
11round bin

SR

high

bin

S
f

fN
S

.

The total number of spectral components returned by the FFTFilt instruction is
IHigh - ILow + 1.

 Logarithmic Spectral ReBinning (1/n Octave Analyses)

Logarithmic spectral rebinning combines the spectral components from a
variable number of adjacent bins into a single component of the final spectrum.
The number of bins that are combined increases logarithmically with
frequency. FFTFilt is programmed to return a logarithmic spectrum by setting
Fref to a non-zero value and SBin between one and twelve. The parameter
SBin determines the number of bins per octave in the rebinned spectrum. An
octave is a factor of two increase in frequency.

The dc component is never part of the final logarithmic spectrum.

Let i be the bin number of the rebinned spectrum. The center frequency of

each spectral component with logarithmic spectral binning is () binS
i

refc fif 2=

for highlow iii ≤≤

where reff is an arbitrary reference frequency selected by the user (parameter

Fref), and binS is the bins per octave in the final logarithmic spectrum
(parameter SBin). In many acoustic applications, Fref is set to 1 kHz.

The ratio (not the difference) between center frequencies of adjacent spectral

components in the logarithmic spectrum is binS
1

2 . The absolute bandwidth of
each spectral component is not constant, but rather, increases with increasing
frequency. The bandwidth of each spectral component, expressed as a fraction

of the center frequency, is binbin SS 2
1

2
1

22
−

− .
Many acoustic applications call for 1/3 octave analyses (three points per
octave). For this case, the center frequency of a given bin is a factor of about
1.26 greater than the center frequency of the preceding bin. The bandwidth of
each bin is about 23 percent of the bin’s center frequency.

Note that in this logarithmic spectrum the integer bin number, i , may be
negative as well as positive. Fref is the center frequency of bin 0,

() ref
S

refc fff bin ==
0

20

This is not to say that bin 0 is always a valid output. The valid frequency bins
to output are determined by frequency range of the original FFT and the values
entered for Sbin and Fref (e.g., if the original sample rate (FSampRate) was
1kHz and Fref was entered as 1 kHz bin 0 (1 kHz center frequency) could not
be output because the highest frequency in the original FFT is 500 Hz.)

Section 7. Measurement Instructions

7-61

The minimum i is: ()
⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2
1

2log

log

ceiling
10

10
ref

SR

bin

fN
f

S

where ()xceiling is the smallest integer that is not less than x . The

maximum i is: ()
⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2
1

2log
2

log

floor
10

10
ref

SR

bin

f
f

S

where ()xfloor is the largest integer that is not greater than x .

Users can select whether the CR9052DC returns the entire spectrum or only
part of the spectrum by setting ILow and IHigh. To return the entire spectrum,
set ILow to its minimum value, and set IHigh to its maximum value. As an
alternative to computing the minimum ILow and maximum IHigh from the
equations given above, let the CR9000X perform the calculations: Set ILow a
very negative value (like -1000) and set IHigh to a very positive value (like
1000). When the program is downloaded, the CR9000X compiler will issue an
error that gives the minimum ILow and maximum IHigh for the current
FFTFilt programming. These values can then be entered into the program and
used to calculate the size required for the destination array.

To limit the lower end of the final spectrum by frequency, select a minimum
frequency of interest, lowf , and then calculate ILow:

ILow = ()
⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2log

log

round
10

10
ref

low

bin

f
f

S ,

where ()xround is x rounded to the nearest integer.

To limit the upper end of the final spectrum, select a maximum frequency of
interest, highf , and then calculate IHigh:

IHigh = ()
⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

2log

log

round
10

10
ref

high

bin

f
f

S .

The total number of spectral components returned by FFTFilt is
IHigh - ILow + 1.

Section 7. Measurement Instructions

7-62

FFTSample (Source, DataType)
FFTSample is an output instruction used to sample a variable array written by
an FFTFilt instruction. FFTSample is used in place of the Sample instruction
because it gets the FFT programming from the FFTFilt instruction and stores
this processing information in the header of the data table. Without the
processing information, RTDaq would not be able to automatically detect and
plot the FFT.

Parameter
& Data Type

Enter FFTSAMPLE PARAMETERS

Source
Variable

The variable that in the FFTFilt Destination array that contains the start of the spectrum
returned by the FFTFilt instruction. This must be the same variable array that was used as the
FFTFilt Destination. All of the spectral values returned by the FFTFilt Instruction for that
CR9052 channel will be output. Separate FFTSample instructions are required to output each
of the Reps used in an FFTFilt instruction. The datalogger will return a compile error if it
cannot find an FFTFilt instruction which uses this source variable as the destination for a
spectrum.

DataType A code to select the data storage format.
Constant Alpha Code Numeric Code Data Format
 IEEE4 24 IEEE 4 byte floating point
 FP2 7 Campbell Scientific 2 byte floating point

Section 8. Processing and Math
Instructions

Operators

^ Raise to Power >> Bit shift operator
/ Divide << Bit shift operator
- Subtract & String concatenation
<> Not Equal AND Logical conjunction
< Less Than EQV Logical Equivalence
<= Less Than or Equal INTDV Integer divide
* Multiply MOD Modulo divide
+ Add NOT Logical negation
= Equals OR Logical disjunction
> Greater Than XOR Logical exclusion
>= Greater Than or Equal

AngleDegrees
The AngleDegrees declaration is used to set math functions in the program to
return, or to expect as the source, degrees instead of radians.

Syntax
AngleDegrees

Remarks
The AngleDegrees instruction is placed in the declarations section of the
program, before the code enclosed in the BeginProg/EndProg instructions.

AngleDegrees affects the following instructions that return an angle in radians:
ATN, ATN2, ACOS, ASIN, RectPolar.

Angle Degrees affects the following instructions that expect an angle in radians
as the source: COS, COSH, TAN, TANH, SIN, SINH.

Negative radians will convert to negative degrees.

Bit Shift Operators (<< and >>)
The bit shift operators (>> or <<) perform an arithmetic bit shift operation on a
numeric expression.

Syntax

<< : Bit shift left
 Variable = Numeric Expression >> Amount

>> Bit shift right
 Variable = Numeric Expression >> Amount

8-1

Section 8. Processing and Math Instructions

Remarks
>> shifts the bit pattern to the right.

<< shifts the bit pattern to the left.

The Amount argument is the number of bits to shift left or right. Amount must
be an integer.

Bit shift operators (<< and >>) allow the program to manipulate the positions of
patterns of bits within an integer (CRBASIC Long type). Here are some
example expressions and the expected results:

&B00000001 << 1 produces &B00000010 (decimal 2)
&B00000010 << 1 produces &B00000100 (decimal 4)
&B11000011 << 1 produces &B10000110 (decimal 134)
&B00000011 << 2 produces &B00001100 (decimal 12)
&B00001100 >> 2 produces &B00000011 (decimal 3)

The result of these operators is the value of the left hand operand with all of its
bits moved by the specified number of positions. The resulting "holes" are
filled with zeroes.

Note that the Long data type is a signed integer. Shifting the bit pattern to the
right maintains the same sign (i.e., the most significant bit is maintained as a 1 if
the number is a negative).

An AND operation can be performed to strip unwanted bits for an unsigned
integer prior to performing the bit shift. Consider a sensor or protocol that
produces an integer value that is a composite of various "packed" fields. This
approach is quite common in order to conserve bandwidth and/or storage space.
Consider the following example of an eight byte value:

bits 7-6: value_1
bits 5-4: value_2
bits 3-0: value_3

Code to extract these values is shown in the following example.

Dim input_val as LONG
Dim value_1 as LONG
Dim value_2 as LONG
Dim value_3 as LONG

'read input_val somehow
value_1 = (input_val AND &B11000000) >> 6
value_2 = (input_val AND &B00110000) >> 4

'note that value_3 does not need to be shifted
value_3 = (input_val AND &B00001111)

With unsigned integers, shifting left is the equivalent of multiplying by two and
shifting right is the equivalent of dividing by two.

8-2

Section 8. Processing and Math Instructions

ABS(Source)
Returns the absolute value of a number.

Syntax
ABS(source)
Remarks
The argument source can be any valid numeric expression. The absolute value of a
number is its unsigned magnitude. For example, ABS(-1) and ABS(1) both return 1.

Abs Function Example

The example finds the approximate value for a cube root. It uses ABS to determine
the absolute difference between two numbers.

Dim Precision, Value, X, X1, X2 'Declare variables.
Precision = .00000000000001
Value = Volt(3) 'Volt(3) will be evaluated.
X1 = 0: X2 = Value 'Make first two guesses.
'Loop until difference between guesses is less than precision.
Do Until ABS(X1 - X2) < Precision
X = (X1 + X2) / 2
If X * X * X - Value < 0 Then 'Adjust guesses.
 X1 = X
Else
 X2 = X
End If
Loop

'X is now the cube root of Volt(3).

ACOS (Source)
The ACOS function returns the arc cosine of a number.

Syntax
x = ACOS (source)

Remarks
The source can be any valid numeric expression that has a value between -1 and
1 inclusive.

The ACOS function takes the ratio of two sides of a right triangle and returns
the corresponding angle. The ratio is the length of the side adjacent to the angle
divided by the length of the hypotenuse. The result is expressed in radians and
is in the range -π/2 to π/2 radians. If it is desired to use degrees instead of
radians for the inputs and results of the trig functions in a program, the
"AngleDegrees" declaration instruction can be used.

To convert degrees to radians, multiply degrees by π/180. To convert radians to
degrees, multiply radians by 180/π.

ACOS is the inverse trigonometric function of COSINE, which takes an angle
as its argument and returns the length ratio of the side adjacent to the angle to
the hypotenuse.

8-3

Section 8. Processing and Math Instructions

ACOS Function Example
The example uses ACOS to calculate π. By definition, a full circle is 2π
radians. ACOS(0) is π/2 radians (90 degrees).

Public Pi 'Declare variables.
Pi = 2 * ACOS(0) 'Calculate Pi.

AND Operator

Used to perform a bit-wise conjunction on two numbers.

Syntax
result = number1 AND number2

The AND operator performs a bit-wise comparison of identically positioned bits in
two numbers and sets the corresponding bit in result according to the following truth
table:
If bit in AND bit in The result
number1 is number2 is is
 0 0 0
 0 1 0
 1 0 0
 1 1 1

Although AND is a bit wise operator, it is often used to test Boolean
(True/False) conditions. The CR9000X decides if something is true or false on
the criteria that 0 is false and any non-zero number is true (Section 4.5).
Because AND is a bit wise operation it is possible to AND two non-zero
numbers (e.g., 2 and 4) and get 0. The binary representation of –1 has all bits
equal 1. Thus any number AND –1 returns the original number. That is why
the pre defined constant, True = -1.

The predefined constant True = -1
The predefined constant False = 0

If number1 is: AND number2 is: The result is:
-1 Any number number2
-1 NAN (not a number) NAN
0 Any number 0
0 NAN NAN

Expressions are evaluated to a number (Section 4.5) and can be used in place of
one or both of the numbers. Comparison expressions evaluate as True (-1) or
False (0) For example:

If Temp(1) > 50 AND Temp(3) < 20 Then
 X = True
Else
 X = False
EndIf

 and

X = Temp(1) > 50 AND Temp(3) < 20

8-4

Section 8. Processing and Math Instructions

Both have the same effect, X will be set to –1 if Temp(1) is greater than 50 and
Temp(3) is less than 20. X will be set to 0 if either expression is false.

ASIN (Source)

The ASIN function returns the arc sin of a number.

Syntax
x = ASIN (source)

Remarks
Source can be any valid numeric expression that has a value between -1 and 1
inclusive.

The ASIN function takes the ratio of two sides of a right triangle and returns the
corresponding angle. The ratio is the length of the side opposite to the angle
divided by the length of the hypotenuse. The result is expressed in radians and
is in the range -π/2 to π/2 radians. If it is desired to use degrees instead of
radians for the inputs and results of the trig functions in a program, the
"AngleDegrees" declaration instruction can be used.

To convert degrees to radians, multiply degrees by π/180. To convert radians to
degrees, multiply radians by 180/π.

ASIN is the inverse trigonometric function of Sin, which takes an angle as its
argument and returns the length ratio of the side opposite the angle to the
hypotenuse.

ASIN Function Example
The example uses ASIN to calculate π. By definition, a full circle is 2π radians.
ASIN(1) is π/2 radians (90 degrees).

Public Pi 'Declare variables.
Pi = 2 * ASIN(1) 'Calculate Pi.

ATN(Source)
Returns the arctangent of a number.

Syntax
Atn(source)

Remarks
The argument source can be any valid numeric expression.

The ATN function takes the ratio (source) of two sides of a right triangle and returns
the corresponding angle. The ratio is the length of the side opposite the angle
divided by the length of the side adjacent to the angle. The result is expressed in
radians and is in the range -π/2 to π/2 radians. π is approximately 3.141593.
If it is desired to use degrees instead of radians for the inputs and results of the
trig functions in a program, the "AngleDegrees" declaration instruction can be
used.

8-5

Section 8. Processing and Math Instructions

ATN is the inverse trigonometric function of TAN, which takes
an angle as its argument and returns the ratio of two sides of a
right triangle. Do not confuse ATN with the cotangent, which is
the simple inverse of a tangent (1/tangent).

NOTE

ATN FunctionExample
The example uses ATN to calculate π. By definition, ATN(1) is 45 degrees; 180
degrees equals π radians.

Dim Pi 'Declare variables.
Pi = 4 * ATN(1) 'Calculate π.

ATN2(Source)
The ATN2 function returns the arctangent of y/x.

Syntax
x = ATN2 (Y, X)

Remarks
ATN2 function calculates the arctangent of Y/X returning a value in the range
from π to -π radians, using the signs of both parameters to determine the
quadrant of the return value. ATN2 is defined for every point other than the
origin (X = 0 and Y = 0). Y and X can be variables, constants, or expressions.
If it is desired to use degrees instead of radians for the inputs and results of the
trig functions in a program, the "AngleDegrees" declaration instruction can be
used.

To convert degrees to radians, multiply degrees by π/180. To convert radians to
degrees, multiply radians by 180/π. π is approximately 3.141593.

AvgRun (Dest, Reps, Source, Number)
AvgRun is used to calculate a running average of a measurement or calculated
value.

Syntax
AvgRun(Dest, Reps, Source, Number)
Remarks
A running average is the average of the last N values where N is the number of
values.

Dest
X

N
ii

i N

= =

=∑ 1

X N X N −1

X1

Where is the most recent value of the source variable and is the
previous value (is the oldest value included in the average, i.e., N-1 values
back from the most recent). NANs are not included in the processing of the
AvgRun. N (number of values used in the Running Average) will be
reduced by the number of NANs encountered in the current band of
values, reducing the number of values used in the AvgRun calculations
until the NAN(s) are cycled through.

8-6

Section 8. Processing and Math Instructions

This instruction uses high precision math. A normal single precision float has
24 bits of mantissa. With high precision, a 32 bit extension of the mantissa is
saved and used internally, resulting in 56 bits of precision. Instructions that use
high precision are AddPrecise, Average, AvgRun, AvgSpa, CovSpa,
MovePrecise, RMSSpa, StdDev, StdDevSpa, and Totalize.

This instruction normally should not be inserted within a
For/Next construct with the Source and Destination parameters
indexed and Reps set to 1. In essence this would be performing a
single running average, using the values of the different elements
of the array, instead of performing an independent running
average on each element of the array. The results of this would be
a Running Average of a Spatial Average of the various Source
array's elements.

Running Average Attenuation and Phase Shift
The running average is a digital low-pass filter. As such, its output is
attenuated as a function of frequency, and its output is delayed in time. The
amount of attenuation and time delay depend on the frequency of the input
signal and the time length (which is related to the number of points) of the
running average.

Attenuation: Chart 8-1 is a graph of the signal attenuation plotted against the
signal frequency normalized to 1/(time length of running average). This signal
is attenuated by a Sinc filter with an Order of 1 (simple averaging):
Sin(πX)/(πX), where X is the ratio of the input signal frequency to the running
average frequency (running avg. frequency = 1/Time length of running
average).

Chart 8-1 Running Average Signal Attenuation

NOTE

8-7

Section 8. Processing and Math Instructions

Example 1:
 Scan period = 1 mSec,
 N value = 4 (Number of points to average),
 Running Average Duration = 4 mSecs
 Running Average Frequency = 1/(Running Average Duration = 250 Hz
 Input Signal Frequency = 100 Hz
 Input Freq. to RunAvg Freq. (Normalized frequency) = 100/250 = 0.4
 Sin(0.4π)/(0.4π) = 0.757 (or read from Chart 8-1 where the X axis is 0.4)

For a 100 Hz input signal with an Amplitude of 10 V peak to peak, the
Running Average outputs a 100 Hz signal with an amplitude of 7.57 V peak to
peak.

Phase Shift : There is also a phase shift, or delay, in the output from the
Running Average. The formula for calculating the delay in number of samples
is:

Delay in Samples = (N-1)/2 (N = Number of points in running
average)

To calculate the delay in time, multiply the result from the above equation by
the period at which the running average is executed (usually the scan period):

Delay in Time = (Scan Period)(N-1)/2

For the example above, the delay is :

Delay in time = (1 mSec)(4-1)/2
 = 1.5 mSec

Example 2. Actual test using an accelerometer mounted on a beam whose
resonant frequency is about 36 Hz. The measurement period was 2 mSec. The
running average duration was 20 mSec (frequency of 50 Hz), so the normalized
resonant frequency is 36/50 = 0.72. Sin(0.72π)/(0.72π) = 0.34. The recorded
amplitude for this example should be about 1/3 of the input signal's amplitude.
A program was written with two stored variables: Accel2 and Accel2RA. The
raw measurement was stored in Accel2, while Accel2RA was the result of
performing a Running Average on the Accel2 variable. Both values were
stored at a rate of 500 Hz. Chart 8-2 show the two values plotted in a single
graph to illustrate the attenuation (the running average value has the lower
amplitude).

8-8

Section 8. Processing and Math Instructions

C:\Program Files\Campbell Scientif ic\PC9V5B2\DataFile\ACCEL07.DAT

Accel2 Accel2RA

11/22/2005
15:45:41.000

11/22/2005
15:45:40.000

3

2

1

0

-1

-2

-3

0.062
11/22/2005

15:45:41.290

-0.028
11/22/2005

15:45:41.286

Chart 8-2 Running Average Signal Attenuation

The resultant delay, Delay in Time = (Scan Rate)(N-1)/2, is:

Delay = 2 mSec(10-1)/2 = 9 mSecs.

This is about 1/3 of the input signal's period, and Chart 8-2 shows this delay.

Parameter
& Data Type

Enter AVGRUN PARAMETERS
Dest
Var or Array

The variable or array in which to store the average(s).

Reps
Constant

When the source is an array, this is the number of variables in the array to calculate averages for. When
the source is not an array or only a single variable of the array is to be averaged, reps should be 1.

Number
Constant

The number of values to include in the running average..

Source
Array

The name of the variable or array that is to be averaged.

'Example: Following code performs a running average on 6 reps of V (each element of the array will
'have its own running average computed over 100 Scans), stores the results in the VRA variable array,
'and samples the 6 running average values to a data table.

Public V(6), VRA(6)
Const Rep1 = 6
DataTable(Table1,True,-1)
 DataInterval(0,0,0,10)
 Sample(6,VRA,IEEE4)
EndTable
BeginProg 'Program begins here
 Scan(RATE, RUNITS, 0, 0) 'Scan 1(mSecs),
 '______________________ Volt Blocks ______________________
 VoltDiff(V(), REP1, mV50, 5, 1, 0, 30, 40, 1, 0)
 AVGRUN(VRA(),Rep1,V(),100) 'Avg 100 elements for each rep of V in VRA
 CallTable MAIN 'Go up and run Table MAIN
 Next Scan 'Loop up for the next scan
EndProg 'Program ends here

8-9

Section 8. Processing and Math Instructions

AvgSpa (Dest, Swath, Source)
The AvgSpa function computes the spatial average of a swath of elements on an
array.

Syntax
AvgSpa(Dest, Swath, Source)
Remarks
Find the average of the values in the given array and place the result in the variable
named in Dest. The Source must be a particular element in an array (e.g., Temp(1));
it is the first element in the array to include in the average. The Swath is the
number of elements of the array to include in the average.

swath
iXswathji

ji∑
−+=

=

1)(
Dest =

Where X(j) = Source

NANs are not included in the processing of the Spatial Average.

Parameter
& Data Type

Enter AVGSPA PARAMETERS
Dest
Variable

The variable in which to store the results of the instruction.

Swath
Constant

The number of values of the source array to average.

Source
Array

The name of the variable array that is the input for the instruction.

Average Spatial Output Example
This example uses AvgSpa to compute the average value of the five elements
Temp(6) through Temp(10) and store the result in the variable AvgTemp.

AvgSpa(AvgTemp, 5, Temp(6))

Ceiling(Source)
The Ceiling function rounds a value up to the next integer value.

Syntax
Variable = Ceiling(Source)

Remarks
The Ceiling function rounds a Number up to an integer value. To round a value
down to an integer, use the Floor function. To perform arithmetic rounding on a
value, use the Round function.

COS(Source)
Returns the cosine of an angle.

Syntax
COS(Source)

8-10

Section 8. Processing and Math Instructions

Remarks
Source can be any valid numeric expression measured in radians.

The COS function takes an angle and returns the ratio of two sides of a right
triangle. The ratio is the length of the side adjacent to the angle divided by the
length of the hypotenuse. The result lies in the range -1 to 1. If it is desired to use
degrees instead of radians for the inputs and results of the trig functions in a
program, the "AngleDegrees" declaration instruction can be used.

To convert degrees to radians, multiply degrees by π/180. To convert radians to
degrees, multiply radians by 180/π. π is approximately 3.141593.

COS Function Example: The example uses COS to calculate the cosine of an angle
with a user-specified number of degrees.
Dim Degrees, Pi, Radians, Ans 'Declare variables.
BeginProg
Pi = 4 * Atn(1) 'Calculate π.
Degrees = Volts(1) 'Get value to convert.
Radians = Degrees * (Pi / 180) 'Convert to radians.
Ans = COS(Radians) ‘The Cosine of Degrees.
EndProg

CosH (Source)
The COSH function returns the hyperbolic cosine of an expression or value.

Syntax

return = COSH (X)

Remarks
The COSH function takes a value and returns the hyperbolic cosine [COSH(x)
= 0.5(ex + e-x)] for that value.

COSH Function Example
The example uses COSH to calculate the hyperbolic cosine of a voltage input
and store the result in the Ans variable.

Public Volt1, Ans 'Declare variables.
BeginProg
 Scan (1,Sec,3,0)
 VoltDiff (Volt1,1,mV5000,1,True ,200,500,1.0,0)
 Ans = COSH(Volt1)
 NextScan
EndProg

CovSpa(Dest,NumofCov, Size,CoreArray,DataArray)

The CovSpa instruction computes the covariance(s) of sets of data that are
loaded into arrays.

Syntax

CovSpa(Dest, NumOfCov, SizeOfSets, CoreArray, DataArray)

8-11

Section 8. Processing and Math Instructions

CovSpa calculates the covariance(s) between the data in the CoreArray and one
or more data sets in the DataArray. The covariance of the sets of data X and
Y is calculated as:

2
111),(

n

YX

n

YX
YXCov

n

i
i

n

i
i

n

i
ii ∑∑∑

=== −
⋅

=

iX i

Where n is the number of values in each data set (SizeofSets). and Y are

the individual values of X and Y .

NANs are not included in the processing of the Spatial Covariance.

Parameter
& Data Type

Enter COVSPA PARAMETERS
Dest
Variable or
Array

The Variable in which to store the results of the instruction. When multiple covariances are
calculated, the results are stored in an array with the variable name. An array must be
dimensioned to at least the value of NumOfCov.

NumOfCov
Constant

The number of covariances to be calculated. If four data sets are to be compared against a fifth
set, this would be set to four.

SizeOfSets
Constant

The number of values in the data sets for the covariance calculations.

CoreArray
Array

The array that holds the core data set. The covariance of core data with each of the other sets
is calculated independently. The data need to be consecutive in the array. If the first data
value is not the first point of the array, the first point of the data set must be specified in this
parameter.

DatArray
Array

The array that contains the data set(s) for calculating the covariance with the CoreSet. When
multiple covariances are calculated, the data sets have to be loaded consecutively into one
array. The array must be dimensioned to at least the value of NumOfCov multiplied by
SizeOfSets. For example, if each set of data has 100 elements (SizeOfSets), and there are 4
covariances (NumOfCov) to be calculated, then the DatArray needs to be dimensioned to 4 x
100 = 400. If the first value of the first set is not the first point of the array, the first point of
the data set must be specified in this parameter.

The following example program takes 256 voltage measurements on 5
consecutive channels, and calculates the FFT for each of the 5 channels. It then
retrieves the FFT results for all 5 using the GetRecord instruction and performs
a Spatial Covariance on the first 4 channels against the last channel.
Dim Sig1(256)
Dim Sig2(256)
Dim Sig3(256)
Dim Sig4(256)
Dim Sig5(256)
Dim Sets(645)
Public CoVarVal(4)
DataTable(PSDFFT,True,-1)
 FFT(Sig1(),IEEE4,256,20,uSec,4) 'Perform FFT on Sig1()
 FFT(Sig2(),IEEE4,256,20,uSec,4) 'Perform FFT on Sig2()
 FFT(Sig3(),IEEE4,256,20,uSec,4) 'Perform FFT on Sig3()
 FFT(Sig4(),IEEE4,256,20,uSec,4) 'Perform FFT on Sig4()
 FFT(Sig5(),IEEE4,256,20,uSec,4) 'Perform FFT on Sig5()
EndTable

8-12

Section 8. Processing and Math Instructions

BeginProg
 Scan(250,mSec,0,1) 'Main Scan, 1 scan
 VoltSE(Sig1(),256,0,5,-1,0,20,1,0.0) 'Measure Each Channel 256 times repeatedly
 VoltSE(Sig2(),256,0,5,-2,0,20,1,0.0) 'Measure Each Channel 256 times repeatedly
 VoltSE(Sig3(),256,0,5,-3,0,20,1,0.0) 'Measure Each Channel 256 times repeatedly
 VoltSE(Sig4(),256,0,5,-4,0,20,1,0.0) 'Measure Each Channel 256 times repeatedly
 VoltSE(Sig5(),256,0,5,-5,0,20,1,0.0) 'Measure Each Channel 256 times repeatedly
 CallTable(PSDFFT) 'Table runs FFTs on the measurements
 NextScan
 GetRecord(Sets,PSDFFT,1) 'Retrieve the FFT results
 COVSPA(CoVarVal(1),4,129,Sets(517),Sets(1)) 'Perform Spatial Covariances
EndProg

DewPoint (Dest, Temp, RH)

The DewPoint instruction is used to calculate the dew point temperature from
dry bulb temperature and relative humidity measurements in the program.

Syntax
DewPoint (Dest, Temp, RH)

Remarks
The DewPoint instruction calculates the dew point temperature from previously
measured values of RH and air temperature. While end results may not be quite
as accurate as those from a dedicated dew point sensor, they are acceptable for a
wide range of applications.

Parameter
& Data Type

Enter DEWPOINT PARAMETERS

Dest
Variable

The variable in which to store the dew point temperature (°C).

Temp
Variable

The variable that contains air temperature (°C).

RH The variable that contains RH (%).

Calculating Dew Point
Measure the relative humidity (RH) and air temperature (Ta; units °C) with the
appropriate instruction for the sensors you are using.

Dew point temperature is calculated as follows:
1. The saturation vapor pressure (Svp; units kPa) is calculated using Lowe’s

equation (see SatVP).
2. The vapor pressure (Vp; units kPa) is calculated from Vp = RH ∗ Svp / 100).
3. The dew point (Td; units °C) is calculated from the inverse of a version of

Tetens’ equation, optimized for dewpoints in the range -35 to 50°C:
Td = (C3 ∗ ln(Vp / C1)) / (C2 . ln(Vp / C1))

where: C1 = 0.61078
C2 = 17.558
C3 = 241.88

8-13

Section 8. Processing and Math Instructions

Error in the Estimation of Dew Point
Tetens’ equation is an approximation of the true variation of saturated vapor
pressure as a function of temperature. However, the errors in using the inverted
form of the equation result in dew point errors much less than 0.1°C.

The largest component of error, in reality, comes from errors in the absolute
calibration of the temperature and RH sensor.

Figure 8-1 shows how dew point varies as a function of temperature and
humidity. It can be seen that the response is non-linear with respect to both
variables. Errors in the measurement of RH and temperature thus form a
complex function in relation to the resultant error in estimated dew point. In
practice, the effect of errors in the calibration of air temperature can be taken to
translate to an equivalent error in dew point, e.g. if the air temperature sensor is
0.2°C high, then the estimated dew point is approximately 0.2°C high.

Figure 8-2 shows the errors in dew point as a function of a ‘worst case’ 5%
error in the calibration of the RH sensor.

For sensors installed in the field there are additional errors associated with
exposure of the sensor, e.g. sensors in unaspirated shields get slightly warmer
than true air temperature in conditions of low wind speeds and high solar
radiation. However, if the RH and air temperature sensors are installed in
the same shield and are thus exposed identically, the estimate of dew point
is not subject to the same error as the measurement of air temperature
would be. This is because the temperature sensor will measure the actual
temperature of the RH sensor, which is what is required for the derivation of air
vapor pressure and thereby dew point.

FIGURE 8-1. Dew point temperature over the RH range for selected air
temperatures

8-14

Section 8. Processing and Math Instructions

FIGURE 8-2. Effect of RH errors on calculated dew point (±5 RH unit
error at three air temperatures)

EQV
The EQV function is used to perform a logical equivalence on two numbers or
expressions.

Syntax

result = expression1 EQV expression2

The EQV operator performs a bit-wise comparison of identically positioned bits
in two numbers (may be variables or the results of expressions) and sets the
corresponding bit in "result" according to the following truth table:

If bit in X is And bit in Y is The result is
0 0 1
0 1 0
1 0 0
1 1 1

EXP

EXP returns e (the base of natural logarithms) raised to a power.

Syntax

EXP(number)

Remarks
If the value of number exceeds 709.782712893, an Overflow error occurs. The
constant e is approximately 2.718282.

Note The EXP function complements the action of the Log function and is
sometimes referred to as the antilogarithm.

Exp FunctionExample
The example uses EXP to calculate the value of e. .

ValueOfE = EXP(1) 'Calculate value of e.

8-15

Section 8. Processing and Math Instructions

FFTSpa (Dest, N, Source, Tau, Units, Option)

The FFTSpa performs a Fast Fourier Transform on a time series of
measurements stored in an array and places the results in an array. It can also
perform an inverse FFT, generating a time series from the results of an FFT.
Depending on the output option chosen, the output can be: 0) The real and
imaginary parts of the FFT; 1) Amplitude spectrum. 2) Amplitude and Phase
Spectrum; 3) Power Spectrum; 4) Power Spectral Density (PSD); or 5) Inverse
FFT.

The difference between the FFT instruction (Section 6) and FFTSpa is that
FFT is an output instruction that stores the results in a data table and FFTSpa
stores its results in an array.

Parameter
& Data Type

Enter FFTSPA PARAMETERS
Dest
Array

The array in which to store the results of FFT.

Source
Variable

The name of the Variable array that contains the input data for the FFT.

N
Constant

Number of points in the original time series. The number of points must be a power of 2 (i.e., 512, 1024,
2048, etc.).

Tau
Constant

The sampling interval of the time series.

Units The units for Tau.
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 Microseconds
 MSEC 1 Milliseconds
 SEC 2 Seconds
 MIN 3 Minutes
Options A code to indicate what values to calculate and output.
Constant Code Result
 0

1
2

3

4

5

FFT. The output is (N/2)+1 complex data points, i.e., the real and imaginary parts of the
FFT. The first pair is the DC pair; the last pair is the Nyquist pair. Zero is seen for the DC
and Nyquist imaginary components.

Amplitude spectrum. The output is N/2+1 magnitudes. With ACOS(wt); A is
magnitude.

Amplitude and Phase Spectrum. The output is N/2+1 pairs of magnitude and phase; with
ACOS(wt - φ); A is amplitude, φ is phase (-π,π). The first pair is the DC pair; the last pair
is the Nyquist pair. π is seen for their imaginary component.

Power Spectrum. The output is (N/2)+1 values normalized to give a power spectrum.
With ACOS(wt - φ), the power is A2 / 2. The summation of the N/2 values yields the total
power in the time series signal.
Power Spectral Density (PSD). The output is (N/2)+1 values normalized to give a power
spectral density (power per Hertz). The Power Spectrum multiplied by T = N*tau yields
the PSD. The integral of the PSD over a given bandwidth yields the total power in that
band. Note that the bandwidth of each value is 1/T Hertz.
Inverse FFT. The input is (N/2)+1 complex numbers, organized as in the output of option
0, which is assumed to be the transform of some real time series. The output is the time
series whose FFT would result in the input array.

T = N*tau: the length, in seconds, of the time series.
Processing field: “FFT,N,tau,option”. Tick marks on the x axis are 1/(N*tau)
Herz. N/2 values, or pairs of values, are output, depending upon the option
code.

8-16

Section 8. Processing and Math Instructions

Normalization details:

Complex FFT result i, i = 1 .. N/2: ai*cos(wi*t) + bi*sin(wi*t).
wi = 2π(i-1)/T.
φi = atan2(bi,ai) (4 quadrant arctan)
Power(1) = (a12 + b12)/N2 (DC)
Power(i) = 2*(ai2 + bi2)/N2 (i = 2..N/2, AC)
PSD(i) = Power(i) * T = Power(i) * N * tau
A1 = sqrt(a12 + b12)/N (DC)
Ai = 2*sqrt(ai2 + bi2)/N (AC)

Spectral Options
The FFTSpa supports the following spectral options.

 Real and Imaginary
The real and imaginary option returns the raw real (r) and imaginary (i)
components from the FFT. The FFT calculation produces FFTLen/2 +1 pairs of
real and imaginary components.

 Amplitude
The amplitude option returns the amplitude of each spectral component. The
FFT calculation produces FFTLen/2 +1 amplitude components. The amplitude
of a sinusoid represented by ()tA ωcos is A. The CR9000X computes the

amplitude from:
N

ir 222 +

for all components except the dc and Nyquist components. The dc and Nyquist

components are computed from
N

ir 22 +

N

.

is the Number of points in the original time series. The units of the
amplitude spectrum are mV.

 Amplitude
The amplitude and phase option returns the amplitude as described above, plus

the phase in radians given by: ⎟
⎠
⎞

⎜
⎝
⎛−

r
i1tan .

The FFT calculation produces FFTLen/2 +1 pairs of amplitude and phase
components. The phase is between -π and π.

 Power
The power spectrum option gives the power for each of the spectral
components. The FFT calculation produces FFTLen/2 +1 power components.

The CR9000X computes the power from:
()

2

222 ir +
N

for all spectral components except the dc and Nyquist components. The dc

component is computed from
()

2

22 ir +
N

,

and the Nyquist component is computed from
()

2

22

2N
ir +

.

8-17

Section 8. Processing and Math Instructions

The sum of all of the ac components of the power spectrum gives the variance
of the original time series. The units of the power spectrum are . ()2mV

 Power Spectral Density
The power spectral density (PSD) function normalizes the power spectrum by
the bandwidth of each spectral component. The FFT calculation produces
FFTLen/2 +1 PSD components. The CR9000X computes the psd from:
()

SRfN
ir 222 +

SR

()

for all components except the dc and Nyquist components. f is the sample
rate of the original time series (FSampRate). The dc component is computed

from:
SRfN
ir 22 +

,

and the Nyquist component is computed from:
()

SRfN
ir

2

22 +
.

The integral of the PSD over all of the ac components gives the variance of the

original time series. The units of the PSD are
()

Hz
mV 2

.

Notes:

• Power is independent of the sampling rate (1/tau) and of the number of
samples (N).

• The PSD is proportional to the length of the sampling period (T=N*tau),
since the “width” of each bin is 1/T.

• The sum of the AC bins (excluding DC) of the Power Spectrum is the
Variance (AC Power) of the time series.

• The factor of 2 in the Power(i) calculation is due to the power series being
mirrored about the Niquist frequency N/(2*T); only half the power is
represented in the FFT bins below N/2, with the exception of DC. Hence,
DC does not have the factor of 2.

• The Inverse FFT option assumes that the data array input is the transform
of a real time series. Filtering is performed by taking an FFT on a data set,
zeroing certain frequency bins, and then taking the Inverse FFT.
Interpolation is performed by taking an FFT, zero padding the result, and
then taking the Inverse FFT of the larger array. The resolution in the time
domain is increased by the ratio of the size of the padded FFT to the size of
the unpadded FFT. This can be used to increase the resolution of a
maximum or minimum, as long as aliasing is avoided.

Floor (Source)
The Floor function rounds a value to a lower number.

Syntax
Variable = Floor(Source)

8-18

Section 8. Processing and Math Instructions

Remarks
The Floor function rounds a Number down to an integer value. To round a
value up to an integer, use the Ceiling function. To perform arithmetic rounding
on a value, use the Round function.

FRAC(Source)
The FRAC function returns the fractional part of a number.

Syntax
FRAC(source)

Remarks
Returns the fractional portion of the number within the parentheses.

Hex (Expression)
The Hex function returns a hexadecimal string representation of an expression.

Syntax
variable = Hex (Expression)

Remarks
The expression can be any valid numeric expression.

The Hex function can be set equal to a variable to store the Hexadecimal
representation of Expression into that variable. The variable should be declared
as a String in the program, and the String output type should be used in output
instructions.

Hex Function Example
See the example for the HextoDecimal function.

HexToDec (Expression)
The HexToDec function is used to convert a hexadecimal value to a decimal.

Syntax
variable = HexToDecimal (Expression)

Remarks
The expression should be a string representation of a Hex number.

The HexToDec function can be set equal to a variable to store the decimal
representation of the Hex Expression into that variable. Conversion from a
hexadecimal value to a decimal value can also be accomplished by prefacing
any hexadecimal string with &H.

HexToDec Function Example
In the following example, a value entered into the Expression variable is
converted into a hexadecimal value by the Hex function. The HexToDec
function is then used to convert the hexadecimal string back to a decimal value.

8-19

Section 8. Processing and Math Instructions

Public HexString As String, DecString, Expression
DataTable (HexTable,True,-1)
 Sample (1,Expression,FP2)
 Sample (1,HexString,String)
 Sample (1,DecString,FP2)
EndTable
BeginProg
Scan (1,Sec,3,-1)
HexString=Hex(Expression)
 DecString=HEXTODEC(HexString)
 CallTable (HexTable)
 NextScan
EndProg

INTDV
The INTDV function performs an integer division of two numbers.

Syntax
Result = Var1 INTDV Var2

Remarks
The INTDV function divides one number by another and returns the integer
portion of the result. The function can be used in an expression or set equal to a
variable.

INTDV Function Example
In the following example an integer division is performed on two variables
(X, Y) and the result is stored in another variable (Result). For the values given,
Result would equal 3.

Public Result, X, Y
BeginProg
 X = 7
 Y = 2
 Scan (1,Sec,3,0)
 Result = X INTDV Y
 NextScan
EndProg

IfTime(TintoInt, Interval, Units)

The IfTime instruction is used to return a number indicating True (-1) or False
(0) based on the datalogger's real-time clock.

Syntax
IfTime (TintoInt, Interval, Units)

8-20

Section 8. Processing and Math Instructions

Parameter
& Data Type

Enter IFTIME PARAMETERS
TintoInt
constant

The time into interval sets an offset from the datalogger’s clock to the interval at which the
IfTime will be true. For example, if the Interval is set at 60 minutes, and TintoInt is set to 5,
IfTime will be True at 5 minutes into the hour, every hour, based on the datalogger's real-time
clock. If the TintoInt is set to 0, the IfTime statement is True at the top of the hour.

Interval
constant

The Interval is how often IfTime will be True.

Units The time units for TintoInt and Interval
Constant Alpha Code Numeric Code Units
 Sec 2 Seconds
 Min 3 Minutes
 Hr 4 Hours
 Day 5 Days

Remarks

The IfTime function returns True (-1) or False (0) based on the scan clock.
Time is kept internally by the datalogger as the elapsed time since January 1,
1990, at 00:00:00 hours. The interval is synchronized with this elapsed time
(i.e., the interval is true when the Interval divides evenly into this elapsed time).
The time into interval allows an offset to the interval. The IfTime instruction
can be used to set the value of a variable or it can be used as an expression for a
condition.

The scan clock that the IfTime function checks has the time resolution of the
scan interval (i.e., it remains fixed for an entire scan and increments for the next
scan). IfTime must be within a scan to function.

The window of time in which the IfTime instruction is true is one of its
specified Units. For example, if IfTime specifies 0 into a 10 minute interval, it
would be true any time within the first minute of the ten minute interval. With
0 into a 600 second interval, the interval is still 10 minutes but it would only be
true during the first 1 second of the 10 minute interval.

IfTime will only return true once per interval. For example, a program with a 1
second scan that tests IfTime(0,10, min) -- 0 minutes into a 10 minute interval –
each scan will execute the instruction 60 times during the minute that it could
be true. It will only return true the first time that it is executed, it will not return
true again until another interval has elapsed.

IIF

The IIF function evaluates a variable or expression and returns one of two
results based on the outcome of that evaluation.

Syntax

Result = IIF(Expression, TrueValue, FalseValue)

8-21

Section 8. Processing and Math Instructions

Parameter
& Data Type

Enter IIF PARAMETERS
Expression The Variable or expression to test.
Expression or Value Result
Variable ≠0 True: return TrueValue
 0 False: return FalseValue
TrueValue
Constant, Var
or Expression

The Value (or expression determining the value) to return if the test condition is true

FalseValue
Constant, Var
or Expression

The Value (or expression determining the value) to return if the test condition is False

IMP
The IMP function is used to perform a logical implication on two expressions.

Syntax
result = expression1 IMP expression2

Remarks
The following table illustrates how Result is determined:

If expression1 is And expression2 is The result is

True True True

True False False

True Null Null

False True True

False False True

False Null True

Null True True

Null False Null

Null Null Null

The IMP operator performs a bitwise comparison of identically positioned bits
in two numeric expressions and sets the corresponding bit in result according to
the following table:

8-22

Section 8. Processing and Math Instructions

If bit in expression1 is And bit in expression2 is The result is

0 0 1

0 1 1

1 0 0

1 1 1

INT(Source), Fix(Source)
The INT function returns the integer portion of a number.

Syntax

Int(source)

Fix(source)

Remarks
The argument source can be any valid numeric expression. Both INT and FIX
remove the fractional part of source and return the resulting integer value.

If the numeric expression results in a Null, INT and FIX return a Null.

The difference between INT and FIX is that if number is negative, INT returns the
first negative integer less than or equal to number, whereas FIX returns the first
negative integer greater than or equal to number. For example, INT converts -8.4 to
-9, and FIX converts -8.4 to -8.

Int and Fix Function Example
Dim A, B, C, D 'Declare variables.
BeginProg
 A = INT(-99.8) 'Returns -100
 B = FIX(-99.8) 'Returns -99
 C = INT(99.8) 'Returns 99
 D = FIX(99.8) 'Returns 99
EndProg

LOG(Source) or LN(Source)
Returns the natural logarithm of a number. LOG and LN perform the same function.

Syntax
LOG(number) or LN(number)

Remarks
The argument number can be any valid numeric expression that results in a value
greater than 0. The natural logarithm is the logarithm to the base e. The constant e
is approximately 2.718282.
You can calculate base-n logarithms for any number x by dividing the natural
logarithm of x by the natural logarithm of n as follows:
Logn(x) = LOG(x) / LOG(n)
The following example illustrates a procedure that calculates base-4 logarithms:
Log4 = LOG(X) / LOG(4)

8-23

Section 8. Processing and Math Instructions

Log Function Example
'Calculates the value of e, then uses 'the Log function to calculate 'the natural 'logarithm of e
to the 1rst, 2nd, and 3rd powers.
Dim I, M 'Declare variables.
BeginProg
 M = Exp(1)
 For I = 1 To 3 'Do three times.
 M =LOG(Exp(1) ^ I)
 Next I
EndProg

LOG10 (source)
The LOG10 function returns the base 10 logarithm of a number.

Syntax
LOG10(source)
Remarks
The Number argument can be any valid numeric expression that has a value
greater than 0. You can calculate base-n logarithms for any number x by
dividing the logarithm base 10 of x by the logarithm base 10 of n as follows:

LOGN(x) = LOG10(x) / LOG10(n)

LOG10 Function Example
This example uses the LOG10 instruction to calculate the log base 2 of 1000.
Dim LOG2_1000 'Declare variables.
LOG2_1000 = LOG10(1000)/ LOG10(2)

MaxSpa(Dest, Swath, Source)
The MaxSpa function finds the maximum value from a specified swath of elements
of an array.

Syntax
MaxSpa(Dest, Swath, Source)
Remarks
Finds the maximum value in the specified swath of elements of an array and stores
the max value into the Dest array. The location of the maximum value is stored in
the sequential element in the Source array, The Source is specified as a particular
element in an array (e.g., Temp(3)) to start the search through the number of
elements specified by Swath. NANs are not included in the processing of the
Spatial Maximum.

Parameter Enter MAXSPA PARAMETERS
Dest
Array

The array element in which to store the maximum value. An array name with empty brackets (e.g.
Dest()), specifies to load the maximum value in the first element of the Dest array. The next element in
the Dest() array will be loaded with the location in the source array, starting with the element defined in
the Source argument as the first location, of the maximum.

Swath
Constant

The number of values of the source array in which to search for the maximum.

Source
Array

The element of the source array in which to start looking for the max. If the TC(6) were entered for the
source, and 3 for the Swath, then TC(6), TC(7), and TC(8) elements would be tested for the maximum.

MinSpa & MaxSpa Function Example
'This example finds the max and min values of the five elements Temp(6) 'through Temp(10) and stores the maximum
Temp in MaxTemp(3) and the location in the array, starting 'with Temp 6 as the basis point, in MaxTemp(4).
MAXSPA(MaxTemp(3), 5, Temp(6))
MINSPA(MinTemp(3), 5, Temp(6))

8-24

Section 8. Processing and Math Instructions

MinSpa(Dest, Swath, Source)
The MinSpa function finds the minimum value from a specified swath of elements
of an array.

Syntax
MinSpa(Dest, Swath, Source)
Remarks
Finds the minimum value in the specified swath of elements of an array and stores
this min value into the Dest array. The location of the minimum value is stored in
the next sequential element in the Source array, The Source is specified as a
particular element in an array (e.g., Temp(3)) to start the search through the number
of elements specified by Swath. NANs are not included in the processing of the
Spatial Minimum.

Parameter Enter MINSPA PARAMETERS
Dest
Array

The array element in which to store the minimum value. An array name with empty brackets (e.g.
Dest()), specifies to load the minimum value in the first element of the Dest array. The next element in
the Dest() array will be loaded with the location in the source array, starting with the element defined in
the Source argument as the first location, of the minimum.

Swath
Constant

The number of values of the source array in which to search for the minimum.

Source
Array

The element of the source array in which to start looking for the min. If the TC(6) were entered for the
source, and 3 for the Swath, then TC(6), TC(7), and TC(8) elements would be tested for the minimum.

MOD
The MOD function is used to perform a modulo divide of two numbers.

Syntax
result = operand1 MOD operand2

Remarks
The Modulus, or remainder, operator divides operand1 by operand2 and returns
only the remainder as result. For example, in the expression A = 19 MOD 6.7, A
(which is result) equals 5.6. The operands can be any numeric expression.

MOD Operator Example

The example uses the MOD operator to determine if a 4-digit year is a leap year.

Dim TestYr, LeapStatus 'Declare variables.
TestYr = 1995
If TestYr MOD 4 = 0 And TestYr MOD 100 = 0 Then
 If TestYr MOD 400 = 0 Then 'Divisible by 400?
 LeapStatus = True
 Else
 LeapStatus = False
 End If
ElseIf TestYr MOD 4 = 0 Then
 LeapStatus = True
Else
 LeapStatus = False
End If

8-25

Section 8. Processing and Math Instructions

NOT
The NOT function is used to perform a bit-wise negation on a number.

Syntax
result = NOT (number)

The NOT operator inverts the bit values of any variable and sets the
corresponding bit in result according to the following truth table:

If bit is The result is
0 1

1 0

Although NOT is a bit wise operator, it is often used to test Boolean
(True/False) conditions. The CR9000X decides if something is true or false on
the criteria that 0 is false and any non-zero number is true (Section 4.2.11.4).
Because NOT is a bit wise operation, the only non-zero number that NOT can
operate on and return 0 is –1. The binary representation of –1 has all bits equal
1. That is why the pre defined constant, True = -1.

The predefined constant True = -1
The predefined constant False = 0

NOT (-1) = 0
NOT (0) = -1
NOT (NAN) = NAN

(NAN= Not A Number)

OR Operator
The OR operator is used to perform a logical disjunction on two numbers.

Syntax
result = number1 OR number2

The OR operator performs a bit-wise comparison of identically positioned bits in
two numeric expressions and sets the corresponding bit in result according to the
following truth table:

If bit in And bit in The result
expr1 is expr2 is is
 0 0 0
 0 1 1
 1 0 1
 1 1 1

Although OR is a bit wise operator, it is often used to test Boolean (True/False)
conditions. The CR9000X decides if something is true or false on the criteria
that 0 is false and any non-zero number is true (Section 4.2.11.4). In the
CR9000X, the predefined constant False = 0, and the pre-defined constant
True = -1.The binary representation of –1 has all bits equal 1. Thus any number
OR -1 returns -1. Any number AND -1 returns the original number.

8-26

Section 8. Processing and Math Instructions

If number1 is: Number2 is: The result is:
-1 Any Number -1
-1 NAN (not a number) NAN
0 Any Number Number 2
0 NAN NAN

Expressions are evaluated to a number (Section 4.5) and can be used in place of
one or both of the numbers. Comparison expressions evaluate as True (-1) or
False (0). For example:

If Temp(1) > 50 OR Temp(3) < 20 Then
 X = True
Else
 X = False
EndIf

See Section 4.2.11.4 Logical Expressions for more on Logical Expressions

PeakValley (DestPV, DestChange, Reps, Source, Hysteresis)
PeakValley is used to detect peaks and valleys (local maxima and minima) in a
signal. When a new peak or valley is detected, the new peak or valley as well
as the change from the previous peak or valley are stored in variables.

Parameter
& Data Type

Enter PEAKVALLEY PARAMETERS
DestPV
Variable or
array

Variable or array in which to store the new peak or valley. When a new peak or valley is
detected, the value of the peak or valley is loaded in the destination. PeakValley will
continue to load the previous peak or valley until the next peak or valley is detected.

DestChange
Variable or
array

Variable or array in which to store the change from the previous peak or valley. When a new
peak or valley is detected, the change from the previous peak or valley is loaded in the
destination. When a new peak or valley has not yet been reached, 0 is stored in the
destination. When Reps are greater than 1, the array must be dimensioned to Reps+1. The
additional element is used to flag when a new peak or valley is detected in any of the source
inputs. The flag element is stored after the changes [e.g., changevar(Reps+1)] and is set to -
1 (true) when a new peak or valley is detected and set to 0 (false) when none are detected.

Reps
Constant

The number of inputs to track the peaks and valleys for. Each input is tracked independently.
When reps are greater than 1 the source and DestPV arrays must be dimensioned to at least
the number of repetitions; DestChange must be dimensioned to Reps+1.

Source
Var. or Array

The variable or array containing the inputs to check for peaks and valleys.

Hysteresis
Constant, Var,
or expression

The minimum amount the input has to change to be considered a new peak or valley. This
would usually be entered as a constant.

8-27

Section 8. Processing and Math Instructions

Peak Valley Example
Public PeakV(2), Change(3),Deg
Public Dim XY(2)
Const Pi=4*ATN(1) ‘Define Pi for converting degrees to radians

DataTable(PV1,Change(1),500) ‘Peaks and valleys for 1rst signal, triggered when Change(1)<>0
 Sample(1,PeakV(1),IEEE4) ‘DataTable PV1 holds the peaks and valleys for XY(1)
EndTable

DataTable(PV2,Change(2),500) ‘Peaks and valleys for 2nd signal, triggered when Change(2)<>0
 Sample(1,PeakV(2),IEEE4) ‘DataTable PV2 holds the peaks and valleys for XY(2)
EndTable

‘The Following stores both signals whenever there is a new peak or valley in either signal. The
' The value stored for the signal that does not have a new peak will be a repeat of its last peak or
' valley. Normally a program would not have a table storing peaks and valleys for several
' signals but, would use individual tables for each signal.
DataTable(PVBoth,Change(3),500)
 Sample(2,PeakV(1),IEEE4)
EndTable

BeginProg
 Scan(500,mSec,0,0)
 Deg=Deg+5
 XY(1)=Cos(Deg*Pi/180) ‘Compute the cosine as input XY(1)
 XY(2)=Sin(Deg*Pi/180) ‘Compute the sine as input XY(2)
 PEAKVALLEY(PeakV(1),Change(1),2,XY(1),0.1) ‘Find the peaks and valleys for both inputs. Hysteresis = 0.1
 CallTable PV1
 CallTable PV2
 CallTable PVBoth
 Next Scan
EndProg

PRT (Dest, Reps, Source, Mult, Offset)
PRT is used to calculate temperature from the resistance of an RTD.

Syntax
PRT(Dest, Reps, Source, Mult, Offset)

Remarks
This instruction uses the result of a previous RTD bridge measurement to calculate
the temperature. The input (Source) must be the ratio RS/R0, where RS is the RTD
resistance and R0 the resistance of the RTD at 0° C.

The temperature is calculated according to the DIN 43760 specification adjusted
(1980) to the International Electrotechnical Commission standard. The range of
linearization is -200° C to 850° C. The error in the linearization is less than 0.001° C
between -200 and +300° C, and is less than 0.003° C between -180 and +830° C.
The error (T calculated - T standard) is +0.006° at -200° C and -0.006° at +850° C.

8-28

Section 8. Processing and Math Instructions

Parameter
& Data Type

Enter PRT PARAMETERS
Dest
Var. or Array

The variable in which to store the temperature in degrees C.

Reps
Constant

The number of repetitions for the measurement or instruction.

Source
Var. or Array

The name of the Variable that is the input for the instruction. Must be the ratio RS/R0, where RS is the
RTD resistance and R0 the resistance of the RTD at 0° C.

Mult, Offset
Constant, Var.,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. See the measurement
description for the units of the raw result; a multiplier of one and an offset of 0 are necessary to output in
the raw units. For example, the TCDiff instruction measures a thermocouple and outputs temperature in
degrees C. A multiplier of 1.8 and an offset of 32 will convert the temperature to degrees F.

PRTCalc (Dest, Reps, Source, PRTType, Mult, Offset)
The PRTCalc instruction is used to calculate temperature from the resistance of an
RTD. A number of different types of RTDs are supported.

Syntax
PRTCalc(Dest, Reps, Source, PRTType, Mult, Offset)

Remarks
This instruction uses the result of a previous RTD bridge measurement to
calculate the temperature in degrees Celsius. The input (Source) must be the ratio
RS/R0, where RS is the RTD resistance and R0 the resistance of the RTD at 0° C.

A number of different sensor types are supported. The correct PRT type should
be entered into the PRTType parameter to match the standard to which the
sensor is said to conform and/or the alpha value for the sensor. The alpha value
is the fundamental measure of the change of resistance for a given temperature
change.

For industrial grade RTDs the relationship between temperature and resistance
are characterized by a formula called the Callendar-Van Dusen (CVD)
equation. The parameters for different sensor types are given in the standards or
by the manufacturers for non-standard types. Temperature is now referenced to
the ITS-90 temperature scale. PRTCalc follows the principles given in the US
ASTM E1137-04 standard for conversion back from resistance to temperature.
For the temperature range of 0 to +850 degrees Celsius a direct solution to the
CVD equation is used resulting in errors <+/-0.0005 Celsius (caused by
rounding errors in the datalogger math). For the range of -200 to 0 Celsius a 4th
order polynomial is used to convert from resistance to temperature resulting in
errors of <+/-0.003 Celsius.

Note these errors are only the errors in approximating the relationships between
temperature and resistance given in the relevant standards. The CVD equations
and the tables published from them are in reality an approximation to the true
linearity of an RTD, but are deemed adequate for industrial use. Errors in that
approximation can be several hundredths of a degrees Celsius at different points
in the temperature range and will vary from sensor to sensor. In addition
individual sensors have errors relative to the standard, which can be up to +/-0.3
Celsius at 0 Celsius with increasing error as the temperature moves away from 0
Celsius, depending on the grade of sensor.

8-29

Section 8. Processing and Math Instructions

To achieve the highest accuracy it is usually best to calibrate
individual sensors over the range of use and apply corrections to
the RS/R0 value input to the instruction (by using the calibrated
value of R0) and the multiplier and offset parameters of PRTCalc.

NOTE

Parameter
& Data Type

Enter PRTCALC PARAMETERS
Dest
Var. or Array

The variable in which to store the temperature in degrees C.

Reps
Constant

The number of values to determine. When repetitions are greater than 1, the source must be an array..

Source
Variable

The name of the Variable that is the input for the instruction. Must be the ratio RS/R0, where RS is the
RTD resistance and R0 the resistance of the RTD at 0° C.

PRTType A code to select the PRT Standard to use
Constant Code Description
 0 DIN 43760 specification adjusted (1980) to the International Electrotechnical Commission

standard. Same as original PRT instruction.
 1 IEC 60751:2008 (formally known as IEC 751), alpha = 0.00385. Now internationally adopted

and written into national standards, e.g. ASTM E1137-04, JIS 1604:1997, EN 60751 and
others. This should be used with any probes claiming compliance with those or older standards
where the probe has alpha = 0.00385, e.g. DIN43760, BS1904

 2 US Industrial Standard, alpha = 0.00392
 3 US Industrial Standard, alpha = 0.00391
 4 Old Japanese Standard JIS C 1604:1981, alpha = 0.003916
 5 Honeywell Industrial Sensors, alpha = 0.00375
 6 ITS-90 SPRT, alpha = 0.003926
Mult, Offset
Constant,
Variable,
Array, or
Expression

A multiplier and offset by which to scale the raw results of the measurement. See the measurement
description for the units of the raw result; a multiplier of one and an offset of 0 are necessary to output in
the raw units. For example, the TCDiff instruction measures a thermocouple and outputs temperature in
degrees C. A multiplier of 1.8 and an offset of 32 will convert the temperature to degrees F.

Randomize(Source)
Initializes the random-number generator.

Syntax
Randomize [number]

Remarks
The argument number can be any valid numeric expression. Number is used to
initialize the random-number generator by giving it a new seed value.

If Randomize is not used, the RND function returns the same sequence of random
numbers every time the program is run. To have the sequence of random numbers
change each time the program is run, place a Randomize statement with no
argument at the beginning of the program. See RND instruction's example program.

8-30

Section 8. Processing and Math Instructions

RectPolar (Dest, Source)
Converts from rectangular to polar coordinates. The vector length will be
returned to the array element specified in Dest(1); the angle in radians will be
returned in the array element specified in Dest(2). If it is desired to use degrees
instead of radians for the inputs and results of the trig functions in a program,
the "AngleDegrees" declaration instruction can be used.

Parameter
& Data Type

Enter RECTPOLAR PARAMETERS
Dest
Variable
array

Variable array in which to store the 2 resultant values. The length of the vector is stored in the
specified destination element and the angle, in radians(± π), in the next element of the array

Source
Variable
Array

The variable array containing the X and Y coordinates to convert to Polar coordinates. The X
value must be in the specified array element and the Y value in the next element of the array.

Example: In the following example, a counter (Deg) is incremented from 0 to
360 degrees. The cosine and sine of the angle are taken to get X and Y in
rectangular coordinates. RectPolar is then used to convert to polar coordinates.

Dim XY(2),Polar(2),Deg,AnglDeg
Const Pi=4*ATN(1)
Alias XY(1)=X : Alias XY(2)=Y : Alias Polar(1)=Length : Alias Polar(2)=AnglRad
DataTable(RtoP,1,500)
 Sample(1,Deg,IEEE4)
 Sample(2,XY,IEEE4)
 Sample(2,Polar,IEEE4)
 Sample(1,AnglDeg,IEEE4)
EndTable
BeginProg
 For Deg=0 to 360
 XY(1)=Cos(Deg*Pi/180) ‘Cos and Sin operate on radians
 XY(2)=Sin(Deg*Pi/180)
 RECTPOLAR(Polar,XY)
 AnglDeg=Polar(2)*180/Pi ‘Convert angle to degrees
 CallTable RtoP
 Next Deg
EndProg

RMSSpa(Dest, Swath, Source)
Used to compute the RMS value of an array.

Syntax
RMSSpa(Dest, Swath, Source)
Remarks
Spatial RMS, calculates the root mean square of values in an array. NANs are not
included in the processing of the Spatial RMS.

()

swath

iX
Dest

swathji

ji
∑

−+=

==

1
2)(

Where X(j) = Source

8-31

Section 8. Processing and Math Instructions

Parameter
& Data Type

Enter RMSSPA PARAMETERS
Dest
Variable

The variable in which to store the RMS value.

Swath
Constant

The number of values of the array to include in the RMS calculation.

Source
Array

The name of the variable array that is the input for the instruction.

Round(Source, Decimal)
The Round function rounds a value to a higher or lower number.

Syntax

Variable = Round(Source, Decimal)

Remarks
The Round function rounds the Number up if the determining digit is 5 or
greater; otherwise, it rounds down. This is commonly referred to as arithmetic
rounding. Negative numbers effectively round down if the determining digit is
greater than 5 and up if it is less than 5; e.g., -8.6 rounds to -9.

To round a value up or down to an integer, use the Ceiling function or the
Floor function.

Number The Number parameter is the value on which to perform the rounding
operation. It can be any value or expression.

Decimal The Decimal parameter is used to determine how many decimal places
to keep. If Decimal is set to 0, the result will be an integer. If Decimal is a
negative number, it specifies the power of 10 to which you want to round.

Examples:
Function Value Returned
Round(172.345, 2) 172.35
Round(-172.345,2) -172.35
Round(172.345, 0) 172
Round(172.234, -2) 200

RND Function
Returns a random number.

Syntax
RND[(number)]

Remarks
The argument number can be any valid numeric expression.

The RND function returns a Single value less than 1 but greater than or equal to 0.

The value of number determines how RND generates a random number:

Value of number Returned Value
 < 0 The same number every time, as determined by number.
 > 0 The next random number in the sequence.
 = 0 The number most recently generated.
number omitted The next random number in the sequence.

8-32

Section 8. Processing and Math Instructions

The same random-number sequence is generated each time the instruction is
encountered because each successive call to the RND function uses the previous
random number as a seed for the next number in the random-number sequence.

To have the program generate a different random-number sequence each time it is
run, use the Randomize statement without an argument to initialize the random-
number generator before RND is called.

To produce random integers in a given range, use this formula:

 Int((upperbound - lowerbound + 1) * RND + lowerbound)

Here, upperbound is the highest number in the range, and lowerbound is the lowest
number in the range.

RND Function Example

'The example uses the Rnd function to generate random 'integer values from 1 to 9.
'Each time this program is run,Randomize generates a new random-number
sequence.
Dim Wild1, Wild2, I 'Declare variables.
BeginProg
 Scan(100,mSec,3,0)
 Randomize(I) 'Seed random number generator.
 Wild1 = Int(9 * RND + 1) 'Generate first random value.
 Wild2 = Int(9 * RND + 1) 'Generate second random value.
 I = I + 1 'Change Seed value
 NextScan
EndProg

SGN Function
The SGN function is used to find the mathematical sign value of a number.

Syntax
SGN(number)

Remarks
Returns an integer indicating the sign of a number.

The argument number can be any valid numeric expression. Its sign determines the
value returned by the SGN function:

If X > 0, then SGN(X) = 1.

If X = 0, then SGN(X) = 0.

If X < 0, then SGN(X) = -1.

SGN Function Example

The example uses SGN to determine the sign of a number.

Dim Msg, Number 'Declare variables.
Number = Volt(1) 'Get user input.
Select Case SGN(Number) 'Evaluate Number.
 Case 0 'Zero.
 Msg = 0
 Case 1 'Positive.
 Msg = 1
 Case -1 'Negative.
 Msg = -1
End Select

8-33

Section 8. Processing and Math Instructions

SIN(Source)
SIN returns the sine of an angle.

Syntax
SIN(source)

Remarks
The argument angle can be any valid numeric expression measured in radians.

The SIN function takes an angle and returns the ratio of two sides of a right triangle.
The ratio is the length of the side opposite the angle divided by the length of the
hypotenuse. The result lies in the range -1 to 1. If it is desired to use degrees
instead of radians for the inputs and results of the trig functions in a program,
the "AngleDegrees" declaration instruction can be used.

To convert degrees to radians, multiply degrees by π/180. To convert radians to
degrees, multiply radians by 180/π. π is approximately 3.141593.

Returns the sine of the value in parentheses. The input must be in radians.

SIN Function Example

The example uses SIN to calculate the sine of an angle from a Volt input.

Dim Degrees, Pi, Radians, Ans 'Declare variables.
Pi = 4 * Atn(1) 'Calculate π.
Degrees = Volt(1) 'Get input.
Radians = Degrees * (Pi / 180) 'Convert to radians.
Ans = SIN(Radians) ‘The Sine of Degrees.

SINH (Source)
The SINH function returns the hyperbolic sine of an expression or value.

Syntax
Return = SINH(X)

Remarks
The SINH function returns the hyperbolic sine [SINH(x) = 0.5(ex - e-x)] for
the value contained in the Expr argument.

The example uses SINH to calculate the hyperbolic sine of a voltage input.
Public Volt1, Ans 'Declare variables.
'BeginProg
Scan (1, min, 3, 0)
 VoltDiff(Volt1,1,mV5000,1,True,100,500,1,0)
 'Returns voltage on Channel(1) to Volt(1)
 Ans = SINH(Volt1) 'The Hyperbolic Sine of Volt1.
 NextScan
EndProg

SortSpa (Dest, Swath, Source)
The SortSpa function is used to sort the elements of an array in ascending
order.

Syntax
SortSpa(Dest, Swath, Source)

8-34

Section 8. Processing and Math Instructions

Remarks
The results from SortSpa can be stored in the same variable or a different
variable. If the results are stored in a different variable, the array is copied from
Source and stored into Dest prior to sorting. If the Source and Dest variables
are the same, then the sorting is done in place. NANs and +INFs are sorted to
the top of the array (that is, the most minimum value).

Parameter
& Data Type

Enter SORTSPA PARAMETERS
Dest
Var or Array

The variable array in which to store the sorted values.

Swath
Constant

The number of elements in the Source array to include in the values to be sorted.

Source
Array

The first variable in the array for which the sort should be performed.

SQR(Source)
Returns the square root of a number.

Syntax
SQR(source)
Remarks
The argument source can be any valid numeric expression that results in a value
greater than or equal to 0. Returns the square root of the value in parentheses.

SQR Function Example
The example uses SQR to calculate the square root of Volt(1) value.

Dim Msg, Number 'Declare variables.
Number = Volt(1) 'Get input.
If Number < 0 Then
 Msg = 0 ‘Cannot calc the root of a negative number.
Else
 Msg = SQR(Number)
End If

StdDevSpa(Dest, Swath, Source)
Used to find the standard deviation of a sequential set of elements of an array.

Syntax
StdDevSpa(Dest, Swath, Source)
Remarks
Spatial standard deviation. NANs are not included in the processing of the
Spatial Standard Deviation.

2
1

1 21
2 //)()(⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−= ∑ ∑

−+=

=

−+=

=

swathswathiXiXDest
swathji

ji

swathji

ji

Where X(j) = Source

8-35

Section 8. Processing and Math Instructions

Parameter
& Data Type

Enter STDDEVSPA PARAMETERS
Dest
Variable or
Array

The variable in which to store the results of the instruction.

Swath
Constant

The number of values of the array over which to perform the specified operation.

Source
Array

The name of the variable array that is the input for the instruction.

SatVP (Dest, Temp)
SatVP calculates saturation vapor pressure (over water Svpw) in kilopascals
from the air temperature (°C) and places it in the destination variable.

Syntax
SatVP(Dest, Temp,)
Remarks
The algorithm for obtaining Svpw from air temperature (°C) is taken from:
Lowe, Paul R.: 1977, “An approximating polynomial for computation of
saturation vapor pressure,” J. Appl. Meteor, 16, 100-103.

Saturation vapor pressure over ice (Svpi) in kilopascals for a 0°C to -50°C
range can be obtained using SatVP and the relationship

Svpi = -.00486 + .85471 Svp + .2441 Svp2

where Svpw is derived by SatVP. This relationship was derived by Campbell
Scientific from the equations for the Svpw and the Svpi given in Lowe’s paper.

Parameter
& Data Type

Enter SATVP PARAMETERS

Dest Variable in which to store saturation vapor pressure (kPa).
Temp Variable containing air temperature (°C).

StrainCalc(Dest, Reps, BrConfig, Source, Zero, GF, v)

Converts the output of a bridge measurement instruction to microstrain.

Syntax
StrainCalc (Dest, Reps, BrConfig, Source, Zero, GF, v)

Remarks
Calculates microstrain, μ∈, from the appropriate formula for the bridge
configuration. All are electrically full bridges , the quarter bridge, half bridge
and full bridge strain gages refer to the number of active elements (i.e., strain
gages), 1,2, or 4 respectively.

8-36

Section 8. Processing and Math Instructions

Parameter Enter STRAINCALC PARAMETERS
Dest Variable to store strain in.
Reps Number of strains to calculate, Destination, source, and zero variables must be dimensioned accordingly.
BrConfig Bridge configuration code for strain gages The bridge configuration code can be entered as a positive or

negative number:
+ code: Vr = −0 001. ()Source Zero ; output decreases with increasing strain.
- code: Vr = − −0 001. ()Source Zero ; bridge configured so output increases with strain
This is the configuration for a quarter bridge using CSI’s 4WFB350 Terminal Input Module (i.e., enter
the bridge configuration code as -1 for 1/4 bridge with TIM.)

 Code Configuration
 1

Quarter bridge strain gauge :με =
− ⋅

+

4 10

1 2

6 V

GF V
r

r()
 2 Half bridge strain gauge, one gage parallel to strain, the other at 90° to strain:

με

ν ν
=

− ⋅

+ − −

4 10

1 2 1

6 V

GF V
r

r[() ()]
 3 Half bridge strain gauge, one gage parallel to +ε , the other parallel to −ε:

με =

− ⋅2 106 V

GF
r

 4 Full bridge strain gage, 2 gages parallel to +ε , the other 2 parallel to −ε:

με =

−106 V

GF
r

 5 Full bridge strain gage, half the bridge has 2 gages parallel to +ε and −ε: the other half +νε

ε

and −ν :

με

ν
=
− ⋅

+

2 10

1

6 V

GF
r

()
 6 Full bridge strain gage, one half +ε and −νε, the other half −νε and +ε .:

με

ν ν
=

− ⋅

+ − −

2 10

1 1

6 V

GF V
r

r[() ()]
Source The source variable array for the measurement(s), the input is expected as millivolts out per volt in (the

result of the full bridge instruction with a multiplier of 1 and an offset of 0.
Zero The variable array that holds the unstrained reading(s) in millivolts out per volt in.
GF Gage Factor. The gage factor can be entered as a constant used for all repetitions or a variable array can

be loaded with individual gage factors which are automatically used with each rep. To use an array enter
the parameter as arrayname(), with no element number in the parentheses.

v Poisson ratio, enter 0 if it does not apply to configuration.

8-37

Section 8. Processing and Math Instructions

BrConfig: The BrConfig parameter can be entered as a negative number in
order to change the polarity of the output.

1/4 BRIDGE STRAIN

¼ BRIDGE STRAIN CASE 1
If one of Campbell Scientific's 4WFBXXX Terminal Input Modules is utilized,
the bridge set-up is as depicted in Case 1. For this set up, a negative Option (-
1) should be used in order for the CR9000X to output positive strain values
when the strain gauge experiences positive strain.

¼ BRIDGE STRAIN CASE 2
If the excitation voltage polarity is reversed, or the output polarity is reversed,
or if the bridge is configured as shown in Case 2, then a positive Code (1)
should be used in order for the CR9000X to output positive strain values when
the strain gauge experiences positive strain.

1/2 BRIDGE STRAIN

If one of Campbell Scientific's 4WFBXXX Terminal Input Modules is utilized
with the G2 gauge wired to positive excitation and the G1 gauge wired to
ground, then the bridge set-up is as depicted above. For this set up, a negative
Option should be used in order for the CR9000X to output positive strain values
when the G1 strain gauge experiences positive strain.

8-38

Section 8. Processing and Math Instructions

If the excitation voltage polarity is reversed, or the output polarity is reversed,
or if the output data needs to be positive when the G2 strain gauge sees positive
strain, then a positive Option (2) should be inserted into the Code parameter.

Full Bridge Strain

This example assumes that the bridge (shown above) is set up such that the
strain is considered to be positive when the G1 and G4 strain gauges experience
positive strain (tension) while the G2 and G3 strain gauges experience negative
strain (compression). In other words, when G1 and G4 increase in resistance
(while G2 and G3 decrease in resistance), the strain is considered to be positive.
For this set up, a negative number should be used for the BrConfig Option in
order for the CR9000X to output positive strain values when the G1 strain
gauge experiences positive strain. The default setting for the output was
configured for this bridge setup, and the CR9000X output strain data will be
positive when the G1 and G4 strain gauges experiences positive strain.

If the excitation voltage polarity is reversed, the output polarity is reversed, or if
the output data needs to be positive when the G2 and G3 strain gauges
experience positive strain, then Reverse should be clicked on.

See the FieldCalStrain Topic in Section 9.2 Data Logger Status/ Control for
information on both Zeroing and Shunt Calibration in conjunction with the
StrainCalc instruction.

8-39

Section 8. Processing and Math Instructions

StrainCalc Example
This example uses StrainCalc to find the microstrain value of a bridge output
and has the ability to perform zeroing and shunt calibrations.

'\\\\\\\\\\\\\\\\\\\\ DECLARE VARIABLES /////////////////////////////
SlotConfigure(9050,9060)
Const Reps = 3 'Set program to measure 3 strain gauges
Const BrConfig = -4 'Block1 gauge code for Full bridge strain, Bending
Dim I 'Declare I as a variable
Public NumAvg, CalFileLoaded, Flag(8)

'Variables that are arguments in the Zero Function
Public ModeZero, ZeroReps, Index0,RepS
Public RawmVperV(Reps)
Public ZeroMvperV(Reps)

'Variables that are arguments in the Shunt Function
Public ModeShunt, KnownRes(Reps), IndexS
Public MeasureVar_uS(Reps)
Public GF_Adj(Reps), GF_Raw(Reps)
'---------------------------- Tables----------------------------
DataTable(Table1,True,-1) 'Trigger, auto size
 DataInterval(0,50,mSec,100)
 Average(Reps,MeasureVar_uS(),IEEE4,False)
EndTable
DataTable(CalHist,NewFieldCal,50)
 SampleFieldCal
EndTable
'\\\\\\\\\\\\\\\\\\\\\\\\\\\\ PROGRAM ////////////////////////////
BeginProg
 NumAvg = 10 'Initialize the number of values to average for the calibrations
 IndexS = 1 'Initialize shunt Index to 1
 Index0 = 1 'Initialize zero index to 1
 Zeroreps = Reps 'Initialize ZeroReps to full size of array
 RepS = 1 'Initialize RepS to 1 (FieldCalStrain Shunt operation)
'Set Gage Factors
 GF_Raw(1) = 2.1 : GF_Raw(2) = 2.1 : GF_Raw(3) = 2.13
 For I = 1 To Reps 'Initialize the Adj Gage Factors to the raw GF value
 GF_Adj(I) = GF_Raw(I) 'The adj Gage factors are used in the calculation of uStrain
 Next I
' If a calibration has been done, the following will load the zero or Adjusted GF from the Calibration file
 CalFileLoaded = LoadFieldCal(1)
 Scan(10,mSec,100,0)
 BrFull(RawmvperV(),Reps,mV50,4,1,5,1,1,5000,True,True,40,100,1,0)
 STRAINCALC(MeasureVar_uS(),Reps,RawmvperV(),ZeroMvperV(),BrConfig,GF_Adj(),0) 'Strain calculation
 If Flag(8) then
 ZeroReps = Reps 'Set Reps to zero complete measurement array
 Index0 = 1 'Verify that the index is at the beginning of the array
 ModeZero = 1 'Set the Mode for the zero function to 1 to start the zero process
 Flag(8) = 0 'Set the zero flag back to low
 Endif
 'FieldCalStrain(Zeroing,Mvar, reps, GF_adj,Zeromv_V, ModeVar,KnownVar,index,Numavg,GF_Raw,uS)
 FieldCalStrain(10,RawmvperV(),ZeroReps,0,ZeroMvperV(),ModeZero,0,index0,NumAvg,0,MeasureVar_uS())
 'FieldCalStrain(Shunt,Mvar, reps,GF,Zerooffset, ModeVar, KnownVar,index,Numavg,GF_Raw,uStrain)
 FieldCalStrain(43,MeasureVar_uS(),RepS,GF_Adj(),0,ModeShunt,KnownRes,IndexS,NumAvg,GF_Raw(),0)
 CallTable Table1
 CallTable CalHist
 Next Scan
EndProg

8-40

Section 8. Processing and Math Instructions

Tan(Source)

TAN returns the tangent of an angle.

Syntax
TAN(source)

Remarks
The argument source can be any valid numeric expression measured in radians.

Tan takes an angle and returns the ratio of two sides of a right triangle. The ratio is
the length of the side opposite an angle divided by the length of the side adjacent to
the angle. If it is desired to use degrees instead of radians for the inputs and
results of the trig functions in a program, the "AngleDegrees" declaration
instruction can be used.

To convert degrees to radians, multiply degrees by π/180. To convert radians to
degrees, multiply radians by 180/π. π is approximately 3.141593.

TAN Function Example

The example uses TAN to calculate the tangent of an angle from a Volt(1) input.
Dim Degrees, Pi, Radians, Ans 'Declare variables.
Pi = 4 * Atn(1) 'Calculate π.
Degrees = Volt(1) 'Get user input.
Radians = Degrees * (Pi / 180) 'Convert to radians.
Ans = TAN(Radians) ‘The Tangent of Degrees.

TANH (Source)

The TANH function returns the hyperbolic tangent of an expression or value.

Syntax
x = TANH (Source)

Remarks
The TANH function returns the hyperbolic tangent [tanh(x) = sinh(x)/cosh(h)]
for the value defined in Source.

TANH Function Example

The example uses TANH to calculate the hyperbolic tangent of a voltage input.
Public Volt1, Ans 'Declare variables.
VoltDiff(Volt1,1,mV5000,1,True,100,500,1,0)
'Returns voltage on Channel(1) to Volt(1)
Ans = TANH(Volt1) 'The Hyperbolic Tangent of Volt1.

8-41

Section 8. Processing and Math Instructions

VaporPressure (Dest, Temp, RH)
The VaporPressure instruction calculates the ambient vapor pressure (Vp)
from previously measured values for air temperature and RH.
Syntax
VaporPressure(Dest, Temp, RH)
Remarks
The instruction first calculates saturation vapor pressure from air temperature
using Lowe’s equation (see SatVP). Vapor pressure is then calculated by
multiplying by the fractional RH:

Vp = SatVp x RH/100

Parameter
& Data Type

Enter VAPORPRESSURE PARAMETERS
Dest
Variable

The variable in which to store the results of the instruction.

Temp
Variable

The Temp parameter is the program variable that contains the value for the temperature sensor. The
temperature measurement must be in degrees C.

RH
Variable

The RH parameter is the program variable that contains the value for the relative humidity sensor. The
RH measurement must be in percent of RH.

WetDryBulb (Dest, Temp, WetTemp, Pressure)
The WetDryBulb instruction calculates vapor pressure in kilopascals from the
wet and dry-bulb temperatures in °C. This algorithm type is used by the
National Weather Service:

Vp = Svpwet - A (1 + B∗Tw)(Ta - Tw) P

Vp = ambient vapor pressure in kilopascals
Svpwet = saturation vapor pressure at the wet-bulb temperature in kilopascals
Tw = wet-bulb temperature, °C
Ta = ambient air temperature, °C
P = air pressure in kilopascals
A = 0.000660
B = 0.00115

Although the algorithm requires an air pressure entry, the daily fluctuations are
small enough that for most applications a fixed entry of the standard pressure at
the site elevation will suffice. If a pressure sensor is employed, the current
pressure can be used.

Parameter
& Data Type

Enter

Dest The variable in which to store Vp (kPA).
Temp The variable containing air temperature (dry-bulb °C).
RH The variable containing RH (%).
WetTemp The variable containing wet-bulb temperature (°C).
Pressure The variable containing atmospheric pressure (kPa).

8-42

Section 8. Processing and Math Instructions

XOR
The XOR function is used to perform a binary logical exclusion on two
numbers.

Syntax

result = number1 XOR number2

The XOR operator also performs a bit-wise comparison of identically
positioned bits in two numbers (may be variables or the results of expressions)
and sets the corresponding bit in result according to the following truth table:

If bit in
number1 is

And bit in
number2 is

The result is

0 0 0
0 1 1
1 0 1
1 1 0

Derived Math Functions
The following is a list of nonintrinsic mathematical functions that can be derived
from the intrinsic math functions provided with CRBasic:

Function CRBasic equivalent
Secant Sec = 1 / Cos(X)
Cosecant Cosec = 1 / Sin(X)
Cotangent Cotan = 1 / Tan(X)
Inverse Sine Arcsin = Atn(X / Sqr(-X * X + 1))
Inverse Cosine Arccos = Atn(-X / Sqr(-X * X + 1)) + 1.5708
Inverse Secant Arcsec = Atn(X / Sqr(X * X - 1)) + Sgn(Sgn(X) -1) * 1.5708
Inverse Cosecant Arccosec = Atn(X/Sqr(X * X - 1)) + (Sgn(X) - 1) * 1.5708
Inverse Cotangent Arccotan = Atn(X) + 1.5708
Hyperbolic Secant HSec = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant HCosec = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent HCotan = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine HArcsin = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine HArccos = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent HArctan = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant HArcsec = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant HArccosec = Log((Sgn(X) * Sqr(X * X + 1) +1) / X)
Inverse Hyperbolic Cotangent HArccotan = Log((X + 1) / (X - 1)) / 2
Logarithm LogN = Log(X) / Log(N)

8-43

Section 8. Processing and Math Instructions

8-44

Section 9. Datalogger Control

9.1 Program Structure/Control
BeginProg, EndProg, Exit

BeginProg and EndProg are used to mark the beginning and end of a
program. Exit is used to exit the program

Syntax
BeginProg
 ...
 [Conditional] Exit..
EndProg
BeginProg marks the end of Variable, DataTable, Subroutine, and user
defined Function declarations and the beginning of the main program.

BeginProg Example

This program segment uses BeginProg and EndProg to mark the beginning and
end of a program.

BeginProg
 ...
 If Flag(1) then Exit...
EndProg

Call
The Call statement is used to transfer program control from the main program
to a subroutine.

Syntax
Call SubName(List of Variables) or

SubName(List of Variables) or

SubName

Remarks
Use of the Call keyword when calling a subroutine is optional.
The Call statement has these parts:

Part Description
Call Call is an optional keyword used to transfer program

control to a subroutine.
SubName The Name parameter is the name of the subroutine to call.

List of Variables Optional. Only needed when it is desired to pass variables
or values to the subroutine. The list may contain variables,
constants, or expressions that evaluate to a constant that
should be passed into the variables declared in the
subroutine. Values of variables passed can be altered by
the subroutine. If the subroutine changes the value of the
matching subroutine declared variable, it changes the

9-1

Section 9. Program Control Instructions

value of the variable that was passed in. If a constant is
passed to one of the subroutine declared “variables”, that
“variable” becomes a constant and its value cannot be
changed by the subroutine.

You are never required to use the Call keyword when calling a subroutine. If
you use the Call keyword to call a procedure that requires arguments, the
arguments list must be enclosed in parentheses.

You can pass arguments to a procedure by reference (variable) or by value
(constant or numeric value). Values of arguments passed by reference can be
altered by the procedure when the arguments are returned.

See the Sub topic in Section 5 Program Declarations for Example and
additional information on Subroutines.

CallTable
Used to call a data table.

Syntax
CallTable Name
Remarks
Calls a DataTable that has been declared prior to the BeginProg statement.
When the DataTable is called, it will process data as programmed and check
the output condition.

CallTable Example

This example uses CallTable to Call the ACCEL data table.

Default Program
A program called Default.C9X can be stored on the CR9000X CPU drive. At
power up, the CR9000X looks for and, when it exists, loads Default.C9X if no
other program takes priority

See "Program File run hierarchy" in the "Powerup.ini" topic in Section 9.2,
Datalogger Status/Control.

'This example uses the FileMark command.
Public TBlk1(1) : Units TBlk1 = Deg_F
Dim TRef(1) 'Declare Reference Temp variable
Public Flag(8), Count

DataTable(TEMP,True,-1) 'Trigger, auto size

 CardOut (0 ,1000) 'Write data to PC Card
DataInterval(0,0,0,50) 'Synchronous, 50 lapses, autosize

 Average (1,TBlk1(),FP2,False) '1 Reps,Source,Res
EndTable 'End of table TEMP

BeginProg 'Program begins here
 Scan 0,0) 'Scan once every 10mSecs, non-burst (500,1,
 ModuleTemp(TRef(),1,5,20) 'RefTemp,CardCount,StartCard,Integrate
 TCDiff(TBlk1(),1,mV50,5,1,TYPET,TRef(1),True,30,40,1.8,32)
 CALLTABLE TEMP 'Go up and run Table TEMP
 Next Scan 'Loop up for the next scan
EndProg 'Program ends here

9-2

Section 9. Program Control Instructions

Delay (Option, Delay, Units)
Used to delay the program.
Syntax
Delay(Option, Delay, Units)

Remarks
The Delay instruction is used to insert a delay in the measurement task
sequence, between processing instructions, or between accesses to an SDM
device for the time period specified by the Delay and Units arguments.

The Scan Interval should be sufficiently long to process all measurements plus
any measurement task sequencer delay period. If the delay is applied to the
measurement task sequence and the scan interval is not long enough to process
all measurements plus the delay, the program will not compile when
downloaded to the datalogger. If the delay is applied to the processing task
sequence, the program will compile but scans may be skipped if there is
insufficient time for processing.

See the Scan instruction's buffer parameter in Section 9.1 Program
Structure/Control.

Parameter
& Data Type

Enter DELAY PARAMETERS

DelayOption
Constant

Code
0

1

2

Result
Delay will affect the measurement task sequence. Processing will
continue to take place as needed in the background. When this
option is chosen, the Delay instruction must not be placed in a
conditional statement.
Delay will affect processing. Measurements will continue as called
for by the task sequencer. Can be performed conditionally.
Delay will affect SDM measurements. This option is used to insert
a delay between successive accesses to an SDM device. Can be
performed conditionally.

Delay
Constant

The numeric value for the time delay.

Units The units for the delay.
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 microseconds
 MSEC 1 milliseconds
 SEC 2 seconds
 MIN 3 minutes

Do
Repeats a block of statements while a condition is true or until a condition
becomes true.

Syntax 1 Do [{While or Until} condition]
 [statementblock]
 [Exit Do]
 [statementblock]
Loop

9-3

Section 9. Program Control Instructions

Syntax 2 Do
 [statementblock]
 [Exit Do]
 [statementblock]
Loop [{While or Until} condition]

Remarks
While or Until with corresponding condition, and Exit Do are not required. If
none of these are used, the Do .. Loop will continue indefinitely.

The Do...Loop statement has these parts:

Part Description

Do Must be the first statement in a Do...Loop control structure.

While Indicates that the loop is executed while condition is true.
Once the condition is false, the loop will be exited.

Until Indicates that the loop is executed while condition is false.
Once the condition is true, the loop will be exited.

condition Numeric expression that evaluates true (nonzero) or false (0
or Null).

statementblock Program lines between the Do and Loop statements that are
repeated while or until condition is true.

Exit Do Only used within a Do...Loop control structure to provide
an alternate way to exit a Do...Loop. Any number of Exit
Do statements may be placed anywhere in the Do...Loop.
Often used with the evaluation of some condition (for
example, If...Then), Exit Do transfers control to the
statement immediately following the Loop. When
Do...Loop statements are nested, control is transferred to the
Do...Loop that is one nested level above the loop in which
the Exit Do occurs.

Loop Ends of the Do...Loop structure.

Do...Loop Statement Example
The example creates an infinite Do...Loop that can be exited only if Volt(1)
is within a range.
Dim Reply 'Declare variable.
DO
 Reply = Volt(1)
 If Reply > 1 And Reply < 9 Then 'Check range.
 EXIT DO 'Exit Do Loop.
 End If
LOOP

Alternatively, the same thing can be accomplished by incorporating the range
test in the Do...Loop as follows:
Dim Reply 'Declare variable.
DO
 Reply = Volt(1)
LOOP UNTIL Reply > 1 And Reply < 9

9-4

Section 9. Program Control Instructions

The next example show the use of Wend.
While X > Y 'Old fashioned way of looping.

Wend

The following is equivalent to the prior While/Wend construct with easier to
follow context:
Do While X > Y 'Much better

Loop

FileManage
The FileManage instruction is used to manage files from within a running
datalogger program.

Syntax
FileManage("Device: FileName", Attribute)

Remarks
FileManage is a function that allows the active datalogger program to
manipulate program files that are stored in the datalogger.

Parameter
& Data Type

Enter FILEMANAGE PARAMETERS

Device;
Filename
Text

The "Device:Filename" argument is the file that should be manipulated.
The Device on which the file is stored must be specified and the entire string
must be enclosed in quotation marks. Device = CPU, the file is stored in
datalogger memory. Device = CRD, the file is stored on a PCMCIA card..

Attribute
Constant

The Attribute is a numeric code to set what will happen to the file affected
by the FileManage instruction. The Attribute codes are actually a bit field.
The codes are as follows: Setting a file's attributes to Hide makes it
inaccessible using communications or the keyboard, but it can still be set as
Run Now or Run on Power Up..

 Bit Decimal Description
 bit 0 1 Program not active
 bit 1 2 Run on power up
 bit 2 4 Run now
 bits 1 & 2 6 Run now and on power up
 bit 3 8 Delete
 bit 4 16 Delete all
 bit 5 32 Hide

FileManage Example
The statement below uses FileManage to run TEMPS.C9X, which is stored on
the datalogger's CPU, when Flag(2) becomes high. The currently running
program will be stopped and TEMPS.C9X will start running.

If Flag(2) then FileManage("CPU:TEMPS.C9X" 4) '4 means Run Now

9-5

Section 9. Program Control Instructions

FileMark(TableName)
Parameter
& Data Type

Enter FILEMARK PARAMETERS

TableName
name

The name of the data table in which to insert the filemark..

FileMark is used to insert a file mark into a data file.

Syntax
If (condition) then FileMark(TableName)

Remarks
After the FileMark instruction is encountered, a file mark will be added to the
next record written to the specified Table. The file mark can, optionally, be
used by the Card Convert utility to indicate that a new file should be started at
the mark. The marked record will be the last record of a file. The
following record in the DataTable will be the first record of the new file.
Therefore, the program logic should ensure that the FileMark instruction
is encountered immediately prior to writing the record desired to be the
last record of a file.

This capability to create multiple files from a single data table only exists in
the binary to ASCII converter (Card Convert Utility) and only with the raw
TOB3 data file. To make use of the file marks, files must be stored to a
PCMCIA card and retrieved through the Logger Files window, or by
removing the card and transferring the file directly to the computer.

File Marks can only be written to Data Tables stored on a
PCMCIA card. They can only be processed using the raw T0B3
binary file format. If the file is converted to a different format,
the file marks are lost.

NOTE

The following is a data file, generated by the following Example Program, that
has been converted to ASCII without processing the FileMarks. The records
that have FileMarks are highlighted red and have text added to the side for
illustrative purposes. The FileMarks cannot actually be viewed in the data
files.

 File = TempConv.dat
"1999-04-15 10:52:57.5",90.5
"1999-04-15 10:52:58",90.6
"1999-04-15 10:52:58.5",89.3
"1999-04-15 10:52:59",88
"1999-04-15 10:52:59.5",87.5 'Record containing the FileMark
"1999-04-15 10:53:13.5",90.5
"1999-04-15 10:53:14",90.5
"1999-04-15 10:53:14.5",89.6
"1999-04-15 10:53:15",88.5
"1999-04-15 10:53:15.5",87.7 'Record containing the FileMark
"1999-04-15 10:53:28",90
"1999-04-15 10:53:28.5",90
"1999-04-15 10:53:29",88.9
"1999-04-15 10:53:29.5",88.1
"1999-04-15 10:53:30",87.6 'Record containing the FileMark

9-6

Section 9. Program Control Instructions

If the same data file was converted with the FileMarks processed, three data
files would be created as follows:

 File = TempConv.000
"1999-04-15 10:52:57.5",90.5
"1999-04-15 10:52:58",90.6
"1999-04-15 10:52:58.5",89.3
"1999-04-15 10:52:59",88
"1999-04-15 10:52:59.5",87.5 'Record containing the FileMark

 File = TempConv.001
"1999-04-15 10:53:13.5",90.5
"1999-04-15 10:53:14",90.5
"1999-04-15 10:53:14.5",89.6
"1999-04-15 10:53:15",88.5
"1999-04-15 10:53:15.5",87.7 'Record containing the FileMark

 File = TempConv.002
"1999-04-15 10:53:28",90
"1999-04-15 10:53:28.5",90
"1999-04-15 10:53:29",88.9
"1999-04-15 10:53:29.5",88.1
"1999-04-15 10:53:30",87.6 'Record containing the FileMark

'This example uses the FileMark command.
Public TBlk1(1) : Units TBlk1 = Deg_F 'Block1 dimensioned source
Dim TRef(1) 'Declare Reference Temp variable
Public Flag(8), Count

DataTable(TEMP,True,-1) 'Trigger, auto size

 CardOut (0 ,1000) 'Write data to PC Card

DataInterval(0,0,0,50) 'Synchronous, 50 lapses, autosize

 Sample (1,TBlk1(),FP2) '1 Reps,Source,Res
EndTable 'End of table TEMP

BeginProg 'Program begins here
 Scan ,0) 'Scan once every 10mSecs, non-burst (500,1,0
 ModuleTemp(TRef(),1,5,20) 'RefTemp,CardCount,StartCard,Integrate
 TCDiff(TBlk1(),1,mV50,5,1,TYPET,TRef(1),True,30,40,1.8,32)
 '______________________ Output Table Control ______________________
 IF TBlk1(1)>90 then Flag(1)=1 'Set Flag1 high when Temp>90
 If Flag(1) = 1 then
 Count = Count +1 'Increment Counter
 If Count = 5 then FILEMARK(Temp) 'Set a FileMark on last record of set
 CallTable TEMP 'Go up and run Table TEMP
 Endif
 If Count = 5 'When Count =5 then do
 Count = 0 'Set counter back to 0
 Flag(1)
 Endif

 = 0 'Set Flag(1) low

 Next Scan 'Loop up for the next scan
EndProg 'Program ends here

9-7

Section 9. Program Control Instructions

For ... Next Statement
Repeats a group of instructions a specified number of times.

Syntax
For counter = start To end [Step increment]
 [statementblock]
[Exit For]
 [statementblock]
Next [counter [, counter][, ...]]

The For...Next statement has these parts:
PART DESCRIPTION
For Begins a For...Next loop control structure. Must appear

before any other part of the structure.
 counter Numeric variable used as the loop counter. If the variable

used is an index into an array, the index cannot be a variable
(e.g., Variable(1) can be used, but Variable(i) cannot).

 start Initial value of counter.

To Separates start and end values.
 end Final value of counter.
Step Indicates that increment is explicitly stated.

 increment Amount counter is changed each time through the loop. If

you do not specify Step, increment defaults to one.

[statementblock] Program lines between For and Next that are executed the

specified number of times.

Exit For Used within a For...Next control structure to provide an

alternate way to exit. Any number of Exit For statements
may be placed anywhere in the For...Next loop. Often used
with the evaluation of some condition (for example,
If...Then), Exit For transfers control to the statement
immediately following the Next.

Next Ends a For...Next construct. Causes increment to be added

to counter.

The Step value controls loop execution as follows:

 When Step is Loop executes if
 Positive or 0 counter <= end
 Negative counter >= end

Once the loop has been entered and all the statements in the loop have
executed, Step is added to counter. At this point, either the statements in the
loop execute again (based on the same test that caused the loop to execute in
the first place), or the loop is exited and execution continues with the statement
following the Next statement.

9-8

Section 9. Program Control Instructions

Changing the value of counter while inside a loop can make the
program more difficult to read and debug.

TIP

You can nest For...Next loops by placing one For...Next loop within another.
Give each loop a unique variable name as its counter. The following
construction is correct:

For J = 5 To 1 Step -1 'Loop 5 times backwards.
 For I = 1 To 12 'Loop 12 times.
 'Run some code.
 Next I
 . . . 'Run some code.
Next J
. . . . 'Run some code.

If you omit the variable in a Next statement, the value of Step
increment is added to the variable associated with the most
recent For statement. If a Next statement is encountered before
its corresponding For statement, an error occurs.

NOTE

Nested For...Next Statement Bubble Sort Example

If Flag(3) Then 'Perform Bubble Sort based on
Flag(3)
 For K = 1 To 29
 For I = 30 To (K) Step -1
 If PlaceDist(I) > PlaceDist(K) Then
 DistD = PlaceDist(K) 'Dummies to hold Place K values
 TractorD = TractorNum(K)
 PlaceDist(K) = PlaceDist(I) 'Assign New Standing
 TractorNum(K) = TractorNum(I)
 PlaceDist(I) = DistD
 TractorNum(I) = TractorD
 EndIf
 Next I
 Next K
 Flag(3) = False
EndIf

This next example fills odd elements of X up to 40 * Y with odd numbers.

For I = 1 To 40 * Y Step 2
 X(I) = I
Next I

9-9

Section 9. Program Control Instructions

If ... Then ... Else Statement
Allows conditional execution, based on the evaluation of an expression.

There are two forms of the If .. Then construct: The Single Line form and the
Block form.

The single-line form is often useful for short, simple conditional tests.

The block form provides more structure and flexibility than the single-line
form and is usually easier to read, maintain, and debug.

Syntax 1 (Single Line Form)
If condition Then thenpart [Else elsepart]

Syntax 1 Description
Syntax 1 has these parts:
Part Description
If Begins the simple If...Then control structure.

 condition An expression that evaluates true (nonzero) or false (0 and
Null).

Then Identifies actions to be taken if condition is satisfied.

 thenpart Statements or branches performed when condition is true.

Else Identifies actions taken if condition is not satisfied. If the
Else clause is not present, control passes to the next
statement in the program.

 elsepart Statements or branches performed when condition is false.

You can have multiple statements with a condition, but they
must be on the same line and separated by colons, as in the
following statement:

TIP

 If A > 10 Then A = A + 1 : B = B + A : C = C + B

Syntax 2 Block form
If condition1 Then
 [statementblock-1]
[ElseIf condition2 Then
 [statementblock-2]]
[Else
 [statementblock-n]]
End If

9-10

Section 9. Program Control Instructions

Syntax 2 Description
Syntax 2 has these parts:

Part Description
If Keyword that begins the block If...Then decision

control structure.
condition1 Same as condition used in the single-line form shown

above.
Then Keyword used to identify the actions to be taken if a

condition is satisfied.
statementblock-1 One or more CRBasic statements executed if condition1

is true.
ElseIf Keyword indicating that alternative conditions must be

evaluated if condition1 is not satisfied.
condition2 Same as condition used in the single-line form shown

above.
statementblock-2 One or more CRBasic statements executed if condition2

is true.
Else Keyword used to identify the actions taken if none of

the previous conditions are satisfied.
statementblock-n One or more CRBasic statements executed if condition1

and condition2 are both false.
End If Keyword that ends the block form of the If...Then.

In executing a block If, CRBasic tests condition1, the first numeric expression.
If the expression is true, the statements following Then are executed.

If the first expression is false, CRBasic begins evaluating each ElseIf condition
in turn. When CRBasic finds a true condition, the statements immediately
following the associated Then are executed. If none of the ElseIf conditions is
true, the statements following the Else are executed. After executing the
statements following Then or Else, the program continues with the statement
following End If.

The Else and ElseIf clauses are both optional. You can have as many ElseIf
clauses as you like in a block If, but none can appear after an Else clause. Any
of the statement blocks can contain nested block If statements.

CRBasic looks at what appears after the Then keyword to determine whether
or not an If statement is a block If. If anything other than a comment appears
after Then, the statement is treated as a single-line If statement.

A block If statement must be the first statement on a line. The Else, ElseIf,
and End If parts of the statement can have nothing but spaces in front of them.
The block If must end with an End If statement.

9-11

Section 9. Program Control Instructions

For Example

If a > 1 AND a <= 100 Then
 ...
ElseIf a = 200 Then
 ...
End If

Select Case may be more useful when evaluating a single
expression that has several possible actions.

TIP

If...Then ... Else Statement Example
The example illustrates the various forms of the If...Then...Else syntax.

Dim X, Y, Temp(5) 'Declare variables.
X = Temp(1)
If X < 10 Then
 Y = 1 '1 digit.
ElseIf X < 100 Then
 Y = 2 '2 digits.
Else
 Y = 3 '3 digits.
End If
. . . . 'Run some code
. . . . 'Run some code

Include

The Include instruction is used to Include a program file segment that is not
contained in the original program.

Syntax
Include "Device: FileName"

Remarks
The Include file can be a subroutine, slow sequence, or any portion of code
that you do not want to include in the main program. The code from the
Include file is inserted in the program wherever the Include statement resides.
If the Include file is not found on the datalogger (or in the same directory in
which the file is being precompiled in CRBasic) an error message will be
returned.

"Device:FileName" The "Device:Filename" argument is the file that contains
the additional code that should be executed. Device = CPU, the file is stored in
datalogger memory. Device = CRD, the file is stored on a compact flash card.

9-12

Section 9. Program Control Instructions

The Device on which the file is stored must be specified and the
entire string must be enclosed in quotation marks.

NOTE

The Include file returns compile errors when it is sent to the datalogger with a
Run Now attribute (RTDAQ's and LoggerNet's Connect window's "Send"
function always sends files as Run Now and Run on Power Up) or if it is
compiled in CRBasic, since it is only a partial file.

The Include file should normally be uploaded to the logger using the "File
Control" utility, or from the CRBasic editor with all of the Run time attributes
shut off.

Include Example
Below is an example of using the Include file functionality of the datalogger.
In the example, the "included" file merely declares a new variable and converts
a temperature value in the original program to degrees Fahrenheit, but the
included file could be a subroutine, slow sequence scan, or any portion of code
that you did not want displayed in the main program.

Main Running Program
Public Temp
BeginProg
 Scan(1,Sec,3,0)
 ModuleTemp(Temp,1,4,0)
 INCLUDE"CPU:IncludeFile.C9X"
 NextScan
EndProg

Include File
Public TempF
TempF = Temp*1.8 + 32

Print list of variables or quoted text

Print is used as a tool in debugging a program to print text or the value of
variables at different points in the program. “Printing” occurs over the active
link and can be observed from DataLogger | Terminal Mode in RTDAQ.

RunDLDFile

Used to run one program file from another.

Syntax
RunDLDFile("d:FileName", Attribute)
Remarks
RunDLDFile is a function that allows a running program to change the run
time attributes of another program file that is stored in the CR9000X. If bit 2
is set (Run Now), the current running program would be stopped and the

9-13

Section 9. Program Control Instructions

program whose run time attribute is being changed would compile and start. If
the selected program has compile errors, the result would be no running
program unless a program file with a name of default.C9X resides either on the
CPU or on the PCMCIA card.

See "Program Run Attribute Hierarchy" under the Powerup.ini topic in
Section 9.2, Datalogger Status/Control.

"device:FileName" is the device and name of the Program file that must have
previously been stored either on the CR9000X flash memory or on the
PCMCIA card. The device must be either CPU (file stored in the CPU's
SDRAM) or CRD (file stored in a PC card located in the CR9032's PC card
slot). The quote marks (") are necessary.

The attribute parameter is evaluated as a binary number where bits one and
two are used to indicate if the program is to become the program that runs on
power up and/or if it is to replace the current program and run when the
instruction is executed.

 Bit Decimal Description
bit 0 1 not used
bit 1 2 Run On Power Up
bit 2 4 Run Now

Only bit1 and bit2 are available for this function.

Example 1 RunDLDFile("CPU:TEMPS.C9X", &B100)

Example 1 results in the loading and startup of the program file
called TEMPS.C9X from CPU flash memory. Whatever Program
file currently had a run time attribute of "Run on power up" would
be loaded and run if the CR9000X was powered off and then on
again. In this example the attribute parameter is entered as a
binary number (&B100); it could also be entered in decimal format
as 4.

Example 2 RunDLDFile("CPU:TEMPS.C9X", &B110)

Example 2 results in the loading and startup of the program file
called TEMPS.C9X from CPU flash memory. TEMPS.C9X is
also to run when the logger is powered up. The attribute
parameter could also be entered as 6.

Example 3 If Flag(2) then RunDLDFile("CPU:TEMPS.C9X", 4)

Example 3 results in the loading and startup of the program file
called TEMPS.C9X from CPU flash memory conditionally, based
on the state of Flag(2).

9-14

Section 9. Program Control Instructions

Scan

The Scan instruction is used to establish the program scan rate, scan count, and
size of the scan buffer. The NextScan instruction shifts program control to the
Scan instruction.

Syntax
Scan(Interval, Units, Option, Count)
 ...
 ...[ExitScan] or ...[ContinueScan]
 ...
Next Scan

Remarks
The measurements, processing, and calls to output tables bracketed by the
Scan…NextScan instructions determine the sequence and timing of the
datalogger program. The Scan instruction determines how frequently the
measurements within the Scan…NextScan structure are made, controls the
buffering capabilities, and sets the number of times to loop through the scan.

When using the CR9052 with scan rates over 1000 Hz, it is
recommended to use SubScans and large scan buffers. See the
SubScan topic in Section 9.1 Program Structure/Control for
more details.

TIP

Slow Sequence Scans only support a Buffer option of 1. NOTE

ExitScan is used to setup a condition where the Scan loop will be exited.

ContinueScan is used to jump to the end of the Scan loop without processing
the processing instructions between the ContinueScan and the Next Scan. It
does not affect the measurement instructions.

Parameter
& Data Type

Enter SCAN PARAMETERS

Interval
Constant

Enter the time interval at which the scan is to be executed. The interval may
be in µs, ms, s, or minutes, whichever is selected with the Units parameter.
The maximum scan interval is one minute.

Units The units for the time parameters.
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 microseconds
 MSEC 1 milliseconds
 SEC 2 seconds
 MIN 3 minutes

9-15

Section 9. Program Control Instructions

Parameter
& Data Type

Enter SCAN PARAMETERS CON'T

Option Determines how data will be buffered during the Scan…NextScan process.

Constant Option Result
 0, 1, or 2 The datalogger uses two buffers when processing

measurements. When a measurement begins on a scan,
the values of the previous scan are loaded into a buffer.
This allows processing to finish on the previous scan
during measurement of the current scan.

 >3 The datalogger uses three or more buffers when
processing measurements, based on the number of scans
defined by this Constant.

 Larger buffers can be used for a Scan that has occasional large processing
requirements such as FFTs or Histograms, and/or when processing may be
interrupted by communications. If a value of 1000 is inserted into the
BufferSize argument of a scan having 10 thermocouple measurements,
40,000 bytes of SRAM will be allocated for the buffer [(4 bytes)
/(measurement) x (10 measurements)/(buffered scan) x 1000 buffered
scans)]. The buffer size plus the size of any Output Tables stored in SRAM
should not exceed 120 Mbytes.
If the processing ever lags behind by more than the buffer allocated, the
datalogger will discard the buffered values and synchronize back up to the
current measurement

The SlowSequence instruction does not allow for this buffering scheme
even though Scan is used to signify the start of a scan in a slow sequence. In
SlowSequence, the measurements are stored in a single buffer. Processing of
this buffer is completed before the next SlowSequence Scan is started.

The CR9052 module has its own internal memory for buffering up to
8,000,000 samples. The Scan's buffer parameter is used to allocate the
amount of both the CR9052 internal memory and the amount of CR9032
SDRAM to be used for buffering. If using all 6 channels on a CR9052, the
maximum buffer size allowed would be 1,300,000. When using the
CR9052 with scan rates over 1000 Hz, it is recommended to use
SubScans and large scan buffers. See the SubScan topic for more
details.

The CR9058E module also has its own internal memory buffer. It is
limited to 512 buffers. The Scan's buffer parameter is used to allocate the
amount of both the CR9058E internal memory and the amount of CR9032
SDRAM to be used for buffering. If using all 10 channels on a CR9058E,
the maximum buffer size allowed would be 50. If it is desired to run
CR9058E Isolation measurements along with fast measurements and/or with
a larger Scan buffer, SubScans with a negative value for the SubRatio
parameter can be utilized. See the SubScan topic later in this section for
additional information.

Count
Integer

The number of times to execute the Scan/NextScan loop. Enter 0 for infinite
looping.

9-16

Section 9. Program Control Instructions

Select Case Statement
Executes one of several statement blocks depending on the value of an
expression.

Syntax
Select Case testexpression
 [Case expressionlist1
 [statementblock-1]]
 [Case expressionlist2
 [statementblock-2]]
 [CaseIs expressionlist2
 [statementblock-n]]
 [Case Else
 [statementblock-n]]
End Select

The Select Case syntax has these parts:
Part Description
Select Case Begins the Select Case decision control structure. Must appear before

any other part of the Select Case structure.

testexpression Any numeric or string expression. If testexpression matches the
expressionlist associated with a Case clause, the statementblock
following that Case clause is executed up to the next Case clause, or
for the final one, up to the End Select. Control then passes to the
statement following End Select. If testexpression matches more than
one Case clause, only the statements following the first match are
executed.

Case Sets apart a group of CRBasic statements to be executed if an
expression in expressionlist matches testexpression.

expressionlist The expressionlist consists of a comma-delimited list of one or more of
the following forms.

 expression
 expression To expression
 Is compare-operator expression
 statementblock
 Elements statementblock-1 to statementblock-n consist of any number

of CRBasic statements on one or more lines.

Case Is Keyword used before a comparison operator (=, <>, <, <=, >, or >=). If
the Is keyword is not used (ie: Case < 10), the program will not
compile. If Case Is Expression List is used (ie: Case Is 15), the
comparitor is assumed to be the equal sign (equivalent to Case Is = 15).

Case Else Keyword indicating the statementblock to be executed if no match is
found between the testexpression and an expressionlist in any of the
other Case selections. When there is no Case Else statement and no
expression listed in the Case clauses matches testexpression, program
execution continues at the statement following End Select.

End Select Ends the Select Case. Must appear after all other statements in the
Select Case control structure.

9-17

Section 9. Program Control Instructions

The argument expression list has these parts:
Part Description

expression Any numeric expression.

To Keyword used to specify a range of values. If you use the To
keyword to indicate a range of values, the smaller value must
precede To.

Although not required, it is a good idea to have a Case Else
statement in your Select Case block to handle unforeseen
testexpression values.

NOTE

You can use multiple expressions or ranges in each Case clause. For example,
the following line is valid:
 Case 1 To 4, 7 To 9, 11, 13

Select Case statements can be nested. Each Select Case statement must have a
matching End Select statement.

Select Case Statement Example
The example uses Select Case to decide what action to take based on user
input.

Dim X, Y 'Declare variables.
If Not X = Y Then 'Are they equal
 If X > Y Then
 SELECT CASE X 'What is X.
 CASE 0 To 9 'Must be less than 10.
 'Run some code.
 'Run some code.
 CASE 10 To 99 'Must be less than 100.
 'Run some code.
 'Run some code.
 CASE ELSE Must be something else.
 'Run some code.
 END SELECT
 END IF
ELSE
 SELECT CASE Y 'What is Y.
 CASE 1, 3, 5, 7, 9 'It's odd.
 'Run some code.
 CASE 0, 2, 4, 6, 8 'It's even.
 'Run some code.
 CASE ELSE 'Out of range.
 'Run some code.
 'Run some code.
 END SELECT
END IF

9-18

Section 9. Program Control Instructions

SetStatus ("FieldName", Value)

The SetStatus instruction is used to change the value for a setting in the
datalogger's Status table.
Syntax
SetStatus("FieldName, Value)

Remarks
The FieldName parameter is the name of the setting to be changed; the name
must be enclosed in quotes. The Value parameter is the value to which that
field should be set. If the value being set is a string (such as in Messages or
StationName), it must be enclosed in quotes. For all Status table settings except
Messages and StationName, setting the value to 0 resets the error indicator.
This can be useful for troubleshooting purposes. If a SetStatus instruction is in
the program, it will be executed and could reset a setting that the user changed
manually.

The settings shown below in the SetStatus Parameters Table are some of the
more common fields that users set.

Parameter
& Data Type

Enter SETSTATUS PARAMETERS

FieldName
Text in quotes

The FieldName parameter is the name of the setting to be
changed; the name must be enclosed in quotes. The FieldName
options are:

Low12VCount An error counter indicating the number of times the 12V supply
has dropped below the allowable level.

Low5VCount An error counter indicating the number of times the 5V supply
has dropped below the allowable level.

MaxProcTime The maximum amount of time that it has taken to execute the
program.

Messages A field that can be used to hold a string value in the datalogger's
Status table. The string must be enclosed in quotes.

SkippedScans An error counter indicating the number of times a Scan has been
missed because the datalogger was busy with another task (such
as the previous scan).

SkippedSlowScans An error counter indicating the number of times a SlowScan has
been missed.

SkippedRecord An error counter indicating the number of times a record was
supposed to be stored but wasn't.

Station Name The name of the datalogger station.
VarOutOfBound An indication that a variable is not dimensioned large enough to

hold the values being returned.
WatchDogErrors An error counter indicating the number of times the datalogger

has had to reset its processor. Set to 0 to reset counter.
Value
String or Constant

The Value parameter is the value to which that field should be
set. If the value being set is a string (such as in Messages or
StationName), it must be enclosed in quotes.

9-19

Section 9. Program Control Instructions

SlotConfigure (Slot4CardID, Slot5CardID, Slot6CardID, Slot7CardID,
Slot8CardID, Slot9CardID, Slot10CardID, Slot11CardID,
Slot12CardID)

Used to provide the CRBasic precompiler with information about the modules
installed in the datalogger's chassis.

Syntax
SlotConfigure(9050, 9060, 9070, 9071, 9055, 9052, 9058, 9058, none)

Remarks
This instruction is placed in the Declarations section of the program, prior to
the BeginProg instruction. It is used only to provide information to the pre-
compiler. SlotConfigure is not required for the program to run, and it is
ignored by the data-logger hardware when the program is compiled. The pre-
compiler uses this information to check for module specific errors and timing
issues with the program.

If this instruction is used, at least one (and up to nine) module IDs must be
defined. IDs 2 through 9 (Slots 5 through 12) are optional. Select "None" for
any unused slots or delete the remaining commas in the instruction after the
last card defined: SlotConfigure(none,9050,9060). Permissible inputs for the 9
parameters are: None, 9050, 9051,9060,9070,9071,9055,9052, and 9058.

The SlotConfigure instruction has the following parameters:

Enter
Parameter

Module Type

None No Card in slot
9050 CR9050
9051 CR9051E
9052 CR9052DC/CR9052IEPE
9055 CR9055/CR9055E
9058 CR9058E
9060 CR9060
9070 CR9070
9071 CR9071E

SlowSequence(TimeSlice)

Allows slower measurements and low priority processing to take place in
background.

Syntax
SlowSequence(TimeSlice)
Remarks
Ends the main program and begins a low priority program. The instructions for
this program are executed as time allows when the main program is not
running. There must be a Scan … NextScan loop following SlowSequence.

It is possible to have a scan in the SlowSequence for measurements that are
not needed at the rate of the primary scan interval. The CR9000X tags on
measurement instructions from the slow sequence scan to the normal scan as
time allows. At least one A/D conversion from the slow sequence scan is
added to each normal scan (the appropriate settling time occurs before the A/D
conversion). Thus, the primary scan interval must be long enough to make the
primary scan measurements plus the longest single measurement fragment

9-20

Section 9. Program Control Instructions

(settling time + A/D conversion) from the scan in the slow sequence. In the
case where the primary scan interval is only long enough to allow one
measurement fragment from the slow sequence per primary scan, the minimum
time for the slow sequence scan interval is the product of the number of slow
sequence measurement segments and the primary scan interval. A
consequence of the way a measurement scan in the slow sequence may be
parceled into several primary scans is that the measurements in a single "scan"
of the slow sequence may be spread over a greater time than if they were in the
primary scan. Also, if integration is used in a measurement that is included in
the SlowSequence scan, the measurements that go into that integration may
not occur sequentially, but may be broken up into multiple integration
segments that are separated in time by the primary scan rate. If settling time is
used for a measurement whose integration is broken up, that settling time will
take place before each integration period. Processing instructions within the
slow sequence are executed in the time available after processing in the main
program is completed.

The slowest scan rate allowed is 60 seconds. When making multiple
measurements in the SlowSequence scan along with a small scan rate ratio,
[Slow Sequence Scan Time]/[Primary Scan Time], it is possible that all of the
slow sequence tasks will not fit within the task sequencer's memory. When this
occurs, the error message "Program too big for task memory" will be returned
when attempting to load the program into the datalogger's flash memory. This
can be resolved by increasing the primary scan rate, so that the instructions in
the slow sequence scan can be parceled out to the task sequencer throughout
one or more primary scans. The required scan rate ratio is dependent on the
number of tasks in the SlowSequence scan.

Low priority data tables can be included in the slow sequence scan by listing
them after the SlowSequence instruction. It should be noted that time stamped
data written to slow sequence data tables will be stamped with the start time of
the last slow sequence scan.

TimeSlice

The TimeSlice parameter is used to adjust the size or number of operational
codes in the segments parceled from the SlowSequence Scan. Enter 0 for
default slicing. Enter a positive number to decrease the segment size from the
default. Enter a negative number to increase the segment size.

If the SlowSequence scan is skipping scans (check the Status Table to verify),
decrease the TimeSlice parameter incrementally by the value of the Primary
Scan interval, in microseconds, divided by 10 until scans are no longer being
skipped. The minimum TimeSlice value that should be used is -1.8 times the
Primary Scan interval.

Example: If the Primary Scan rate is 10 mSec and SlowSequence scans are
being skipped, change the TimeSlice parameter to -1000 (10,000
microseconds/10) from zero. If skipped SlowSequence scans are still
occurring, change the TimeSlice parameter to -2000, then -3000, and so on,
down to negative 1.8 times the Primary scan (-18,000 for this example). If
skipped SlowSequence scans still occur with the TimeSlice parameter set to -
1.8 times the Primary scan interval, then the SlowSequence scan interval
should be increased.

If the Primary Scan is having skipped scans, then comment out the Slow
Sequence section and check whether skipped scans are still occurring. If there
are skipped scans without the SlowSequence scan, then the Primary Scan

9-21

Section 9. Program Control Instructions

interval should be increased. If removing the SlowSequence scan alleviates
the skipped scan problem, add the SlowSequence scan back into the code and
increase the TimeSlice parameter incrementally by the value of the Primary
Scan Rate in microseconds divided by 10 up to 0.2 times the Primary Scan
interval (200 for our example). If skipped scans are still occurring when the
Time Slice parameter is set at 0.2 times the Primary Scan interval, then either
the Slow Sequence program will need to be removed or the Primary Scan
interval will need to be increase.

THE FOLLOWING INSTRUCTIONS CANNOT BE USED IN A
SLOWSEQUENCE SCAN:
 AM25T Excite FFTFilt
 PortSet PortGet PulseCount
 PulseCountReset ReadIO SubScan
 VoltFilt TimerIO WaitDigTrig
 WriteIO VoltDiff or TCDiff when used with a CR9058E

SlowSequence Example
The example uses SlowSequence to calibrate the CR9000X every ten seconds.
Public Temp1

DataTable(Table1,1,600)
 DataInterval(0,0,0,1) '20 mSec interval with 1 lapse
 Sample(1,Temp1,FP2) '1 rep, sample temp1, low resolution
EndTable

BeginProg
 Scan(20,mSec,0,0) '20 mSec scan, Non-burst, Infinite looping
 ModuleTemp (TRef(),1,5,20) '1 Rep, Sample Temp1, Low Resolution
 CallTable Table1
 Next scan

 SlowSequence 'Start of Slow Sequence program
 Scan (10,Sec,0,0) 'SlowSequence scan
 Calibrate 'Perform background calibration
 Next scan
EndProg

SubScan/NextSubScan
The SubScan instruction is used to perform measurements and/or processing
at a different rate than that of the main program scan rate.

Syntax

SubScan(SubInterval, Units, SubRatio)
 Measurement Instructions
 Processing Instructions
NextSubScan

Remarks
The SubScan instruction cannot be used in a SlowSequence Scan, nor can
they be nested inside another SubScan.

There are, basically, three types of SubScans available for the CR9000X:

9-22

Section 9. Program Control Instructions

FILTER MODULE SUBSCAN: This SubScan type was designed for the Filter
module and runs at a faster rate than the main Scan. Its SubInterval must be evenly
divisible by the main Scan interval. The last parameter for this type of SubScan must
be the ratio of the main Scan Interval to the SubScan Interval. Only the VoltFilt or
the FFTFilt measurement instruction along with associated processing should be
placed in one of these SubScans. Multiple Filter SubScans can exist within each
main Scan structure. You cannot run measurements for a single CR9052 module both
inside and outside of a SubScan, as all measurements for a given module must have
the same Scan Interval and Sample Ratio.

It should be remembered that the Scan's buffer parameter sets up both the CPU's
buffer size and the CR9052 memory buffer. The CR9052's internal memory buffer
can accommodate up to 8,000,000 samples. The number of SubScans that will be
buffered is the product of the Scan's Buffer parameter and the SubRatio parameter.
So the limit for the Scan's buffer parameter when using filter modules with SubScans
is 8,000,000 divided by the product of the number of channels used on the modules
and the SubScan's SampleRatio parameter.

Example, if 4 channels were being used on a CR9052 inside a SubScan with a
SampleRatio of 1000, the largest Scan buffer that could be implemented is 2000:
8,000,000/(4 x 1000). . If the main Scan instruction specifies more scans to buffer
than available CR9052 memory, an error message will be returned at compile time.

You cannot mix the VoltFilt or the FFTFilt instructions with any
other type of measurement instruction within a SubScan.

NOTE

See Section 7.8 CR9052DC and CR9052IEPE Filter Module for more
information about CR9052 Filter module measurements with SubScans.

ISOLATION MODULE OR SUPER SUBSCAN: This SubScan runs at a slower
rate than the main Scan and will have an interval that is an integer multiple of the
main Scan interval. The syntax for this type of SubScan would be SubScan(0,0,-j),
where j is the ratio of the SubScan Interval to the main Scan Interval.. You cannot
run measurements for a single CR9058E module both inside and outside of a
SubScan, as all measurements for a given module must have the same Scan Interval.

The CR9058E isolation module has a memory buffer that can hold up to 512 values.
Similar to the CR9052, the Scan's buffer parameter sets both the CPU's buffer size
and the CR9058E memory buffer. The number of SubScans that will be buffered is
the quotient of the Scan's Buffer parameter and the absolute value of the SubRatio
parameter. So the limit for the Scan's buffer parameter when using CR9058E
modules with SubScans is 512 divided by the number of channels used on the
module times the absolute value of the SubScan's SampleRatio parameter.

For example, if 8 channels were being used on a CR9058E inside a SubScan with a
SampleRatio of -20, the largest Scan buffer that could be implemented is (512/8) x
20 = 1280. If the main Scan instruction specifies more scans to buffer than available
CR9058E memory, an error message will be returned at compile time.

9-23

Section 9. Program Control Instructions

Only one Super Subscan can exist in each main Scan structure. NOTE

MEASUREMENT LOOP SUBSCAN: This SubScan is similar to a simple
For/Next loop. To run at the fastest rate, enter zero for the SubScan interval.
If it is desired to run through the SubScan at a specific interval, then the
interval can be entered. The last parameter (SubRatio) of the SubScan
instruction specifies how many times to loop through the SubScan each time it
is encountered.

Similar to the CR9052 SubScan, the number of SubScans that will be
buffered for the Measurement Loop SubScan is the product of the SubRatio
parameter and the main Scan's Buffer parameter.

THE FOLLOWING INSTRUCTIONS CANNOT BE USED IN
A SUBSCAN:

NOTE

AM25T, PortSet, PortGet, PulseCount, PulseCountReset,
ReadIO, SDMAO4, SDMCAN, SDMCD16AC, SDMCVO4,
SDMINT8, SDMIO16AC, SDMSpeed, SDMSW8A, SubScan,
TimerIO, WaitDigTrig, WriteIO

Parameter Enter SUBSCAN PARAMETERS
SubInterval
Constant

The time interval at which to run the SubScan.
For the Filter SubScan, this interval must be one of the valid intervals for the CR9052
module, and, the interval of the scan that contains the SubScan must be an integer multiple of
the SubScan interval.
Enter 0 for the Super (Isolation) SubScan.
For the measurement Loop Subscan, enter 0 for fastest measurements or, enter a time value if
it is desired to loop through the SubScan at a specified interval.

Units The units for the Interval. Enter 0 when using a Super (Isolation) SubScan. Enter 0 for the
Loop SubScan to run at the fastest rate.

Constant Alpha
Code

Numeric
Code

Units

 USEC 0 Microseconds
 MSEC

SEC
1
2

Milliseconds
Seconds

SubRatio
Constant

The Subscan will run SubRatio times each time the main scan runs.
For the Filter SubScan this parameter must be the integer ratio of the main Scan Interval to
the SubScan Interval.
For the Isolation SubScan, this parameter must be a negative number and represents the ratio
of the SubScan interval to the main Scan interval. This type of Subscan runs at a slower rate
than the main Scan and will have an interval that is an integer multiple of the main Scan
interval.
For the measurement Loop SubScan, this parameter specifies how many times to loop
through the Subscan each time it is encountered.

9-24

Section 9. Program Control Instructions

The following example program, SubScans.C9X, has one of each of
these SubScans.

WaitDigTrig
Used to trigger a measurement scan off an external digital signal. Only the
CR9071E (not the CR9070) module supports this instruction.

Syntax
WaitDigTrig(PSlot, Mask, Word)
Remarks
The WaitDigTrig instruction should be placed directly after the Scan
instruction. Wait Digital Trigger is used to trigger a Scan loop sequence using
an external source connected to the digital input(s) of the CR9071E Digital I/O
Module. Using WaitDigTrig, the Scan loop is triggered externally rather than
by the CR9000X internal clock. The task sequencer will pause until the status
of the selected digital inputs on the CR9071E Digital I/O Module matches the
specified Word. Once the trigger condition is matched, the instructions within
the Scan/NextScan loop will be performed once. The trigger condition must

9-25

Section 9. Program Control Instructions

be evaluated as false, and than true again, before the Scan will be triggered
once more.

It should be noted that the CR9000X time stamp stored in the Data Tables is
clocked by the execution of the Scan. Thus, if the scan rate is set at 2 seconds,
but the trigger is activated every 4 seconds, the time stamp will still increment
only 2 seconds every time the trigger activates the scan (increment value will
be off by a factor of 2). Thus, if time stamps are to be utilized in the Data
Tables, to avoid misleading timestamps, it is recommended that the trigger
application be repeated at the same rate as the main scan rate of the CR9000X
program.

There are 16 ports on the CR9071E. The status of these ports can be
represented by a binary number with a high signal (+5 V) signifying 1, and a
low signal (0 V) signifying 0. Mask and Word are binary numbers representing
the 16 digital I/O channels. Mask is used to determine which digital inputs to
read. Word sets the digital input pattern, for the Masked ports, that must be
matched in order to set the trigger.

CRBasic allows the entry of numbers in binary format by preceding the
number with "&B". For example, if the mask is entered as &B110 (leading
zeros can be omitted in binary format just as in decimal) and the Word is
entered as &B101, then when port 2 is low and port 3 is high, the trigger
condition will be true. Even though the Word has a 1 in the port 1 location, the
mask indicates that only ports 3 and 2 need to be matched in order to trigger
the scan.

Parameter
& Data Type

Enter WAITDIGTRIG PARAMETERS

PSlot
Constant

The number of the slot in the CR9000X card frame that holds the CR9071E Module.

Mask
Constant

The Mask parameter is used to select which of the ports will be read when determining
whether or not to trigger the measurement. It is a binary representation of the ports. CRBasic
allows the entry of numbers in binary format by preceding the number with "&B" (ex:
&B001). If a port position is set to 1, the datalogger monitors the status of the port. If a port
position is set to 0, the datalogger ignores the status of the port.

Word
Constant or
Variable

The Word parameter is the digital input pattern to be matched when determining whether or
not to trigger the measurement. It is a binary representation of the digital I/O channels. Only
the channels set by the mask parameter must match the input values set by the word. The
other channels' Word values will be ignored.

Examples:
Scan (1, msec, 0, 0)
 WAITDIGTRIG(6,&B0000000000000100, &B0000000000000111)
 'read only port 3, wait until 3 is high. mask and word entered as binary numbers.
 ' enter measurements and processing instructions
Next Scan

WAITDIGTRIG(6,4,4)
 'same as above: read only port 3, wait until 3 is high.
 'mask and word entered as decimal numbers.
 measurements and processing instructions
Next Scan

9-26

Section 9. Program Control Instructions

9.2 Datalogger Status/Control
BiasComp

Measures bias current and adjusts the bias current DACS accordingly. This
instruction is done automatically at user program compile time. The bias
current is the amount of current that is required to flow into the input channel
in order to make the measurement. This is reduced to a minimum (<3
nanoamps) when the bias current compensation is adjusted correctly. If the
bias current compensation is not adjusted correctly, the current could rise as
high as 100 nanoamps. The major factor affecting the bias current is
temperature. When there is adequate time for all measurements, BiasComp
and Calibrate are typically run in a scan in the SlowSequence section of the
program to provide continuous adjusting of the bias current compensation and
the calibration as temperature changes. If executed in the SlowSequence, an
RC filter is applied with the previous bias compensation weighted .95 and the
new weighted .05. BiasComp uses 120 measurement slots in the task
sequencer.

The DAC values that are the results of the bias compensation appear in the
Status Table.

This instruction must not be placed inside a conditional
statement.

NOTE

Calibrate
The Calibrate instruction is used to force calibration of the analog channels
under program control. Calibration is typically performed to compensate for
errors in voltage measurements due to temperature.

During calibration, the datalogger measures offset and gain on voltage ranges
and calculates calibration coefficients. Calibration occurs when a datalogger
program is compiled (typically, when the datalogger is powered up or when a
watchdog error occurs).

The major factor affecting the calibration of the analog
measurements is temperature. If calibration is not done as part
of the program, a typical shift in the calibration is 0.01 % per
degree C change from the temperature at which the program
compile calibration occurred resulting in measurement errors.

NOTE

When there is adequate time for all measurements, BiasComp and Calibrate
are typically run in a Scan in the SlowSequence section of the program to
provide continuous adjusting of the calibration as temperature changes. If
executed in the SlowSequence, an RC filter is applied with the previous
calibration weighted .95 and the new weighted .05.

Calibrate uses 54 measurement slots in the Task Sequencer.

This instruction must not be placed inside a conditional
statement.

NOTE

9-27

Section 9. Program Control Instructions

CalFile(Source/Dest, NumVals, "Device:filename", Option)
The CalFile instruction provides a way to store sensor calibration data from a
program into a file located on the CRD: drive or the CPU: drive as well as to
the CR9000X's non-volatile Flash memory with the same instruction. When
the CR9000X is powered up, all Calibration Files located in flash memory will
be loaded into SDRAM memory.

Syntax
CalFile (Source/Dest, NumVals, "Device:filename", Option)

Remarks
The data in the file is stored as 4 byte binary single precision floating point
values (in the native format of the logger) with a 2 byte signature appended to
the end of the data. This signature is checked (if reading) to verify that the file
is not corrupt.

The CalFile instruction has these parts:
Parameter
& Data Type

Enter CALFILE PARAMETERS

Source/Dest
Array

A variable array specifying where to read data from or write data to.

NumVals
Constant

The number of values that should be written to or read from the calibration
file.

Device;
Filename
Text

The Device on which the file is stored and the FileName must be specified
and the entire string must be enclosed in quotation marks. Device = CPU,
the file is stored in datalogger memory. Device = CRD, the file is stored on
a PCMCIA card..

Option Numeric code to determine whether to create or read a calibration file.
Constant 0 Write source array to File
 1 Read data from file and if signature matches, write to array
 2 Write source array to file and commit file to flash memory.
 3 Commit file system contents to non-volatile memory.

CalFile Instruction Example
Const numvals = 25 : dim i
Public tfail, tdone, array1(numvals), array2(numvals)

BeginProg
 for i = 1 to numvals
 array1(i) = i 'write values into array
 next i
 CALFILE(array1,numvals,”CPU:calfile.cal”,0) 'store the values to the file
 CALFILE(array2,numvals,”CPU:calfile.cal”,1) 'read the values to array2
 for i = 1 to numvals 'test retrieved values
 if array2(i) <> array1(i) then
 tfail = 1
 endif
 next i
 tdone = 1
EndProg

9-28

Section 9. Program Control Instructions

ClockSet (Source).
Sets the CR9000X clock from the values in an array. The most likely use for
this is where the CR9000X can input the time from a more accurate clock than
its own (e.g., a GPS receiver). The input time would periodically or
conditionally be converted into the required variable array and ClockSet
would be used to set the CR9000X clock.

Source
Array

The source must be a seven element array . Array(1)..array(7) should hold respectively
year, month, day, hours, minutes, seconds, and microseconds..

Data (DataLong), Read, Restore
Data (DataLong) is used to mark the beginning of a data list that can then be
read (using Read) into a variable array later in the program. Each constant in
the list is separated by a comma.

The Read statement is used to begin reading constants from the list defined by
Data or DataLong into a variable array. A subsequent Read picks up where
the last Read left off. The Read function does not assume a data type;
therefore, it is up to the user to ensure that the variable/variable array into
which the constants are loaded is the correct type (Float or Long).

The Restore statement is used to reset the location of the Read pointer back to
the first value in the list defined by Data. The next Read following Restore
will begin with the first value of the Data list.

Syntax
Data list of constants

Data function: A list of floating point constants that can be read (using
Read) into an Array Variable dimensioned as float.

Parameter: A list of floating point constants.

Syntax
DataLong list of constants

Datalong function: A list of Long integer constants that can be read (using
Read) into an Array Variable dimensioned as long.

Parameter: A list of floating point constants.

Syntax
Read [VarExpr]

Reads Data from Data declaration into an array. Subsequent Read picks
up where current Read leaves off.

Parameter: Variable destination.

Syntax
Restore

Restore pointer to Data to beginning. Used in conjunction with Data and
Read.

9-29

Section 9. Program Control Instructions

Data Statement Examples
This example uses Data to hold the data values and Read to transfer the values
to variables. It uses Restore to read 1, 2, 3, 4 into both X() and Y() variables.

DATA 1, 2, 3, 4
For I = 1 To 4
 READ X(I)
Next I
RESTORE
For I = 1 To 4
 READ Y(I)
Next I

Excite (ExSlot, ExChan, ExmV, Delay)
This instruction sets the selected excitation channel’s output to a specific
value. Compliance current for any excitation channel is 50 milliamps. As long
as this current limitation is not exceeded, there will not be any signal
degradation over time.

Channels 1 through 6 are Continuous Analog Output (CAO) channels and will
remain at the excitation voltage set by the instruction unless a subsequent
instruction (Excite or a Bridge instruction) changes the voltage setting for that
channel. Each of the CAO channels has it’s own DAQ and can be
independently set.

Channels 7 through 16 are switched excitation channels. They can be switched
to the excitation voltage for the time specified by the Delay parameter and then
switched off. Only one Switched excitation channel can be active at any given
time.

This instruction must not be placed inside a conditional
statement or in a Slow Sequence Scan. The ExmV variable's
value can be changed conditionally, but it should be remembered
that this task will be done by the processing task sequencer and
can lag behind the measurement task sequencer by the number of
Scan buffers setup by the Scan instruction.

NOTE

Parameter
& Data Type

Enter EXCITE PARAMETERS

ExSlot
constant

The slot that holds the Excitation Module to be used for the measurement.

ExChan
constant

The excitation channel to be used. Channels 1thru 6 are Continuous Analog Outputs,
channels 7 thru 16 are Switched Excitation channels

ExmV
Constant, variable,
or expression

Excitation voltage to be set in mVolts. Allowable range is –5000 mV to 5000 mV.
Resolution of the setting is 2.4 mV.

Delay
Constant

The Delay parameter is the amount of time, in microseconds, to delay the measurement
task sequencer after the Excite instruction is executed.

9-30

Section 9. Program Control Instructions

FieldCal (Function, MeasVar, Reps, MultVar, OffsetVar, Mode, KnownVar,
Index, Avg)

Used for setting up a zero, offset, or two point calibration function on a sensor.
The actual calibration operation is simplified through using the Calibration
Wizard included in CSI’s software packages. A program using this
instruction will normally require the instructions: LoadFieldCal,
NewFieldCal, and SampleFieldCal.

Syntax
FieldCal(Function, MeasureVar, Reps, MultiplierVariable, OffsetVariable,
Mode, KnownVariable, Index, Avg)

Remarks
When the FieldCal instruction is in a program, a Calibration file will be
created. The location (CPU or Card) of this file will be the same as the
running program that created it. The name of the calibration file will be the
same as the running program that created it, only it will have *.CAL for an
extension.

It is recommended that the Reps and Index parameters be non-
constant variables that are initialized to the desired values after
the BeginProgram instruction. This rule can be ignored if setting
up calibrations on single element variables, and the Mode
variable parameter for each FieldCal instruction in the program
is represented by a unique variable.

NOTE

When writing a program for a Two Point calibration, the Reps parameter
for the FieldCal instruction should usually be initialized to 1, and the
MultiplierVariable and OffsetVariable variable arrays should be
dimensioned to the size of the MeasureVar variable array.

When writing a program for a Zero function, and it is desired to perform
the zero function on all elements of the array during a single scan then:
 1. The Reps parameter value should be initialized to the size of the

MeasureVar variable array and the Index parameter value should be
initialized to 1.

 2. OffSetVariable should be dimensioned to have the same number of
elements as the MeasureVar variable array.

When writing a program for an offset function, and it is desired to perform
the offset function on all elements of the array during a single scan then:
 1. The Reps parameter value should be set to the number of elements in the

MeasureVar variable array, the Index parameter value should be set to 1
 2. OffSetVariable should be dimensioned to have the same number of

elements as the MeasureVar variable array, and
 3. KnownVariable should be dimensioned to have the same number of

elements as the MeasureVar variable array and be loaded with the offset
values for the elements of the MeasureVar array,

A Field Calibration function is started through changing the value of the
Mode parameter to 1. When performing a Zero or Offset function, this may be
all that is required (set the Mode to 1 while the sensor is undergoing the
desired zero or offset condition). The steps required for the different
calibration functions follow.

9-31

Section 9. Program Control Instructions

ZERO CALIBRATION STEPS (Function = 0)
1. If the Reps and Index parameters are constants, go to Step 2.
 If the Reps and Index parameters are variables then either:
 A. Individual Sensor Cal: Set the Reps parameter to 1 and select the

individual sensor to be zeroed by setting the Index parameter or;
 B. Complete Array Cal: Set the Index parameter to 1 and the Reps

parameter to the number of elements in the MeasVar variable array.
This will zero all of the elements of the array together.

2. Change the Mode value to 1 while the sensor(s) are at their Zero state. After
the calibration is complete, the logger will change the Mode value to 6.

OFFSET CALIBRATION STEPS (Function = 1)
1. If the Reps and Index parameters are constants, go to Step 2.
 If the Reps and Index parameters are variables then either:
 A. Individual Sensor Cal: Set the Reps parameter to 1 and select the

individual sensor to be calibrated by setting the Index parameter or;
 B. Complete Array Cal: Set the Index parameter to 1 and the Reps

parameter to the number of elements in the MeasVar variable array.
This will calibrate all of the elements of the array together.

2. Set the KnownVar(s) to the desired offset value(s). Change the Mode value
to 1 while the sensor(s) are at the Offset state(s). The OffsetVar(s) value(s)
will be set such that the output variable(s) for the sensor(s) will be at the
KnownVar(s) offset value(s) when the sensor(s) experiences the offset state.
After the calibration is complete, the logger will change the Mode value to 6.

TWO POINT CALIBRATION STEPS (Function = 2 OR 3)
1. If the Reps and Index parameters are constants, go to Step 2.
 If the Reps and Index parameters are variables then either:
 A. Individual Sensor Cal: Set the Reps parameter to 1 and select the

individual sensor to be calibrated by setting the Index parameter or;
 B. Set the Index parameter to 1 and the Reps parameter to the number of

elements in the MeasVar variable array. All of the elements of the
KnownVar array will have to be set in steps 2 and 4 below. This will
calibrate all of the elements of the array together.

2. Apply the first condition to sensor(s). Set the KnownVar parameter(s) to the
value(s), in the desired engineering units, for this condition.

3. Change the Mode value to 1. The logger will record this first point and its
corresponding voltage output(s), and then change the Mode value to 3.

4. Apply the second condition to sensor(s). Change the KnownVar
parameter(s) to the value(s), in the correct engineering units, for this
condition.

5. Change the Mode value to 4. The logger will calculate the multiplier(s) and
offset(s) (offsets only for Function 2), populate the MultVar(s) and
OffsetVar(s) with them, and change the Mode value to 6.

For all Functions, when a calibration is complete, the logger will change the
Mode value to 6, the *.CAL file will be updated, and the NewFieldCal
function state will be changed to True. The NewFieldCal function can be used
to trigger a user created Data Table to store the calibration factors. The values
from the *.CAL file can be loaded back into the calibration variables using the
LoadFieldCal instruction.

Campbell Scientific recommends that the user record the
calibration constants to a data table and upload them to his PC
for a record.

NOTE

9-32

Section 9. Program Control Instructions

Parameter
Data Type

Enter FIELDCAL PARAMETERS

Used to specify the type of calibration that will be performed.
Digit Function
0 Store a Zero value for performing a zero offset
1 Offset Calibration

Function
Integer

2
3

Two Point Calibration; Slope and Offset (Multiplier and Offset)
Two Point Calibration; Slope only (Multiplier only)

MeasVar
Variable

The variable or variable array for the sensor(s) being calibrated. Must be dimensioned large enough to
accommodate the number of Reps.

Reps
Constant or
Variable

Specifies the number of sensors to that will be setup for calibration. Must be equal to either 1 or the size
of the MeasureVar parameter array. When Reps is equal to the size of the MeasureVar array (the
Index parameter must be set to 1); all elements of the MeasureVar array will be calibrated in a single
scan. When Reps is set to 1, a single element of the MeasureVar array, specified by the Index
parameter, will be calibrated.
If the Reps parameter is declared as a variable, the value can be changed during program operation. This
allows the calibration of a complete array at one point, and following up later with a calibration on a
single element of the array. Reps should be initialized to either 1 or the size of the MeasureVar array
prior to starting a calibration. If Reps is set to zero, no calibration will occur for this instruction.

MultVar
Variable

Zero or Offset function: zero can be entered for this parameter (not used).
Two Point: Variable or Variable array which will be populated with the computed Multiplier(s) from the
calibration(s). MultVar should be dimensioned to the same size as the MeasureVar variable array. The
element of the array for the primary calibration is set by the Index parameter. If MultVar is equal to 0
or NAN prior to the calibration, then it will be set equal to1 during the calibration process.

OffsetVar
Variable

Two Point-Slope Only: zero can be entered for this parameter (not used)
All other functions: Variable or Variable array which will be populated with the computed
Offset(s) from the calibration(s). OffsetVar should be dimensioned to the same size as the
MeasureVar variable array. The element of the array for the primary calibration is set by the
Index parameter. If OffSetVar is equal to NAN prior to the calibration, then it will be set
equal to 0 during the calibration process.

Mode
Variable

This variable parameter stores an integer that indicates the current state of the calibration.
This value can be changed through automatic software or manually by the user using a
Keyboard display or using CSI’s Software packages. The only values valid for manual entry
is 1 or 4.

 Digit Edge
 -1 Error in the Calibration setup
 -2 Multiplier set to 0 or = NAN, measurement = NAN
 -3 Reps is set to a value other than 0, 1 or the size of the MeasureVar array
 0 Calibration has not been done
 1 Start Calibration. (For Offset or 2 Point, KnownVar holds first set point)
 2 Computing (set by logger)
 3 Only for Two Point. Ready to set the KnownVar to the second value
 4 Only for Two Point. KnownVar holds the second set Point
 5 Only for Two Point. Computing (set by logger).
 6 Calibration is complete.
KnownVar
Variable

Zero function: 0 can be entered here (not used)

All other functions: Variable array that holds the set point value(s) to be used in the calibration routine.
KnownVar must be dimensioned to the same size as the MeasureVar. The element of the array used for
the first calibration is set by the Index parameter.

Index
Constant or
Variable

If Reps is set to the size of the MeasureVar, then Index must be set equal to 1 (complete array will be
calibrated starting with the first element). If Reps is set to 1, then Index specifies which element of the
MeasureVar array will be calibrated.
If Index is declared as a variable, it must be initialized to a non-zero value before a calibration can be
performed.

Avg
Var/Constant

Used to specify the number of points (Scans) to average when performing a calibration.

9-33

Section 9. Program Control Instructions

Removing the Mystery from a 2 point Calibration: Y=MX+B
Many data acquisition systems available today make a raw measurement of the
output voltage, current, or resistance of a sensor, and scale the measurement to
the desired engineering units. You must know how a sensor behaves in order
to apply the proper scalars. The following paragraphs deal with determining
how a particular sensor might behave. The sensor output need only be linear
over the desired range and to have good repeatability. In other words, it needs
to be a precision instrument, but it does not necessarily need to be accurate.
The entire measurement system, from the sensor to the display device, gets
calibrated using the following procedure.

The following describes how to use a two point calibration method to solve for
the multiplier and offset for a linear relationship.

Solving for the Multiplier: Assume that a pressure sensor experienced a
change of 20 psi resulting in an output change of 3 mV. The important factors
are the changes (Δ) and not the absolute values of the measurements. If we
want to scale the output to read the same as the known input (the standard), it
is necessary to multiply the output millivolts by some factor (M). In other
words, when the change in the output (ΔX) is multiplied by the multiplier (M),
the resultant product should be equal to the change in the input (ΔY):

ΔY = M • ΔX

M = ΔY / ΔX = 20 / 3 = 6.66667

Solving for the Offset: Now assume that the 2 different standard values
applied to the sensor were exactly 0 psi and 20 psi. When zero psi was applied
the output was 3 mV, and when 20 psi was applied the output was 6 mV.

y = mx + b to solve for b yields

b = y - (mx). Therefore

b = 20 - (6.66667 x 6);
 = 20 - 40
 = -20.

If x = 5 mV then:
y = 6.66667 • 5 + (-20) = 13.33335 psi (as shown in the chart)

In essence, these are the calculations used in the logger when using the
FieldCal instruction set up for two point calibrations.

9-34

Section 9. Program Control Instructions

FieldCal Example

'\\\\\\\\\\\\\\\\\\\\ DECLARE VARIABLES //////////////////////////////
Public ZeroMode1, KnownVar1, ZeroMode2, KnownVar2, ZeroMode3, KnownVar3(3)
Public AccelA(1), AccelB(1), AccelC(3)
Units ACCELA = GForce : Units AccelB = GForce : Units AccelC = GForce
Public AccelAmult(1), AccelBmult(1),AccelCmult(3), AccelAoset(1), AccelBoset(1), AccelCoset(3)
Alias AccelA(1) = Accel1 : Alias AccelB(1) = Accel2 : Alias AccelC(1) = Accel3
Alias AccelC(2) = Accel4 : Alias AccelC(3) = Accel5
Public LoadTest, Flag(8)
Dim I
Public RepA, IndexA, RepB, IndexB, RepC, IndexC
DataTable (ACCEL,True,-1) 'Trigger, auto size
 DataInterval (0,0,0,0) 'Synchronous, 0 lapses, autosize
 Sample (1,AccelA(),IEEE4) '1 Reps,Source,Res
 Sample (1,AccelB(),IEEE4) '1 Reps,Source,Res
 Sample (3,AccelC(),IEEE4) '3 Reps,Source,Res,Enabled
EndTable 'End of table ACCEL
DataTable (CalTable,NewFieldCal,100) 'Cal Table that stores Calibration values
 CardOut (0 ,100) 'for retrieval by user for tracking purposes
 SampleFieldCal
EndTable

BeginProg 'Program begins here
 ‘Inilialize rep and Index parameters
 RepA = 1 : IndexA = 1 : RepB = 1 : IndexB = 1 : RepC = 3 : IndexC = 1
 KnownVar2 = 1 ‘Set KnownVar2 used for the Offset calibration
 ' Initialize mult & offset values for ACCELA & B
 AccelAMult(1) = 1 : AccelBMult(1) = 1: AccelAoset(1) = 0 : AccelBoset(1) = 0
 For I = 1 To 3
 AccelCmult(I)=1 : AccelCoset(I) = 0 'Initialize mult & offset values for ACCELC
 Next I
 LoadTest = LoadFieldCal(0) 'Load Cal Values from Calibration File
 Scan(1,mSec,100,0) 'Scan once every 1 mSecs, 100 Scan Buffer, non-burst
 ' Input Var,Reps, Range,InChan, Excit mV, Reverse, Integ/Settling, Mult Offset
 BrFull(AccelA(),1, mV200,4,5, 5,7,1,5000, False,False, 20,20, AccelAmult,AccelAoset())
 BrFull(AccelB(),1, mV200,4,6, 5,8,1,5000, False,False, 20,20, AccelBmult,AccelBoset())
 BrFull(AccelC(),3, mV200,4,7, 5,9,1,5000, False,False, 20,20, AccelCmult,AccelCoset())
 ' Setup a two point Calibration function for AccelA
 '(Function,Var, Rep,Multiplier, Offset, Mode, KnownVar, Index, Avg)
 FieldCal (2,AccelA(),RepA,AccelAmult(1),AccelAoset(1),ZeroMode1,KnownVar1, IndexA, 1)
 ' Setup a offset function for AccelB
 '(Function,Var, Rep, Multiplier, Offset, Mode, KnownVar,Index, Avg)
 FieldCal (1,AccelB(),RepB, 0, AccelBoset(), ZeroMode2,KnownVar2, IndexB, 1)
 ' Setup a zero function for the 3 reps of AccelC
 '(Function,Var, Rep, Multiplier, Offset, Mode, KnownVar,Index, Avg)
 FieldCal (0,AccelC(), RepC, 0, AccelCoset(), ZeroMode3, 0, IndexC, 1)
 CallTable ACCEL
 CallTable CalTable
 Next Scan 'Loop up for the next scan
EndProg 'Program ends here

9-35

Section 9. Program Control Instructions

FieldCalStrain (Function, MeasVar, Reps, GF_Adj, Zero_mVperVolt, Mode,
KnownRs, Index, NumAvg, GF_Raw, uStrain)

Used for performing a zero or shunt calibration function for a strain
measurement. Sets up calibrations on the outputs from a StrainCalc
instruction. The actual calibration operation is simplified using the
Calibration Wizard included in CSI’s software packages. A program using
this instruction will normally require the instructions: LoadFieldCal,
NewFieldCal, and SampleFieldCal.
Syntax for Zeroing

StrainCalc (uSDest(), Reps, mVpV(), Zero_mVpV(), BrConfig, GF_adj(), v)
FieldCalStrain(10, mVpV(), Reps, 0, Zero_mVpV(), Mode, 0, Index, NumAvg, 0, uSDest())

Syntax for Shunt Calibration
StrainCalc (uSDest(), Reps, mVpV(), Zero_mVV(), BrConfig, GF_adj(), v)
FieldCalStrain(13, uSDest(), Reps, GF_Adj(), 0, Mode, KnownR, Index, NumAvg, GF_Raw(), 0)

Remarks
This instruction is a specialized form of the FieldCal instruction. It is used to
perform zeroing and shunt calibrations on quarter bridge strain, half
bridge bending strain, and full bridge bending strain measurements that use
the StrainCalc function.

When a FieldCalStrain or FieldCal instruction is in a program, a Calibration
file will be created. The location (CPU or Card) of this file will be the same
as the running program that created it. The name of the calibration file will be
the same as the running program that created it with a *.CAL for an extension.

It is recommended that the Reps and Index parameters be non-constant
variables that are initialized to the desired values after the BeginProgram
instruction. This rule can be ignored if setting up calibrations on single
element variables, and the Mode variable parameter for each FieldCalStrain
instruction in the program is represented by a unique variable.

It should be noted that Shunt Calibration does not calibrate the
strain gage, but adjusts the gage manufacturer supplied
calibration gage factor (GF) to compensate for errors introduced
by non-linearity in the Wheat-stone bridge, long leads, and/or
errors in the measurement system.

NOTE

When writing a program using a Shunt Calibration, the Reps parameter for
the FieldCalStrain instruction should usually be initialized to 1, and the
GF_Adj, GF_Raw, and KnownR variables should be dimensioned to the size
of the MeasVar variable.

When writing a program for zero calibration, and it is desired to perform
the zero function on all elements of the array during a single scan then:
 1. The Reps parameter value should be initialized to the size of the

Source_mVpV variable array,
 2. The Reps parameter value should be initialized to the size of the

Source_mVpV variable array,
 3. The Index parameter should be initialized to 1.

A Strain Calibration function is started by changing the value of the Mode
parameter to 1. When performing a Zero function, this may be all that is
required (set the Mode to 1 when the sensor is undergoing the desired zero
condition. The steps required for the different calibration functions follow:

9-36

Section 9. Program Control Instructions

ZERO CALIBRATION STEPS (Function = 10)
1. If the Reps and Index parameters are constants, go to Step 2.
 If the Reps and Index parameters are variables then either:
 A. Individual Sensor Cal: Set the Reps parameter to 1 and select the

individual sensor to be zeroed by setting the Index parameter or;
 B. Complete Array Cal: Set the Index parameter to 1 and the Reps

parameter to the number of elements in the MeasVar variable array.
This will zero all of the elements of the array together.

2. Change the Mode value to 1 while the sensor(s) are at their Zero state. The
current mV per volt output from the Bridge measurement will be used for the
Zero argument of the StrainCalc instruction. After the calibration is
complete, the logger will change the Mode value to 6.

SHUNT CALIBRATION STEPS (Function = 13, 33, or 34)
1. Set the Index parameter, if a variable, to point to the element of the

MeasureVar array on which to perform the calibration. Make sure that the
Reps parameter's value is set to 1.

2. Change the value of the correct element of the KnownR array to the
resistance, in ohms, of the strain gauge that will be shunted. At the un-
shunted condition, change the Mode value to 1. The logger will record this
first point's micro-strain value and then change the Mode value to 3.

3. While the Mode value is 3, apply the shunt resistor across one of the arms of
the wheatstone bridge.

 Load the shunt resistance value (ohms) into the KnownR parameter as a
positive number if shunting across:

 The arm that holds strain gauge for Function 13
 The arm that holds gauge that is parallel to +ε for Function 33
 An arm that holds gauge that is parallel to +ε for Function 43
 Load the shunt resistance value (ohms) into the KnownR parameter as a

negative number if shunting across:
 The arm that holds completion resistor for Function 13
 The arm that holds gauge that is parallel to ε− for Function 33
 An arm that holds gauge that is parallel to ε− for Function 43

 Using the correct sign notation on the input resistance of the shunt insures
that the correct polarity is returned (positive strain for tension and negative
for compression). A gauge parallel to +ε is a gauge that experiences tension
when the element that it is mounted on experiences positive strain. A gauge
parallel to ε− is a gauge that experiences compression when the element that
it is mounted on experiences positive strain. See the Function parameter for
code definitions.

 When performing a shunt calibration on a bridge with 1 active element
(Function 13: Quarter Bridge Strain), if possible, it is preferable to remotely
shunt across the arm containing the strain gauge as shown with shunt resistor
R1, used with one of our TIMs, in Figure 1A. With this setup, the shunt
resistor value would be entered as a positive value.

 If it is not possible to shunt across the gauge, due to accessibility problems, it
is possible to shunt across the bridge arm containing the dummy resistor right
at the datalogger. This shunt setup is depicted with shunt resistor R2 in
Figure 1B. The shunt resistor value would be entered as a negative value.

 When performing a shunt calibration on a bridge with 2 active elements
(Function 23: Half Bridge Strain), or with 4 active elements (Function 33:
Full Bridge Strain), the shunt must be done directly across one of the active
gauges.

4. After the shunt is in place, with the shunt ohm resistance value loaded in
KnownR, change the mode value to 4. The datalogger will do the required
calculations, adjust the gauge factor, and change the Mode value to 6.

9-37

Section 9. Program Control Instructions

 FIGURE 9-1A. Active gage shunt FIGURE 9-1B. Resistor shunt
When using Campbell Scientific's Terminal Input Modules (TIM) with shunt
posts (e.g. model # 4WFBS350), the R2 resistor shown in Figure 9-1B:
Resistor Shunt can simply be shorted across the gold posts located on the top
of the TIM.

Campbell Scientific recommends that the user record the
calibration constants to a data table and upload them to his PC
for a record.

NOTE

When a calibration is complete, the *.CAL file will be updated, and the
NewFieldCal function state will be changed to True. The NewFieldCal
function can be used to trigger a user created Data Table to store the
calibration factors.

The values from the *.CAL file can be loaded back into the calibration
variables using the LoadFieldCal instruction.

Description of the ¼ Bridge calculations performed by the datalogger.

The premise is the same when shunting across either arm. The shunted arm
undergoes a reduction in resistance creating a simulated strain. A precision
resistor should be used for the shunt resistor. The change in resistance of the
shunted arm is given by:

ΔR
R

R
R RG

G

G S
=

−
+

Variable definitions:
 ΔR = Change in arm resistance (ohms)
 RG = Nominal gauge resistance (ohms)
 RS = Shunt resistor resistance (ohms)

The standard equation for calculating micro-strain from the change in
resistance of the gauge is:

με =
×
×

ΔR
R GG

106

F
 Variable definitions:
 με = micro-strain
 ΔR = Change in arm resistance (ohms)
 R = Nominal gauge resistance (ohms) G
 GF = Gauge factor

9-38

Section 9. Program Control Instructions

Combing the two equations above results in the equations used for calculating
the simulated strain that is induced by the shunt resistor:

μεS
G

G S

R
R R G

=
− ×

+ ×
106

() F
Variable definitions:
 μεS = Simulated micro-strain created by shunt resistor
 RS = Shunt resistor resistance (ohms)
 RG = Nominal gauge resistance (ohms)
 GF = Gauge factor

This simulated strain value will be calculated by the logger.

The datalogger will compare the calculated strain, μεS, to the strain value,
μεR, which is the change, in microstrain, of the measurement from the
unshunted to the shunted conditions. A multiplier is derived from the ratio,
μεR/ μεS. The arm of the bridge that is being shunted (entered by setting the
sign of the entered shunt resistance value), will be used to determine the sign
of this multiplier to insure that the polarity of the output is correct.

The raw gauge factor is multiplied by this factor to derive an adjusted gauge
factor for the system, GFC = GF x μεR/ μεS, that is used to correct the output
from the instrumentation.

Parameter Enter FIELDCALSTRAIN PARAMETERS
Used to specify the type of calibration that will be performed.
Digit Function
10 Zero Function
13 Shunt calibration, 1/4 Bridge Strain:
33 Shunt Calibration, Half bridge strain gauge, one gage parallel to +ε , the other

parallel to −ε :

Function
Integer

43

Shunt Calibration, Full bridge strain gage, 2 gages parallel to +ε , the other 2
parallel to −ε

MeasureVar
Variable

Zero calibration: The variable or variable array that holds the raw mV per volt output from
the Bridge measurement that is used as the source feed into the StrainCalc instruction for the
gauge(s) being calibrated.
Shunt calibration: The variable or variable array that holds the calculated micro-strain results
from the StrainCalc instruction for the gauge(s) being calibrated.
For either zeroing or shunt calibration, the MeasureVar array must be dimensioned large
enough to accommodate the number of Reps.

Reps
Constant or
Variable

Specifies the number of sensors to that will be setup for calibration.
Note: Must be set to 1 or the number of elements in the MeasureVar parameter array.
When Reps is equal to the size of the MeasureVar parameter (Index parameter must be set to
1), all elements of the MeasureVar array will be calibrated in a single scan.
When Reps is set to 1, a single element of the MeasureVar array, specified by the Index
parameter, will be calibrated.
Reps is usually set to 1 when doing shunt calibrations, and set to the number of elements in
the MeasureVar when setting up Zero calibrations. If the Reps parameter is declared as a
variable, the value can be changed during program operation. This allows the calibration of a
complete array at one point, and following up later with a calibration on a single element of
the array. If Reps is set to zero, no calibration will occur for this instruction.

GFAdj
Variable
(array)

Zero calibration: Zero can be entered for this parameter (not used).
Shunt calibration: Variable or variable array that is populated with the computed gage
factors used in the StrainCalc instruction for computing the micro-strain. It should be
dimensioned large enough to hold values for all of the elements of the MeasVar parameter.
GFAdj is set equal to GF_Raw during the calibration process.

9-39

Section 9. Program Control Instructions

Zero_mV/V
Variable
(array)

Zero calibration: The Variable or Variable array which will be populated with the zero
mV/V values. It must be dimensioned to the same size as the source MeasVar parameter. If
Zero_mV/V = NAN at the beginning of the Zeroing, it will be set to 0 during the calibration
process.
Shunt calibration: Zero can be entered for this parameter (not used).

Mode
Variable

This variable parameter stores an integer that indicates the current state of the calibration.
This value can be changed through automatic software or manually by the user using a
Keyboard display, with PC9000's Realtime Get/Set option, or through
LoggerNet's/RTDAQ's Connect Screen Numerical Display. The only values valid for
manual entry is 1 or 4.

 Digit Edge
 -1 Error in the Calibration setup
 -2 Multiplier set to 0 or = NAN, measurement = NAN
 -3 Reps is set to a value other than 1 or the size of the MeasureVar array
 0 Calibration has not been done
 1 Start Calibration. (For Shunt Cal, enter the gauge Resistance into the

KnownR parameter before setting to 1)

 2 Computing (set by logger)
 3 Only for Shunt. Ready to enter the shunt resistance into KnownR
 4 Only for Shunt. Set by user after entering the shunt resistance into KnownR
 5 Only for Two Point. Computing (set by logger).
 6 Calibration is complete.
KnownR
Variable array

Zero calibration: Zero (0) can be entered for the KnownR parameter (not used).
Shunt calibration: Variable array that holds the set point value(s) to be used in a shunt
calibration routine. This array must be dimensioned to the same size as the MeasVar. If Reps
is set to 1, then the element of the array used for the calibration is set by the Index parameter.
Before the Mode parameter is set to 1, the resistance, in ohms, of the strain gauge should be
loaded into the KnownR(Index) element of the array. After the logger takes the unshunted
measurement and changes the mode value to 3, the resistance of the shunt should be loaded
into the KnownR parameter.
Enter the resistance value as a positive number if shunting across:
 The arm that holds strain gauge for Function 13
 The arm that holds gauge that is parallel to +ε for Function 33
 An arm that holds gauge that is parallel to +ε for Function 43
Enter the resistance value as a negative number if shunting across:
 The arm that holds completion resistor for Function 13
 The arm that holds gauge that is parallel to −ε for Function 33
 An arm that holds gauge that is parallel to −ε for Function 43
After entering the value, the Mode value should be set to 4.

GF_Raw
Variable
(Array)

Zero calibration: Zero (0) can be entered for this parameter (not used).
Shunt calibration: When setting up a Shunt Calibration, the variable, or variable array,
which holds the raw gauge factor(s) for the strain gauges. It should be a different array than
that used for the adjusted gauge factors in the StrainCalc instruction, and the value(s) should
never be changed. This variable array must be dimension to the same size as the
MeasureVar.

Index
Constant or
Variable

If Reps is set to the size of the MeasureVar, then Index must be set equal to 1 (complete
array will be calibrated starting with the first element). If Reps is set to 1, then Index
specifies which element of the MeasureVar array will be calibrated.
If Index is declared as a variable, it must be initialized to a non-zero value before a calibration
can be performed.

NumAvg
Var/Constant

Used to specify the number of points (Scans) to average when performing a calibration.

uStrain
Var (array)

Zero calibration: Variable array that is used to store the micro-strain reading result from the
StrainCalc instruction. Informs the Zero wizard of the variable array that is being zeroed.
Must be dimensioned to the size of the MeasVar.
Shunt calibration: Not required. Enter 0.

9-40

Section 9. Program Control Instructions

'\\\\\\\\\\\\\\\\\\\\ DECLARE VARIABLES /////////////////////////////
SlotConfigure(9050,9060)
Const Reps = 3 'Set program to measure 3 strain gauges
Const BrConfig = -4 'Block1 gauge code for Full bridge strain, Bending
Dim I 'Declare I as a variable
Public NumAvg, CalFileLoaded, Flag(8)

'Variables that are arguments in the Zero Function
Public ModeZero, ZeroReps, Index0,RepS
Public RawmVperV(Reps)
Public ZeroMvperV(Reps)

'Variables that are arguments in the Shunt Function
Public ModeShunt, KnownRes(Reps), IndexS
Public MeasureVar_uS(Reps)
Public GF_Adj(Reps), GF_Raw(Reps)
'---------------------------- Tables----------------------------
DataTable(Table1,True,-1) 'Trigger, auto size
 DataInterval(0,50,mSec,100)
 Average(Reps,MeasureVar_uS(),IEEE4,False)
EndTable
DataTable(CalHist,NewFieldCal,50)
 SampleFieldCal
EndTable
'\\\\\\\\\\\\\\\\\\\\\\\\\\\\ PROGRAM ////////////////////////////
BeginProg
 NumAvg = 10 'Initialize the number of values to average for the calibrations
 IndexS = 1 'Initialize shunt Index to 1
 Index0 = 1 'Initialize zero index to 1
 Zeroreps = Reps 'Initialize ZeroReps to full size of array
 RepS = 1 'Initialize RepS to 1 (FieldCalStrain Shunt operation)
'Set Gage Factors
 GF_Raw(1) = 2.1 : GF_Raw(2) = 2.1 : GF_Raw(3) = 2.13
 For I = 1 To Reps 'Initialize the Adj Gage Factors to the raw GF value
 GF_Adj(I) = GF_Raw(I) 'The adj Gage factors are used in the calculation of uStrain
 Next I
' If a calibration has been done, the following will load the zero or Adjusted GF from the Calibration file
 CalFileLoaded = LoadFieldCal(1)
 Scan(10,mSec,100,0)
 BrFull(RawmvperV(),Reps,mV50,4,1,5,1,1,5000,True,True,40,100,1,0)
 StrainCalc(MeasureVar_uS(),Reps,RawmvperV(),ZeroMvperV(),BrConfig,GF_Adj(),0) 'Strain calculation
 If Flag(8) then
 ZeroReps = Reps 'Set Reps to zero complete measurement array
 Index0 = 1 'Verify that the index is at the beginning of the array
 ModeZero = 1 'Set the Mode for the zero function to 1 to start the zero process
 Flag(8) = 0 'Set the zero flag back to low
 Endif
 'FieldCalStrain(Zeroing,Mvar, reps, GF_adj,Zeromv_V, ModeVar,KnownVar,index,Numavg,GF_Raw,uS)
 FIELDCALSTRAIN(10,RawmvperV(),ZeroReps,0,ZeroMvperV(),ModeZero,0,index0,NumAvg,0,MeasureVar_uS())
 'FieldCalStrain(Shunt,Mvar, reps,GF,Zerooffset, ModeVar, KnownVar,index,Numavg,GF_Raw,uStrain)
 FIELDCALSTRAIN(43,MeasureVar_uS(),RepS,GF_Adj(),0,ModeShunt,KnownRes,IndexS,NumAvg,GF_Raw(),0)
 CallTable Table1
 CallTable CalHist
 Next Scan
EndProg

9-41

Section 9. Program Control Instructions

Get Record(Dest, TableName, RecsBack)
Retrieves one record from a data table.

Syntax
GetRecord (Dest, TableName, RecsBack)

Remarks
The GetRecord instruction retrieves one entire record from a data table. The
destination array must be dimensioned large enough to hold all the fields in the
record. A record can also be retrieved based on time by entering a negative
value, in seconds since 1990, in the RecsBack parameter. See the
SecsSince1990 topic in this section for a method to calculate the seconds since
1990 based on a date and time.

Parameter
& Data Type

Enter GETRECORD PARAMETERS
Dest
Array

The destination variable array in which to store the fields of the record. The array must be
dimensioned large enough to hold all the fields in the record.

TableName
name

The name of the data table to retrieve the record from.

RecsBack
Const. Or
variable

The number of records back from the most recent record stored to go to retrieve the record (1
record back is the most recent). A negative number can be entered for the RecsBack parameter
to specify the time, in seconds since 1990, for the record to be retrieved.

InstructionTimes(Dest)
The InstructionTimes instruction returns the processing time required for
each instruction in the program.

Syntax
InstructionTimes(Dest)

Remarks
The InstructionTimes instruction loads the Dest array with processing time
(microseconds) for each instruction in the program. InstructionTimes must
appear before the BeginProg statement in the program.

Each element in the array corresponds to a line number in the program. To
accommodate all of the instructions in the program, the array must be
dimensioned to the total number of lines in the program, including blank lines
and comments. The Dest array must also be dimensioned as a long integer
 (e.g., Public Array(20) AS LONG).

Note that the processing time for an instruction may vary. For instance, it will
take longer to execute instructions when the datalogger is communicating with
another device.

InstructionTimes can be inserted into a program that is returning
a variable out of bounds error to indicate which variable is in
error.

TIP

InstructionTimes Example
The following program measures battery voltage, panel temperature, and a
thermocouple. There are 20 lines in the program, so the Itimes() Destination
array for InstructionTimes is dimensioned to 20.

9-42

Section 9. Program Control Instructions

Public PTemp, TCTemp, ITimes(20) AS LONG
InstructionTimes (ITimes())

DataTable (TempTbl,1,-1)
 DataInterval (0,1,Min,10)
 Sample (1,PTemp,FP2)
 Sample (1,TCTemp,FP2)
EndTable

BeginProg
 Scan (1,Sec,3,0)
 ModuleTemp (PTemp,1,4,0)
 TCDiff (TCTemp,1,mV50,5,1,TypeT,PTemp,True ,0,250,1.0,0)
 CallTable TempTbl
 NextScan
EndProg

LoadFieldCal

Used to load calibration values from the FieldCal (*.cal) file into the
corresponding measurement variable's multipliers and offsets when used in
conjunction with the FieldCal or FieldCalStrain instructions. See either topic
for an example program.

Syntax
TestCalLoad = LoadFieldCal(CheckSig)
Remarks
The LoadFieldCal instruction is normally placed right before the Scan
instruction (after any calibration variable values have been initialized). When
the Logger encounters the LoadFieldCal instruction, it looks for a *.cal file
that has the same name as the running program (example: Program.cal).
Included in the header of this *.cal file, is the Program Signature of the
program that created it. If the CheckSig parameter is set to True, this stored
program signature must match the program signature of the running program
or the calibration constant loading process will be aborted. If the CheckSig
parameter is set False (0), the loading process can continue even if the
program signatures do not match. If the Running program does not declare the
calibration variables that are included in the *.cal file's header, then the
LoadFieldCal process will fail.

LoadFieldCal can be set equal to a variable to monitor whether or not the
loading of values is successful. If the values are successfully loaded, the
variable will be set True, otherwise it will be set False.

LoadFieldCal Example
This example program line sets up the loading of the Calibration constants into
their perspective variables even if the Program signatures do not match. At the
same time, the TestCalLoad variable will be set True if the loading process is
successful, or False if unsuccessful. See FieldCal for a full example Program.

TestCalLoad = LoadFieldCal(0)

9-43

Section 9. Program Control Instructions

Move(Dest, DestReps, Source, SourceReps)
Moves the values from a range of elements of a variable array to a destination
variable array. It can also be used to fill a range of elements with a constant.

Syntax
Move(Dest, DestReps, Source, SourceReps)
Remarks
The Source and Destination variables are not required to be declared as the same
data types (Long, String, Boolean, or Float).

Parameter
& Data Type

Enter MOVE PARAMETERS
Dest
Variable or Array

The first variable of an array in which to store the variable values being moved.

DestReps
Constant

The number of array elements that will be written to.

Source
Array

The name of the variable array that holds the values to be copied to the Source array. If a
constant is entered for the Source, then the Dest array will be filled with the constant's
value.

SourceReps
Constant

The number of variable values that will be copied into the Dest array. This parameter
normally should be set equal to the DestReps parameter. If this parameter is set to 1, the
same value will be placed in each variable of the Dest array.

Move Function Example:

Move(x, 20, y, 20) 'move array y into array x

Move(x, 20, 0.0, 1) 'fill x with 0.0.

NewFieldCal
Boolean variable used in conjunction with the FieldCal or FieldCalStrain
instructions. See either topic for an example program.

NewFieldCal's state changes to True when a Field Calibration has been
performed and a new FieldCal.Cal file has been created

Syntax

DataTable (TableName, NewFieldCal, Size)
 SampleFieldCal

EndTable

Remarks

The NewFieldCal function is a Boolean value that is normally used as the
trigger variable for a DataTable so that FieldCal values can be stored to a user
defined DataTable when a new calibration has been performed. This data
table should not be confused with the *.Cal file that the logger uses to restore
the calibration values. Once the NewFieldCal function is tested, it will be set
back to false. It is recommended that the user upload the DataTable to his PC
when the calibration procedure is complete. See FieldCal for an Example
program that uses NewFieldCal.

9-44

Section 9. Program Control Instructions

NewFieldNames (OldNames, NewNames)
When using the NewFieldNames instruction, a variable array is given a
generic name. Whenever the NewFieldNames instruction is executed, the next
available generic variable in a data table will be assigned a new name from the
NewNames string.

This instruction accommodates smart sensors that return a unique name as part
of a data string (where the unique name can be parsed out of the string and
used for the NewName) or the addition of a Campbell Scientific wireless
sensor into an existing wireless sensor network.

When a NewName is assigned to a generic variable, the table
definitions in the datalogger will change. Thus, any operation
that relies on the datalogger's table definitions will be affected
(for example, if scheduled data collection is taking place, when
the generic variable's name is changed a backup file will be
created for the existing *.dat file and a new file, with the new
header information, will be written).

NOTE

Parameter
& Data Type

Enter NEWFIELDNAMES PARAMETERS
OldNames
Variable array

The OldNames parameter is the name for the variable array assigned to the generic variable(s).

NewNames
Variable Array

The NewNames parameter is a string that will be used to populate the generic variable field
names when the NewFieldNames instruction is run. Multiple names in a list should be
separated with commas.

PortSet (ExSlot, Port, State, Delay)
This Instruction will set the specified control port on the CR9060 Excitation
Module high or low.

This instruction is controlled by the task sequencer, which sets up the
measurement order. This results in the PortSet operation always occurring
directly after the measurement instruction preceding it in the program. The
State parameter can be set conditionally.

This instruction must not be placed inside a conditional
statement, Slow Sequence Scan or Sub Scan.

NOTE

Parameter
& Data Type

Enter PORTSET PARAMETERS

ExSlot
Constant

The slot that holds the 9060 Excitation Module on which to set the port.

Port
Constant

The number of the port to set with the instruction.

State The state (high or low) to set the port to.
Constant, Value State
Variable, or 0 Low
Expression ≠ 0 High
Delay
Constant

The time, in microseconds, to delay the task sequencer after setting the designated port to the
state declared by the State argument.

9-45

Section 9. Program Control Instructions

Power Off
Used to turn the CR9000X off until a designated time.

Syntax
PowerOff(StartTime, Interval, Units)

Remarks

This instruction sets a time to power up and then shuts off CR9000X power.
Only the clock continues running while the CR9000X is powered down.
When the time to power up arrives, the power is restored, the CR9000X
reloads its program from Flash memory and begins running.

The interval allows the CR9000X to periodically power up and execute a
program. StartTime is a time value. If StartTime is in the future when
PowerOff is executed, it is the time the CR9000X will be programmed to power
up. If StartTime is in the past when PowerOff is executed, The CR9000X will
set the time to power up to the next occurrence of the interval (using StartTime
as the start of the first interval)

The units for the interval are days, hours, minutes, or seconds.

Poweroff can also be used in conjunction with the digital inputs on the CR9011
Power Supply Board to set up the CR9000X to power up in response to an external
trigger, make a series of measurements, and then power off.

When the CR9000X is in this power off state the ON/Off switch on the
CR9011 Power Supply Board is in the on position but the internal relay is
open. The power LED is not lit. If the "<0.8 " input is switched to ground or
if the ">2" input has a voltage greater than 2 volts applied, the CR9000X will
awake, load the program in memory and run. If the "< 0.8" input continues to
be held at ground while the CR9000X is powered on and goes through its 2–5
second initialization sequence, the CR9000X will not run the program in
memory. This is extremely useful if the program executes the PowerOff
instruction immediately or after a short measurement period.

Parameter
& Data Type

Enter POWEROFF PARAMETERS

Start Time
Array

The name of a six element array that contains the start time: Year, month, day, hour, minutes,
and seconds, respectively.

Interval
Constant

Enter the time interval on which the CR9000X is to be powered up.

Units The units for the time parameters.
Constant Alpha

Code
Numeric
Code

Units

 SEC 2 Seconds
 MIN 3 Minutes
 HR 4 Hours
 DAY 5 Days

9-46

Section 9. Program Control Instructions

The following example is a good one to use to become familiar with the
PowerOff instruction. The CR9000X "scans" once a second for two minutes.
At the end of that time it powers down. It is programmed to wake up on a 4
minute interval. After the first PowerOff, it will wake up every four minutes,
count for 2 minutes and turn itself off. You can load this program and use the
Power On inputs on the 9011 Module to wake the CR9000X before the
interval is up. A program for an actual application would have measurements
within the scan.

Public Start(6), count 'Declare the start time array and count
 'Start() is initialized to 0 at compile time. 0 time is Midnight the start of 1990
 'count is initialized to 0 at compile time
BeginProg
 Scan(1,SEC,0,120) 'Scan once per second for 2 minutes
 Count=count+1 'Increment counter
 NextScan
 POWEROFF(Start,4,min) 'Power off, wake up on 4 minute interval
EndProg

Powerup.ini
At datalogger power-up, if a card that has a powerup.ini file resides in the PC
card slot, then the powerup.ini file will be parsed and a series of commands
can be executed prior to compiling and running a program.

Syntax

Command,File,Device

Remarks

Program File run hierarchy:
1. When the datalogger first starts, it will execute any commands found in

the Powerup.ini file, if present. This can include a command to set the
run attribute(s) of program file(s) to Run now and run on power-up,
Run-now, or Run on power up.

2. Next, any file, located on the Card or CPU, that is marked with a run
attribute of Run now and Run on power up (Run Always) or Run now
will be the "current program". If no program with either of these
attributes exist, any program with the attribute of Run on power-up will
start running.

3. If the program set to run by the settings in step 2 cannot be run, or if no
program is specified, the datalogger will attempt to run any program
named default.c9x that exists on its CPU: drive.

4. If there is no default.c9x file on the CPU, or if that file cannot be
compiled, the datalogger will not run any program.

9-47

Section 9. Program Control Instructions

Copying files to CPU flash. When setting a file's run attribute, if the device
parameter in the command line is specified as CPU, or left blank, the logger
will attempt to copy the selected file to the logger's CPU flash memory prior to
setting its run attribute. If the copy fails for any reason, such as there is not
enough room in flash memory for the selected file, the resulting action depends
on the command attribute selected:

1 Run Now and Run on Power-up: If a Program in the CPU was
previously set as Run on Power-up, then the file on the card will run
(Run now takes priority), but the attribute of the original file in the
CPU that was set as Run on Power-up will keep its Run on Power-up
attribute. If the Card is later removed and the logger power is cycled,
the program residing in the CPU memory that was originally set as Run
on Power-up will run.
2 Run on Power-up: If the copy function fails, no change will be
made to any file attributes.
6 Run Now: If the copy function fails, the file specified in the
powerup.ini file program will still run from the Card. Regardless if the
copy function fails or succeeds, any program residing in the CPU with
an attribute of Run on Power-up will keep its attribute.

Large Program Files. Some programs may be too large to fit within the 128
Kbytes that is set aside for programs in the CPU's flash memory. These large
files can be run directly from the card. (1,programfile.c9x,crd:)
Comments. Comments can be added to the powerup.ini file through the use
of the apostrophe, '. All text following the apostrophe, to the end of the line,
will be ignored.
Examples:
Example 1: This first example first formats the CPU to insure that there is
memory available for the programnew.c9x to be copied from the card to the
CPU's memory. The second line copies the file programrun.c9x to the CPU
and sets its run attribute to "Run Now and Run on Power-up".
 5,CPU 'Format the CPU (note the 2 commas
 1,programrun.c9x,CPU:

Example 2: This example copies two files from the card to the CPU. It sets
the frompwrup.c9x's run attribute to "Run on Power-up" It sets the
programrun.c9x's run attribute as "Run Now".
 2,frompwrup.c9x,CPU:
 6,programrun.c9x,CPU:

Example 3: This example replaces the logger's operating system with
CR9000.Std.30.obj.
 9,CR9000.Std.30.obj

Example 4: This example runs the toobigforcpu.c9x file from the Card.
 1,toobigforcpu.c9x ,crd:

9-48

Section 9. Program Control Instructions

Parameter Enter POWERUP.INI FILE PARAMETERS
Command

Code
1

2

5
6

9

Action to be taken
Run Now and on Run Power-up. Unless CRD is specified for the
device, the file will be copied to the CPU and run from there.
Run on Power-up. Unless CRD is specified for the device, the file
will be copied to the CPU and run from there.
Format specified device
Run now. Unless CRD is specified for the device, the file will be
copied to the CPU and run from there.
Replace the current OS with the specified file. Prior to loading the
new OS file into Flash memory, the current OS signature will be
compared to the signature of the OS on the card. If they match, this
function will be aborted.

File The file on the card associated with the action.
Device The device to which the associated file will be copied to. If left blank, this

parameter will default to CPU.
 Alpha Code

CPU:

CRD:

Device Location
File will be written to the CPU Flash Memory with the run
attributes selected.
File will be compiled and ran from the Card.

ReadIO (Dest, PSlot, Mask)
ReadIO is used to read the status of selected digital I/O channels (ports) on the
CR9070/CR9071E Counter - Timer/Digital I/O Module. There are 16 ports
on the CR9070/CR9071E. The status of these ports is considered to be a
binary number with a high port (+3.5V to +5 V) signifying 1 and a low port (-
0.5V to +1.2 V) signifying 0.

See Section 7.6 Pulse/Timing/State for a complete description of this
instruction.

RealTime(Dest)
Used to read the year, month, day, hour, minute, second, day of week, and/or
day of year from the CR9000X clock.

Syntax
RealTime(Dest)

Remarks
The RealTime instruction loads the destination array (Dest argument) with the
current time values from the datalogger clock in the following order: (1) year,
(2) month, (3) day of month, (4) hour of day, (5) minutes, (6) seconds, (7)
microseconds, (8) day of week (1-7; Sunday = 1), and (9) day of year. The
destination array must be dimensioned to 9. The time returned is the time of
the datalogger's clock at the beginning of the scan in which the RealTime
instruction occurs.

9-49

Section 9. Program Control Instructions

RealTime Example
This example uses RealTime to place all time segments in the Destination array. If the
remark (‘) is removed from the first 8 Sample statements and the last Sample statement is
remarked, the results will be exactly the same.

Public rTime(9) 'declare as public and dimension rTime to 9
Alias rTime(1) = Year 'assign the alias Year to rTime(1)
Alias rTime(2) = Month 'assign the alias Month to rTime(2)
Alias rTime(3) = Day 'assign the alias Day to rTime(3)
Alias rTime(4) = Hour 'assign the alias Hour to rTime(4)
Alias rTime(5) = Minute 'assign the alias Minute to rTime(5)
Alias rTime(6) = Second 'assign the alias Second to rTime(6)
Alias rTime(8) = WeekDay 'assign the alias WeekDay to rTime(8)
Alias rTime(9) = Day_of_Year 'assign the alias Day_of_Year to rTime(9)
DataTable (VALUES, 1, 100) 'set up data table
' Sample(1, Year, IEEE4) 'place Year in VALUES table
' Sample(1, Month, IEEE4) 'place Month in VALUES table
' Sample(1, Day, IEEE4) 'place Day in VALUES table
' Sample(1, Hour, IEEE4) 'place Hour in VALUES table
' Sample(1, Minute, IEEE4) 'place Minute in VALUES table
' Sample(1, Second, IEEE4) 'place Second in VALUES table
' Sample(1, WeekDay, IEEE4) 'place WeekDay in VALUES table
' Sample(1, Day_of_Year, IEEE4) 'place Day_of_Year in VALUES table
 Sample(9, rTime(), IEEE4) 'place all 9 segments in VALUES table
EndTable
BeginProg
 Scan (1, mSec, 0, 0)
 REALTIME(rTime())
 CallTable VALUES
 Next Scan
EndProg

Reset Table
Used to reset a data table under program control.

Syntax
ResetTable(TableName)
Remarks
ResetTable is a function that allows a running program to reset a data table.
TableName is the name of the table to reset. This instruction should be used
with caution, as all data in the table will be lost.

ResetTable Example
The example program line resets table MAIN when Flag(2) is high.
If Flag(2) then ResetTable(MAIN) 'resets table MAIN

SecsSince1990
 The SecsSince1990 function returns the number of seconds since January 1,
1990 from a date string.

Syntax
Variable = SecsSince1990(DateString, DateOption)
Remarks
One of the uses for this function is to retrieve a record from a data table using
the GetRecord instruction based on the time the record was stored rather than

9-50

Section 9. Program Control Instructions

based on a record number. (Refer to the example program.) The variable in
which the number of seconds is stored should be formatted as Long. The
default size for strings is 16 characters. Ensure that your string variable is sized
large enough to accommodate all values returned by the function

Parameter Enter SECSSINCE1990 PARAMETERS
Date
Variable String

The Date parameter is a variable formatted as a string that holds the date
to be used in the function.

DataOption
Constant

Code
1

2

4

Sets what format that the data string uses
Date Format
"MM/DD/YYYY HH:mm:ss.uu"

"DD/MM/YYYY HH:mm:ss.uu

"CCYY-MM-DD HH:mm:ss.uu"

Where:
MM = Month; DD = Day
YY = Year CC = Century
HH = Hour mm = minutes
ss = Seconds uu = microseconds

Timer
Used to return the value of a timer.

Syntax
Variable = Timer(TimNo, Units, TimOpt)
Remarks
Timer is a function that returns the value of a timer. TimOpt is used to start,
stop, reset, or read without altering the state (running or stopped). Multiple
timers, each identified by a different number (TimNo), may be active at the
same time.

Parameter
& Data Type

Enter TIMER PARAMETERS

TimNo
Constant,
Variable, or
Expression

An integer number for the timer (e.g., 0, 1, 2, . . .) Use low numbers to conserve memory;
using TimNo 100 will allocate space for 100 timers even if it is the only timer in the program.

Units The units in which to return the timer value.
Constant Alpha

Code
Numeric
Code

Units

 USEC 0 Microseconds
 MSEC 1 Milliseconds
 SEC 2 Seconds
 MIN 3 Minutes
TimOpt
Constant

The action on the timer. The timer function returns the value of the timer after the action is
performed

 Code Result
 0 Start
 1 Stop
 2 reset and start
 3 stop and reset
 4 read only

9-51

Section 9. Program Control Instructions

WriteIO (PSlot, Mask, Source)
Used to set the status of the digital control ports on the CR9060, CR9070, or
CR9071E modules.

Syntax
WriteIO(PSlot, Mask, Source)
There are 16 ports on the CR9070/CR9071E and 8 Control ports on the
CR9060 Excitation module . The status of these ports is considered to be a
binary number with a high port (+5 V) signifying 1 and a low port (0 V)
signifying 0. For example, just looking at the first 8 ports, if ports 1 and 3 are
to be set high and the rest low, the binary representation is 00000101, or 5
decimal. The Source value is interpreted as a binary number and the ports set
accordingly.

See the PortSet Topic in Section 9.2 DataLogger Status/Control for setting
the ports on the CR9060.

The Mask parameter is used to select which of the ports to set. It too is a
binary representation of the ports, a 1 signifies to set the port according to the
source, a 0 means do not change the status of the port.

CRBasic allows the entry of numbers in binary format by preceding the
number with "&B". For example if the mask is entered as &B110 (leading
zeros can be omitted in binary format just as in decimal) and the source is 5
decimal (binary 101) port 3 will be set high and port 2 will be set low. The
mask indicates that only 3 and 2 should be set. While the value of the source
also has a 1 for port 1, it is ignored because the mask indicates 1 should not be
changed.

WriteIO must not be placed inside a conditional statement,
SubScan, or Slow Sequence Scan (WriteIO can be used with
CR9060 ports in SubScans).

NOTE

Example:

WriteIO (5, &B100, &B100) 'Set port 3 on the 9070 in slot 5 high.

WriteIO (5, 4, 4) 'Set port 3 on the 9070 in slot 5 high.

WriteIO (5, &Hff00, Y*256) ' Write Y to upper 8 ports (9-16)

Parameter
& Data Type

Enter WRITEIO PARAMETERS

PSlot
Constant

The number of the slot that holds the CR9060, CR9070, or CR9071E module whose
port(s) are to be set.

Mask
Constant

The Mask allows the write to only act on certain ports. The Mask is ANDed with the
source before writing.

Source
Constant Variable

The Source parameter is a constant or the variable that holds the value for setting the
control ports. The Source value is interpreted as a binary number and the ports are set
accordingly.

9-52

Section 9. Program Control Instructions

9.3 File Control
FileClose

Closes a FileHandle created by FileOpen.

Syntax

Result = FileClose(FileHandle)

Remarks

This function returns 0 if successful. A non-zero result means there was an
error in closing the FileHandle. An error code of 17 means the FileHandle did
not exist. FileHandle is the variable that was created by the FileOpen
instruction.

FileCopy
Used to copy a file from one drive on the datalogger to another.

Syntax

Result = FileCopy("FromFileName", "ToFileName")

Remarks

The FileCopy function returns True if the operation is successful or False if it
fails. If a file with the same name already exists, the existing file will be
overwritten. The FileHandle for the file must be closed, using FileClose
before the file can be copied.

Parameter
& Data Type Enter FILECOPY PARAMETERS
FromFileName
String

The location drive and name of the file to be copied. It is a string entered in the format
"Device:FileName". If Device = CPU, the file is copied from datalogger memory. If
Device = CRD, the file is copied from a compact flash card. If a Device is not specified,
the CPU drive will be assumed.

ToFileName
String

The destination (drive) and name for the copied file. Like the FromFileName parameter, it
is a string entered in the format "Device:FileName". If Device is not specified, the CPU
drive will be assumed.

FileList
Returns a list of files that exist on the specified drive.

Syntax

Variable = FileList("Device", Dest)

9-53

Section 9. Program Control Instructions

Remarks

The FileList function returns a list of file names from the specified device into
the Destination array. FileList will return a -1 if the Device does not exist or a
-2 if Destination is not a variable.

Parameter
& Data Type Enter FILELIST PARAMETERS
Device
String in quotes

String that indicates the device that will be queried for files. The Device name must be
enclosed in quotes. The options are “CPU” (datalogger’s CPU) or “CRD” (compact flash
card).

Dest
Variable array

Variable array in which the names of the files will be stored. Each element of the array
will hold one file name. Should be dimensioned to the possible number of files on the
drive.
To query more than one device type for a list of files in a program, Dest can be a two
dimensional array, where the most significant array is used for the device type. For
example, Dest(2, 10) would allow two FileList functions, FileList(“CPU”, File(1,1)) and
FileList(“CRD”,File(2,1)), without the second function overwriting the results of the first.
Results from the first FileList function would be stored in FileList(1,1) through
FileList(1,n) and results from the second FileList function would be stored in
FileList(2,1) through FileList(2,n).

FileManage
Used to manage files from within a running datalogger program.

Syntax

FileManage("Device:FileName", Attribute)

Remarks

FileManage is an instruction that allows the active datalogger program to
manipulate program files that are stored in the datalogger.

Parameter Enter FILEMANAGE PARAMETERS
Device:FileName
String in quotes

The file that should be manipulated. The Device on which the file is stored
must be specified and the entire string must be enclosed in quotation
marks. Device = CPU, the file is stored in datalogger memory. Device =
CRD, the file is stored on a PCMCIA card. .

Attribute
Constant or
Variable

Code

1

2

4

6

8

16

32

Action to be taken

Program not active.

Run on Power-up.

Run now

Run now and on power up.

Delete

Delete all

Hide

This is a blank page.

9-54

Section 9. Program Control Instructions

FileOpen
Used to open an ASCII text file or a binary file for writing or reading

Syntax

FileHandle = FileOpen("Device:FileName", "Mode", SeekPoint)

Remarks

The FileOpen function returns a FileHandle, which can then be used by
subsequent file read/write functions (FileWrite, FileRead, FileReadLine,
FileClose). The FileHandle variable must be declared as a Long variable type.
The file to be read from or written to can be either an ASCII text file or a
binary file. If FileOpen fails, zero (0) will be returned.

Multiple reads or writes (prior to a FileClose for the FileHandle) begin where
the previous file operation left off. When a FileClose instruction is executed
for the FileHandle, the FileHandle is deleted.

If the file is opened with a mode that specifies ASCII, when a Chr(10) (line
feed) is encountered, a Chr(13) (carriage return) is inserted before the line
feed.

The MoveBytes instruction should be used to move floats into a string variable
if TOB1 binary files are being written.

Parameter Enter FILEOPEN PARAMETERS
Device:FileName
String in quotes

The FileName parameter is used to specify the Device and FileName for the file
written to or read from. FileName must be enclosed in quotes. It is entered in the
format of "Device:FileName" where Device is CPU or CRD (compact flash card).

Code

Action to be taken

"a" Append to ASCII file at EOF (write). Set SeekPoint to -1 to append to
end of file, or specify a value to begin writing other than end of file

"ab" Append to binary file at EOF (write). Set SeekPoint to -1 to append to
end of file, or specify a value to begin writing other than end of file.

"a+" Append to ASCII file at EOF (read/write). Set SeekPoint to -1 to append
to end of file, or specify a value to begin writing other than end of file.

"a+b" Append to binary file at EOF (read/write). Set SeekPoint to -1 to append
to end of file, or specify a value to begin writing other than end of file.

"r" Open ASCII file for reading at SeekPoint (read).
"rb" Open binary file for reading at SeekPoint (read).
"r+" Open ASCII file for update at SeekPoint (read/write).

Mode
String Variable

"r+b" Open binary file for update at SeekPoint (read/write).
 "w" Open/overwrite ASCII file (write). SeekPoint is not valid; leave at 0
 "wb" Open/overwrite binary file (write). SeekPoint is not valid; leave at 0
 "w+" Open/overwrite ASCII file (read/write). SeekPoint is not valid; leave at 0.
 "w+b" Open/overwrite binary file (read/write). SeekPoint is not valid; leave at 0.

SeekPoint
Variable

Specifies the byte position to begin reading from or writing to when the file is
opened. The value is in bytes, and the read or write begins after the specified
SeekPoint. For instance, if 100 is entered, the read or write begins at byte 101. If 0 is
entered and a file is being written, existing data will be overwritten. If one of the four
"a" options is being used to write data, enter -1 to append to the end of the file or
enter a value to begin at a specific byte. SeekPoint has no affect with the "w"
options, which always begin at byte 0, overwriting the existing data.

This is a blank page.

9-55

Section 9. Program Control Instructions

FileRead
Reads a file referenced by a FileHandle and stores the results in a variable or
variable array.

Syntax
BytesRead = FileRead(FileHandle, Dest, Length)

Remarks
The FileRead function returns the number of bytes successfully read. This
function reads to the end of the file or to the maximum number of bytes
(Length parameter). To read only one line of a file, use the FileReadLine
function.

Parameter
& Data Type Enter FILEREAD PARAMETERS
FileHandle
variable

Variable that holds the result of the FileOpen function.

Dest
String Variable

Variable in which the results of the read should be stored.

Length
Variable array

The Length parameter specifies the maximum number of characters to be read in to the Destination
variable. If Destination is an array, Length must equal to at least the total of the number of bytes for
all elements in the array. For example, if you are reading 3 elements of an array and each element is
4 bytes, Length must be at least 12.

FileReadLine
Reads a line in a file referenced by a FileHandle and stores the result in a
variable or variable array.

Syntax
BytesRead = FileReadLine(FileHandle, Dest, Length)

Remarks
The FileReadLine function reads to the end of a line (as indicated by a
carriage return or line feed) or until the maximum number of bytes is reached
(specified by Length). The FileReadLine function returns the number of bytes
successfully read or -1 if the end of the file is reached. To read multiple lines
or an entire file, use the FileRead function.

Parameter
& Data Type Enter FILEREADLINE PARAMETERS
FileHandle
variable

Variable that holds the result of the FileOpen function.

Dest
String Variable

Variable in which the results of the read should be stored.

Length
Variable array

The Length parameter specifies the maximum number of characters to be read in to the
Destination variable. If Destination is an array, Length must equal to at least the total of
the number of bytes for all elements in the array. For example, if you are reading 3
elements of an array and each element is 4 bytes, Length must be at least 12.

9-56

Section 9. Program Control Instructions

FileRename
Changes the name of a file stored on the datalogger or a card.

Syntax
Result = FileRename("Device:OldName", "Device:NewName")
Remarks
The FileRename function returns "True" if the operation is successful or
"False" if it fails. If a file with the same new name already exists, the function
will fail. The FileHandle for the file must be closed (FileClose) before the file
can be renamed. If the drive location (Device) for the OldFileName and
NewFileName are different, the new file is copied to the NewFileName and
then the OldFileName is deleted.

Parameter
& Data Type Enter FILERENAME PARAMETERS
OldName
String in quotes

The name of the file to be renamed. It is a string entered in the format
"Device:FileName". If Device = CPU, the file is stored in datalogger memory. If Device =
CRD, the file is stored on a compact flash card. If a Device is not specified, the CPU
drive will be assumed.

NewName
Variable array

The NewFileName parameter is the new name for the file. Like the OldFileName
parameter, it is a string entered in the format "Device:FileName". If a Device is not
specified, the CPU drive will be assumed.

FileSize
Returns the size of a file handle that was created using the FileOpen function.

Syntax
Variable = FileSize(FileHandle)
Remarks
FileSize returns the size of the file referenced by the FileHandle parameter.

If FileClose is used to close the file, FileSize must appear prior to FileClose.
Once FileClose is executed, the FileHandle no longer exists.

FileTime
Returns the time the file specified by the FileHandle was created.

Syntax
Variable = FileTime(FileHandle)

Remarks
The value returned is the time, in seconds since January 1, 1990, that the file,
specified by the FileHandle parameter, was created. If the function fails it will
return -2^31. The FileHandle must be closed for this function to succeed.

If Variable is declared as Long, it can be sampled into a data table using the
NSEC data format to return a timestamp.

9-57

Section 9. Program Control Instructions

FileWrite
Writes ASCII or binary data to a file referenced in the program by a
FileHandle.

Syntax
BytesWritten = FileWrite(FileHandle, Source, Length)

Remarks
This function writes the data in the Source variable to a FileHandle created by
FileOpen. This function returns the number of bytes successfully written to the
file.

Parameter
& Data Type Enter FILEWRITE PARAMETERS
FileHandle
variable

Variable that holds the result of the FileOpen function.

Source
String Variable

String variable that holds the data that should be written to the file.

Length
Variable array

The maximum number of characters that should be written to the file. If Length is set to 0,
the string length of Source will be used.

TableFile
Creates a file from a datalogger's data table and writes the file to the
datalogger's CPU or a compact flash card. This instruction must be place
inside of a DataTable Construct.

Syntax
TableFile (FileName, Options, MaxFiles, NumRecs/TimeIntoInterval,
Interval, Units, OutStat, LastFileName)

Remarks
The TableFile instruction must be placed inside a DataTable declaration for
the table you wish to write to file. The TableFile instruction writes a file based
on a specified number of records or on a time interval. The resulting file is
saved with a .dat extension, and can be saved as either TOA5 or binary.

If the TableFile instruction is writing to a compact flash card, and the program
uses the CardOut instruction as well, then prior to creating the fixed size
CardOut tables the required card space will be calculated and reserved for all
fixed size TableFile files. Space is reserved by subtracting the estimated space
required by the instruction from the available memory on the card (however,
space is not pre-allocated). If the TableFile instruction uses auto-allocation
then no space is reserved for its files and the MaxFiles value will be set once
the card is full. If both the TableFile and the CardOut instruction attempt to
use auto-allocation, a compile error will be returned. When a compact flash
card is removed, all TableFiles will be written to the card, regardless of
whether the output condition (time interval or fixed number of records) has
been met.

Note that these files cannot be acted upon using the data table access
functions.

9-58

Section 9. Program Control Instructions

Parameter Enter TABLEFILE PARAMETERS
Device:FileName
Constant String
in quotes

The FileName parameter is used to specify the Device and FileName for the file
written to or read from. The created file will have a suffix of X.dat, where X is a
number that will be incremented each time a new file is written. FileName must be a
constant and enclosed in quotes. It is entered in the format of "Device:FileName"
where Device is CPU or CRD (compact flash card).

Options
Variable

Code
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

File Type & Format
TOB1, Header, TimeStamp, Record#
TOB1, Header, TimeStamp
TOB1, Header, Record#
TOB1, Header
TOB1, TimeStamp, Record#
TOB1, TimeStamp
TOB1, Record#
TOB1
TOA5, Header, TimeStamp, Record#
TOA5, Header, TimeStamp
TOA5, Header, Record#
TOA5, Header
TOA5, TimeStamp, Record#
TOA5, TimeStamp
TOA5, Record#
TOA5.

MaxFiles
Variable

Specifies the maximum number of files to retain on the storage device. When the
MaxFiles is reached, the oldest file will be deleted prior to writing the new one. If
MaxFiles is set to -1, then no limit will be set for the maximum number of files that
can be written, until the storage device is full. Once the device is full, the oldest file
will be deleted prior to writing the new one. If MaxFiles is set to -2, there is no limit
set for the maximum number of files that can be written, but once the storage device
is full, no new files will be written. Thus, -1 is analogous to an auto-allocated ring
memory mode, and -2 is analogous to an auto-allocated fill and stop mode.

NumRecords/
TimeintoInterval
Variable

If Interval is set to 0, enter the number of records to include in each file. A new file
will not be written until enough records have been written to the datalogger's table to
satisfy the NumRec parameter. If Interval is a non-zero value, enter the time into the
interval (or offset) that a file should be written. For instance, if Interval is set to 60,
Units is set to minutes, and this parameter is set to 15, records will be written at 15
minutes past the hour, each hour.

Interval
Variable

Determines whether the instruction will write files based on a specified number of
records or on a time interval. If Interval is set to 0, files will be written once a
specified number of records is available in the datalogger's data table. If Interval has
a non-zero value, files will be written based on a time interval (which is determined
by using three parameters: TimeIntoInterval, Interval, and Units).

Units
Variable

Specifies the units on which the TimeIntoInterval and Interval parameters will be
based. The options are microseconds, milliseconds, seconds, minutes, hours, or days.

OutStat
Variable

Variable that holds a value indicating whether or not a new file has been stored. If a
new file is written when the instruction is executed, a -1 will be stored. If a new file
is not written, a 0 will be stored. Set to 0 instead of a variable to ignore.

LastFileName
Variable

Variable that contains the name of the last file written. It must be defined as a string
and sized large enough to accommodate the saved file name. If 0 is entered for this
parameter, it is ignored. This parameter can be used, along with OutStat, to transfer a
file under datalogger control.

9-59

Section 9. Program Control Instructions

9-60

Section 10. Custom Keyboard Display
Menus

CRBasic has the capability of creating a custom keyboard display menu for a
the CR1000KD Keyboard Display. The custom menu can either appear as
submenu of the standard menu or it can take the place of the standard menu
and contain the standard menu as a submenu. An item in the custom menu
may do one of four things:

1) display the value of a variable or a field in a data table.
2) display the value of a variable/flag and allow the user to change it.
3) provide a link to another custom menu.
4) provide a link to the standard menu.

Figure 10-1 shows windows from a simple CR1000KD custom menu named
“DataView”. “DataView” appears as the main menu on the CR1000KD.
DataView has menu item, “Counter”, and submenus “PanelTemps”,
“TCTemps”, and “System Menu”. “Counter” allows selection of 1 of 4 values.
Each submenu displays two values from the CR9000X's memory. PanelTemps
shows the CR9000X module temperature at each scan, and the one minute
average of the module temperature. TCTemps displays two thermocouple
temperatures.

PanelTemps:
Scan |23.4960
Final Stg |23.5000

TCTemps:
TC_Temp_1 |29.4355
TC_Temp_2 |32.3133

Data
Run/Stop Program
File
Ports and Status
Configure, Settings

DataView
PanelTemps >
Counter |0.00000
TCTemps >
System Menu >

FIGURE 10-1. CR1000KD custom menu example

SYNTAX DisplayMenu (MenuName, 0)
 DisplayValue ("MenuItemName", tablename.fieldname)
 MenuItem ("MenuItemName", Variable)
 MenuPick (Item1, Item2, Item3...Item512)
 SubMenu (MenuName)
 MenuItem ("MenuItemName", Variable)
 EndSubMenu
EndMenu

The DisplayMenu and EndMenu instructions mark the beginning and ending
of a custom menu definition. Variables and stored data can be displayed as an
item in a menu with the DisplayValue instruction.

10-1

Section 10. Custom Keyboard Display Menus

The MenuItem instruction creates an item that displays the value of a variable
and allows the value to be edited. The MenuItem can be set up to be edited
either by keying in a new numeric value or by selecting an option from a pick
list.

MenuPick is use to create a pick list for MenuItem. A link to another user
menu can be created with the SubMenu and EndSubMenu functions.

Example Program 10-1 is an example of a CRBasic program to set-up a custom
display. It is used as a model for the instructions in this section.

Example Program 10-1:

'Declare Variables for panel temperature, two thermocouples, a [down] counter
‘and a flag to determine if the count is active or not:
Public Tpnl, Ttc(2)
Public Counter, CountFlag
'Declare constants for menu display:
Const Yes = True
Const No = False
DataTable (Temp,1,1000) 'Define DataTable Temp:
 DataInterval (0,1,Sec,10)
 Average (1,Tpnl,IEEE4,0)
 Average (2,Ttc(),IEEE4,0)
EndTable
DisplayMenu ("Example Custom Menu",1) 'Define Custom Menu:
 SubMenu("Current Temperatures")
 DisplayValue("Panel Temp",Tpnl)
 DisplayValue("TC 1",Ttc(1))
 DisplayValue("TC 2",Ttc(2))
 EndSubMenu
 SubMenu("Last 1 Min. Averages")
 DisplayValue("Panel Temp",Temp.Tpnl_Avg(1,1))
 DisplayValue("TC 1",Temp.Ttc_Avg(1,1))
 DisplayValue("TC 2",Temp.Ttc_Avg(2,1))
 EndSubMenu
 SubMenu ("Play with Down Count")
 MenuItem ("Enable",CountFlag)
 MenuPick (Yes,No) 'Create a pick list with constants
 MenuItem("Down Count",Counter)
 MenuPick(15,30,45,60) 'Create a pick list for Counter
 'While the counter can be reloaded with the above menu item,
 'using a sub menu allows slightly more descriptive text:
 SubMenu("Reload Down Counter")
 MenuItem("Pick Count",Counter)
 MenuPick(15,30,45,60) 'Create a pick list for Counter
 MenuItem("Enter No.",Counter) 'no pick list = user enters #
 EndSubMenu
 EndSubMenu
EndMenu
BeginProg 'Main Program
 Scan (10,mSec,100,0)
 ModuleTemp (Tpnl,1,1,100)
 TCDiff (Ttc(),2,mV50C,4,1,TypeT,Tpnl,True ,40,100,1.0,0)
 If CountFlag Then
 Counter=Counter-1
 If Counter <=0 Then Counter=0
 EndIf
 CallTable Temp
 NextScan
EndProg

10-2

Section 10. Custom Keyboard Display Menus

DisplayMenu/EndMenu
Syntax:

DisplayMenu ("MenuName", AddtoSystem)
 menu definition (DisplayValue, MenuItem, and SubMenu)
EndMenu

The DisplayMenu/EndMenu instructions are used to mark the beginning and
ending of a custom menu. The DisplayValue, MenuItem, and
SubMenu/EndSubMenu instructions are used to define what will be
displayed in the custom menu.

Parameter
& Data Type

Enter

MenuName
Text

The text that will be shown as the heading for the custom menu. The string is
limited to 20 characters, and it should be enclosed in quotation marks.

AddtoSystem
Constant

This constant determines if the custom menu is a sub menu or replaces the
standard menu..

Value Result

0 Standard menu is submenu of Custom

≠0 Custom menu is submenu of Standard

DisplayValue ("MenuItemName", Source)
The DisplayValue instruction is used to define the menu text and associated
Variable or Data Table field to be displayed in the custom menu.

The MenuItemName parameter is the text that will appear on the left of the
line in the custom menu. Up to 10 characters will be displayed along with the
value of the source. The name should be enclosed in quotation marks. The
source must be a variable or a field from a data table. Values displayed using
DisplayValue cannot be edited.

Note: DisplayValue does not allow the keyboard operator to change the value.
Use MenuItem to display a variable and allow the operator to change the
value.

Parameter
& Data Type

Enter

MenuItemName
Text

The text that will be shown as the heading for the custom menu. The
string is limited to 20 characters, and it should be enclosed in quotation
marks.

Source
Variable or
TableName.Field

The source of the value to display to the right of the text
“MenuItemName” The source must be a variable or a field from a data
table. Values displayed using DisplayValue cannot be edited.

10-3

Section 10. Custom Keyboard Display Menus

MenuItem ("MenuItemName",Source)
The MenuItem instruction is used to display the value of a variable and allow
the user to change the value. Text can be displayed in place of a numeric value
if MenuPick is used to create a pick list of constants. The constants must be
defined in the program.

The MenuItemName parameter is the text that appears on the left of the line in
the custom menu. The name is limited to 20 characters, but only 10 characters
will be displayed when the variable value is shown (the entire 20 characters
will be shown when the value is edited). MenuItemName should be enclosed
in quotation marks.

The Variable parameter is the variable name of the value to be displayed.
Values displayed using MenuItem can be edited, either by typing in a value
directly or by creating a pick list of values using MenuPick.

Note: Use DisplayValue to display variable values without allowing them to
be changed.

Parameter
& Data Type

Enter

MenuItemName
Text

The text that will be shown as the heading for the custom menu. The
string is limited to 20 characters, and it should be enclosed in quotation
marks.

Source
Variable

The source of the value to display to the right of the text
“MenuItemName” The source must be a variable.

MenuPick (Item1, Item2, Item3, ..., Item512)
The MenuPick instruction is used to create a pick list of constants or values
that the preceding MenuItem variable can be set to. When MenuPick is used,
the pick list is the only way to set the variable from the custom menu.

The pick list can contain constants or numeric values (see example program
10-1). The constants must be defined in the program.

The MenuPick instruction must immediately follow the MenuItem instruction
for which a list of options is being generated. Each item in the list is separated
from the next by a comma.

10-4

Section 10. Custom Keyboard Display Menus

SubMenu/EndSubMenu
Syntax:

SubMenu ("MenuName")
 menu definition (DisplayValue, MenuItem, and SubMenu)
EndSubMenu

The SubMenu/EndSubMenu instructions are used to define the beginning and
end of a custom menu screen one level below the current menu. The
MenuName parameter is the text that will be shown on the datalogger's display
in the current menu and as the heading for the submenu. The string is limited
to 20 characters, and it should be enclosed in quotation marks. EndSubMenu
marks the end of the custom menu definition. The DisplayValue, MenuItem,
and SubMenu instructions are used to define the submenu.

Parameter
& Data Type

Enter

MenuName
Text

The text that will be shown as the heading for the Sub menu. The string is
limited to 20 characters, and it should be enclosed in quotation marks.

10-5

Section 10. Custom Keyboard Display Menus

10-6

Section 11. String Functions

11.1 Expressions with Strings
11.1.1 Constant Strings

Fixed (constant) strings can be used in expressions using quotation marks “”.
For example, FirstName = “Mike” causes the string variable FirstName to be
assigned “Mike”.

11.1.2 Add Strings
Strings can be concatenated using the ‘+’ operator or the ‘&’ operator.

If you need to concatenate strings and variables, use the ‘+’ operator.

When using the ‘&’ operator, the values being concatenated must be strings
(integers will be converted to strings). When working strictly with strings the
‘&’ operator can be safer to use than the ‘+’ operator, because with the ‘&’
operator there is no danger of a value being converted from a string to an
integer.

Example FullName = FirstName + “ “ + MiddleName + “ “ + LastName

FullName = FirstName & “ “ & MiddleName & “ “ & LastName

(The “ “ puts a space between the names.)

11.1.3 Subtraction of Strings
String1-String2 results in an integer in the range of –255..+255. Starting with
the first character in each string, the characters in string2 is subtracted from the
character in string1 until the difference is non-zero or until the end of each
string is reached. This is mainly used to determine if the strings are the same
or not.

11.1.4 String Conversion to/from Numeric
Conversion of Strings to Numeric and Numeric to Strings is done
automatically when an assignment is made from a string to a numeric or a
numeric to a string, if possible.

For example:

Public Value ‘ default, a IEEE4 float
Public SensorString AS String * 8 ‘an ASCII reading from a sensor
Value = SensorString * 1.8 + 32 ‘Sensor string is converted to the IEEE4
Value and scaled from Celsius to Fahrenheit.

11-1

Section 11. String Functions

Example: Tag an ID onto the end of a list of names:

Dim ID AS long
Public Names(10) AS STRING * 8
For ID = 1 to 10
 Names(ID) = “ITEM”+ID
Next ID

The array of Names(10) becomes “ITEM1”, “ITEM2”,…,”ITEM10”

11.1.5 String Comparison Operators
The comparison operators =, >,<,<>, >= and <= operate on strings. The
equality operators perform the string subtraction operation noted above and
apply the appropriate rule to return either TRUE or FALSE.

Example: Find the name “Mike” in the array of Names

For ID = 1 to 10
 If Names(ID) = “Mike”
….

11.1.6 Sample () Type Conversions and other Output
Processing Instructions

The Sample() instruction will do the necessary conversion if the source data
type is different than the Sample() data type. The conversion of floats and
longs to strings will allocate 12 bytes per field to hold the string.

Strings are disallowed in all output processing instructions except Sample().

11.2 String Manipulation Functions
ASCII(ASCII_String(1,1,Position))

The ASCII function is used to return the ASCII value of a character in a
string.

Syntax

Variable = ASCII(ASCIIString (1,1,Position)

Variables that are declared as strings can have only two dimensions. If a third
dimension is used for a string, it represents the character within the string.
Therefore, in the above syntax example, Position is a value that represents the
position of the character in the string that you want returned. If your string is
ABCDEFG and you want the ASCII value returned of D, you would use the
number 4 for “Position” to return that value.

11-2

Section 11. String Functions

CHR(c)
The CHR string function returns an ANSI character. 'c' ranges in values from
0..255.

The character returned by the CHR function can be stored in a string in the
program or sent to some other device by using such instructions as EmailSend
or SerialOut.

ANSI characters for decimal codes 0 through 128 are shown in Table 11.1.
See the editor for ANSI characters for decimal codes 129 through 255.

Table 11.1: ANSI Character Codes; Decimal 1 through 128
Dec Char Description Dec Char Dec Char Dec Glyph

0 ^@ Null character 32 ? 64 @ 96 `
1 ^A Start of Header 33 ! 65 A 97 a
2 ^B Start of Text 34 " 66 B 98 b
3 ^C End of Text 35 # 67 C 99 c
4 ^D End of Transmission 36 $ 68 D 100 d
5 ^E Enquiry 37 % 69 E 101 e
6 ^F Acknowledgment 38 & 70 F 102 f
7 ^G Bell 39 ' 71 G 103 g
8 ^H Backspace 40 (72 H 104 h
9 ^I Horizontal Tab 41) 73 I 105 i

10 ^J Line feed 42 * 74 J 106 j
11 ^K Vertical Tab 43 + 75 K 107 k
12 ^L Form feed 44 , 76 L 108 l
13 ^M Carriage return 45 - 77 M 109 m
14 ^N Shift Out 46 . 78 N 110 n
15 ^O Shift In 47 / 79 O 111 o
16 ^P Data Link Escape 48 0 80 P 112 p
17 ^Q Device Control 1 49 1 81 Q 113 q
18 ^R Device Control 2 50 2 82 R 114 r
19 ^S Device Control 3 51 3 83 S 115 s
20 ^T Device Control 4 52 4 84 T 116 t
21 ^U Negative Acknowledge 53 5 85 U 117 u
22 ^V Synchronous Idle 54 6 86 V 118 v
23 ^W End of Trans. Block 55 7 87 W 119 w
24 ^X Cancel 56 8 88 X 120 x
25 ^Y End of Medium 57 9 89 Y 121 y
26 ^Z Substitute 58 : 90 Z 122 z
27 ^[Escape 59 ; 91 [123 {
28 ^\ File Separator 60 < 92 \ 124 |
29 ^] Group Separator 61 = 93] 125 }
30 ^^ Record Separator 62 > 94 ^ 126 ~
31 ^_ Unit Separator 63 ? 95 _ 127 Delete

Example: Add a carriage return, line feed to a string at the end.

X = “Line”+Chr(13)+Chr(10)

11-3

Section 11. String Functions

FormatFloat (Float, FormatString)
Converts a floating point value into a string.

Syntax
String = FormatFloat (Float, FormatString)

Remarks
The string conversion of the floating point value is formatted based on the
FormatString. Total field width includes decimal point and sign.

Other ASCII characters can be included in the FormatString.

(example: FormatFloat(Variable,"The current reading is %2.3G")

Parameter
& Data Type

Enter FORMATFLOAT PARAMETERS

Float
Variable or
constant

The Float parameter is the variable or constant that holds the floating point
value to be converted.

Option
Constant as
String

The FormatString determines how the floating point value will be represented
in the converted string. Note that the format string must be enclosed in quotes.
The options are (m = mantissa; d = decimal; x = exponent):

 Option

 "%e" Decimal notation in the form of +m.dddddd e+xx; precision is 6
places to the right of the decimal.

 "%f" Decimal notation in the form of +mmm.dddddd; precision is 6
places to the right of the decimal.

 "%g" Mantissa and decimal are variable; trailing 0s and decimals are
omitted.

 "%Y.Zf" Decimal notation in the form of +m.d; precision is defined by Y
places to the left of the decimal and Z places to the right of decimal.

 "%Ye" Decimal notation in the form of +m.d e+xx; precision is defined by
Y characters to the right of the decimal

 "%Yg" Mantissa and decimal are variable; precision is defined by Y

InStr (Start, SearchStr, SoughtString, SearchOption)
The InStr instruction is used to find the location of a string within a string.

Syntax
Variable = InStr (Start, SearchString, SoughtString, SearchOption)

Remarks
This instruction returns the integer position of the SoughtString parameter. If
the SoughtString is not found, the instruction returns 0.

11-4

Section 11. String Functions

Parameter
& Data Type

Enter INSTR PARAMETERS

Start
Integer

Integer that specifies where in the SearchString to start looking for the
FilterString. A 1 Specifies the first character in the string

SearchStr
String or Var

The string to evaluate for the FilterString.

FilterString
String

String to look for in the SearchString. For a FilterString using non-printable
ASCII characters, use the CHR function and the appropriate ASCII code

SearchOpt The SearchOption is a code used to help define the method of searching:.
Constan 0 NUMERIC - Numerics in the SearchString are returned (FilterString is

Ignored)
 1 NON-NUMERIC - Non-numerics are returned (FilterString is ignored)
 2 SEARCHSTRING - Each FilterString in SearchString
 3 SEARCHCHARS - Each occurrence of any character in FilterString
 4 HEADERFILTER - Strings succeeding FilterString are returned.
 6 HEADERFILTERCHARS - Strings succeeding any character in the

FilterString char list are returned.
 8 NUMERICHEX - Hexadecimal numerics in the SearchString are

returned (FilterString is ignored)

Left (SearchString, NumChars)
The Left function returns a substring that is a defined number of characters
from the left side of the original string.

Syntax
String = Left(SearchString, NumChars)

Parameter
& Data Type

Enter LEFT PARAMETERS

String
String or Var

The string from which the Sub-string will be retrieved..

NumChars
Variable or
constant

The NumChars parameter is used to specify the number of characters from
the left side of the string to return. .

Len (SourceString)

The Len function is used to return the number of bytes in a string.

Syntax
Variable = Len(SourceString)

Remarks
The SourceString must be declared as a variable. When defining the
SourceString variable, its size must be set large enough to accommodate the
expected string. Otherwise, the result returned by the Len function will be the
maximum size of the string, even if the actual string is larger (strings are null-
terminated; note that the null termination character counts as one of the
characters in the string). If a size is not specified when the SourceString
variable is defined, the default string size is 16.

11-5

Section 11. String Functions

LowerCase (SourceString)

Returns a lower case string of SourceString

Syntax
Variable = LowerCase(SourceString)

Remarks
String functions are case sensitive. UpperCase or LowerCase can be used ot
convert a string to all one case.

LTrim (SourceString)

The LTrim function returns a copy of a string with no leading spaces.

Syntax
Variable = LTrim(SourceString)

Remarks
The SourceString parameter is the string that should be stripped of leading
spaces.

To trim trailing spaces only, use RTrim. To trim both leading and trailing
spaces, use Trim.

Mid (String, Start, Length)

The Mid instruction is used to return a substring that is within a string.

Syntax
SubString = Mid (String, Start, Length)

Remarks
The Start and Length parameters are used to determine which part of the
String is returned. Regardless of the value of the Length parameter, the
returned string will not be longer than the original string.

String variables can be declared as only one or two dimensions; e.g., String(x)
or String(x,y). To access a specific character within a string, enter the character
as a third dimension; e.g., String(x,y,n) where n is the desired character

Parameter
& Data Type

Enter MID PARAMETERS

String
String or Var

The string from which the Sub-string will be retrieved..

Start
Integer

Specifies where in the String to begin the operation. A 1 would result in the
SubString to begin with the first character in the String..

Length
Integer

Specifies the maximum number of characters to be returned by the
instruction.

11-6

Section 11. String Functions

Replace (SearchString, SubString, ReplaceString)
The Replace function is used to search a string for a substring, and replace that
substring with a different string.

Syntax
String = Replace (SearchString, SubString, ReplaceString)

Parameter
& Data Type

Enter REPLACE PARAMETERS

SearchString
String or Var

The SearchString parameter is the string that will be parsed by this
instruction.

SubString
String,String Var

The SubString parameter is the portion of the string in the original string that
will be replaced.

ReplaceString
String,String Var

The ReplaceString parameter is the string that should be used to replace the
SubString.

Right (SearchString, NumChars)
The Right function returns a substring that is a defined number of characters
from the right side of the original string.

Syntax
String = Right(SearchString, NumChars)

Parameter
& Data Type

Enter RIGHT PARAMETERS

String
String or Var

The string from which the Sub-string will be retrieved..

NumChars
Variable or
constant

The NumChars parameter is used to specify the number of characters from
the right side of the string to return. .

RTrim (SourceString)

The RTrim function returns a copy of a string with no leading spaces.

Syntax
Variable = RTrim(SourceString)

Remarks
The SourceString parameter is the string that should be stripped of trailing
spaces.

To trim leading spaces only, use LTrim. To trim both leading and trailing
spaces, use Trim.

11-7

Section 11. String Functions

SplitStr (ResultString, SearchString, FilterString, NumSplit, SplitOption)
The SplitStr instruction is used to return an array of strings or numerics from a
search string.

Syntax
SplitStr (ResultString, SearchString, FilterString, NumSplit, SplitOption)

Remarks
The FilterString and SplitOption help to define the array returned by the
SplitStr instruction.

Parameter
& Data Type

Enter SPLITSTR PARAMETERS

SplitResult
Var Arrayr

The SplitResult parameter is an array in which the split string will be stored.

SearchStr
String or Var

The string on which this instruction will operate.

FilterString
String or Var

Used to provide a filter for the string(s) to be returned. For a FilterString
using non-printable ASCII characters, use the CHR function and the
appropriate ASCII code

NumeSplit
Constant

Used to define the maximum number of strings or values returned by the
instruction.

SplitOption
Constant

The SplitOption parameter is a code used to specify the method of splitting
the string:

 0 NUMERIC SearchString is parsed based upon the occurrence of a
number in the string (delimiters are + - . 0 1 2 3 4 5 6 7 8 9 0 E). The
numeric value is stored in the array; other characters are discarded. With
this option, FilterString is ignored.

 1 NON-NUMERIC - SearchString is parsed based upon the occurrence of
non-numeric characters in the string (delimiters are any character but + -
. 0 1 2 3 4 5 6 7 8 9 0). The non-numeric characters are stored in the
array; numeric characters are discarded. FilterString is ignored.

 2 SEARCHSTRING - SearchString is parsed based upon the occurrence
of the entire FilterString.

 3 SEARCHCHARS - SearchString is parsed based upon each occurrence
of any character that is in FilterString

 4 HEADERFILTER - Any strings succeeding FilterString are returned.
 5 FOOTERFILTER - Any strings preceding FilterString are returned.
 6 HEADERFILTERCHARS - Strings succeeding any character in the

FilterString char list are returned in SplitResult.
 7 FOOTERFILTERCHARS - Strings preceding any character in the

FilterString char list are returned in SplitResult
 8 NUMERICHEX - SearchString is parsed based upon the occurrence of

hexadecimal numerics in the string (delimiters are any character but 0 1
2 3 4 5 6 7 8 9 0 A B C D E F). The hexadecimal value is stored in the
array. With this option, FilterString is ignored.

 1X Where X is one of the options above, right justify the resultant array,
filling vacant elements with NAN (if numeric) or a NULL string if a
string.

.

11-8

Section 11. String Functions

StrComp (String1, String2)
The StrComp function is used to compare two strings by subtracting the
characters in one string from the characters in another.

Syntax
Variable = StrComp (String1, String2)

Remarks
The StrComp instruction is typically used to determine if two strings are
identical. Starting with the first character in each string, the characters in
String2 are subtracted from the characters in String1 until the difference is
non-zero or until the end of String2 is reached. The result of this instruction is
an integer in the range of -255 to +255. If 0 is returned, the strings are
identical.

Trim (SourceString)

The Trim function returns a copy of a string with no leading or trailing spaces.

Syntax
Variable = Trim(SourceString)

Remarks
The SourceString parameter is the string that should be stripped of trailing
spaces.

To trim leading spaces only, use LTrim. To trim trailing spaces, use RTrim.

UpperCase (SourceString)
The UpperCase function returns an upper case string of SourceString

Syntax
Variable = UpperCase(SourceString)

Remarks
String functions are case sensitive. UpperCase or LowerCase can be used ot
convert a string to all one case.

11-9

Section 11. String Functions

11-10

Appendix A. Keywords and Predefined
Constants

Several words are reserved for use by CRBASIC. These words are not case sensitive and
cannot be used as variable or table names in a program. Predefined constants include
some instruction names, as well as valid alphanumeric names for instruction parameters.
In general, instruction names should not be used as variable, constant, or table names in a
datalogger program, even if they are not specifically listed as a predefined constant.

If a user programmed variable happens to be a keyword or predefined constant, a runtime
or compile error will occur. To correct the error, simply change the variable name by
adding or deleting one or more letters, numbers, or the underscore (_) from the variable
name, then recompile and resend the program.

The following is a list of keywords and predefined constants in CRBasic. It is possible to
use a keyword as part of a variable name if there are additional letters preceding or
following the letters that make up the keyword.

AbortScan program control
ABS function
ACOS function
Alias declaration
AM25T measurement
AngleDegrees declaration
AO4 measurement
AND operator
ASCII_ function
ASIN function
As declaration
ATN function
ATN2 function
AVE function
Average output processing
AvgRun processing
AvgSpa processing
Battery measurement
BeginBurstTrigger program control
BeginProg program control
BiasComp CSI Calibration
Boolean = 17, predefined constant
Break program control
BrFull measurement
BrFull6W measurement
BrHalf measurement
BrHalf3W measurement
BrHalf4W measurement
CalFile program control
Calibrate calibration
Call program control

CallTable program control
CanBus measurement
CardFlush program control
CardOut output processing
Case program control
Ceil function
CD16AC measurement
Checksum function
CheckPort function
CHR function
ClockChange function
ClockSet program control
Const declaration
ConstTable declaration
COS function
COSH function
ContinueScan program control
Covariance output processing
COVSpa processing
CR1000 predefined constant
CR3000 predefined constant
CR5000 predefined constant
CR800 predefined constant
CR9000X predefined constant
CRD program control
CS150 measurement
CS7500 measurement
CSAT3 measurement
CSAT3A measurement
CSGN function
Data processing

A-1

Appendix A. Keywords and Predefined Constants

DataEvent output processing
DataLong declaration
DataInterval output processing
DataTable output processing
day =5, predefined constant
DayLightSavings function
DayLightSavingsUS function
Delay program control
DewPoint processing
DialModem function
DialVoice function
DIM declaration
DisplayMenu program control
DisplayValue program control
Do program control
DSP4 output control
Else program control
ElseIf program control
End program control
EndBurstTrigger program control
EndConstTable declaration
EndFunction program control
EndIf program control
EndMenu program control
EndProg program control
EndSelect program control
EndSequence program control
EndSub program control
EndSubMenu program control
EndTable output processing
EQV operator
ETClearSky function
Event predefined constant
Excite measurement
Exit program control
ExitDo program control
ExitFor program control
ExitFunction program control
ExitScan program control
ExitSub program control
EXP function
Expr function
False =0, predefined constant
FFT output processing
FFTFilt measurement
FFTSample output processing
FFTSpa processing
FieldCal program control
FieldCalStrain program control
FieldNames output processing
FileClose File Control
FileCopy File Control
FileEncrypt function
FileList File Control
FileManage File Control
FileMark output

FileOpen File Control
FileRead File Control
FileReadLine function
FileRename File Control
FileSize function
FileTime function
FileWrite function
FillStop output
FIX function
FlashOut output processing
Float declaration
Floor function
FOR program control
FormatFloat function
FP2 =7, predefined constant
FRAC function
Function function
GetRecord processing
Hex processing
HextoDec function
Histogram output processing
Histogram4D output processing
hr =4, predefined constant
HydraProbe measurement
IEEE4 =24, predefined constant
If program control
IfTime function
IIF program control
IMP operator
Include program control
InStr function
InstructionTimes measurement
INT function
INT8 measurement
IntDv processing
IO16 measurement
IS operator
Len function
LevelCrossing output processing
LI7200 measurement
LoadFieldCal program control
LOG function
LOG10 function
LoggerType program control
Long =20, predefined constant
Loop program control
LowerCase function
Ln function
Maximum output processing
MaxSpa processing
Median output processing
MemoryTest program control
MenuItem program control
MenuPick program control
MenuRecompile program control
MessagesEnable program control

A-2

Appendix A. Keywords and Predefined Constants

Mid function
min =3, predefined constant
Minimum output processing
MinSpa processing
MOD operator
ModuleTemp measurement
Moment function
Move processing
MoveBytes processing
msec =1, predefined constant
mV1000 =1, predefined constant
mV1000CR predefined constant
mV1000R =101, predefined constant
mV20 =6, predefined constant
mV200 =4, predefined constant
mV200C =16, predefined constant
mV200CR =166, predefined constant
mV200R =104, predefined constant
mV50 =5, predefined constant
mV500 =11, predefined constant
mV5000 =0, predefined constant
mV5000C predefined constant
mV5000CR predefined constant
mV5000R =100, predefined constant
mV500C =23, predefined constant
mV50C =17, predefined constant
mV50CR =117, predefined constant
mV50R =105, predefined constant
mVX10500 =3, predefined constant
mVX1500 =2, predefined constant
NewFieldCal predefined boolean variable
NewFieldNames output
Next program control
NextScan program control
NextSubScan program control
NOT program control
OpenInterval output
OR operator
PamOut output
PCCardTest CSI testing
PeakValley processing
PF function
PortSet measurement
PowerOff program control
PreserveVariables program control
Print program control
Prog predefined constant
PRT processing
PRTCalc processing
Public declaration
PulseCount measurement
PulseCountReset measurement
PWR function
Rainflow output processing
Randomize function
Read processing

ReadIO measurement
RealTime processing
RectPolar processing
RemoveOffset calibration
ResetTable program control
Restore processing
Return program control
RMSSpa processing
RND function
Round function
RS232LoopBack function
RunDldFile program control
RunProgram program control
Sample output processing
SampleFieldCal output processing
SampleMaxMin output processing
SatVP processing
Scan program control
SDMAO4 measurement
SDMAO4A measurement
SDMCan measurement
SDMCD16AC measurement
SDMCD8S measurement
SDMCVO4 measurement
SDMGeneric measurement
SDMINT8 measurement
SDMIO16 measurement
SDMSIO4 measurement
SDMSpeed measurement
SDMSW8A measurement
SDMTrigger measurement
SDMX50 measurement
sec =2, predefined constant
SecsSince1990 function
Select program control
SerialClose function
SemaphoreGet function
SemaphoreRelease function
SerialFlush function
SerialClose function
SerialInBlock function
SerialInChk function
SerialInPut function
SerialOpen function
SerialOut function
SetDac calibration
SetStatus program control
SGN function
ShutDownBegin program control
ShutDownEnd program control
Signature function
SIN function
SINH function
SIO4 measurement
Size declaration

A-3

Appendix A. Keywords and Predefined Constants

A-4

SlotConfigure Pre-compiler
SlotModules CSI testing
SlowSequence program control
SortSpatial function
SplitStr function
SQR function
StationName program control
StdDev output processing
StdDevSpa processing
StrainCalc processing
String declaration
StrComp function
Sub declaration
SubMenu program control
SubScan program control
SW8A measurement
Table =5, predefined constant
TableFile file control
TAN function
TANH function
TCDiff measurement
TCSe measurement
TDR100 measurement
TGA measurement
Then program control
TimerIO measurement
TimedControl program control
Timer program control
TimerRead function
TimerResetStart function
TimerStart function
TimerStop function
TimerStopReset function
TimeUntilTransmit function
To program control
Totalize output processing
True =-1, predefined constant

TypeB =4, predefined constant
TypeE =1, predefined constant
TypeJ =3, predefined constant
TypeK =2, predefined constant
TypeN =7, predefined constant
TypeR =5, predefined constant
TypeS =6, predefined constant
TypeT =0, predefined constant
UInt2 =21, predefined constant
Units declaration
Until program control
UpperCase function
usec =0, predefined constant
V10 =7, predefined constant
V2 =10, predefined constant
V20 =25, predefined constant
V2c =22, predefined constant
V50 =6, predefined constant
V60 =24, predefined constant
VaporPressure processing
VoiceKey function
VoiceNumber function
VoltDiff measurement
VoltFilt measurement
VoltSE measurement
Vx105 =9, predefined constant
Vx15 =8, predefined constant
WaitDigTrig program control
WatchDogTrap CSI testing
Wend program control
WetDryBulb processing
While program control
WindVector output processing
WorstCase output processing
WriteIO measurement
XOR operator

Appendix B. Filter Module Available
Scan Rates
The following is a list of available Scan rates and their associated frequencies for the
Filter module.

Period(uS) Rate(Hz) Period(uS) Rate(Hz) Period(uS) Rate(Hz) Period(uS) Rate(Hz)
200000 5.0000 49600 20.1613 15400 64.9351 4700 212.766
198000 5.0505 49500 20.2020 15360 65.1042 4680 213.675
196000 5.1020 49000 20.4082 15300 65.3595 4640 215.517
193600 5.1653 48600 20.5761 15200 65.7895 4600 217.391
192000 5.2083 48360 20.6782 15120 66.1376 4560 219.298
190000 5.2632 48000 20.8333 15000 66.6667 4500 222.222
189000 5.2910 47600 21.0084 14880 67.2043 4480 223.214
187200 5.3419 47120 21.2224 14800 67.5676 4440 225.225
185000 5.4054 46800 21.3675 14700 68.0272 4400 227.273
183040 5.4633 46400 21.5517 14580 68.5871 4380 228.311
181440 5.5115 46000 21.7391 14520 68.8705 4340 230.415
180000 5.5556 45600 21.9298 14400 69.4444 4320 231.481
178560 5.6004 45240 22.1043 14280 70.0280 4300 232.558
176800 5.6561 44800 22.3214 14160 70.6215 4240 235.849
175000 5.7143 44400 22.5225 14080 71.0227 4200 238.095
173280 5.7710 44000 22.7273 14000 71.4286 4160 240.385
171600 5.8275 43560 22.9568 13920 71.8391 4100 243.902
170000 5.8824 43200 23.1481 13800 72.4638 4080 245.098
168720 5.9270 42920 23.2992 13680 73.0994 4000 250.000
167200 5.9809 42640 23.4522 13600 73.5294 3960 252.525
165600 6.0386 42320 23.6295 13500 74.0741 3920 255.102
163840 6.1035 42120 23.7417 13400 74.6269 3900 256.410
162400 6.1576 41760 23.9464 13320 75.0751 3880 257.732
161000 6.2112 41400 24.1546 13200 75.7576 3840 260.417
160000 6.2500 41040 24.3665 13120 76.2195 3800 263.158
158400 6.3131 40800 24.5098 13000 76.9231 3780 264.550
157080 6.3662 40320 24.8016 12900 77.5194 3760 265.957
155520 6.4300 40000 25.0000 12800 78.1250 3740 267.380
154000 6.4935 39900 25.0627 12720 78.6164 3720 268.817
152320 6.5651 39780 25.1383 12600 79.3651 3700 270.270
151200 6.6138 39680 25.2016 12480 80.1282 3680 271.739
150000 6.6667 39600 25.2525 12420 80.5153 3660 273.224
148800 6.7204 39440 25.3550 12300 81.3008 3640 274.725
147200 6.7935 39200 25.5102 12240 81.6993 3600 277.778
145800 6.8587 39000 25.6410 12160 82.2368 3560 280.899
144400 6.9252 38720 25.8264 12000 83.3333 3540 282.486
142600 7.0126 38480 25.9875 11900 84.0336 3520 284.091
141360 7.0741 38280 26.1233 11800 84.7458 3500 285.714
140000 7.1429 38000 26.3158 11700 85.4701 3480 287.356
139200 7.1839 37800 26.4550 11600 86.2069 3440 290.698

B-1

Appendix B. Filter Module Available Scan Rates

Period(uS) Rate(Hz) Period(uS) Rate(Hz) Period(uS) Rate(Hz) Period(uS) Rate(Hz)

138040 7.2443 37440 26.7094 11520 86.8056 3420 292.398
136800 7.3099 37260 26.8384 11400 87.7193 3400 294.118
135520 7.3790 37000 27.0270 11280 88.6525 3380 295.858
134400 7.4405 36720 27.2331 11200 89.2857 3360 297.619
133120 7.5120 36540 27.3673 11100 90.0901 3320 301.205
132240 7.5620 36400 27.4725 11000 90.9091 3300 303.030
131560 7.6011 36000 27.7778 10880 91.9118 3280 304.878
130560 7.6593 35880 27.8707 10800 92.5926 3240 308.642
129200 7.7399 35720 27.9955 10720 93.2836 3220 310.559
128000 7.8125 35520 28.1532 10600 94.3396 3200 312.500
126720 7.8914 35280 28.3447 10500 95.2381 3180 314.465
125440 7.9719 35000 28.5714 10400 96.1538 3160 316.456
124320 8.0438 34800 28.7356 10320 96.8992 3120 320.513
122760 8.1460 34560 28.9352 10200 98.0392 3100 322.581
121600 8.2237 34320 29.1375 10080 99.2063 3080 324.675
121000 8.2645 34000 29.4118 10000 100.0000 3060 326.797
120000 8.3333 33920 29.4811 9920 100.8065 3040 328.947
119000 8.4034 33600 29.7619 9900 101.0101 3000 333.333
118320 8.4517 33280 30.0481 9880 101.2146 2960 337.838
117760 8.4918 33000 30.3030 9840 101.6260 2940 340.136
117000 8.5470 32800 30.4878 9800 102.0408 2920 342.466
116000 8.6207 32640 30.6373 9760 102.4590 2900 344.828
115000 8.6957 32340 30.9215 9720 102.8807 2880 347.222
114000 8.7719 32000 31.2500 9680 103.3058 2860 349.650
112840 8.8621 31680 31.5657 9600 104.1667 2840 352.113
112000 8.9286 31500 31.7460 9520 105.0420 2820 354.610
110400 9.0580 31200 32.0513 9500 105.2632 2800 357.143
111360 8.9799 31000 32.2581 9440 105.9322 2760 362.319
110000 9.0909 30800 32.4675 9400 106.3830 2720 367.647
109760 9.1108 30600 32.6797 9360 106.8376 2700 370.370
109200 9.1575 30240 33.0688 9300 107.5269 2680 373.134
108800 9.1912 30000 33.3333 9280 107.7586 2660 375.940
108000 9.2593 29760 33.6022 9240 108.2251 2640 378.788
107520 9.3006 29600 33.7838 9200 108.6957 2600 384.615
106720 9.3703 29400 34.0136 9180 108.9325 2580 387.597
106080 9.4268 29240 34.1997 9120 109.6491 2560 390.625
105840 9.4482 29000 34.4828 9100 109.8901 2520 396.825
105000 9.5238 28800 34.7222 9000 111.1111 2500 400.000
104000 9.6154 28560 35.0140 8960 111.6071 2480 403.226
103040 9.7050 28380 35.2361 8880 112.6126 2460 406.504
102000 9.8039 28160 35.5114 8840 113.1222 2440 409.836
101200 9.8814 28000 35.7143 8800 113.6364 2420 413.223
100440 9.9562 27840 35.9195 8760 114.1553 2400 416.667
100000 10.0000 27720 36.0750 8700 114.9425 2380 420.168

99000 10.1010 27600 36.2319 8680 115.2074 2360 423.729
98000 10.2041 27440 36.4431 8640 115.7407 2340 427.350
97200 10.2881 27360 36.5497 8600 116.2791 2320 431.034
96600 10.3520 27200 36.7647 8520 117.3709 2300 434.783
96000 10.4167 27000 37.0370 8500 117.6471 2280 438.596
95200 10.5042 26880 37.2024 8480 117.9245 2240 446.429

B-2

Appendix B. Filter Module Available Scan Rates

Period(uS) Rate(Hz) Period(uS) Rate(Hz) Period(uS) Rate(Hz) Period(uS) Rate(Hz)

95000 10.5263 26680 37.4813 8460 118.2033 2220 450.450
94640 10.5664 26600 37.5940 8400 119.0476 2200 454.545
93960 10.6428 26400 37.8788 8360 119.6172 2160 462.963
93600 10.6838 26240 38.1098 8320 120.1923 2120 471.698
92800 10.7759 26000 38.4615 8280 120.7729 2100 476.190
92000 10.8696 25840 38.6997 8240 121.3592 2080 480.769
91520 10.9266 25800 38.7597 8200 121.9512 2040 490.196
90720 11.0229 25600 39.0625 8160 122.5490 2000 500.000
90000 11.1111 25380 39.4011 8120 123.1527 1980 505.051
89320 11.1957 25200 39.6825 8100 123.4568 1960 510.204
88920 11.2461 25000 40.0000 8040 124.3781 1920 520.833
88320 11.3225 24800 40.3226 8000 125.0000 1900 526.316
88000 11.3636 24640 40.5844 7980 125.3133 1880 531.915
87400 11.4416 24480 40.8497 7920 126.2626 1860 537.634
87000 11.4943 24300 41.1523 7840 127.5510 1840 543.478
86400 11.5741 24180 41.3565 7800 128.2051 1820 549.451
85680 11.6713 24080 41.5282 7740 129.1990 1800 555.556
85120 11.7481 24000 41.6667 7700 129.8701 1760 568.182
84480 11.8371 23920 41.8060 7680 130.2083 1740 574.713
84000 11.9048 23800 42.0168 7600 131.5789 1720 581.395
83200 12.0192 23680 42.2297 7560 132.2751 1700 588.235
82800 12.0773 23520 42.5170 7520 132.9787 1680 595.238
82080 12.1832 23400 42.7350 7500 133.3333 1640 609.756
81920 12.2070 23200 43.1034 7480 133.6898 1620 617.284
81600 12.2549 23000 43.4783 7440 134.4086 1600 625.000
81000 12.3457 22800 43.8596 7400 135.1351 1560 641.026
80640 12.4008 22680 44.0917 7360 135.8696 1540 649.351
80000 12.5000 22560 44.3262 7320 136.6120 1520 657.895
79560 12.5691 22400 44.6429 7280 137.3626 1500 666.667
79040 12.6518 22200 45.0450 7200 138.8889 1480 675.676
78400 12.7551 22000 45.4545 7140 140.0560 1440 694.444
78000 12.8205 21840 45.7875 7120 140.4494 1400 714.286
77520 12.8999 21760 45.9559 7080 141.2429 1380 724.638
76800 13.0208 21600 46.2963 7040 142.0455 1360 735.294
76440 13.0822 21420 46.6853 7000 142.8571 1320 757.576
76000 13.1579 21200 47.1698 6960 143.6782 1300 769.231
75240 13.2908 21000 47.6190 6900 144.9275 1280 781.250
74520 13.4192 20800 48.0769 6880 145.3488 1260 793.651
73920 13.5281 20580 48.5909 6840 146.1988 1240 806.452
73600 13.5870 20400 49.0196 6800 147.0588 1200 833.333
73080 13.6836 20160 49.6032 6760 147.9290 1160 862.069
72800 13.7363 20000 50.0000 6720 148.8095 1140 877.193
72520 13.7893 19840 50.4032 6640 150.6024 1120 892.857
72000 13.8889 19800 50.5051 6600 151.5152 1100 909.091
71400 14.0056 19680 50.8130 6560 152.4390 1080 925.926
70680 14.1483 19600 51.0204 6500 153.8462 1040 961.538
70000 14.2857 19520 51.2295 6480 154.3210 1020 980.392
69440 14.4009 19440 51.4403 6440 155.2795 1000 1000.000
69160 14.4592 19360 51.6529 6400 156.2500 980 1020.408

B-3

Appendix B. Filter Module Available Scan Rates

Period(uS) Rate(Hz) Period(uS) Rate(Hz) Period(uS) Rate(Hz) Period(uS) Rate(Hz)

68640 14.5688 19240 51.9751 6360 157.2327 960 1041.667
68000 14.7059 19200 52.0833 6320 158.2278 920 1086.957
67760 14.7580 19140 52.2466 6300 158.7302 900 1111.111
67200 14.8810 19080 52.4109 6240 160.2564 880 1136.364
66640 15.0060 19040 52.5210 6200 161.2903 840 1190.476
66000 15.1515 18900 52.9101 6160 162.3377 800 1250.000
65520 15.2625 18800 53.1915 6120 163.3987 780 1282.051
65000 15.3846 18720 53.4188 6080 164.4737 760 1315.789
64600 15.4799 18600 53.7634 6000 166.6667 720 1388.889
64000 15.6250 18480 54.1126 5940 168.3502 700 1428.571
63800 15.6740 18400 54.3478 5920 168.9189 680 1470.588
63240 15.8128 18360 54.4662 5880 170.0680 660 1515.152
62560 15.9847 18240 54.8246 5840 171.2329 640 1562.500
62000 16.1290 18200 54.9451 5800 172.4138 600 1666.667
61600 16.2338 18060 55.3710 5760 173.6111 560 1785.714
61200 16.3399 18000 55.5556 5720 174.8252 540 1851.852
60760 16.4582 17920 55.8036 5700 175.4386 520 1923.077
60480 16.5344 17820 56.1167 5680 176.0563 500 2000.000
60000 16.6667 17760 56.3063 5640 177.3050 480 2083.333
59520 16.8011 17680 56.5611 5600 178.5714 440 2272.727
58880 16.9837 17600 56.8182 5580 179.2115 420 2380.952
58320 17.1468 17500 57.1429 5520 181.1594 400 2500.000
58000 17.2414 17400 57.4713 5500 181.8182 380 2631.579
57600 17.3611 17280 57.8704 5440 183.8235 360 2777.778
57120 17.5070 17200 58.1395 5400 185.1852 340 2941.176
57000 17.5439 17100 58.4795 5360 186.5672 320 3125.000
56840 17.5932 17000 58.8235 5320 187.9699 300 3333.333
56320 17.7557 16920 59.1017 5280 189.3939 280 3571.429
56160 17.8063 16800 59.5238 5220 191.5709 260 3846.154
55680 17.9598 16740 59.7372 5200 192.3077 240 4166.667
55200 18.1159 16640 60.0962 5160 193.7985 220 4545.455
54600 18.3150 16560 60.3865 5120 195.3125 200 5000.000
54120 18.4775 16500 60.6061 5100 196.0784 180 5555.556
53760 18.6012 16400 60.9756 5040 198.4127 160 6250.000
53360 18.7406 16320 61.2745 5000 200.0000 140 7142.857
52920 18.8964 16200 61.7284 4960 201.6129 120 8333.333
52440 19.0694 16120 62.0347 4920 203.2520 100 10000.000
52080 19.2012 16000 62.5000 4900 204.0816 80 12500.000
51600 19.3798 15900 62.8931 4880 204.9180 60 16666.667
51200 19.5313 15800 63.2911 4840 206.6116 40 25000.000
50840 19.6696 15680 63.7755 4800 208.3333 20 50000.000
50320 19.8728 15600 64.1026 4760 210.0840
50000 20.0000 15480 64.5995 4720 211.8644

B-4

Appendix C. PC/CF Card Information
PC or CompactFlash (CF) cards provide a relatively inexpensive, off-the-shelf
means of retrieving data from many of our CRBasic dataloggers or expanding
the on-board datalogger memory. The datalogger’s memory can be expanded
up to 2 Gbytes with the use of these cards. The CR9000X requires a Compact
Flash adapter (CF1) to use compact flash cards. It can directly accommodate
Type 1, Type 2, and Type 3 flash memory cards.

PC/CF cards use NAND (Not AND) Flash (non-volatile) memory which has
the following characteristics: high density, low cost/bit, sequential access,
scalable, and a single standard. There are two types of NAND Flash memory:
Single-Level Cell (SLC) and Multi-Level Cell (MLC). SLC NAND Flash
sometimes called Binary Flash, store one bit of data per memory cell and has
two states: erased (1) or programmed (0). MLC NAND Flash store two bits of
data per memory cell and has four states: erased (11), two thirds (10), one
third (01), or programmed (00)1. At first glance, the MLC cards seem more
desirable, because each cell can hold more information. However, as
summarized in Table C-2, the increased data storage comes at a price, mainly
speed.

TABLE C-2. SLC and MLC Performance Characteristics

 SLC MLC
Voltage 3.3 V / 1.8 V 3.3 V
Page Size / Block Size 2KB / 128KB 512 B / 32 KB or 2 KB /

256 KB
Access Time (maximum) 25 µs 70 µs
Page Program Time 250 µs 1.2 ms
Partial Programming Yes No
Endurance 100,000 10,000
Write Data Rate 8 MB/s+ 1.5 MB/s

There is a notable performance difference between the two types of NAND
Flash memory. In a performance study by Samsung Electronics2, Samsung
found that SLC outperformed MLC, offering greater durability, running 300%
faster in write mode, and 43% faster in read mode. While MLC Flash
increases the overall density of data storage, which therefore decreases cost; it
does so at the expense of data reliability, performance and memory
management. Furthermore, MLC technology is more prone to failure, data
corruption, or incorrect reading due to memory cell degradation from the
additional energy required during operations2.

There are two types of CF cards available today: Industrial grade and Standard
or Commercial grade. Industrial grade PC/CF cards are held to a higher
standard; specifically they operate over a wider temperature range, offer better
vibration and shock resistance, and have faster read/write times than their
commercial counterparts (Table C-3). The Industrial Grade cards more closely
match the operating envelope of the dataloggers, and for this reason we

C-1

Appendix C. PC/CF Card Information

recommend you always use extended temperature tested, Industrial Grade
PC/CF cards with a datalogger.

TABLE C-3. Comparison of Industrial and Commercial Grade Cards

 Industrial Grade
Cards

Commercial Grade
Cards

Operating Temperature -40 to +85ºC 0 to +70ºC
Vibration Proofing 30 Gs 15 Gs
Shock Resistance 2000 Gs 1000 Gs
MTBF >3,000,000 hours >1,000,000 hours
Type of NAND Flash Memory SLC MLC typically

but some SLC

All Campbell Scientific products are Electrostatic Discharge (ESD) tested to
ensure that in the event of a static discharge neither the equipment nor the data
is damaged or lost. Campbell Scientific ESD tested several brands of cards,
only the Silicon Systems cards passed this testing. Campbell Scientific
recommends that only Silicon Systems cards be used with Campbell Scientific
CRBasic dataloggers. It is not necessary to purchase the cards directly from
Campbell Scientific, as long as the Silicon Systems card model number
matches Table C-4.

TABLE C-4. Silicon Systems and Campbell Scientific
PC/CF Model Numbers

Card
Type

Size
(Mbytes)

Silicon Systems
(model number)

Campbell Scientific
(model number)

CF 64 SSD-C64MI-3038 CFMC64M
CF 256 SSD-C25MI-3038 CFMC256M
CF 1024 SSD-C01GI-3038 CFM1GM
CF 2048 SSD-C02GI-3038 Not Available
PC 1024 SSD-P01GI-3038 Not Available
PC 2048 SSD-P02GI-3038 Not Available

References

1. “Implementing MLC NAND Flash for Cost-Effective, High-Capacity
Memory”, written by Raz Dan and Rochelle Singer, September 2003,
Rev 1.1,
www.data-io.com/pdf/NAND/MSystems/Implementing_MLC_NAND_Flash.pdf.

2. “Advantages of SLC NAND Flash Memory”,
www.mymemory.com.my/SLC%20VS%20MLC.html.

C-2

http://www.data-io.com/pdf/NAND/MSystems/Implementing_MLC_NAND_Flash.pdf
http://www.mymemory.com.my/SLC%20VS%20MLC.html

Appendix D. Status Table
The CR9000X status table contains current system operating status information that can be accessed from
the running CR9000X program or monitored by PC software. Status Table information is easily viewed
by going to LoggerNetTM / PC400 / RTDAQ / PC200W: (| Datalogger | Station Status). However, be
aware that information presented in this Station Status window is not automatically updated. Click the
refresh button each time an update is desired. Alternatively, use the Numeric displays of the connect
screen to show critical values and have these update automatically, or use Devconfig, which polls the
status table at regular intervals without use of a refresh button.

Table D-1 lists the parameters in the Status table with a brief explanation of each.

Table D-1, Status Table Parameters

Field Name

Variable
Type

Description

RecNum Long Record number for this set of data from the Status Table.
TimeStamp String Time this record was generated.
OSVersion String Operating system installed in logger.
OSDate String Date that the Operating System was created.
OSSignature Integer Operating System Signature
SlotSrNbr(#) Integer Shows the serial number of the module in the designated slot #.
SlotRev(#) Float Shows the serial number of the module in the designated slot #.
StationName String The Station Name of the data logger. This value is stored in the logger's

memory.
ProgName String Name of the program that is currently running in the data logger.
StartTime Time Time that the running program started running.
RunSignature Float Signature of the compiled binary data structure for the current program. Value

is independent of comments added or non-functional changes to the program.
Often changes with operating system changes.

DLDSignature Float Signature of the current running program file including comments. Does not
change with operating system changes.

SlotModelNbr String Type of Module located in slot #.
Battery(1) Float Voltage of the 3.3 volt lithium battery. Replace the lithium battery if <2.7V.
Battery(2) Float Voltage of the main 12 volt lead acid battery.
CompileResults String Contains error messages generated by compilation or during run time. Returns

"Compiled OK" if there was not any problems with the compilation of the
program.

StartUpCode Integer Displays the program Start-Up Code with results shown below:

Returned Code
 Value Interpretation
 0 Current program running from power-up condition.
 1 A watchdog reset the data logger.
2 - 7 A software time-out watchdog error occurred.
 8 An attempt to write to flash memory failed.
9-19 An instruction hang-up watchdog error occurred.
 20 A PC Card watchdog error occurred.

D-1

Appendix D. CR9000X Status Table

Field Name

Variable
Type

Description

ProgErrors Integer The number of compile or runtime errors associated with the currently running
program.

VarOutOfBound Integer Number of times any variable array index, that is out of bounds of the array's
dimensioned size, is referenced . The Variable out of Bounds error counter
increments when a program tries to write to, or access, an array element that is
beyond the array declared size.

SkippedScan Integer Number of skipped scans that have occurred while running the current main
program scan.

SkippedSlowScan Integer Number of skipped Slow Sequence Scans that have occurred while running the
current Slow Sequence scan.

ErrorCalib Integer The number of erroneous calibration values measured. The erroneous value is
discarded (not included in the filtered calibration update).

StackErrors Integer Number of stack errors since program start up.
MemoryFree Integer Bytes of unallocated memory on the CPU (SRAM). All free memory may not

be available for data tables. As memory is allocated and freed, holes of
unallocated memory, which are unusable for final storage, may be created.

DLDBytesFree Integer Number of bytes that are still available on the CPU flash for storing program
files.

DataTableName(#) String
Array

Programmed name of data table(s). Each table has its own entry and #
assigned to it. The numeric value (#) of the tables is the order in which they
are declared. This # corresponds to the other entries regarding DataTables.

SkippedRecord(#) Integer
Array

How many records have been skipped for a given table.
Each table has its own entry.

DataRecordSize(#,1) Integer
Array

Number of records that can be stored on the CPU memory allocated for a
given table. Each table has its own entry in this array.

DataRecordSize(#,2) Integer
Array

Number of records that can be stored on the Card memory allocated for a
given table. Each table has its own entry in this array.

SecsPerRecord(#) Integer
Array

Output interval for a given table.
Each table has its own entry in this array.

DataFillDays(#,1) Integer
Array

Time, in days, to fill the memory allocated on the CPU for a given table.
Each table has its own entry.

DataFillDays(#,2) Integer
Array

Time, in days, to fill the memory allocated on the PC Card for a given table.
Each table has its own entry.

CardStatus String Tests for presence of a PC card. Will return a "Card OK" if a working
formatted card is in the slot.

CardBytesFree Integer Indicates the amount of memory still available on the PC Card.
MeasureOps Integer Number of task sequencer OpCodes required to do all measurements in the

system. The maximum number of OpCodes allowed is 8192.
MeasureTime Integer Time (μSeconds) required to make the measurements in the main system scan,

including integration and settling times. Processing occurs concurrent with
measurement so the Scan time does not have to be a minimum of the
summation of the measure time and the process time, but it must be at least the
Measure Time.

ProcessTime Integer Processing time (μSeconds) of the last main scan. Processing occurs
concurrently with measurement.

MaxProcTime Integer Maximum process time (μSeconds) required, as yet, for the processing of the
measurement values from one scan of the currently running Scan Sequence.
This value is reset when the scan is exited.

D-2

Appendix D. CR9000X Status Table

Field Name

Variable
Type

Description

BuffDepth Integer Shows the processing buffer depth (# of scans that processing is lagging the
measurements). Indicates how far processing is currently behind measurement.

MaxBuffDepth Integer Gives the maximum number of buffers processing lagged measurement.
Indicative of how close the program is to skipping scans.

LastSlowScan Time Time of the last Slow Sequence Scan.
SlowProcTime Integer Processing time (μSeconds) of the last Slow Sequence scan. Processing occurs

concurrent with measurement so the sum of measure time and process time is
not the time required in the scan instruction.

MaxSlowProcTime Integer Maximum process time (μSeconds) required, as yet, for the processing of the
measurement values from one scan of the Slow Sequence Table.

CalVolts Integer
Array

Factory calibration numbers. This array contains six values corresponding to
the six measurement integration options as shown in the following table. These
numbers are loaded during the Factory Calibration and are stored in FLASH.
Value Voltage Range
 1 5000 mV
 2 1000 mV
 3 500 mV
 4 500 mVX
 5 200 mV

 6 50 mV

CalGain(#) Integer
Array

Displays the Gain calibration factor for the different voltage ranges.
CalGain(#) shows the calibration factor for the voltage ranges as depicted in
the following table. These values are updated at program compile time or
when a Calibrate or BiasComp instruction is encountered in the program, if the
program uses the measurement range.
Value Voltage Range
 1 5000 mV
 2 1000 mV
 3 500 mV
 4 500 mVX
 5 200 mV

 6 50 mV

CalOffSet(#) Integer
Array

Displays the Offset calibration factor for the different voltage ranges.
CalOffset(#) shows the calibration factor for the voltage ranges as depicted in
the following table. These values are updated at program compile time or when
a Calibrate or BiasComp instruction is encountered in the program, if the
program uses the measurement range.
Value Voltage Range
 1 5000 mV
 2 1000 mV
 3 500 mV
 4 500 mVX
 5 200 mV

 6 50 mV

D-3

Appendix D. CR9000X Status Table

Field Name

Variable
Type

Description

CalAmpOffset(#) Integer
Array

Displays the Offset calibration factor for the different voltage ranges.
CalOffset(#) shows the calibration factor for the voltage ranges as depicted in
the following table. These values are updated at program compile time or
when a Calibrate or BiasComp instruction is encountered in the program, if the
program uses the measurement range.
Value Voltage Range
 1 5000 mV
 2 1000 mV
 3 500 mV
 4 500 mVX
 5 200 mV

 6 50 mV

CalBiasLo(#) Integer
Array

Displays the Offset calibration factor for the different voltage ranges.
CalOffset(#) shows the calibration factor for the voltages range as depicted in
the following table. These values are updated at program compile time or
when a Calibrate or BiasComp instruction is encountered in the program, if the
program uses the measurement range.
Value Voltage Range
 1 5000 mV
 2 1000 mV
 3 500 mV
 4 500 mVX
 5 200 mV

 6 50 mV

CalBiasHi(#) Integer
Array

Displays the Offset calibration factor for the different voltage ranges.
CalOffset(#) shows the calibration factor for the voltage ranges as depicted in
the following table. These values are updated at program compile time or
when a Calibrate or BiasComp instruction is encountered in the program, if the
program uses the measurement range.
Value Voltage Range
 1 5000 mV
 2 1000 mV
 3 500 mV
 4 500 mVX
 5 200 mV

 6 50 mV

D-4

Appendix E. Glossary

E.1 Terms
AC see VAC.

A/D analog-to-digital conversion. The process that translates analog voltage
levels to digital values.

accuracy a measure of the correctness of a measurement. See also Section 0
Accuracy, Precision, and Resolution.

Amperes (Amps) base unit for electric current. Used to quantify the capacity
of a power source or the requirements of a power consuming device.

analog data presented as continuously variable electrical signals.

ASCII / ANSI abbreviation for American Standard Code for Information
Interchange / American National Standards Institute. An encoding
scheme in which numbers from 0-127 (ASCII) or 0-255 (ANSI) are used
to represent pre-defined alphanumeric characters. Each number is usually
stored and transmitted as 8 binary digits (8 bits), resulting in 1 byte of
storage per character of text.

asynchronous the transmission of data between a transmitting and a receiving
device occurs as a series of zeros and ones. For the data to be "read"
correctly, the receiving device must begin reading at the proper point in
the series. In asynchronous communication, this coordination is
accomplished by having each character surrounded by one or more start
and stop bits which designate the beginning and ending points of the
information (see Synchronous).

baud rate the speed of transmission of information across a serial interface,
expressed in units of bits per second. For example, 9600 baud refers to
bits being transmitted (or received) from one piece of equipment to
another at a rate of 9600 bits per second. Thus, a 7 bit ASCII character
plus parity bit plus 1 stop bit (total 9 bits) would be transmitted in 9/9600
sec. = .94 ms or about 1000 characters/sec. When communicating via a
serial interface, the baud rate settings of two pieces of equipment must
match each other.

Beacon a signal broadcasted to other devices in a PakBus®® network to
identify “neighbor” devices. A beacon in a PakBus® network ensures
that all devices in the network are aware of other devices that are viable.
If configured to do so, a clock set command may be transmitted with the
beacon. This function can be used to synchronize the clocks of devices
within the PakBus® network. See also PakBus® and Neighbor Device.

binary describes data represented by a series of zeros and ones. Also
describes the state of a switch, either being on or off.

Boolean name given a function, the result of which is either true or false

E-1

Appendix E. Glossary

Boolean data type typically used for flags and to represent conditions or
hardware that have only two states (true of false) such as flags and control
ports.

BOOL8 A one byte data type that hold 8 bits (0 or 1) of information. BOOL8
uses less space than 32-bit BOOLEAN data type.

Callback is a name given to a process by which the CR1000 initiates
telecommunication with a PC running appropriate CSI datalogger support
software. Also known as “Initiate Telecommunications.”

CF abbreviation for CompactFlash®, a data storage card that uses flash
memory.

code a CRBASIC program, or a portion of a program.

constant a packet of CR1000 memory given an alpha-numeric name and
assigned a fixed number.

control I/O Terminals C1 - C8 or processes utilizing these terminals.

CVI Communications Verification Interval. The interval at which a PakBus®
device verifies the accessibility of neighbors in its neighbor list. If a
neighbor does not communicate for a period of time equal to 2.5 x the
CVI, the device will send up to 4 Hellos. If no response is received, the
neighbor is removed from the neighbor list.

CPU central processing unit. The brains of the CR1000.

CR10X older generation Campbell Scientific datalogger replaced by the
CR1000.

CR1000KD an optional hand-held keyboard display for use with the CR1000
and CR800 dataloggers.

CRD a flash memory card or the memory drive that resides on the flash card.

CS I/O Campbell Scientific Input / Output. A proprietary serial
communications protocol.

datalogger support software includes PC200W, PC400, RTDAQ,
LoggerNetTM

data point a data value which is sent to Final Storage as the result of an output
processing (data storage) instruction. Strings of data points output at the
same time make up a record in a data table.

DC see VDC.

DCE data communications equipment. While the term has much wider
meaning, in the limited context of practical use with the CR1000, it
denotes the pin configuration, gender and function of an RS-232 port.
The RS-232 port on the CR1000 and on many 3rd party
telecommunications devices, such as a digital cellular modems, are DCE.
Interfacing a DCE device to a DCE device requires a null-modem cable.

desiccant a material that absorbs water vapor to dry the surrounding air.

E-2

Appendix E. Glossary

DevConfig Device Configuration Utility, available with LN, PC400, or from
the CSI website.

DHCP Dynamic Host Configuration Protocol. A TCP/IP application protocol.

differential a sensor or measurement terminal wherein the analog voltage
signal is carried on two leads. The phenomenon measured is proportional
to the difference in voltage between the two leads.

digital numerically presented data.

Dim a CRBASIC command for declaring and dimensioning variables.
Variables declared with DIM remain hidden during datalogger operation.

dimension to code for a variable array. DIM example(3) creates the three
variables example(1), example(2), and example(3). DIM example(3,3)
creates nine variables. DIM example (3,3,3) creates 27 variables.

DNS Domain Name System. A TCP/IP application protocol.

DTE data terminal equipment. While the term has much wider meaning, in
the limited context of practical use with the CR1000, it denotes the pin
configuration, gender and function of an RS-232 port. The RS-232 port
on the CR1000 and on many 3rd party telecommunications devices, such
as a digital cellular modems, are DCE. Attachment of a null-modem
cable to a DCE device effectively converts it to a DTE device.

Earth Ground1) Using a grounding rod or another suitable device to tie a
system or device to the earth at the datalogger site. Such a connection is
used as a sink for electrical transients and possibly damaging potentials,
such as those produced by a nearby lightning strike. 2) A reference
potential for analog voltage measurements. Note that most objects have a
“an electrical potential” and the potential at different places on the earth –
even a few meters away – may be different. See ground loop.

engineering units units that explicitly describe phenomena, as opposed to the
CR1000 measurement units of millivolts or counts.

ESD electrostatic discharge

ESS Environmental Sensor Station

excitation application of a precise voltage, usually to a resistive bridge circuit.

execution time time required to execute an instruction or group of instructions.
If the execution time of a Program Table exceeds the table's Execution
Interval, the Program Table is executed less frequently than programmed
(Section OV4.3.1 and 8.9).

expression a series of words, operators, or numbers that produce a value or
result.

File Control a feature of LoggerNetTM / PC400 / RTDAQ / PC200W
software used in management of files that reside in CR1000 memory.

Fill-and-Stop Memory a memory configuration for data tables forcing a data
table to stop accepting data when full.

E-3

Appendix E. Glossary

final storage that portion of memory allocated for storing Output Arrays.
Final Storage may be viewed as a ring memory, with the newest data
being written over the oldest. Data in Final Storage may be displayed
using the mode or sent to various peripherals (Sections 2, 3, and OV4.1).

FTP File Transfer Protocol. A TCP/IP application protocol.

FLOAT 4 byte floating point data type. Default CR1000 data type for Public
or Dim variables. Same format as IEEE4. IEEE4 is the name used when
declaring data type for stored data table data.

full duplex systems allow communications simultaneously in both directions.

FP2 2 byte floating point data type. Default CR1000 data type for stored data.
While IEEE 4 byte floating point is used for variables and internal
calculations, FP2 is adequate for most stored data. FP2 provides 3 or 4
significant digits of resolution, and requires half the memory as IEEE 4.

garbage the refuse of the data communication world. When data are sent or
received incorrectly (there are numerous reasons why this happens) a
string of invalid, meaningless characters (garbage) results. Two common
causes are: 1) a baud rate mismatch and 2) synchronous data being sent
to an asynchronous device and vice versa.

global variable a variable available for use throughout a CRBASIC program.
The term is usually used in connection with subroutines, differentiating
global variables (those declared using Public or Dim) from local
variables, which are declared in the Sub () and Function() instructions.

ground being or related to an electrical potential of 0 Volts.

half duplex systems allow bi-directional communications, but not
simultaneously.

handshake, handshaking the exchange of predetermined information between
two devices to assure each that it is connected to the other. When not
used as a clock line, the CLK/HS (pin 7) line in the datalogger CS I/O
port is primarily used to detect the presence or absence of peripherals.

Hello Exchange the process of verifying a node as a neighbor.

Hertz abbreviated Hz. Unit of frequency described as cycles or pulses per
second.

HTML Hypertext Markup Language. A programming language used for the
creation of web pages.

HTTP Hypertext Transfer Protocol. A TCP/IP application protocol.

IEEE4 4 byte floating point data type. IEEE Standard 754. Same format as
FLOAT. FLOAT is the name used when declaring data type for Public or
Dim variables.INF infinite or undefined. A data word indicating the
result of a function is infinite or undefined.

Initiate telecommunication is a name given to a processes by which the
CR1000 initiates telecommunications with a PC running appropriate CSI
datalogger support software. Also known as “Callback.”

E-4

Appendix E. Glossary

input/output instructions used to initiate measurements and store the results
in Input Storage or to set or read Control/Logic Ports.

integer a number written without a fractional or decimal component. 15 and
7956 are integers. 1.5 and 79.56 are not integers.

intermediate storage that portion of memory allocated for the storage of
results of intermediate calculations necessary for operations such as
averages or standard deviations. Intermediate storage is not accessible to
the user.

IP Internet Protocol. A TCP/IP internet protocol.

IP Address A unique address for a device on the internet.

local variable a variable available for use only by the subroutine wherein it
was declared. The term differentiates local variables, which are declared
in the Sub () and Function() instructions, from global variables, which are
declared using Public or Dim.

LONG data type used when declaring integers.loop in a program, a series of
instructions which are repeated a prescribed number of times, followed by
an "end" instruction which exists the program from the loop.

loop counter increments by 1 with each pass through a loop.

manually initiated initiated by the user, usually with a keyboard, as opposed
to occurring under program control.

MD5 digest 16-byte checksum of the VTP configuration.

milli the SI prefix denoting 1 / 1000s of a base SI unit.

Modbus communication protocol published by Modicon in 1979 for use in
programmable logic controllers (PLCs).

modem/terminal any device which: 1) has the ability to raise the CR1000
ring line or be used with an optically isolated interface (Appendix F.10.2)
to raise the ring line and put the CR1000 in the Telecommunications
Command State and 2) has an asynchronous serial communication port
which can be configured to communicate with the CR1000.

multi-meter an inexpensive and readily available device useful in
troubleshooting data acquisition system faults.

mV the SI abbreviation for milliVolts.

NAN not a number. A data word indicating a measurement or processing
error. Voltage over range, SDI-12 sensor error, and undefined
mathematical results can produce NAN.

Neighbor Device devices in a PakBus®® network that can communicate
directly with an individual device without being routed through an
intermediate device. See also PakBus® and Beacon Interval.

NIST National Institute of Standards and Technology

E-5

Appendix E. Glossary

Node part of the description of a datalogger network when using
LoggerNetTM. Each node represents a device that the communications
server will dial through or communicate with individually. Nodes are
organized as a hierarchy with all nodes accessed by the same device
(parent node) entered as child nodes. A node can be both a parent and a
child.

NSEC 8 byte data type divided up as 4 bytes of seconds since 1990 and 4
bytes of nanoseconds into the second.

Null-modem a device, usually a multi-conductor cable, which converts an
RS-232 port from DCE to DTE or from DTE to DCE.

Ohm the unit of resistance. Symbol is the Greek letter Omega (Ω). 1 Ω equals
the ratio of 1 Volt divided by 1 Amp.

Ohms Law describes the relationship of current and resistance to voltage.
Voltage equals the product of current and resistance (V = I*R).

on-line data transfer routine transfer of data to a peripheral left on-site.
Transfer is controlled by the program entered in the datalogger.

output a loosely applied term. Denotes a) the information carrier generated by
an electronic sensor, b) the transfer of data from variable storage to final
storage, or c) the transfer of power from the CR1000 or a peripheral to
another device.

output array a string of data points output to Final Storage. Output occurs
when the data interval and data trigger are true. The data points which
complete the Array are the result of the Output Processing Instructions
which are executed while the Output Flag is set.

output interval the time interval between initiations of a particular data table
record.

output processing instructions process data values and generate Output
Arrays. Examples of Output Processing Instructions include Totalize,
Maximize, Minimize, Average, etc. The data sources for these
Instructions are values in Input Storage. The results of intermediate
calculations are stored in Intermediate Storage. The ultimate destination
of data generated by Output Processing Instructions is usually Final
Storage but may be Input Storage for further processing. The transfer of
processed summaries to Final Storage takes place when the Output Flag
has been set by a Program Control Instruction.

PakBus® is a proprietary telecommunications protocol similar in concept to
internet protocol (IP). It has been developed by Campbell Scientific to
facilitate communications between Campbell Scientific instrumentation.

parameter used in conjunction with CR1000 program Instructions, parameters
are numbers or codes which are entered to specify exactly what a given
instruction is to do. Once the instruction number has been entered in a
Program Table, the CR1000 will prompt for the parameters by displaying
the parameter number in the ID Field of the display.

E-6

Appendix E. Glossary

period average a measurement technique utilizing a high-frequency digital
clock to measure time differences between signal transitions. Sensors
commonly measured with period average include vibrating wire
transducers and water content reflectometers.

peripheral any device designed for use with, and requiring, the CR1000 (or
another CSI datalogger) to operate.

Ping a software utility that attempts to contact another specific device in a
network.

precision a measure of the repeatability of a measurement. See also Section 0
Accuracy, Precision, and Resolution.

print device any device capable of receiving output over pin 6 (the PE line) in
a receive-only mode. Printers, "dumb" terminals, and computers in a
terminal mode fall in this category.

print peripheral see Print Device.

processing instructions these Instructions allow the user to further process
input data values and return the result to Input Storage where it can be
accessed for output processing. Arithmetic and transcendental functions
are included in these Instructions.

program control instructions used to modify the sequence of execution of
Instructions contained in Program Tables; also used to set or clear flags.

Poisson Ratio a ratio used in strain measurements equal to transverse strain
divided by extension strain. v = -(εtrans / εaxial).

Public a CRBASIC command for declaring and dimensioning variables.
Variables declared with PUBLIC can be monitored during datalogger
operation.

pulse an electrical signal characterized by a sudden increase in voltage follow
by a short plateau and a sudden voltage decrease.

regulator a device for conditioning an electrical power source. CSI regulators
typically condition AC or DC voltages greater than 16 V to about 14
VDC.

resistance a feature of an electronic circuit that impedes or redirects the flow
of electrons through the circuit.

resistor a device that provides a known quantity of resistance.

resolution a measure of the fineness of a measurement. See also Section 0
Accuracy, Precision, and Resolution.

ring line (Pin 3) line pulled high by an external device to "awaken" the
CR1000.

Ring Memory a memory configuration for data tables allowing the oldest data
to be overwritten. This is the default setting for data tables.

E-7

Appendix E. Glossary

RMS root mean square or quadratic mean. A measure of the magnitude of
wave or other varying quantities around zero.

RS-232 Recommended Standard 232. A loose standard defining how two
computing devices can communicate with each other. The
implementation of RS-232 in CSI dataloggers to PC communications is
quite rigid, but transparent to most users. Implementation of RS-232 in
CSI datalogger to RS-232 smart sensor communications is quite flexible.

sample rate The rate at which measurements are made. Inverse of the Scan
Interval. The measurement sample rate is primarily of interest when
considering the effect of time skew (i.e., how close in time are a series of
measurements). The maximum sample rates are the rates at which
measurements are made when initiated by a single instruction with
multiple repetitions.

scan (execution interval)Error! Bookmark not defined. is the time interval
between initiating each execution of a given Scan interval. If the
Execution Interval is evenly divisible into 24 hours (86,400 seconds), the
Execution Interval is synchronized with 24 hour time, so that the scan is
executed at midnight and every execution interval thereafter. The table is
executed for the first time at the first occurrence of the Execution Interval
after compilation. If the Execution Interval does not divide evenly into 24
hours, execution will start on the first even second after compilation.

scan (frequency is the frequency of the Scan. This is equal to the reciprocal
of the Scan execution interval or Scan rate (1/(Scan Rate)) and usually has
units of Hertz (scans per second).

SDI-12 Serial/Digital Data Interface at 1200 bps. Communication protocol for
transferring data between data recorders and sensors.

SDM Synchronous Device for Measurement. A processor based peripheral
device or sensor that communicates with the CR1000 via hardwire over
short distance using a proprietary CSI protocol.

Seebeck Effect induces microvolt level thermal electromotive forces (EMF)
across junctions of dissimilar metals in the presence of temperature
gradients. This is the principle behind thermocouple temperature
measurement. It also causes small correctable voltage offsets in CR1000
measurement circuitry.

Send denotes the program send button in LoggerNetTM / PC400 / RTDAQ /
PC200W datalogger support software.

serial a loose term denoting output or a device that outputs an electronic series
of alphanumeric characters.

SI Système Internationale The International System of Units.

signature a number which is a function of the data and the sequence of data in
memory. It is derived using an algorithm which assures a 99.998%
probability that if either the data or its sequence changes, the signature
changes.

E-8

Appendix E. Glossary

single-ended denotes a sensor or measurement terminal where in the analog
voltage signal is carried on a single lead, which is measured with respect
to ground.

skipped scans occur when the CR1000 program is too long for the scan
interval. Skipped scans can cause errors in pulse measurements.

slow sequence is a usually slower secondary scan in the CR1000 CRBASIC
program. The main scan has priority over a slow sequence.

SMTP Simple Mail Transfer Protocol. A TCP/IP application protocol.

SNP Snapshot File.

state whether a device is on or off.

string a datum consisting of alpha-numeric characters.

support software include PC200W, PC400, RTDAQ, LoggerNetTM

synchronous the transmission of data between a transmitting and receiving
device occurs as a series of zeros and ones. For the data to be "read"
correctly, the receiving device must begin reading at the proper point in
the series. In synchronous communication, this coordination is
accomplished by synchronizing the transmitting and receiving devices to
a common clock signal (see Asynchronous).

task 1) grouping of CRBASIC program instructions by the CR1000. Tasks
include measurement, SDM, and processing. Tasks are prioritized by a
CR1000 operating in pipeline mode.

TCP/IP Transmission Control Protocol / Internet Protocol.

Telnet a software utility that attempts to contact and interrogate another
specific device in a network.

throughput the throughput rate is the rate at which a measurement can be
made, scaled to engineering units, and the reading stored in a data table.
The CR1000 has the ability to scan sensors at a rate exceeding the
throughput rate. The primary factor affecting throughput rate is the
amount of processing specified by the user. In sequential mode operation,
all processing called for by an instruction must be completed before
moving on the next instruction.

TLL Transistor – Transistor Logic. A serial protocol using 0V and 5V as logic
signal levels.

toggle to reverse the current power state.

UINT2 data type used for efficient storage of totalized pulse counts, port status
(e.g. status of 16 ports stored in one variable) or integer values that store
binary flags.

USR: drive. A portion of CR1000 memory dedicated to the storage of image
or other files.

E-9

Appendix E. Glossary

UPS uninterruptible power supply. A UPS can be constructed for most
datalogger applications using AC line power, an AC/AC or AC/DC wall
adapter, a charge controller, and a rechargeable battery.

User Program The CRBASIC program written by the CR1000 user in
CRBASIC Editor or Short Cut.

variable A packet of CR1000 memory given an alpha-numeric name, which
holds a potentially changing number or string.

VAC Volts Alternating Current. Mains or grid power is high-level VAC,
usually 110 VAC or 220 VAC at a fixed frequency of 50 Hz or 60 Hz.
High-level VAC is used as a primary power source for Campbell
Scientific power supplies. Do not connect high-level VAC directly to the
CR1000. The CR1000 measures varying frequencies of low-level VAC
in the range of ±20 VAC.

VDC Volts Direct Current. The CR1000 operates with a nominal 12 VDC
power supply. It can supply nominal 12 VDC, regulated 5 VDC, and
variable excitation in the ±2.5 VDC range. It measures analog voltage in
the ±5.0 VDC range and pulse voltage in the ±20 VDC range.

volt meter an inexpensive and readily available device useful in
troubleshooting data acquisition system faults.

Volts SI unit for electrical potential.

watch dog timer an error checking system that examines the processor state,
software timers, and program related counters when the datalogger is
running its program. If the processor has bombed or is neglecting
standard system updates or if the counters are outside the limits, the watch
dog timer resets the processor and program execution. Voltage surges
and transients can cause the watch dog timer to reset the processor and
program execution. When the watch dog timer resets the processor and
program execution, an error count is incremented in the watchdog timer
entry of the status table. A low number (1 to 10) of watch dog timer
resets is of concern, but normally indicates the user should just monitor
the situation. A large number (>10) of error accumulating over a short
period of time should cause increasing alarm since it indicates a hardware
or software problem may exist. When large numbers of watch dog timer
resets occur, consult with a Campbell Scientific applications engineer.

weather tight describes an instrumentation enclosure impenetrable by
common environmental conditions. During extraordinary weather events,
however, seals on the enclosure may be breached.

XML Extensible Markup Language.

E-10

Appendix E. Glossary

E.2 Concepts
E.2.1 Accuracy, Precision, and Resolution

Three terms often confused are accuracy, precision, and resolution. Accuracy
is a measure of the correctness of a single measurement, or the group of
measurements in the aggregate. Precision is a measure of the repeatability of a
group of measurements. Resolution is a measure of the fineness of a
measurement. Together, the three define how well a data acquisition system
performs. To understand how the three relate to each other, consider “target
practice” as an analogy. The figure below shows four targets. The bull’s eye
on each target represents the absolute correct measurement. Each shot
represents an attempt to make the measurement. The diameter of the projectile
represents resolution.

The objective of a data acquisition system should be high accuracy, high
precision, and to produce data with resolution as high as appropriate for a
given application.

E-11

Appendix E. Glossary

E-12

CR9000X Index
5
5 V, OV-5

A
A/D, E-1
ABS, Absolute Value Instruction, 8-3
AC, E-1
AC Excitation, 3-20
Accuracy, E-1, E-11
ACOS, Arc Cosine Instruction, 8-3
Alias, 4-11, 4-20, 4-21, 5-1
AM25T Instruction, 7-16
Amperes (Amps), E-1
Analog, E-1
Analog Measurements, 2-3
Analog to Digital Conversion, 3-1
AND Operator, 4-14, 8-4
AngleDegrees, 8-1
ANSI, E-1
Anti-Aliasing, 3-31
Anti-logarithm, 8-15
Argument Rules, 4-20
Arithmetic, 4-35
Arrays, 4-11, 4-35
As Type, 5-2
ASCII, E-1
ASCII Data File Format, 2-13
ASCII Function, 11-2
ASCII String Function, 11-2
ASIN, Arc Sin Function, 8-5
Asynchronous, E-1
ATA Flash Memory Card, 2-1
ATN, Arctangent of Ratio, 8-5
ATN2, Arc Tangent of Y/X, 8-6
Average Output Instruction, 6-13
AvgRun, Spatial Average Instruction, 8-6
AvgSpa, Spatial Average Instruction, 8-10

B
Background Calibration, 9-27
Battery, External, 1-3, 1-6
Battery, Internal, 1-3, 1-7
Battery Voltage Measurement, 7-15
Baud Rate, E-1
Beacon, E-1
BeginProg, 9-1
BiasComp Instruction, 9-27
Binary, 4-18, E-1
Bit-shift Operators, 4-14, 8-1

Bitwise Comparison, 4-14
Blackman Window Function, 3-33, 7-53
BOOl8, E-2
Bool8 Data Type, 4-14

Definition, 4-13
Boolean, 2-4, 5-2, E-1
Boolean Data Type

Definition, 4-13
from Float, 4-36
from Long, 4-36

Boolean data type, E-2
BrFull Instruction, 7-13
BrFull6W Instruction, 7-13
BrHalf Instruction, 7-10
BrHalf3W Instruction, 7-11
BrHalf4W Instruction, 7-11
Bridge Circuit Excitation, 7-9
Bridge Circuits, 7-9
Bridge Measurement, 2 Wire Half, 3-18, 7-10
Bridge Measurement, 3 Wire Half, 3-18, 7-11
Bridge Measurement, 4 Wire Full, 3-18, 7-13
Bridge Measurement, 4 Wire Half, 3-18, 7-11
Bridge Measurement, 6 Wire Full, 3-18, 7-13
Bridge Measurements, 3-18
Bubble Sort, 9-9
Buffer Depth, D-3

C
CalFile, 2-1
CalFile Instruction, 9-28
Calibrate Instruction, 9-27
Calibration Constants, Loading, 9-43
Calibration Constants, Storing, 9-44
Call Instruction, 9-1
Callback, E-2, E-4
CallTable Instruction, 9-2
CANBUS, 7-19
CardFlush, 6-11
CardOut, 6-11
Case, 9-17
CaseElse, 9-17
Ceiling, Rounding up, 8-10
CF, E-2
CHR String Function, 11-3
Clients, OV-25
CLK/HS, OV-5
ClockSet Instruction, 9-29
Code, E-2
Comments in Programs, 4-3
Compile Results, D-1
Connectors, 1-1

Index-1

CR9000X Index

Const Instruction, 5-3
Constant Declaration, 5-3
Constant Table, 5-3
Constant, E-2
Constants, 4-19

Conversion, 4-37
ConstTable Instruction, 5-3
ContinueScan Instruction, 9-15
Continuous Analog Output, 9-30
Control, OV-16, OV-18
Control I/O, E-2
Control Port Expansion, 7-30
Control Ports, Setting, 9-45
Convert Data File, 2-9
COS, Cosine Instruction, 8-10
COSH Instruction, Hyperbolic Cosine Function,
8-11
Covariance Output Instruction, 6-13
COVSPA, Spatial Covariance Instruction, 8-11
CPU, E-2
CR1000KD, 10-1, E-2
CR10X, E-2
CR9011, OV-2
CR9031 Versus CR9032 Comparison Table, QS-21
CR9032, OV-4
CR9041, OV-6
CR9050 Module, OV-7
CR9051E Module, OV-9
CR9052 Filter Module Measurements, 3-30
CR9052DC Filter Module Measurements, 7-43
CR9052DC Module, OV-10
CR9052IEPE DC Frequency Response, 3-32
CR9052IEPE Module, OV-12
CR9055(E) Module, OV-13
CR9058E Module, OV-14
CR9058E Module Measurements, 3-21
CR9058E Sampling, Noise & Filtering, 3-24
CR9058E, Determining Integration and Filter Order,
3-30
CR9058E, Hard setting the integration time, 3-24
CR9058E, Hard setting the Sinc-N filter order, 3-27
CR9060 Module, OV-15
CR9070 Module, OV-16
CR9071E Module, OV-18
CR9071E Pulse Channel Max Input Range, 3-39
CRBasic Program Editor, 4-2
CRBasic Programming, 4-1, 4-6
CRBasic's, 4-3
CRD, E-2
CS I/O, OV-5, E-2
CS7500, 7-18
CSAT3 Instruction, 7-19
Custom Menu, 10-1
CVI, E-2

D
Data Collection, QS-19
Data File Format, 2-10
Data Instruction, 9-29
Data Point, E-2
Data Retrieval, 2-5
Data Retrieval, PC Card, 2-8
Data Storage, 2-1
Data Streaming, 2-7
Data Table Access, 4-3, 9-42
Data Table Control, 9-50
Data Table Header, 2-10
Data Table, OV-21, 4-20, 6-1
Data Type

Bool8, 4-13
Boolean, 4-13
Expressions with, 4-36
Float, 4-15
FP2, 4-15
Long, 4-15
NSec, 4-15
String, 4-18
Table of Types, 4-12
UINT2, 4-18

Data Type-- LONG, E-5
Data Type-- NSEC, E-6
Data Types, 4-14
Data type—UINT2, E-9
Data Viewing, QS-20
DataEvent, 6-5
DataInterval, 6-2
Datalogger Support Software, E-2
DataLong Instruction, 9-29
DataTable Instruction, 4-22
DC, E-2
DCE, E-2, E-3, E-6
Declarations, 4-11
Default Program

Default.C9X, 9-2
Delay Instruction, 9-3, 9-19
Desiccant, E-2
DevConfig, E-3
DewPoint, 8-13
DHCP, E-3
Differential Voltage Measurement, 7-4
Differential, E-3
Digital, E-3
Dim, 5-4, E-3
Dimension, E-3
Dimension Array, 5-4
Dimensioning a Variable, 4-12
Disable Running Program, OV-3
Disable Variable, 2-3
DisableVar, 2-3
DisplayMenu Instruction, 10-3
DisplayValue Instruction, 10-3

Index-2

CR9000X Index

DLD Signature, D-1
DNS, E-3
Do Loop, 9-3
DSP4 Instruction, 6-12
DTE, E-2, E-3, E-6

E
Earth Ground, E-3
Else, 9-10
ElseIf, 9-10
Enclosure, 1-1
End Function, 5-7
End Sub, 5-12
Endif, 9-10
EndProg, 9-1
EndSelect, 9-17
EndTable, 6-1
Engineering Units, E-3
EQV Function, 8-15
Errors, 2-3, 2-4
ESD, E-3, E-10
ESS, E-3
Excitation, 9-30, E-3
Excitation, Reversal, 3-2
Excite Instruction, 9-30
Execution Interval, 9-15
Execution Time, E-3
Exit Do, 9-3
Exit For, 9-8
Exit Function, 5-7
Exit Scan, 9-15
Exit Sub, 5-12
EXP, Exponential Instruction, 8-15
Exponential, Base e, 8-15
Expression, E-3
Expressions

Definition, 4-34
In Parameters, 4-20
Logical, 4-37
Strings, 4-38
Using Integers, 4-36
Using Numerical data types, 4-36

F
Fast Fourier Transform, 7-49
FFT Output Instruction, 6-14
FFT Spectral Options, 7-53, 8-17
FFT Windowing, 7-52
FFTFilt Instruction, 7-49
FFTSample Output Instruction, 7-62
FFTSPA, FFT Spatial Instruction, 8-16
Field Name Declaration, 5-1
Field Names Instruction, 6-17
FieldCal Instruction, 9-31

FieldCalStrain Instruction, 9-36
File Control, 9-13, E-3
File Control, Retrieve Data, 2-7
FileClose, 9-53
FileCopy, 9-53
Filelist, 9-53
FileManage, 9-5, 9-54
FileMark, 9-6
FileOpen, 9-55
FileRead, 9-56
FileReadLine, 9-56
FileRename, 9-57
FileSize, 9-57
FileWrite, 9-58
Fill and Stop Memory, E-3
FillStop, 6-8
Filter Module Scan Rates, B-1
Filter Module, OV-10, OV-12
Filtered FFT Analysis, 7-49
Filtered Voltage Measurements, 3-30, 7-44
Final Storage, E-4
FIR Filter, 3-32
FIX, Integer Function, 8-23
Flags, User, 4-19
Flash Memory, 2-1
Flash Memory Card, 2-1, 6-11
FLOAT, 2-4, 5-2, E-4
Float Data Type

Definition, 4-15
from Boolean, 4-36
from Long, 4-36
to Boolean, 4-36

Floating Point, 4-35
Floor, Rounding down, 8-18
For Next Loop, 9-8
FormatFloat String Function, 11-4
FP2, E-4
FP2 Data Type, 4-15
FP2 Resolution, 4-15
FRAC, Fractional Instruction, 8-19
FTP, E-4
Full Duplex, E-4
Function Declaration, 5-7

G
Garbage, E-4
GetRecord Instruction, 9-42
global variable, E-4
Ground, E-4
Ground Loop effects, 3-20

H
Half Duplex, E-4
Hamming Window Function, 3-33, 7-53

Index-3

CR9000X Index

Handshake, Handshaking, E-4
Hanning Window Function, 3-33, 7-52
Hello Exchange, E-4
Hertz, E-4
Hex Function, 8-19
Hex to Decimal conversion, 8-19
Histogram Output Instruction, 6-18
Histogram4D Instruction, 6-20
HTML, E-4
HTTP, E-4
Humidity Concerns, 1-7
Hyberbolic Tangent Function, 8-41
Hyperbolic Cosine Function, 8-11
Hyperbolic Sine Function, 8-34

I
I/O Ports, 7-42, 9-52
IEEE4, 2-2, E-4
If Then Else, 9-10
IfTime Instruction, 8-20
IIF Instruction, 8-21
IMP Function, 8-22
Include, 9-12
INF, 2-3, 2-4, E-4
Infinity, 2-3
Initiate telecommunication, E-4
Input Limit, Voltage, 3-5
Input Limits, Voltage, 3-3
Input Voltage Limit Check Option, 3-7
Input/Output Instructions, E-5
Input/Output Ports, 7-39
InStr String Function, 11-4
InstructionTimes Instruction, 7-15, 9-42
INT, Integer Function, 8-23
Integer, E-5
Integer Divide, 8-20
Integers, 4-36, 4-37
Integration, 3-3
Intermediate Storage, E-5
Internal Data Format, 2-2
Interval Timing, 7-40
Interval, Data Table, 6-2
IP, E-5
IP Address Setup, OV-20
IP Address, E-5
IP Communications Set-up, QS-9
IP Port Set-up Tips, QS-10
Isolation Module, OV-14
Isolation Module Measurements, 3-21

J
Junction Boxes, 1-2

K
Kaiser Bessel Window Function, 3-33, 7-53
Key Words, A-1
Keyboard Display, 10-1
Keyboard/Display Custom Menu, 10-1

L
Lapses, 6-2
Left String Function, 11-5
LEN String Function, 11-5
LevelCrossing Instruction, 6-21
LI7500, 7-18
Lightning, E-3
Lightning Protection, 1-8
Ln, Natural Logarithm Function, 8-23
LoadFieldCal, 9-43
local variable, E-5
Log, Natural Logarithm Function, 8-23
LOG10, Logarithm base 10 Instruction, 8-24
Logarithmic Spectral Rebinning, 7-60
Logger Files, Retrieve, 2-7
LoggerNet, OV-24, OV-25
Logic, And, 8-4
Logic, EQV, 8-15
Logic, Not, 8-26
Logic, Or, 8-26
Logic, XOR, 8-43
Logical Expressions, 4-37
Long, 2-2, 2-4, 5-2, E-5
Long Data Type

Definition, 4-15
from Boolean, 4-36
from Float, 4-36
to Boolean, 4-36
to Float, 4-36

Loop, 9-3, E-5
Loop Counter, E-5
LowerCaseString Function, 11-6
LTrim, 11-6

M
Manually Initiated, E-5
Math, 2-4
Math Functions, Derived, 8-43
Mathematical Operations, 4-35
Mathematical Operators, 8-1
Maximum Output Instruction, 6-25
Maximum, local, 8-27
MaxSpa, Spatial Maximum Instruction, 8-24
MD5 digest, E-5
ME, OV-5
Measure Time, D-2

Index-4

CR9000X Index

Measurement Parameters
Integ, 3-3
Range, 3-2
Range, Diff, 3-6
Range, SE, 3-5
RevDiff, 3-2
RevExcite, 3-2
SettlingTime, 3-2, 3-8
TRef, 3-11

Measurement Parameters
Chan, 4-31
Dest, 4-30
Integ, 4-32
Mult/Offset, 4-32
Range, 4-30
Reps, 4-30
RevDiff, 4-31
SettlingTime, 4-32
Slot, 4-31
TRef, 4-31

Measurements
Analog Voltage Sequence, 3-1
Common Mode Range, 3-3
Delay, 3-2
Input Limit Check (R Option), 3-7
Integration, 3-3
Multiplexed through CR9041, 3-1
Open Sensor Detect, 3-6
Settling Time, 3-8
Single Ended verses Differential, 3-3
with excitation reversal, 3-2

Median Output Instruction, 6-25
Memory, OV-20
MenuItem Instruction, 10-4
MenuPick Instruction, 10-4
Mid String Function, 11-6
Milli, E-5
Minimum Output Instruction, 6-26
Minimum, local, 8-27
MinSpa, Spatial Minimum Instruction, 8-25
MOD, Modulas Function, 8-25
Modbus, E-5
Modem/Terminal, E-5
ModuleTemp Measurement, 7-15
Moment Instruction, 6-27
Move Function, 9-44
Multi-meter, E-5
mV, E-5

N
NAN, 2-3, 2-4, E-5
Neighbor Device, E-5
NewFieldCal, 9-44
NewFieldNames Instruction, 9-45
Next, 9-8
NextScan, 9-15
NextSubScan Instruction, 9-22
NIST, E-5

Nitrogen Purging Enclosures, 1-7
Node, E-6
Not Operator, 8-26
Not-a-number, 2-3
NSEC, E-6
NSec Data Type

Definition, 4-15
Null-modem, E-2, E-3, E-6
Numeric Representation, 4-7

O
Octave Analysis (1/n), 7-60
Ohm, E-6
Ohms Law, E-6
On-line Data Transfer, E-6
Open Sensor Detect, 3-6
OpenInterval, 6-4
Operatators, 8-1
Operational Codes, D-2
Operational Input Voltage Limits, 1-8
Operator precedence order, 4-34
OR Operator, 4-14, 8-26
OS Signature, D-1
Output, E-6
Output Array, E-6
Output Interval, E-6
Output Processing Abbreviations Table, 4-39
Output Processing Instructions, 4-24, E-6

P
PakBus, E-6
Parameter, E-6
Parameter Types, 4-20
PC Card, 4-23
PC Card, 6-11

Flush CPU to Card, 6-11
PC Card Model Selection, C-1
PC Card Removal, 2-8
PC Card, Running program from, 9-47
PC Memory Card, 2-1
PC200W, OV-23
PC400, OV-23
PeakValley Instruction, 8-27
Period Average, E-7
Peripheral, E-7
Ping, E-7
Platinum Resistance Thermometer Measurement, 8-
28, 8-29
Poisson Ratio, E-7
Polar Coordinates, 8-31
PortSet Instruction, 9-45
Power Requirements, 1-3, 1-5
Power, External Battery, 1-6
Power, Using Solar Panels, 1-6

Index-5

CR9000X Index

Power, Using Vehicle, 1-5
Powering up Logger, QS-3
PowerOff Instruction, 9-46
Powerup.ini file, 9-47
Precision, E-7, E-11
Print Device, E-7
Print Instruction, 9-13
Print Peripheral, E-7
Process Time, D-2
Processing, OV-20
Processing Instructions, E-7
Program - Expressions, 4-34
Program Control Instructions, E-7
Program Control, 9-13
Program Examples

Average, 4-24
BiasComp, 4-29
Calibrate, 4-29
Calibration Arrays, 4-33
CardOut, 4-23
Const, 4-19
Constants to Longs or Floats, 4-37
Data Table Access, 4-41
Data Type Conversion, 4-36
DataInterval, 4-22
Expressions, 4-20
Flags, 4-19
Inserting Comments, 4-3
Integer Evaluation, 4-37
Program Structure, 4-9, 4-10
Scan, 4-25
SlowSequence, 4-29
String Expressions, 4-38
SubScan Measurement Loop, 4-28
SubScan using CR9058E, 4-27
SubScan with VoltFilt, 4-26
TCDiff, 4-33
Use of Variable Arrays, 4-35
Variable Array, 4-11, 4-12

Program Generator, QS-12, 4-1
Program Run Attribute Hierarchy, 9-47
Program Segment to Include, 9-12
Programing Introduction, 4-1
Programming Examples, 3-9
Programming Examples

Flag Staus w/ Long, 4-18
Programming Groundwork, 4-3
Programming Structure, 4-8
PRT Instruction, 8-28
PRTCalc Instruction, 8-29
Public, E-7
Public Declaration, 5-9
Pulse Counter Module, OV-16
Pulse Measurements, 3-35, 3-38, 7-36
Pulse, E-7
PulseCount Instruction, 7-36
PulseCountReset Instruction, 7-37

Q
Quick Connectors, 1-1

R
Rainflow Output Instruction, 6-27
Random Number Generator, 8-30
Random Number, 8-32
Randomize Instruction, 8-30
Read Instruction, 9-29
ReadIO Instruction, 7-39
Real Time Monitoring, QS-18
RealTime Instruction, 9-49
RectPolar Instruction, 8-31
Regulator, E-7
Remainder Function, 8-25
Replace String Function, 11-7
ResetTable Instruction, 9-50
Resistance, E-7
Resistor, E-7
Resolution, E-7, E-11
Restore Instruction, 9-29
Reverse Excitation, 3-2
Right String Function, 11-7
RING, OV-5
Ring Line (Pin 3), E-7
Ring Memory, E-7
RMS, E-8
RMSSpa Instruction, 8-31
RND Function, 8-32
Round, Arithmetic rounding, 8-32
Rounding Numeric

Ceiling, 8-10
Floor, 8-18
Round, 8-32

RS232 Port, QS-2
RS-232, E-8
RTDAQ, OV-23
RTMC, OV-25
RTMC Web Server, OV-26
RTMCCRT, OV-26
RTMC-Pro, OV-25
Rtrim String Function, 11-7
Run on Powerup, 9-47
RunDLD File Instruction, 9-13
Running Average, 8-6
Running Average Signal Attenuation, 8-7
RX, OV-5

S
Safety Precautions, 1-7
Sample Output Instruction, 6-32
Sample Rate, E-8
SampleFieldCal Output Instruction, 6-31

Index-6

CR9000X Index

SampleMaxMin Output Instruction, 6-32
SatVP Instruction, 8-36
Scan

execution interval, E-8
frequency, E-8

Scan Instruction, 4-25, 9-15
Scans, Multiple, 9-20
SDE, OV-5
SDI-12, E-8
SDM, E-8
SDM Peripherals, OV-22
SDM-AO4, 7-19
SDMCAN, 7-19
SDM-CD16, 7-26
SDM-CD16AC, 7-26
SDM-CD16D, 7-26
SDM-CVO4, 7-26
SDMINT8 Interval Timer Instruction, 7-27
SDMIO16 Instruction, 7-30
SDMSIO4 Instruction, 7-31
SDMSpeed Instruction, 7-32
SDMSW8A, 7-31
SDMTrigger Instruction, 7-33
SDMX50, 7-33
SecsSince1990, 9-50
Seebeck Effect, E-8
Select Case, 9-17
Send, E-8
Sensor Calibration File, 9-28
Serial, E-8
Serial Communications Set-up, QS-3
Serial Input/Output, 7-31
Serial Sensor Measurement, 7-42
SerialInput Instruction, 7-42
Server, OV-24
Settling Time, 3-2, 3-8, 3-9
Sgn Function, Sign of Number, 8-33
Short Cut, OV-25
ShortCut, 4-1
SI Système Internationale, E-8
Signature, E-8
SIN, Sine Function, 8-34
Single Ended Voltage Measurement, 7-4
Single-ended, E-9
SinH, Hyperbolic Sine Function, 8-34
Skipped Records, 6-2
skipped scans, E-9
SlotConfigure Instruction, 29-0
slow sequence, E-9
SlowSequence Instruction, 9-20
SMTP, E-9
SNP, E-9
Software Development Kits, OV-26
Solar Panel, 1-6
Sort Array Values, 8-34
SortSpa Instruction, 8-34

Spatial Average, 8-10
Spatial Covariance, 8-11
Spatial Maximum Function, 8-24
Spatial Minimum Function, 8-25
Spatial RMS, 8-31
Spatial Sort Instruction, 8-34
Specifications, OV-27
Spectral Leakage, 3-34
Spectral Options, 7-53
Spectral Options, 8-17
Spectral Weighing, Class A, B, & C, 7-51
SpltStr String Function, 11-8
Sqr, Square Root Function, 8-35
Standard Deviation, 6-33
Standard Deviation, Spatial, 8-35
Startup Code, D-1
State, OV-16, OV-18, E-9
Station Name, 5-11
Status Table, D-1
StdDev Instruction, 6-33
StdDevSpa Instruction, 8-35
StrainCalc Instruction, 8-36
StrComp String Function, 11-9
String, 2-4, 5-2, E-9
String Data Type

Definition, 4-18
String Expressions, 4-38
String Manipulation Functions

ASCII, 11-2
CHR, 11-3
FormatFloat, 11-4
InStr, 11-4
Left, 11-5
Len, 11-5
LowerCase, 11-6
LTrim, 11-6
Mid, 11-6
Replace, 11-7
Right, 11-7
RTrim, 11-7
SplitStr, 11-8
StrComp, 11-9
Trim, 11-9
Uppercase, 11-9

Strings
Adding, 11-1
Assigning, 11-1
Comparison Operators, 11-2
Conversion to/from Numeric, 11-1
Output Sampling, 11-2
Subtracting, 11-1

Sub, Subroutine Declaration, 5-12
SubMenu Instruction, 10-5
Subroutine Calling, 9-1
Subscan

CR9058E Isolation Module Measurements, 4-27
Filter Module Measurements, 4-26

Subscan
Filter Module Measurements, 9-23

Index-7

CR9000X Index

Index-8

SubScan Instruction w/ CR9052 Module, 7-46
SubScan Instruction, 9-22
Support Software, OV-23, E-9
Switching Relays w/ Control Ports, 1-9
Synchronous, E-9
Système Internationale, E-8

T
Table Size, D-2
TableFile, 9-59
Tablename.EventCount, 4-40
Tablename.EventEnd, 4-40
Tablename.Fieldname, 4-39
Tablename.Output, 4-40
Tablename.Record, 4-40
Tablename.TableFull, 4-41
Tablename.Tablesize, 4-40
Tablename.TimeStamp, 4-40
Tan, Tangent function, 8-41
TANH, Hyberbolic Tangent Function, 8-41
Task, E-9
TCDiff Instruction, 7-5
TCP/IP, E-9
TCSE Instruction, 7-7
TDR100, 7-34
Telnet, E-9
Terminal Connectors, 1-1
Thermocouple Accuracy

TypeB, 3-14
TypeE, 3-14
TypeJ, 3-14
TypeK, 3-14
TypeR, 3-14
TypeS, 3-14
TypeT, 3-14

Thermocouple Measurements, 3-10
Thermocouple Reference Temperature, 7-15
Thermocouple, Differential Measurement, 7-5
Thermocouple, Single Ended Instruction, 7-7
Throughput, E-9
Time Domain Reflectometer, 7-34
Time, Datalogger, 8-20
Timer Instruction, 9-51
TimerIO Instruction, 7-40
Timing Program Operation, 7-15
TLL logic, E-9
TOA5 Data File Format, 2-13
TOB1 Binary File Format, 2-14
TOB3 Binary File Format, 2-14
Toggle, E-9
Totalize Output Instruction, 6-34
Transient, E-3, E-10
Trigger Data Output, 6-5
Triggered Scan, 9-25
Trim String Function, 11-9

TTL, E-9
TX, OV-5

U
UINT2, E-9
UINT2 Data Type

Definition, 4-18
Units Declaration, 5-14
Until, 9-3
UpperCase String Function, 11-9
UPS, E-10
User Flags, 4-19
User Program, E-10
USR:, E-9

V
VAC, E-10
VaporPressure, 8-42
Variable, E-10
Variable - Arrays, 4-11
Variable Array, 4-11
Variable Arrays in Measurement Parameters, 4-30
Variable Definition, 4-11
Variable Dimension, 4-12
Variable Nomenclature Rules, 4-20
Variables, 4-35
VDC, E-10
View Pro, OV-25
Volt Meter, E-10
Voltage Input Limits, 1-8
Voltage Max before Damage, 3-7
VoltDiff Instruction, 7-4
VoltFilt Instruction, 7-44
Volts, E-10
VoltSe Instruction, 7-4

W
WaitDigTrig, Wait Digital Trigger Instruction, 9-25
Watch Dog Timer, E-10
Weather Tight, E-10
Wend, 9-3
WetDryBulb, 8-42
While, 9-3
Windowing, 3-33, 7-52
WindVector, 6-35
WorstCase, 6-9
WriteIO Instruction, 7-42, 9-52

X
XML, E-10
XOr Function, 8-43

Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES

www.campbellsci.com • info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)
PO Box 2450

Somerset West 7129
SOUTH AFRICA

www.csafrica.co.za • cleroux@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 8108

Garbutt Post Shop QLD 4814
AUSTRALIA

www.campbellsci.com.au • info@campbellsci.com.au

Campbell Scientific do Brazil Ltda. (CSB)
Rua Luisa Crapsi Orsi, 15 Butantã

CEP: 005543-000 São Paulo SP BRAZIL
www.campbellsci.com.br • suporte@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)

11564 - 149th Street NW
Edmonton, Alberta T5M 1W7

CANADA
www.campbellsci.ca • dataloggers@campbellsci.ca

Campbell Scientific Centro Caribe S.A. (CSCC)

300 N Cementerio, Edificio Breller
Santo Domingo, Heredia 40305

COSTA RICA
www.campbellsci.cc • info@campbellsci.cc

Campbell Scientific Ltd. (CSL)

Campbell Park
80 Hathern Road

Shepshed, Loughborough LE12 9GX
UNITED KINGDOM

www.campbellsci.co.uk • sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)
3 Avenue de la Division Leclerc

92160 ANTONY
FRANCE

www.campbellsci.fr • info@campbellsci.fr

Campbell Scientific Spain, S. L.
Avda. Pompeu Fabra 7-9, local 1

08024 Barcelona
SPAIN

www.campbellsci.es • info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or International representative.

mailto:suporte@campbellsci.com.br

	Revision and Copyright Information
	Warranty
	Assistance
	Table of Contents
	Quick Start
	QS1. Setting Up
	QS1.1 Installing RTDAQ
	QS1.2 Opening Enclosure
	QS1.3 Connecting the RS232 Port/ Card Installation
	QS1.4 Powering the Logger
	QS1.5 Setting Up Serial Communications
	QS1.6 Setting Up IP Communications
	QS1.6.1 IP Port Setup Tips
	QS1.6.1.1 Subnet Mask and IP Settings

	QS2. Program Generator Basics
	QS2.1 Program Generator Summary Window
	QS2.2 Program Generator Configuration Window
	QS2.3 Program Generator Scan Window
	QS2.4 Program Generator Output Table Window
	QS2.5 Program Generator Special Configuration
	QS2.6 Program Generator: Save and Download

	QS3. RealTime Monitoring
	QS5. View Data
	QS6. Comparison of CR9032 and CR9031
	Processor
	Memory
	Communication Ports
	Peripheral Compatibility
	PC-Card LED Indicator Status
	Instruction Set
	New Instructions

	Modified or Removed Instructions

	Overview
	OV1. Physical Description
	OV1.1 Basic System
	CR9011 Power Supply Module and AC Adapter
	CR9032 CPU Module
	CR9041 A/D and Amplifier Module

	OV1.2 Measurement Modules
	CR9050(E) Analog Input Module
	CR9051E Fault Protected 5 V Analog Input Module
	CR9052DC Anti-Alias Filter Module with DC Excitation
	CR9052IEPE Anti-Alias Filter Module
	CR9055(E) 50-Volt Analog Input Module
	CR9058E Isolation Module
	CR9060 Excitation Module
	CR9070 Counter - Timer / Digital I/O Module — Obsolete
	CR9071E Counter and Digital I/O Module

	OV1.3 Communication Interfaces

	The CR9000X's CPU module (CR9032) has built-in RS-232 and Ethernet ports, thus eliminating the need for expensive external communication interfaces.
	OV2. Memory and Programming Concepts
	OV2.1 Memory
	OV2.2 Measurements, Processing, Data Storage
	OV2.3 Data Tables

	OV4. Support Software
	PC200W
	PC400
	RTDAQ
	LoggerNetTM Suite
	Short Cut
	View Pro
	RTMC (Real-Time Monitoring and Control)
	RTMC Pro
	RTMCRT
	RTMC Web Server
	Software Development Kits (SDKs)

	OV5. Specifications

	Section 1. Installation
	1.1 Enclosure
	1.1.1 Connecting Sensors
	1.1.2 Quick Connectors
	1.1.3 Junction Boxes

	1.2 System Power Requirements and Options
	1.2.1 Power Supply and Charging Circuitry
	1.2.2 Connecting to Vehicle Power Supply
	1.2.3 Solar Panels
	1.2.4 External Battery Connection
	1.2.5 Safety Precautions

	1.3 Humidity Effects and Control
	1.3.1 Desiccant
	1.3.2 Nitrogen Purging

	1.4 Recommended Grounding Practices
	1.4.1 Protection from Lightning
	1.4.2 Operational Input Voltage Limits: Effect on Measurements

	1.5 Use of Digital Control Ports for Switching Relays

	Section 2. Data Storage and Retrieval
	2.1 Memory/Data Storage in CR9000X
	2.1.1 Internal Flash Memory
	2.1.2 Internal Synchronous DRAM
	2.1.3 PCMCIA PC Card

	2.2 Internal Data Format
	2.2.1 NAN and ±INF
	2.2.1.1 Analog Measurements and NAN
	2.2.1.2 Floating Point Math, NAN, and ±INF

	2.3 Data Collection
	2.3.1 The Collect Menu
	2.3.1.1 Collect Mode
	2.3.1.2 File Mode
	2.3.1.3 File Format

	2.3.2 Table Monitor Window Save to File
	2.3.3 File Control Files Retrieval
	2.3.4 Logger Files Retrieval Via PCMCIA PC Card
	2.3.4.1 Removing PC Card from CR9000X

	2.3.5 Converting File Format

	2.4 Data Format on Computer
	2.4.1 Data File Header Information
	"Logger Model"
	LINE 6 Time Stamp
	Record Number

	2.4.2 TOA5 ASCII File Format
	2.4.3 TOB1 Binary File Format
	2.4.4 TOB3 Binary File Format

	Section 3. CR9000X MeasurementDetails
	3.1 Measurements using the CR9041 A/D
	3.1.1 Analog Voltage Measurement Sequence
	3.1.1.1 Reversing Excitation or the Differential Input
	3.1.1.2 Delay
	3.1.1.3 Integration

	3.1.2 Single Ended and Differential Voltage Measurements
	3.1.2.1 Single Ended Voltage Range
	3.1.2.2 Differential Voltage Range

	3.1.3 Signal Settling Time
	3.1.4 Thermocouple Measurements
	3.1.4.1 Error Analysis
	Reference Junction Temperature with CR9050
	Thermocouple Limits of Error
	Accuracy of the Thermocouple Voltage Measurement
	Noise on Voltage Measurement
	Thermocouple Polynomial: Voltage to Temperature
	Reference Junction Compensation: Temperature to Voltage
	Error Summary

	3.1.4.2 Use of External Reference Junction or Junction Box

	3.1.5 Bridge Resistance Measurements
	BrHalf3W
	BrHalf4W
	BrFull

	3.1.6 Measurements Requiring AC Excitation
	3.1.7 Influence of Ground Loop on Measurements

	3.2 CR9058E Isolation Module Measurements
	3.2.1 CR9058E Supported Instructions
	3.2.1.1 CR9058 setup variances with the CR9050/CR9051E

	3.2.2 CR9058E Sampling, Noise and Filtering
	3.2.3 CR9058E; Hard Setting the Filter Order

	3.3 CR9052 Filter Module Measurements
	3.4 Pulse Count Measurements
	3.4.1 CR9070 PulseCount Resolution
	3.4.2 CR9071E PulseCount Resolution
	3.4.3 CR9071E TimerIO for Measuring Frequency Inputs
	3.4.4 High Frequency Pulse Measurements

	Section 4. CRBasic – Native LanguageProgramming
	4.1 Introduction to Writing CR9000X Programs
	4.1.1 ShortCut
	4.1.2 Program Generator
	4.1.3 CRBasic Program Editor
	4.1.3.1 Inserting Comments into Program

	4.1.4 Programming CRBASIC's "Basics":
	‘Define Constants
	‘Define Data Tables Constants
	‘Setup Main Program Scan
	‘Setup Main Program Scan
	 ‘Define Constants
	 ‘Define Data Tables Constants
	BeginProg ‘Setup Main Program Scan

	4.2 CRBasic Programming
	4.2.1 Fundamental elements of CRBASIC include:
	4.2.2 Numerical Entries
	4.2.3 Programming Structure
	‘Define Constants

	4.2.4 Declarations
	4.2.4.1 Variables
	4.2.4.2 Variable Arrays
	4.2.4.3 Dimensions
	4.2.4.4 Data Types
	4.2.4.5 Data Type Operational Detail

	4.2.5 Constants
	4.2.6 Flags
	4.2.7 Parameter Types
	Name for
	4.2.7.1 Expressions in Parameters

	4.2.8 Data Tables
	4.2.8.1 DataTable/EndTable
	4.2.8.2 Data Table Trigger Modifiers
	4.2.8.3 Data Table Export Instructions
	4.2.8.4 Data Output Processing Instructions

	4.2.9 Measurement Timing and Processing
	4.2.9.1 Scan Instruction
	4.2.9.2 SubScan
	4.2.9.2.1 CR9052DC/CR9052IEPE Filter Module SubScan
	4.2.9.2.2 CR9058E Isolation Module SubScan or SuperScan
	4.2.9.2.3 Measurement Loop SubScan

	4.2.9.3 SlowSequence

	4.2.10 CRBasic Measurement Instructions
	4.2.10.1 ModuleTemp Measurement Instruction
	4.2.10.2 TCDiff Measurement Instruction

	4.2.11 Expressions
	4.2.11.1 Floating Point Arithmetic
	4.2.11.2 Mathematical Operations
	4.2.11.3 Expressions with Numeric Data Types
	4.2.11.3.1 Boolean from FLOAT or LONG
	4.2.11.3.2 FLOAT from LONG or Boolean
	4.2.11.3.3 LONG from FLOAT or Boolean
	4.2.11.3.4 Integers in Expressions
	4.2.11.3.5 Constants Conversion

	4.2.11.4 Logical Expressions
	4.2.11.5 String Expressions

	4.3 Program Access to Data Tables
	C = Century
	hh = Hour

	Section 5. Program Declarations
	Constants (and pre-defined constants), Variables, Constants, Aliases, Units, Data Tables, Functions, and Subroutines must be declared before being used in a CRBasic program. They are normally declared at the beginning of a CRBASIC program.
	ALIAS
	AS
	CONST
	CONSTTABLE/ENDCONSTTABLE
	DIM
	FUNCTION, EXITFUNCTION, END FUNCTION
	EndFunction
	Function Example

	PUBLIC
	StationName
	SUB, EXIT SUB, END SUB
	End Sub
	Subroutine Example

	UNITS

	Section 6. Data Table Declarations andOutput Processing Instructions
	6.1 Data Table Declaration
	6.2 Trigger Modifiers
	DataInterval (TintoInt, Interval, Units, Lapses)
	Lapse Value
	Result
	OpenInterval
	DataEvent (PreTrigRecs, StartTrig, StopTrig, PostTrigRecs)
	FillStop
	WorstCase (TableName, NumCases, MaxMin, Change, RankVar)
	WorstCase Example

	6.3 Export Data Instructions
	CardFlush
	CardOut (StopRing, Size)
	DSP4 (FlagVar, Rate)

	6.4 Output Processing Instructions
	Average (Reps, Source, DataType, DisableVar)
	Covariance (NumVals, Source, DataType, DisableVar, NumCov)
	FFT (Source, DataType, N, Tau, Units, Option)
	FFT Example
	FieldNames “list of fieldnames”
	Example 1
	Example 2
	Example 3

	Histogram (BinSelect, DataType, DisableVar, Bins, Form, WtVal, LowLim, UpLim)
	Histogram4D (BinSelect, DataType, DisableVar, Bins1, Bins2, Bins3, Bins4, Form, WtVal, LowLim1, UpLim1, LowLim2, UpLim2, LowLim3, UpLim3, LowLim4, UpLim4)
	LevelCrossing (Source, DataType, DisableVar, NumLevels, 2ndDim, CrossingArray, 2ndArray, Hysteresis, Option)
	 Crossing 2nd Dim

	Maximum (Reps, Source, DataType, DisableVar, Time)
	Median
	Minimum (Reps, Source, DataType, DisableVar, Time)
	Moment
	RainFlow (Source, DataType, DisableVar, MeanBins, AmpBins, LowerLimit, UpperLimit, MinAmp, Form)
	SampleFieldCal
	Sample (Reps, Source, DataType)
	SampleMaxMin (Reps, Source, DataType, DisableVar)
	StdDev (Reps, Source, DataType, DisableVar)
	Totalize (Reps, Source, DataType, DisableVar)
	WindVector (Repetitions, Speed/East, Direction/North, DataType, DisableVar, Subinterval, SensorType, OutputOpt)
	Measured raw data:
	Calculations:

	Section 7. Measurement Instructions
	7.1 Voltage Measurements
	VoltDiff (Dest, Reps, Range, ASlot, DiffChan, RevDiff, SettlingTime, Integ, Mult, Offset)
	Alpha Code
	Code
	6
	N/A
	V10
	V2

	VoltSE (Dest, Reps, Range, ASlot, SEChan, SettlingTime, Integ, Mult, Offset)

	7.2 Thermocouple Measurements
	TCDiff (Dest, Reps, Range, ASlot, DiffChan, TCType, TRef, RevDiff, SettlingTime, Integ, Mult, Offset)
	Alpha Code
	Code
	6
	N/A
	V10
	V2

	TCSE (Dest, Reps, Range, ASlot, SEChan, TCType, TRef, SettlingTime, Integ, Mult, Offset)

	7.3 Resistive Bridge Measurements
	7.3.1 Electrical Bridge Circuits
	7.3.2 Bridge Excitation
	7.3.3 Half Bridges
	BrHalf (Dest, Reps, Range, ASlot, SEChan, ExSlot, ExChan, MesPEx, ExmV, RevEx, SettlingTime, Integ, Mult, Offset)
	BrHalf3W (Dest, Reps, Range, ASlot, SEChan, ExSlot, ExChan, MesPEx, ExmV, RevEx, SettlingTime, Integ, Mult, Offset)
	BrHalf4W (Dest, Reps, Range1, Range2, ASlot, DiffChan, ExSlot, ExChan, MesPEx, ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)

	7.3.4 Full Bridges
	BrFull (Dest, Reps, Range, ASlot, DiffChan, ExSlot, ExChan, MesPEx, ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)
	BrFull6W (Dest, Reps, Range1, Range2, ASlot, DiffChan, ExSlot, ExChan, MesPEx, ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)

	7.4 Self Measurements
	Battery (Dest, BattOpt)
	ModuleTemp (Dest, Reps, ASlot, Integ)
	Calibrate
	BiasComp
	InstructionTimes (Dest)

	7.5 Peripheral Devices
	AM25T (Dest, Reps, Range, AM25TChan, ASlot, DiffChan, TCType, Tref, ExCardSlot, ClkPort, ResPort, ExChan, RevDiff, SettlingTime, Integ, Mult, Offset)
	Alpha Code
	Code
	6
	N/A
	V10
	V2

	CS7500 (Dest, Reps, SDMAddres, CS7500Cmd)
	CSAT3 (Dest, Reps, Address, Command)
	SDMAO4 (Source, Reps, SDMAddress)
	SDMCAN (Dest, SDMAddress, TimeQuanta, TSEG1, TSEG2, ID, DataType, StartBit, NumBits, NumVals, Multiplier, Offset)
	SDMCD16AC (Source, Reps, SDMAddress)
	SDMCVO4 (Source, Reps, SDMAddress, Mode)
	SDMINT8 INTERVAL TIMER
	SDMIO16 (Dest, Status, Address, Command, ModePorts 16-13, ModePorts 12-9, ModePorts 8-5, ModePorts 4-1, Mult, Offset)
	SDMSIO4 (Dest, Reps, Address, Mode, Command, FirstOp, SecOp, ValuesPerRep, Mult, Offset)
	SDMSW8A (Dest, Reps, SDMAddress, FunctOp, SW8AStartChan, Mult, Offset)
	SDMSpeed (BitPeriod)
	SDMTrigger
	SDMX50 (SDMAddress, Channel)
	TDR100 (Dest, SDMAddress, Option, Mux/ProbeSelect, WaveAvg, Vp, Points, CableLength, WindowLength, ProbeLength, ProbeOffset, Mult, Offset)

	7.6 Pulse/Timing/State Measurements
	PulseCount (Dest, Reps, PSlot, PChan, PConfig, POption, Mult, Offset)
	PulseCountReset
	PulseCountReset Example 1
	PulseCountReset Example 2
	ReadIO (Dest, PSlot, Mask)
	TimerIO (Dest, PSlot, Edges 16–9, Edges 8–1, Function 16–9, Function 8–1, AllDoneFlag)
	WriteIO (PSlot, Mask, Source)

	7.7 Serial Sensors
	SerialInput(Dest, MaxValues, TerminateChar, FilterString)
	SerialInput Example

	7.8 CR9052DC & CR9052IEPE Filter Module
	Scan Interval
	Scan Rate
	 500 Hz
	VoltFilt (Dest, Reps, Range, FSlot, Chan, FiltOption, Excitation, Mult, Offset)
	SubScan (SubInterval, Units, SubRatio)
	Filter Module Memory Buffer
	FFTFilt (Dest, Reps, Range, Fslot, Channel, FiltOption, Excitation, Mult, FSampRate, FFTLen, TSWindow, SpectOption, Fref, SBin, ILow, IHigh)
	Sample Rate
	Sample Interval
	 500 Hz
	snapshots processed into spectra are “seamless”. If the scan period is greater than FFTLen/FsampRate, then the time series snapshots will have gaps between them. A compile error occurs if the scan Period is less than FFTLen/FsampRate
	Spectra Result
	Maximum Spectrum Length
	Real and Imaginary

	Window Function
	 Spectral Options
	 Real and Imaginary
	 Amplitude
	 Amplitude
	 Power
	 Power Spectral Density
	RMS Amplitude
	 deciBell

	FFT Spectral Bins
	Frequency Range
	 Maximum Frequency
	 Minimum Frequency

	Frequency Resolution
	Spectral ReBinning
	 Linear Spectral Rebinning
	 Logarithmic Spectral ReBinning (1/n Octave Analyses)

	FFTSample (Source, DataType)

	Section 8. Processing and MathInstructions
	AngleDegrees
	Bit Shift Operators (<< and >>)
	ABS(Source)
	ACOS (Source)
	AND Operator
	ASIN (Source)
	ATN(Source)
	ATN2(Source)
	AvgRun (Dest, Reps, Source, Number)
	Syntax
	Remarks

	AvgSpa (Dest, Swath, Source)
	Ceiling(Source)
	COS(Source)
	CosH (Source)
	CovSpa(Dest,NumofCov, Size,CoreArray,DataArray)
	Syntax

	DewPoint (Dest, Temp, RH)
	Syntax
	Calculating Dew Point
	Error in the Estimation of Dew Point

	EQV
	Syntax

	EXP
	FFTSpa (Dest, N, Source, Tau, Units, Option)
	Spectral Options
	 Real and Imaginary
	 Amplitude
	 Amplitude
	 Power
	 Power Spectral Density

	Floor (Source)
	Syntax

	FRAC(Source)
	Hex (Expression)
	HexToDec (Expression)
	INTDV
	IfTime(TintoInt, Interval, Units)
	Syntax

	IIF
	Syntax

	IMP
	Syntax

	INT(Source), Fix(Source)
	LOG(Source) or LN(Source)
	LOG10 (source)
	Syntax
	LOG10 Function Example

	MaxSpa(Dest, Swath, Source)
	MinSpa(Dest, Swath, Source)
	MOD
	NOT
	Syntax

	OR Operator
	PeakValley (DestPV, DestChange, Reps, Source, Hysteresis)
	PRT (Dest, Reps, Source, Mult, Offset)
	PRTCalc (Dest, Reps, Source, PRTType, Mult, Offset)
	Randomize(Source)
	RectPolar (Dest, Source)
	RMSSpa(Dest, Swath, Source)
	Round(Source, Decimal)
	RND Function
	SGN Function
	SIN(Source)
	SINH (Source)
	SortSpa (Dest, Swath, Source)
	Syntax
	Remarks

	SQR(Source)
	StdDevSpa(Dest, Swath, Source)
	SatVP (Dest, Temp)
	StrainCalc(Dest, Reps, BrConfig, Source, Zero, GF, v)
	Syntax
	¼ BRIDGE STRAIN CASE 2
	Full Bridge Strain
	StrainCalc Example

	Tan(Source)
	TANH (Source)
	VaporPressure (Dest, Temp, RH)
	WetDryBulb (Dest, Temp, WetTemp, Pressure)
	XOR
	Derived Math Functions

	Section 9. Datalogger Control
	9.1 Program Structure/Control
	BeginProg, EndProg, Exit
	Call
	CallTable
	Default Program
	Delay (Option, Delay, Units)
	Remarks
	Do
	Remarks

	FileManage
	FileManage Example

	FileMark(TableName)
	For ... Next Statement
	If ... Then ... Else Statement
	Include
	Include Example

	Print list of variables or quoted text
	RunDLDFile
	Scan
	Select Case Statement
	SetStatus ("FieldName", Value)
	SlotConfigure (Slot4CardID, Slot5CardID, Slot6CardID, Slot7CardID, Slot8CardID, Slot9CardID, Slot10CardID, Slot11CardID, Slot12CardID)
	SlowSequence(TimeSlice)
	TimeSlice
	SlowSequence Example

	SubScan/NextSubScan
	WaitDigTrig

	9.2 Datalogger Status/Control
	BiasComp
	Calibrate
	CalFile(Source/Dest, NumVals, "Device:filename", Option)
	Syntax
	Array
	Constant

	ClockSet (Source).
	Data (DataLong), Read, Restore
	Excite (ExSlot, ExChan, ExmV, Delay)
	FieldCal (Function, MeasVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)
	FieldCalStrain (Function, MeasVar, Reps, GF_Adj, Zero_mVperVolt, Mode, KnownRs, Index, NumAvg, GF_Raw, uStrain)
	Syntax for Zeroing
	Syntax for Shunt Calibration

	Get Record(Dest, TableName, RecsBack)
	InstructionTimes(Dest)
	LoadFieldCal
	Syntax
	Remarks

	Move(Dest, DestReps, Source, SourceReps)
	NewFieldCal
	NewFieldNames (OldNames, NewNames)
	PortSet (ExSlot, Port, State, Delay)
	Power Off
	Syntax

	Powerup.ini
	ReadIO (Dest, PSlot, Mask)
	RealTime(Dest)
	Reset Table
	Remarks

	SecsSince1990
	Syntax
	Remarks

	Timer
	WriteIO (PSlot, Mask, Source)

	9.3 File Control
	FileClose
	FileCopy
	FileList
	FileManage
	FileOpen
	FileRead
	FileReadLine
	FileRename
	FileSize
	FileTime
	FileWrite
	TableFile

	Section 10. Custom Keyboard DisplayMenus
	DisplayMenu/EndMenu
	DisplayValue ("MenuItemName", Source)
	MenuItem ("MenuItemName",Source)
	MenuPick (Item1, Item2, Item3, ..., Item512)
	SubMenu/EndSubMenu

	Section 11. String Functions
	11.1 Expressions with Strings
	11.1.1 Constant Strings
	11.1.2 Add Strings
	11.1.3 Subtraction of Strings
	11.1.4 String Conversion to/from Numeric
	11.1.5 String Comparison Operators
	11.1.6 Sample () Type Conversions and other Output Processing Instructions

	11.2 String Manipulation Functions
	ASCII(ASCII_String(1,1,Position))
	Syntax
	CHR(c)
	FormatFloat (Float, FormatString)
	Syntax
	Variable or constant

	InStr (Start, SearchStr, SoughtString, SearchOption)
	Remarks
	Integer
	String or Var

	Left (SearchString, NumChars)
	String or Var

	Len (SourceString)
	LowerCase (SourceString)
	LTrim (SourceString)
	Mid (String, Start, Length)
	String or Var
	Integer

	Replace (SearchString, SubString, ReplaceString)
	String or Var
	String,String Var

	Right (SearchString, NumChars)
	String or Var

	RTrim (SourceString)
	SplitStr (ResultString, SearchString, FilterString, NumSplit, SplitOption)
	Remarks
	Var Arrayr
	String or Var

	StrComp (String1, String2)
	Trim (SourceString)
	UpperCase (SourceString)

	Appendix A. Keywords and PredefinedConstants
	Appendix B. Filter Module AvailableScan Rates
	Appendix C. PC/CF Card Information
	Appendix D. Status Table
	Appendix E. Glossary
	E.1 Terms
	E.2 Concepts
	E.2.1 Accuracy, Precision, and Resolution

	CR9000X Index
	Campbell Scientific Contact Information

