Product Manual

IRGASON
Integrated CO$_2$/H$_2$O Open-Path Gas Analyzer and 3D Sonic Anemometer
Limited Warranty

“Products manufactured by CSI are warranted by CSI to be free from defects in materials and workmanship under normal use and service for twelve months from the date of shipment unless otherwise specified in the corresponding product manual. (Product manuals are available for review online at www.campbellsci.com.) Products not manufactured by CSI, but that are resold by CSI, are warranted only to the limits extended by the original manufacturer. Batteries, fine-wire thermocouples, desiccant, and other consumables have no warranty. CSI’s obligation under this warranty is limited to repairing or replacing (at CSI’s option) defective Products, which shall be the sole and exclusive remedy under this warranty. The Customer assumes all costs of removing, reinstalling, and shipping defective Products to CSI. CSI will return such Products by surface carrier prepaid within the continental United States of America. To all other locations, CSI will return such Products best way CIP (port of entry) per Incoterms® 2010. This warranty shall not apply to any Products which have been subjected to modification, misuse, neglect, improper service, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied. The warranty for installation services performed by CSI such as programming to customer specifications, electrical connections to Products manufactured by CSI, and Product specific training, is part of CSI's product warranty. CSI EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CSI hereby disclaims, to the fullest extent allowed by applicable law, any and all warranties and conditions with respect to the Products, whether express, implied or statutory, other than those expressly provided herein.”
Assistance

Products may not be returned without prior authorization. The following contact information is for US and international customers residing in countries served by Campbell Scientific, Inc. directly. Affiliate companies handle repairs for customers within their territories. Please visit www.campbellsci.com to determine which Campbell Scientific company serves your country.

To obtain a Returned Materials Authorization (RMA) number, contact CAMPBELL SCIENTIFIC, INC., phone (435) 227-9000. Please write the issued RMA number clearly on the outside of the shipping container. Campbell Scientific’s shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA# _____
815 West 1800 North
Logan, Utah 84321-1784

For all returns, the customer must fill out a “Statement of Product Cleanliness and Decontamination” form and comply with the requirements specified in it. The form is available from our website at www.campbellsci.com/repair. A completed form must be either emailed to repair@campbellsci.com or faxed to (435) 227-9106. Campbell Scientific is unable to process any returns until we receive this form. If the form is not received within three days of product receipt or is incomplete, the product will be returned to the customer at the customer’s expense. Campbell Scientific reserves the right to refuse service on products that were exposed to contaminants that may cause health or safety concerns for our employees.
DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING, USING, MAINTAINING, AND WORKING ON OR AROUND TRIPODS, TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC. FAILURE TO PROPERLY AND COMPLETELY ASSEMBLE, INSTALL, OPERATE, USE, AND MAINTAIN TRIPODS, TOWERS, AND ATTACHMENTS, AND FAILURE TO HEED WARNINGS, INCREASES THE RISK OF DEATH, ACCIDENT, SERIOUS INJURY, PROPERTY DAMAGE, AND PRODUCT FAILURE. TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE HAZARDS. CHECK WITH YOUR ORGANIZATION’S SAFETY COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED PROTECTIVE EQUIPMENT PRIOR TO PERFORMING ANY WORK.

Use tripods, towers, and attachments to tripods and towers only for purposes for which they are designed. Do not exceed design limits. Be familiar and comply with all instructions provided in product manuals. Manuals are available at www.campbellsci.com or by telephoning (435) 227-9000 (USA). You are responsible for conformance with governing codes and regulations, including safety regulations, and the integrity and location of structures or land to which towers, tripods, and any attachments are attached. Installation sites should be evaluated and approved by a qualified engineer. If questions or concerns arise regarding installation, use, or maintenance of tripods, towers, attachments, or electrical connections, consult with a licensed and qualified engineer or electrician.

General
- Prior to performing site or installation work, obtain required approvals and permits. Comply with all governing structure-height regulations, such as those of the FAA in the USA.
- Use only qualified personnel for installation, use, and maintenance of tripods and towers, and any attachments to tripods and towers. The use of licensed and qualified contractors is highly recommended.
- Read all applicable instructions carefully and understand procedures thoroughly before beginning work.
- Wear a hardhat and eye protection, and take other appropriate safety precautions while working on or around tripods and towers.
- Do not climb tripods or towers at any time, and prohibit climbing by other persons. Take reasonable precautions to secure tripod and tower sites from trespassers.
- Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical
- You can be killed or sustain serious bodily injury if the tripod, tower, or attachments you are installing, constructing, using, or maintaining, or a tool, stake, or anchor, come in contact with overhead or underground utility lines.
- Maintain a distance of at least one-and-one-half times structure height, 20 feet, or the distance required by applicable law, whichever is greater, between overhead utility lines and the structure (tripod, tower, attachments, or tools).
- Prior to performing site or installation work, inform all utility companies and have all underground utilities marked.
- Comply with all electrical codes. Electrical equipment and related grounding devices should be installed by a licensed and qualified electrician.

Elevated Work and Weather
- Exercise extreme caution when performing elevated work.
- Use appropriate equipment and safety practices.
- During installation and maintenance, keep tower and tripod sites clear of un-trained or non-essential personnel. Take precautions to prevent elevated tools and objects from dropping.
- Do not perform any work in inclement weather, including wind, rain, snow, lightning, etc.

Maintenance
- Periodically (at least yearly) check for wear and damage, including corrosion, stress cracks, frayed cables, loose cable clamps, cable tightness, etc. and take necessary corrective actions.
- Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS, THE CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING FROM IMPROPER INSTALLATION, USE, OR MAINTENANCE OF TRIPods, TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.
Table of Contents

PDF viewers: These page numbers refer to the printed version of this document. Use the PDF reader bookmarks tab for links to specific sections.

1. Introduction ... 1

2. Precautions .. 1

3. Initial Inspection .. 2

4. Overview ... 2

5. Specifications .. 2
 5.1 Measurements ... 2
 5.2 Output Signals ... 5
 5.3 Physical Description .. 5
 5.4 Power Requirements During Power Up and Operation 7

6. Installation ... 7
 6.1 Orientation ... 7
 6.2 Mounting ... 8
 6.3 Wiring and Connections ... 12

7. Settings ... 16
 7.1 Factory Defaults .. 16
 7.2 Bandwidth ... 17
 7.3 SDM Address .. 17
 7.4 Unprompted Output ... 17
 7.5 Unprompted Output Rate .. 17
 7.6 RS-485 Baud Rate ... 17
 7.7 Analog Output .. 18
 7.8 ECMon Update Rate .. 18
 7.9 Temperature Sensor .. 18
 7.10 Fixed Temperature Value ... 18
 7.11 Pressure Sensor ... 18
 7.11.1 Pressure Gain .. 18
 7.11.2 Pressure Offset ... 19
 7.11.3 Fixed Pressure Value .. 19
 7.12 Pressure Differential Enable ... 19
 7.13 Heater Control .. 19
 7.14 ECMon ... 20
 7.15 Device Configuration Utility ... 22

8. EC100 Outputs ... 23
 8.1 SDM Output ... 23
 8.2 USB or RS-485 Output ... 23
 8.3 Analog Outputs ... 26
9. Maintenance ... 26
 9.1 Routine Maintenance .. 26
 9.2 Wick Maintenance ... 27
 9.2.1 Sonic Wicks ... 27
 9.2.2 Gas Analyzer Wicks ... 28
 9.3 Gas-Analyzer Window Cleaning 29
 9.4 Zero and Span .. 29
 9.5 Replacing Desiccant and Scrubber Bottles 34
 9.6 Factory Recalibration .. 35

10. Data Collection and Data Processing 36
 10.1 Data Collection and Processing with EasyFlux DL 36
 10.2 Data Logger Programming with CRBasic 38
 10.2.1 EC100() Instruction ... 38
 10.3 EC100Configure() Instruction 41
 10.3.1 ConfigCmd 11 Zero-and-span Control 44
 10.3.2 ConfigCmd 18 Heater Voltage 44
 10.4 Example CRBasic Program .. 45

11. Theory of Operation ... 45
 11.1 IRGASON Sonic Anemometer 45
 11.1.1 Wind Speed .. 46
 11.1.2 Temperature .. 46
 11.2 IRGASON Gas Analyzer ... 48

12. References .. 49

Appendices
A. Filter Bandwidth and Time Delay A-1
B. Sonic Anemometer Orientation B-1
 B.1 Determining True North and Sensor Orientation B-1
 B.2 Online Magnetic Declination Calculator B-2
C. Equations C-1
D. Safety Data Sheets (SDS) D-1
 D.1 Molecular Sieve, Type 13X D-1
 D.2 Magnesium Perchlorate .. D-5
 D.3 Decarbite .. D-12

Appendix E. IRGASON Packing Information E-1

Figures
5-1. IRGASON dimensions, side view 6
5-2. IRGASON dimensions, front view 7
6-1. Exploded view of mounting the IRGASON 10
6-2. EC100-enclosure mounting bracket mounted on a vertical mast (left) and a tripod leg (right) ... 11
6-3. Exploded view of mounting the EC100 enclosure ... 11
6-4. Mounting the IRGASON temperature probe ... 12
6-5. EC100 electronics front panel with enhanced barometer. At left, as received from Campbell Scientific. At right, all wiring and connections complete ... 13
6-6. Base of EC100 enclosure ... 14
6-7. Sensor connections to EC100 ... 14
7-1. Main window of ECMon software ... 21
7-2. Setup window in ECMon ... 22
8-1. An example of USB data output in terminal mode 25
9-1. Proper location of the sonic top wick (left) and bottom wick (right) 27
9-2. CSAT3 Sonic Wick Spares Kit contents ... 28
9-3. Proper location of the gas analyzer top wick (left) and bottom wick (right) .. 29
9-4. The zero-and-span shroud mounted on the zero-and-span stand. The top tube is the gas intake, the black cable is the temperature thermistor, and the short bottom tube is the gas exhaust. ... 31
9-5. ECMon zero-and-span window ... 32
9-6. Replacing the desiccant and CO2 scrubber bottles (replacement bottles purchased after July 2017, may appear different than in the figure). .. 35
10-1. Compass coordinate system, compass wind direction is 200°. The sonic azimuth of the anemometer is 270° .. 37
10-2. Right-handed coordinate system, horizontal wind vector angle is 70° .. 38
B-1. Magnetic declination for the contiguous United States (2015) B-1
B-2. Declination angles east of true north are subtracted from 360 to get true north .. B-2
B-3. Declination angles west of true north are added to 0 to get true north .. B-2
B-4. Online magnetic declination calculator with inputs and output for Logan, UT ... B-3
A-1. Frequency and amplitude response of EC100 filter at various bandwidths .. A-2
A-2. Frequency response comparison of the EC100 10 Hz bandwidth and a 50 ms moving average .. A-3

Tables

6-1. EC100 SDM Output to a Campbell Scientific CR1000, CR3000, or CR5000 Data Logger ... 15
7-1. Factory Default Settings .. 16
8-1. USB and RS-485 Output Elements .. 24
8-2. Multipliers and Offsets for Analog Outputs ... 26
9-1. Rain Wick Replacement Parts ... 28
10-1. Output Modes for EC100 Instruction .. 39
10-2. Bits in the Sonic Diagnostic Flag .. 40
10-3. Bits in the Gas Diagnostic Flag ... 40
10-4. ConfigCmd Values for Setting and Retrieving Settings 43
A-1. Filter Time Delays for Various Bandwidths ... A-3
C-1. Table of Equation Variables and Constants C-1
CRBasic Example

10-1. CR3000 Example Program... 45
IRGASON® Integrated CO₂/H₂O Open-Path Gas Analyzer and 3D Sonic Anemometer

1. Introduction

The IRGASON, U.S. Des. Patent No. D680455, is an in situ, open-path, mid-infrared absorption gas analyzer integrated with a three-dimensional sonic anemometer. The gas analyzer provides measurements of absolute densities of carbon dioxide and water vapor, while the sonic anemometer measures orthogonal wind components.

Before using the IRGASON please study:

- Section 2, Precautions (p. 1)
- Section 3, Initial Inspection (p. 2)
- Section 6, Installation (p. 7)

More details are available in the remaining sections.

2. Precautions

- **DANGER:**
 - The scrubber bottles of all IRGASON instruments shipped prior to July 2017 contain the strong oxidizing agents sodium hydroxide (caustic soda, NaOH) and anhydrous magnesium perchlorate (Mg(ClO₄)₂). If you are handling or exchanging the scrubber bottles (see Section 9.5, Replacing Desiccant and Scrubber Bottles (p. 34)), use the following precautions. IRGASON instruments shipped after July 2017 contain a 13X molecular sieve instead.
 - Avoid direct contact with the chemicals.
 - Ensure your work area is well ventilated and free of reactive compounds, including liquid water.
 - Store used chemical bottles in a sealed container until disposal.
 - Dispose of chemicals and bottles properly.
 - Safety Data Sheets (SDS) are provided in Appendix D, Safety Data Sheets (SDS) (p. D-1). SDS are updated periodically by chemical manufacturers. Obtain current SDS at www.campbellsci.com.
- **WARNING:**
 - Do not carry the IRGASON by the arms or the strut between the arms. Always hold it by the block, where the upper and lower arms connect.
 - Handle the IRGASON carefully. The optical source may be damaged by rough handling, especially while the analyzer is powered.
 - Overtightening bolts will damage or deform the mounting hardware.
• **CAUTION:**
 - Grounding the EC100 measurement electronics is critical. Proper grounding to earth (chassis) will ensure maximum ESD (electrostatic discharge) protection and improve measurement accuracy.
 - Do not connect or disconnect the gas analyzer or sonic connectors while the EC100 is powered.
 - The SDM, USB, and RS-485 output options include IRGASON diagnostic data. Be aware that the absence of diagnostic data in the analog output option could make troubleshooting difficult and may lead to the user not being aware of potential problems with the instrumentation (see Section 8, *EC100 Outputs* (p. 23)).
 - Resting the analyzer on its side during the zero-and-span procedure may result in measurement inaccuracy.
 - When cleaning the gas-analyzer window, make sure the alcohol and any residual water completely evaporate before proceeding with the zero-and-span procedure (see Section 9.3, *Gas-Analyzer Window Cleaning* (p. 29)).

3. **Initial Inspection**

Upon receipt of the IRGASON, inspect the packaging and contents for damage. File damage claims with the shipping company.

4. **Overview**

The IRGASON is an in situ, open-path, mid-infrared absorption analyzer integrated with a three-dimensional sonic anemometer. The gas analyzer provides measurements of absolute densities of carbon dioxide and water vapor, while the sonic anemometer measures orthogonal wind components.

The IRGASON is measured and controlled by the EC100 electronics, which synchronizes gas and wind data, essential for valid flux calculations using the eddy-covariance method. The EC100 electronics also uses inputs from an included temperature thermistor probe and a barometer. “IRGASON” and “EC100” are often used interchangeably in this manual.

The IRGASON has been optimized for remote eddy-covariance flux applications, addressing issues of aerodynamics, power consumption, spatial displacement, and temporal synchronicity. Specifically, its unique design contains no obstructions surrounding the sample volume; it operates with only 5 W of power at room temperature; it has no spatial displacement between the sample volumes of the gas analyzer and the sonic anemometer; and the EC100 synchronously samples data from the gas analyzer and sonic anemometer.

5. **Specifications**

5.1 **Measurements**

Features

- To compute carbon dioxide and water vapor fluxes using the eddy-covariance method, the IRGASON measures:
 - absolute carbon dioxide
 - water vapor densities
 - three-dimensional wind speed
 - sonic air temperature
 - air temperature
 - barometric pressure
These measurements are required to compute carbon dioxide and water vapor fluxes using the:

- **Standard outputs:**
 - u_x, u_y, and u_z orthogonal wind components
 - sonic temperature (based on the measurement of c, the speed of sound)
 - sonic diagnostic flags
 - CO$_2$ density, H$_2$O density
 - gas analyzer diagnostic flags
 - air temperature, air pressure
 - CO$_2$ signal strength, H$_2$O signal strength
 - Air temperature and air pressure are auxiliary sensor inputs

Data logger compatibility:
- CR6
- CR1000
- CR3000
- CR5000

Measurement
- **Rate:** 60 Hz
- **Output bandwidth**
 - 5, 10, 12.5, or 20 Hz
- **Data logger-prompted output rate:**
 - 1 to 60 Hz
- **Output rate**
 - 10, 25 or 50 Hz

Operating temperature:
- –30 to 50 °C

Gas analyzer

Measurement precision
- CO$_2$ density: 0.2 mg·m$^{-3}$ (0.15 μmol·mol$^{-1}$)
- H$_2$O density: 0.00350 g·m$^{-3}$ (0.006 mmol·mol$^{-1}$)

Factory calibrated range
- CO$_2$: 0 to 1000 μmol·mol$^{-1}$
- H$_2$O: 0 mmol·mol$^{-1}$ to 37 °C dewpoint
- Analyzer temp: –30 to 50 °C
- Baro pressure: 70 to 106 kPa

CO$_2$ performance
- Zero max drift: ±0.55 mg·m$^{-3}$·°C$^{-1}$ (±0.3 μmol·mol$^{-1}$·°C$^{-1}$)
- Gain Drift: ±0.1% of reading·°C$^{-1}$ (maximum)
- Sensitivity to H$_2$O: ±1.1 x 10$^{-4}$ μmol CO$_2$·mol$^{-1}$ H$_2$O (max)

1/ user selectable
2/ noise rms, assumes:
 - 25 °C
 - 85 kPa
 - 14 g·m$^{-3}$ H$_2$O
 - 597 mg·m$^{-3}$ CO$_2$
 - 20 Hz bandwidth
3/ –30 to 50 °C
H₂O performance

- **Zero max drift**: ±0.037 g·m⁻³·°C⁻¹ (±0.05 mmol·mol⁻¹·°C⁻¹)
- **Gain Drift**: ±0.3% of reading·°C⁻¹ (maximum)
- **Sensitivity to CO₂**: ±0.1 mol H₂O·mol⁻¹·°C⁻¹ (maximum)

Sonic measurement precision

- **uₓ**: 1 mm·s⁻¹
- **uᵧ**: 1 mm·s⁻¹
- **uₚ**: 0.5 mm·s⁻¹
- **Sonic temperature**: 0.025 °C

Sonic accuracy

- **Offset error**
 - uₓ, uᵧ: < ±8 cm·s⁻¹
 - uₚ: < 4 cm·s⁻¹
- **Gain error**
 - Wind vector ±5° horizontal: < ±2% of reading
 - Wind vector ±10° horizontal: < ±3% of reading
 - Wind vector ±20° horizontal: < ±6% of reading

Sonic reporting range

- **Full scale wind**: ±65.553 m/s
- **Sonic temperature**: –50 to 60 °C

Auxiliary sensors

- **Barometer**
 - **Basic barometer**
 - **Accuracy**
 - –30 to 0 °C: ±3.7 kPa at –30 °C, falling linearly to ±1.5 kPa at 0 °C
 - 0 to 50 °C: ±1.5 kPa
 - **Measurement rate**: 10 Hz
 - **Optional enhanced barometer**:
 - Manufacturer: Vaisala
 - Model: PTB110
 - **Accuracy**
 - –30 to 0 °C: ±0.15 kPa
 - **Measurement rate**: 1 Hz

IRGASON temperature sensor:

- **Manufacturer**: BetaTherm
- **Model**: 100K6A1A Thermistor
- **Accuracy**: ±0.15 °C (–30 to 50 °C)

4/ noise rms

5/ assumes:
- –30 to 50 °C
- wind speed <30 m·s⁻¹
- azimuth angles between ±170°

6/ refer to manufacturer’s product brochure or manual for details
5.2 Output Signals

Features
- EC100 electronics outputs data using:
 - CS SDM
 - RS-485
 - USB
 - Analog out

Digital
SDM (Synchronous Device for Measurement)
- Data type: FLOAT

RS-485
- Data type: ASCII
- Output rate: 10, 20 or 60 Hz
- Baud rate: 1200 to 230400 bps

USB
- Data type: ASCII
- Output rate: 10, 20, or 60 Hz

Analog (two outputs for CO₂ and H₂O densities)
- Voltage range: 0 mV to 5000 mV
- Resolution: 76 µV (16 bit)
- Update rate: 60 Hz
- Accuracy (at 25 °C): ±3 mV
- CO₂ density equation: \[\text{mg} \cdot \text{m}^{-3} = 0.38632 \cdot (\text{mV}_{\text{out}}) - 102.59 \]
- Full scale range: \(-103 \) to \(1829 \text{ mg} \cdot \text{m}^{-3}\)
- H₂O density equation: \[\text{g} \cdot \text{m}^{-3} = 0.00865 \cdot (\text{mV}_{\text{out}}) - 2.26 \]
- Full scale range: \(-2 \) to \(41 \text{ g} \cdot \text{m}^{-3}\)

5.3 Physical Description

Optical path length: 15.37 cm (6.05 in)
Sonic path length: 10.0 cm (3.9 in)
Sonic path angle from vertical: 30°
Spatial separation between gas analyzer and sonic volumes: 0 cm

Dimensions
IRGASON
- Length: 51.5 cm (20.3 in)
- Height: 31.1 cm (12.2 in)
- Cable Length: 3 m (9.8 ft)

EC100 Enclosure: 24.1 x 35.6 x 14 cm (9.5 x 14.0 x 5.5 in)

7/ user selectable

8/ Synchronous Device for Measurement. A Campbell Scientific, Inc. proprietary serial interface for data logger to peripheral and sensor communication. See Section 8.1, SDM Output (p. 22), for details
Weight

IRGASON with cable: 2.8 kg (6.1 lbs)
EC100 with enclosure: 3.2 kg (7.1 lbs)
EC100 ingress protection: IP65

FIGURE 5-1. IRGASON dimensions, side view
5.4 Power Requirements During Power Up and Operation

Power requirement

Source: 10 to 16 VDC
Load at 25 °C: 420 mA
at 25 °C in power-down mode\(^9\): 250 mA

6. Installation

6.1 Orientation

During operation, the IRGASON should be leveled and pointed into the prevailing wind to minimize flow distortions from the instrument arms and other supporting structures. Leveling can be done using the leveling bubble on top of the instrument block. In the proper orientation, the product label will read right-side-up, with the upper arm (source) of the gas analyzer directly above the lower arm (detector).

If the IRGASON is to be used in a marine environment, or in an environment where it is exposed to corrosive chemicals (for example, the sulfur-containing compounds in viticulture), attempt to mount the IRGASON in a way that

\(^9\) sonic anemometer fully powered and gas analyzer in standby
reduces the exposure of the sonic transducers to saltwater or corrosive chemicals. In marine or viticulture environments, the sonic transducers are expected to age more quickly and require replacement sooner than a unit deployed in an inland, chemical-free environment.

NOTE

The ingress protection rating of the EC100 is not optimal for marine environments or other environments in which the enclosure may come in contact with corrosive chemicals (viticulture or agriculture, for example), as components within the enclosure are at higher risk to exposure to these substances. However, instruments with EC100 enclosures are being used in these environments with additional precautions. If the instrumentation is intended for such an environment, contact Campbell Scientific for guidance before deploying the instrument.

6.2 Mounting

The IRGASON is supplied with mounting hardware to attach it to the end of a horizontal pipe with a diameter of 1.3 in., such as the Campbell Scientific CM202, CM204, or CM206 crossarm. The following steps describe the normal mounting procedure. Refer to FIGURE 6-1.

1. Secure the chosen crossarm to a tripod or other vertical structure using a CM210 Crossarm-to-Pole mounting kit.

2. Point the horizontal arm into the direction of the prevailing wind and tighten the nuts and bolts.

WARNING

Do not carry the IRGASON by the arms or the strut between the arms. Always hold it by the block, where the upper and lower arms connect.

3. Bolt the IRGASON mounting bracket to the CM250 leveling mount (see FIGURE 6-1).

4. Install the IRGASON to the mounting bracket by inserting the mounting bolt and pin into the corresponding holes. Tighten the bolt. Make sure the analyzer is vertically oriented so the label is right-side-up and the upper arm (source) is directly above the lower arm (detector). The sonic anemometer must be oriented in a way that it faces the prevailing wind to prevent ‘shadowing’ from the sensor body. See Section 10.1, Data Collection and Processing with EasyFlux DL (p. 36), for additional information about the wind information reported by the sonic coordinate system.

5. Mount the IRGASON assembly by fitting the boom adapter over the end of the crossarm. Tighten the set screws on the boom adapter with a 3/16-inch hex socket head wrench.

WARNING

Handle the IRGASON carefully. The optical source may be damaged by rough handling, especially while the analyzer is powered.

6. If the assembly is not level, slightly loosen the bolt that holds the mounting bracket on the boom adapter and adjust the assembly until the leveling bubble on top of the IRGASON block is within the bullseye. Retighten the bolt.
7. Attach the EC100 enclosure to the mast, tripod leg, or other part of the mounting structure. To do this, attach the EC100-enclosure mounting bracket to the pipe by loosely tightening the u-bolts around the pipe. The u-bolts are found in the mesh pocket inside the EC100 enclosure. If the pipe does not run vertically (for example, if the enclosure is being attached to a leg of a tripod), rotate the bracket to the side of the pipe. The enclosure must hang upright. Make angle adjustments as needed by loosening the four nuts and rotating the bracket plates relative to one another. If the necessary angle cannot be achieved in the given orientation, the four nuts may be removed and the top plate indexed by 90° to allow the bracket to travel in the other direction (see FIGURE 6-2). Once adjusted, tighten all the nuts. Finally, attach the EC100 enclosure to the bracket by loosening the bolts on the back of the enclosure, hanging the enclosure on the mounting bracket (it should slide into place and be able to securely hang from the bracket), and tightening the bolts (see FIGURE 6-3).
FIGURE 6-1. Exploded view of mounting the IRGASON

WARNING

Overtightening bolts will damage or deform the mounting hardware.
FIGURE 6-2. EC100-enclosure mounting bracket mounted on a vertical mast (left) and a tripod leg (right)

FIGURE 6-3. Exploded view of mounting the EC100 enclosure
8. Mount the IRGASON temperature probe so that it measures temperature at the same height as the sample volume of the IRGASON. To do this, first attach the 6-plate solar radiation shield to the mast with the included u-bolt. Next, insert the end of the probe into the hole on the bottom of the shield. Tighten the screws to hold the probe in place, as shown in FIGURE 6-4. For more detailed information about the temperature probe installation and specifications, refer to the Model 107 Temperature Probe manual, which is available at www.campbellsci.com.

9. Remove the EC100- enclosure desiccant from the plastic bag and place it in the mesh pocket of the enclosure. Attach the humidity indicator card to the inside of the enclosure.

6.3 Wiring and Connections

FIGURE 6-5, FIGURE 6-6, and FIGURE 6-7 show the EC100 electronics panel, the bottom of the EC100 enclosure, and sensor connections to the EC100, respectively. Refer to these figures during wiring and connecting.

1. Find the thicker black cable coming from the block of the IRGASON. This is the IRGASON gas-analyzer cable. Connect this cable to the EC100 electronics by removing the EC100 black-rubber cable entry plug on the bottom right of the EC100 enclosure. Store the plug in the mesh pocket of the enclosure.

2. Insert the cable entry plug that is attached to the cable into the vacant slot. Push the connector at the end of the cable onto its mating connector...
IRGASON® Integrated CO₂/H₂O Open-Path Gas Analyzer and 3D Sonic Anemometer

(labeled Gas Analyzer) and tighten the thumbscrews (see FIGURE 6-5). The gas analyzer cable is approximately 3 m (9.8 ft) in length.

3. Connect the IRGASON sonic cable. Similar to (a), begin by removing the black rubber cable entry plug found on the bottom left of the EC100 enclosure. Insert the cable entry plug on the cable into the slot and connect the male end to the female connector labeled Sonic Anemometer on the EC100 electronics (see FIGURE 6-5). The sonic cable is approximately 3 m (9.8 ft) in length.

FIGURE 6-5. EC100 electronics front panel with enhanced barometer. At left, as received from Campbell Scientific. At right, all wiring and connections complete.
Unique calibration information is stored in the gas and sonic connectors of the IRGASON rather than in the EC100. This means that any IRGASON may be used with any EC100.

4. Connect the IRGASON temperature probe. Unscrew the temperature connector cover, which is found on the base of the EC100 enclosure (see FIGURE 6-6). Insert the three-prong probe connector into the female
5. Ground the EC100 by attaching a thick wire (for example, 12 AWG) to the grounding lug found on the base of the EC100 enclosure. The other end of the wire should be connected to earth (chassis) ground using a grounding rod. For more details on grounding, see the CR3000 data logger manual, grounding section.

CAUTION

Grounding electronics such as the EC100 is critical in a measurement system. Proper grounding to earth (chassis) will ensure maximum ESD (electrostatic discharge) protection and improve measurement accuracy.

CAUTION

Do not connect or disconnect the gas analyzer or sonic connectors while the EC100 is powered.

6. Connect a communications signal cable to the EC100. Loosen the nut on one of the cable entry seals (Cable 1 or Cable 2) on the base of the EC100 enclosure, remove the plastic plug (plug may be stored in mesh pocket of enclosure), insert the cable, and retighten the nut by hand. Refer to the sections below on SDM, USB, RS-485, and Analog communications for information on required signal cable types and connections to the EC100 panel.

- SDM communications: use cable CABLE4CBL-L. “L” denotes the length of the cable, which is customer-specified at time of order. TABLE 6-1 details which color of wire in the cable should be connected to each terminal found on the SDM connector of the EC100 panel.

<table>
<thead>
<tr>
<th>EC100 Channel</th>
<th>Description</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDM-C1</td>
<td>SDM Data</td>
<td>Green</td>
</tr>
<tr>
<td>SDM-C2</td>
<td>SDM Clock</td>
<td>White</td>
</tr>
<tr>
<td>SDM-C3</td>
<td>SDM Enable</td>
<td>Red (or Brown)</td>
</tr>
<tr>
<td>G</td>
<td>Digital Ground</td>
<td>Black</td>
</tr>
<tr>
<td>G</td>
<td>Shield</td>
<td>Clear</td>
</tr>
</tbody>
</table>

- USB communications: use the EC100 USB cable to connect a PC to the base of the EC100 enclosure.
- RS-485 communications: use cable CABLE3TP-L for lengths less than 500 ft. The connector on the EC100 panel labeled RS-485 displays which terminals are for receiving and transmitting.
- Analog output: use cable CABLE4CBL-L or CABLE2TP-L. Again, the customer specifies the length of this cable at time of order. The connector labeled Analog Outputs on the EC100 panel indicates where each wire should be connected (CO₂, H₂O, and two ground connections).
7. Wire power and ground (power reference) cable CABLEPCBL-L to the EC100. Feed the cable through one of the cable port openings in the base of the EC100 enclosure and attach the ends into the green EC100 power connector. Plug the connector into the female power connector on the EC100 panel. Ensure that the power and ground ends are going to the appropriate terminals labeled 12V and ground, respectively.

8. Connect the power cable to a power source. The power and ground ends may be wired to the 12V and G ports, respectively, of a Campbell Scientific data logger or to another 12 VDC source.

9. Once power is applied to the EC100, three status LEDs on the EC100 panel will illuminate. The power LED is green and the sonic and gas LEDs are orange until the unit has warmed up and is ready to make measurements at which time the LEDs become green. If, after several minutes, the LEDs turn red, a diagnostic flag has been detected. Check the individual diagnostic bits to determine the specific fault. Diagnostics may be monitored using the Status Window of ECMon, the user interface software included with the IRGASON (see Section 7, Settings (p. 16)), or with a data logger (see Section 10, Data Collection and Data Processing (p. 36)). The diagnostics may reveal that the unit needs service such as cleaning the optical windows on the gas analyzer, clearing the sonic transducers of ice or debris, etc. (see Section 9, Maintenance (p. 26)).

7. Settings

Operation of the IRGASON can be customized by changing settings. Factory defaults work well for most applications, but the user may adjust the settings with a PC using either the Campbell Scientific ECMon software (see Section 7.14, ECMon (p. 20)) or DevConfig (see Section 7.15, Device Configuration Utility (p. 22)), or with a data logger using the EC100Configure() instruction (see Section 10.3, EC100Configure() Instruction (p. 41)).

7.1 Factory Defaults

TABLE 7-1 shows the default value for each setting described in the following sections.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>20 Hz</td>
</tr>
<tr>
<td>SDM Address</td>
<td>1</td>
</tr>
<tr>
<td>Unprompted Output</td>
<td>disabled</td>
</tr>
<tr>
<td>RS-485 baud rate</td>
<td>115200 bps</td>
</tr>
<tr>
<td>Unprompted Output Rate</td>
<td>10 Hz</td>
</tr>
<tr>
<td>Analog Output</td>
<td>disabled</td>
</tr>
<tr>
<td>ECMon Update Rate</td>
<td>10 Hz</td>
</tr>
<tr>
<td>Temperature Sensor</td>
<td>Auto-Select (IRGASON Temp Sensor)</td>
</tr>
<tr>
<td>Pressure Sensor</td>
<td>EC100 Basic or EC100 Enhanced (depending on order)</td>
</tr>
<tr>
<td>Pressure Differential Enable</td>
<td>Auto-Select (Disabled for IRGASON)</td>
</tr>
<tr>
<td>Heater Control</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
7.2 Bandwidth

The EC100 has a user-selectable low-pass filter to select the bandwidth (5, 10, 12.5, or 20 Hz). Setting the bandwidth to a lower value will reduce noise. However, it must be set high enough to retain the high-frequency fluctuations in CO₂ and H₂O, or else the high frequency contributions to the flux will be lost. The factory default bandwidth of the EC100 is 20 Hz, which is sufficient for most flux applications. Lower bandwidth settings may be used for higher measurement heights, which inherently have lower-frequency content. Refer to Appendix A, Filter Bandwidth and Time Delay (p. A-4), for more information on the digital filter options.

If a spectral analysis is being done to evaluate the experimental setup, the bandwidth should be set to the Nyquist frequency, which is half the data logger sample rate (for SDM output) or half the unprompted output rate (for USB and RS-485 output). This ensures that the data will not be under-sampled and that higher-frequency variations will not be aliased to lower frequencies. Note that if too small a bandwidth is selected, high-frequency fluxes may be under-measured.

7.3 SDM Address

This parameter must be set to use SDM output from the EC100. See Section 8.1, SDM Output (p. 23), for details on using SDM output.

Each SDM device on the SDM bus must have a unique address. The IRGASON has a factory default SDM address of 1, but it may be changed to any integer value between 0 and 14. The value 15 is reserved as an SDM-group trigger.

7.4 Unprompted Output

If the EC100 is to output data as USB or RS-485 (see Section 8.2, USB or RS-485 Output (p. 23)), this setting must be set to USB Port or RS485, respectively. The factory default is to disable the unprompted output and assume data are to be logged via SDM (see Section 8.1, SDM Output (p. 23)).

Only one unprompted output type (i.e., USB or RS-485) may be selected at a given time. The rate at which the EC100 outputs these data is determined by the Unprompted Output Rate setting.

7.5 Unprompted Output Rate

This setting determines the output rate for unprompted output (USB or RS-485; see Section 8.2, USB or RS-485 Output (p. 23)). If the unprompted output is disabled, this parameter is not used. The factory default output rate is 10 Hz, but it may be set to 10, 20, or 60 Hz.

7.6 RS-485 Baud Rate

If the unprompted output mode is set to RS-485, this parameter determines the baud rate. Otherwise, this setting is not used. The RS-485 baud rate defaults to 115200 bps, although the user may enter another value.
7.7 Analog Output

The EC100 has two analog outputs for CO₂ and H₂O densities (see Section 8.3, Analog Outputs (p. 26), for more information). These outputs may be enabled or disabled with this setting. The default is for analog output to be disabled. Note that the analog output does not include sonic data.

7.8 ECMon Update Rate

This setting determines the rate at which data are sent over the USB connection to the PC while running ECMon. The default setting of 10 Hz should be adequate in most situations.

7.9 Temperature Sensor

This setting configures the EC100 electronics to integrate with the IRGASON. The IRGASON measures ambient air temperature using a thermistor temperature sensor. With Auto-Select selected, the EC100 will detect that the IRGASON is connected and will report ambient air temperature measurements from the thermistor.

To diagnose problems with the temperature measurement, a fixed temperature value may be used, or the temperature sensor may be selected manually.

7.10 Fixed Temperature Value

If the Temperature Sensor setting is None, the IRGASON will use the value of this setting for the sample temperature. This mode is intended for troubleshooting only. In normal operation, Temperature Sensor is set to Auto-Select, and this setting is not used.

7.11 Pressure Sensor

This setting identifies which barometric pressure sensor is used. The EC100 always includes the basic barometer, but it may be ordered with the optional enhanced barometer (model CS106). This setting defaults to EC100 Enhanced if the CS106 is ordered and to EC100 Basic otherwise.

There are two other possible settings for Pressure Sensor. First, the user may supply a different pressure sensor. In this case, the setting should be changed to User Supplied, with the appropriate values for gain and offset entered (see below).

The final option is to select None for Pressure Sensor. The EC100 will use a fixed (see below) value for pressure. This mode is intended for troubleshooting only.

7.11.1 Pressure Gain

If Pressure Sensor is set to User Supplied, this setting gives the gain factor (kPa/V) used to convert measured voltage to pressure. Normally, Pressure Sensor is set to EC100 Basic or EC100 Enhanced, and this setting is not used.
7.11.2 Pressure Offset

If Pressure Sensor is set to User Supplied, this setting gives the offset (kPa) used to convert measured voltage to pressure. Normally, Pressure Sensor is set to EC100 Basic or EC100 Enhanced, and this setting is not used.

7.11.3 Fixed Pressure Value

If Pressure Sensor is None, the EC100 will use the value of this setting for the barometric pressure. This mode is intended for troubleshooting only. In normal operation, this setting is not used.

7.12 Pressure Differential Enable

This setting should remain disabled. It is used only for closed-path analyzers.

7.13 Heater Control

An advantage of the IRGASON’s low power consumption (5 W) is that the instrument remains at a temperature very close to ambient air temperature, which is an important feature for eddy-covariance measurements. Under some environmental conditions, however, the analyzer can become colder than ambient air temperature which may increase the likelihood of frost or condensation building on the optical windows. This will affect signal strength. The IRGASON design includes internal heaters located at the optical windows, which aid in minimizing data loss during these specific environmental conditions.

An automatic heater control algorithm can be activated from either Device Configuration Utility or ECMon by putting in a value of −2, or deactivated by putting in a value of −1.

NOTE

Automatic heater control is available in EC100 OS version 4.07 or greater and is turned on by default starting with the OPEC program version 3.2.

The algorithm uses the internal heaters to maintain a temperature that is a couple of degrees above the ambient dewpoint (or frost point) to prevent condensation and icing from forming on the surface of the optical windows.

The heater control will be disabled under any of the following conditions:

- Temperature of the detector housing is outside the −35 to 55 °C range
- Temperature of the source housing exceeds 40 °C
- Ambient temperature is outside the −35 to 55 °C range
- The supply voltage is below 10 V
The algorithm uses the following environmental parameters to control the heater:

- Analyzer body temperature, measured inside the source housing (heater control does not allow the body temperature to drop below ambient air temperature)
- Ambient relative humidity (in humidity greater than 80% heaters will try to maintain internal temperature 2 degrees warmer than ambient)
- CO2 signal level (1 min average CO2 signal level; below 0.7 will cause the heater to turn on maximum power until the signals recover)
- Average slope of the CO2 signal level over 1 min
- Standard deviation of the CO2 signal over 1 min

When enabled, this setting applies a voltage between 0 and 4000 mV to heaters near the optical windows of the analyzer. Heated windows inhibit the formation of condensation, such as dew and frost, and help the analyzer recover more quickly when precipitation has blocked the optical path. Use this setting with caution. Excessive heating may lead to density fluctuations and subsequent flux measurement errors. More information about heater control, and specifically using a data logger for control, may be found at the end of Section 10.3, EC100Configure() Instruction (p. 41).

7.14 ECMon

Settings for the IRGASON are easily verified or changed using the Windows PC support software ECMon (Eddy Covariance Monitor), which is found at www.campbellsci.com/downloads.

Launch ECMon, and connect the EC100 electronics to the PC with the included EC100 USB cable. The USB connection for the EC100 electronics is found on the base of the enclosure (see FIGURE 6-7). Once connected, select the appropriate communications port in the ECMon main page and click Connect (see FIGURE 7-1). Next, click on the Setup button. All of the preceding settings are now available for editing (see FIGURE 7-2).

Besides changing settings, ECMon is a useful tool for common tasks such as:

- Monitoring real-time data from the IRGASON from the main window
- Performing manual zero and span of the instrument (see Section 9.4, Zero and Span (p. 29))
- Troubleshooting and monitoring diagnostics using the Status window.
FIGURE 7-1. Main window of ECMon software
DevConfig software (Device Configuration Utility) may also be used to change settings, although ECMon is generally preferred because of its more user-friendly interface. DevConfig may be downloaded from the Campbell Scientific website www.campbellsci.com. DevConfig requires a USB driver to communicate with the EC100, similar to ECMon. See Section 7.14, ECMon (p. 20), for notes on installing a USB driver.

After launching DevConfig, select EC100 from the list of device types. The EC100 electronics should be connected to the PC with the EC100 USB cable and the appropriate USB port selected before connecting. Once connected, the settings tab displays all the current settings. The Apply button must be clicked to save any changes.

DevConfig is also used to send an updated operating system to the EC100 electronics. The Send OS tab gives directions on this procedure.
8. **EC100 Outputs**

The EC100 is the IRGASON electronics module that measures the sensors and controls the system. It outputs data in one of four types: SDM, USB, RS-485, or analog. In general, Campbell Scientific recommends that SDM be used if a Campbell Scientific data logger is responsible for data collection. However, RS-485 output is recommended if cable lengths exceed 100 m (328 ft). If a PC is being used as the collection vehicle, USB and RS-485 are suitable outputs. Analog output may also be used; however, only CO₂ density and H₂O density will be output. Information regarding each output type is provided in the following sections.

8.1 SDM Output

SDM (Synchronous Device for Measurement) is a Campbell Scientific communication protocol that allows synchronized measurement and rapid communication between a Campbell Scientific data logger and multiple devices including the IRGASON. Although nearly all of the Campbell Scientific data loggers support SDM, only the CR6, CR1000, CR3000, and CR5000 data loggers support the IRGASON.

To use SDM data output, connect an SDM cable from the EC100 (see Section 6.3, *Wiring and Connections* (p. 12)) to a CR6, CR1000, CR3000, or CR5000 data logger. On CR1000 data loggers, the SDM protocol uses ports C1, C2, and C3. These are multipurpose control ports that are SDM-activated when an SDM instruction is used in the data logger program. On CR3000 and CR5000 data loggers, the SDM protocol uses SDM-dedicated ports SDM-C1, SDM-C2, and SDM-C3. On CR6 data loggers, the user must assign which set of three ports will be used for SDM. This is done in the data logger program using the `SDMBeginPort()` programming instruction. See the CR6 manual for more details.

Each SDM device on the SDM bus must have a unique address. The IRGASON has a factory default SDM address of 1, but may be changed to any integer value between 0 and 14 (see Section 7.3, *SDM Address* (p. 17)).

The sample rate for SDM output is determined by the inverse of the data logger scan interval, as set by the user in the data logger program. Data are output from the EC100 when a request is received from the logger, i.e. a prompted output mode. The number of data values sent from the EC100 to the data logger is also set by the user in the data logger program. *CRBasic*, the programming language used by Campbell Scientific data loggers, uses the `EC100()` instruction to get data from an IRGASON. This instruction is explained in detail under Section 10.2.1, *EC100() Instruction* (p. 38), of this manual.

8.2 USB or RS-485 Output

In contrast to the SDM output mode, which is prompted by a data logger, data can also be output from the EC100 via USB or RS-485 in an unprompted mode. In this case, the EC100 sends out data without initiation from the receiving device at a rate determined by the EC100. Only one unprompted output type, USB or RS-485, may be selected at a given time. RS-485 output is recommended if cable lengths exceed 100 meters. If a Campbell Scientific data...
logger is not being used to collect the data from the IRGASON, either unprompted mode is recommended.

To use USB or RS-485 output, connect a USB or RS-485 cable from the EC100 to the receiving device (see Section 6.3, *Wiring and Connections* (p. 12)), and configure the settings (see Section 7, *Settings* (p. 16)).

The **Unprompted Output** setting must be set to **USB** or **RS-485**.

If **RS-485** is selected, the **RS485 Baud Rate** must be set.

The **Unprompted Output Rate** must be set to the desired output rate.

All output data are formatted as comma delimited ASCII. To view the data in terminal mode, in *Device Configuration Utility* choose **Unknown** as the device type and enter **Connect**. Each record terminates with a carriage return and line feed. TABLE 8-1 lists the elements in each output array, and FIGURE 8-1 shows an example USB data feed in terminal mode.

TABLE 8-1. USB and RS-485 Output Elements

<table>
<thead>
<tr>
<th>Data Element</th>
<th>Description</th>
<th>Units/comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ux</td>
<td>m/s</td>
</tr>
<tr>
<td>2</td>
<td>Uy</td>
<td>m/s</td>
</tr>
<tr>
<td>3</td>
<td>Uz</td>
<td>m/s</td>
</tr>
<tr>
<td>4</td>
<td>Sonic Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>5</td>
<td>Sonic Diagnostic Flag</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CO2 Density</td>
<td>mg·m⁻³</td>
</tr>
<tr>
<td>7</td>
<td>H₂O Density</td>
<td>g·m⁻³</td>
</tr>
<tr>
<td>8</td>
<td>Gas Diagnostic Flag</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Air Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>10</td>
<td>Air Pressure</td>
<td>kPa</td>
</tr>
<tr>
<td>11</td>
<td>CO₂ Signal Strength</td>
<td>Nominally 0.0 to 1.0</td>
</tr>
<tr>
<td>12</td>
<td>H₂O Signal Strength</td>
<td>Nominally 0.0 to 1.0</td>
</tr>
<tr>
<td>13</td>
<td>CO₂ Density from Fast-response Temperature¹</td>
<td>mg·m⁻³</td>
</tr>
<tr>
<td>14</td>
<td>Source Housing Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>15</td>
<td>Detector Housing Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>16</td>
<td>Counter</td>
<td>Arbitrary</td>
</tr>
<tr>
<td>17</td>
<td>Signature</td>
<td>Arbitrary in hexadecimal</td>
</tr>
</tbody>
</table>

¹This additional CO₂ density output is available in EC100 OS version 7.01 or later. It uses humidity-corrected sonic temperature instead of ambient temperature measured by the EC100 temperature probe in the conversion of absorption measurements to CO₂ density. Using the sonic anemometer’s fast-response temperature measurements, compensates for spectroscopic effects during high sensible heat flux regimes as explained in Helbig *et al.* (2016).
An open-path gas analyzer connected to an EC100 running an OS version less than 7.01, the 13th data field/element is unused. If a closed-path gas analyzer (for example, an EC155) is connected to the EC100, this data field/element will be the sample cell pressure differential.

FIGURE 8-1. An example of USB data output in terminal mode

The final data element in each row or output array is the signature. The signature is a four character hexadecimal value that is a function of the sequence and number of bytes in the output array. The recording device (such as a PC or data logger) calculates its own signature using each transmitted byte until encountering the transmitted signature. The computed signature and the transmitted signature are compared. If they match, the data were received correctly. This is very similar to a cyclic redundancy check (CRC).

In most situations, a PC begins by reading the ASCII data and extracting the last four ASCII characters and casting them as Long data type. The signature is then calculated on the science data sent from the IRGASON, starting with CO2 and ending on the counter. All the characters after the counter are not part of the signature. Once the signature is computed using the following algorithm, it is compared to the transmitted signature. If signatures do not match, the data should be disregarded.

Following is an example implementation of Campbell Scientific’s signature algorithm in the programming language C. To generate the signature of an output array of bytes, the “seed” needs to be initialized to 0xaaaa and a pointer passed to the first byte of the output array. The number of bytes in the output array should be entered in as the “swath”. The returned value is the computed signature.

```
//signature(), signature algorithm.
// Standard signature is initialized with a seed of 0xaaaa.
// Returns signature.
unsigned short signature( unsigned char* buf, int swath, unsigned short seed ) {  
    unsigned char msb, lsb;
    unsigned char b;
    int i;
    msb = seed >> 8;
    lsb = seed;
    for( i = 0; i < swath; i++ ) {
        b = (lsb << 1) + msb + *buf++;
        if( lsb & 0x80 ) b++;
        msb = lsb;
    }
    return b;
}
```
8.3 Analog Outputs

If analog output is enabled, the EC100 will output two analog signals that correspond to CO₂ density and H₂O density. These signals range from 0 to 5000 mV. TABLE 8-2 gives the multipliers and offsets for the analog outputs. Note that the analog outputs contain no sonic data.

CAUTION

Be aware that the absence of diagnostic data in analog output could make troubleshooting difficult if the user is not aware of potential problems with the instrumentation.

<table>
<thead>
<tr>
<th>Density (mg m⁻³)</th>
<th>Voltage Output Multiplier (mg m⁻³ V⁻¹)</th>
<th>Offset (mg m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>386.32</td>
<td>−102.59</td>
</tr>
<tr>
<td>H₂O</td>
<td>8.65</td>
<td>−2.26</td>
</tr>
</tbody>
</table>

9. Maintenance

IRGASON operation requires six maintenance tasks:

- routine maintenance
- wick maintenance
- analyzer window cleaning
- zero and span
- replacing the analyzer desiccant / scrubber bottles
- factory recalibration

9.1 Routine Maintenance

Periodically do the following:

- Check the humidity indicator card in the EC100 enclosure. If the highest dot has turned pink, replace or recharge the desiccant bags. Replacement desiccant may be purchased from Campbell Scientific or obtained elsewhere. See the manual ENC10/12, ENC12/14, ENC14/16, ENC16/18, available at www.campbellsci.com, for more details on recharging desiccant bags.

- Make sure the LED Status Lights on the EC100 panel are green. If not, verify that all connections are secure and that the instruments are powered. Also check the individual diagnostic bits for the specific fault. See TABLE 10-2, Bits in the Sonic Diagnostic Flag and TABLE 10-3, Bits in the Gas Diagnostic Flag.
9.2 Wick Maintenance

9.2.1 Sonic Wicks

The IRGASON cannot measure wind when water droplets completely obscure the face of the sonic transducers. If the site experiences frequent rainfall, using wicks on the sonic transducers may be desirable. The wicks help remove water. Under some conditions, however, droplets may build up and remain on the transducer faces. Once the water droplets evaporate or are removed, the IRGASON will again measure wind. Remove the water droplets by dabbing a cotton swab or tissue on the faces of the transducers. The user must use discretion to determine if wicks are necessary. If wicks are not used, gently remove the wicks from the sonic transducers, taking care not to damage or peel the matching layer (rubber tips) from the brass housing of the transducers.

Remove the wicks during the winter. The wicks will accumulate snow or freezing rain, resulting in blockage of the sonic signals. The CSAT3 Sonic Wick Spares Kit consists of three top wicks, three bottom wicks, adhesive, and an installation tool (see FIGURE 9-2). The installation tool is used by placing a wick over the angled end of the tool, placing the straight end of the tool gently against the transducer face, and sliding the wick down the tool onto the transducer. When installing wicks, be sure they are located in the proper position. The top wick must be flush with the transducer face, with the wick tail located at the lowest point of the transducer (see FIGURE 9-1). The end of the bottom transducer wick must extend above the transducer face by one-half to one mesh line (see FIGURE 9-1). Secure the wicks to the transducer with a drop of adhesive which is provided in the CSAT3 Sonic Wick Spares Kit. Take care that the adhesive is not deposited on the transducer face.

FIGURE 9-1. Proper location of the sonic top wick (left) and bottom wick (right)
9.2.2 Gas Analyzer Wicks

IRGASON gas analyzer windows are polished and slanted at an angle to prevent water from collecting on their surfaces. However, due to increased surface tension at the interface with the snout, water can pool at the edges and partially block the optical path and attenuate the signal. To minimize the occurrence of such events and the resulting data loss, consider using wicks. The weave of the wick fabric promotes capillary action that wicks the water away from the edge of the windows. The seam and the straight edge of the wicks are permeated with a rubberized compound to prevent them from shifting during operation.

Proper installation of the wicks is critical. They should not block or encroach on the optical path. Before installation, record signal strengths for both H₂O and CO₂. Following installation, these values should be unchanged.

Wicks are available as listed in TABLE 9-1.

<table>
<thead>
<tr>
<th>Wick</th>
<th>Campbell Scientific, Inc. Part Number</th>
<th>Campbell Scientific Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom Wick</td>
<td>28652</td>
<td>FAB EC150/IRGASON RAIN WICK BOTTOM</td>
</tr>
<tr>
<td>Top Wick</td>
<td>28653</td>
<td>FAB EC150/IRGASON RAIN WICK TOP</td>
</tr>
</tbody>
</table>

The top wick has a short seam which has to be aligned with the short side of the top snout. The angled edge of the wick must closely follow the edge of the window without encroaching on the optical path (see FIGURE 9-3). The bottom wick is installed in a similar manner, except the long seam should be aligned with the long side of the bottom snout. Once in place, the wicks should
fit snuggly over the cylindrical part of the snout without any creases or wrinkles.

The wicks are constructed with a UV-resistant fabric and should function over long time periods. Nevertheless, they should be inspected periodically. Check for contamination from dust, pollen, pitch or other debris. If needed, wash them in warm water with mild detergent or replace them. When performing the zero-and-span procedure, the wicks should be removed before installing the zero-and-span shroud.

Remove the wicks during the winter. The wicks will accumulate snow or freezing rain, resulting in blockage of the optical path. Besides the wicks, controlling the heaters in the snouts is another method the user may consider in preventing data loss during precipitation and condensation events. The heaters can be controlled statically using the Setup window in ECMon or dynamically using a data logger (see Section 10.3, EC100Configure() Instruction (p. 41), for more details).

FIGURE 9-3. Proper location of the gas analyzer top wick (left) and bottom wick (right)

9.3 Gas-Analyzer Window Cleaning

The windows of the analyzer should be cleaned if the signal strength for CO₂ or H₂O drops below 0.7 or 70% of the original value. These values may be monitored in the output data, or they can be viewed with ECMon. To clean the windows, use isopropyl alcohol (2-propanol/isopropanol) and a cotton swab or a non-scratching tissue or cloth. Verify that following cleaning the signal strengths are restored to values close to 1.0.

9.4 Zero and Span

As is the case with all optical instruments, the IRGASON gas analyzer measurements may drift slightly with exposure to natural elements. Therefore, routine maintenance requires a periodic zero-and-span procedure. The frequency with which this should be done is heavily dependent on the environmental conditions in which the instrument is making measurements.
Campbell Scientific recommends that a new instrument, or an instrument that has been moved to a new location, should have a monthly zero and span procedure performed. Additionally, it is recommended to always zero and span the analyzer after cleaning the windows (see Section 9.3, Gas-Analyzer Window Cleaning, p. 29). After the first several zero-and-span procedures, the rate of drift in gain and offset (explained later in this section) will be better understood for the existing environmental conditions. A regimented protocol for zero and span of the instrument initially, will allow the user to assess the appropriate time interval between zero-and-span procedures. However, if the IRGASON is being used at a site with large seasonal changes in ambient conditions, the zero-and-span procedure should be done at least seasonally.

In situations in which spanning the instrument is extremely difficult (for example, in below freezing temperature conditions or in very remote sites), performing a monthly zero will help mitigate the drift in the analyzer’s measurements.

The first part of the following procedure simply measures the CO₂ and H₂O zero and span, without making adjustments. This allows the CO₂ and H₂O gain factors to be calculated. These gain factors quantify the state of the analyzer before the zero-and-span procedure, and in theory could be used to correct recent measurements for drift. The last part of the zero-and-span procedure adjusts internal processing parameters to correct subsequent measurements.

If the zero-and-span procedure is being performed off-site (e.g., in a lab), be sure to mount the IRGASON on the IRGASON lab stand that can be purchased from Campbell Scientific and is shown in FIGURE 9-4. This will ensure the analyzer is in the correct upright orientation and has the correct optical alignment.

The zero-and-span procedure must be done correctly and not rushed; allocate plenty of time for the procedure (at least an hour).

CAUTION

Resting the analyzer on its side during the zero-and-span procedure may result in measurement inaccuracy.

To check and then set the IRGASON zero and span, follow the steps below:

1. Remove power from the EC100.
2. If not already done, clean the windows and snouts with alcohol and a non-scratching tissue or cloth.

CAUTION

Make sure the alcohol and any residual water completely evaporate from the analyzer before proceeding with the zero-and-span procedure.

3. As shown in FIGURE 9-4, position the IRGASON zero-and-span shroud over the upper and lower snouts. To do this, twist the two ends of the shroud together to minimize the length of the shroud. Make sure the rubber seals on the ends of the shroud are clean and in good condition. Position one end of the shroud over the lower snout and twist the top part of the shroud, allowing it to extend and cover the upper snout; while doing so,
avoid making contact with the sonic transducers. Continue twisting the shroud until it is fully extended and covering both snouts. Twist the shroud so that the gas tubes and temperature thermistor cable are directed towards the back of the sensor. Hang the tubes and cable over the trunk of the sensor to alleviate any strain on the optical arms. See FIGURE 9-4.

FIGURE 9-4. The zero-and-span shroud mounted on the zero-and-span stand. The top tube is the gas intake, the black cable is the temperature thermistor, and the short bottom tube is the gas exhaust.

4. Disconnect the IRGASON temperature sensor from the EC100 and connect the shroud temperature sensor in its place.

5. Connect the EC100 to a PC with the EC100 USB cable.

6. Resume power to the EC100. Wait for all the Gas and Power LED status lights on the EC100 panel to turn green.

7. Launch ECMon, select the appropriate USB port, and click Connect. The main screen should now be reporting real-time CO₂ and H₂O concentrations. Click Zero/Span. A graph will appear in the lower half of the zero-and-span window showing measured CO₂ and H₂O concentrations (see FIGURE 9-5).

8. Connect a gas tank of known CO₂ concentration to a pressure regulator, then to a flow controller, and finally to the intake of the shroud. Optimally, the concentration of span CO₂ should be near the concentration of CO₂.
being measured in the field. Begin with both the pressure regulator and flow controller turned off. Then use the pressure regulator to slowly increase pressure to the recommended setting for the flow controller. Next set the flow between 0.4 and 0.6 LPM. Watch the ECMon zero-and-span graph for the CO₂ measurement readings to stabilize (5 to 10 minutes). Once stable, write down the reported CO₂ concentration.

NOTE

Use mixtures of CO₂ and ambient air for the CO₂ span gas. The use of reference CO₂ gas mixtures in pure nitrogen will lead to errors due to a carrier gas effect on pressure-broadening of the CO₂ absorption lines since oxygen gas has a smaller line-broadening coefficient than nitrogen.

9. Remove the CO₂ span gas from the inlet of the shroud, and replace it with H₂O span gas from a dewpoint generator or another standard reference. Because water molecules can adsorb to inside of the tubing and the shroud, it may take many minutes for the H₂O concentration to stabilize. If desired, increase the flow rate for the first several minutes to more quickly stabilize the system before returning it to between 0.4 and 0.6 LPM to make the H₂O measurement. Write down the reported H₂O concentration.

10. Remove the H₂O span gas, and connect a zero air source (no CO₂ or H₂O) to the inlet tube of the shroud. As described in step 8, use a pressure regulator and flow controller so that zero air flows through the shroud at a rate between 0.4 and 0.6 LPM. Wait for the measurement readings to
stabilize (this may require several minutes) and write down the reported values for CO₂ and H₂O concentrations. If the readings remain erratic, ensure that flow of the zero air is sufficient and the shroud is correctly seated on the snouts.

NOTE

If using a Campbell Scientific Zero Air Generator instrument, a pressure regulator and flow controller is not needed as the maximum achievable flow rate is 0.2 liters per minute.

11. Examine the measurements that were written down for span CO₂, span H₂O, and zero air. Compute the drift in instrument gain using the following equation:

\[
\text{gain} = \frac{\text{span}_{\text{actual}}}{\text{span}_{\text{meas}} - \text{zero}_{\text{meas}}}
\]

where,

- \(\text{span}_{\text{actual}}\) = known concentration of the span gas
- \(\text{span}_{\text{meas}}\) = measured concentration of the span gas
- \(\text{zero}_{\text{meas}}\) = measured concentration in zero gas.

Note that in the zero-and-span window of ECMon, \(\text{span}_{\text{actual}}\) is reported to the right of the box where the user enters the span dewpoint temperature. The software calculates \(\text{span}_{\text{actual}}\) by taking into account the dewpoint temperature and current ambient temperature and pressure. The equations used for this calculation may be found in Appendix B, Sonic Anemometer Orientation (p. B-1). If drift (offset or gain) for CO₂ or H₂O is excessive, it may be time to replace the desiccant and CO₂ scrubber bottles (see Section 9.5, Replacing Desiccant and Scrubber Bottles (p. 34)).

12. With zero air still flowing and measurements stabilized, click on the Zero CO₂ and H₂O button in the ECMon zero-and-span window.

NOTE

Air flow into the shroud should be close to the recommended rate. If the flow is too low, the shroud will not be properly flushed; if it is too high, the air pressure within the shroud will be too high, and the analyzer will not be zeroed and spanned properly.

13. Remove the zero air source and replace it with the CO₂ span gas. Allow the gas to flow through the shroud, maintaining a flow between 0.4 and 0.6 LPM. Wait for readings to stabilize.

14. In the zero-and-span window, enter the known concentration of CO₂ (in ppm) in the box labeled Span Concentration (dry) and press Span.

15. Replace the CO₂ span gas with an H₂O span gas of known dewpoint. Allow the gas to flow through the shroud; higher flows may be desired for a couple of minutes to more quickly establish equilibrium before resuming a flow between 0.4 and 0.6 LPM. Wait for the readings to stabilize.
16. Enter the known dew point (in °C) in the box labeled Span Dew Point and press Span.

17. The zero-and-span procedure is now complete. Remove the shroud, reconnect the IRGASON temperature probe, and prepare the site for normal operation.

9.5 Replacing Desiccant and Scrubber Bottles

If more than two years have passed since replacing the desiccant-scrubber bottles within the IRGASON, or if the zero-and-span readings have drifted excessively (see Section 9.4, Zero and Span (p. 29)), the bottles should be replaced.

Twist the scrubber-bottle covers of the upper and lower arms counterclockwise until they detach (they should loosen by hand). Remove the IRGASON chemical bottles from inside the covers, and replace the expired bottles with new ones, inserting them with lid of the bottle toward the sensor (see FIGURE 9-6). Once this is done, firmly screw the covers back on the arms. Allow the sensor to equilibrate for at least 24 hours (longer if in high humidity), and then perform a zero-and-span procedure. If readings continue to be suspect, the sensor may need factory recalibration (see Section 9.6, Factory Recalibration (p. 35)).

DANGER

The scrubber bottles contain strong oxidizing agents. Avoid direct contact with the chemicals inside the bottles. Also, ensure your work area is well ventilated and free of any reactive compounds, including liquid water. Store used chemical bottles in a sealed container until disposal.

The chemical bottles should be disposed of according to local and federal regulations. For more information, SDS (Safety Data Sheets) for the chemicals are available in Appendix D, Safety Data Sheets (SDS) (p. D-1), and at www.campbellsci.com.
9.6 Factory Recalibration

When the IRGASON is manufactured, the gas analyzer is calibrated over a wide range of temperatures, pressures, and gas concentrations. All CO₂ calibration gases used in this process are mixtures of CO₂ in ambient air and are traceable to the WMO Mole Fraction Scale maintained by the Central Carbon Dioxide Laboratory and the Carbon Cycle Greenhouse Gases Group of the Global Monitoring Division/National Oceanographic and Atmospheric Administration in Boulder, CO, USA.

After an extended period of time in the field, the IRGASON gas analyzer may need to undergo factory calibration again to ensure valid measurements. When recalibration is deemed necessary, contact Campbell Scientific.

The IRGASON sonic anemometer also undergoes an initial factory calibration. Usually this calibration remains valid unless a transducer fails or damage to the instrument leads to a change in geometry. The sonic anemometer requires calibration when:

- it develops a wind offset greater than the specification
- it sets diagnostic flags under dry conditions with little to no wind and with no obstruction in the ultrasonic paths

The wind offset is tested by creating a zero-wind environment. This is best done in a laboratory setting with HVAC vents closed or covered to reduce air currents and by encircling the mounted sensor with a large plastic bag (for example, an unused refuse bag), using caution not to block the sonic paths. Once the IRGASON is connected to an EC100 and powered on, wind offsets may be viewed by connecting the EC100 to a PC and using ECMon to graph...
ux, uy, and uz wind components (see Section 7.14, ECMon (p. 20)). In this zero-wind environment, ux and uy should be less than ± 8 cm s⁻¹ (± 0.08 m s⁻¹) and uz should be less than ± 4 cm s⁻¹ (± 0.04 m s⁻¹). If recalibration is deemed necessary, contact Campbell Scientific.

10. Data Collection and Data Processing

Data from the IRGASON is collected through the EC100 and then archived onto a data logger. A common instrument configuration is to program a data logger to retrieve and collect raw data from the IRGASON, to be used for post processing, for which various programs have been developed.

More recently, programs have been developed that efficiently record and correctly process data from instruments such as the IRGASON, as well as compile them with data from other, complementary instruments. Campbell Scientific has developed a program, the EasyFlux DL, that both records and processes raw data from the IRGASON to provide useful measurements immediately. An overview of both approaches is given in the sections below.

10.1 Data Collection and Processing with EasyFlux DL

The EasyFlux DL is an open source CRBasic program that allows a CR6 or CR3000 data logger to collect fully corrected measurements from an IRGASON instrument. The program is compatible with other GPS and energy balance sensors which, in combination, can report corrected fluxes for CO2, latent heat (H2O), sensible heat, ground surface heat flux, and momentum. The program processes the EC data using commonly used corrections in the scientific literature. For detailed information about downloading, installing, and configuring the free program, refer to the EasyFlux DL manual located at www.campbellsci.com/easyflux-dl.

Of particular note is the manner in which EasyFlux DL processes information from the sonic anemometer and is useful to understand when considering how to situate the analyzer and anemometer at a given site.

EasyFlux DL reports the wind direction in both the sonic coordinate system (a right-handed coordinate system, FIGURE 10-1) and in the compass coordinate system (a left-handed coordinate system, FIGURE 10-2). To report the wind direction in the compass coordinate system, the orientation of the sonic must be known. The sonic coordinate system is relative to the sonic itself and does not depend on the sonic’s orientation. The compass coordinate system is fixed to Earth. For the EasyFlux DL program to compute the correct compass wind direction, the azimuth of the sonic negative x-axis must be entered into the program. The output value for the compass coordinate system is WB and the output value for the sonic coordinate system is WB_Sonic. The program default value for the variable sonic_azimuth is 0. To report a true compass wind direction, an appropriate value for sonic_azimuth must be entered into the program. The default is appropriate only if the sonic is mounted such that the negative x-axis points to the north.

NOTE

Remember to account for magnetic declination at the installation site. See Appendix B, Sonic Anemometer Orientation (p. B-1), for details.
The variable `sonic_azimuth` can be changed in LoggerNet or by using a CR100KD keypad. It can be changed in LoggerNet by connecting the data logger to a computer, opening LoggerNet, and going into the Public data table and changing the value in the `sonic_azimuth` field. Note that if the units of the variables are being displayed in the field, the units must be deleted before entering a value. If a new value is attempted to be sent along with the units in the field, then a change will not be made. To change it on the keypad, go to the Site Var Settings menu, then go to `sonic_azimuth` and enter a new value. Once a value is entered, the value is saved in the CPU. The program default of 0 for `sonic_azimuth` is used only if a site-specific value has not been entered using the keyboard or through LoggerNet.

FIGURE 10-1 and FIGURE 10-2 show the compass and sonic coordinate system. Both figures show the sonic’s negative x-axis pointing to the west (compass azimuth of 270°). The wind direction is measured in degrees clockwise from due north. In the compass coordinate system, the wind direction (WD) is 200. To calculate the wind direction in FIGURE 10-1, the orientation of the sonic anemometer relative to due north is needed in the program. FIGURE 10-2 is in a right-handed coordinate system, and the wind vector direction is measured in degrees counterclockwise from the positive x-axis. Therefore, the wind vector direction (WD_sonic) is 70°.

FIGURE 10-1. Compass coordinate system, compass wind direction is 200°. The sonic azimuth of the anemometer is 270°
10.2 Data Logger Programming with CRBasic

The data logger of the IRGASON is programmed in the CRBasic language, which features two instructions for communication with the EC100 via SDM. The first instruction is **EC100()**, which reads measurement data from the EC100. The second is the **EC100Configure()**, which receives and sends configuration settings.

With programs such as EasyFlux DL, there is little need for the user to become well versed in the CRBasic language and the instructions required for communicating with the EC100. In those cases in which it is needed or desired, the Campbell Scientific website has several tutorials and guidance for learning the CRBasic language. They can be accessed by entering CRBasic in the search field at www.campbellsci.com.

10.2.1 EC100() Instruction

The **EC100()** instruction is used to retrieve data from the IRGASON via SDM. The instruction syntax is:

```
EC100 (Dest, SDMAddress, EC100Cmd)
```

Dest is the input variable name in which to store data from the IRGASON. The length (i.e., number of data elements) of the input variable array will depend on
the selected value for \textit{EC100Cmd}. A value of \(~99999\) will be loaded into \textit{Dest(1)} if a signature error on SDM data occurs.

\begin{table}[h]
\begin{tabular}{|c|c|}
\hline
\textit{EC100Cmd} & Dest Variable Length \\
\hline
0 & 8 \\
1 & 12 \\
2 & 13 \\
\hline
\end{tabular}
\end{table}

\textit{SDMAddress} defines the address of the IRGASON with which to communicate. Valid SDM addresses are 0 through 14. Address 15 is reserved for the \textit{SDMTrigger()} instruction.

\textit{EC100Cmd} is a parameter that requests data from the analyzer. The results for the command are returned in the array specified by the \textit{Dest} parameter. A numeric code is entered to request the data, as shown in TABLE 10-1.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Output Mode} & \textbf{Data Field} & \textbf{Description} & \textbf{Units} \\
\hline
0, 1, 2, & 1 & \textit{Ux} & m/s \\
& 2 & \textit{Uy} & m/s \\
& 3 & \textit{Uz} & m/s \\
& 4 & Sonic Temperature & °C \\
& 5 & Sonic Diagnostic Flag & \\
& 6 & \textit{CO}_2\text{ Density} & mg/m^3 \\
& 7 & \textit{H}_2\text{O Density} & g/m^3 \\
& 8 & Gas Diagnostic Flag & \\
\hline
1, 2 & 9 & Air Temperature & °C \\
& 10 & Air Pressure & kPa \\
& 11 & \textit{CO}_2\text{ Signal Strength} & nominally \(0.0 \leq \text{strength} \leq 1.0\) \\
& 12 & \textit{H}_2\text{O Signal Strength} & nominally \(0.0 \leq \text{strength} \leq 1.0\) \\
\hline
2 & 13 & \textit{CO}_2\text{ Density from fast-response temperature} & mg·m\(^{-3}\) \\
\hline
\end{tabular}
\caption{Output Modes for EC100 Instruction}
\end{table}

*This additional \textit{CO}_2 density output is available in EC100 OS version 7.01 or later. It uses humidity-corrected sonic temperature instead of ambient temperature measured by the EC100 temperature probe in the conversion of absorption measurements to \textit{CO}_2 density. Using the sonic anemometer's fast-response temperature measurements, compensates for spectroscopic effects during high sensible heat flux regimes as explained in Helbig \textit{et al.} (2016).

\textbf{NOTE}

An open-path gas analyzer connected to an EC100 running an OS version less than 7.01, the 13th data field/element is unused. If a closed-path gas analyzer (for example, an EC155) is connected to the EC100, this data field/element will be the sample cell pressure differential.
As shown in TABLE 10-1, all output modes give two diagnostic values: Sonic Diagnostic Flag and Gas Diagnostic Flag. The values contain a bit field with each bit representing a monitored condition. When a certain condition is detected, the corresponding bit is set. The value remains set until the event that caused the condition is no longer present. TABLE 10-2 and TABLE 10-3 describe the bits in the Sonic Diagnostic Flag and the Gas Diagnostic Flag, respectively.

TABLE 10-2. Bits in the Sonic Diagnostic Flag

<table>
<thead>
<tr>
<th>bit</th>
<th>hex value</th>
<th>decimal</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x1</td>
<td>1</td>
<td>Low Amp</td>
<td>Amplitude is too low</td>
</tr>
<tr>
<td>1</td>
<td>0x2</td>
<td>2</td>
<td>High Amp</td>
<td>Amplitude is too high</td>
</tr>
<tr>
<td>2</td>
<td>0x4</td>
<td>4</td>
<td>Tracking</td>
<td>Poor signal lock</td>
</tr>
<tr>
<td>3</td>
<td>0x8</td>
<td>8</td>
<td>Hi 3 Axis DC</td>
<td>Delta temperature exceeds limits</td>
</tr>
<tr>
<td>4</td>
<td>0x10</td>
<td>16</td>
<td>Acquiring</td>
<td>Acquiring ultrasonic signals</td>
</tr>
<tr>
<td>5</td>
<td>0x20</td>
<td>32</td>
<td>Cal Mem Err</td>
<td>Sonic head calibration signature error</td>
</tr>
</tbody>
</table>

TABLE 10-3. Bits in the Gas Diagnostic Flag

<table>
<thead>
<tr>
<th>bit</th>
<th>hex value</th>
<th>decimal</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x1</td>
<td>1</td>
<td>Bad Data</td>
<td>Data are suspect (there is an active diagnostic flag)</td>
</tr>
<tr>
<td>1</td>
<td>0x2</td>
<td>2</td>
<td>Sys Fault</td>
<td>General system fault</td>
</tr>
<tr>
<td>2</td>
<td>0x4</td>
<td>4</td>
<td>Sys Startup</td>
<td>Gas analyzer is starting up</td>
</tr>
<tr>
<td>3</td>
<td>0x8</td>
<td>8</td>
<td>Motor Speed</td>
<td>Motor speed outside of limits</td>
</tr>
<tr>
<td>4</td>
<td>0x10</td>
<td>16</td>
<td>TEC Temp</td>
<td>TEC temperature exceeds limits</td>
</tr>
<tr>
<td>5</td>
<td>0x20</td>
<td>32</td>
<td>Light Power</td>
<td>Source power exceeds limits</td>
</tr>
<tr>
<td>6</td>
<td>0x40</td>
<td>64</td>
<td>Light Temp</td>
<td>Invalid source temperature</td>
</tr>
<tr>
<td>7</td>
<td>0x80</td>
<td>128</td>
<td>Light I</td>
<td>Source current exceeds limits</td>
</tr>
<tr>
<td>8</td>
<td>0x100</td>
<td>256</td>
<td>Power Off</td>
<td>Gas head not powered</td>
</tr>
<tr>
<td>9</td>
<td>0x200</td>
<td>512</td>
<td>Chan Err</td>
<td>Gas input data out of sync with home pulse</td>
</tr>
<tr>
<td>10</td>
<td>0x400</td>
<td>1024</td>
<td>Amb Temp</td>
<td>Invalid ambient temperature</td>
</tr>
<tr>
<td>11</td>
<td>0x800</td>
<td>2048</td>
<td>Amb Press</td>
<td>Invalid ambient pressure</td>
</tr>
</tbody>
</table>
TABLE 10-3. Bits in the Gas Diagnostic Flag

<table>
<thead>
<tr>
<th>bit</th>
<th>hex value</th>
<th>decimal</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0x1000</td>
<td>4096</td>
<td>CO₂ I</td>
<td>CO₂ I exceeds limits</td>
</tr>
<tr>
<td>13</td>
<td>0x2000</td>
<td>8192</td>
<td>CO₂ Io</td>
<td>CO₂ Io exceeds limits</td>
</tr>
<tr>
<td>14</td>
<td>0x4000</td>
<td>16384</td>
<td>H₂O I</td>
<td>H₂O I exceeds limits</td>
</tr>
<tr>
<td>15</td>
<td>0x8000</td>
<td>32768</td>
<td>H₂O Io</td>
<td>H₂O Io exceeds limits</td>
</tr>
<tr>
<td>16</td>
<td>0x10000</td>
<td>65536</td>
<td>CO₂ Io Var</td>
<td>Moving variation in CO₂ Io exceeds limits</td>
</tr>
<tr>
<td>17</td>
<td>0x20000</td>
<td>131072</td>
<td>H₂O Io Var</td>
<td>Moving variation in H₂O Io exceeds limits</td>
</tr>
<tr>
<td>18</td>
<td>0x40000</td>
<td>262144</td>
<td>CO₂ Io Ratio</td>
<td>CO₂ signal level too low</td>
</tr>
<tr>
<td>19</td>
<td>0x80000</td>
<td>524288</td>
<td>H₂O Io Ratio</td>
<td>H₂O signal level too low</td>
</tr>
<tr>
<td>20</td>
<td>0x100000</td>
<td>1048576</td>
<td>Cal Mem Err</td>
<td>Gas head calibration signature error</td>
</tr>
<tr>
<td>21</td>
<td>0x200000</td>
<td>2097152</td>
<td>Heater Control</td>
<td>Heater control error</td>
</tr>
<tr>
<td>22</td>
<td>0x400000</td>
<td>4194304</td>
<td>Diff Pressure</td>
<td>Differential pressure exceeds limits</td>
</tr>
</tbody>
</table>

10.3 EC100Configure() Instruction

EC100Configure() provides a third option, beside the ECMon software and DevConfig utility, for retrieving and modifying settings. ECMon and Device Configuration Utility are user-interactive, whereas the EC100Configure() instruction allows automated control under CRBasic data logger programming.

EC100Configure() is a processing instruction. Whether running in pipeline mode or sequential mode, the data logger will execute the instruction from the processing task. This functionality allows EC100Configure() to be placed in conditional statements. Running from the processing task has ramifications when attempting to execute EC100Configure() while other SDM instructions are executing in pipeline mode. EC100Configure() locks the SDM port during the duration of its execution. If the pipelined SDM task sequencer needs to run while the SDM is locked, it will be held off until the instruction completes. This locking will likely result in skipped scans when reconfiguring an IRGASON.

For the IRGASON to save settings, it must go through a lengthy write-read-verify process. To avoid saving the settings after each set command, the resulting code can be used to determine if any settings were modified from their original value. When a change is detected, the save settings command (command code 99) can then be sent to the IRGASON. The DestSource parameter variable should be set to 2718 to save the settings. The reception of this command is acknowledged, but since it takes up to a second to complete, a successful return code does not mean that all data were successfully written to the appropriate non-volatile memory.
The instruction syntax is:

EC100Configure *(Result, SDMAddress, ConfigCmd, DestSource)*

Result is a variable that contains a value indicating the success or failure of the command. A result code of 0 means the command was successful. If reading a setting, 0 in the result code means that the value in the *DestSource* variable is the value the desired setting has in the IRGASON. When writing a setting, if the result code is 0, the value and setting were compatible, but the value was not changed because it contained the same value that was sent. A result code of 1 from the set operation means that the value was valid, different, set and acknowledged. This allows *CRBasic* code to control whether or not to save the settings. A result code of *NAN* (not a number) indicates the setting was not changed or acknowledged, or a signature failure occurred.

SDMAddress defines the address of the IRGASON to configure. Valid SDM addresses are 0 through 14 (address 15 is reserved for *SDMTrigger()*).

ConfigCmd is a variable that indicates whether to get or set a setting. The options are listed in TABLE 10-4.

DestSource is a variable that will contain the value to read when getting a setting, or that will contain the value to send when writing a setting to the IRGASON.
<table>
<thead>
<tr>
<th>ConfigCmd Variable</th>
<th>Setting Description (some settings list possible values for the DestSource variable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>Retrieve</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>101</td>
</tr>
<tr>
<td>2</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>103</td>
</tr>
<tr>
<td>4</td>
<td>104</td>
</tr>
<tr>
<td>5</td>
<td>105</td>
</tr>
<tr>
<td>6</td>
<td>106</td>
</tr>
<tr>
<td>7</td>
<td>107</td>
</tr>
<tr>
<td>8</td>
<td>108</td>
</tr>
<tr>
<td>9</td>
<td>109</td>
</tr>
<tr>
<td>10</td>
<td>110</td>
</tr>
<tr>
<td>11</td>
<td>111</td>
</tr>
<tr>
<td>12</td>
<td>112</td>
</tr>
<tr>
<td>13</td>
<td>113</td>
</tr>
<tr>
<td>14</td>
<td>114</td>
</tr>
<tr>
<td>15</td>
<td>115</td>
</tr>
<tr>
<td>16</td>
<td>116</td>
</tr>
<tr>
<td>17</td>
<td>117</td>
</tr>
<tr>
<td>18 or 218**</td>
<td>118</td>
</tr>
<tr>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>21</td>
<td>121</td>
</tr>
<tr>
<td>22</td>
<td>122</td>
</tr>
<tr>
<td>24</td>
<td>124</td>
</tr>
<tr>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>99</td>
<td>N/A</td>
</tr>
</tbody>
</table>
10.3.1 ConfigCmd 11 Zero-and-span Control

To perform zeroing of CO2 and H2O, ConfigCmd 11 is set to 1. After the IRGASON completes the zero, it will write the value to -1. The data logger program can poll this value or simply wait for a period of time to allow the zeroing to complete. To perform CO2 span, the CO2 Span Concentration setting (ConfigCmd 12) must be written to the proper value in ppm CO2 prior to setting the zero-and-span control setting (ConfigCmd 11) to 2. After the CO2 span is completed, the value of the zero-and-span control setting will change to -2. H2O span is similar to CO2. First the H2O Span Dew Point Temperature value (ConfigCmd 13) must be written to the desired value. Then the zero-and-span control setting is set to 3. After the IRGASON completes the span, the span control setting is written as -3. ConfigCmd 14 through 17 automatically store the results of the zero-and-span procedure. Each result is a coefficient used in the gas analyzer’s algorithms for calculating gas concentrations.

10.3.2 ConfigCmd 18 Heater Voltage

Normally, the EC100Configure() instruction is run in the processing task. Skipped scans can occur when the EC100Configure() instruction executes. When changing operational parameters, these skipped scans are acceptable. However, they may not be acceptable when changing the heater voltage. ConfigCmd 218 allows EC100Configure() to operate in the SDM task, thus avoiding skipped scans. When using ConfigCmd 218, the command must be a constant and the instruction cannot be placed in a conditional statement.

The IRGASON includes heaters near the optical windows. This setting gives the voltage applied to the heater. It can be set to -1 to disable the heater, or set it to any voltage between 0 and 4.0 V.

The heater resistance is 6 ohms, so the heater power (P_H) expressed as Watts (W) is given by:

$$ P_H = \frac{V^2}{6.6} $$

The maximum power (at 4.0 V) is 2.4 W.

Operating the heaters following a precipitation event encourages water droplets on the windows to evaporate more quickly, thus restoring signal strength. Heater usage may also be used to prevent formation of dew and frost on the windows, which leads to invalid measurements due to differences in absorption spectra of liquid water and water vapor.

The heaters, however, should be disabled when they are not needed. Heating near the sample volume may cause air density fluctuations that can affect flux measurements. Disabling the heaters will also conserve power. Care should be taken to avoid operating the heaters if the system voltage is too low or if the ambient temperature is > 45 °C. Operation at temperatures > 45 °C will overload the thermoelectric coolers of the detector, as indicated by the TEC Temp diagnostic flag (see TABLE 10-3, Bits in the Gas Diagnostic Flag (p. 40)).

A data logger may be used to dynamically control the heaters by using input from another moisture sensor such as a leaf-wetness sensor. When the sensor
output indicates moisture is present, the data logger can send the EC100Configure() instruction to the IRGASON and enable the heaters.

10.4 Example CRBasic Program

<table>
<thead>
<tr>
<th>CRBasic Example 10-1. CR3000 Example Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>'CR3000 Series Data Logger</td>
</tr>
<tr>
<td>Public sonic_irga(12)</td>
</tr>
<tr>
<td>Alias sonic_irga(1) = Ux</td>
</tr>
<tr>
<td>Alias sonic_irga(2) = Uy</td>
</tr>
<tr>
<td>Alias sonic_irga(3) = Uz</td>
</tr>
<tr>
<td>Alias sonic_irga(4) = Ts</td>
</tr>
<tr>
<td>Alias sonic_irga(5) = diag_sonic</td>
</tr>
<tr>
<td>Alias sonic_irga(6) = CO2</td>
</tr>
<tr>
<td>Alias sonic_irga(7) = H2O</td>
</tr>
<tr>
<td>Alias sonic_irga(8) = diag_irga</td>
</tr>
<tr>
<td>Alias sonic_irga(9) = cell_tmpr</td>
</tr>
<tr>
<td>Alias sonic_irga(10) = cell_press</td>
</tr>
<tr>
<td>Alias sonic_irga(11) = CO2_sig_strgth</td>
</tr>
<tr>
<td>Alias sonic_irga(12) = H2O_sig_strgth</td>
</tr>
<tr>
<td>Units Ux = m/s</td>
</tr>
<tr>
<td>Units Uy = m/s</td>
</tr>
<tr>
<td>Units Uz = m/s</td>
</tr>
<tr>
<td>Units Ts = °C</td>
</tr>
<tr>
<td>Units diag_sonic = arb</td>
</tr>
<tr>
<td>Units CO2 = mg/m³</td>
</tr>
<tr>
<td>Units H2O = g/m³</td>
</tr>
<tr>
<td>Units diag_irga = arb</td>
</tr>
<tr>
<td>Units cell_tmpr = °C</td>
</tr>
<tr>
<td>Units cell_press = kPa</td>
</tr>
<tr>
<td>Units CO2_sig_strgth = arb</td>
</tr>
<tr>
<td>Units H2O_sig_strgth = arb</td>
</tr>
<tr>
<td>DataTable (ts_data,TRUE,-1)</td>
</tr>
<tr>
<td>DataInterval (0,0,mSec,10)</td>
</tr>
<tr>
<td>Sample (12,Ux,IEEE4)</td>
</tr>
<tr>
<td>EndTable</td>
</tr>
<tr>
<td>BeginProg</td>
</tr>
<tr>
<td>Scan (100,mSec,0,0)</td>
</tr>
<tr>
<td>EC100 (Ux,1,1)</td>
</tr>
<tr>
<td>CallTable ts_data</td>
</tr>
<tr>
<td>NextScan</td>
</tr>
<tr>
<td>EndProg</td>
</tr>
</tbody>
</table>

11. Theory of Operation

11.1 IRGASON Sonic Anemometer

The CSAT3 measures wind speeds by determining the time of flight of sound between pairs of transducers. However, unlike many other commercial anemometers, it does not use simple threshold detection to determine the ultrasonic times of flight. Instead, it uses advanced digital signal processing techniques to determine the arrival of the transmitted ultrasonic signal. In comparison to other systems, the digital signal processing techniques result in more accurate, lower noise measurements.
11.1.1 Wind Speed

Each axis of the sonic anemometer pulses two ultrasonic signals in opposite directions. The time of flight of the first signal (out) is given by:

\[t_o = \frac{d}{c + u_a} \]

(1)

and the time of flight of the second signal (back) is given by:

\[t_b = \frac{d}{c - u_a} \]

(2)

where:

\(t_o \) = time of flight out along the transducer axis,
\(t_b \) = time of flight back, in the opposite direction,
\(u_a \) = wind speed along the transducer axis,
\(d \) = distance between the transducers, and
\(c \) = speed of sound.

The wind speed, \(u_a \), along any axis can be found by inverting the above relationships, subtracting Eq. (2) from (1), and solving for \(u_a \).

\[u_a = \frac{d}{2} \left[\frac{1}{t_o} - \frac{1}{t_b} \right] \]

(3)

The wind speed is measured on all three non-orthogonal axes to give \(u_a \), \(u_b \), and \(u_c \), where the subscripts a, b, and c refer to the non-orthogonal sonic axes.

The non-orthogonal wind speed components are then transformed into orthogonal wind speed components, \(u_x \), \(u_y \), and \(u_z \), with the following:

\[
\begin{bmatrix}
 u_x \\
 u_y \\
 u_z
\end{bmatrix} = A
\begin{bmatrix}
 u_a \\
 u_b \\
 u_c
\end{bmatrix}
\]

(4)

where \(A \) is a 3 x 3 coordinate transformation matrix, that is unique for each CSAT3 and is stored in ROM memory.

11.1.2 Temperature

The sonically determined speed of sound can be found from the sum of the inverses of Eq. (1) and (2). The CSAT3 corrects online for the effect of wind blowing perpendicular to the sonic path. No additional off-line corrections are required as suggested by Liu et al., 2001.
The speed of sound in moist air is a function of temperature and humidity and is given by:

\[c^2 = \gamma P / \rho = \gamma R_d T_v = \gamma R_d T(1 + 0.61q) \]

(6)

where:

\(\gamma \) = ratio of specific heat of moist air at constant pressure to that at constant volume,
\(P \) = pressure,
\(\rho \) = air density,
\(R_d \) = gas constant for dry air,
\(T_v \) = virtual temperature,
\(T \) = air temperature, and
\(q \) = specific humidity defined as the ratio of the mass of water vapor to the total mass of air (Kaimal and Gaynor, 1991; Wallace and Hobbs, 1977).

Note that \(\gamma \) is a function of specific humidity. It would be convenient if the effects of humidity could be consolidated into one term.

The specific heats for moist air at constant pressure and volume are given by:

\[C_p = qC_{pw} + (1 - q)C_{pd} \]
\[= C_{pd}(1 + 0.84q) \]

(7a)

\[C_v = qC_{vw} + (1 - q)C_{vd} \]
\[= C_{vd}(1 + 0.93q) \]

(7b)

where:

\(C_p \) and \(C_v \) = specific heats of moist air at constant pressure and volume,
\(C_{pw} \) and \(C_{vw} \) = specific heat of water vapor, and
\(C_{pd} \) and \(C_{vd} \) = specific heat of dry air, respectively (Fleagle and Businger, 1980).

Substitute Eq. (7a) and (7b) into (6) and ignore the higher order terms. This yields

\[c^2 = \gamma R_d T_v = \gamma R_d T(1 + 0.51q) \]

(8)
where:

\[T_s = \text{sonic virtual temperature}, \text{ and} \]
\[\gamma_d = \text{ratio of specific heat of dry air at constant pressure to that at} \]
\[\text{constant volume (Fleagle and Businger, 1980; Kaimal and} \]
\[\text{Gaynor, 1991; Kaimal and Businger, 1963; Schotanus et al.,} \]
\[\text{1983).} \]

With Eq. (8), the effect of humidity, on the speed of sound, is included in the sonic virtual temperature.

The sonic virtual temperature in degrees Celsius, is given by equation (9), where \(\gamma_d = 1.4 \) and \(R_d = 287.04 \text{ J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1} \).

\[T_s = \frac{c^2}{\gamma_d R_d} - 273.15 \]
(9)

11.2 IRGASON Gas Analyzer

The IRGASON gas analyzer is a non-dispersive, mid-infrared absorption analyzer. Infrared radiation is generated in the upper arm of the analyzer head before propagating along a 15 cm optical path. Chemical species located within the optical beam will absorb radiation at characteristic frequencies. A mercury cadmium telluride (MCT) detector in the lower arm of the gas analyzer measures the decrease in radiation intensity due to absorption, which can then be related to analyte concentration using the Beer-Lambert Law:

\[P = P_o e^{-\varepsilon c l} \]
(10)

where:

\[P = \text{irradiance after passing through the optical path}, \]
\[P_o = \text{initial irradiance}, \varepsilon \text{ is molar absorptivity,} \]
\[c = \text{analyte concentration, and} \]
\[l = \text{path length}. \]

In the IRGASON, radiation is generated by applying constant power to a tungsten lamp, which acts as a 2200 K broadband radiation source. Specific wavelengths are then selected using interference filters located on a spinning chopper wheel. For CO₂, light with a wavelength of 4.3 \(\mu \text{m} \) is selected, as it corresponds to the molecule’s asymmetric stretching vibrational band. For H₂O, radiation at 2.7 \(\mu \text{m} \), corresponding to water’s symmetric stretching vibrational band, is used.

The IRGASON gas analyzer is a dual-wavelength single-beam analyzer. Rather than using a separate reference cell and detector, the initial intensity of the radiation is calculated by measuring the intensity of nearby, non-absorbing wavelengths (4 \(\mu \text{m} \) for CO₂ and 2.3 \(\mu \text{m} \) for H₂O). These measurements account for any source and detector aging, and window contamination.
The chopper wheel spins at a rate of 60 revolutions per second, and the
detector is measured 512 times per revolution, resulting in a detector sampling
rate of 30.72 kHz. The detector is maintained at –40 °C using a three-stage
thermoelectric cooler and is coupled to a low-noise preamp module.

The EC100 electronics digitize and process the detector data (along with
ancillary data such as sample temperature and pressure) to give the CO₂ and
H₂O densities after each chopper wheel revolution (60 Hz). These are then
filtered to the user-specified bandwidth. The EC100 also synchronously
measures and processes data from the IRGASON sonic anemometer.

12. References

Helbig, M., Wischnewski, K., Gosselin, G.H., Biraud, S.C., Bogoev, I., Chan,
W.S., Euskirchen, E.S., Glenn, A.J., Marsh, P.M., Quinton, W.L., and
Sonnentag, O.: 2016, “Addressing a Systematic Bias in Carbon Dioxide
Flux Measurements with the EC150 and the IRGASON Open-Path Gas
Analyzers”, *Agricultural and Forest Meteorol.*, 228-229, 349-359.

Anemometer-Thermometer”, *J. Applied Meteorol.*, 2, 156-164.

Temperature Variance and Buoyancy Heat Flux with an Omnidirectional

“Temperature Measurement with a Sonic Anemometer and its Application
to Heat and Moisture Fluxes”, *Boundary-Layer Meteorol.*, 26, 81-93.

Appendix A. Filter Bandwidth and Time Delay

The EC100 measures CO₂, H₂O, 3-D wind components, and sonic temperature from the IRGASON at 60 Hz and then applies a user-selectable low-pass filter. The available filter bandwidths are 5, 10, 12.5, and 20 Hz. FIGURE A-1 shows the amplitude response of these filters. The EC100 filters provide a flat pass band, a steep transition from pass band to stop band, and a well-attenuated stop band. FIGURE A-2 compares the EC100 10 Hz filter to a 50 ms moving average filter with approximately the same bandwidth.

The ideal eddy-covariance filter is one that is wide enough to preserve the low-frequency signal variations that transport flux and narrow enough to attenuate high-frequency noise. In addition, to minimize aliasing (the misinterpretation of high-frequency variation as lower-frequency variation), the measurement bandwidth must be less than half of the sample rate (data logger scan rate). Two factors complicate choosing the ideal eddy-covariance bandwidth. First, the flux signal bandwidth varies from one installation to another, and the flux signal bandwidth varies with mean wind speed at a given installation. Second, the fast sample rate required to anti-alias a desired signal bandwidth may result in large, unwieldy data sets.

The covariance calculation itself relaxes the need for the ideal bandwidth. First, the time-averaged (typically 30-minute) covariance calculations inherently reduce noise, and second, aliasing does not degrade the accuracy of covariance calculations. Therefore, the factory default for the EC100 bandwidth (20 Hz) is rather wide to preserve the signal variations that transport flux, and that bandwidth is suitable for most flux applications. Additional bandwidths are available for experimenters desiring to match the EC100 filter bandwidth to their data acquisition sample rate to avoid aliasing. In this case, the selected bandwidth should be one-half of the sample rate (data logger scan rate), and experimenters should be careful to avoid attenuation of flux-carrying signals.

The EC100 electronics synchronously sample the gas analyzer and sonic anemometer of the IRGASON. However, experimenters wishing to synchronize their EC100 data with other measurements (e.g., energy balance sensors) in the data acquisition system must account for the time delay of the EC100 filter. TABLE A-1 shows the delay for each of the filter bandwidths. The EC100 provides a constant time delay for all spectral components within each filter’s pass band.

The following examples show how to use TABLE A-1. To synchronize EC100 data to other data logger measurements when the data logger scan rate is 25 Hz and the EC100 bandwidth is set to 20 Hz (a 200 ms delay from TABLE A-1), delay the non-EC100 data by five data logger scans. Similarly, for a 10 Hz data logger scan rate and the same 20 Hz EC100 bandwidth, delay the non-EC100 data by two data logger scans to match the EC100 data. For the best synchronicity, choose a data logger scan interval that is an integer multiple of the EC100 filter delay.
Appendix A. Filter Bandwidth and Time Delay

The EC100 measures gas and wind data at 60 Hz, and 60-Hz data are down-sampled to the data logger scan rate through SDM communications (see Section 8, \textit{EC100 Outputs} p. 23). This process synchronizes EC100 gas and wind data with other signals measured by the data logger to within ±8.33 ms (plus or minus one-half of the inverse of 60 Hz). Alternatively, when sending data to a non-Campbell data acquisition system, the EC100 down-samples its USB and RS-485 outputs to a user-selectable rate of 10, 25, or 50 Hz. Although the gas and wind data from the EC100 remain synchronized, the user must consider the down-sampled output interval when synchronizing the EC100 data with other measurements in their system. These slower output intervals increase the asynchronicity of EC100 data with other system measurements.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{EC100_Bandwidths.png}
\caption{Frequency and amplitude response of EC100 filter at various bandwidths}
\end{figure}
FIGURE A-2. Frequency response comparison of the EC100 10 Hz bandwidth and a 50 ms moving average

TABLE A-1. Filter Time Delays for Various Bandwidths

<table>
<thead>
<tr>
<th>Bandwidth (Hz)</th>
<th>Time Delay (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>800</td>
</tr>
<tr>
<td>10</td>
<td>400</td>
</tr>
<tr>
<td>12.5</td>
<td>317</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
</tr>
</tbody>
</table>

EC100 10-Hz Filter Compared to 20-msec Moving Average (Amplitude Responses)
Appendix B. Sonic Anemometer Orientation

B.1 Determining True North and Sensor Orientation

The orientation of the sonic anemometer negative x-axis is found by reading a magnetic compass and applying the site-specific correction for magnetic declination; where the magnetic declination is the number of degrees between true north and magnetic north. Magnetic declination for a specific site can be obtained from a USGS map, local airport, or through a NOAA web calculator (Appendix B.2, Online Magnetic Declination Calculator (p. B-2)). A general map showing magnetic declination for the Conterminous United States in 2015 is shown in FIGURE B-1.

Declination angles east of true north are considered negative, and are subtracted from 360 degrees to get true north as shown in FIGURE B-2. Declination angles west of true north are considered positive and are added to 0° to get true north as shown in FIGURE B-3.

FIGURE B-1. Magnetic declination for the contiguous United States (2015)
B.2 Online Magnetic Declination Calculator

The magnetic declination web calculator published by NOAA’s Geophysical Data Center is available at the following URL: https://www.ngdc.noaa.gov/geomag-web/#declination. Enter the latitude, longitude, date, and the format you wish to view the data. Once entered, click “calculate” to determine the declination (FIGURE B-4).
FIGURE B-4. Online magnetic declination calculator with inputs and output for Logan, UT

The declination for Logan, UT is 11.47° E. Therefore, true north is 360° - 11.47° = 348.53°. So when looking at a compass at this location, true north is located at 348.53°, not 360°. Declination results are typically accurate to 30 minutes of arc, but environmental factors can cause magnetic field disturbances.
Appendix C. Equations

TABLE C-1 lists variables and constants used in the following equations.

<table>
<thead>
<tr>
<th>Variable or Constant</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>CO₂ Mass Density</td>
<td>mg·m⁻³</td>
</tr>
<tr>
<td>v</td>
<td>H₂O Mass Density</td>
<td>g·m⁻³</td>
</tr>
<tr>
<td>d</td>
<td>Mass Density of Dry Air</td>
<td>g·m⁻³</td>
</tr>
<tr>
<td>cX</td>
<td>CO₂ Molar Mixing Ratio (concentration relative to dry air)</td>
<td>µmol·mol⁻¹</td>
</tr>
<tr>
<td>vX</td>
<td>H₂O Molar Mixing Ratio (concentration relative to dry air)</td>
<td>mmol·mol⁻¹</td>
</tr>
<tr>
<td>M_c</td>
<td>Molecular Weight of CO₂</td>
<td>44 mg·mmol⁻¹</td>
</tr>
<tr>
<td>M_d</td>
<td>Molecular weight of dry air</td>
<td>0.029 g·mmol⁻¹</td>
</tr>
<tr>
<td>M_v</td>
<td>Molecular weight of H₂O</td>
<td>0.018 g·mmol⁻¹</td>
</tr>
<tr>
<td>P</td>
<td>Ambient Pressure</td>
<td>kPa</td>
</tr>
<tr>
<td>R</td>
<td>Universal Gas Constant</td>
<td>8.3143×10⁻⁶ kPa·m³·K⁻¹·mmol⁻¹</td>
</tr>
<tr>
<td>T</td>
<td>Ambient Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>e</td>
<td>Vapor Pressure</td>
<td>kPa</td>
</tr>
<tr>
<td>f</td>
<td>Enhancement Factor</td>
<td>Arbitrary</td>
</tr>
<tr>
<td>T_d</td>
<td>Dew Point Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>T_{d_tmp}</td>
<td>Temporary variable for dew point calculation</td>
<td>Arbitrary</td>
</tr>
</tbody>
</table>

Mass Density from Molar Mixing Ratios

\[
\rho_c = \frac{X_c M_c}{10^6} \left(\frac{P}{R(T+273.15)} - \frac{\rho_v}{M_v} \right) \quad (C-1)\]

\[
\rho_v = \frac{X_v P M_v}{R(T+273.15)(1000+X_v)} \quad (C-2)\]

\[
\rho_d = \frac{(P-e)M_d}{R(T+273.15)} \quad (C-3)
\]

\[
\rho_d = \frac{\left(\frac{X_v P}{1000+X_v} \right) M_d}{R(T+273.15)} \quad (C-4)
\]
Appendix C. Equations

\[\rho_d = \left(\frac{PM_d}{R(T + 273.15)} \right) \left(1 - \frac{X_v}{1000 + X_v} \right) \quad (C-5) \]

Dewpoint from Molar Mixing Ratio

\[T_d = \frac{240.97 T_{\text{d, imp}}}{17.502 - T_{\text{d, imp}}} \quad (C-6)^2 \]

\[T_{\text{d, imp}} = \ln \left(\frac{X_v P}{0.61121 \cdot f(1000 + X_v)} \right) \quad (C-7)^2 \]

\[f = 1.00072 + \left(3.2 \times 10^{-5}\right)P + \left(5.9 \times 10^{-9}\right)PT^2 \quad (C-8)^2 \]

Water Vapor Molar Mixing Ratio from Dewpoint

\[X_v = \frac{e}{P - e} \quad 1000 \quad (C-9) \]

\[e = 0.61121 \cdot f \cdot \text{EXP} \left(\frac{17.502T_d}{240.97 + T_d} \right) \quad (C-10)^2 \]

Water Vapor Mass Density from Dewpoint

\[\rho_v = \frac{(0.018)(0.61121)f \cdot \text{EXP} \left(\frac{17.502T_d}{240.97 + T_d} \right)}{R(T + 273.15)} \quad (C-11)^2 \]

Vapor Pressure from Molar Mixing Ratio and Water Vapor Density

\[e = \frac{X_v P}{1000 + X_v} \quad (C-12) \]

\[e = \frac{\rho_v R(T + 273.15)}{M_v} \quad (C-13) \]

Appendix D. Safety Data Sheets (SDS)

SDS are available for chemicals used in IRGASON filters. The SDS samples below are made available for convenience. However, chemical manufacturers may change SDS at any time. Up-to-date SDS are available at www.campbellsci.com.

D.1 Molecular Sieve, Type 13X

<table>
<thead>
<tr>
<th>Identification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Product identifier</td>
<td></td>
</tr>
<tr>
<td>Product name: Molecular sieve, Type 13X</td>
<td></td>
</tr>
<tr>
<td>Stock number: A10378</td>
<td></td>
</tr>
<tr>
<td>CAS Number: 13X</td>
<td></td>
</tr>
<tr>
<td>Relevant use of the substance or mixture and uses advised against:</td>
<td></td>
</tr>
<tr>
<td>Details of the supplier of the safety data sheet</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer/supplier</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfa Aesar</td>
<td></td>
</tr>
<tr>
<td>Thermo Fisher Scientific Chemicals, Inc</td>
<td></td>
</tr>
<tr>
<td>20 East Street</td>
<td></td>
</tr>
<tr>
<td>Waltham, MA 02451-5599</td>
<td></td>
</tr>
<tr>
<td>Tel: 800-342-0990</td>
<td></td>
</tr>
<tr>
<td>Fax: 978-562-4501</td>
<td></td>
</tr>
<tr>
<td>Email: intsales@fcs.com</td>
<td></td>
</tr>
<tr>
<td>www.alfaesar.com</td>
<td></td>
</tr>
</tbody>
</table>

Information Department: Health, Safety and Environmental Department	
Emergency telephone number:	
During normal business hours, call CareChem 24 at (866) 938-0780	

<table>
<thead>
<tr>
<th>Hazard(s) Identification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification of the substance or mixture in accordance with 19 CFR 1910 (OSHA HCS)</td>
<td></td>
</tr>
<tr>
<td>The substance is not classified according to the Globally Harmonized System (GHS).</td>
<td></td>
</tr>
</tbody>
</table>

Hazard not otherwise classified	
GHS label elements:	
Signal word: Not applicable	
Hazard statements: Not applicable	
WHMIS classification: Not controlled	
Classification system:	
HME ratings:	
Health: (acute-effects) = 1	
Flammability = 0	
Reactivity = 0	
Physical Hazard = 0	

Other hazards:	
Results of PBT and vPvB assessment	
PBT: Not applicable	
vPvB: Not applicable	

Composition/Information on ingredients	
Chemical characterization: Substances	
CAS Description:	
SDS Form: Molecular sieve, Type 13x	

First-aid measures	
Description of first aid measures	
After inhalation:	
Support patient's airway if required, provide artificial respiration. Keep patient warm. Seek immediate medical advice.	
After skin contact:	
Wash affected area with water and soap, rinse thoroughly. Seek immediate medical advice.	
After eye contact:	
Rinse open eyes for several minutes under running water. Then consult a doctor.	
After swallowing:	
Seek medical attention.	
Most important symptoms and effects, both acute and delayed:	
No further relevant information available.	

Fire-fighting measures	
Suitable extinguishing media:	
Water is not flammable. Use fire-fighting measures that suit the surrounding fire.	

Special hazards arising from the substance or mixture:	
If this product is involved in a fire, the following can be released.	
Metal oxide fumes	
Silicon oxides	
Sodium oxides	
Advice for firefighters:	
Protective equipment:	
Wear self-contained breathing apparatus. Wear fully protective impermeable suit.	

Accidental release measures:	
Personal protective equipment:	
Wear: protective clothing, protective gloves, protective glasses or face shield,	
Efficient respiratory protection.	
Environmental precautions:	
Do not allow material to be released to the environment without proper governmental permits.	
Methods and material for containment and cleaning up: Pick up mechanically.	
Prevention of secondary hazards:	
No special measures required.	
Reference to other sections:	
See Section 7 for information on safe handling.	

(C) And page 2

D-1
Safety Data Sheet

Product name: Molecular sieve, Type 13X

See Section 8 for information on personal protection equipment.
See Section 13 for disposal information.

7 Handling and storage

Handling

- Precautions for safe handling: Keep container tightly sealed.
Store in cool, dry place in tightly closed containers.

Information about protection against explosions and fires: The product is not flammable.

Conditions for safe storage, including any incompatibilities

Storage

- Requirements to be met by storerooms and receptacles: No special requirements.
- Information about storage in one common storage facility: No information known.
- Further information about storage conditions:
 - Keep container tightly sealed.
Store in cool, dry conditions in well sealed containers.
- Specific end use(s): No further relevant information available.

8 Exposure controls/personal protection

Additional information about design of technical systems: Properly operating chemical fume hood designed for hazardous chemicals and having an average face velocity of at least 100 feet per minute.

Control parameters

- Components with limit values that require monitoring at the workplace: The product does not contain any relevant quantities of materials with critical values that have to be monitored at the workplace.

Additional information: No data

Exposure controls

- Personal protective equipment
 - General protective and hygienic measures: The usual precautionary measures for handling chemicals should be followed. Keep away from foodstuffs, beverages and field.
 - Remove all soiled and contaminated clothing immediately.
 - Wash hands before breaks and at the end of work.
 - Maintain an ergonomically appropriate working environment.
 - Breathing equipment: Use suitable respirator when high concentrations are present.
 - Protection of hands: Impervious gloves
 - Check protective gloves prior to each use for their proper condition.

Eye protection: Safety glasses

Body protection: Protective work clothing

9 Physical and chemical properties

Information on basic physical and chemical properties

General information

Appearance: Powder/crystalline/beads

Odor: Light brown

Odor threshold: Not determined

pH-value: Not applicable

Change in condition

- Melting point/freezing range: Not determined

- Boiling point/vapor range: Not determined

- Sublimation temperature/Start: Not determined

- Flammability (solid, gaseous): Not determined

- Ignition temperature: Not determined

- Decomposition temperature: Not determined

- Auto igniting: Not determined

Danger of explosion: Not determined

Explosion limits: Not determined

- Lower: Not determined

- Upper: Not determined

- Vapor pressure: Not applicable

- Density at 20°C (68 °F): 1.1 g/cm³ (16 lbs/gal)

- Relative density: Not determined

- Vapor density: Not applicable

- Evaporation rate: Not applicable

- Solubility in / Miscibility with:
 - Water: Insoluble

Partition coefficient (n-octanol/water): Not determined

Viscosity: Dynamic: Not applicable

- Kinematic: Not applicable

Other information: No further relevant information available.

10 Stability and reactivity

Reactivity: No information known.

Chemical stability: Stable under recommended storage conditions.

Thermal decomposition / conditions to be avoided: Decomposition will not occur if used and stored according to specifications.

Possibility of hazardous reactions: No dangerous reactions known.

Conditions to avoid: No further relevant information available.

Incompatible materials: No information known.

Hazardous decomposition products:

- Metal oxide fume

- Silicon oxide

(Cont'd on page 3)
Appendix D. Safety Data Sheets (SDS)

Product name: Molecular sieve, Type 13X

Sodium oxide

(Contd. of page 2)

11 Toxicological information

Information on toxicological effects:
Acute toxicity: No effects known
LD/LC50 values that are relevant for classification: No data
Skin irritation or corrosion: May cause irritation
Eye irritation or corrosion: May cause irritation
Sensitization: No sensitizing effects known
Germ cell mutagenicity: No effects known
Carcinogenicity: No classification data on carcinogenic properties of this material is available from the EPA, IARC, NTP, OSHA or ACGIH.
Reproductive toxicity: No effects known
Specific target organ system toxicity - repeated exposure: No effects known.
Specific target organ system toxicity - single exposure: No effects known.
Aspiration hazard: No effects known
Subacute to chronic toxicity: No effects known
Additional toxicological information: To the best of our knowledge the acute and chronic toxicity of this substance is not fully known.

12 Ecological information

Toxicity:
Aquatic toxicity: No further relevant information available.
Bioaccumulative potential: No further relevant information available.
Mobility in soil: No further relevant information available.
Additional ecological information:
General notes: Do not allow material to be released to the environment without proper governmental permits.
Avoid transfer into the environment.
Results of PBT and vPvB assessment:
PBT: Not applicable.
vPvB: Not applicable.
Other adverse effects: No further relevant information available.

13 Disposal considerations

Waste treatment methods:
Recommendation: Consult state, local or national regulations to ensure proper disposal.
Uncleaned packagings:
Recommendation: Disposal must be made according to official regulations.

14 Transport information

UN/Number
DOT, ADN, IMDG, IATA: Not applicable

UN proper shipping name
DOT, ADN, IMDG, IATA: Not applicable

Transport hazard class(es)
DOT, ADR, ADN, IMDG, IATA: Not applicable

Class
DOT, ADR, ADN, IMDG, IATA: Not applicable

Packaging group
DOT, IMDG, IATA: Not applicable

Environmental hazards:
Not applicable.

Special precautions for user
Not applicable.

Transport in bulk according to Annex II of MARPOL73/78 and the IBC Code: Not applicable.

Transport/Additional information:
DOT: No
Marine Pollutant (DOT): No

UN "Model Regulation":

15 Regulatory information

Safety, health and environmental regulations/legislation specific for the substance or mixture
GHS label elements: Not applicable
Hazard pictograms: Not applicable
Signal word: Not applicable
Hazard statements: Not applicable
National regulations:
This product is not listed in the U.S. Environmental Protection Agency Toxic Substances Control Act Chemical Substance Inventory. Use of this product is restricted to research and development only. This product must be used by or directly under the supervision of a technically qualified individual as defined by TSCA. This substance is not listed in SARA Section 313 (specific toxic chemical listings).
California Proposition 65:
Prop 65 - Chemicals known to cause cancer: Substance is not listed.
Prop 65 - Developmental toxicity: Substance is not listed.
Prop 65 - Developmental toxicity, female: Substance is not listed.
Prop 65 - Developmental toxicity, male: Substance is not listed.

Information about limitation of use: Use only by technically qualified individuals.

Other regulations, limitations and prohibitive regulations:
Substance of Very High Concern (SVHC) according to the REACH Regulations (EC) No. 1907/2006. Substance is not listed.
The conditions of restrictions according to Article 67 and Annex XVII of the Regulation (EC) No. 1907/2006 (REACH) for the manufacturing, placing on the market and use must be observed.
Substance is not listed.

Annex XIV of the REACH Regulations (requiring Authorisation for use): Substance is not listed.

Chemical safety assessment: A Chemical Safety Assessment has not been carried out.

(Contd. on page 4)
Appendix D. Safety Data Sheets (SDS)

16 Other information

Employers should use this information only as a supplement to other information gathered by them, and should make independent judgement of suitability of this information to ensure proper use and protect the health and safety of employees. This information is furnished without warranty, and any use of the product not in conformance with this Material Safety Data Sheet, or in combination with any other product or process, is the responsibility of the user.

Department issuing SDS: Global Marketing Department

Date of preparation / last revision 11/24/2015

Abbreviations and acronyms:

- ADR: Agreement international concernant le transport des marchandises dangereuses par chemin de fer (Regulations Concerning the International Transport of Dangerous Goods by Rail)
- ARC: International Air Transport Association
- CLP: Classification and Labelling provisions (Regulation concerning the Classification, Labelling and Packaging of Dangerous Goods by Road)
- IMDG: International Maritime Code for Dangerous Goods
- DOT: US Department of Transportation
- DS: Dangerous Substance
- CAS: Chemical Abstracts Service (division of the American Chemical Society)
- HSDB: Hazardous Substances Database (USA)
- WHMIS: Workplace Hazardous Materials Information System (Canada)
- IARC: International Agency for Research on Cancer
- OECD: Organization for Economic Co-operation and Development

USA

D-4
D.2 Magnesium Perchlorate

SAFETY DATA SHEET

1. Identification
Product identifier MAGNESIUM PERCHLORATE, ANHYDROUS, REAGENT (ACS)
Other means of identification
Product code 55
Recommended use professional, scientific and technical activities: scientific research and development
Recommended restrictions None known.
Manufacturer/Importer/Supplier/Distributor information
Company name GFS Chemicals, Inc.
Address P.O. Box 245
Powell
OH
43065
US
Telephone
Phone 740-481-5501
Toll Free 800-858-5682
Fax 740-481-5989
Website www.gfschemicals.com
E-mail service@gfschemicals.com
Emergency phone number Emergency Assistance Chemtoc: 800-424-9300

2. Hazard(s) identification
Physical hazards Oxidizing solids Category 2
Health hazards Serious eye damage/eye irritation Category 2A
Specific target organs toxicity, single exposure Not classified.
OSHA hazard(s) Category 3 respiratory tract irritation
Label elements

Signal word Danger
Hazard statement May intensify fire; oxidizer. Causes serious eye irritation. May cause respiratory irritation.
Precautionary statement
Prevention Keep/Stores away from clothing and other combustible materials. Keep away from heat. Use only outdoors or in a well-ventilated area. Take any precautions to avoidmixing with combustibles. Avoid breathing dust. Wash thoroughly after handling. Wear protective gloves/eye protection/face protection.
Response If inhaled: Remove person to fresh air and keep comfortable for breathing. If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Call a POISON CENTER or doctor/physician if you feel unwell. If eye irritation persists: Get medical advice/attention. In case of fire: Use appropriate media for extinction.
Storage Store in a well-ventilated place. Keep container tightly closed. Store locked up.
Disposal Dispose of contents/container to an appropriate treatment and disposal facility in accordance with applicable laws and regulations, and product characteristics at time of disposal.

Hazard(s) not otherwise classified (HNOC) Not classified.

3. Composition/information on ingredients
Substances
Hazardous components Chemical name Common name and synonyms CAS number %
MAGNESIUM PERCHLORATE 10031-81-8 100
Appendix D. Safety Data Sheets (SDS)

*Designates that a specific chemical identity and/or percentage of composition has been withheld as a trade secret.

4. First-aid measures

Inhalation
If dust from the material is inhaled, remove the affected person immediately to fresh air. Call a POISON CENTER or doctor/physician if you feel unwell.

Skin contact
Immediately flush skin with plenty of water. Get medical attention if irritation develops and persists.

Eye contact
Immediately flush eyes with plenty of water for at least 15 minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention.

Ingestion
Have victim rinse mouth thoroughly with water. Drink 1 or 2 glasses of water.

Most important symptoms/effects, acute and delayed
Irritation of eyes and mucous membranes.

Indication of immediate medical attention and special treatment needed
Provide general supportive measures and treat symptomatically.

General information
Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.

5. Fire-fighting measures

Suitable extinguishing media
Water.

Unsuitable extinguishing media
None known.

Specific hazards arising from the chemical
May intensify fire; oxidizer.

Special protective equipment and precautions for firefighters
Firefighters must use standard protective equipment including flame retardant coat, helmet with face shield, gloves, rubber boots, and in enclosed spaces, SCBA.

Fire-fighting equipment/instructions
Move containers from fire area if you can do it without risk. Move containers from fire area if you can do so without risk. In the event of fire, cool tanks with water spray. For massive fire in cargo area, use unmannned hose holder or monitor nozzles, if possible. If not, withdraw and let fire burn out.

Specific methods
Cool containers exposed to flames with water until well after the fire is out.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures
Keep unnecessary personnel away. Local authorities should be advised if significant spillages cannot be contained. Use a NIOSH/MSHA approved respirator if there is a risk of exposure to dust/fume at levels exceeding the exposure limits. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Keep people away from and upwind of spill/leak. Keep upwind. Keep out of low areas. Ventilate closed spaces before entering them. Avoid inhalation of dust from the spilled material. Wear appropriate personal protective equipment.

Methods and materials for containment and cleaning up
ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). Keep combustibles (wood, paper, oil, etc.) away from spilled material. This product is miscible in water. After removal flush contaminated area thoroughly with water. If sweeping of a contaminated area is necessary use a dust suppressant agent which does not react with the product. Sweep up or vacuum up spillage and collect in suitable container for disposal. Collect dust using a vacuum cleaner equipped with HEPA filter. Avoid the generation of dusts during clean-up. Dilute with plenty of water. Following product recovery, flush area with water. Prevent entry into waterways, sewers, basements or confined areas. For waste disposal, see section 13 of the MSDS.

Environmental precautions
Avoid discharge into drains, water courses or onto the ground. Prevent further leakage or spillage if safe to do so.

7. Handling and storage

Precautions for safe handling
Avoid dust formation. Do not breathe dust from this material. In case of insufficient ventilation, wear suitable respiratory equipment. Take any precaution to avoid mixing with combustibles. Keep away from heat. Guard against dust accumulation of this material. Provide appropriate exhaust ventilation at places where dust is formed. Avoid contact with skin and eyes. Wash hands thoroughly after handling. Practice good housekeeping.

Conditions for safe storage, including any incompatibilities
Do not store around flammable or combustible materials. Keep away from heat. Store in a well-ventilated place. Keep container tightly closed. Avoid dust formation. Do not store near combustible materials. Guard against dust accumulation of this material. Keep out of the reach of children. Store in a cool, dry place out of direct sunlight.
8. Exposure controls/personal protection

Occupational exposure limits
No exposure limits noted for ingredient(s).

Biological limit values
No biological exposure limits noted for the ingredient(s).

Appropriate engineering controls
Ventilation should be sufficient to effectively remove and prevent buildup of any dusts or fumes that may be generated during handling or thermal processing. An eye wash and safety shower must be available in the immediate work area.

Individual protection measures, such as personal protective equipment

- **Eye/face protection**
 Wear eye/face protection. Use tight fitting goggles if dust is generated. Eye wash fountains are required.

- **Skin protection**
 Wear protective gloves.

- **Hand protection**
 Wear protective gloves.

- **Other**
 Wear suitable protective clothing. Wear protective gloves.

- **Respiratory protection**
 Respirator must be worn if exposed to dust. Wear respirator with dust filter.

- **Thermal hazards**
 Not available.

General hygiene considerations
Do not breathe dust. Avoid contact with eyes. Wash hands before breaks and immediately after handling the product. Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Appearance
Granular and Powder.

- **Physical state**
 Solid.

- **Form**
 Solid.

- **Color**
 White.

- **Odor**
 Odorless.

- **Odor threshold**
 Not available.

- **pH**
 Not available.

- **Melting point/freezing point**
 482 °F (250 °C)

- **Initial boiling point and boiling range**
 Not available.

- **Flash point**
 Not available.

- **Evaporation rate**
 Not available.

- **Flammability (solid, gas)**
 Not applicable.

Upper/lower flammability or explosive limits

- **Flammability limit - lower (%)**
 Not available.

- **Flammability limit - upper (%)**
 Not available.

- **Explosive limit - lower (%)**
 Not available.

- **Explosive limit - upper (%)**
 Not available.

- **Vapor pressure**
 Not available.

- **Vapor density**
 Not available.

- **Relative density**
 Not available.

- **Solubility(ies)**
 Very soluble with evolution of heat

- **Partition coefficient (n-octanol/water)**
 Not available.

- **Auto-ignition temperature**
 Not available.

- **Decomposition temperature**
 > 482 °F (> 250 °C)
 When heated to decom, emits toxic fumes of magnesium oxide and hydrogen chloride.

Viscosity
Not available.

Other information

- **Density**
 2.20 g/cm³ estimated

- **Molecular formula**
 Mg(ClO4)2

- **Molecular weight**
 223.23 g/mol

- **pH in aqueous solution**
 5 - 8 (5% solution)
10. Stability and reactivity

Reactivity: Combustible material.
Chemical stability: Material is stable under normal conditions. Risk of ignition.
Possibility of hazardous reactions: Hazardous polymerization does not occur.
Conditions to avoid: Avoid spread of dust. Drying of this product on clothing or combustible materials may cause fire. Excessive heat.
Incompatible materials: Exothermic reaction on contact with water will release heat and steam. Organic materials Strong acids.
Hazardous decomposition products: Hydrogen chloride.

11. Toxicological information

Information on likely routes of exposure

Ingestion: Due to lack of data the classification is not possible.
Inhalation: Inhalation of dusts may cause respiratory irritation.
Skin contact: Due to lack of data the classification is not possible.
Eye contact: Causes serious eye irritation.

Symptoms related to the physical, chemical and toxicological characteristics: Not available.

Information on toxicological effects

Acute toxicity

<table>
<thead>
<tr>
<th>Product</th>
<th>Species</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGNESIUM PERCHLORATE (CAS 10034-81-8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td>Mouse</td>
<td>1500 mg/kg</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Estimates for product may be based on additional component data not shown.

Skin corrosion/irritation: Due to lack of data the classification is not possible.
Serious eye damage/eye irritation: Causes serious eye irritation. Dust in the eyes will cause irritation.
Respiratory sensitization: Due to lack of data the classification is not possible.
Skin sensitization: Due to lack of data the classification is not possible.
Germ cell mutagenicity: Due to lack of data the classification is not possible.
Carcinogenicity: This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.
Reproductive toxicity: Due to lack of data the classification is not possible.
Specific target organ toxicity - single exposure: Respiratory tract irritation.
Specific target organ toxicity - repeated exposure: The perchlorate ion competes with iodide in the mechanism that governs uptake into the thyroic gland for growth hormone production. This effect is routinely countered by ensuring sufficient dietary intake of iodine, as perchlorate does not accumulate in the body. Studies on workers in plants where perchlorates are manufactured have shown no thyroid abnormalities; various clinical studies are ongoing. Perchlorates occur naturally in trace amounts in the environment, and are not classified as carcinogenic. Due to lack of data the classification is not possible.
Aspiration hazard: Due to lack of data the classification is not possible.
Further information: This product has no known adverse effect on human health.

12. Ecological information

Ecotoxicity: This material is not expected to be harmful to aquatic life.
Persistence and degradability: None known.
Bioaccumulative potential: Not available.
Mobility in soil: Not available.
Other adverse effects: Not available.
13. Disposal considerations

Disposal instructions
Collect and reclaim or dispose in sealed containers at licensed waste disposal site. This material and its container must be disposed of as hazardous waste. Do not allow this material to drain into sewers/water supplies. Do not contaminate ponds, waterways or ditches with chemical or used container. If discarded, this product is considered a RCRA ignitable waste, D001. Dispose of contents/container in accordance with local/regional/national/international regulations.

Local disposal regulations
Not available.

Hazardous waste code
D001: Waste Flammable material with a flash point <140 F

Waste from residues / unused products
Dispose of in accordance with local regulations. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe manner (see: Disposal instructions). Not applicable.

Contaminated packaging
Empty containers should be taken to an approved waste handling site for recycling or disposal. Since emptied containers may retain product residue, follow label warnings even after container is emptied. Offer rinsed packaging material to local recycling facilities.

14. Transport information

DOT
- **UN number**: UN1475
- **UN proper shipping name**: Magnesium perchlorate
- **Transport hazard class(es)**: 5.1
- **Subsidiary class(es)**: Not available.
- **Packing group**: II
- **Special precautions for user**: Read safety instructions, SDS and emergency procedures before handling.
- **Labels required**: 5.1
- **Special provisions**: ID6, IP2, T3, TP33
- **Packaging exceptions**: 152
- **Packaging non bulk**: 212
- **Packaging bulk**: 242

IATA
- **UN number**: UN1475
- **UN proper shipping name**: Magnesium perchlorate
- **Transport hazard class(es)**: 5.1
- **Subsidiary class(es)**: -
- **Packing group**: II
- **Environmental hazards**: No
- **Labels required**: Not available.
- **ERG Code**: 5L
- **Special precautions for user**: Not available.

IMDG
- **UN number**: UN1475
- **UN proper shipping name**: MAGNESIUM PERCHLORATE
- **Transport hazard class(es)**: 5.1
- **Subsidiary class(es)**: -
- **Packaging group**: II
- **Environmental hazards**: No
- **Marine pollutant**: No
- **Labels required**: Not available.
- **Ems**: F-H, S-Q
- **Special precautions for user**: Not available.
- **Transport in bulk according to Annex II of MARPOL 73/76 and the IBC Code**: No information available.
15. Regulatory information

DOT

This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200. CERCLA/SARA Hazardous Substances - Not applicable.

All components are on the U.S. EPA TSCA Inventory List.

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

Not regulated.

Not on regulatory list.

CERCLA Hazardous Substance List (40 CFR 302.4)

Not listed.

Superfund Amendments and Reauthorization Act of 1986 (SARA)

<table>
<thead>
<tr>
<th>Hazard categories</th>
<th>Immediate Hazard - Yes</th>
<th>Delayed Hazard - Yes</th>
<th>Fire Hazard - Yes</th>
<th>Pressure Hazard - No</th>
<th>Reactivity Hazard - No</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARA 302 Extremely</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hazardous substance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SARA 311/312 Hazardous</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other federal regulations

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Not regulated.

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130)

Not regulated.

Safe Drinking Water Act (SDWA)

Not regulated.

Drug Enforcement Administration (DEA). List 2, Essential Chemicals (21 CFR 1310.02(b) and 1310.04(r)(2) and Chemical Code Number

Not listed.

Drug Enforcement Administration (DEA). List 1 & 2 Exempt Chemical Mixtures (21 CFR 1310.12(c))

Not regulated.

DEA Exempt Chemical Mixtures Code Number

Not regulated.

Food and Drug Administration (FDA)

Not regulated.

US state regulations

California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65): This material is not known to contain any chemicals currently listed as carcinogens or reproductive toxins.
Appendix D. Safety Data Sheets (SDS)

US. Massachusetts RTK - Substance List
MAGNESIUM PERCHLORATE (CAS 10034-81-8)

US. New Jersey Worker and Community Right-to-Know Act
Not regulated.

US. Pennsylvania RTK - Hazardous Substances
MAGNESIUM PERCHLORATE (CAS 10034-81-8)

US. Rhode Island RTK
MAGNESIUM PERCHLORATE (CAS 10034-81-8)

US. California Proposition 65

US - California Proposition 65 - Carcinogens & Reproductive Toxicity (CRT): Listed substances
Not listed.

International Inventories

<table>
<thead>
<tr>
<th>Country(s) or region</th>
<th>Inventory name</th>
<th>On inventory (yes/no)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Australian Inventory of Chemical Substances (AICS)</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada</td>
<td>Domestic Substances List (DSL)</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada</td>
<td>Non-Domestic Substances List (NDSL)</td>
<td>No</td>
</tr>
<tr>
<td>China</td>
<td>Inventory of Existing Chemical Substances in China (IECSC)</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe</td>
<td>European Inventory of Existing Commercial Chemical Substances (ENECSC)</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe</td>
<td>European List of Notified Chemical Substances (ELINCSC)</td>
<td>No</td>
</tr>
<tr>
<td>Japan</td>
<td>Inventory of Existing and New Chemical Substances (ENCS)</td>
<td>Yes</td>
</tr>
<tr>
<td>Korea</td>
<td>Existing Chemicals List (ECL)</td>
<td>Yes</td>
</tr>
<tr>
<td>New Zealand</td>
<td>New Zealand Inventory</td>
<td>Yes</td>
</tr>
<tr>
<td>Philippines</td>
<td>Philippine Inventory of Chemicals and Chemical Substances (PICCS)</td>
<td>Yes</td>
</tr>
<tr>
<td>United States & Puerto Rico</td>
<td>Toxic Substances Control Act (TSCA) Inventory</td>
<td>Yes</td>
</tr>
</tbody>
</table>

A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s)

16. **Other information, including date of preparation or last revision**

- **Issue date**: March 26, 2013
- **Version #**: 01
- **Further information**: Not available.
- **Disclaimer**: The information in the sheet was written based on the best knowledge and experience currently available. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

Revision Information

- Product and Company Identification: Alternate Trade Names
- Hazard Identification: US Hazardous
- Composition / Information on Ingredients: Ingredients
- Physical & Chemical Properties: Multiple Properties
- Transport Information: Proper Shipping Name/Packing Group
- Regulatory Information: United States
- HazReg Data: International Inventories
Appendix D. Safety Data Sheets (SDS)

D.3 Decarbite

P. W. PERKINS CO., INC.
221 Commissioners Pike – Woodstown, NJ 08098-2032 USA
1-(856) 769-3525 Fax 1-(856) 769-2177

www.decarbite.com
www.pwperkins.com
pwpco@mindspring.com

SAFETY DATA SHEET

IDENTITY DECARBITE®

SECTION I - Identification
PRODUCT CODE: DECS120, DECS121, DECS135, DECB122, DECB123, DECB135
MANUFACTURER’S NAME:
P. W. PERKINS CO., INC.
221 COMMISSIONERS PIKE
WOODSTOWN NJ 08098-2032 USA
856-769-3525

EMERGENCY TELEPHONE NUMBER: 1-800-424-9300 (CHEMTREC)
(INTERNATIONAL: CALL CHEMTREC COLLECT 1-703-527-3887)

DATE PREPARED: JANUARY 5, 2015

SECTION II – Hazards Identification
Route(s) of Entry: Inhalation? 4-Extreme
 Skin? 4-Extreme
 Ingestion? 3-Severe

Health Hazards (Acute and Chronic): Corrosive to all body tissue which it comes in contact. The chronic local effect may consist of multiple areas of superficial destruction of the skin. Inhalation of dust may cause varying degrees of irritation.

Carcinogenicity: NTP? NA; IARC Monographs? NA; OSHA Regulated? NA
Not listed as a carcinogen.

Signs and Symptoms of Exposure: Itching, burning of skin or eyes. Temporary discomfort of breathing passages.

Medical Conditions Generally Aggravated by Exposure: Increased susceptibility to respiratory illness.

Emergency and First Aid Procedures: Flush with water. Seek medical attention. Eyes – flush with large amounts of clean water, followed by boric acid eye wash solution.
Appendix D. Safety Data Sheets (SDS)

SECTION III – Composition/Information on Ingredients
Proprietary formulation indicating CO₂ Adsorbent
Sodium Hydroxide: CAS #1310-73-2: 90 – 95%
Non Fibrous Silicate: CAS #1318-00-9: 5 – 10%

SECTION IV – FIRST AID MEASURES
Inhalation: Supply fresh air. If not breathing, give artificial respiration.
Ingestion: If swallowed, call for doctor immediately. Drink plenty of water and provide fresh air.
Skin contact: Immediately flush skin with plenty of water and soap. Immediately remove any clothing soiled by the product. Wash clothing before reuse.
Eye Contact: Immediately flush eyes with plenty of water for at least 15 minutes. Get medical attention immediately.

SECTION V – Fire and Explosion Hazard Data
Flash Point (Method Used): No flash to 550° F ASTM D-56
Flammable Limits: Non flammable
LEL: NA
UEL: NA
Extinguishing Media: Product not combustible. FCam/CO₂ or dry chemical can be used. Direct contact with water can cause a violent exothermic reaction.
Special Fire Fighting Procedures: Protective clothing/self contained breathing apparatus should be worn by fire fighters in area where product is stored.
Unusual Fire and Explosion Hazards: Material is stable (non explosive), nonflammable. Will react with varying degrees of intensity on exposure to water and strong acids.

SECTION VI – Accidental Release Measures
Person-related safety precautions: Wear protective equipment. Keep unprotected persons away.
Measures for environmental protections: Do not allow product to reach sewage systems or any water course. Inform authorities in case of seepage into water course or sewage system.
Measures for cleaning/collecting: Use neutralizing agent. Ensure adequate ventilation. Do not flush with water or aqueous cleansing agents.

SECTION VII – Precautions for Safe Handling and Use
Steps to Be Taken in Case Material is Released or Spilled: Wash area with 1 molar Hydrochloric Acid or use caustic spill kit. Wash with clean water.
Waste Disposal Method: Appropriate disposal should conform with local and state health regulations.
Precautions to Be Taken in Handling and Storing: Wear protective clothing, use adequate ventilation where dust may be generated.
Other Precautions: Respirator, eye protection, gloves, lab coat or other clothing to cover exposed skin area.
Appendix D. Safety Data Sheets (SDS)

SECTION VIII – Exposure Controls/Personal Protection

OSHA Permissible Exposure Limit (PEL) = 2mg/m³ Ceiling

ACGIH Threshold Limit Value (TLV) = 2mg/m³ Ceiling

Respiratory Protection: Advantage 3000 Respirator, full face mask, model 3200 Twin Port or NIOSH approved respirator.

Ventilation: Local Exhaust: Exhaust fan Special: NA

Mechanical (General) NA Other: NA

Protective Gloves: Impervious

Eye Protection: Goggles/face shield

Other Protective Clothing or Equipment: Coveralls, chemically resistant shoes.

Work/Hygienic Practices: Wash contaminated clothes; showers and eye wash should be accessible.

SECTION IX – PHYSICAL/CHEMICAL CHARACTERISTICS

Boiling Point: @ 760 mm Hg: 1388°C

Vapor Pressure (mm Hg): 42 mm Hg @ 1000°C

Vapor Density (Air =): NA

Specific Gravity (H₂O = 1): 2.13 @ 20°C

Melting Point: NA

Evaporation Rate (Butyl Acetate = 1): NA

Solubility in Water: Completely soluble

Appearance and Odor: Tan, no distinct odor

SECTION X – Reactivity Data

Stability: Stable

Conditions to Avoid: Contact with water causes strong exothermic reaction. Avoid strong acids contact.

Incompatibility (Materials to Avoid): Water, strong acids, aluminum, tin, zinc.

Hazardous Decomposition or Byproducts: Exposure to air results in formation of H₂O and carbonate.

Hazardous Polymerization: Will Not Occur

Conditions to Avoid: Material not known to polymerize.

SECTION XI – Toxicological Information

Effects of acute exposure:

Skin: Causes chemical burns.

Eye: Causes chemical burns.

Inhalation: Harmful if inhaled. May cause irritation or chemical burns.

Ingestion: Harmful if swallowed. May cause chemical burns to mouth, throat and stomach.
Appendix D. Safety Data Sheets (SDS)

SECTION XII – Ecological Information
Do not empty into drains. Do not allow undiluted product or large quantities to reach ground water, water course, or sewage system.

SECTION XIII – Disposal Considerations
Review federal, state, and local government requirements prior to disposal. Whatever cannot be saved for recovery or recycling should be managed in an appropriate waste facility. Dispose of container and unused contents in accordance with federal, state, and local requirements.

SECTION XIV – Transport Information

Domestic (Land, DOT)
DOT Shipping name: Sodium Hydroxide, Solid
DOT ID: UN1823
DOT Hazard Class: 8, corrosive, Packaging Group II

IATA
IATA Shipping name: Sodium Hydroxide, Solid
IATA ID: UN1823
IATA Hazard Class: 8, corrosive, Packaging Group II
IATA Instructions – Passenger/cargo - 859, LTD QTY - 844, Cargo only - 863

SECTION XV - Regulatory Information

HMIS HAZARD RATINGS: Health Hazard 3; Fire Hazard, 0; Reactivity 2
WHMIS Classification: Class E, Corrosive Material
TSCA: On Toxic Substance Control Inventory
Hazardous Substance: RQ 1000 lbs
SARA TITLE III: 311/312; Acute, Reactive
RCRA: Not Regulated

SECTION XVI – Date of Preparation

DATE PREPARED: JANUARY 5, 2015
Appendix E. IRGASON Packing Information

The IRGASON components are placed in a foam cutout that helps protect them from damage during shipment. The IRGASON should look like the following image. After unpacking, it is recommended to save the foam cutout as the IRGASON components should be placed in the foam cutout whenever the IRGASON is transported to another location.
Global Sales & Support Network
A worldwide network to help meet your needs

Australia
Location: Garbutt, QLD Australia
Phone: 61.7.4401.7700
Email: info@campbellsci.com.au
Website: www.campbellsci.com.au

Brazil
Location: São Paulo, SP Brazil
Phone: 11.3732.3399
Email: vendas@campbellsci.com.br
Website: www.campbellsci.com.br

Canada
Location: Edmonton, AB Canada
Phone: 780.454.2505
Email: dataloggers@campbellsci.ca
Website: www.campbellsci.ca

China
Location: Beijing, P. R. China
Phone: 86.10.6561.0080
Email: info@campbellsci.com.cn
Website: www.campbellsci.com

Costa Rica
Location: San Pedro, Costa Rica
Phone: 506.2280.1564
Email: info@campbellsci.cc
Website: www.campbellsci.cc

France
Location: Vincennes, France
Phone: 0033.0.156.45.15.20
Email: info@campbellsci.fr
Website: www.campbellsci.fr

Germany
Location: Bremen, Germany
Phone: 49.0.421.460974.0
Email: info@campbellsci.de
Website: www.campbellsci.de

India
Location: New Delhi, DL India
Phone: 91.11.4650481.482
Email: info@campbellsci.in
Website: www.campbellsci.in

South Africa
Location: Stellenbosch, South Africa
Phone: 27.21.8809960
Email: sales@campbellsci.co.za
Website: www.campbellsci.co.za

Spain
Location: Barcelona, Spain
Phone: 34.93.2323938
Email: info@campbellsci.es
Website: www.campbellsci.es

Thailand
Location: Bangkok, Thailand
Phone: 66.2.719.3399
Email: info@campbellsci.asia
Website: www.campbellsci.asia

UK
Location: Shepshed, Loughborough, UK
Phone: 44.0.1509.601141
Email: sales@campbellsci.co.uk
Website: www.campbellsci.co.uk

USA
Location: Logan, UT USA
Phone: 435.227.9120
Email: info@campbellsci.com
Website: www.campbellsci.com