
IN
ST

R
U

C
T

IO
N

 M
A

N
U

A
L

Java PakBus®
 Software Development Kit

Revision: 9/15

C o p y r i g h t © 2 0 1 4 – 2 0 1 5
C a m p b e l l S c i e n t i f i c , I n c .

Campbell Scientific, Inc.
Software SDK End User License
Agreement (EULA)
NOTICE OF AGREEMENT: Please carefully read this EULA. By installing or using this software, you are
agreeing to comply with the terms and conditions herein. If you do not want to be bound by this EULA, you must
promptly return the software, any copies, and accompanying documentation in its original packaging to Campbell
Scientific or its representative.

By accepting this agreement you acknowledge and agree that Campbell Scientific may from time-to-time, and
without notice, make changes to one or more components of the Java PakBus® SDK or make changes to one or
more components of other software on which the Java PakBus® SDK relies. In no instance will Campbell
Scientific be responsible for any costs or liabilities incurred by you or other third parties as a result of these
changes.

The Campbell Scientific Java PakBus® Software Development Kit is hereinafter referred to as the Java PakBus®
SDK. The term “developer” herein refers to anyone using this Java PakBus® SDK.

LICENSE FOR USE: Campbell Scientific grants you a non-exclusive, non-transferable, royalty-free license to use
this software in accordance with the following:

1. The purchase of this software allows you to install and use a single instance of the software on one
physical computer or one virtual machine only.

2. This software cannot be loaded on a network server for the purposes of distribution or for access to the
software by multiple operators. If the software can be used from any computer other than the computer on
which it is installed, you must license a copy of the software for each additional computer from which the
software may be accessed.

3. This software package is licensed as a single product. Its component parts may not be separated for use
on more than one computer.

4. You may make one (1) backup copy of this software onto media similar to the original distribution, to
protect your investment in the software in case of damage or loss. This backup copy can be used only to
replace an unusable copy of the original installation media.

5. You may not use Campbell Scientific’s name, trademarks, or service marks in connection with any
program you develop with the Java PakBus® SDK. You may not state or infer in any way that Campbell
Scientific endorses any program you develop, unless prior written approval is received from Campbell
Scientific.

6. If the software program you develop requires you, your customer, or a third party to use additional
licensable software from Campbell Scientific, that software must be purchased from Campbell Scientific
or its representative under the terms of its separate EULA.

7. This license allows you to redistribute the Java JPakBus.JAR file and the .CLASS files (summarized
below) with the software developed using the Java PakBus® SDK. The .JAVA source code files are
included to aid in the understanding of the Java PakBus® SDK and cannot be redistributed, modified, or
used as the basis for some other SDK/API product. In addition, no other Campbell Scientific source code
may be distributed with your application.

 The core classes in the API are as follows:

i. class Network - This class lies at the heart of the API and manages all communications. It manages a
collection of “stations” and serializes transactions.

ii. class Datalogger - This class represents the state of a datalogger in the PakBus® network. It stores
the routing information needed to reach that datalogger as well as meta-data for that station. The
application can operate on the “real” datalogger by initiating transactions through instances of this
class.

iii. Transactions - Transactions are concrete objects derived from class TransactionBase. Each type of
transaction performs a specific type of operation such as clock set/check, data collection, or sending a
file. Each has a corresponding client interface which will receive status notifications as the
transaction progresses and a completion notification when the transaction is complete. An application
initiates transactions by creating specific transaction objects and “adding” them to the appropriate
datalogger object.

 All of the other classes in the API are designed as “helper” classes for the core classes mentioned
above.

8. The Java PakBus® SDK may not be used to develop and publicly sell or distribute any product that
directly competes with Campbell Scientific’s datalogger support software.

9. This Agreement does not give Developer the right to sell or distribute any other Campbell Scientific, Inc.
Software (e.g., PC200W, VisualWeather, LoggerNet or any of their components, files, documentation,
etc.) as part of Developer's application. Distribution of any other Campbell Scientific, Inc. software
requires a separate distribution agreement.

RELATIONSHIP: Campbell Scientific, Inc. hereby grants a license to use the Java PakBus® SDK in accordance
with the license statement above. No ownership in Campbell Scientific, Inc. patents, copyrights, trade secrets,
trademarks, or trade names is transferred by this Agreement. Developer may use the Java PakBus® SDK to create
as many applications as desired and freely distribute those applications. Campbell Scientific, Inc. expects no
royalties or any other compensation outside of the Java PakBus® SDK purchase price. Developer is responsible
for supporting applications created using the Java PakBus® SDK.

RESPONSIBILITIES OF DEVELOPER

The Developer agrees:

• To provide a competent programmer familiar with Campbell Scientific, Inc. datalogger programming and
operation to write the applications.

• Not to sell or distribute documentation on use of the Java PakBus® SDK.

• Not to sell or distribute the applications that are provided as examples in the Java PakBus® SDK.

• To develop original works. Developers may copy and paste portions of the code into their own
applications, but their applications are expected to be unique creations.

• Not to sell or distribute applications that compete directly with any application developed by Campbell
Scientific, Inc. or its affiliates.

• To assure that each application developed with the Java PakBus® SDK clearly states the name of the
person or entity that developed the application. This information should appear on the first window the
user will see.

• To be responsible for all support related to the application developed with the Java PakBus® SDK.

WARRANTY

There is no written or implied warranty provided with the Java PakBus® SDK software other than as stated herein.
Developer agrees to bear all warranty responsibility of any derivative products distributed by Developer.

TERMINATION

Any license violation or breach of Agreement will result in immediate termination of the developer's rights herein
and the return of all Java PakBus® SDK materials to Campbell Scientific, Inc.

MISCELLANEOUS

Notices required hereunder shall be in writing and shall be given by certified or registered mail, return receipt
requested. Such notice shall be deemed given in the case of certified or registered mail on the date of receipt. This
Agreement shall be governed and construed in accordance with the laws of the State of Utah, USA. Any dispute
resulting from this Agreement will be settled in arbitration.

This Agreement sets forth the entire understanding of the parties and supersedes all prior agreements,
arrangements and communications, whether oral or written pertaining to the subject matter hereof. This
Agreement shall not be modified or amended except by the mutual written agreement of the parties. The failure of
either party to enforce any of the provisions of this Agreement shall not be construed as a waiver of such
provisions or of the right of such party thereafter to enforce each and every provision contained herein. If any
term, clause, or provision contained in this Agreement is declared or held invalid by a court of competent
jurisdiction, such declaration or holding shall not affect the validity of any other term, clause, or provision herein
contained. Neither the rights nor the obligations arising under this Agreement are assignable or transferable.

COPYRIGHT

This software is protected by United States copyright law and international copyright treaty provisions. This
software may not be altered in any way without prior written permission from Campbell Scientific. All copyright
notices and labeling must be left intact.

Limited Warranty
The following warranties are in effect for ninety (90) days from the date of shipment of the original purchase.
These warranties are not extended by the installation of upgrades or patches offered free of charge:

Campbell Scientific warrants that the installation media on which the software is recorded and the documentation
provided with it are free from physical defects in materials and workmanship under normal use. The warranty does
not cover any installation media that has been damaged, lost, or abused. You are urged to make a backup copy (as
set forth above) to protect your investment. Damaged or lost media is the sole responsibility of the licensee and
will not be replaced by Campbell Scientific.

Campbell Scientific warrants that the software itself will perform substantially in accordance with the
specifications set forth in the instruction manual when properly installed and used in a manner consistent with the
published recommendations, including recommended system requirements. Campbell Scientific does not warrant
that the software will meet licensee’s requirements for use, or that the software or documentation are error free, or
that the operation of the software will be uninterrupted.

Campbell Scientific will either replace or correct any software that does not perform substantially according to the
specifications set forth in the instruction manual with a corrected copy of the software or corrective code. In the
case of significant error in the installation media or documentation, Campbell Scientific will correct errors without
charge by providing new media, addenda, or substitute pages. If Campbell Scientific is unable to replace defective
media or documentation, or if it is unable to provide corrected software or corrected documentation within a
reasonable time, it will either replace the software with a functionally similar program or refund the purchase price
paid for the software.

All warranties of merchantability and fitness for a particular purpose are disclaimed and excluded. Campbell
Scientific shall not in any case be liable for special, incidental, consequential, indirect, or other similar damages
even if Campbell Scientific has been advised of the possibility of such damages. Campbell Scientific is not
responsible for any costs incurred as a result of lost profits or revenue, loss of use of the software, loss of data, cost
of re-creating lost data, the cost of any substitute program, telecommunication access costs, claims by any party
other than licensee, or for other similar costs.

This warranty does not cover any software that has been altered or changed in any way by anyone other than
Campbell Scientific. Campbell Scientific is not responsible for problems caused by computer hardware, computer
operating systems, or the use of Campbell Scientific’s software with non-Campbell Scientific software.

Licensee’s sole and exclusive remedy is set forth in this limited warranty. Campbell Scientific’s aggregate liability
arising from or relating to this agreement or the software or documentation (regardless of the form of action; e.g.,
contract, tort, computer malpractice, fraud and/or otherwise) is limited to the purchase price paid by the licensee.

i

Table of Contents
PDF viewers: These page numbers refer to the printed version of this document. Use the
PDF reader bookmarks tab for links to specific sections.

1. Introduction ... 1

2. Setting up the Network ... 2

3. Using Transactions... 4

4. Setting or Checking a Datalogger Clock 6

5. Data Collection .. 8

5.1 Datalogger Storage Organization ... 8
5.2 Managing Table Definitions .. 8
5.3 Starting Data Collection ... 9
5.4 An Example of Data Collection ... 10
5.5 Get Values: An Alternative to Data Collection 11

6. Datalogger File Management 13

6.1 Sending a File .. 13
6.2 Receiving a File ... 14
6.3 Sending a Datalogger Program .. 15

7. Working with User I/O ... 18

8. Attribution ... 21

1

Java PakBus® Software Development Kit
1. Introduction

The purpose of this document is to provide prospective developers
with a general overview of the Java PakBus® SDK and its
application. The primary classes are discussed and example
implementations are provided. This document is not intended as
a programmers guide or reference.

The Java PakBus® SDK is a simple API that can be used to write Java based
applications that can communicate with Campbell Scientific dataloggers using
PakBus® protocol. This API has the following features:

Full PakBus® Networking

An application built using this API should be able to function in any
PakBus® network and communicate with any datalogger in that network.

Leaf Node

An application built using this API will act as a PakBus® leaf node. This
means that it will not send or receive routing information with the
exception of messages used to confirm neighbour links.

Single Threaded

The API does not spawn worker threads for communication. Rather the
application is responsible for keeping communication alive by periodically
calling the check_state() method of the Network object.

Use of this API is subject to the Campbell Scientific Software SDK License
Agreement.

Although there are a large number of classes in the API, there are really only a
few which are required to understand how the API works:

class Network

This class lies at the heart of the API and manages all communications. It
manages a collection of “stations” and serializes transactions.

class Datalogger

This class represents the state of a datalogger in the PakBus® network. It
stores the routing information needed to reach that datalogger as well as
meta-data for that station. The application can operate on the “real”
datalogger by initiating transactions through instances of this class.

Transactions

Transactions are concrete objects derived from class TransactionBase.
Each type of transaction performs a specific type of operation such as

NOTE

Java PakBus® Software Development Kit

2

clock set/check, data collection, or sending a file. Each has a
corresponding client interface which will receive status notifications as the
transaction progresses and a completion notification when the transaction
is complete. An application initiates transactions by creating specific
transaction objects and “adding” them to the appropriate datalogger object.

All of the other classes in the API are designed as “helper” classes for the core
classes mentioned above.

2. Setting up the Network
Setting up the API consists of creating an instance of the Network class. This
class has one constructor which requires a PakBus® address, an input stream,
and an output stream. The PakBus® address must uniquely identify your
application in the PakBus® network in which it will participate. The input and
output streams can be derived from an instance of java.net.Socket or of
javax.comm.CommPort. They could also be derived from some other
communications API supported on your platform. The network object will
listen for incoming messages on the input stream object and will write outgoing
messages to the output stream object. Once the network object has been
created, the application must drive it by calling its check_state() method
periodically. All notifications and activity in the network will result from this
call. The following code fragment shows an example of constructing and
driving a network object:

import com.campbellsci.pakbus.*;
import java.net.*;

class Example2
{
 private Network network;
 private Socket socket;
 private boolean complete;

 public void run() throws Exception
 {
 socket = new Socket("192.168.4.225",6785);
 network = new Network(
 (short)4079,
 socket.getInputStream(),
 socket.getOutputStream());
 complete = false;
 while(!complete)
 {
 network.check_state();
 Thread.sleep(100);
 }
 }
}

The application shown above doesn’t do much of interest to anyone. It will
accept, but not act on most incoming messages. But, at this point, it is pretty
much useless to us. This can be changed somewhat by adding station objects
to the network. Consider the above example expanded:

Java PakBus® Software Development Kit

3

import com.campbellsci.pakbus.*;
import java.net.*;

class Example2
{
 private Network network;
 private Socket socket;
 private boolean complete;
 private Datalogger my_cr1000;
 private Datalogger my_other_cr1000;

 public void run() throws Exception
 {
 // create the connection and its network
 socket = new Socket("192.168.4.225",6785);
 network = new Network(
 (short)4079,
 socket.getInputStream(),
 socket.getOutputStream());

 // create the station
 my_cr1000 = new Datalogger((short)1085);
 my_other_cr1000 = new Datalogger((short)1084,(short)1085);
 network.add_station(my_cr1000);
 network.add_station(my_other_cr1000);
 my_other_cr1000.set_round_trip_time(10000);

 // now drive the network
 complete = false;
 while(!complete)
 {
 network.check_state();
 Thread.sleep(100);
 }
 }
}

Note here that we have used both constructor forms for class Datalogger. The
first, used to create the my_cr1000 object, assumes the datalogger is a
neighbour to our application meaning that it can be reached directly. The
second form, used to create the my_other_cr1000 object, requires the
specification of both the PakBus® address for the station as well as for the
PakBus® address of the neighbour that will be used to reach the station.

We also specified the round trip time for the second CR1000. If this value is
not specified, it will default to 5000 milliseconds which is generally a pretty
reasonable guess. The round trip time can depend upon the speed and latency
of the link so it is up to the application to provide a good value. If too small a
value is specified, the API will tend to be premature about sending retry
messages. If too large a value is specified, the application will be slow to
recognize paths that are not responding.

Before a Datalogger object can be “used”, it must first be added to the
network’s list of stations by calling network.add_station().

You don’t need to add a station for every PakBus® node in the real network.
You only need to add stations for dataloggers with which your application will
communicate.

Java PakBus® Software Development Kit

4

With the exception of the CR200 datalogger type, all dataloggers support three
security codes that correspond with access levels. If the datalogger is set up
with security, your application must specify the appropriate code by calling
set_security_code() method.

Newer operating systems for the CR1000, CR3000, and the CR800 (OS
version 26 or newer) as well as the CR6 support encryption of PakBus
messages using AES-128 encryption. The API supports this by providing a
set_cipher() method. This is demonstrated in the following example:

import com.campbellsci.pakbus.*;
import java.net.*;

class Example2
{
 private Network network;
 private Socket socket;
 private boolean complete;
 private Datalogger my_cr1000;
 private Datalogger my_other_cr1000;

 public void run() throws Exception
 {
 // create the connection and its network
 socket = new Socket("192.168.4.225",6785);
 network = new Network(
 (short)4079,
 socket.getInputStream(),
 socket.getOutputStream());

 // create the station
 my_cr1000 = new Datalogger((short)1085);
 my_cr1000.set_cipher(new Aes128Cipher("Death be not
proud"));
 my_cr1000.set_security_code(42);
 network.add_station(my_cr1000);

 // now drive the network
 complete = false;
 while(!complete)
 {
 network.check_state();
 Thread.sleep(100);
 }
 }
}

3. Using Transactions
Up to this point, we have built the network and added stations to it. These
steps, by themselves, still do not lead to much functionality except that we can
now create transaction objects and “add” these to the stations. The transactions
will perform most of the work for our application. Let’s extend the above
example to retrieve table definitions and other meta-data from the datalogger:

Java PakBus® Software Development Kit

5

import com.campbellsci.pakbus.*;
import java.net.*;

class Example3 implements GetTableDefsClient
{
 private Network network;
 private Socket socket;
 private boolean complete;
 private Datalogger my_cr1000;
 private Datalogger my_other_cr1000;

 public void run() throws Exception
 {
 // create the connection and the network
 socket = new Socket("192.168.4.225",6785);
 network = new Network(
 (short)4079,
 socket.getInputStream(),
 socket.getOutputStream());

 // create the station
 my_cr1000 = new Datalogger((short)1085);
 my_other_cr1000 = new Datalogger((short)1084,(short)1085);
 network.add_station(my_cr1000);
 network.add_station(my_other_cr1000);
 my_other_cr1000.set_round_trip_time(10000);

 // start getting table definitions
 my_cr1000.add_transaction(new GetTableDefsTran(this));

 // now drive the network
 complete = false;
 while(!complete)
 {
 network.check_state();
 Thread.sleep(100);
 }
 }

 public void on_complete(
 GetTableDefsTran transaction,
 int outcome)
 {
 if(outcome == GetTableDefsTran.outcome_success)
 System.out.println("Got table definitions");
 else
 System.out.println("Get table defs failed");
 }
}

In this version, the class declaration was changed so that class Example was
made to implement the GetTableDefsClient interface and a new
on_complete() was added. We also added the line that adds a new instance of
GetTableDefsTran. When the newly added transaction has completed its
work, the client’s on_complete() notification will be invoked. There is a
common pattern here used for all transactions:

1. The application adds a new transaction object to a station. The
constructor for most transaction objects is going to require an object
that implements a transaction-specific interface.

Java PakBus® Software Development Kit

6

2. When the transaction is added, the Datalogger object will generate a
unique transaction number that will identify all messages sent by the
transaction. It will also send a request to the network for the
transaction object to have “focus”. This “focus” mechanism is used to
serialize transaction access to the network and prevents the application
from flooding the PakBus® network with simultaneous requests.

3. Once the transaction has gained focus, it will usually send a command
message and then wait for the response associated with that command.
If too much time elapses (determined by the round trip time assigned
to the station) without receiving the response, the transaction will
automatically retry the command message up to three times before
reporting the transaction as a failure.

4. The transaction will post the message to the Datalogger object which
will in turn post the message to the network after assigning the
destination neighbour and PakBus® addresses. The network will then
send the message using the output stream.

5. The datalogger (that is, the physical device) will process the message
and send a response.

6. The response is received by the network and is sent to the appropriate
Datalogger object based upon the source PakBus® address.

7. The device will route the response to the appropriate transaction based
upon the response message's transaction number.

8. Depending upon the transaction type, the transaction may or may not
be over when the first response is received. It may need to send
further commands before the entire operation can be considered
complete. The above steps will be repeated until the transaction is
complete. At that point, the transaction will send a notification signal
to the application by calling the client’s on_complete() method and
removing itself from the Datalogger object’s list of active
transactions.

The next sections will discuss specific types of transactions supported by the
API.

4. Setting or Checking a Datalogger Clock
The current value of a datalogger’s real time clock can be read or adjusted
using the ClockSetTran transaction. In order to use this transaction, the
application will be expected to furnish an object that implements the
ClockSetClient interface. This transaction is probably the simplest supported
by the API in that it consists of only one message being sent to the datalogger
and one response coming back. Both the command and the response messages
are fixed, short sizes. Because of this, the clock check transaction is a popular
choice to periodically test datalogger communications. The following example
demonstrates the use of the clock check transaction:

Java PakBus® Software Development Kit

7

import com.campbellsci.pakbus.*;
import java.net.*;

class Example4 implements ClockSetClient
{
 private Network network;
 private Socket socket;
 private boolean complete;
 private Datalogger my_cr1000;

 public void run() throws Exception
 {
 // create the connection and the network
 socket = new Socket("192.168.4.225",6785);
 network = new Network(
 (short)4079,
 socket.getInputStream(),
 socket.getOutputStream());

 // create the station
 my_cr1000 = new Datalogger((short)1085);
 network.add_station(my_cr1000);

 // start a clock check. If the clock is to be changed,
 // we would send a non-zero value for the second parameter.
 my_cr1000.add_transaction(new ClockSetTran(this,0L));

 // now drive the network
 int active_links = 0;
 complete = false;
 while(!complete || active_links > 0)
 {
 active_links = network.check_state();
 Thread.sleep(100);
 }
 }

 public void on_complete(
 ClockSetTran transaction,
 int outcome)
 {
 if(outcome == ClockSetTran.outcome_checked ||
 outcome == ClockSetTran.outcome_set)
 {
 System.out.println("Logger time was " +
 transaction.get_logger_time());
 System.out.println("The round trip time was " +
 transaction.get_round_trip_time() + " msec");
 }
 else
 System.out.println("clock check/set failed");
 complete = true;
 }
}

Note that our example has become somewhat of a boiler-plate. We replaced the
GetTableDefsTran with a new ClockSetTran. We also made a few
modifications so that the run() method will exit after the complete flag is set
and the low level links are shut down.

Java PakBus® Software Development Kit

8

When the transaction is complete, the application can access some transaction
specific information by calling get_logger_time(). This method will return an
object of type LoggerDate. This class maintains a time stamp in terms of
nanoseconds elapsed since midnight 1 January 1990 and can be easily
converted to the more standard java.util.GregorianCalendar object (although
precision will be lost). This class is used anywhere in the API where time
information needs to be stored or reported. Note that the example also invoked
get_round_trip_time() to determine the amount of time required for the
exchange of transaction messages. This is available for all transactions but is of
particular value in determining the current datalogger time.

5. Data Collection
Data collection adds the largest number of “helper” classes to the API. These
helpers include meta-classes like class TableDef and class ColumnDef and
concrete classes like class Record. In order to understand how data collection
works, we must first discuss how Campbell Scientific dataloggers that
implement the PakBus® protocol store their data.

5.1 Datalogger Storage Organization
The programs that execute on PakBus® dataloggers can organize the final
storage memory of the datalogger (as well as its card storage if the datalogger
is equipped with a card interface) into various tables. Each table thus created
has the following attributes:

• A unique name
• An estimated size (number of records)
• An output interval (an event driven table would specify an interval of

zero)
• A collection of columns

The columns of the output table will be specified by various output processing
instructions in the datalogger program. These columns are described as pieces
of array objects (a scalar value can be defined as an array having one element).
Each column has a name, data type, units string, process string, array
dimensions, beginning linear index, and piece size. The storage size of a record
can be calculated by adding up the storage requirements for all of these
“pieces”.

5.2 Managing Table Definitions
In order for data collection to be able to work, a client to the datalogger must
have an up-to-date copy of the datalogger’s table definitions so that the binary
record objects can be properly interpreted. This can be done by using the
GetTableDefsTran transaction. The result of this transaction will be in storing
a “raw table definitions” buffer in the Datalogger object which can be
accessed using the get_raw_table_defs() method. The datalogger will also
parse these raw table definitions into a collection of table definition objects
and their constituent column definition objects.

It is possible for an application to cache the raw table definitions for a station
using Datalogger.get_raw_table_defs() and to restore this using the
Datalogger.set_raw_table_defs(Packet) method. This can save the

Java PakBus® Software Development Kit

9

application the considerable amount of time that it can take to download the
raw table definitions from the datalogger.

The application can access a station’s table definitions by using the
get_tables_count(), get_table(index), and get_table(name) methods.

5.3 Starting Data Collection
Data collection is handled by the DataCollectTran class. This class manages
the details of forming the command message(s) and interpreting their results in
terms of records. The DataCollectClient class declares a method that gets
called when a group of records has been collected (on_records()) and also
when the transaction is complete (on_complete()). The data collection
transaction is controlled by an application assigned “collect mode” object. The
following collect modes are available:

DataCollectModeAllRecords

Specifies that all of the records currently available in the table should be
collected.

DataCollectModeDateRange

Specifies that all of the records stored in the datalogger that have a time
stamp on or after a specified beginning time and earlier (but not including)
than a specified ending time should be collected.

DataCollectModeDateToNewest

Specifies that all records starting with the record at or newer than a
specified begin date up to the newest record in the table should be
collected.

DataCollectModeMostRecent

Specifies that the most recent number of records should be collected.

DataCollectModeRecordNoRange

Specifies that all records on or after the specified begin record number up
to but not including the end record number should be collected.

DataCollectModeRecordNoToNewest

Specifies that all of the records on or after the specified beginning record
number up to the newest record in the table should be collected.

Java PakBus® Software Development Kit

10

5.4 An Example of Data Collection
import com.campbellsci.pakbus.*;
import java.net.*;
import java.util.*;

class Example5_4 implements DataCollectClient, GetTableDefsClient
{
 private Network network;
 private Socket socket;
 private boolean complete;
 private Datalogger my_cr1000;

 public void run() throws Exception
 {
 // create the connection and the network
 socket = new Socket("192.168.4.225",6785);
 network = new Network(
 (short)4079,
 socket.getInputStream(),
 socket.getOutputStream());

 // create the station
 my_cr1000 = new Datalogger((short)1085);
 network.add_station(my_cr1000);

 // we first need the table definitions. We'll wait to query
 // until the table definitions have been read
 my_cr1000.add_transaction(new GetTableDefsTran(this));

 // now drive the network
 int active_links = 0;
 complete = false;
 while(!complete || active_links > 0)
 {
 active_links = network.check_state();
 Thread.sleep(100);
 }
 }

 public void on_complete(
 GetTableDefsTran transaction,
 int outcome) throws Exception
 {
 if(outcome == GetTableDefsTran.outcome_success)
 {
 // start the data collection transaction
 my_cr1000.add_transaction(
 new DataCollectTran(
 "one_sec", this, new DataCollectModeMostRecent(1)));
 }
 else
 {
 System.out.println("get table defs failed");
 complete = true;
 }
 }

Java PakBus® Software Development Kit

11

 public boolean on_records(
 DataCollectTran transaction,
 List<Record> records)
 {
 for(Record record: records)
 {
 System.out.print(record.get_time_stamp().format("\"%y-
 %m-%d %H:%M:%S%x\","));
 System.out.print(record.get_record_no());
 for(ValueBase value: record.get_values())
 System.out.print("," + value.format());
 System.out.println("");
 }
 return true; // a value of false would cause the transaction to abort
 }

 public void on_complete(
 DataCollectTran transaction,
 int outcome) throws Exception
 {
 if(outcome == DataCollectTran.outcome_success)
 System.out.println("Data collection succeeded");
 else
 System.out.println("data collection failed");
 complete = true;
 }
}

5.5 Get Values: An Alternative to Data Collection
If the application needs only to read values from a single field in the datalogger
table, it can do so using the GetValuesTran class. This collection method
differs from data collection in that the client specifies the data type in which it
wants to receive values, only one field can be polled (if that field is an array,
multiple values from that field can be returned), time stamp and record number
information are not returned by the datalogger, and table definitions are not
required.

The following example illustrates the use of the get values transaction:

import java.net.*;
import java.io.*;
import com.campbellsci.pakbus.*;

public class Example5_5 implements GetValuesClient
{
 public Example5_5()
 { }

 public void on_complete(
 GetValuesTran transaction,
 int outcome,
 Record values) throws Exception
 {
 if(outcome == GetValuesTran.outcome_success)
 System.out.println("Test succeeded: " + values.get_value(0));
 else

Java PakBus® Software Development Kit

12

 System.out.println("Test failed: " + outcome);
 complete = true;
 } // on_complete

 public static void main(String[] args)
 {
 try
 {
 Example5_5 test = new Example5_5();
 test.run(args);
 }
 catch(Exception e)
 {
 System.out.println("test failed: " + e);
 }
 } // main

 private void run(String[] args) throws Exception
 {
 // initialise the connection and the network
 socket = new Socket(args[0],Integer.parseInt(args[1]));
 network = new Network(
 (short)4079,
 socket.getInputStream(),
 socket.getOutputStream());
 network.add_low_level_logger(
 new LowLevelFile(
 new FileOutputStream("io$jpakbus.log")));
 datalogger = new Datalogger(Short.parseShort(args[2]));
 network.add_station(datalogger);

 // start the transaction
 datalogger.add_transaction(
 new GetValuesTran(
 this,
 args[3], // table name
 args[4], // column name
 (short)1,
 GetValuesTran.type_float));

 // now drive the network crank
 int num_trans = 1;
 complete = false;
 while(num_trans > 0 && !complete)
 {
 num_trans = network.check_state();
 Thread.sleep(100);
 }
 } // run

 private Socket socket;
 private Network network;
 private Datalogger datalogger;
 private boolean complete;
}

Java PakBus® Software Development Kit

13

6. Datalogger File Management
The CR1000, CR3000, and CR800 series dataloggers implement file systems
in flash (CPU drive), memory protected RAM (USR drive), and, optionally, in
compact flash cards (CRD drive). These file systems are used to hold program
files as well as other files that are created or used by the datalogger program. In
order to manage these files, the following transactions are provided:

class SendFileTran
Allows the application to send a file to one of
the datalogger file systems.

class GetFileTran
Allows the application to read the contents of
one of the files in the datalogger file system.

class FileControlTran

Allows the application to perform various
operations on files or file systems such as:
• Compiling programs to run now and/or

specifying the program to run on power
up

• Stopping or pausing the currently
running program

• Deleting files
• Formatting devices

class ListFilesTran
Allows the application to receive a list of files
that are stored on the all of the datalogger's
file systems.

6.1 Sending a File
A file can be sent to a datalogger to be stored in its file system by using the
SendFileTran class. The file to be sent is specified using an InputStream
object. The following example demonstrates this process:

import com.campbellsci.pakbus.*;
import java.net.*;
import java.io.*;

class Example6 implements SendFileClient
{
 private Network network;
 private Socket socket;
 private boolean complete;
 private Datalogger my_cr1000;

 public void run() throws Exception
 {
 // create the connection and the network
 socket = new Socket("192.168.4.225",6785);
 network = new Network(
 (short)4079,
 socket.getInputStream(),
 socket.getOutputStream());

 // create the station
 my_cr1000 = new Datalogger((short)1085);

Java PakBus® Software Development Kit

14

 network.add_station(my_cr1000);

 // the file sent will be the source file for this program
 my_cr1000.add_transaction(
 new SendFileTran(
 this,
 new FileInputStream("Example.java"),
 "USR:Example.java"));

 // now drive the network
 int active_links = 0;
 complete = false;
 while(!complete || active_links > 0)
 {
 active_links = network.check_state();
 Thread.sleep(100);
 }
 }

 public boolean on_progress(
 SendFileTran transaction,
 int bytes_to_send,
 int bytes_sent)
 { return true; }

 public void on_complete(
 SendFileTran transaction,
 int outcome) throws Exception
 {
 if(outcome == SendFileTran.outcome_success)
 System.out.println("send file succeeded");
 else
 System.out.println("send file failed");
 complete = true;
 }
}

6.2 Receiving a File
A file can be retrieved from one of the datalogger file systems using the
GetFileTran class. This class starts a file receive transaction with the
datalogger and delivers fragments of the file to the application as they are
received using
GetFileClient.on_fragment(com.campbellsci.pakbus.GetFileTran, byte[]).
The following example demonstrates this process:

import com.campbellsci.pakbus.*;
import java.net.*;
import java.io.*;

class Example6_2 implements GetFileClient
{
 private Network network;
 private Socket socket;
 private boolean complete;
 private Datalogger my_cr1000;
 private OutputStream output;

Java PakBus® Software Development Kit

15

 public void run() throws Exception
 {
 // create the connection and the network
 socket = new Socket("192.168.4.225",6785);
 network = new Network(
 (short)4079,
 socket.getInputStream(),
 socket.getOutputStream());

 // create the station
 my_cr1000 = new Datalogger((short)1085);
 network.add_station(my_cr1000);

 // We will try to get a file from the USR drive
 output = new FileOutputStream("test.java");
 my_cr1000.add_transaction(
 new GetFileTran(
 "USR:Example.java",
 this));

 // now drive the network
 int active_links = 0;
 complete = false;
 while(!complete || active_links > 0)
 {
 active_links = network.check_state();
 Thread.sleep(100);
 }
 }

 public boolean on_fragment(
 GetFileTran transaction,
 byte[] buff) throws Exception
 {
 output.write(buff);
 return true;
 }

 public void on_complete(
 GetFileTran transaction,
 int outcome) throws Exception
 {
 output.close();
 if(outcome == GetFileTran.outcome_success)
 System.out.println("get file succeeded");
 else
 System.out.println("get file failed");
 complete = true;
 }
}

6.3 Sending a Datalogger Program
The datalogger program can be changed using a combination of class
SendFileTran and class FileControlTran objects. The following example
illustrates this process:

Java PakBus® Software Development Kit

16

import java.io.IOException;
import com.campbellsci.pakbus.*;

import java.io.*;
import java.net.*;

public class Example6_3
 implements SendFileClient, FileControlClient, GetProgStatsClient
{
 public Example6_3(
 String[] args) throws Exception
 {
 if(args.length < 4)
 throw new Exception("Not enough arguments");
 complete = false;
 } // constructor

 public void on_complete(SendFileTran transaction, int outcome)
 throws Exception
 {
 if(outcome == SendFileTran.outcome_success)
 {
 datalogger.add_transaction(
 new FileControlTran(
 this,
 FileControlTran.command_stop_delete_compile_power_up,
 program_name));
 }
 else
 {
 System.out.println("File send failed: " + outcome);
 complete = true;
 }
 } // on_complete

 public boolean on_progress(
 SendFileTran transaction,
 int bytes_to_send,
 int bytes_sent)
 {
 System.out.println("Sent " + bytes_sent + " bytes of " +
 bytes_to_send);
 return true;
 } // on_progress

 public void on_complete(
 FileControlTran transaction,
 int outcome,
 int hold_off) throws Exception
 {
 if(outcome == FileControlTran.outcome_success)
 {
 // The datalogger is going to reset itself. This
 // example is written assuming
 // that we are connected directly to the logger with
 // TCP. Because of that, we
 // need to close the current link to the logger and
 // wait for the time period

Java PakBus® Software Development Kit

17

 // specified by hold_off before we continue
 System.out.println("File control succeeded");
 reopen_delay = hold_off * 1000;
 }
 else
 {
 System.out.println("File control failed: " + outcome);
 complete = true;
 }
 } // on_complete

 public void on_complete(
 GetProgStatsTran transaction,
 int outcome) throws IOException
 {
 if(outcome == GetProgStatsTran.outcome_success)
 {
 System.out.println("Program compilation complete:");
 System.out.println(" Program Name: " +
 datalogger.get_program_name());
 System.out.println(" Compile Result: " +
 datalogger.get_compile_result());
 }
 else
 System.out.println("Failed to get program stats: " +
 outcome);
 complete = true;
 } // on_complete

 /**
 * @param args
 */
 public static void main(String[] args)
 {
 try
 {
 Example6_3 test = new Example6_3(args);
 test.run(args);
 }
 catch(Exception e)
 {
 System.out.println("Error sending program file: " + e);
 }
 }

 private void run(String[] args) throws Exception
 {
 // initialise the network
 socket = new Socket(args[0],Integer.parseInt(args[1]));
 network = new Network(
 (short)4079,
 socket.getInputStream(),
 socket.getOutputStream());
 network.add_low_level_logger(
 new LowLevelFile(
 new FileOutputStream("io$jpakbus.log")));
 datalogger = new Datalogger(Short.parseShort(args[2]));
 network.add_station(datalogger);

Java PakBus® Software Development Kit

18

 // start the send transaction
 File prog_info = new File(args[3]);

 program_name = "CPU:" + prog_info.getName();
 datalogger.add_transaction(
 new SendFileTran(
 this,
 new FileInputStream(args[3]),
 program_name));

 // keep the network going until the task is complete
 int tran_count = 1;
 while(tran_count > 0 && !complete)
 {
 tran_count = network.check_state();
 if(reopen_delay != 0)
 {
 // the re-open delay is set to a non-zero value
 // when file control returns and the logger
 // resets. During this interval, we need to close
 // out direct TCP connection to the logger
 // and allow it time to reboot before
 // reconnecting.
 network.set_io_streams(null,null);
 socket.close();
 socket = null;
 System.out.println("Waiting for " + reopen_delay +
 " msec for the logger to reboot.");
 Thread.sleep(reopen_delay);
 System.out.println("Re-opening the connection and
 getting program stats");
 socket = new Socket(args[0],Integer.parseInt(args[1]));
 network.set_io_streams(
 socket.getInputStream(),
 socket.getOutputStream());
 datalogger.add_transaction(new GetProgStatsTran(this));
 reopen_delay = 0;
 }
 else
 Thread.sleep(100);
 }
 } // run

 private Socket socket;
 private Network network;
 private Datalogger datalogger;
 private boolean complete;
 private String program_name;
 private int reopen_delay;
}

7. Working with User I/O
The User I/O transaction allows an application to engage in terminal I/O with
the datalogger the same that can be done with a telnet connection with the
datalogger. The most significant difference between the user I/O transaction
and telnet is that the user I/O messages can be routed across the PakBus®
network and can therefore be used against any datalogger in the PakBus®
network.

Java PakBus® Software Development Kit

19

An application can start a User I/O transaction by creating an object of class
UserIoTran. The application will be expected to provide a client object that
implements the UserIoClient interface. Once the transaction has been started,
the application can send bytes for the terminal emulation process by calling
send_data() and will receive bytes sent by the datalogger in the
on_bytes_received() method. The user I/O transaction will keep focus until it
is closed or until an error occurs.

import com.campbellsci.pakbus.*;

import java.net.*;
import java.io.*;

public class TestUserIo implements UserIoClient, Runnable
{
 public TestUserIo() throws IOException
 {
 socket = new Socket("192.168.4.225",6785);
 network = new Network(
 (short)4079,
 socket.getInputStream(),
 socket.getOutputStream());
 complete = false;
 } // constructor

 /**
 * @param args
 */
 public static void main(String[] args)
 {
 try
 {
 TestUserIo tester = new TestUserIo();
 tester.run();
 }
 catch(Exception e)
 {
 System.out.println("An exception interrupted the transaction:");
 System.out.println(e);
 }
 } // main

 public void run()
 {
 try
 {
 // we need to add the station and the transaction
 Datalogger station = new Datalogger((short)1085);
 network.add_station(station);
 station.start_manage_comms();
 io_tran = new UserIoTran(this);
 station.add_transaction(io_tran);

 // we can now wait while the transaction runs to completion.
 int active_links_count = 0;
 byte[] in_buff = new byte[1024];

Java PakBus® Software Development Kit

20

 while(!complete || active_links_count > 0)
 {
 int available = System.in.available();
 while(available > 0)
 {
 int bytes_read = System.in.read(in_buff);
 if(bytes_read > 0)
 io_tran.send_data(in_buff, bytes_read);
 available = System.in.available();
 }
 active_links_count = network.check_state();
 Thread.sleep(100);
 }
 }
 catch(Exception e)
 {
 System.out.println("An exception interrupted the
 transaction:");
 System.out.println(e);
 }
 } // run

 public void on_bytes_received(UserIoTran transaction,
 byte[] buff, int buff_len) throws IOException
 {
 String temp = new String(buff,0,buff_len);
 System.out.print(temp);
 } // on_bytes_received

 public void on_failure(UserIoTran transaction, int reason)
 throws IOException
 {
 System.out.println("User I/O failed: " + reason);
 io_tran = null;
 complete = true;
 } // on_failure

 public void on_started(UserIoTran transaction) throws
 IOException
 {
 System.out.println("User I/O Started. Type ^C to quit");
 } // on_started

 /**
 * reference to the PakBus network
 */
 private Network network;

 /**
 * holds the socket used to communicate with the datalogger
 */
 private Socket socket;

 /**
 * set to true when the application has been completed
 */

Java PakBus® Software Development Kit

21

 boolean complete;

 /**
 * reference to the user I/O transaction object
 */
 UserIoTran io_tran;
}

8. Attribution
PakBus is a registered trademark of Campbell Scientific, Inc.

Java PakBus® Software Development Kit

22

Campbell Scientific Companies

Campbell Scientific, Inc.
815 West 1800 North
Logan, Utah 84321
UNITED STATES

www.campbellsci.com • info@campbellsci.com

Campbell Scientific Africa Pty. Ltd.
PO Box 2450

Somerset West 7129
SOUTH AFRICA

www.campbellsci.co.za • cleroux@csafrica.co.za

Campbell Scientific Southeast Asia Co., Ltd.
877/22 Nirvana@Work, Rama 9 Road

Suan Luang Subdistrict, Suan Luang District
Bangkok 10250

THAILAND
www.campbellsci.asia • info@campbellsci.asia

Campbell Scientific Australia Pty. Ltd.
PO Box 8108

Garbutt Post Shop QLD 4814
AUSTRALIA

www.campbellsci.com.au • info@campbellsci.com.au

Campbell Scientific (Beijing) Co., Ltd.
8B16, Floor 8 Tower B, Hanwei Plaza

7 Guanghua Road
Chaoyang, Beijing 100004

P.R. CHINA
www.campbellsci.com • info@campbellsci.com.cn

Campbell Scientific do Brasil Ltda.
Rua Apinagés, nbr. 2018 ─ Perdizes
CEP: 01258-00 ─ São Paulo ─ SP

BRASIL
www.campbellsci.com.br • vendas@campbellsci.com.br

Campbell Scientific Canada Corp.
14532 – 131 Avenue NW
Edmonton AB T5L 4X4

CANADA
www.campbellsci.ca • dataloggers@campbellsci.ca

Campbell Scientific Centro Caribe S.A.
300 N Cementerio, Edificio Breller

Santo Domingo, Heredia 40305
COSTA RICA

www.campbellsci.cc • info@campbellsci.cc

Campbell Scientific Ltd.
Campbell Park

80 Hathern Road
Shepshed, Loughborough LE12 9GX

UNITED KINGDOM
www.campbellsci.co.uk • sales@campbellsci.co.uk

Campbell Scientific Ltd.
3 Avenue de la Division Leclerc

92160 ANTONY
FRANCE

www.campbellsci.fr • info@campbellsci.fr

Campbell Scientific Ltd.
Fahrenheitstraße 13

28359 Bremen
GERMANY

www.campbellsci.de • info@campbellsci.de

Campbell Scientific Spain, S. L.
Avda. Pompeu Fabra 7-9, local 1

08024 Barcelona
SPAIN

www.campbellsci.es • info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or international representative.

http://www.campbellsci.com/
http://www.campbellsci.co.za/
http://www.campbellsci.asia/
http://www.campbellsci.com.au/
http://www.campbellsci.com/
http://www.campbellsci.com.br/
http://www.campbellsci.ca/
http://www.campbellsci.cc/
http://www.campbellsci.co.uk/
http://www.campbellsci.fr/
http://www.campbellsci.de/
http://www.campbellsci.es/
https://www.campbellsci.com/

	Revision and Copyright Information
	End User License Agreement (EULA)
	Limited Warranty
	Table of Contents
	1. Introduction
	2. Setting up the Network
	3. Using Transactions
	4. Setting or Checking a Datalogger Clock
	5. Data Collection
	5.1 Datalogger Storage Organization
	5.2 Managing Table Definitions
	5.3 Starting Data Collection
	5.4 An Example of Data Collection
	5.5 Get Values: An Alternative to Data Collection

	6. Datalogger File Management
	6.1 Sending a File
	6.2 Receiving a File
	6.3 Sending a Datalogger Program

	7. Working with User I/O
	8. Attribution
	Campbell Scientific Companies

