
IN
ST

R
U

C
T

IO
N

 M
A

N
U

A
L

PC9000 Software Development Kit
Reference Manual

Windows 32-bit Link Libraries for the
CR9000 and CR5000 Measurement and Control Systems

Revision: 10/04

SDK Version 1.0
(PC9000.DLL Version 5.0)

C o p y r i g h t (c) 2 0 0 4
C a m p b e l l S c i e n t i f i c , I n c .

This is a blank page.

i

License for Use
This PC9000 Software Development Kit software, hereinafter referred to as the
PC9000 SDK, is protected by both United States copyright law and
international copyright treaty provisions. The installation and use of this
software constitutes an agreement to abide by the provisions of this license
agreement. The term "developer" herein refers to anyone using this PC9000
SDK.

The core operational files provided with this PC9000 SDK (hereinafter referred
to as “PC9000 Binaries”) include the files PC9000.DLL and PLA100DD.SYS.

Developer may make a copy of this software on a second computer for the sole
purpose of backing-up CAMPBELL SCIENTIFIC, INC. software and
protecting the investment from loss. All copyright notices and labeling must be
left intact. Developer may distribute or sell their software including the
PC9000 Binaries subject to the terms hereafter set forth.

RELATIONSHIP

Campbell Scientific, Inc. hereby grants a license to use PC9000 Binaries in
accordance with the license statement above. No ownership in Campbell
Scientific, Inc. patents, copyrights, trade secrets, trademarks, or trade names is
transferred by this Agreement. Developer may use these PC9000 Binaries to
create as many applications as desired and freely distribute them. Campbell
Scientific, Inc. expects no royalties or any other compensation outside of the
PC9000 SDK purchase price. Developer is responsible for supporting
applications created using the PC9000 Binaries.

RESPONSIBILITIES OF DEVELOPER

The Developer agrees:

To provide a competent programmer familiar with Campbell Scientific, Inc.
datalogger programming to write the applications.

Not to sell or distribute documentation on use of PC9000 Binaries.

Not to sell or distribute the applications that are provided as examples in the
PC9000 SDK. Developers may copy and paste portions of the code into their
own applications, but their applications are expected to be unique creations.

This Agreement does not give Developer the right to sell or distribute any other
Campbell Scientific, Inc. Software (e.g., PC9000, Program Generators,
LoggerNet or any of their components, files, documentation, etc.) as part of
Developer's application.

Not to develop applications that compete directly with any application
developed by Campbell Scientific, Inc. or its affiliates.

To assure that each application developed with PC9000 Binaries clearly states
the name of the person or entity that developed the application. This
information should appear on the first window the user will see.

ii

WARRANTY

There is no written or implied warranty provided with the PC9000 SDK
software other than as stated herein. Developer agrees to bear all warranty
responsibility of any derivative products distributed by Developer.

TERMINATION

Any license violation or breach of Agreement will result in immediate
termination of the developer's rights herein and the return of all PC9000 SDK
materials to Campbell Scientific, Inc.

MISCELLANEOUS

Notices required hereunder shall be in writing and shall be given by certified or
registered mail, return receipt requested. Such notice shall be deemed given in
the case of certified or registered mail on the date of receipt.

This Agreement shall be governed and construed in accordance with the laws
of the State of Utah, USA. Any dispute resulting from this Agreement will be
settled in arbitration.

This Agreement sets forth the entire understanding of the parties and
supersedes all prior agreements, arrangements and communications, whether
oral or written pertaining to the subject matter hereof. This Agreement shall
not be modified or amended except by the mutual written agreement of the
parties. The failure of either party to enforce any of the provisions of this
Agreement shall not be construed as a waiver of such provisions or of the right
of such party thereafter to enforce each and every provision contained herein.
If any term, clause, or provision contained in this Agreement is declared or
held invalid by a court of competent jurisdiction, such declaration or holding
shall not affect the validity of any other term, clause, or provision herein
contained. Neither the rights nor the obligations arising under this Agreement
are assignable or transferable.

If within 30 days of receiving the PC9000 SDK product developer does not
agree to the terms of license, developer shall return all materials without
retaining any copies of the product and shall remove any use of the PC9000
Binaries in any applications developed or distributed by Developer. CSI shall
refund 1/2 of the purchase price within 30 days of receipt of the materials. In
the absence of such return, CSI shall consider developer in agreement with the
herein stated license terms and conditions.

iii

Limited Warranty
CAMPBELL SCIENTIFIC, INC. warrants that the installation media on which
the accompanying computer software is recorded and the documentation
provided with it are free from physical defects in materials and workmanship
under normal use. CAMPBELL SCIENTIFIC, INC. warrants that the
computer software itself will perform substantially in accordance with the
specifications set forth in the instruction manual published by CAMPBELL
SCIENTIFIC, INC.

CAMPBELL SCIENTIFIC, INC. will either replace or correct any software
that does not perform substantially according to the specifications set forth in
the instruction manual with a corrected copy of the software or corrective code.
In the case of significant error in the installation media or documentation,
CAMPBELL SCIENTIFIC, INC. will correct errors without charge by
providing new media, addenda or substitute pages.

If CAMPBELL SCIENTIFIC, INC. is unable to replace defective media or
documentation, or if CAMPBELL SCIENTIFIC, INC. is unable to provide
corrected software or corrected documentation within a reasonable time,
CAMPBELL SCIENTIFIC, INC. will either replace the software with a
functionally similar program or refund the purchase price paid for the software.

The above warranties are made for ninety (90) days from the date of original
shipment.

CAMPBELL SCIENTIFIC, INC. does not warrant that the software will meet
licensee’s requirements or that the software or documentation are error free or
that the operation of the software will be uninterrupted. The warranty does not
cover any media or documentation that has been damaged or abused. The
software warranty does not cover any software that has been altered or changed
in any way by anyone other than CAMPBELL SCIENTIFIC, INC.
CAMPBELL SCIENTIFIC, INC. is not responsible for problems caused by
computer hardware, computer operating systems or the use of CAMPBELL
SCIENTIFIC, INC.’s software with non-CAMPBELL SCIENTIFIC, INC.
software.

ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED AND EXCLUDED.
CAMPBELL SCIENTIFIC, INC. SHALL NOT IN ANY CASE BE LIABLE
FOR SPECIAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT, OR
OTHER SIMILAR DAMAGES EVEN IF CAMPBELL SCIENTIFIC HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CAMPBELL SCIENTIFIC, INC. IS NOT RESPONSIBLE FOR ANY COSTS
INCURRED AS A RESULT OF LOST PROFITS OR REVENUE, LOSS OF
USE OF THE SOFTWARE, LOSS OF DATA, COST OF RE-CREATING
LOST DATA, THE COST OF ANY SUBSTITUTE PROGRAM, CLAIMS
BY ANY PARTY OTHER THAN LICENSEE, OR FOR OTHER SIMILAR
COSTS.

iv

LICENSEE’S SOLE AND EXCLUSIVE REMEDY IS SET FORTH IN THIS
LIMITED WARRANTY. CAMPBELL SCIENTIFIC, INC.’S AGGREGATE
LIABILITY ARISING FROM OR RELATING TO THIS AGREEMENT OR
THE SOFTWARE OR DOCUMENTATION (REGARDLESS OF THE
FORM OF ACTION; E.G., CONTRACT, TORT, COMPUTER
MALPRACTICE, FRAUD AND/OR OTHERWISE) IS LIMITED TO THE
PURCHASE PRICE PAID BY THE LICENSEE.

815 W. 1800 N.
Logan, UT 84321-1784
USA
Phone (435) 753-2342
FAX (435) 750-9540
www.campbellsci.com

Campbell Scientific Canada Corp.
11564 -149th Street
Edmonton, Alberta T5M 1W7
CANADA
Phone (780) 454-2505
FAX (780) 454-2655

Campbell Scientific Ltd.
Campbell Park
80 Hathern Road
Shepshed, Loughborough
LE12 9GX, U.K.
Phone +44 (0) 1509 601141
FAX +44 (0) 1509 601091

i

PC9000 SDK Table of Contents
PDF viewers note: These page numbers refer to the printed version of this
document. Use the Adobe Acrobat® bookmarks tab for links to specific sections.

1. PC9000 SDK Overview.. 1-1
1.1 General Notes on DLL Usage ... 1-1
1.2 Declaring and Calling DLL Functions from Visual Basic 1-2
1.3 PC9000.DLL Function Arguments and Return Codes.......................... 1-3

1.3.1 Interpreting Single Data Types.. 1-4
1.3.2 Interpreting Integer Data Types... 1-5
1.3.3 Handling String Data Types .. 1-6
1.3.4 DLL Function Return Values .. 1-6

1.4 General Notes on the Use of PC9000.DLL Functions 1-8
1.4.1 Functions Not Directly Controlling Datalogger

Communication ... 1-8
1.4.2 Open Port Instructions and Related Issues 1-9
1.4.3 Port Timeout Issues ... 1-10
1.4.4 Order of Operations for Data Retrieval 1-11
1.4.5 Wait States Between Commands... 1-13
1.4.6 Selecting the Best-Suited Data Retrieval Functions 1-14

2. PC9000.DLL Function Reference 2-1
2.1 Port Control Functions .. 2-1

2.1.1 OpenCom() - Open RS-232 Serial Port 2-1
2.1.2 OpenLpt() - Open Parallel Port for use with PLA100 Parallel

Link Adapter ... 2-2
2.1.3 OpenCsiCard() - Open Port for BLC100 Bus Link Card 2-3
2.1.4 OpenSock() - Open TCP/IP Port for use with NL100/NL105

Network Link Interface ... 2-4
2.1.5 GetModemStatus() - Retrieves Modem Control Register

Values.. 2-6
2.1.6 ClosePort() - Close an I/O Port Opened by any one of the

Open Port Instructions... 2-7
2.2 Datalogger Utility Functions... 2-8

2.2.1 GetLgrIdent () - Gets the Datalogger Protocol Version,
Model, Serial #, and Name.. 2-8

2.2.2 SetLgrName () - Sets the Station Name of a Datalogger............ 2-9
2.2.3 SetLgrClock() - Set or Check the Datalogger Clock 2-10
2.2.4 CR9000Dial() – Executes a Link Dial Transaction on the

Currently Open Port; CR9000Hangup() – Executes a Link
Termination Transaction on the Currently Open Port 2-11

2.2.5 StartIOLog () - Start Logging Low Level I/O to a File;
StopIOLog () - Stop Logging Low Level I/O......................... 2-12

2.2.6 UserWr() - Write the Specified ASCII Character String
Directly to the Port .. 2-13

2.2.7 UserRd () - Returns up to the Allocated Number of
Characters in a Port's Input Buffer .. 2-15

PC9000 SDK Table of Contents

ii

2.3 Datalogger File/Directory Functions ...2-16
2.3.1 BootFromLinkStart() - Start the Cold Boot Datalogger

Transaction ..2-16
2.3.2 BootFromLinkMore() - Continue with Cold Boot from Link

Transaction ..2-17
2.3.3 GetDirectory() - Get a Directory of Files (programs) that are

in Datalogger ...2-18
2.3.4 DownloadStart() - Initiate Downloading and Other File

Management Options...2-20
2.3.5 DownloadWait() - Monitor Status of Download Operation in

Progress ...2-29
2.3.6 UploadFile() - Upload Program or Data File from the

Datalogger with One Command ..2-30
2.3.7 UploadStart() - Start File Upload from the Datalogger Using

a Progress Loop ...2-31
2.3.8 UploadWait() - Monitor Status of Upload Operation in

Progress ...2-34
2.3.9 UploadStop() - Terminate Upload Operation in Progress.........2-34

2.4 Datalogger Table Management Functions...2-35
2.4.1 GetTableName() - Retrieves the Names and Sizes of All

Available Datalogger Tables ...2-35
2.4.2 GetTableName2() - Retrieves the Names, Sizes and Times of

All Datalogger Tables..2-36
2.4.3 GetFieldName() - Retrieves Field Names and Basic

Associated Information..2-38
2.4.4 GetFieldName2() - Retrieves Field Names and Extended

Associated Information..2-41
2.4.5 TableCtrl() - Clear Logged Records in a Table, or Insert File

Marks in File-based Table ...2-43
2.5 Data Retrieval Functions ...2-44

2.5.1 GetVariable() - Get the Current Value of a Floating Point
Variable ...2-44

2.5.2 SetVariable() - Set the Current Value of a Floating Point
Variable ...2-46

2.5.3 GetCurrentValue() - Get the Most Recent Value of a Field,
in ASCII Format ..2-48

2.5.4 GetStatusValue() – Optimized Status Table Retrieval, in
ASCII Format ..2-50

2.5.5 GetRecentRecords() - Get All Data from Most Recent
Records of the Specified Table; GetRecentRecordsTS() -
Get Recent Records with Timestamps.....................................2-52

2.5.6 GetRecordsSinceLast() - Get Data from Specified Table
Starting at Specified Record and GetRecordsSinceLastTS()
- Get Specified Record Data with Timestamps........................2-55

2.5.7 GetRecentValues() - Get Most Recent Values of the
Specified Table and Field; GetRecentValuesTS() - Get
Recent Values with Timestamps..2-60

2.5.8 GetValuesSinceLast() - Get Individual Field Values
Beginning at a Specified Record; GetValuesSinceLastTS()
- Get Field Values with Timestamps2-64

2.5.9 GetPartialFieldValues() - Get Part of an Array from the
Specified Table and Field ..2-68

2.5.10 GetPartialFieldArray() - Get Part of an Array from the
Specified Table and Field ..2-71

2.5.11 LogTable() - Log Table Contents to a PC Disk File...............2-72

PC9000 SDK Table of Contents

iii

2.6 Miscellaneous Utility Functions.. 2-75
2.6.1 GetCR9KApiVers() - Get Extended Version Information

Regarding PC9000.DLL.. 2-75
2.6.2 FP2ToSingle() – Converts a CSI 2-byte Floating Point Value

to IEEE 4-byte Float.. 2-75
2.6.3 LongFromString() – Loads a 4-byte Packed String into a

Long Integer Variable ... 2-76
2.6.4 SingleFromString() – Loads a 4-byte Packed String into a 4-

byte Float Variable .. 2-77
2.6.5 RdStatus () - Read a String from the DLL's Internal Status

Message Queue ... 2-78

3. Function Declarations... 3-1

Index... Index-1

PC9000 SDK Table of Contents

iv

This is a blank page.

1-1

Section 1. PC9000 SDK Overview
The PC9000 Software Development Kit (PC9000 SDK) is a programming
interface designed for use with Microsoft Visual Basic. It provides direct, real-
time communication capability with CR9000/CR5000 dataloggers, allowing a
single open connection at a time. It is a standard, “call-level” API, meaning
that at this time it does not support OLE automation, and does not need to be
registered in the system registry.

The PC9000 SDK consists of the PC9000.DLL and associated drivers, and
currently supports the following CSI Datalogger configurations:

• CR9000 connection via a BLC100 PC Bus Link Card (TLink) - Windows
95/98/ME only

• CR9000 connection via a PLA100 Parallel Port Link Adapter (LPT)

• CR9000 connection via a TL925 RS-232 Interface (COM)

• CR9000 connection via a NL105 Network Link Interface (NET)

• CR5000 connection via a 9-pin RS-232 serial cable (COM)

• CR5000 connection via a NL100/NL105 Network Link Interface (NET)

1.1 General Notes on DLL Usage
By default, the PC9000.DLL will be installed in the
C:\Campbellsci\PC9000SDK\DLL\ directory. Before running the included
example application, you must do one of the following:

• Place the DLL in the example’s application directory

• Create a new PATH environmental variable describing the location of the
PC9000.DLL

• Place the DLL in the "Windows System" directory. The Windows System
directory is normally C:\WINDOWS\SYSTEM for Windows 95/98/Me
systems, C:\WINNT\SYSTEM32 for Windows NT 4.0 and Windows 2000
systems, or C:\WINDOWS\SYSTEM32 for Windows XP systems.

If desired, PC9000.DLL can alternately be located in other directories; for
example, some developers prefer to keep a copy of all key DLL files in the
same subdirectory as the applications program that they create. By locating a
DLL in the same directory as a custom program, multiple DLL versions can
reside on the same machine at the same time. For custom, PC9000.DLL-based
applications, this will not be of any concern unless the computer in question
also runs a copy of PC9000 Version 5.X software. In that case, if the PC9000
V5.X installation uses an older version of PC9000.DLL than the one provided
with this software development kit, and there is some specific concern about
PC9000 DLL compatibility, then keeping a separate copy of the DLL in the
custom application directory may be warranted.

Section 1. PC9000 SDK Overview

1-2

If you feel that it is essential to install a dedicated copy of PC9000.DLL with
your custom applications, you may also want to rename the DLL copy that you
distribute. (The function declaration statements within your source code will
need to be modified as well for this to work as intended.) If the names are not
different, one can never be certain that all versions of Windows will always
load the desired version of the DLL when a program starts – it may depend
upon whether a version is already resident in memory due to some other
current or previously running program that uses PC9000.DLL.

Generally, the version of PC9000.DLL distributed with PC9000 Version 5.X
releases will be synchronized with current release versions of the PC9000
SDK. Therefore, before attempting to run multiple versions simultaneously, it
is recommended that you upgrade the PC9000 program on the computer in
question to be current with your custom applications.

When invoking a DLL function from within a Visual Basic program for the
first time, Windows will look for the DLL in the local subdirectory, and then in
the Windows System directory and in any other subdirectories included in the
PATH environment variable. If it cannot locate the DLL in any of these
directories, VB will raise an Error 53 on the line of code where the first DLL
function is invoked.

1.2 Declaring and Calling DLL Functions from Visual
Basic

Declaring and using PC9000.DLL functions within a Visual Basic program is
no different than using standard Windows API functions. For general
assistance in calling API functions from within Visual Basic, consult the
applicable Microsoft Visual Basic and/or MSDN documentation. The required
declare statements all appear together in the last section of this manual. They
also appear in the documentation for each individual function.

For simplicity, the declare statements are often placed in a code (.BAS) module
of the programmer’s choice. They are then available for use in all form, code,
and class modules within the application. If the DLL functionality is to be
encapsulated within a VB form or class module, the declare statements can be
located there, but the “Private” keyword will need to be added at the beginning
of each Declare statement, else the code will not compile. In that case, the
functions will only be usable from routines within the form/class module.

API-style DLL functions do not raise errors to Visual Basic. The success or
failure of each function must be determined within the Visual Basic program
by evaluating the return codes, as documented in this reference. On the other
hand, if fundamental errors occur in linking the DLL function to the
application, the Visual Basic runtime engine will not be able to properly call
the DLL function in the first place. In such cases runtime errors will be raised
to the application program by the runtime engine itself. These are explained in
more detail below.

Declare statements are not checked for correctness against the DLL until the
function is actually called by the program. Each invocation of a particular
DLL function within the VB code must match perfectly with the function as
described in the Declare statement, but there is no way to insure that the
Declare statement is correct until the function is actually used. (This is what is

Section 1. PC9000 SDK Overview

1-3

meant by “dynamic linking”.) Therefore the following Visual Basic errors may
occur if the declare statements do not properly match the DLL:

Error 453: “Specified DLL function not found”, or
“Can't find DLL entry point [function name] in PC9000.DLL”

In this case, the DLL file itself was found, but the particular
function name (as specified in the Declare Statement) could not
be located.

Error 49: “Bad DLL calling convention”

In this case, the specified DLL function was found, but either the
number of parameters or the parameter data types as specified in
the Declare statement, don’t match what was found in the DLL.

Other times, mismatched data types may slip through Visual Basic’s runtime
type checking, only to cause unexpected problems in the DLL, causing General
Protection Faults (GPFs). Use care at all times when declaring and using DLL
functions to insure successful results.

All PC9000.DLL functions run in the thread of the calling Visual Basic
program, meaning that the VB program execution is effectively “blocked”, or
suspended on the line of code which called the DLL function, until that
function completes. None of the functions employ callbacks, requiring the use
of the Visual Basic 'AddressOf' operator when calling the function.

During the time that Visual Basic code’s thread of execution is suspended, the
program will appear to be hung, though it is not. This time can be noticeable
for data retrieval calls returning large blocks of data. It is also noticeable for
any call that encounters a communications interruption between the computer
port and the datalogger: the function will not complete its operation until either
communications is established, or it times out. While some control over
timeouts is possible through the various arguments passed to the functions, the
specific time delays are more influenced by the particular port in use, and also
by the operating system version. At the time of this release, the behavior of the
DLL functions in response to communications interruptions is noticeably
slower under Windows NT 4.0 than on Windows 95/98 computers.

1.3 PC9000.DLL Function Arguments and Return
Codes

While this DLL was designed for use with Visual Basic, no VB-specific data
types (such as Variant, Boolean, Date or variable dimension arrays) have been
used in the arguments or return codes. Therefore, it is possible to use the DLL
with other languages such as C, C++ or Delphi, although no specific examples
are provided in this document.

All arguments and function return codes are one of the following Visual Basic
data types:

• Integer (16-bit Integer)

• Long (32-bit Integer)

Section 1. PC9000 SDK Overview

1-4

• Single (IEEE 4-byte floating point)

• Single Array (IEEE 4-byte floating point)

1.3.1 Interpreting Single Data Types
All single values and single value arrays are returned to the calling routine as 4
byte IEEE floating point, regardless of how they are stored inside the
datalogger.

In instances where the data are stored in the datalogger table as CSI 2-byte
floating point, the conversion within the DLL, prior to returning the values, is
transparent to the application program using the DLL. Remember that in those
cases, however, the return value or values will contain meaningless extra digits
of precision. It is usually recommended that FP2 data types NOT be used in
datalogger programs, unless the datalogger storage requirements absolutely
require that type of data storage economy. Further, the use of FP2 data types
will actually slow down the throughput in real time data retrieval applications,
as each value must be converted to 4 byte floating point instead of being
simply passed through without conversion.

In instances where the “Time of Maximum” or “Time of Minimum” data has
been sampled into an output table, this data is stored in the datalogger table as
two 32-bit long values. Any fields defined as such will be coerced into a single
floating point value in the return array without raising errors or faults, but
information will be lost in the conversion and the effective values will be
meaningless. At present there is no way using real-time function calls, to
retrieve this data as part of an entire, contiguous datalogger table data record.
If it is important to at least suppress data in these instances, the DataType
argument of the GetFieldName2() function can be used to detect the
occurrence of non-floating point table data types on a field-by-field basis. As
another alternative, the LogTable() function will correctly write all field data
types to a disk file, where the information can then be retrieved and used.

1.3.1.1 "Not A Number" Conditions
A special case occurs in situations where a value or values retrieved from the
datalogger correspond to the condition “not a number”. This condition will
occur in situations such as a measurement channel over-range, or an
overflow/divide by zero error caused by some CRBasic math instructions. The
IEEE floating point standards recognize specific floating point codes for these
numbers, but Visual Basic is limited in its ability to deal with these special
codes.

The binary representation of the 4-byte IEEE code corresponding to “not a
number” is all ones, or Hex FFFFFFFF. This is also the value used internally
by the Campbell dataloggers for this condition. A Visual Basic Single typed
variable cannot be set to this value directly through Visual Basic script, but
variables typed as Single can be set to this value externally, through API
functions written in C or other languages (such as the PC9000.DLL). If Visual
Basic encounters such a value in a return argument, it interprets the variable as
“not a number”: outputting the variable’s value to a message box or string
variable will yields the expression “-1.#QNAN”.

To some extent, Visual Basic can deal with this condition. The "not a number"
value can be successfully assigned to other Single typed variables, and any

Section 1. PC9000 SDK Overview

1-5

math involving a variable with this value will result in an output that is also not
a number. Unfortunately, any attempts to do bit-wise logical tests or
comparisons on this variable, while it is typed as a Single, will result in
overflow errors. As a result, doing anything other than outputting the value to
text-based display controls will cause errors, resulting in messy error handlers
in order to test for this condition.

To address this situation, the DLL pre-converts any such “not a number”
values retrieved to a specific value that does not cause overflow errors in
Visual Basic. The hex code chosen is FF7FFFFF, which corresponds to the
largest negative number that can be expressed in the IEEE floating point
standard. Visual Basic receives this code and expresses the value in decimal as
-3.402823E+38. Unfortunately, due to round-off error, the code is actually
closer to –3.4028234E+38, but Visual Basic does not allow you to enter that
precise value as a Single typed value in VB code! The internal hex code that
VB stores for a value entered in VB source code as –3.402823E+38, is
FF7FFFFD. What this all means is that performing an equivalence test in VB,
between the DLL’s “not a number” code and the closest value that can be
defined in source code for a Single-typed variable, will not produce the desired
result.

To remedy this, and define a 4-byte single-precision floating point value in VB
that exactly corresponds to the code returned from the DLL, use the following
syntax:

Dim fVBMaxNegValue as Single

fVBMaxNegValue = CSng(-3.4028234E+38)

If depending upon floating point round-off errors in that manner scares you,
then as an alternative, define the equivalent HEX code as a VB Long Integer,
and “cast” this variable into a Single data type using the Windows
CopyMemory API function, or some similar function written in C. That
exercise is beyond the scope of this manual to explain in detail: however, the
Visual Basic example program NotANumber.vbp (included on the PC9000
SDK disk), shows how this is done, and can also be used as an aide to better
understand the Visual Basic behaviors described above.

1.3.2 Interpreting Integer Data Types
Visual Basic Long data type values are fixed 32-bit signed integer, and Integer
data types are fixed as 16-bit signed integers. Most Long and Integer
arguments and return codes are only meaningful within a limited range of
positive values, so unsigned-to-signed conversions are usually not an issue.

Table record numbers are one exception to the above statement. Record
numbers are long values that will eventually become greater than 231 –1, and
the record number is defined internally within the datalogger and the DLL as a
32-bit unsigned integer. In the event that a datalogger record number exceeds
231 – 1, the signed representation in Visual Basic will appear to “wrap around”
to –231 and begin counting up toward zero. When the unsigned, real record
number value reaches 232 –1, (FFFFFFFF Hex), the signed Visual Basic value
will have reached –1. At that point, the unsigned record number value in the
datalogger wraps around to zero, the signed and unsigned values are once again
in agreement, and the process repeats.

Section 1. PC9000 SDK Overview

1-6

This is identical to behaviors of many common Windows API functions used in
Visual Basic, such as GetTickCount(), which returns the number of integer
milliseconds since the last time the computer was booted. This value will
eventually wrap around in similar fashion, given enough continuous operating
time. If tracking record number values is critical to a given application, this
(possibly) unexpected discontinuity needs to be taken into account.

1.3.3 Handling String Data Types
Wherever values are returned via strings, the calling routine must provide
enough space to accommodate the values that will be returned. Either of the
following two code fragments will allocate a suitable string.

Dim str As String * 100

or

Dim str as String
str = String(100, vbNullChar)

Then use the VB Len() function to establish the string size. For example,

iRslt = GetTableName(str, Len(str))

You need to dimension or set the string length one character larger than the
maximum length of the string you are working with, as the last character is
reserved for the null termination character (ASCII 0)

When string values are passed to a function but their contents are not altered by
the function, the use of fixed, padded, or variable length strings is acceptable.
Be careful, however, not to send a Visual Basic empty string, without at least a
null termination character or single padded space, unless the examples for a
specific function indicate to do so. In most cases, doing so may trigger a
General Protection Fault (GPF), causing the application to terminate without
warning.

1.3.4 DLL Function Return Values
All PC9000.DLL procedures are functions, in that they return some value as a
result, in addition to the arguments that may be passed back and forth.

For the majority of functions, this return value is an integer result code,
representing the outcome of the function as good, bad, or otherwise. In some
cases, the return code is always zero. The return codes are completely specific
to a given function, and are fully documented in the detailed function reference
section of this document.

Generally, in cases where a DLL function returns result codes, and a datalogger
or port is being accessed, the value of zero is reserved for "OK", although there
are exceptions, as documented in the function reference. Other non-zero return
codes either indicate a failure, or they provide the status of an ongoing
transaction. Be aware that a return code of "OK" does not guarantee the
desired outcome was achieved. Rather, it indicates that the underlying
datalogger protocol transactions were executed successfully by the DLL, and
no protocol errors were indicated.

Section 1. PC9000 SDK Overview

1-7

The use of the return code of 1 is always reserved for instances where either a
port has not been successfully opened, or all attempts to communicate with the
datalogger have timed out with no response. If this response is not applicable
for a given function, the return code 1 will not be used. This applies to all DLL
functions.

For data collection transactions, the validity checking in the DLL (and in the
protocol transactions themselves) is more thorough, so that a return code of
zero should always mean success. Codes 2 and 3 are utilized in a common
fashion across all of the data collection functions, as explained below:

Return code 2, "No data", will always result if a datalogger response was
obtained, but one of the following conditions exists:

• The table is currently empty (i.e., no records).

• A record-specific data collection call was made, but the specified record
number is exactly one higher than the current record.

• A field-level data retrieval call was made, and the specified table name
does not exist within the current table definitions. (Also will apply to bad
field names in certain cases – see exception note below regarding return
code 3).

Return code 3, "Bad table name / Bad field name" will normally only occur in
the following situations:

• A field name must be specified in a data collection function, and the field
name that was passed does not exist in the specified table.

NOTE: Exceptions - for certain specific data retrieval functions
(GetVariable(), GetPartialFieldArray()), a return code of 2 will occur
in these cases.

• A table-level data retrieval call was made, and the specified table name
does not exist within the current table definitions.

In an analogous fashion, all file management functions reserve the return code
3 for "Bad file name".

Return codes 2 or 3 will also often result if a datalogger response was obtained,
but the internal table definition information within the DLL is no longer
current. This occurs if either a new program has been compiled and set to run,
or a different datalogger is being accessed (usually due to a port change).
Refer to the section entitled "Order of operations for data retrieval", later in this
overview, for a detailed explanation of the DLL and datalogger behavior that
underlies this condition. In these instances it is very difficult to predict how
the DLL will interpret the arguments in the data retrieval function call, since it
is not operating with correct datalogger configuration information.

For data collection calls which retrieve arrays of data rather than single values,
the other parameters will need to be evaluated carefully as well, to completely
determine the precise outcome of the function call.

There are some situations in which the misuse of DLL functions may not be
cleanly trapped by the DLL. In these cases, a somewhat misleading error code,

Section 1. PC9000 SDK Overview

1-8

or no error code at all, may be returned. These situations would most likely
involve improper naming syntaxes on tables, fields or file names, or improper
settings for certain DLL function parameters. The datalogger protocol
transactions may attempt to execute based upon the faulty information, with
unexpected results in the datalogger. The DLL does some basic validation
checks, but extended parameter checking is left out in the interest of simplicity
and overall real time performance.

Use extreme care at all times in setting up DLL calls involving datalogger
transactions, particularly those that have the effect of changing a state or
changing the running configuration of the datalogger. As you become more
familiar with the datalogger's basic internal organization, and the functions
available here, you may desire to add your own, more extended, pre- and post-
validation steps to your routines that execute critical datalogger configuration
tasks and state changes.

In a few isolated cases, the DLL function return value is not a code, but is a
value representing some quantity related to the performance of the function.
These exceptions are:

• ClosePort () – returns the protocol "best packet size" (Integer)

• FP2ToSingle () – returns the conversion function's result (Single)

• LongFromString () – returns the conversion function's result (Long)

• SingleFromString () – returns the conversion function's result (Single)

• UserRd () – returns the number of characters retrieved from the input
buffer (Integer)

1.4 General Notes on the Use of PC9000.DLL
Functions

1.4.1 Functions Not Directly Controlling Datalogger
Communication

Most functions in the DLL directly invoke some communications transaction
with the datalogger. The following functions known as "Miscellaneous Utility
Functions", however, are exceptions to that rule and may be used at any time:

• GetCR9kApiVers()

• FP2ToSingle()

• LongFromString()

• SingleFromString()

• RdStatus()

The following two functions control the low-level logging capabilities built
into the DLL (rarely used in applications). While associated with datalogger

Section 1. PC9000 SDK Overview

1-9

communication, they do not initiate or terminate datalogger communications in
any way, and low-level logging runs independently of any particular I/O port.
Therefore, these functions also may be invoked at any time:

• StartIOLog()

• StopIOLog()

The following functions, known as the "Port Control Functions" do not
communicate with the datalogger, but do control the opening and closing of the
ports through which communications occurs. Their uses are explained in detail
in the section immediately following:

• OpenCom()

• OpenCSICard()

• OpenLpt()

• OpenSock()

• ClosePort()

1.4.2 Open Port Instructions and Related Issues
All remaining functions not listed above perform real time datalogger
communications and therefore assume a viable datalogger connection.
UserRd(), UserWr(), and GetModemStatus() are partial exceptions, in that
they do not necessarily require a datalogger connection, depending upon their
use, but always at least require a viable open port. Correspondingly, for all
these communication functions, one of the “Open Port” port control functions
must have been successfully executed, prior to their use, otherwise errors will
be returned.

Open Port instructions only initialize the physical port’s device driver. They
will fail if the device or port is not available. These instructions do not
communicate with the datalogger, however, so the datalogger does not have to
be connected and active for these calls to succeed. Generally, one of the two
functions, GetLgrIdent() or SetLgrClock() (used also to read the datalogger
clock) are used if one desires to perform a simple, quick check to insure that a
datalogger is connected to an open port and is on line.

ClosePort() is used to close the I/O port at the end of program execution or
prior to changing to another port. ClosePort() returns best packet size, which
can be stored in the application program memory and passed to subsequent
open port functions. Calling ClosePort() with no port open does not by itself
have any unwanted side effects, however please note carefully the paragraphs
that follow.

The DLL operates within an application on a "single-port, single-device at a
time" model. What this means is that, although the DLL can connect to
different dataloggers through different ports from the same application, it must
do so in sequence, not simultaneously. In other words, the DLL only keeps
track of one open port connection to a datalogger at a time. All datalogger

Section 1. PC9000 SDK Overview

1-10

communication functions simply assume that their communications is with the
currently "open" port: there are no logical station numbers, port handles, etc. to
pass to any of those functions.

It is very important that, when communicating with multiple
dataloggers, the ClosePort() instruction be executed after
opening each port, before opening any subsequent port. If
ClosePort() is not called, the subsequent port may actually open
successfully, and DLL communications may indeed switch to the
new port, as if everything was OK. The DLL has not preserved
state information regarding the original port, however. As a
result, after opening and closing a second port, without having
first closed the original port, all communications functions will
then return error codes when used, even though a port is still
open.

Further, attempts to issue multiple ClosePort() instructions at
that point will not succeed in allowing the first port to be re-
opened. The application will likely not re-allow communications
through the original port until the application is entirely shut
down and re-started, in which case the operating system releases
the port's resources.

One last important programming point of note with regard to opening and
closing ports, with special application to Visual Basic:

Any time that your application is running in non-compiled mode from within
VB, your program is running in the same process space as the development
environment. Since the PC9000.DLL API function calls operate entirely
external to Visual Basic, the VB development environment knows nothing of
the status of any open comm port resources when your application shuts down.
Therefore, if your application code does not make sure to close out any open
comm ports before shutting down, they will not be automatically released by
VB. You will need to shutdown and re-start Visual Basic in order to get access
to any such comm port that was left open. The above also applies to the
conditions when, by using the "End" menu command in VB to abruptly
terminate your application, the shutdown code (normally called from the main
form's Form_Unload routine) is bypassed.

1.4.4 Port Timeout Issues
In general, once a communications port is opened, it remains open until such
time that the application closes the port through the DLL. There is an
important exception regarding the CR5000, however, as explained below.

The CR5000 incorporates some advanced power management features that can
affect communications with an external computer. Of particular note is the
“RS232 Timeout” setting, accessible from the front panel of the instrument
through the “Configure” menu. When this setting is set to “Yes”, the CR5000
will itself terminate any open serial link after approximately 30 seconds of idle
time (i.e., no communications occurring). This is used in situations in which
the datalogger is running on limited remote power, where inadvertently leaving
a communications interface open potentially represents a significant drain on
available power.

NOTE

Section 1. PC9000 SDK Overview

1-11

In the event that this timeout occurs while communicating with the datalogger,
the next attempt at communications will result in an error code, usually code 1
for “port not open or datalogger does not respond”. Once the link has been
terminated in this fashion, the only recourse is to close and re-open the port,
which will quickly re-establish the link.

This close/re-open cycle has an unacceptable side effect, however, when
communicating through a modem link. Whenever the port is closed and re-
opened (or the link is idled long enough that the CR5000 times out), any
modem connections will be lost and will need to be re-established. Therefore
the only sure ways to keep a CR5000 link active indefinitely are: 1) set the
CR5000's RS232 Timeout to “No” or 2) maintain some periodic background
communications with the CR5000, every 15-20 seconds, whenever the port is
open. A timer-driven routine calling GetLgrIdent() or SetLgrClock() is
usually the simplest way to accomplish this. Unfortunately, at this time there is
no direct way to determine the state of the CR5000's RS232 timeout setting
through the DLL communications interface.

One further note regarding low-power CR5000 applications. When the RS-232
timeout is set to “Yes”, executing the CR9000Hangup() function before
closing the port will immediately cause the CR5000 to terminate the remote
link, not waiting for the idle timeout to occur. This may be useful in situations
where the power is at a premium for every second of extra time spent running a
remote communications link. If this is done when the timeout is not activated,
there is no harm done, but the CR9000Hangup() command has no effect.

1.4.5 Order of Operations for Data Retrieval
PC9000.DLL provides a layer between the low-level CSI datalogger
communications protocols and a user application program. Part of its role in
this regard is to handle the error and validity checking that is integral to, and
required by, the datalogger protocols. These protocols insure that the real time
data retrieved by the application will be reliable and free from errors or
misrepresentations. Most of this validation checking is handled by the DLL in
a fashion that is completely invisible to the user.

There is a very noteworthy exception, having to do with the handshaking that
occurs between the datalogger and the computer, regarding the structure of the
program's output data tables, as explained below.

When the DLL requests information from the datalogger regarding the current
table definitions (in response to an initial GetTableName() function call), it
obtains detailed information about all datalogger internal table record
structures, including the field names and data formats within each table. The
DLL also tabulates a unique "signature" for each table, as defined by the
datalogger's protocol rules. This signature relates to the precise structure of the
table. Later, when data retrieval calls are made, the program requesting
datalogger data must pass the signature. This validates that the program's
understanding of a table's current record structure is precisely correct. By
performing this handshaking, data can be transmitted in a very compact and
efficient "block" manner, as the datalogger and the receiving program both
agree how the data is to be interpreted. Failure to pass a correct signature will
cause data retrieval requests to fail.

This table signature safeguards against changes to the structures of the user
tables that might otherwise occur in a manner not detected by the application's

Section 1. PC9000 SDK Overview

1-12

data retrieval routines. For instance, if the currently running program stopped
and a new program started, the structure of the tables may change. It is
imperative while performing high-speed data retrieval of complete table
records, that the datalogger and the computer's application program remain in
full agreement as to the data types, associated field names, and the ordering of
the data contained therein.

Whenever GetTableName() is invoked by an applications program, with an
empty string passed for the TableName argument, the DLL will retrieve new
definitions for all tables within the datalogger whose connection is currently
active. All previous table definition information will be deleted, and the new
information will be stored in the DLL's dynamic global memory, for access by
all other DLL data retrieval functions.

This is analogous to the DLL behavior regarding communications state
information. As discussed earlier, the DLL only keeps one set of
communications state information, regardless of how many different ports are
accessed during the running of a client application program. Datalogger table
definition information also follows this rule, in that the most recently obtained
set of datalogger table definitions and signatures is the only set kept in memory
by the DLL at any given time.

None of the table definition information is saved to disk by the DLL, so it must
be retrieved by the DLL every time that the application starts, whether or not
there have been changes to a datalogger's currently active table definitions.
This means that, even if your table names never change and you've hard coded
them into your applications program, the DLL will still need to refresh its own
internal information before retrieving data.

Further, whenever a new or modified program is compiled and made active, the
safe approach is to always refresh table definition information, even if the table
definitions themselves weren't changed in the new datalogger program.

Making data retrieval calls without first insuring that the DLL table definition
information is current will have unpredictable results. Usually, some error
code will be returned. In some instances, however, particularly if table
definition information for an old program or connection exists in the DLL's
memory, the DLL may erroneously interpret data that was returned.

How does this affect the programming of PC9000.DLL-based applications?
The following points should be noted.

General rules (to be safe):

• Execute the GetTableName() function, with an empty string for the
TableName argument, at least once, whenever:

• Any new datalogger communications port has been opened, before
any record-level data retrieval occurs.

• A new program has been compiled and run (i.e., DownloadStart()
was invoked with the Options argument set equal to 4).

Section 1. PC9000 SDK Overview

1-13

Potential Exceptions (for reducing overhead and increasing performance on
very slow connections):

• You may find that it is better to close the current port whenever there are
no datalogger communication tasks running, even when you are only
communicating with a single datalogger through a single port connection.
The internal cache of table signatures is not automatically erased when a
port is closed and the same port is opened. In fact, the previous signature
cache should remain available until the GetTableName() instruction is
re-executed, or the program is shut down. Therefore, it is possible to re-
open a port and run datalogger communications without having to refresh
the information each time, if data retrieval calls are always used with the
same port and datalogger.

Keep in mind in this case, however, that the DLL does not provide
information on the state of its internal table signature cache. Tracking this
information is entirely up to the application program.

1.4.6 Wait States Between Commands
In general, PC9000.DLL (and the datalogger with which it is communicating)
can process sequential communications requests as fast as they can be invoked
through application code.

In cases where data is being served by the datalogger and no additional
datalogger action is warranted, no delays between calls are needed. Care
should be taken, however, not to request data more often than is indicated by
the table update times for a given program. The extra undue burden on the
datalogger to service rapid-fire repetitive communications processing may in
some cases result in skipped scans within the datalogger program where there
otherwise would be none. The best approach when high data throughput rates
are needed is to experiment with different function call strategies to see which
combination provides the best result. Take advantage, where possible, of
retrieving values from multiple records in a single call; this will result in less
communications overhead, and therefore more efficient processing.

Conversely, in cases where DLL functions cause the datalogger to take other
internal actions, you will want to factor in some sort of programmatic delay.
Examples of these types of functions would be: setting clocks, starting file
downloads, changing file statuses, etc. Often, datalogger function calls
occurring immediately after such functions will fail, as the DLL perceives that
the datalogger is not available when in fact it is simply still busy responding to
the previous transaction. "Sleep" statements have been inserted in all code
examples (in the detailed function reference section of this document) where
this type of behavior is likely to occur. Sleep is not a recognized Visual Basic
command; rather, it is a Windows API call which effectively functions as a
wait statement. The declaration statement for that function is as follows:

Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds as Long)

In general, this is the recommended way to insert delays between a series of
sequential communications function calls in your VB code. It is much
preferred over Visual Basic Do…Loop until Timer methods: those methods
effectively cause the Visual Basic application to "hog" CPU time, greatly
affecting the performance of any other applications, services, or drivers that are

Section 1. PC9000 SDK Overview

1-14

also running. Keep in mind when using the Sleep statement, that your
application (or thread) will be completely idle, and therefore unresponsive to
all outside events, during the time of the Sleep statement. If this is
unacceptable, better to use a combination of the Do … Loop and Sleep
statements, breaking up the total wait time into chunks no smaller than 50
milliseconds. For instance, as shown in the following pseudo-code:

' Do two datalogger functions, separated by an ~2 sec. wait time

Dim iCnt as Integer

DoFirstLoggerTrans()

Do
 Sleep 200
 UpdateProgressWindow()
 DoEvents
 iCnt = iCnt + 1
Loop Until iCnt = 10

DoSecondLoggerTrans()

The duration of the wait times as shown in the examples are considered as
recommended starting points, providing satisfactory pauses in most cases, and
without causing undue application delays. Optimal times may vary, based
upon the datalogger type being used, the particular program being run, and the
speed of the computer on which the application is running. You may want to
experiment with decreasing or increasing these times as warranted in your own
applications, for best performance.

1.4.7 Selecting the Best-Suited Data Retrieval Functions
PC9000.DLL provides a dozen or so different function calls to be used for
retrieving data from the dataloggers. Each one has its own unique purposes.
While the function reference section explains in detail how each function is
used, it is also be helpful for the uninitiated to have an overview of the various
functions, so one is provided here.

The functions are first split into three major groups, as follows:

• Current value only, single data value functions. These functions return the
current value only of a single field, and provide no other information.
They are the easiest to set up and use when simply doing qualitative
checks on one or a small handful of current data values, but have limited
utility beyond those uses.

• Real-time bulk data retrieval. These functions return values in arrays.
They also can retrieve values from many records in a single call, and
provide more information about the data retrieved. As such, they are more
complex to set up and use, but are essential in obtaining and trending
datalogger table contents over specified periods of time.

• Logging to disk. These functions enable table data to be automatically
logged by the DLL, without any processing required by the application.

Section 1. PC9000 SDK Overview

1-15

Outline of functions according to these categories:

1. Current value only, single data value:
GetVariable() (Floating point data only)
GetCurrentValue() (All data types)
GetStatusValue() (All data types – Status Table only)

2. Real-time bulk data retrieval:
2.1. Entire Records:

GetRecentRecords(), GetRecentRecordsTS()
GetRecordsSinceLast(), GetRecordsSinceLastTS()

2.2. Single Field Values:
GetRecentValues(), GetRecentValuesTS()
GetValuesSinceLast(), GetValuesSinceLastTS()

2.3 Individual Arrays Within a Record:
GetPartialFieldValues()
GetPartialFieldArray()

3. Real-time bulk data retrieval:
LogTable()

Section 1. PC9000 SDK Overview

1-16

This is a blank page.

2-1

Section 2. PC9000.DLL Function
Reference

2.1 Port Control Functions

2.1.1 OpenCom() - Open RS-232 Serial Port
This applies to either the CR9000 (using the TL925 Serial Interface) or the
CR5000 (using a direct serial cable).

Declaration:
Declare Function OpenCom Lib "PC9000.DLL" (ByVal
Port As String, curBaudRate As Long, ByVal
ExtraResp As Long, ByVal maxPktSize As Integer,
ByVal BestPktSize As Integer, ByVal ModemOn As
Integer) As Integer

Parameters:
Port is a string like "COM1" or "COM2" or any valid COM

port name.

curBaudRate is the baud rate to be used with the COM port. If the
specified baud rate can not be used, the port will be
opened at a lower baud rate and the function will return
the value actually used.

ExtraResp is extra response time in msec per packet, used by the
datalogger communication protocol. Extra response
time is a user entered value. It can be as low as zero,
but may need to be as high as 15000 (15 seconds) or
more on some remote connections.

maxPktSize is maximum packet size, used by the datalogger
communication protocol. Maximum packet size is a
user entered value and must be 32, 64, 128, 256, 512,
1024, or 2048. Start with 2048 and decrease only if
communications problems are encountered.

BestPktSize specifies a best packet size to be used initially in
communicating with the datalogger. Best packet size is
then adjusted within the DLL each time communication
takes place. It is reported back to the program through
the ClosePort() command and should be remembered
for a given port and station between communications
sessions. A good starting value is 512 or the
maxPktSize, whichever is smaller.

ModemOn specifies whether the COM port connection to the
datalogger will be through a phone modem. 0=False,
1=True. For timing purposes only; does not perform,
enable or inhibit any modem functions.

Section 2. PC9000.DLL Function Reference

2-2

Return Codes:
0 = Port was successfully opened.
1 = Port could not be opened: device failure, or already in use by this or
other application.

Example:
Dim sPort as String
Dim lBaudRate as Long
Dim lExtraResp as Long
Dim iMaxPktSize as Integer
Dim iBestPktSize as Integer
Dim iModemOn as Integer
Dim iRslt as Integer

sPort = "COM2"
lBaudRate = 115200
lExtraResp = 500
iMaxPktSize = 2048
iBestPktSize = ClosePort()
iModemOn = 1
iRslt = OpenCom(sPort, lBaudRate, lExtraResp, iMaxPktSize, _
 iBestPktSize, iModemOn)

If iRslt = 1 Then
 MsgBox "Com Port not available"
End If

2.1.2 OpenLpt() - Open Parallel Port for use with PLA100
Parallel Link Adapter

This port may only be used by the CR9000, through the PLA100 interface.
Does not apply to the CR5000.

This function, and all subsequent datalogger communications
functions through this port, will not execute under Windows
NT/2000/XP without the installation of the PLA100DD parallel
port driver. This driver should be in place on these systems if the
full installation program has been run for either the PC9000DLL
Software SDK, or PC9000 V 5.X or greater. Simply copying the
PC9000.DLL files and the PLA100DD.SYS files onto a
computer will not activate the driver.

Declaration:
Declare Function OpenLpt Lib "PC9000.DLL" (ByVal
LptName As String, ByVal ExtraResp As Long, ByVal
maxPktSize As Integer, ByVal BestPktSize As
Integer) As Integer

NOTE

Section 2. PC9000.DLL Function Reference

2-3

Parameters:
LptName is either "LPT1" or "LPT2".

ExtraResp is extra response time in msec per packet, used by the
datalogger communication protocol. Extra response
time is a user entered value. It can be as low as zero,
but may need to go as high as 1000-2000 on noisy port
connections.

MaxPktSize is maximum packet size, used by the datalogger
communication protocol. Maximum packet size is a
user entered value and must be 32, 64, 128, 256, 512,
1024, or 2048. Start with 2048 and decrease only if
communications problems are encountered.

BestPktSize specifies a best packet size to be used initially in
communicating with the datalogger. Best packet size is
then adjusted within the DLL each time communication
takes place. It is reported back to the program through
the ClosePort() command and should be remembered
for a given port and station between communications
sessions. A good starting value is 512 or the
maxPktSize, whichever is smaller.

Return Codes:
0 = Port was successfully opened.
1 = Port could not be opened: device failure.

Example:
Dim sPort as String
Dim lExtraResp as Long
Dim iMaxPktSize as Integer
Dim iBestPktSize as Integer
Dim iRslt as Integer

sPort = "LPT1"
lExtraResp = 500
iMaxPktSize = 2048
iBestPktSize = ClosePort()
iRslt = OpenLpt(sPort, lExtraResp, iMaxPktSize, iBestPktSize)

If iRslt = 1 Then
 MsgBox "Parallel Port not available"
End If

2.1.3 OpenCsiCard() - Open Port for BLC100 Bus Link Card
This port may only be used by the CR9000, through the BLC100 interface.
Does not apply to the CR5000.

Declaration:
Declare Function OpenCSICard Lib "PC9000.DLL"
(ByVal PortNbr As Integer, ByVal ExtraResp As
Long, ByVal maxPktSize As Integer, ByVal
BestPktSize As Integer) As Integer

Section 2. PC9000.DLL Function Reference

2-4

Parameters:
PortNbr is the I/O address assigned to the BLC100 card (default

= &H150).

ExtraResp is extra response time in msec per packet, used by the
datalogger communication protocol. Extra response
time is a user entered value. It can be as low as zero,
but may need to go as high as 1000-2000 on noisy port
connections.

maxPktSize is maximum packet size, used by the datalogger
communication protocol. Maximum packet size is a
user entered value and must be 32, 64, 128, 256, 512,
1024, or 2048. Start with 2048 and decrease only if
communications problems are encountered.

BestPktSize specifies a best packet size to be used initially in
communicating with the datalogger. Best packet size is
then adjusted within the DLL each time communication
takes place. It is reported back to the program through
the ClosePort() command and should be remembered
for a given port and station between communications
sessions. A good starting value is 512 or the
maxPktSize, whichever is smaller.

Return Codes:

0 = Port was successfully opened.
1 = Port could not be opened: device failure.

Example:
Dim sPortName as String
Dim iPortNbr as Integer
Dim lExtraResp as Long
Dim iMaxPktSize as Integer
Dim iBestPktSize as Integer
Dim iRslt as Integer

sPortName = "&H150"
iPortNbr = CInt(sPortName)
lExtraResp = 500
iMaxPktSize = 2048
iBestPktSize = ClosePort()

iRslt= OpenCsiCard(iPortNbr, lExtraResp, iMaxPktSize, iBestPktSize)
If iRslt = 1 Then
 MsgBox "Tlink Port " & sPortName & " not available"
End If

2.1.4 OpenSock() - Open TCP/IP Port for use with NL100/NL105
Network Link Interface

The NL100/105 devices expose up to three separate ports for a given unit (CS
I/O, RS-232, and TLink). Through these separate ports, simultaneous
connections of different dataloggers to different computers can be facilitated.

Section 2. PC9000.DLL Function Reference

2-5

Only one computer may connect to a specific port on a specific interface at any
time, however. Once a connection is made to an IP Address and port from one
computer, all attempted subsequent connections from other computers to that
port will fail.

For Open Port functions to succeed, the only requirement is that a specific port
be available. In the case of OpenSock(), that means the presence of an
available NL100/105 at the specified IP address, having its RS232, CS I/O, or
Tlink specific port configured to the IP and port number specified in the
function call,. If the address and port cannot be accessed (through whatever IP
routes are available) this function will fail even though the computer's Ethernet
interface is functioning properly. The datalogger does not have to be actively
connected to the applicable NL100/105 interface until actual datalogger
communications functions are invoked.

Declaration:
Declare Function OpenSock Lib "PC9000.DLL" (ByVal
ipAddr As String, ByVal IPPort As String, ByVal
ExtraResp As Long, ByVal maxPktSize As Integer,
ByVal BestPktSize As Integer) As Integer

Parameters:
ipAddr is the IP Address assigned to the NL100/105 during

device configuration.

IPPort is the Port Address assigned to the specific port off of
the NL100/105 to which the datalogger is attached:
either the TLink port(CR9000) or the RS-232 or CS I/O
ports(CR5000). Specific port addresses for each port
off of the NL100/105 are also user-assigned during
device configuration.

ExtraResp is extra response time in msec per packet, used by the
datalogger communication protocol. Extra response
time is a user entered value. It can be as low as zero,
but may need to be as high as 15000 (15 seconds) or
more on some remote connections.

maxPktSize is maximum packet size, used by the datalogger
communication protocol. Maximum packet size is a
user entered value and must be 32, 64, 128, 256, 512,
1024, or 2048. Start with 2048 and decrease only if
communications problems are encountered.

BestPktSize specifies a best packet size to be used initially in
communicating with the datalogger. Best packet size is
then adjusted within the DLL each time communication
takes place. It is reported back to the program through
the ClosePort() command and should be remembered
for a given port and station between communications
sessions. A good starting value is 512 or the
maxPktSize, whichever is smaller.

Return Codes:
0 = Port was successfully opened.
1 = Port could not be opened: device failure, or already in use by this or
other application.

Section 2. PC9000.DLL Function Reference

2-6

Example:
Dim sIPAddress as String
Dim sPortAddress as Integer
Dim lExtraResp as Long
Dim iMaxPktSize as Integer
Dim iBestPktSize as Integer
Dim iRslt as Integer

sIPAddress = "192.168.6.46"
sPortAddress = "3000"
lExtraResp = 500
iMaxPktSize = 2048
iBestPktSize = ClosePort()

iRslt = OpenSock(sIPAddress, sPortAddress, sExtraResp, iMaxPktSize,
 iBestPktSize)
If iRslt = 1 Then
 MsgBox "NET Address:Port " & sIPAddress & ":" & sPortAddress _
 & " not available"
End If

2.1.5 GetModemStatus() - Retrieves Modem Control Register
Values

This function is used in conjunction with COM port connections wherein
modems are used to facilitate communication with remote CR5000 or CR9000
dataloggers. The function is used to retrieve current modem connection state
information. In these cases, the UserRd() and UserWr() functions are
utilized to send and receive ASCII character strings in order to control the
modem functions.

GetModemStatus() is a simple wrapper around the Microsoft Windows API
GetCommModemStatus() function, passing the control register mask exactly
as returned by the operating system. The only reason that this function is
necessary is that PC9000.DLL does not return operating system comm port
handles, such as are needed to call the Windows API function directly.

Support for modem communications programming is beyond the scope of this
manual or SDK, other than providing the necessary port access. Refer to
MSDN documentation and/or other general programmer’s resources for
additional support information.

Declaration:
Declare Function GetModemStatus Lib "PC9000.DLL"
(ByVal StatusWord as Long) As Integer

Parameters:
StatusWord bit mask containing information about modem status

lines:

MS_CTS_ON &H10& (Bit 4) The CTS (clear-to-
send) signal is on.

MS_DSR_ON &H20& (Bit 5) The DSR (data-set-
ready) signal is on.

Section 2. PC9000.DLL Function Reference

2-7

MS_RING_ON &H40& (Bit 6) The ring indicator
signal is on.

MS_RLSD_ON &H80& (Bit 7) The RLSD (receive-
line-signal-detect)
signal is on.

Return Codes:
0 = Completed successfully.
1 = Function failed (port not open, modem not found, or invalid port).

Example:
Sub SerialPortStatus(ByRef bCTS As Boolean, ByRef bDSR As Boolean, _
 ByRef bRING As Boolean, ByRef bCD As Boolean)

Const MS_CTS_ON = &H10&
Const MS_DSR_ON = &H20&
Const MS_RING_ON = &H40&
Const MS_RLSD_ON = &H80&

Dim lStatWord As Long
Dim iRes As Integer

 iRes = GetModemStatus(lStatWord)

 If iRes <> 0 Then
 MsgBox "Port not responding. "
 Else
 bCTS = lStatWord And MS_CTS_ON
 bDSR = lStatWord And MS_DSR_ON
 bRING = lStatWord And MS_RING_ON
 bCD = lStatWord And MS_RLSD_ON
 End If

 Exit Sub

2.1.6 ClosePort() - Close an I/O Port Opened by any one of the
Open Port Instructions

Declaration:
Declare Function ClosePort Lib "PC9000.DLL" ()
As Integer

Return Codes:
best packet size (default=512 if no port is presently open).

Example:
Dim BestPktSize as Integer
BestPktSize = ClosePort()

Section 2. PC9000.DLL Function Reference

2-8

2.2 Datalogger Utility Functions

2.2.1 GetLgrIdent () - Gets the Datalogger Protocol Version,
Model, Serial #, and Name

This function is most commonly used as the basic test to validate that a
datalogger is connected and communicating with the DLL on the currently
open port. Given its reporting of Model, Serial Number and station name, it is
also a good way to verify that the application program is in fact communicating
with the datalogger that it expects to find over a particular connection.

Declaration:
Declare Function GetLgrIdent Lib "PC9000.DLL"
(BmpVer As Integer, Model As Integer, SerNbr As
Long, ByVal StnName As String, ByVal StnNameSize
As Integer) As Integer

Parameters:
BmpVer returns the version number of the protocol version being

used by the datalogger operating system.

Model returns the model: 0 = CR9000, 1 = CR5000

SerNbr returns the datalogger serial number.

StnName returns the station name (as set by SetLgrName()

StnNameSize declares the size of the station name string buffer set up
by the calling routine.

Return Codes:
0 = Completed successfully.
1 = Port not open or datalogger does not respond.

Example:
Dim iBmpVer As Integer
Dim iModel As Integer
Dim lSerNbr As Long
Dim sStnName As String
Dim sLoggerModelName as String
Dim iRslt as Integer

sStnName = String(20, vbNullChar)
iRslt = GetLgrIdent(iBmpVer, iModel, lSerNbr, sStnName, Len(sStnName))
If iRslt = 0 Then
 If iModel = 0 Then
 sLoggerModelName = "CR9000"
 ElseIf Model = 1 Then
 sLoggerModelName = "CR5000"
 Else
 sLoggerModelName = "Unknown"
 End If
End If

Section 2. PC9000.DLL Function Reference

2-9

2.2.2 SetLgrName () - Sets the Station Name of a Datalogger
The station name is a user-assigned name for a physical datalogger station.
Once assigned, this name is saved in datalogger memory and is not lost if the
datalogger is turned off.

The name can be up to eight characters long: Longer names will be truncated
to 8 characters. Spaces are allowed but not recommended.

Always add a null termination character when passing strings to this function.
Attempts to set the datalogger name to an empty string will be ignored, and
passing an empty string without a null termination character may trigger a
general protection fault.

The currently assigned station name can be retrieved either by using the
GetLgrIdent() function, or by querying the "StationName" field in the
datalogger "Status" table using the GetCurrentValue() function.

Declaration:
Declare Function SetLgrName Lib "PC9000.DLL"
(ByVal StnName As String) As Integer

Parameters:
StnName sets the station name of the datalogger.

Return Code:
0 = OK.
1 = Port not open or datalogger does not respond.

Example:
Dim sStnName as String
Dim iRslt as Integer

sStnName = txtStnName.text & vbNullChar
iRslt = SetLgrName(sStnName)
If iRslt = 1 Then
 MsgBox "Datalogger does not respond."
End If

2.2.3 SetLgrClock() - Set or Check the Datalogger Clock
The name of this function, together with its series of time arguments, can be a
bit misleading. The function does both set and check the datalogger clock, but
in each case the time arguments are only return arguments. In other words,
when the function is called in the "set" mode, the function sets the datalogger
time to the value of the PC's real time clock, regardless of the values passed in
to the function. The time arguments returned in that case correspond to the
PC's time as it was set in the datalogger.

In "get" mode, the time arguments correspond to the time as obtained from the
datalogger, as would be expected.

Section 2. PC9000.DLL Function Reference

2-10

Declaration:
Declare Function SetLgrClock Lib "PC9000.DLL"
(ByVal SetIt As Integer, DYear As Integer, DMonth
As Integer, DDay As Integer, DHour As Integer,
DMinute As Integer, DSecond As Integer) As
Integer

Parameters:
SetIt if zero then the clock will be checked only. Otherwise it

will be set to match the PC clock.

DYear returns the year, as set or as read.

DMonth returns the month number within the year, as set or as
read.

DDay returns the day number within the month, as set or as
read.

DHour returns the hour within the day (0-23), as set or as read.

DMinute returns the minutes as set or as read.

DSecond returns the seconds as set or as read.

Return Codes:
0 = OK.
1 = Port not open or datalogger does not respond.

Example:
Function LoggerTime (bSet as Boolean) as Date
' This function gets or sets the datalogger clock, and
' returns the value in Microsoft standard date/time format.

Dim iYear As Integer
Dim iMonth As Integer
Dim iDay As Integer
Dim iHour As Integer
Dim iMin As Integer
Dim iSec As Integer
Dim iSet as Integer
Dim iRslt as Integer

iSet = IIf(bSet, 1 ,0) ' Convert from Boolean to Integer logic

iRslt = SetLgrClock(bSet, iYear, iMonth, iDay, iHour, iMin, iSec)
If iRslt = 0 then
 LoggerTime = DateSerial(iYear, iMonth, iDay) + _
 TimeSerial(iHour, iMin, iSec)
Else
 Err.Raise 32000 ' User-defined error
End If

End Function

Section 2. PC9000.DLL Function Reference

2-11

2.2.4 CR9000Dial() – Executes a Link Dial Transaction on the
Currently Open Port; CR9000Hangup() – Executes a Link
Termination Transaction on the Currently Open Port

These functions support two lesser-used communication link management
transactions. The responses to these commands from any dataloggers or other
devices connected to a currently open port are completely dependent on the
particular model of datalogger connected to the port, and on any other
intermediate communications devices.

In the case of a direct or phone modem connection to the CR5000, the Dial
transaction has no effect. The Hangup transaction will cause the CR5000 to
immediately close the port from its end, but only if the RS232 Timeout
configuration setting is set to “Yes”. (This setting is accessible from the front
panel menu of the CR5000.)

In the case a direct or phone modem connection to the CR9000 these
transactions support a datalogger configuration which rarely occurs: that is, the
connection of multiple CR9000 dataloggers in a series chain, using a
combination of TLink and Fiber Optic connections. In this case, each
invocation of CR9000Dial() passes control from the currently active
datalogger, further down to the next datalogger in the series chain. Each
invocation of CR9000Hangup() passes control one station back up the chain.
It is entirely up to the applications program to verify that the connection was
passed successfully by testing communications with the dataloggers at each
step of the sequence. If for any reason, one of the dataloggers in the link is not
responding, the status of the connection is difficult to determine.

The Campbell Scientific Block Mode Protocol (BMP) transactions that are
associated with these commands also have other application when working
with radio communications links. These applications are beyond the scope of
this document, and do not typically apply to logging applications using the
CR9000 or CR5000.

These commands are NOT used in controlling dial-up telephone modems for
remote dial-up connections, as might be expected by their names. Telephone
modem control using the PC9000.DLL is implemented using the UserRd()
and UserWr() functions.

With the possible exception of CR5000 link termination in certain
configurations, these functions will generally not be applicable to writing
custom datalogger applications code.

Declaration:
Declare Function CR9000Dial Lib "PC9000.DLL"
(ByVal DialString As String) As Integer

Declare Function CR9000HangUp Lib "PC9000.DLL" ()
As Integer

Section 2. PC9000.DLL Function Reference

2-12

Parameters:
DialString defines a sequence of operations which must be

executed to dial through the current remote to a new
remote. Usually does not pertain when used with the
CR5000 and CR9000 as described here.

Return Codes:
0 = OK.
1 = Transaction Failed.

Example:
None given.

2.2.5 StartIOLog () - Start Logging Low Level I/O to a File;
StopIOLog () - Stop Logging Low Level I/O

These two functions are used to enable and disable a low-level logging
function that logs all binary information passing back and forth at the protocol
level between the DLL and the datalogger. It is primarily intended for DLL
and protocol level debugging and generally is not useful in debugging
applications unless a low-level protocol error is occurring.

The log files created by this function will become extremely large in a
relatively short period of time, so this function should not be used unless
absolutely necessary. The burden of continuously writing to the log files can
also significantly slow communications throughput.

The logging function is not tied to a particular port or station, and can be turned
on and off at any time. The currently open port may be shut down, changed,
etc., while logging is enabled.

The DLL creates and appends its contents to a separate file for each of the
ports to which it may be connected. The file names are as follows:

• IO$COM1.LOG, IO$COM2.LOG… COM1, COM2…respectively

• LOG$.LOG NET ports – (single file for all NET
connections)

• IO$PAR4.LOG LPT ports (low level logging not
supported under Windows NT 4.0 /
2000)

• IO$TPTR.LOG TLink ports

Declarations:
Declare Function StartIOLog Lib "PC9000.DLL" ()
As Integer

Declare Function StopIOLog Lib "PC9000.DLL" ()
As Integer

Section 2. PC9000.DLL Function Reference

2-13

Return Codes:
Always returns 0.

Example:
' Module-level variable
Private mbLowLevelLog as Boolean

Sub LowLevelLog (ByVal bLog as Boolean)

Dim iRslt as Integer

 If bLog <> mbLowLevelLog Then
 If bLog Then
 iRslt = StartIOLog()
 mbLowLevelLog = True
 Else
 iRslt = StopIOLog()
 mbLowLevelLog = False
 End If
 End If

End Sub

2.2.6 UserWr() - Write the Specified ASCII Character String
Directly to the Port

UserWr() is intended to be used with its companion function, UserRd().
Together these functions are used in one of two modes:

• To communicate directly with modems, typically on a RS-232 serial port
previously opened by the OpenCom() function, in order to manage
remote dial-up connections. The details of this process are modem-specific
and are beyond the scope of this document.

• To communicate with dataloggers in a mode known as "low-level I/O" or
"terminal" mode, sending individual ASCII character commands, and
receiving various status and diagnostic information in return, in ASCII
carriage-return/line feed terminated format. This mode is not limited to
RS-232 connections; it may be used for all port types.

The details of terminal mode are not covered here in detail. In general,
using this mode consists of sending 2-3 individual carriage return
characters to "wake-up" the terminal mode connection, evidenced by the
return of a CR9000> OR CR5000> prompt string retrieved by the
UserRd() function. After receiving the prompt, a single "h" character
with a carriage return will cause a menu of command choices to be
transmitted from the datalogger.

Be aware that this terminal mode ASCII communications protocol is not the
protocol used by other DLL functions for executing datalogger transactions and
receiving data. It is simply a way of monitoring datalogger behavior
independently of the normal protocols. Further, this mode of communications
with the datalogger should only be used when all normal datalogger
communications routines are completely idle, else data transmission errors and
timeouts may occur.

Section 2. PC9000.DLL Function Reference

2-14

UserWr() and UserRd() functions read and write all characters directly to
and from ports, with no parsing or overhead. They can be used anywhere that
one would use Windows HyperTerminal or similar programs to communicate
with a serial device through ASCII command sequences. It is left entirely up
to the application to be aware of the current state of the port connection
(modem on or off-line) in order to send the right commands and properly
interpret the responses.

The UserWr() and UserRd() functions require an open port. A valid on-line
datalogger connection is not monitored or reported as with all other
communications commands, however.

Declaration:
Declare Function UserWr Lib "PC9000.DLL" (ByVal
Buf As String, ByVal BufSize As Integer) As
Integer

Parameters:
Buf a string to write to the port. Any desired termination

characters (carriage returns, line feed, EOF characters)
must be included in the passed string as none are added
by the function.

BufSize the length of Buf.

Return Codes:
0 = Bytes were sent
1 = No byes were sent.

Example:
Function WriteChars(byVal sChars as String) as Long

Dim sBuf as String

 sBuf = sChars & vbNullChar
 WriteChars = UserWr(sBuf, Len(sBuf))

End Function

2.2.7 UserRd () - Returns up to the Allocated Number of
Characters in a Port's Input Buffer

UserRd() is intended to be used with its companion function, UserWr().
Together these functions are used in one of two modes:

• To communicate directly with modems, typically on a RS-232 serial port
previously opened by the OpenCom() function, in order to manage
remote dial-up connections. The specifics of this process are modem-
specific and are beyond the scope of this document and SDK.

• To communicate with dataloggers in a mode known as "low-level I/O" or
"terminal" mode, sending individual ASCII character commands, and
receiving various status and diagnostic information in return, in ASCII
carriage-return/line feed terminated format. This mode is not limited to
RS-232 connections: it may be used for all port types.

Section 2. PC9000.DLL Function Reference

2-15

The details of terminal mode are not covered here in detail. In general,
using this mode consists of sending 2-3 individual carriage return
characters to "wake-up" the terminal mode connection, evidenced by the
return of a CR9000> OR CR5000> prompt string retrieved by the
UserRd() function. After receiving the prompt, a single "h" character
with a carriage return will cause a menu of command choices to be
transmitted from the datalogger.

Be aware that this terminal mode ASCII communications protocol is not the
protocol used by other DLL functions for executing datalogger transactions and
receiving data. It is simply a way of monitoring datalogger behavior
independently of the normal protocols. Further, this mode of communications
with the datalogger should only be used when all normal datalogger
communications routines are completely idle, else data transmission errors and
timeouts will occur.

UserWr() and UserRd() functions read and write all characters directly to
and from ports, with no parsing or overhead. They can be used anywhere that
one would use Windows HyperTerminal or similar programs to communicate
with a serial device through ASCII command sequences. It is left entirely up
to the application to be aware of the current state of the port connection
(modem on or off-line) in order to send the right commands and properly
interpret the responses.

The UserWr() and UserRd() functions require an open port. A valid on-line
datalogger connection is not monitored or reported as with all other
communications commands, however.

Declaration:
Declare Function UserRd Lib "PC9000.DLL" (ByVal
Buf As String, ByVal BufSize As Integer) As
Integer

Parameters:
Buf string buffer in which to place the current input

characters received.

This buffer can be sized (within reason) to any size that
is convenient to the application, however no bytes will
be returned by this function until there are enough bytes
to completely fill the port. All characters returned in the
buffer will be automatically cleared from the input port.

If there are more characters available in the port's input
buffer than will fit in Buf, the remaining characters may
be picked up in subsequent function calls: they will not
be cleared until they have been returned in a call.

BufSize the length of Buf.

Return Codes:
Number of characters read in and placed in string buffer Buf.

Section 2. PC9000.DLL Function Reference

2-16

Example:
Function ReadChars() as String
' This function would normally be called by some periodic timer
' routine that is monitoring the port during terminal mode
' communications sequences

Dim sBuf as String
Dim iRslt as Integer

 Do
 sBuf = String(10, vbNullChar)
 iRslt = UserRd(sBuf, Len(sBuf))
 If iRslt > 0 Then ReadChars = ReadChars & Left$(sBuf, iRslt)

 Loop Until iRslt = 0 ' Or Len(ReadChars) > some limit

End Function

2.3 Datalogger File/Directory Functions

2.3.1 BootFromLinkStart() - Start the Cold Boot Datalogger
Transaction

The boot from link transaction is executed by calling BootFromLinkStart(),
then BootFromLinkMore() is repeated in a loop until the boot transaction is
finished. This will reset the BLC100 card, if one is in use, before download.
This may, depending on the position of a jumper in the CR9000, reset the
CR9000.

Consult the PC9032 program and help files for descriptions of the full
sequence of steps to take when booting a CR9000 or CR5000 from a link.

Declaration:
Declare Function BootFromLinkStart Lib
"PC9000.DLL" (ByVal OSName As String, NbrWr As
Long) As Integer

Parameters:
OSName operating system name.

NbrWr indicates how many bytes of the operating system have
been transmitted to the datalogger.

Return Codes:
1 = Port not open or datalogger does not respond.
2 = Boot transaction started.
3 = Bad file name.

Section 2. PC9000.DLL Function Reference

2-17

Example:
Dim iRslt as Integer
Dim sOsName As String
Dim lNbrWr As Long

sOsName = App.Path & "\OS.RUN"
iRslt = BootFromLinkStart(sOsName, lNbrWr)

Select Case iRslt
Case 1
 Err.Raise 32000, , "Datalogger does not respond."
Case 3
 Err.Raise 32001, , "Bad file name."
End Select

Do
 iRslt = BootFromLinkMore(NbrWr)
 If iRslt = 1 Err.Raise 32000, , "Datalogger does not respond."
 ‘ iRslt will be = 2 if the transaction is still in progress
Loop Until iRslt = 0

2.3.2 BootFromLinkMore() - Continue with Cold Boot from Link
Transaction

The boot from link transaction is executed by calling BootFromLinkStart(),
then BootFromLinkMore() is repeated in a loop until the boot transaction is
finished. This will reset the BLC100 card, if one is in use, before download.
This may, depending on the position of a jumper in the CR9000, reset the
CR9000.

Consult the PC9032 program and help files for descriptions of the full
sequence of steps to take when booting a CR9000 or CR5000 from a link.

Declaration:
Declare Function BootFromLinkMore Lib
"PC9000.DLL" (NbrWr As Long) As Integer

Parameters:
NbrWr indicates how many bytes of the operating system have

been transmitted to the datalogger.

Return Codes:
0 = Operation complete.
1 = Port not open or datalogger does not respond.
2 = Not done yet.

Section 2. PC9000.DLL Function Reference

2-18

Example:
Dim iRslt as Integer
Dim sOsName As String
Dim lNbrWr As Long

sOsName = App.Path & "\OS.RUN"
iRslt = BootFromLinkStart(sOsName, lNbrWr)

Select Case iRslt
Case 1
 Err.Raise 32000, , "Datalogger does not respond."
Case 3
 Err.Raise 32001, , "Bad file name."
End Select

Do
 iRslt = BootFromLinkMore(NbrWr)
 If iRslt = 1 Err.Raise 32000, , "Datalogger does not respond."
 ‘ iRslt will be = 2 if the transaction is still in progress
Loop Until iRslt = 0

2.3.3 GetDirectory() - Get a Directory of Files (programs) that
are in Datalogger

GetDirectory() is designed to be used in a loop. Before entering the loop, set
the FileName argument to an empty string buffer. Call GetDirectory() to get
the first file name, then pass the first name back in to the function to get the
next name, and so on to get all file names. An empty string and a result code
of 4 is returned when the all table names have been returned.

The file names are returned in the format
DeviceName:FileName

Where the device name will either be "CPU", "P4A", P4B" or "CRD",
depending on the datalogger model and the auxiliary memory storage devices
available. The file name will be the name of the file in standard format, such
as "BRIDGE1.CR9".

For each existing device that is currently empty (i.e., contains no files), a single
file directory entry will be returned to that effect, in one of the following
formats:

CR9000:
P4A:NO_CARD (Datalogger has a 9080 card but no memory card is

in slot A)
P4B:NO FILES (Datalogger has a memory card but it is empty)

CR5000:
CRD: (Datalogger's card slot either has no card or has a

card with no files)

Declaration:
Declare Function GetDirectory Lib "PC9000.DLL"
(ByVal FileName As String, ByVal FileNameSize As
Integer, Attrib As Integer) As Integer

Section 2. PC9000.DLL Function Reference

2-19

Parameters:
FileName a string buffer in which the next file name is returned by

the function.

FileNameSize the length of the FileName string buffer.

Attribute returns the file attributes in a bit-masked integer:
bit 0: not used.
bit 1: 1 = execute on power-up. (Integer Value 2)
bit 2: 1 = executing now. (Integer Value 4)
other bits not used.

Return Codes:
0 = Next directory entry returned.
1 = Port not open or datalogger does not respond.
4 = End of list.

Example:
Dim sFileName as String
Dim iAttr as Integer
Dim iRslt as Integer
Dim sText as String

‘lstDir is a VB List Box
lstDir.Clear
sFileName = String(40, vbNullChar)

Do
 iRslt = GetDirectory (sFileName, Len(sFileName), iAttr)
 If iRslt = 1 Then Err.Raise 32000 ‘User-defined error code
 If iRslt = 0 Then
 sText = Trim$(sFileName)
 If (iAttr And 4) > 0 Then
 sText = sText & vbTab & "Running"
 End If
 lstDir.AddItem sText
 End If
Loop Until (iRslt = 4) Or (Len(Trim$(sFileName)) = 0)

2.3.4 DownloadStart() - Initiate Downloading and Other File
Management Options

DownloadStart() is used for a number of tasks including downloading files to
the datalogger, starting and stopping programs, and operating on files that are
already in the datalogger memory.

DownloadStart() is used for the following types of operations:

• Downloading a CRBasic file to the datalogger, and compiling and running
the file

• Modifying the run attributes of a CRBasic program file already in
datalogger memory

• Stopping the current program

Section 2. PC9000.DLL Function Reference

2-20

• Deleting a file, a group of files, or all files, from a datalogger storage
device

• Downloading a non-program file (data file, wiring diagram, etc.) to
datalogger memory

• Downloading a new datalogger operating system file to replace the
existing operating system

DownloadWait() is normally used in conjunction with DownloadStart(), to
monitor the progress of the specified transaction until it is complete.

The examples section of this function contains a set of procedures, one for each
of the function's main operating modes described above. This is perhaps the
most complex function in the DLL. There are many possible combinations of
function arguments that are not allowable or nonsensical. Examples would be:
attempting to compile a non-CRBasic file, downloading a file with the attribute
set to 8 or 16, passing the name of a datalogger file when SendFile specifies a
disk file (or vice versa). Also, the procedure to stop the currently running
CRBasic program is not what one would intuitively expect.

Be careful to stay within the bounds described and illustrated here for this
function. Study the PC9000Test program example code that is included on the
PC9000.DLL developer kit disk for further clues about working with this
function successfully. Failure to stay within the recommended bounds may
result in Windows General Protection Faults, or may crash the datalogger
operating system or leave it in an uncertain state. Not every possible error
combination will be trapped by the function.

When DownloadStart() is used to download files from the computer (as
opposed to operating on files already in the datalogger), the datalogger will
automatically overwrite any existing file already existing on the specified
storage device having the same name as the file being downloaded.

Programs may be downloaded, compiled and activated, with one
DownloadStart()/Wait() sequence.

Deleting the running CRBasic file from memory will not stop it from running,
but once stopped, it will not be able to be re-started until the program file is
downloaded again.

When DownloadStart() is used to compile a CRBasic Program file (applies
both to new downloads and existing datalogger files), the DownloadWait()
instruction is used to evaluate the compile results. See the reference
documentation for that instruction, for more information.

In order to simplify the purging of data files from a device, the "*.DAT" file
specification is recognized for the delete file function only (Option = 8). All
other times, a single explicit file name is required.

Don’t assume that the function will always cleanly protect against the passing
of a bad file or device name. The end result will often be an unsuccessful
compile attempt, stopping the datalogger.

Section 2. PC9000.DLL Function Reference

2-21

Downloading an operating system (OS) is similar to downloading other files.
Key items of note are:

1) Any previously running program must have been previously stopped

2) The OS File's extension is always “.OBJ”

3) The attribute bit must be 0

4) The device name must be "CPU:"

5) The DownloadWait() instruction may return 7 instead of 0 when the
download is complete, if the OS compile time exceeds communications
timeout settings. If so, the downloading routine should fall into a “wait
and retry” datalogger status check loop before proceeding.

6) Downloading a new OS should not cause datalogger files to be deleted,
other than data files currently in use. These should be backed up prior to
downloading a new operating system file.

Declaration:
Declare Function DownloadStart Lib "PC9000.DLL"
(ByVal FileName As String, ByVal DevName As
String, ByVal Options As Integer, ByVal SendFile
As Integer) As Integer

Parameters:
FileName the name of the file on which to operate:

If the SendFile argument is set to zero, (file exists in
datalogger) this file name must exactly match the file
name as reported by the GetDirectory() command,
minus the device specifier and delimiter (which is
instead specified in the device name argument).

If the SendFile argument is set to 1, (new file download)
this parameter must contain the explicit Drive:\path\file
specification for the file as it is located on the computer.

IMPORTANT: The dataloggers only accept filenames
in DOS standard 8.3 format. Programs that call this
function must pre-convert any non-conforming file
specification to this legacy "short path\8.3" format.
(This applies not just to the file name, but to the entire
path\file specification.) See the example code for
illustration of how this can be accomplished.

DevName the name of the device in the datalogger where the file
is located (existing datalogger file) or will be written to
(new file download). These device names must be
specified literally as shown below, including the
delimiting colon.

Recognized Device Names for the CR9000:
 “CPU:” - Main datalogger flash memory
 "P4A:” - CR9080 memory card A
 “P4B:” - CR9080 memory card B

Section 2. PC9000.DLL Function Reference

2-22

Recognized Device Names for the CR5000:
 “CPU:” - Main datalogger flash memory
 “CRD:” - CR5000 memory card

Options the transaction options bit-masked flags (with
corresponding integer values):

bit 0 (1): not used at this time.
bit 1 (2): 1 = make the named program the one to
execute on power-up.
bit 2 (4): 1 = compile and execute the named program
now.
bit 3 (8): 1 = delete the named file (or group of files,
according to wildcard characters).
bit 4 (16): 1 = format the specified device (will delete
all files).
Bits 5-15: not used at this time.

Note that, while the numerical values for the option
settings comprise a mask, only bits 1 and 2 (Integer 2
+ Integer 4 = 6) may be set together in one call to this
function. All of the rest of the mask settings must be
used by themselves in separate calls.

SendFile the send file option:

1 = send the specified file from the specified computer
disk drive

0 = do not send the file (assumes file already exists in
datalogger memory).

Return Codes:
1 = Port not open or datalogger does not respond.
2 = Download started.
3 = Bad file name: Typically this would mean a bad PC File name, if
applicable to the current usage of the function. Bad datalogger file device
names if detected, will not likely be reported until some time during the
DownloadWait() loop.

Examples:
The first example shows a function that will work on a file already
existing in the datalogger, supporting attribute bits 1, 2 or 3, and all
allowable combinations of those bits. It takes a complete datalogger file
specification (DEV:FILE, as originally passed by the GetDirectory()
function) and parses it as required for the DLL DownloadStart()
function. Also recognizes the special case of stopping the current
program (explained in more detail immediately following this example)

Section 2. PC9000.DLL Function Reference

2-23

' Module level declarations
Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As
Long)

Private Function SetFileAttribute(ByVal sFileSpec As String, _
 ByVal iAttrib As Integer) As Long

Dim sResult As String
Dim iYear As Integer
Dim iMonth As Integer
Dim iDay As Integer
Dim iHour As Integer
Dim iMin As Integer
Dim iSec As Integer

Dim iRslt As Integer
Dim sMsg As String
Dim bStopProg As Boolean
Dim sDevName As String
Dim sFileName As String
Dim lMrk As Long

On Error GoTo Err_FileAttr

 ' Only allows these specific combinations of attribute settings.
 ' (Attribute bit 4 is handled by a separate example function)
 If Not (iAttrib = 0 Or iAttrib = 2 Or iAttrib = 4 Or iAttrib = 6 Or
_ iAttrib = 8) Then Err.Raise 32000

 ' Parse the device and file names from the file specification
 If Len(sFileSpec) > 0 Then
 lMrk = InStr(1, sFileSpec, ":")
 If lMrk > 0 And Len(sFileSpec) > 1 Then
 sDevName = Left$(sFileSpec, lMrk) & vbNullChar
 sFileName = Mid$(sFileSpec, lMrk + 1) & vbNullChar
 Else
 sDevName = "CPU:" & vbNullChar
 sFileName = sFileSpec & vbNullChar
 End If

 (Example continues on next page)

Section 2. PC9000.DLL Function Reference

2-24

SetFileAttribute Example (continued from previous page)

 Else
 sDevName = vbNullChar
 sFileName = vbNullChar
 If iAttrib = 4 Then bStopProg = True
 End If ' Begin file attribute set operation
 iRslt = DownloadStart(sFileName, sDevName, iAttrib, 0)
 If iRslt = 1 Then Err.Raise 32001
 If iRslt = 3 Then Err.Raise 32002 'Bad File Name

 ' Wait loop
 Sleep 200
 sResult = String(512, vbNullChar)
 Do
 iRslt = DownloadWait(sResult, Len(sResult), iYear, iMonth, iDay,
_
 iHour, iMin, iSec)
 If iRslt = 1 Then Err.Raise 32001
 If iRslt = 4 then Err.Raise 32003
 If iRslt = 5 then Err.Raise 32004
 If iRslt = 6 then Err.Raise 32002
 Loop Until iRslt <> 2

 ' Interpret results, in light of the requested operation
 If iRslt = 0 Then
' Operation commenced successfully
 SetFileAttribute = True
 If bStopProg Then
 sMsg = "Currently running program was stopped."
 Else
 ' Strip the null termination characters off of the device and
 ' file names, to use them in a message string.
 sDevName = Left$(sDevName, Len(sDevName) - 1)
 sFileName = Left$(sFileName, Len(sFileName) - 1)

 If iAttrib <> 8 Then
 sMsg = "Attribute for File " & sDevName & sFileName & _
 " was set to " & iAttrib & "."
 Else
 sMsg = "File " & sDevName & sFileName & " was deleted."
 End If
 End If
 Else
 sMsg = "Unknown error code."
 End If

 If iAttrib = 4 Or iAttrib = 6 Then
 ' A compile was just attempted.
 sMsg = sMsg & vbCrLf & "COMPILE RESULTS: "

& Trim$(sResult)
 End If
 lblStatus.Caption = sMsg

 (Example continues on next page)

Section 2. PC9000.DLL Function Reference

2-25

SetFileAttribute Example (continued from previous page)

Exit_FileAttr:
 Exit Function

Err_FileAttr:
 Select Case Err.Number
 Case 32000
 sMsg = "Invalid File Attribute."
 Case 32001
 sMsg = "Port not open or datalogger does not respond."
 Case 32002
 sMsg = "Invalid File Name."
 Case 32003
 sMsg = "Insufficient resources to complete file operation."
 Case 32004
 sMsg = "Access Denied."
 Case Else
 sMsg = Err.Description
 End Select
MsgBox sMsg
 Resume Exit_FileAttr

End Function

The currently running program cannot be stopped by setting the attribute for
that file to zero, as one might presume. Rather, a "null" program must be
started. Using the above SetFileAttribute function to accomplish this function,
as follows:

Call SetFileAttribute "", 4

NOTES:
Stopping the currently running program as outlined above will effectively reset
that program's bit 2 attribute (run now). It will do nothing to the bit 1 (run on
power up attribute), however. Therefore, resetting both attributes of a file
whose bit 1 and bit 2 attributes are set requires two operations: first, stopping
the current program, and then setting the file attribute from 2 to zero.

Stopping the current program is only required when a new operating system is
downloaded. A new file can be started or downloaded, or the currently running
program deleted, without first stopping the current program from running. It is
good practice, however, to stop the current program first when doing other file
operations affecting the current program, to avoid unwanted side effects from
sudden termination of the current program.

The next example shows a function which can download new files to disk, and
also compile and run them as desired. It receives a complete PC Disk path/file
specification in long file name format, and converts it to DOS short path name
format as required for the DLL DownloadStart() function.

Section 2. PC9000.DLL Function Reference

2-26

' Module level declarations
Private Declare Function GetShortPathName Lib "kernel32" _
 Alias "GetShortPathNameA" (ByVal lpszLongPath As String, _
 ByVal lpszShortPath As String, ByVal cchBuffer As Long) As Long

Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Private mbCancel As Boolean

Public Function DownloadFile(ByVal sFileSpec As String, _
 ByVal sDevName As String, ByVal iAttrib As Integer) As Long

Dim sResult As String
Dim iYear As Integer
Dim iMonth As Integer
Dim iDay As Integer
Dim iHour As Integer
Dim iMin As Integer
Dim iSec As Integer

Dim iRslt As Integer
Dim sMsg As String
Dim sFileName As String
Dim lMrk As String
Dim lPath As Long

On Error GoTo Err_Download

 ' These are the only attribute settings allowed
 ' for a file download operation.
 If Not (iAttrib = 0 Or iAttrib = 2 Or iAttrib = 4 Or iAttrib = 6) _
 Then Err.Raise 32000

 ' This is a Windows API function call, to convert
 ' 32-bit long path/file names to the DOS 8.3 compatible format,
 ' required by the DownloadStart() function.
 sFileName = String(255, vbNullChar)
 lPath = GetShortPathName(sFileSpec, sFileName, Len(sFileName))
 sFileName = Left(sFileName, lPath)

 lblStatus.Caption = "Downloading File " & sFileName & _
 " into " & sDevName & " ..."

 ' This initiates the file transfer. Normal result will be a code 2.
 iRslt = DownloadStart(sFileName, sDevName, iAttrib, 1)
 If iRslt = 1 Then Err.Raise 32001
 If iRslt = 3 Then Err.Raise 32002 'Bad File Name
' Wait loop
 ' mbCancel is a module-level flag, which would be set true by
 ' some other event procedure, designated by the programmer as
 ' as means to allow the cancel of large file downloads.
 mbCancel = False

(Example continues on next page)

Section 2. PC9000.DLL Function Reference

2-27

DownloadFile() Example (continued from previous page)

Sleep 200
 sResult = String(512, vbNullChar)
 Do
 iRslt = DownloadWait(sResult, Len(sResult), iYear, iMonth, _
 iDay, iHour, iMin, iSec)
 If iRslt = 1 Then Err.Raise 32001
 If iRslt = 4 Then Err.Raise 32003
 If iRslt = 5 Then Err.Raise 32004
 If iRslt = 6 Then Err.Raise 32002 'Bad File Name

 ' This allows event procedures to run, in order to detect
 ' user cancel requests.
 DoEvents

 ' Return code of 2 means "not finished yet."
 ' Other return codes are processed immediately below.
 Loop Until (iRslt <> 2) Or mbCancel
 '
 If mbCancel Then
 sMsg = "Download cancelled by user."
 Else
 If iRslt = 0 Then
 DownloadFile = True
 sMsg = "File " & sDevName & sFileName & " was downloaded."
 Else
 sMsg = "Unknown Error Code."
 End If
 If iAttrib = 4 or iAttrib = 6 Then
 sMsg = sMsg & vbCrLf & "COMPILE RESULTS: " & Trim$(sResult)
 End If
 End If
 lblStatus.Caption = sMsg

Exit_Download:
 Exit Function
Err_Download:
 Select Case Err.Number
 Case 32000
 sMsg = "Invalid File Attribute."
 Case 32001
 sMsg = "Port not open or datalogger does not respond."
 Case 32002
 sMsg = "Invalid File Name."
 Case 32003
 sMsg = "Insufficient resources to complete file operation."
 Case 32004
 sMsg = "Access denied."
 Case Else
 sMsg = Err.Description
End Select
 MsgBox sMsg
 lblStatus.Caption = "File download was terminated due to errors."
 Resume Exit_Download

End Function

Section 2. PC9000.DLL Function Reference

2-28

The next example shows a special case, used to delete all files from the
specified storage device and format the device.

Private Function FormatLoggerDevice(ByVal sDevName As String)

Dim sResult As String
Dim iYear As Integer
Dim iMonth As Integer
Dim iDay As Integer
Dim iHour As Integer
Dim iMin As Integer
Dim iSec As Integer

Dim iRslt As Integer
Dim sMsg As String
Dim sFileName As String

On Error GoTo Err_Format

 sFileName = vbNullChar
 sDevName = sDevName & vbNullChar

 ' Begin device format operation
 iRslt = DownloadStart(sFileName, sDevName, 16, 0)
 If iRslt = 1 Then Err.Raise 32001
 If iRslt = 3 Then Err.Raise 32002 ' Bad File Name (should never occur
 ' in this calling mode)
 Sleep 200
 sResult = String(512, vbNullChar)
 Do
 iRslt = DownloadWait(sResult, Len(sResult), iYear, iMonth, _
 iDay, iHour, iMin, iSec)
 If iRslt = 1 Then Err.Raise 32001
 If iRslt = 4 Then Err.Raise 32003
 If iRslt = 5 Then Err.Raise 32004
 If iRslt = 6 Then Err.Raise 32002
 Loop Until iRslt <> 2

 If iRslt = 0 Then
 FormatLoggerDevice = True
 sMsg = "Device " & sDevName & " was formatted."
 Else
 sMsg = "Unknown error code."
 End If
 lblStatus.Caption = sMsg

Exit_Format:
 Exit Function

(Example continues on next page)

Section 2. PC9000.DLL Function Reference

2-29

FormatLoggerDevice() Example (continued from previous page)

Err_Format:
 Select Case Err.Number
 Case 32001
 sMsg = "Port not open or datalogger does not respond."
 Case 32002
 sMsg = "Invalid File Name."
 Case 32003
 sMsg = "Insufficient resources to complete file operation."
 Case 32004
 sMsg = "Access Denied."
 Case Else
 sMsg = Err.Description
 End Select
 MsgBox sMsg
 Resume Exit_Format

End Function

2.3.5 DownloadWait() - Monitor Status of Download Operation
in Progress

DownloadWait() is only used in a loop, following a call to DownloadStart(),
to monitor the progress of the specified transaction until it is complete.

Depending upon the type of operation being performed by DownloadStart()/
DownloadWait(), bad file names may either be detected immediately during
the DownloadStart() call, or sometimes not until after DownloadWait() is
invoked. Well-written error-handling code will monitor both functions for bad
file name conditions.

Declaration:
Declare Function DownloadWait Lib "PC9000.DLL"
(ByVal Result As String, ByVal ResultSize As
Integer, DYear As Integer, DMonth As Integer,
DDay As Integer, DHour As Integer, DMinute As
Integer, DSecond As Integer) As Integer

Parameters:
Result points to a string buffer where the compile result is

returned when the download is done. The compile
result will be a sequence of LF-delimited ASCII strings.
Compile results will return empty if no program was
compiled.

ResultSize length of the Result string buffer. Should be at least 256
bytes long.

DYear, DMonth, DDay, DHour, DMinute, DSecond
Time parameters indicate when the named program was
compiled. These fields are returned with invalid values
if no compile was done.

Section 2. PC9000.DLL Function Reference

2-30

Return Codes:
0 = Operation complete.
1 = Port not open or datalogger does not respond.
2 = Not finished.
4 = Insufficient resources (will occur if file is larger than available space
remaining on storage device)
5 = Permission denied.
6 = Bad file name or invalid file (reported primarily for operating system
OS*.OBJ files)
7 = OS Download complete (all packets successfully sent), but function
timed out waiting for a datalogger response, probably because the
datalogger was busy compiling the new OS file.

Example:
See examples for DownloadStart().

2.3.6 UploadFile() - Upload Program or Data File from the
Datalogger with One Command

UploadFile() is used to retrieve files from the datalogger. It performs the
same function as the combination of UploadStart() and UploadWait(), in
one instruction. It is therefore simpler to use but does not provide the means to
program a wait loop which provides progress updates to the user screen and/or
allows cancel options.

Declaration:
Declare Function UploadFile Lib "PC9000.DLL"
(ByVal FileName As String, ByVal DestFileName As
String, ByVal DevName As String) As Integer

Parameters:
FileName the name of the file to upload.

DestFileName the explicit Drive:\path\filename specification for the
file as it is to be saved on the computer. Can be in long
path/file name format if desired.

DevName the name of the device in the datalogger where file is
located (existing datalogger file) or will be written to
(new file download). These device names must be
specified literally as shown below, including the
delimiting colon.

Recognized Device Names for the CR9000:
 “CPU:” - Main datalogger flash memory
 "P4A:” - CR9080 memory card A
 “P4B:” - CR9080 memory card B

Recognized Device Names for the CR5000:
 “CPU:” - Main datalogger flash memory
 “CRD:” - CR5000 memory card

Return Codes:
0 = OK.
1 = Port not open or datalogger does not respond.
3 = Bad file name.

Section 2. PC9000.DLL Function Reference

2-31

Example:
Private Function UploadLoggerFile(ByVal sLoggerFile As String, _
 ByVal sDestFile As String, ByVal sDevName As String) As Long

Dim iRslt As Integer
Dim sMsg As String

On Error GoTo Err_Upload

 lblStatus.Caption = "Retrieving File " & sDevName & sLoggerFile

 iRslt = UploadFile(sLoggerFile, sDestFile, sDevName)
 If iRslt = 1 Then Err.Raise 32001
 If iRslt = 3 Then Err.Raise 32002

 UploadLoggerFile = True
 lblStatus.Caption = "File upload complete."

Exit_Upload:
 Exit Function

Err_Upload:
 Select Case Err.Number
 Case 32001
 sMsg = "Port not open or datalogger does not respond."
 Case 32002
 sMsg = "Invalid file name."
 End Select
 MsgBox sMsg
 lblStatus.Caption = "File upload terminated due to errors."
 Resume Exit_Upload

End Function

2.3.7 UploadStart() - Start File Upload from the Datalogger
Using a Progress Loop

UploadStart() is used to initiate file uploads in cases where a progress loop
with cancel options is desired.

UploadWait() and UploadStop() are normally used in conjunction with
UploadStart(), to monitor the progress of the specified transaction until it is
complete.

UploadStart() has an identical parameter list to UploadFile(). The return
codes are slightly different, reflecting the differences in the ways that these two
functions are used.

Declaration:
Declare Function UploadStart Lib "PC9000.DLL"
(ByVal FileName As String, ByVal DestFileName As
String, ByVal DevName As String) As Integer

Section 2. PC9000.DLL Function Reference

2-32

Parameters:
FileName the name of the file to upload.

DestFileName the explicit Drive:\path\filename specification for the
file as it is to be saved on the computer. Can be in long
path/file name format if desired.

DevName the name of the device in the datalogger where file is
located (existing datalogger file) or will be written to
(new file download). These device names must be
specified literally as shown below, including the
delimiting colon.

Recognized Device Names for the CR9000:
 “CPU:” - Main datalogger flash memory
 "P4A:” - CR9080 memory card A
 “P4B:” - CR9080 memory card B

Recognized Device Names for the CR5000:
 “CPU:” - Main datalogger flash memory
 “CRD:” - CR5000 memory card

Return Codes:
1 = Port not open or datalogger does not respond.
2 = Started.
3 = Bad destination file path name.

Example:
' Module level declarations
Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Private mbCancel As Boolean

Private Function UploadFileWithLoop(ByVal sLoggerFile As String, _
 ByVal sDestFile As String, ByVal sDevName As String) As Long

Dim iRslt As Integer
Dim lBytes As Long
Dim sMsg As String

On Error GoTo Err_Upload

 mbCancel = False
 iRslt = UploadStart(sLoggerFile, sDestFile, sDevName)
 If iRslt = 1 Then Err.Raise 32001
 If iRslt = 3 Then Err.Raise 32002

 (Example continues on next page)

Section 2. PC9000.DLL Function Reference

2-33

UploadFileWithLoop() Example (continued from previous page)

 ' Wait Loop
 ' mbCancel is a module-level flag, which would be set true by
 ' some other event procedure, designated by the programmer as
 ' as means to allow the cancel of large file downloads.
 mbCancel = False

 Sleep 200
 Do
 DoEvents
 If mbCancel Then
 UploadStop
 Exit Do
 End If

 'iRslt = UploadWait(lBytes)
 If iRslt = 1 Then Err.Raise 32001

 lblStatus.Caption = "Retrieving File " & sDevName & sLoggerFile _
 & ": " & lBytes & " bytes sent. Press 'ESC' to cancel."

 Loop Until iRslt <> 2

 UploadFileWithLoop = True
 If mbCancel Then
 lblStatus.Caption = "File upload cancelled by user."
 Else
 lblStatus.Caption = "File upload complete."
 End If

Exit_Upload:
 mbCancel = False
 Exit Function

Err_Upload:
 Select Case Err.Number
 Case 32001
 sMsg = "Port not open or datalogger does not respond."
 Case 32002
 sMsg = "Invalid file name."
 Case Else
 sMsg = Err.Description
 End Select
 MsgBox sMsg
 lblStatus.Caption = "File upload terminated due to errors."
 Resume Exit_Upload

End Function

Section 2. PC9000.DLL Function Reference

2-34

2.3.8 UploadWait() - Monitor Status of Upload Operation in
Progress

UploadWait() is only used in a loop, following a call to UploadStart(), to
monitor the progress of the specified transaction until it is complete.

A bad destination file path specification will be determined immediately upon
calling UploadStart(), when it attempts to open the output file. Bad
datalogger file names, on the other hand, will not be detected until after
UploadWait() is invoked. Well-written error-handling code will monitor both
functions for bad file name conditions.

If a file upload is terminated prematurely by the application (usually due to
user input) the UploadStop() function should be invoked.

Declaration:
Declare Function UploadWait Lib "PC9000.DLL"
(BytesSent As Long) As Integer

Parameters:
BytesSent the number of bytes retrieved thus far.

Return Codes:
0 = Operation complete.
1 = Port not open or datalogger does not respond.
2 = Not finished.
3 = Bad datalogger file name

Example:
See examples for UploadStart().

2.3.9 UploadStop() - Terminate Upload Operation in Progress
UploadStop() is only used in conjunction with a loop involving UploadStart(
). It only needs to be used if the application determines that the current upload
operation should be terminated. It does not need to be used when the DLL
itself returns an error code and stops the upload operation.

Declaration:
Declare Function UploadStop Lib "PC9000.DLL" ()
As Integer

Return Codes:
Always returns 0.

Example:
See examples for UploadStart().

Section 2. PC9000.DLL Function Reference

2-35

2.4 Datalogger Table Management Functions

2.4.1 GetTableName() - Retrieves the Names and Sizes of All
Available Datalogger Tables

GetTableName() is designed to be used in a loop. Before entering the loop,
set the TableName argument to an empty string buffer. Call GetTableName()
to get the first table name, then pass the first name back in to the function to get
the next name, and so on to get all table names. An empty string and a result
code of 4 is returned when the all table names have been returned.

The special datalogger system table, named “Status”, is available at all times,
and will be the only table returned by this call when no program is running.
When programs are running, the “Status” table will always be the first table
returned in the sequence of GetTableName() calls.

If variables were declared as Public in the CRBasic program, a “Public” table
will automatically be created; if present, this table will always appear as the
last table in the sequence.

All other tables defined and named by the user within CRBasic DataTable
statements will appear in sequence after the “Status” table, and before the
“Public” table, if present.

Invocation of the GetTableName() or GetTableName2() function, with an
empty string for the TableName argument, is essential after any new datalogger
communications port has been opened, and before any record-level data
retrieval occurs. This guarantees that the DLL has the necessary table
definition information to use for data retrieval for that datalogger.

Declaration:
Declare Function GetTableName Lib "PC9000.DLL"
(ByVal TableName As String, ByVal TableNameSize
As Integer, TableSize As Long) As Integer

Parameters:
TableName a string buffer in which the next datalogger data table

name is returned by the function.

TableNameSize the length of the TableName buffer.

TableSize returns the number or records allocated to the table.

Return Codes:
0 = Next table name returned.
1 = Port not open or datalogger does not respond.
4 = End of list.

Section 2. PC9000.DLL Function Reference

2-36

Example:
' Fills a combo box with the current list of table names

Dim lTableSize As Long
Dim sTableName As String
Dim iRslt as Integer

 ' cboTable is a VB combo or list box control
 cboTable.Clear
 sTableName = String(40, vbNullChar)

 Do
 iRslt = GetTableName(sTableName, Len(sTableName), lTableSize)

 If iRslt = 1 Then Err.Raise 32000 ‘User defined error
code
 If iRslt = 0 Then cboTable.AddItem Trim$(sTableName)

 Loop Until (iRslt = 4) Or (Len(Trim$(sTableName)) = 0)

2.4.2 GetTableName2() - Retrieves the Names, Sizes and Times
of All Datalogger Tables

GetTableName2() is designed to be used in a loop. Before entering the loop,
set the TableName argument to an empty string buffer. Call GetTableName2(
) to get the first table name, then pass the first name back in to the function to
get the next name, and so on to get all table names. An empty string and a
result code of 4 are returned when the all table names have been returned.

GetTableName2() is identical to GetTableName() except for the two
additional arguments associated with the data table interval.

The special datalogger system table, named “Status”, is available at all times,
and will be the only table returned by this call when no program is running.
When programs are running, the “Status” table will always be the first table
returned in the sequence of GetTableName2() calls.

If variables were declared as Public in the CRBasic program, a “Public” table
will automatically be created; if present, this table will always appear as the
last table in the sequence.

All other tables defined and named by the user within CRBasic DataTable
statements will appear in sequence after the “Status” table, and before the
“Public” table, if present.

Invocation of the GetTableName() or GetTableName2() function, with an
empty string for the TableName argument, is essential after any new datalogger
communications port has been opened, and before any record-level data
retrieval occurs. This guarantees that the DLL has the necessary table
definition information to use for data retrieval for that datalogger.

The effective table interval (determined from the Seconds and Microseconds
arguments combined) can be very useful in optimizing the frequency at which
the data retrieval functions are called to acquire new records from the table.
The interval will be set to zero, however, if the table is an “event-driven” table.
An event-driven table is considered as one which does NOT contain a

Section 2. PC9000.DLL Function Reference

2-37

DataInterval() statement in its CRBasic definition, thereby triggering data
storage based on the value of a trigger variable rather than time. This
definition holds, even when the CRBasic table definition also included
conditional triggers and/or DataEvent() statements.

If the table is event-driven, there is no fool-proof means by which to determine
its new record interval. An average interval can be determined by observing
the record numbers from GetRecentRecords() or GetRecentValues() calls at
two known instants of time, and dividing the elapsed time by the difference in
the beginning and ending record numbers. The actual record intervals may not
be constant, however, depending upon the program control instructions which
determine when CRBasic CallTable statements are invoked.

Another means to determine a default refresh interval for an event-driven table
is to monitor the value of the Status table variable “SecsPerRecord”, using the
GetCurrentValue() function. This field is an array if there is more than one
user-defined table in the program. The array is one-based, with the lowest
index corresponding to the first user-defined table, and the highest index
corresponding to the last user-defined table (i.e., there are no entries for the
Public or Status tables in this array). The sequence of the tables is the same as
that returned from this function, when called in a loop as described above. If
the table is fixed-interval, the SecsPerRecord entry will be the same as the table
interval returned by this function. If the table is event-driven, the entry will be
equal to the shortest scan interval within the CRBasic program. This serves
only as a best-guess suggested default update interval, from which to make
more accurate observations of the actual interval.

GetTableName2() allows for programmers writing more advanced datalogger
interfaces to obtain additional information not available in the base
GetTableName() call. The call interface to GetTableName() will remain
fixed, but GetTableName2() may be modified in the future to return
additional table-related information. At present, the only additional table
parameters included here are the table interval.

Declaration:
Declare Function GetTableName2 Lib "PC9000.DLL"
(ByVal TableName As String, ByVal TableNameSize
As Integer, TableSize As Long, Seconds As Long,
MicroSeconds As Long, TableSig as Long) As
Integer

Parameters:
TableName a string buffer in which the next datalogger data table

name is returned by the function.

TableNameSize the length of the TableName buffer.

TableSize returns the number or records allocated to the table.

Seconds returns the integer seconds portion of the table interval.

MicroSeconds returns the integer microseconds portion of the table
interval.

Section 2. PC9000.DLL Function Reference

2-38

TableSig returns the table CRC signature, computed as defined in
Campbell BMP protocols. Not used by other DLL
functions at present, but can be used by application code
to verify that a datalogger table structure has not
changed since it was last retrieved.

Return Codes:
0 = Next table name returned.
1 = Port not open or datalogger does not respond.
4 = End of list.

Example:
' Fills a combo box with the current list of table names
' and fills two arrays with the table size and interval settings

Dim sTableName As String
Dim lSize as Long
Dim lSecs as Long
Dim lUSecs as Long
Dim lSig as Long
Dim iRslt as Integer
Dim iNumTables as Integer
Dim lTableSize() As Long
Dim lTableSig() As Long
Dim dTableTime() as Double

 ' cboTable is a VB combo or list box control
 cboTable.Clear
 sTableName = String(40, vbNullChar)

 Do
 iRslt = GetTableName2(sTableName, Len(sTableName), lSize, _
 lSecs, lUSecs, lTableSig)

 If iRslt = 1 Then Err.Raise 32000 ' User defined error code

 If iRslt = 0 Then
 cboTable.AddItem Trim$(sTableName)
 Redim Preserve lTableSize(0 to iNumTables)
 Redim Preserve lTableSig(0 to iNumTables)
 Redim Preserve dTableTime(0 to iNumTables)
 lTableSize(iNumTables) = lSize
 lTableSig(iNumTables) = lSig
 dTableTime(iNumTables) = lSecs + (lUSecs/1000000)
 iNumTables = iNumTables + 1
 End If
 Loop Until (iRslt = 4) Or (Len(Trim$(sTableName)) = 0)

2.4.3 GetFieldName() - Retrieves Field Names and Basic
Associated Information

In similar fashion to the GetTableName() function, GetFieldName() is
designed to be used in a loop in order to retrieve all of the fields in a table.
Before entering the loop, specify the name of the Table in the TableName
argument, and set the FieldName, Units, and Proc arguments to empty string
buffers. Call GetFieldName() to get the first field name, then pass the first

Section 2. PC9000.DLL Function Reference

2-39

name back in to the function to get the next name, and so on to get all field
names. An empty string and a result code of 4 are returned when the all field
names have been returned for that table.

If a field is an array, one name will be returned for each element of the array.
The field name for each individual element of an array will consist of three
parts:

1. The base array name. If the array was not explicitly declared, but instead
was created as part of a CRBasic output processing instruction (such as a
Histogram or a CRBasic FFTFilt instruction), the base array name will
consist of that particular output instruction’s variable name, plus an
extension that is unique to each CRBasic array output instruction.

For example,
The complete base array name of a variable TF used in a CRBasic
Histogram instruction would be TF_Hst.
The complete base array name of a variable TF used in a CRBasic
Histogram4D instruction would be TF_H4D.

2. The array indices (one-based, single or multi-dimensional) as specified in
the CRBasic program, enclosed in parentheses.

3. A one-based index value (always one-dimensional), corresponding to the
absolute position of that particular array element in datalogger memory,
enclosed in brackets.

Example for a one-dimensional array:

if the array name was "TC" then the names returned would be TC(1)[1],
TC(2)[2], TC(3)[3], etc.

Example for a multi-dimensional array:

if a 2X2 array name was "SP" then the names returned would be
SP(1,1)[1], SP(1,2)[2], SP(2,1)[3], SP(2,2)[4].

Field base names are potentially 16 characters long at a maximum, not
including either of the two indexes. The maximum required length of the field
name when arrays are involved will depend upon the number of indexes in the
array, and the maximum number of digits in each.

The "Units" argument returns the units string name associated with a field, if
units were assigned to that variable within the program using the CRBasic
Units instruction.

The "Proc" argument returns processing information associated with a field,
which in turn is set by the particular CRBasic output processing instruction
used to generate the field in an output table. In the cases of non-array output
processing, such as Samples, Averages, Min/Max or Standard Deviation
instructions, the Proc code will be a simple code indicating the type of
instruction that generated the field. In the cases of array output processing,
such as that based upon Histograms and FFT instructions, the Proc code will
consists of a list of comma-delimited items describing the precise
characteristics of the output array. These processing fields are documented in
the CR9000 and CR5000 instruction reference manuals.

Section 2. PC9000.DLL Function Reference

2-40

Declaration:
Declare Function GetFieldName Lib "PC9000.DLL"
(ByVal TableName As String, ByVal FieldName As
String, ByVal FieldnameSize As Integer, ByVal
Units As String, ByVal UnitsSize As Integer,
ByVal Proc As String, ByVal ProcSize As Integer)
As Integer

Parameters:
TableName the name of the datalogger data table from which the

field names are to be retrieved.

FieldName a string buffer in which the next data table field name is
returned.

FieldNameSize the length of the FieldName buffer.

Units a string buffer in which the units associated with each
field name are returned.

UnitsSize the length of the Units buffer.

Proc a string buffer in which the processing details associated
with each field name are returned.

ProcSize the length of the Proc buffer.

Return Codes:
0 = Next field name returned.
1 = Port not open or datalogger does not respond.
4 = End of list.

Section 2. PC9000.DLL Function Reference

2-41

Example:
Sub ListPublicFields()

Dim sTableName as String
Dim sNameBuf As String
Dim sUnitsBuf As String
Dim sProcBuf As String
Dim iRslt as Integer
'Dim iType as Integer

 ' lstPublic is a VB ListBox
 ' (Will need to be very wide to display the concatenated info
 ' as is programmed here)
 lstPublic.Clear

 sNameBuf = String(40, vbNullChar)
 sTableName = "Public"
 Do
 sUnitsBuf = String(40, vbNullChar)
 sProcBuf = String(60, vbNullChar)
 iRslt = GetFieldName(sTableName, sNameBuf, Len(sNameBuf), _
 sUnitsBuf, Len(sUnitsBuf), sProcBuf, Len(sProcBuf))

' Alternate call to get extended information
 ' iRslt = GetFieldName2(sTableName, sNameBuf, Len(sNameBuf), _
 sUnitsBuf, Len(sUnitsBuf), sProcBuf, Len(sProcBuf), iType)
 If iRslt = 1 Then Err.Raise 32000 'User-defined error

 lstPublic.AddItem Trim$(sNameBuf) & vbTab & Trim$(sUnitsBuf) _
 & Trim$(sProcBuf)
 Loop Until iRslt = 4

End Sub

2.4.4 GetFieldName2() - Retrieves Field Names and Extended
Associated Information

In similar fashion to the GetTableName() function, GetFieldName2() is
designed to be used in a loop in order to retrieve all of the fields in a table
Before entering the loop, specify the name of the Table in the TableName
argument, and set the FieldName, Units, and Proc arguments to empty string
buffers. Call GetFieldName2() to get the first field name, then pass the first
name back in to the function to get the next name, and so on to get all field
names. An empty string and a result code of 4 are returned when all field
names have been returned for that table.

If a field is an array, one name will be returned for each element of the array.
The field name for each individual element of an array will consist of three
parts:

1. The base array name. If the array was not explicitly declared, but instead
was created as part of a CRBasic output processing instruction (such as a
Histogram) or a CRBasic FFTFilt instruction, the base array name will
consist of the instructions variable argument plus an extension that is
unique to each CRBasic array output instruction.

Section 2. PC9000.DLL Function Reference

2-42

For example,
The complete base array name of a variable TF used in a CRBasic
Histogram instruction would be TF_Hst.
The complete base array name of a variable TF used in a CRBasic
Histogram4D instruction would be TF_H4D.

2. The array indices (one-based, single or multi-dimensional) as specified in
the CRBasic program, enclosed in parentheses.

3. A one-based index value (always one-dimensional), corresponding to the
absolute position of that particular array element in datalogger memory,
enclosed in brackets.

Example for a one-dimensional array:

if the array name was "TC" then the names returned would be TC(1)[1],
TC(2)[2], TC(3)[3], etc.

Example for a multi-dimensional array:

if a 2X2 array name was "SP" then the names returned would be
SP(1,1)[1], SP(1,2)[2], SP(2,1)[3], SP(2,2)[4].

Field base names are potentially 16 characters long at a maximum, not
including either of the two indexes. The maximum required length of the field
name when arrays are involved will depend upon the number of indexes in the
array, and the maximum number of digits in each.

The "Units" argument returns the units string name associated with a field, if
units were assigned to that variable within the program using the CRBasic
Units instruction.

The "Proc" argument returns processing information associated with a field,
which in turn is set by the particular CRBasic output processing instruction
used to generate the field in an output table. In the cases of non-array output
processing, such as Samples, Averages, Min/Max or Standard Deviation
instructions, the Proc code will be a simple code indicating the type of
instruction that generated the field. In the cases of array output processing,
such as that based upon Histograms and FFT instructions, the Proc code will
consists of a list of comma-delimited items describing the precise
characteristics of the output array. These processing fields are documented in
the CR9000 and CR5000 instruction reference manuals.

GetFieldName2() allows for programmers writing more advanced datalogger
interfaces to obtain additional information not available in the base
GetFieldName() call. The call interface to GetFieldName() will remain
fixed, but GetFieldName2() may be modified in the future to return additional
field-related information. At present, the only additional field parameters
included here are the CSI field data type.

Declaration:
Declare Function GetFieldName2 Lib "PC9000.DLL"
(ByVal TableName As String, ByVal FieldName As
String, ByVal FieldnameSize As Integer, ByVal
Units As String, ByVal UnitsSize As Integer,
ByVal Proc As String, ByVal ProcSize As Integer,
ByVal DataType as Integer) As Integer

Section 2. PC9000.DLL Function Reference

2-43

Parameters:
TableName the name of the datalogger data table from which the

field names are to be retrieved.

FieldName a string buffer in which the next data table field name is
returned.

FieldNameSize the length of the FieldName buffer.

Units a string buffer in which the units associated with each
field name are returned.

UnitsSize the length of the Units buffer.

Proc a string buffer in which the processing details associated
with each field name are returned.

ProcSize the length of the Proc buffer.

DataType the CSI data type of the field.

Return Codes:
0 = Next field name returned.
1 = Port not open or datalogger does not respond.
4 = End of list.

Example:
See examples for GetFieldName(). A list of the recognized CSI data
types if given here.

Private Const CsiAscii = 11
Private Const CsiAsciiZ = 16
Private Const CsiBool = 10
Private Const CsiBool8 = 17
Private Const CsiFp4 = 8
Private Const CsiFs2 = 7
Private Const CsiFs3 = 15
Private Const CsiFs4 = 26
Private Const CsiFsf = 27
Private Const CsiIeee4 = 9
Private Const CsiIeee4Lsf = 24
Private Const CsiIeee8 = 18
Private Const CsiIeee8Lsf = 25
Private Const CsiInt1 = 4
Private Const CsiInt2 = 5
Private Const CsiInt2Lsf = 19
Private Const CsiInt4 = 6
Private Const CsiInt4Lsf = 20
Private Const CsiInt8 = 29
Private Const CsiInt8Lsf = 28
Private Const CsiNSec = 14
Private Const CsiNSecLsf = 23
Private Const CsiSec = 12
Private Const CsiUInt1 = 1
Private Const CsiUInt2 = 2
Private Const CsiUInt2Lsf = 21
Private Const CsiUInt4 = 3
Private Const CsiUInt4Lsf = 22
Private Const CsiUSec = 13

Section 2. PC9000.DLL Function Reference

2-44

2.4.5 TableCtrl() - Clear Logged Records in a Table, or Insert
File Marks in File-based Table

Declaration:
Declare Function TableCtrl Lib "PC9000.DLL"
(ByVal ROption As Integer, ByVal TableName As
String) As Integer

Parameters:
ROption specifies the option to use:

1 = reset table
2 = “roll over” data into a new file. In essence, this
means that a file mark will be written into the table
before the next record is stored. The file mark is like
one that would be entered automatically, according to
the rules configured in a CRBasic DataEvent()
instruction for the specified table. Only applies to tables
that are maintained in files like those on a CR9000
PAM card.

TableName specifies the table on which to operate.

Return Codes:
0 = OK.
1 = datalogger does not respond.
2 = option not applicable.
3 = bad table name.

Example:
Dim sTableName as String
Dim iRslt as Integer

' cboTable is a VB combo or list box control
' containing the names of the tables for the currently
' running program.

If cboTable.ListIndex >=0 Then
 sTableName = cboTable.List(cboTable.ListIndex)
 iRslt = TableCtrl(1, sTableName)
 If iRslt <> 0 Then Err.Raise 32000 'Application-defined error
End If

2.5 Data Retrieval Functions

2.5.1 GetVariable() - Get the Current Value of a Floating Point
Variable

Normally used to access the current variables in the "Public" table, but can be
used to retrieve floating point values in any table as explained below.

A "Public" table will exist in the datalogger whenever at least one variable has
been declared as Public in a CRBasic program.

Section 2. PC9000.DLL Function Reference

2-45

The FieldName argument accepts either syntax FIELDNAME or
TABLENAME.FIELDNAME . If the TableName portion of the argument is
omitted, the Public table is assumed. The "." delimiter must only be present if
the TableName is specified along with the field name.

When the field to be retrieved is an element of an array, the syntax rules are not
completely intuitive. Refer to the documentation for GetFieldName() for a
complete description of array field name syntax. As described there, the array
field syntax consists of a base name, the programmatically specified array
indices, in parentheses (1,2, or 3-dimensional), and then a one-dimensional
array index, in brackets. When fully specifying the array field element in this
function, however, the following rules apply:

Consider a typical Flag field in the Public table. The field names returned
by GetFieldName() will be Flag(1)[1], Flag(2)[2], etc. When specifying
a particular element of the Flag array in this function, only the second
index is important. In other words:
Flag(2)[2]
Flag(100)[2]
Flag()[2]
All specify the same thing, that is, the second element of the Flag array.
The characters within the parentheses are ignored, but the parentheses
must be there if the field is in fact part of an array. Passing an out-of-
bounds index value within the brackets will cause a "bad field name"
error.
IMPORTANT: If the brackets are omitted for a field name which is an
array, this FieldName syntax will not cause an error but will be
interpreted as specifying the first element of the array.

For GetVariable() to succeed, one initial call must have been made previously
to GetTableName() or GetTableName2() (using an empty string for the
TableName argument) so that the DLL can retrieve the necessary table
definition information to properly process the data request.

Declaration:
Declare Function GetVariable Lib "PC9000.DLL"
(ByVal FieldName As String, Value As Single) As
Integer

Parameters:
FieldName the name of a data field in the datalogger.

Value the value of FieldName.

Return Codes:
0 = OK.
1 = Port not open or datalogger does not respond.
2 = Bad table name or no data.
3 = Bad field name.

Section 2. PC9000.DLL Function Reference

2-46

Example:
Public Sub UpdateFlagStates
' This sub populates a list box with the states of as many flags
' as it can find.

Dim sFlagField As String
Dim fVal As Single
Dim iFlag As Integer
Dim sVal As String
Dim iRslt As Integer

 'lstFlags is a list box showing the names and states
 'of all flags found in the public table
 lstFlags.Clear

 iFlag = 1
 Do
 sFlagField = "Flag(" & iFlag & ")[" & iFlag & "]"
 Rslt = GetVariable(sFlagField, fVal)

 If Rslt = 1 Then Err.Raise 32000 ' user defined error
 If Rslt = 2 Then Exit Do

 sVal = IIf(fVal <> 0, "HI", "LO")
 lstFlags.AddItem aFlagField & vbTab & fVal
 iFlag = iFlag + 1
 Loop

End Sub

2.5.2 SetVariable() - Set the Current Value of a Floating Point
Variable

Normally used to set the current values of variables in the "Public" table, but
can be used to set floating point values in any writable Status table field as
well, as explained below. The values in output tables are never writable by this
function.

A Public Table will exist whenever at least one variable has been declared as
Public in a CRBasic program.

The FieldName argument accepts either syntax FIELDNAME or
TABLENAME.FIELDNAME . If the TableName portion of the argument is
omitted, the Public table is assumed. The "." delimiter must only be present if
the TableName is specified along with the field name.

When the field to be retrieved is an element of an array, the syntax rules are not
completely intuitive. Refer to the documentation for GetFieldName() for a
complete description of array field name syntax. As described there, the array
field syntax consists of a base name, the programmatically specified array
indices, in parentheses (1,2, or 3-dimensional), and then a one-dimensional
array index, in brackets. When fully specifying the array field element in this
function, however, the following rules apply:

Consider a typical Flag field in the Public table. The field names returned
by GetFieldName() will be Flag(1)[1], Flag(2)[2], etc. When specifying

Section 2. PC9000.DLL Function Reference

2-47

a particular element of the Flag array in this function, only the second
index is important. In other words:
Flag(2)[2]
Flag(100)[2]
Flag()[2]
All specify the same thing, that is, the second element of the Flag array.
The characters within the parentheses are ignored, but the parentheses
must be there if the field is in fact part of an array. Passing an out-of-
bounds index value within the brackets will cause a "bad field name"
error.
IMPORTANT: If the brackets are omitted for a field name which is an
array, this FieldName syntax will not cause an error but will be
interpreted as specifying the first element of the array. This is even more
important here than with the "Get" functions, as improper syntax may
cause the application to inadvertently change the value of the first field in
an array, in error.

For SetVariable() to succeed, one initial call must have been made previously
to GetTableName() or GetTableName2() (using an empty string for the
TableName argument) so that the DLL can retrieve the necessary table
definition information to properly process the data request.

This function will not return error codes when attempting to set the value of a
read-only field. For this and all of the above reasons, use extra care in
validating the table and field names used with this function.

Declaration:
Declare Function SetVariable Lib "PC9000.DLL"
(ByVal FieldName As String, ByVal value As
Single) As Integer

Parameters:
FieldName the name of a data field in the datalogger.

Value the value of FieldName.

Return Codes:
0 = OK.
1 = Port not open or datalogger does not respond.
3 = Bad table or field name.

Example:
Private Sub chkFlag_Click(Index As Integer)

Dim fVal As Single
Dim sFlagField As String
Dim iRslt As Integer

' chkFlag() is a control array of check boxes,
' one for each flag in the public table.

 fVal = IIf(chkFlag(Index).Value <> 0, True, False)
 sFlagField = "Flag(" & Index & ")[" & Index & "]"
 iRslt = SetVariable(sFlagField, fVal)
 If iRslt <> 0 Then
 MsgBox "Could not write to public table."
 End If

End Sub

Section 2. PC9000.DLL Function Reference

2-48

2.5.3 GetCurrentValue() - Get the Most Recent Value of a Field,
in ASCII Format

GetCurrentValue() allows individual data table field values to be retrieved,
one at a time.

The function will work on any valid table and field, although it is most useful
with the datalogger's system status table. The reason is that many of the Status
table fields are non-numeric, and the other data retrieval functions assume data
that is strictly numeric in value. As a result, those other functions will not
return values for the non-numeric status table fields.

When the field to be retrieved is an element of an array, the syntax rules are not
completely intuitive. Refer to the documentation for GetFieldName() for a
complete description of array field name syntax. As described there, the array
field syntax consists of a base name, the programmatically specified array
indices, in parentheses (1,2, or 3-dimensional), and then a one-dimensional
array index, in brackets. When fully specifying the array field element in this
function, however, the following rules apply:

Consider a typical Flag field in the Public table. The field names returned
by GetFieldName() will be Flag(1)[1], Flag(2)[2], etc. When specifying
a particular element of the Flag array in this function, only the second
index is important. In other words:
Flag(2)[2]
Flag(100)[2]
Flag()[2]

All specify the same thing, that is, the second element of the Flag array.
The characters within the parentheses are ignored, but the parentheses
must be there if the field is in fact part of an array. Passing an out-of-
bounds index value within the brackets will cause a "bad field name"
error.
IMPORTANT: If the brackets are omitted for a field name which is an
array, this FieldName syntax will not cause an error but will be
interpreted as specifying the first element of the array.

On tables other than the Status table, this function will not normally be used, as
other data retrieval calls will tend to be much faster, particularly if all of the
fields in a table are being retrieved. Another reason that GetCurrentValue()
is less useful beyond the Status table is that, for simplicity, this call returns no
record number or timestamp information. That information is meaningless in
the Status table, since the Status table is not a logging table; on the other hand,
it is generally desired when retrieving data from user-defined logging tables.

Refer also to the GetStatusValue() function for an alternative method of
retrieving Status table information.

Declaration:
Declare Function GetCurrentValue Lib "PC9000.DLL"
(ByVal TableName As String, ByVal FieldName As
String, ByVal ValueBuf As String, ByVal
ValueBufSize As Integer) As Integer

Section 2. PC9000.DLL Function Reference

2-49

Parameters:
TableName the name of a data table in the datalogger.

FieldName the name of a data field in the datalogger.

ValueBuf a string variable used to return the value of the specified
field.

ValueBufSize the maximum string length of the returned value.

Return Codes:
0 = OK.
1 = Port not open or datalogger does not respond.
2 = No data exists or bad table name.
3 = Bad field name.

Example:
' This function runs a loop to get all of the Names and values of the
' fields in the datalogger status table, and places them in a
' two dimensional array
'
Private Sub GetStatusFields(sArray() As String)

Dim sTblName As String
Dim sFldName As String
Dim sUnits As String
Dim sProc As String
Dim iRslt As Integer
Dim sBuf As String
Dim iFieldCnt As Integer

On Error GoTo Err_Status

 sTblName = "Status" & vbNullChar
 sFldName = String(40, vbNullChar)
 sUnits = String(40, vbNullChar)
 sProc = String(60, vbNullChar)

 ReDim sArray(0 To 1, 0 To 0)
 Do
 iRslt = GetFieldName(sTblName, sFldName, Len(sFldName), _
 sUnits, Len(sUnits), sProc, Len(sProc))
 If iRslt = 1 Then Err.Raise 32000 'no response
 If iRslt = 4 Then Exit Do 'end of list

 sBuf = String(40, vbNullChar)
 iRslt = GetCurrentValue(sTblName, sFldName, sBuf, _
 Len(sBuf))
 If iRslt = 1 Then Err.Raise 32000 'no response

 (Example continues on next page)

Section 2. PC9000.DLL Function Reference

2-50

GetRecords1() Example (continued from previous page)

ReDim Preserve sArray(0 To 1, 0 To iFieldCnt)
 sArray(0, iFieldCnt) = Trim$(sFldName)
 sBuf = Trim$(sBuf)
 If Asc(Left$(sBuf, 1)) = 34 Then _
 sBuf = Mid$(sBuf, 2, Len(sBuf) - 2)
 sArray(1, iFieldCnt) = Trim$(sBuf)
 iFieldCnt = iFieldCnt + 1

 Loop

 Exit Sub

Err_Status:
 If Err.Number = 32000 Then
 MsgBox "Port not open or datalogger does not respond."
 Else
 MsgBox Err.Description
 End If

End Sub

2.5.4 GetStatusValue() – Optimized Status Table Retrieval, in
ASCII Format

GetStatusValue() provides an alternate method for retrieving the current
values of Status table fields, particularly when a large list of values is needed
all at once. It operates in a similar manner to GetCurrentValue(), but is
limited to, and optimized for, the Status table.

The datalogger transaction that is executed by PC9000.DLL when either the
GetCurrentValue() or GetStatusValue() functions are called gets all of the
field values, even though only one value at a time is returned to the calling
routine. For tables having only a few fields, (or when retrieving only a short
list of fields), this inefficiency is not of great concern. For the case of the
status table, however, where there may be 100 or more fields, the overhead
required to retrieve all values, one value at a time, can be significant,
particularly over a slow data link.

GetStatusValue() overcomes this inefficiency through the use of the
additional Refresh parameter. When using a loop to retrieve a list of values,
setting this argument to 1 on the first pass, and to zero on every subsequent
pass will cause the status table values to only be retrieved from the datalogger
one time.

GetStatusValue() follows identical rules to GetCurrentValue() in all other
aspects (with the exception that the table name does not need to be specified).
Refer to the documentation for GetCurrentValue() and GetFieldName() for
a complete description of array field name syntax.

Declaration:
Declare Function GetStatusValue Lib "PC9000.DLL"
(ByVal FieldName As String, ByVal ValueBuf As
String, ByVal ValueBufSize As Integer, ByVal
Refresh As Integer) As Integer

Section 2. PC9000.DLL Function Reference

2-51

Parameters:
FieldName the name of a data field in the datalogger.

ValueBuf a string variable used to return the value of the specified
field.

ValueBufSize the maximum string length of the returned value.

Refresh 1 = retrieve new data from the datalogger on this pass, 0
= used cached data.

Return Codes:
0 = OK.
1 = Port not open or datalogger does not respond.
2 = No data exists.
3 = Bad field name.

Example:
' This function runs a loop to get all of the Names and values of the
' fields in the datalogger status table, and places them in a
' two dimensional array
'
Private Sub GetStatusFields(sArray() As String)

Dim sTblName As String
Dim sFldName As String
Dim sUnits As String
Dim sProc As String
Dim iRslt As Integer
Dim sBuf As String
Dim iFieldCnt As Integer
Dim iRefresh as Integer

On Error GoTo Err_Status

 sTblName = "Status" & vbNullChar
 sFldName = String(40, vbNullChar)
 sUnits = String(40, vbNullChar)
 sProc = String(60, vbNullChar)

 ReDim sArray(0 To 1, 0 To 0)
 Do
 iRslt = GetFieldName(sTblName, sFldName, Len(sFldName), _
 sUnits, Len(sUnits), sProc, Len(sProc))
 If iRslt = 1 Then Err.Raise 32000 'no response
 If iRslt = 4 Then Exit Do 'end of list

 sBuf = String(40, vbNullChar)
 iRefresh = IIf(iFldCnt = 0, 1, 0)
 iRslt = GetCurrentValue(sFldName, sBuf, Len(sBuf), _
 iRefresh)
 If iRslt = 1 Then Err.Raise 32000 'no response

 (Example continues on next page)

Section 2. PC9000.DLL Function Reference

2-52

GetRecords1() Example (continued from previous page)

ReDim Preserve sArray(0 To 1, 0 To iFieldCnt)
 sArray(0, iFieldCnt) = Trim$(sFldName)
 sBuf = Trim$(sBuf)
 If Asc(Left$(sBuf, 1)) = 34 Then _
 sBuf = Mid$(sBuf, 2, Len(sBuf) - 2)
 sArray(1, iFieldCnt) = Trim$(sBuf)
 iFieldCnt = iFieldCnt + 1

 Loop

 Exit Sub

Err_Status:
 If Err.Number = 32000 Then
 MsgBox "Port not open or datalogger does not respond."
 Else
 MsgBox Err.Description
 End If

End Sub

2.5.5 GetRecentRecords() - Get All Data from Most Recent
Records of the Specified Table; GetRecentRecordsTS() -
Get Recent Records with Timestamps

GetRecentRecords() is the most frequently employed call to perform basic
bulk data retrieval. It is also the initial call used in more complex bulk data
retrieval strategies, as it enables an application to determine the current record
number from which to start.

GetRecentRecordsTS() is identical to GetRecentRecords() with the
exception that an array of timestamp data is also computed and returned.

The return values are placed in the 4-byte floating point array pointed to by
ArrayStart. Values returned will always start at the beginning of a record, and
the values will be ordered according to the field names, in precisely the same
order that those field names are retrieved using either the GetFieldName() or
GetFieldName2() functions. If the ArraySize argument implies that data from
more than one record is desired, subsequent records will appear immediately
following the values for the first record. Data from multiple records will
always be ordered starting with the earliest record to the most recent record.

The RecNum value returned by the function will indicate the last record from
which data was retrieved. When retrieving multiple records, to determine the
starting record number, count the number of records returned by the function
(= to NbrGot / (number of fields in the table)) and compute the starting record
number from there.

Record numbers are stored internally in the datalogger as 32 bit unsigned
integers, but the Visual Basic long data type interprets these values as 32 bit
signed integers. As a result, when the record number reaches the largest signed
32 bit value allowed (231 – 1), it will appear to "wrap around" to the largest
signed negative value allowed (-231) and begin counting up from there. This

Section 2. PC9000.DLL Function Reference

2-53

needs to be taken into account when working with record numbers in various
data retrieval algorithms.

The actual number of values returned in a data retrieval call is dependent upon
data table sector boundaries within the datalogger, and will often be less be less
than the number of values requested, if a large number of values was requested
in a single call. It will of course also be limited by the total number of records
available in the table. As a result, the maximum number of values that are
actually retrievable will vary from table to table and from call to call, but will
always stop at the end of a record boundary. In other words, if the DLL
function (not the array size) limits the number of values returned, it will always
return whole records.

Due to the nature of this function described above, programmers wishing to
reliably recover all real time data, without any gaps between records, will want
to use this function in conjunction with GetRecordsSinceLast(). In those
cases, use GetRecentRecords() to establish a current record number baseline,
and then move backward or forward from that starting point.

If the number of values requested is within the limits that are retrievable in a
single function call, but the ArraySize is not evenly divisible by the number of
fields in a record, the function will fill as much of the array as possible with
partial record data.

GetRecentRecordsTS() will return one timestamp value for every field data
value retrieved. This means that all the timestamp values for fields within a
single record will be the same.

Declaration:
Declare Function GetRecentRecords Lib
"PC9000.DLL" (ByVal TableName As String,
ArrayStart As Single, ByVal ArraySize As Integer,
NbrGot As Integer, RecNum As Long) As Integer

Declare Function GetRecentRecordsTS Lib
"PC9000.DLL" (ByVal TableName As String,
ArrayStart As Single, ByVal ArraySize As Integer,
NbrGot As Integer, RecNum As Long, TSStart As
Double) As Integer

Parameters:
TableName name of the table from which the most recent records

are read.

ArrayStart pointer to the first location within the 4-byte floating
point array that has been pre-dimensioned to receive the
data. Usually this will be the first element of the array.

ArraySize the number of data values that the function should
attempt to retrieve and place in the array pointed to by
ArrayStart. The array should be sized large enough to
receive as many values as are indicated by the starting
location in ArrayStart and the number of values
specified here. The effective number of records to be
collected is ArraySize divided by the number of fields
in the table.

Section 2. PC9000.DLL Function Reference

2-54

NbrGot indicates the number of values (not records) actually
retrieved, and returned in the 4-byte floating point array.
The values returned in this array do not include time
stamps or record numbers.

RecNum indicates the record number from which data was
retrieved, if all values are from the same record. If
values from multiple records were retrieved, indicates
the last record number from which values appear in the
return arrays. If no data is retrieved, returns –1.

Applies to GetRecentRecordsTS() only:

TSStart pointer to the first location within the 8-byte floating
point array that has been pre-dimensioned to receive
timestamp information. Usually this will be the first
element of the array; in any event this array should have
the same number of elements and starting index location
as the 4-byte floating point values array.

Return Codes:
0 = OK.
1 = Port not open or datalogger does not respond.
2 = No data exists. Also returned if ArraySize is larger than the entire

number of values (i.e., records x fields) currently residing in the table.
3 = Bad table name.

Example:
Basic examples are provided here. For more useful examples, refer to the
PC9000Test program example code which is included on the
PC9000.DLL developer kit disk.

Sub GetRecords1()

Dim iRslt As Integer
Dim sTblName As String
Dim fVals() As Single
Dim dTS() As Double
Dim iVals As Integer
Dim lRecNum As Long
Dim iNbrGot As Integer
Dim iVal As Integer
Dim bTS As Boolean

On Error GoTo Err_GetRecs

 lstRecords.Clear
 lstTS.Clear

 iVals = Int(Val(txtNumVals.Text))
 If iVals <= 0 Then
 Err.Raise 32000, Description:="Enter the number of values " _
 & "you would like to retrieve."
 End If

(Example continues on next page)

Section 2. PC9000.DLL Function Reference

2-55

GetRecords1() Example (continued from previous page)

 sTblName = txtTableName.Text & vbNullChar
 ReDim fVals(0 To iVals - 1)

 bTS = (chkTS.Value <> 0)
 If bTS Then ReDim dTS(0 To iVals - 1)

 If bTS Then
 iRslt = GetRecentRecordsTS(sTblName, fVals(0), iVals, iNbrGot, _
lRecNum, dTS(0))
 Else
 iRslt = GetRecentRecords(sTblName, fVals(0), iVals, iNbrGot, lRecNum)
 End If
 Select Case iRslt
 Case 0
 lblStat.Caption = "Data retrieval successful."
 Case 1
 lblStat.Caption = "Port not open or datalogger does not respond."
 Case 2
 lblStat.Caption = "No data."
 Case 3
 lblStat.Caption = "Bad table name."
 Case 5
 lblStat.Caption = "Errors in data transmission."
 Case Else
 lblStat.Caption = "Unknown result code."
 End Select

 txtRecNum.Text = lRecNum

 For iVal = 1 To iNbrGot
 lstRecords.AddItem fVals(iVal - 1)
 If bTS Then lstTS.AddItem dTS(iVal – 1)
 Next iVal

Exit_GetRecs:
 Exit Sub

Err_GetRecs:
 MsgBox Err.Description
 Resume Exit_GetRecs

End Sub

2.5.6 GetRecordsSinceLast() - Get Data from Specified Table
Starting at Specified Record and GetRecordsSinceLastTS() -
Get Specified Record Data with Timestamps

Similar to GetRecentRecords(), but provides more control over the precise
records retrieved, facilitating "gapless" real time data retrieval, up to the
bandwidth limits of the datalogger communications interface and performance
limitations of the application program.

Section 2. PC9000.DLL Function Reference

2-56

GetRecordsSinceLastTS() is identical to GetRecordsSinceLast () with the
exception that an array of timestamp data is also computed and returned.

The return values are placed in the 4-byte floating point array pointed to by
ArrayStart. Values returned will always start at the beginning of a record, and
the values will be ordered according to the field names, in precisely the same
order that those field names are retrieved using either the GetFieldName() or
GetFieldName2() functions. If the ArraySize argument implies that data from
more than one record is desired, subsequent records will appear immediately
following the values for the first record. Data from multiple records will
always be ordered starting with the earliest record to the most recent record.

The RecNbr value passed to the function tells the function the record number
from which it should attempt to start retrieving data (if that record number is
available). The RecNbr value returned by the function will typically indicate
the last record from which data was actually retrieved. When retrieving
multiple records, to determine the starting record number, count the number of
records returned by the function (= to NbrGot / (number of fields in the table))
and compute the starting record number from there.

A very important concept to understand when using GetRecordsSinceLast() is
that, if there is data available in the specified table, this function will almost
always return some records, regardless of the RecNbr value specified. If the
record specified by RecNbr currently exists in the table, all is as anticipated. If
RecNbr is greater than the last record number written to the table, or is less
than the first record number still available, then record retrieval will usually
begin with the first record in the table, with one exception. A special case
exists when the RecNbr asked for is not available, but is the number of the very
next record that is to be written. In that case, the function returns an error
code, "No data", and the RecNbr is not changed. This is very useful when
employing continuous real time data collection strategies that are periodically
polling for any new records that may have become available.

The method used to initialize the RecNbr argument before the first call to
GetRecordsSinceLast(), will therefore depend upon the type of data collection
that is desired:

• To collect all records in the table, initially set the RecNbr value to zero.
The value returned will correspond to where in the table that the function
found the earliest records still available.

• To collect records starting with the current record and moving forward as
new records are stored, make a one-record call to GetRecentRecords(),
to determine the current record number.

On all subsequent calls, set RecNbr equal to the value returned by the previous
call + 1 (unless no data was returned on the last call, in which case the RecNbr
value should not be incremented).

Record numbers are stored internally in the datalogger as 32 bit unsigned
integers, but the Visual Basic long data type interprets these values as 32 bit
signed integers. As a result, when the record number reaches the largest signed
32 bit value allowed (231 – 1), it will appear to "wrap around" to the largest
signed negative value allowed (-231) and begin counting up from there. This
needs to be taken into account when working with record numbers in various
data retrieval algorithms.

Section 2. PC9000.DLL Function Reference

2-57

The actual number of values returned in a data retrieval call is dependent upon
data table sector boundaries within the datalogger, and will often be less be less
than the number of values requested, if a large number of values was requested
in a single call. It will of course also be limited by the total number of records
available in the table. As a result, the maximum number of values that are
actually retrievable will vary from table to table and from call to call, but will
always stop at the end of a record boundary. In other words, if the DLL
function (not the array size) limits the number of values returned, it will always
return whole records.

If the number of values requested is within the limits that are retrievable in a
single function call, but the ArraySize is not evenly divisible by the number of
fields in a record, the function will fill as much of the array as possible with
partial record data. Returning partial records is usually not a good strategy to
use with this function, however.

Keep in mind that this DLL supports direct, real time data collection only.
Datalogger records are not being retrieved and cached by a LoggerNet server.
Therefore, depending upon table intervals, table sizes, and the frequency at
which calls are made using this function, it is quite possible that sequential
table records will be overwritten before this function call retrieves the next
group of records. It is entirely up to the applications program to carefully
monitor the value of the RecNbr record number pointer, and make intelligent
determinations as to the status of datalogger tables in this regard.

GetRecordsSinceLastTS() will return one timestamp value for every field
data value retrieved. This means that all the timestamp values for fields within
a single record will be the same.

Declaration:
Declare Function GetRecordsSinceLast Lib
"PC9000.DLL" (ByVal TableName As String, RecNbr
As Long, ArrayStart As Single, ByVal ArraySize As
Integer, NbrGot As Integer) As Integer

Declare Function GetRecordsSinceLastTS Lib
"PC9000.DLL" (ByVal TableName As String, RecNbr
As Long, ArrayStart As Single, ByVal ArraySize As
Integer, NbrGot As Integer, TSStart As Double) As
Integer

Parameters:
TableName name of the table from which the desired records are to

be read.

RecNbr specifies the record number from which to attempt to
begin retrieving data. Returns with the last record
number from which data was retrieved.

ArrayStart pointer to the first location within the 4-byte floating
point array that has been pre-dimensioned to receive the
data. Usually this will be the first element of the array.

ArraySize the number of data values that the function should
attempt to retrieve and place in the array pointed to by
ArrayStart. The array should be sized large enough to
receive as many values as are indicated by the starting

Section 2. PC9000.DLL Function Reference

2-58

location in ArrayStart and the number of values
specified here. The effective number of records to be
collected is ArraySize divided by the number of fields
in the table.

NbrGot indicates the number of values (not records) actually
retrieved, and returned in the 4-byte floating point array.
The values returned in this array do not include time
stamps or record numbers.

Applies to GetRecordsSinceLastTS() only:

TSStart pointer to the first location within the 8-byte floating
point array that has been pre-dimensioned to receive
timestamp information. Usually this will be the first
element of the array; in any event this array should have
the same number of elements and starting index location
as the 4-byte floating point values array.

Return Codes:
0 = done.
1 = Port not open or datalogger does not respond.
2 = No data exists.
3 = Bad table name.

Example:
Basic examples are provided here. For more useful examples, refer to the
PC9000Test program example code which is included on the
PC9000.DLL developer kit disk.

Sub GetRecords2()

Dim iRslt As Integer
Dim sTblName As String
Dim fVals() As Single
Dim dTS() As Double
Dim iVals As Integer
Dim lRecNum As Long
Dim iNbrGot As Integer
Dim iVal As Integer
Dim bTS As Boolean

On Error GoTo Err_GetRecs

 lstRecords.Clear
 lstTS.Clear

 iVals = Int(Val(txtNumVals.Text))
 If iVals <= 0 Then
 Err.Raise 32000, Description:="Enter the number of values " _
 & "you would like to retrieve."
 End If

 sTblName = txtTableName.Text & vbNullChar
 ReDim fVals(0 To iVals - 1)

(Example continues on next page)

Section 2. PC9000.DLL Function Reference

2-59

GetRecords2() Example (continued from previous page)

 bTS = (chkTS.Value <> 0)
 If bTS Then ReDim dTS(0 To iVals - 1)

 lRecNum = Int(Val(txtRecNum.Text))
 If bTS Then
 iRslt = GetRecordsSinceLastTS(sTblName, lRecNum, fVals(0), iVals, _
iNbrGot, dTS(0))
 Else
 iRslt = GetRecordsSinceLast(sTblName, lRecNum, fVals(0), iVals, _
 iNbrGot)
 End If
 Select Case iRslt
 Case 0
 lblStat.Caption = "Data retrieval successful."
 Case 1
 lblStat.Caption = "Port not open or datalogger does not respond."
 Case 2
 lblStat.Caption = "No data."
 Case 3
 lblStat.Caption = "Bad table name."
 Case 5
 lblStat.Caption = "Errors in data transmission."
 Case Else
 lblStat.Caption = "Unknown result code."
 End Select

 txtRecNum.Text = lRecNum

 For iVal = 1 To iNbrGot
 lstRecords.AddItem fVals(iVal - 1)
 If bTS Then lstTS.AddItem dTS(iVal – 1)
 Next iVal

Exit_GetRecs:
 Exit Sub

Err_GetRecs:
 MsgBox Err.Description
 Resume Exit_GetRecs

End Sub

2.5.7 GetRecentValues() - Get Most Recent Values of the
Specified Table and Field; GetRecentValuesTS() - Get
Recent Values with Timestamps

GetRecentValues() and GetValuesSinceLast() are very similar in their
behavior to GetRecentRecords() and GetRecordsSinceLast(), with the
exception that these functions only return a single field value per record. These
functions therefore facilitate the same data retrieval strategies as the
corresponding full record function calls, with the potential for speed
improvements on large tables with very fast data update intervals, since data

Section 2. PC9000.DLL Function Reference

2-60

retrieval is specific to a particular field. There is a very significant qualifier to
this potential speed improvement, however, that is described below.

GetRecentValuesTS() is identical to GetRecentValues() with the exception
that an array of timestamp data is also computed and returned.

When the field to be retrieved is an element of an array, the FieldName syntax
rules are not completely intuitive. Refer to the documentation for
GetFieldName() for a complete description of array field name syntax. As
described there, the array field syntax consists of a base name, the
programmatically specified array indices, in parentheses (1,2, or 3-
dimensional), and then a one-dimensional array index, in brackets. When fully
specifying the array field element in this function, however, the following rules
apply:

Consider a typical Flag field in the Public table. The field names returned
by GetFieldName() will be Flag(1)[1], Flag(2)[2], etc. When specifying
a particular element of the Flag array in this function, only the second
index is important. In other words:
Flag(2)[2]
Flag(100)[2]
Flag()[2]
All specify the same thing, that is, the second element of the Flag array.
The characters within the parentheses are ignored, but the parentheses
must be there if the field is in fact part of an array. Passing an out-of-
bounds index value within the brackets will cause a "bad field name"
error.
IMPORTANT: If the brackets are omitted for a field name which is an
array, this FieldName syntax will not cause an error but will be
interpreted as specifying the first element of the array.

The return values are placed in the 4-byte floating point array pointed to by
ArrayStart. If the ArraySize argument implies that data from more than one
record is desired, subsequent values will appear immediately in order by
record. Values from multiple records will always be ordered starting with the
earliest record to the most recent record.

Refer to the documentation for GetRecentRecords() and
GetRecordsSinceLast(), for a detailed description of how to set and interpret
record number pointers when performing continuous real time data collection.
The behavior of the record number arguments and return codes in
GetRecentValues() and GetValuesSinceLast() is identical to those
functions. Due to the nature of these functions as detailed there, programmers
wishing to reliably recover all real time data, without any gaps between values,
will want to use this function in conjunction with GetValuesSinceLast(). In
those cases, use GetRecentValues() to establish a current record number
baseline, and then move backward or forward from that starting point.

The potential speed improvements to be realized from using
GetRecentValues()/ GetValuesSinceLast() are greatly affected by one
limitation of the underlying data retrieval protocol. Ideally, when requesting
values from an individual field (as opposed to an entire record), only those
field values requested will be transmitted by the datalogger, thereby enabling
the most optimum bandwidth usage possible. The CSI protocols treat all
elements from an array as a single field, however; if the field requested is part

Section 2. PC9000.DLL Function Reference

2-61

of an array, all the values from that array will be transmitted. When dealing
with very large arrays, the performance gains realized from using these
functions will therefore be minimal compared to using the full-record retrieval
functions. (If multiple individual values calls are made, the performance may
actually be slower.)

As a result, if it is desired to obtain the fastest real time performance possible
using this DLL, the associated CRBasic programs should set up the key values
to be monitored into non-array field locations. On the other hand, if the data
retrieval strategy in general involves the optimizing of high-speed data retrieval
from very large arrays (such as is typical with FFT results), consider using the
GetPartialFieldValues() and GetPartialFieldArray() data retrieval
functions. These two functions were specifically written for those purposes.

GetRecentValuesTS() will return one timestamp value for every data value
retrieved.

Declaration:
Declare Function GetRecentValues Lib "PC9000.DLL"
(ByVal TableName As String, ByVal FieldName As
String, ArrayStart As Single, ByVal ArraySize As
Integer, NbrGot As Integer, RecNum as Long) As
Integer

Declare Function GetRecentValuesTS Lib
"PC9000.DLL" (ByVal TableName As String, ByVal
FieldName As String, ArrayStart As Single, ByVal
ArraySize As Integer, NbrGot As Integer, RecNum
As Long, TSStart As Double) As Integer

Parameters:
TableName name of the table from which the most recent values are

read.

FieldName name of a field in the specified table.

ArrayStart pointer to the first location within the 4-byte floating
point array that has been pre-dimensioned to receive the
data. Usually this will be the first element of the array.

ArraySize the number of data values that the function should
attempt to retrieve and place in the array pointed to by
ArrayStart. The array should be sized large enough to
receive as many values as are indicated by the starting
location in ArrayStart and the number of values
specified here. The number of records from which to
collect values is equal to the ArraySize.

NbrGot indicates the number of values actually retrieved, and
returned in the 4-byte floating point array. The values
returned in this array do not include time stamps or
record numbers.

RecNum indicates the record number from which data was
retrieved, if one value was retrieved. If multiple values
were retrieved, indicates the last record number from

Section 2. PC9000.DLL Function Reference

2-62

which a value appears in the return arrays. If no values
were retrieved, returns –1.

Applies to GetRecentValuesTS() only:

TSStart pointer to the first location within the 8-byte floating
point array that has been pre-dimensioned to receive
timestamp information. Usually this will be the first
element of the array; in any event this array should have
the same number of elements and starting index location
as the 4-byte floating point values array.

Return Codes:
0 = OK.
1 = Port not open or datalogger does not respond.
2 = No data exists or bad table name. Also returned if ArraySize is larger
than the entire number of records currently residing in the table.
3 = Bad field name.

Example:
Basic examples are provided here. For more useful examples, refer to the
PC9000Test program example code which is included on the
PC9000.DLL developer kit disk.

Sub GetValues1()

Dim iRslt As Integer
Dim sTblName As String
Dim sFldName As String
Dim fVals() As Single
Dim dTS() As Double
Dim iVals As Integer
Dim lRecNum As Long
Dim iNbrGot As Integer
Dim iVal As Integer
Dim bTS As Boolean

On Error GoTo Err_GetVals

 lstRecords.Clear
 lstTS.Clear

 iVals = Int(Val(txtNumVals.Text))
 If iVals <= 0 Then
 Err.Raise 32000, Description:="Enter the number of values " _
 & "you would like to retrieve."
 End If

 sTblName = txtTableName.Text & vbNullChar
 sFldName = txtFieldName.Text & vbNullChar
 ReDim fVals(0 To iVals - 1)

 (Example continues on next page)

Section 2. PC9000.DLL Function Reference

2-63

GetValues1() Example (continued from previous page)

 bTS = (chkTS.Value <> 0)
 If bTS Then ReDim dTS(0 To iVals - 1)

 If bTS Then
 iRslt = GetRecentValuesTS(sTblName, sFldName, fVals(0), iVals, _
iNbrGot, lRecNum, dTS(0))
 Else
 iRslt = GetRecentValues(sTblName, sFldName, fVals(0), iVals, _
iNbrGot, lRecNum)
 End If

Select Case iRslt
 Case 0
 lblStat.Caption = "Data retrieval successful."
 Case 1
 lblStat.Caption = "Port not open or datalogger does not respond."
 Case 2
 lblStat.Caption = "No data."
 Case 3
 lblStat.Caption = "Bad field name."
 Case 5
 lblStat.Caption = "Errors in data transmission."
 Case Else
 lblStat.Caption = "Unknown result code."
 End Select

 txtRecNum.Text = lRecNum

 For iVal = 1 To iNbrGot
 lstRecords.AddItem fVals(iVal - 1)
 If bTS Then lstTS.AddItem dTS(iVal - 1)
 Next iVal

Exit_GetVals:
Exit Sub

Err_GetVals:
 MsgBox Err.Description
 Resume Exit_GetVals
End Sub

2.5.8 GetValuesSinceLast() - Get Individual Field Values
Beginning at a Specified Record; GetValuesSinceLastTS()
- Get Field Values with Timestamps

Similar to GetRecentValues(), but provides more control over the precise
records retrieved, facilitating "gapless" real time data retrieval, up to the
bandwidth limits of the datalogger communications interface and performance
limitations of the application program.

GetValuesSinceLastTS() is identical to GetValuesSinceLast () with the
exception that an array of timestamp data is also computed and returned.

Section 2. PC9000.DLL Function Reference

2-64

When the field to be retrieved is an element of an array, the FieldName syntax
rules are not completely intuitive. Refer to the documentation for
GetFieldName() for a complete description of array field name syntax. As
described there, the array field syntax consists of a base name, the
programmatically specified array indices, in parentheses (1, 2, or 3-
dimensional), and then a one-dimensional array index, in brackets. When fully
specifying the array field element in this function, however, the following rules
apply:

Consider a typical Flag field in the Public table. The field names returned
by GetFieldName() will be Flag(1)[1], Flag(2)[2], etc. When specifying
a particular element of the Flag array in this function, only the second
index is important. In other words:
Flag(2)[2]
Flag(100)[2]
Flag()[2]
All specify the same thing, that is, the second element of the Flag array.
The characters within the parentheses are ignored, but the parentheses
must be there if the field is in fact part of an array. Passing an out-of-
bounds index value within the brackets will cause a "bad field name"
error.
IMPORTANT: If the brackets are omitted for a field name which is an
array, this FieldName syntax will not cause an error but will be
interpreted as specifying the first element of the array.

The return values are placed in the 4-byte floating point array pointed to by
ArrayStart. If the ArraySize argument implies that data from more than one
record is desired, subsequent records will appear immediately following the
values for the first record. Values from multiple records will always be ordered
starting with the earliest record to the most recent record.

Refer to the documentation for GetRecentRecords() and
GetRecordsSinceLast(), for a detailed description of how to set and interpret
record number pointers when performing continuous real time data collection.
The behavior of the record number arguments and return codes in
GetRecentValues() and GetValuesSinceLast() is identical to those
functions.

The method used to initialize the RecNbr argument before the first call to
GetValuesSinceLast(), will depend upon the type of data collection that is
desired:

• To collect all records in the table, initially set the RecNbr value to zero.
The value returned will correspond to where in the table that the function
found the earliest records still available.

• To collect records starting with the current record and moving forward as
new records are stored, make a one-record call to GetRecentValues(), to
determine the current record number.

On all subsequent calls, set RecNbr equal to the value returned by the previous
call + 1 (unless no data was returned on the last call, in which case the RecNbr
value should not be incremented).

The potential speed improvements to be realized from using
GetRecentValues()/ GetValuesSinceLast() are greatly affected by one

Section 2. PC9000.DLL Function Reference

2-65

limitation of the underlying data retrieval protocol. Ideally, when requesting
values from an individual field (as opposed to an entire record), only those
field values requested will be transmitted by the datalogger, thereby enabling
the most optimum bandwidth usage possible. The CSI protocols treat all
elements from an array as a single field, however; if the field requested is part
of an array, all the values from that array will be transmitted. When dealing
with very large arrays, the performance gains realized from using these
functions will therefore be minimal compared to using the full-record retrieval
functions. (If multiple individual values calls are made, the performance may
actually be slower.)

As a result, if it is desired to obtain the fastest real time performance possible
using this DLL, the associated CRBasic programs should set up the key values
to be monitored into non-array field locations. On the other hand, if the data
retrieval strategy in general involves the optimizing of high-speed data retrieval
from very large arrays (such as is typical with FFT results), consider using the
GetPartialFieldValues() and GetPartialFieldArray() data retrieval
functions. These two functions were specifically written for those purposes.

GetValuesSinceLastTS() will return one timestamp value for every data
value retrieved.

Declaration:
Declare Function GetValuesSinceLast Lib
"PC9000.DLL" (ByVal TableName As String, ByVal
FieldName As String, RecNbr As Long, ArrayStart
As Single, ByVal ArraySize As Integer, NbrGot As
Integer) As Integer

Declare Function GetValuesSinceLastTS Lib
"PC9000.DLL" (ByVal TableName As String, ByVal
FieldName As String, RecNbr As Long, ArrayStart
As Single, ByVal ArraySize As Integer, NbrGot As
Integer, TSStart As Double) As Integer

Parameters:
TableName name of the table from which the specified values are

read.

FieldName name of a field in the specified table.

RecNbr specifies the record number from which to attempt to
begin retrieving values. Returns with the last record
number from which values were retrieved.

ArrayStart pointer to the first location within the 4-byte floating
point array that has been pre-dimensioned to receive the
data. Usually this will be the first element of the array.

ArraySize the number of data values that the function should
attempt to retrieve and place in the array pointed to by
ArrayStart. The array should be sized large enough to
receive as many values as are indicated by the starting
location in ArrayStart and the number of values
specified here. The number of records from which to
collect values is equal to the ArraySize.

Section 2. PC9000.DLL Function Reference

2-66

NbrGot indicates the number of values actually retrieved, and
returned in the 4-byte floating point array. The values
returned in this array do not include time stamps or
record numbers.

Applies to GetValuesSinceLastTS() only:

TSStart pointer to the first location within the 8-byte floating
point array that has been pre-dimensioned to receive
timestamp information. Usually this will be the first
element of the array; in any event this array should have
the same number of elements and starting index location
as the 4-byte floating point values array.

Return Codes:
0 = OK.
1 = Port not open or datalogger does not respond.
2 = No data exists or bad table name.
3 = Bad field name.

Example:
Basic examples are provided here. For more useful examples, refer to the
PC9000Test program example code which is included on the
PC9000.DLL developer kit disk.

Sub GetValues2()

Dim iRslt As Integer
Dim sTblName As String
Dim sFldName As String
Dim fVals() As Single
Dim dTS() As Double
Dim iVals As Integer
Dim lRecNum As Long
Dim iNbrGot As Integer
Dim iVal As Integer
Dim bTS As Boolean

On Error GoTo Err_GetVals

 lstRecords.Clear
 lstTS.Clear

 iVals = Int(Val(txtNumVals.Text))
 If iVals <= 0 Then
 Err.Raise 32000, Description:="Enter the number of values " _
 & "you would like to retrieve."
 End If

 sTblName = txtTableName.Text & vbNullChar
 sFldName = txtFieldName.Text & vbNullChar
 ReDim fVals(0 To iVals - 1)

 (Example continues on next page)

Section 2. PC9000.DLL Function Reference

2-67

GetValues2() Example (continued from previous page)

 bTS = (chkTS.Value <> 0)
 If bTS Then ReDim dTS(0 To iVals - 1)

 lRecNum = Int(Val(txtRecNum.Text))
 If bTS Then
 iRslt = GetValuesSinceLastTS(sTblName, sFldName, lRecNum, _
fVals(0), iVals, iNbrGot, dTS(0))
 Else
 iRslt = GetValuesSinceLast(sTblName, sFldName, lRecNum, _
fVals(0), iVals, iNbrGot)
 End If

Select Case iRslt
 Case 0
 lblStat.Caption = "Data retrieval successful."
 Case 1
 lblStat.Caption = "Port not open or datalogger does not respond."
 Case 2
 lblStat.Caption = "No data."
 Case 3
 lblStat.Caption = "Bad field name."
 Case 5
 lblStat.Caption = "Errors in data transmission."
 Case Else
 lblStat.Caption = "Unknown result code."
 End Select

txtRecNum.Text = lRecNum

 For iVal = 1 To iNbrGot
 lstRecords.AddItem fVals(iVal - 1)
 If bTS Then lstTS.AddItem dTS(iVal - 1)
 Next iVal

Exit_GetVals:
Exit Sub

Err_GetVals:
 MsgBox Err.Description
 Resume Exit_GetVals
End Sub

2.5.9 GetPartialFieldValues() - Get Part of an Array from the
Specified Table and Field

GetPartialFieldValues() and GetPartialFieldArray() are two similar
functions, both provided to optimize the retrieval of large arrays.
GetPartialFieldArray() provides the absolute optimum obtainable speed, but
uses a data retrieval strategy which does not provide record number
information. GetPartialFieldValues() is less optimized but does provide the
record number. Both functions are limited to retrieving the current record only.

Section 2. PC9000.DLL Function Reference

2-68

GetPartialFieldValues() is different from other data retrieval functions in that
it requires the field number rather than a field name or sequential index value.
A unique sequential field number is assigned by the dataloggers, starting at
one, for each unique field or field array in the table: each array only counts for
one number. This is best illustrated by the following example of a hypothetical
Public Table:

Full Field Name:
Field
Index:

Field
Number:

Field
Array
Index:

Base Field
Name:

BattVolt 1 1 1 BattVolt

Temp1 2 2 1 Temp1

Flag(1)[1] 3 3 1 Flag

Flag(2)[2] 4 3 2 Flag

Flag(3)[3] 5 3 3 Flag

Temp2 6 4 1 Temp2

Temp1_Hst(1)[1] 7 5 1 Temp1_Hst

Temp1_Hst(2)[2] 8 5 2 Temp1_Hst

Temp1_Hst(3)[3] 9 5 3 Temp1_Hst

Temp1_Hst(4)[4] 10 5 4 Temp1_Hst

Field numbers are not directly obtainable from DLL function calls. They must
be derived, usually within a loop of GetFieldName() calls, based upon
detecting the occurrences of new base field names using standard Visual Basic
string handling functions.

GetPartialFieldValues() optimizes performance by only retrieving data for
the specified array, not the entire record. It returns only those values within the
array, starting at the specified field array index value, for as many values as
specified by ArraySize, provided that all the values are part of the same field
array. The CSI protocol commands used to retrieve the data will always
retrieve the entire array, however, even if only a part of the array is specified to
be returned.

GetPartialFieldValues() only returns information from the current record.
Any record number specified will be ignored and overwritten with the actual
number obtained.

It is possible to sample a portion of a CRBasic internal array to a final storage
table, wherein the first field array index that appears in the table for the array in
question is a number greater than one. In that event, using this function to
request array values for index values that are positive integers but are less than
the first index value saved to the table, will not generate errors, but rather the
values for the non-applicable index elements will be meaningless.

Declaration:
Declare Function GetPartialFieldValues Lib
"PC9000.DLL" (ByVal TableName As String, ByVal
FieldNbr As Integer, ByVal StartIndex As Integer,
ByVal ArraySize As Integer, ArrayStart As Single,
ByRef NbrGot As Integer, ByRef RecNbr As Long) As
Integer

Section 2. PC9000.DLL Function Reference

2-69

Parameters:
TableName name of the table from which the field array values are

read.

FieldNbr the number of the field in the current table. This is not
the same as the field index: see discussion in section
above.

StartIndex the field array index value, i.e., the index within the
array. This is equivalent to the number in brackets
within the field name, for the first element which is to
be returned in the floating point values array.

ArraySize the number of data values that the function should
attempt to retrieve and place in the array pointed to by
ArrayStart. The array should be sized large enough to
receive as many values as are indicated by the starting
location in ArrayStart and the number of values
specified here. Bear in mind that this function will not
retrieve data across field or record boundaries, but will
only return results up to the end of the array specified
by the FieldNbr. Sizing the array in a manner that will
cause the function to go beyond the end of the specified
array will result in an error.

ArrayStart pointer to the first location within the 4-byte floating
point array that has been pre-dimensioned to receive the
data. Usually this will be the first element of the array.

NbrGot indicates the number of values actually retrieved, and
returned in the 4-byte floating point array. The values
returned in this array do not include time stamps or
record numbers.

RecNbr indicates the record number from which data was
retrieved. If no values were retrieved, returns –1.

Return Codes:
0 = OK.
1 = Port not open or datalogger does not respond.
2 = No data exists or bad table name.
4 = Array index out of bounds (i.e., either the StartIndex argument itself is
outside of array bounds, or, one or more of the requested array elements
(starting from StartIndex and counting upward ArraySize # of elements),
extends beyond the upper bound of the specified variable.

Example:
No examples provided in this document. The PC9000Test program code
provides an example of the use of this function.

Section 2. PC9000.DLL Function Reference

2-70

2.5.10 GetPartialFieldArray() - Get Part of an Array from the
Specified Table and Field

GetPartialFieldValues() and GetPartialFieldArray() are two similar
functions, both provided to optimize the retrieval of large arrays.
GetPartialFieldArray() provides the absolute optimum obtainable speed, but
uses a data retrieval strategy which does not provide record number
information. GetPartialFieldValues() is less optimized but does provide the
record number. Both functions are limited to retrieving the current record only.

GetPartialFieldArray() only retrieves data for the specified array, and only
those values requested, not the entire array. This is particularly useful when
zooming in on a portion of a very large FFT array or histogram. "Very large"
typically corresponds to more than about 100-200 records on a direct serial port
connection and more than about 400-500 records on a parallel port or Ethernet
connection. Performance will vary from computer to computer and from
operating system to operating system.

It returns only those values within the array, starting at the specified field array
index value, for as many values as specified by ArraySize, provided that all the
values are part of the same field array.

It is possible to sample a portion of a CRBasic internal array to a final storage
table, wherein the first field array index that appears in the table for the array in
question is a number greater than one. In that event, using this function to
request array values for index values that are positive integers, but are less than
the first index value saved to the table, will generate array index out of bounds
errors.

GetPartialFieldValues() only returns information from the current record.
Due to the CSI protocol commands used to retrieve the data, the record number
is not available using this function.

Declaration:
Declare Function GetPartialFieldArray Lib
"PC9000.DLL" (ByVal TableName As String, ByVal
FieldName As String, ByVal StartIndex As Long,
ByVal ArraySize As Long, ArrayStart As Single) As
Integer

Parameters:
TableName name of the table from which the field array values are

read.

FieldName the base name of the field array, without any indices.

StartIndex the field array index value, i.e., the index within the
array. This is equivalent to the number in brackets
within the field name, for the first element which is to
be returned in the floating point values array.

ArraySize the number of data values that the function should
attempt to retrieve and place in the array pointed to by
ArrayStart. The array should be sized large enough to
receive as many values as are indicated by the starting

Section 2. PC9000.DLL Function Reference

2-71

location in ArrayStart and the number of values
specified here. Bear in mind that this function will not
retrieve data across field or record boundaries, but will
only return results up to the end of the array specified
by the FieldNbr. Sizing the array in a manner that will
cause the function to go beyond the end of the specified
array will result in an error.

ArrayStart pointer to the first location within the 4-byte floating
point array that has been pre-dimensioned to receive the
data. Usually this will be the first element of the array.

Return Codes:
0 = OK.
1 = Port not open or datalogger does not respond.
2 = No data exists.
3 = Bad field name.
4 = Array index out of bounds (i.e., either the StartIndex argument itself is
outside of array bounds, or, one or more of the requested array elements
(starting from StartIndex and counting upward ArraySize # of elements),
extends beyond the upper bound of the specified variable.

Example:
No examples provided in this document. The PC9000Test program code
provides an example of the use of this function.

2.5.11 LogTable() - Log Table Contents to a PC Disk File
Writes records from a specified table to the specified file on the PC disk. File
writes operate in append mode, to allow for continuous background data
logging.

Files are recorded in CSI standard formats, either comma delimited ASCII or
binary. All field values are properly logged using this function, regardless of
data type.

To store all data as it is logged:

• On the first call to LogTable(), set StartAt to either 1 or 2 to select a
starting location. RecNbr and RecCnt values are don't care.

• On subsequent calls to LogTable(), set StartAt to 0 and pass in the same
value in RecNbr that was passed back on the last call to LogTable(). Set
RecCnt to -1 so that it will not limit collection.

To store the most recent n records:

• Make a first call to LogTable() with StartAt set to 3 and RecCnt to the
number of records wanted. LogTable() will back up from the current
location as far as is specified by RecCnt and will begin collection from
that point.

• LogTable() returns the number of records collected via RecCnt. If less
than wanted was collected, then call LogTable() again with "StartAt" set
to 0, RecNbr at the value that was passed back last time, and RecCnt set to
a value that indicates how many more records are wanted.

Section 2. PC9000.DLL Function Reference

2-72

Data discontinuity codes will be returned if the next records requested are not
available. Even if there is a discontinuity in the record numbers, data is still
logged.

Declaration:
Declare Function LogTable Lib "PC9000.DLL" (ByVal
FileName As String, ByVal TableName As String,
ByVal dstType As Integer, ByVal StartAt As
Integer, RecNbr As Long, RecCnt As Long) As
Integer

Parameters:
FileName specifies the name of the destination file.

TableName specifies the table from which the records are read.

DstType specifies the format for the file:
0 = binary with time.
1 = ASCII.
2 = binary values only.
3 = ASCII without time stamps.

StartAt specifies where to begin reading records:
0 = start at "RecNbr" and collect to end of table.
1 = start at oldest record in table and collect to end of
table.
2 = start at current record and collect to end of table.
3 = start "RecCnt" records back from the current
location.

RecNbr is the number of the record.

RecCnt is the quantity of records wanted.

Return Codes:
0 = done.
1 = datalogger does not respond.
3 = discontinuity in data.
5 = could not open the file or disk full.

Example:
There are numerous ways in which this function can be used. The
example given here outlines a timer-driven routine, intended to run in the
background, logging data in ASCII format. It periodically calls
LogTable() to retrieve whatever new data is available, picking up from
where it left off the last time the timer event fired. A series of comments
in the declarations code should provide the necessary details associated
with initializing the timer routine.

Section 2. PC9000.DLL Function Reference

2-73

' Module-level declarations:

' This is explicit Drive:\path\filename of the file to which
' data is being logged. The example code does not show how
' this file name was originally assigned: this is entirely
' up to the application to determine.
Private msWriteFile as String
' Same as above, also applies to the table name.
Private msTableName as String

' Current record number pointer, preserved between calls
Private mlRecNbr as Long

' Collection type. Usually would be initialized outside of the timer
' routine to a value of 1 or 2 for the first collection, depending upon
' the type of collection to perform (initialization code not shown here.)
Private miCollectType as Integer

Private Sub tmrWrite_Timer()

' NOTE: may want to add re-entrance protection to this routine.
Dim iType As Integer
Dim lRecCnt As Long
Dim iRslt as Integer
Dim bPathTooLong As Boolean

 If Len(msWriteFiile) > 126 Then bPathTooLong = True
 iType = 1 'ascii data
 lRecCnt = -1
 iRslt = LogTable(msWriteFile, msTableName, iType, miCollectType, _
mlRecNbr, lRecCnt)

 miCollectType = 0 ' after first pass, collect from where it left off

 Select Case iRslt
Case 0
 lblLog.Caption = msWriteFile & " Record Number: " & mlRecNbr
 Case 1
 lblLog.Caption = " Datalogger does not respond."
 Case 3
 lblLog.Caption = " Discontinuity in " & WriteFileName$ & " data."
 Case 5
 If bPathTooLong Then
 lblLog.Caption = " File path too long: " & msWriteFile
 Else
 lblLog.Caption = " Could not open " & msWriteFile
 End If
 End Select
End Sub

Section 2. PC9000.DLL Function Reference

2-74

2.6 Miscellaneous Utility Functions

2.6.1 GetCR9KApiVers() - Get Extended Version Information
Regarding PC9000.DLL

This function can be very useful for tracking in the case where two different
versions of the DLL are in use (such as one for PC9000, one for custom
applications). The release date will always be unique for each released version.

Declaration:
Declare Function GetCR9KApiVers Lib "PC9000.DLL"
(ByVal ApiVer As String, ByVal ApiItem As String,
ByVal ApiDate As String) As Integer

Parameters:
ApiVer returns the version number of PC9000.DLL.

ApiItem returns the internal CSI product tracking number for the
PC9000.DLL

ApiDate returns the release date of the PC9000.DLL version in
use: the date is always a six-character string in
YYMMDD format.

Return Codes:
Always returns 0.

Example:
Dim sDLLVers as String
Dim sDLLItem as String
Dim sDLLDate as String
Dim iRslt as Integer

sDLLVers = String(20, vbNullChar)
sDLLItem = String(20, vbNullChar)
sDLLDate = String(20, vbNullChar)

iRslt = GetCR9KApiVers(sDLLVers, sDLLItem, sDLLDate)
sDLLVers = Trim$(sDLLVers)
sDLLItem = Trim$(sDLLItem)
sDLLDate = Trim$(sDLLDate)
MsgBox "PC9000.DLL Version: " & sDLLVers & vbCrLf _
 & "Product# " & sDLLItem & vbCrLf & "Date: " & sDLLDate

2.6.2 FP2ToSingle() – Converts a CSI 2-byte Floating Point
Value to IEEE 4-byte Float

This function is useful primarily for performing conversions on CSI TOB1 or
TOB2 binary files read in from disk, for such functions as plotting data. It is
not needed for converting any information passed to the application by the
DLL in real time data retrieval functions: any necessary conversions in those
cases are done within the function.

Section 2. PC9000.DLL Function Reference

2-75

Declaration:
Declare Function FP2toSingle Lib "PC9000.DLL"
(ByVal High As String, ByVal Low As String) As
Single

Parameters:
High The high byte of the two-byte binary FP2 value, passed

as a single string character.

Low The low byte of the two-byte binary FP2 value, passed
as a single string character

Return Codes:
 Returns converted value.

Example:
Any example which used this function to convert information from within
a binary file would be not only extremely complex but would also be
totally specific to the organization of that particular file. The example
provides a simple piece of user test code which illustrates how the
function works.

Private Sub cmdFP2ToSingle_Click()
' txtFP2High and txtFP2Low are text boxes with
' their MaxLength property set=2.

Dim sCompare As String
Dim sHighByte As String * 1
Dim sLoByte As String * 1
Dim fResult As Single

sCompare = "[0-9ABCDEF][0-9ABCDEF]"
If (txtFP2High.Text Like sCompare) And _
 (txtFP2Low.Text Like sCompare) Then
 sHighByte = Chr$(CLng("&H" & txtFP2High.Text))
 sLoByte = Chr$(CLng("&H" & txtFP2Low.Text))
 fResult = FP2toSingle(sHighByte, sLoByte)
 txtFP2Result.Text = fResult
Else
 MsgBox "High and Low Bytes must each be " _
 & "valid two-character HEX numbers (00 - FF)"
End If

End Sub

2.6.3 LongFromString() – Loads a 4-byte Packed String into a
Long Integer Variable

This function is useful primarily for performing conversions on CSI TOB1 or
TOB2 binary files read in from disk, for such functions as plotting timestamps.
It is not needed for converting any information passed to the application by the
DLL in real time data retrieval functions: any necessary conversions in those
cases are done within the function.

LongFromString() performs the same task as the "CopyMemory" or
RTLMoveMemory Windows API function. It has a different call level

Section 2. PC9000.DLL Function Reference

2-76

interface and is safe from the GPFs that automatically result when using the
CopyMemory function incorrectly.

Declaration:
Declare Function LongFromString Lib "PC9000.DLL"
(ByVal strg As String) As Long

Parameters:
strg The 4-character packed binary string to convert. Any

characters beyond 4 are ignored. The string is read low
byte first.

Return Codes:
 Returns converted value.

Example:
Any example which used this function to convert information from within
a binary file would be not only extremely complex but would also be
totally specific to the organization of that particular file. The example
illustrates how the function works.

Dim lRslt as Long

' This statement returns a value of 0.
lRslt = LongfromString(Chr$(0)& Chr$(0)& Chr$(0)& Chr$(0))

' This statement returns the largest positive value (2^32 –1)
lRslt = LongFromString(Chr$(255)& Chr$(255)& Chr$(255)& Chr$(127))

' This statement returns the largest negative value (-2^32)
lRslt = LongFromString(Chr$(0)& Chr$(0)& Chr$(0)& Chr$(128))

' This statement returns a value of –1.
lRslt = LongFromString(Chr$(255)& Chr$(255)& Chr$(255)& Chr$(255))

2.6.4 SingleFromString() – Loads a 4-byte Packed String into
a 4-byte Float Variable

This function is useful primarily for performing conversions on CSI TOB1 or
TOB2 binary files read in from disk, for such functions as plotting timestamps.
It is not needed for converting any information passed to the application by the
DLL in real time data retrieval functions: any necessary conversions in those
cases are done within the function.

SingleFromString() performs the same task as the "CopyMemory", the
common alias for the RTLMoveMemory Windows API function. It has a
different call level interface and is safe from the GPFs that automatically result
when using the CopyMemory function incorrectly.

Declaration:
Declare Function SingleFromString Lib
"PC9000.DLL" (ByVal strg As String) As Single

Section 2. PC9000.DLL Function Reference

2-77

Parameters:
strg The 4-character packed binary string to convert. Any

characters beyond 4 are ignored. The string is read low
byte first.

Return Codes:
 Returns converted value.

Example:
No examples provided.

2.6.5 RdStatus () - Read a String from the DLL's Internal Status
Message Queue

Allows for the monitoring of internal status messages detected by DLL
functions, which in turn are generated by the Windows API during various
datalogger communications tasks. Messages may be useful for debugging
purposes.

Declaration:
Declare Function RdStatus Lib "PC9000.DLL" (ByVal
StatusMsg As String, ByVal StatusMsgSize As
Integer) As Integer

Parameters:
StatusMsg String returned by the function, corresponding to the

next message in the queue.

StatusMsgSize declares the size of the status message string buffer set
up by the calling routine.

Return Codes:
0 = done.
1 = queue was empty so no string was returned.

Example:
Dim sBuf As String
Dim iRslt as Integer

' lstStatus is a VB ListBox control in which to display the
' status messages.

lstStatus.Clear
Do
 sBuf = String(80, vbNullChar)
 iRslt = RdStatus(sBuf, Len(sBuf))
 If iRslt = 0 Then lstStatus.AddItem Trim$(sBuf)
Loop Until iRslt <> 0

Section 2. PC9000.DLL Function Reference

2-78

This is a blank page.

3-1

Section 3. Function Declarations
This section lists the declarations that must be made before making a call to
that function in PC9000.DLL. These declarations are ordinarily placed in a
separate module such as CR9000.BAS.

Declare Function OpenCom Lib "PC9000.DLL" (ByVal Port As String,
curBaudRate As Long, ByVal ExtraResp As Long, ByVal maxPktSize As
Integer, ByVal BestPktSize As Integer, ByVal ModemOn As Integer)
As Integer

Declare Function OpenLpt Lib "PC9000.DLL" (ByVal LptName As
String, ByVal ExtraResp As Long, ByVal maxPktSize As Integer,
ByVal BestPktSize As Integer) As Integer

Declare Function OpenCSICard Lib "PC9000.DLL" (ByVal PortNbr As
Integer, ByVal ExtraResp As Long, ByVal maxPktSize As Integer,
ByVal BestPktSize As Integer) As Integer

Declare Function OpenSock Lib "PC9000.DLL" (ByVal ipAddr As
String, ByVal IPPort As String, ByVal ExtraResp As Long, ByVal
maxPktSize As Integer, ByVal BestPktSize As Integer) As Integer

Declare Function GetModemStatus Lib "PC9000.DLL" (ByRef StatusWord
as Long) As Integer

Declare Function ClosePort Lib "PC9000.DLL" () As Integer

Declare Function GetLgrIdent Lib "PC9000.DLL" (BmpVer As Integer,
Model As Integer, SerNbr As Long, ByVal StnName As String, ByVal
StnNameSize As Integer) As Integer

Declare Function SetLgrName Lib "PC9000.DLL" (ByVal StnName As
String) As Integer

Declare Function SetLgrClock Lib "PC9000.DLL" (ByVal SetIt As
Integer, DYear As Integer, DMonth As Integer, DDay As Integer,
DHour As Integer, DMinute As Integer, DSecond As Integer) As
Integer

Declare Function CR9000Dial Lib "PC9000.DLL" (ByVal DialString As
String) As Integer

Declare Function CR9000HangUp Lib "PC9000.DLL" () As Integer

Declare Function StartIOLog Lib "PC9000.DLL" () As Integer

Declare Function StopIOLog Lib "PC9000.DLL" () As Integer

Declare Function UserRd Lib "PC9000.DLL" (ByVal Buf As String,
ByVal BufSize As Integer) As Integer

Declare Function UserWr Lib "PC9000.DLL" (ByVal Buf As String,
ByVal BufSize As Integer) As Integer

Declare Function BootFromLinkStart Lib "PC9000.DLL" (ByVal OsName
As String, NbrWr As Long) As Integer

Declare Function BootFromLinkMore Lib "PC9000.DLL" (NbrWr As Long)
As Integer

Declare Function GetDirectory Lib "PC9000.DLL" (ByVal FileName As
String, ByVal FileNameSize As Integer, Attrib As Integer) As
Integer

Declare Function DownloadStart Lib "PC9000.DLL" (ByVal FileName As
String, ByVal DevName As String, ByVal Options As Integer, ByVal
SendFile As Integer) As Integer

Declare Function DownloadWait Lib "PC9000.DLL" (ByVal Result As
String, ByVal ResultSize As Integer, DYear As Integer, DMonth As
Integer, DDay As Integer, DHour As Integer, DMinute As Integer,
DSecond As Integer) As Integer

Section 3. Function Declarations

3-2

Declare Function UploadFile Lib "PC9000.DLL" (ByVal FileName As
String, ByVal DestFileName As String, ByVal DevName As String) As
Integer

Declare Function UploadStart Lib "PC9000.DLL" (ByVal FileName As
String, ByVal DestFileName As String, ByVal DevName As String) As
Integer

Declare Function UploadWait Lib "PC9000.DLL" (BytesSent As Long)
As Integer

Declare Function UploadStop Lib "PC9000.DLL" () As Integer

Declare Function GetTableName Lib "PC9000.DLL" (ByVal TableName As
String, ByVal TableNameSize As Integer, TableSize As Long) As
Integer

Declare Function GetTableName2 Lib "PC9000.DLL" (ByVal TableName
As String, ByVal TableNameSize As Integer, TableSize As Long,
Seconds As Long, MicroSeconds As Long, TableSig As Long) As
Integer

Declare Function GetFieldName Lib "PC9000.DLL" (ByVal TableName As
String, ByVal FieldName As String, ByVal FieldnameSize As Integer,
ByVal Units As String, ByVal UnitsSize As Integer, ByVal Proc As
String, ByVal ProcSize As Integer) As Integer

Declare Function GetFieldName2 Lib "PC9000.DLL" (ByVal TableName
As String, ByVal FieldName As String, ByVal FieldnameSize As
Integer, ByVal Units As String, ByVal UnitsSize As Integer, ByVal
Proc As String, ByVal ProcSize As Integer, ByVal DataType as
Integer) As Integer

Declare Function TableCtrl Lib "PC9000.DLL" (ByVal ROption As
Integer, ByVal TableName As String) As Integer

Declare Function GetVariable Lib "PC9000.DLL" (ByVal FieldName As
String, Value As Single) As Integer

Declare Function SetVariable Lib "PC9000.DLL" (ByVal FieldName As
String, ByVal Value As Single) As Integer

Declare Function GetCurrentValue Lib "PC9000.DLL" (ByVal TableName
As String, ByVal FieldName As String, ByVal ValueBuf As String,
ByVal ValueBufSize As Integer) As Integer

Declare Function GetStatusValue Lib "PC9000.DLL" (ByVal FieldName
As String, ByVal ValueBuf As String, ByVal ValueBufSize As
Integer, ByVal Refresh as Integer) As Integer

Declare Function GetRecentRecords Lib "PC9000.DLL" (ByVal
TableName As String, ArrayStart As Single, ByVal ArraySize As
Integer, NbrGot As Integer, RecNum As Long) As Integer

Declare Function GetRecentRecordsTS Lib "PC9000.DLL" (ByVal
TableName As String, ArrayStart As Single, ByVal ArraySize As
Integer, NbrGot As Integer, RecNum As Long, TSStart As Double) As
Integer

Declare Function GetRecordsSinceLast Lib "PC9000.DLL" (ByVal
TableName As String, RecNbr As Long, ArrayStart As Single, ByVal
ArraySize As Integer, NbrGot As Integer) As Integer

Declare Function GetRecordsSinceLastTS Lib "PC9000.DLL" (ByVal
TableName As String, RecNbr As Long, ArrayStart As Single, ByVal
ArraySize As Integer, NbrGot As Integer, TSStart As Double) As
Integer

Declare Function GetRecentValues Lib "PC9000.DLL" (ByVal TableName
As String, ByVal FieldName As String, ArrayStart As Single, ByVal
ArraySize As Integer, NbrGot As Integer, RecNum as Long) As
Integer

Declare Function GetRecentValuesTS Lib "PC9000.DLL" (ByVal
TableName As String, ByVal FieldName As String, ArrayStart As
Single, ByVal ArraySize As Integer, NbrGot As Integer, RecNum As
Long, TSStart As Double) As Integer

Section 3. Function Declarations

3-3

Declare Function GetValuesSinceLast Lib "PC9000.DLL" (ByVal
TableName As String, ByVal FieldName As String, RecNbr As Long,
ArrayStart As Single, ByVal ArraySize As Integer, NbrGot As
Integer) As Integer

Declare Function GetValuesSinceLastTS Lib "PC9000.DLL" (ByVal
TableName As String, ByVal FieldName As String, RecNbr As Long,
ArrayStart As Single, ByVal ArraySize As Integer, NbrGot As
Integer, TSStart As Double) As Integer

Declare Function GetPartialFieldValues Lib "PC9000.DLL" (ByVal
TableName As String, ByVal FieldNbr As Integer, ByVal StartIndex
As Integer, ByVal ArraySize As Integer, ArrayStart As Single,
ByRef NbrGot As Integer, ByRef RecNbr As Long) As Integer

Declare Function GetPartialFieldArray Lib "PC9000.DLL" (ByVal
TableName As String, ByVal FieldName As String, ByVal StartIndex
As Long, ByVal ArraySize As Long, ArrayStart As Single) As
Integer

Declare Function LogTable Lib "PC9000.DLL" (ByVal FileName As
String, ByVal TableName As String, ByVal dstType As Integer, ByVal
StartAt As Integer, RecNbr As Long, RecCnt As Long) As Integer

Declare Function GetCR9KApiVers Lib "PC9000.DLL" (ByVal ApiVer As
String, ByVal ApiItem As String, ByVal ApiDate As String) As
Integer

Declare Function FP2toSingle Lib "PC9000.DLL" (ByVal High As
String, ByVal Low As String) As Single

Declare Function LongFromString Lib "PC9000.DLL" (ByVal strg As
String) As Long

Declare Function SingleFromString Lib "PC9000.DLL" (ByVal strg As
String) As Single

Declare Function RdStatus Lib "PC9000.DLL" (ByVal StatusMsg As
String, ByVal StatusMsgSize As Integer) As Integer

Section 3. Function Declarations

3-4

This is a blank page.

Index-1

Index
BootFromLinkMore() ...2-16, 2-17, 2-18, 3-1
BootFromLinkStart() ..2-16, 2-17, 2-18, 3-1
ClosePort()1-8, 1-9, 1-10, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 3-1
CR9000Dial()...2-11, 2-12, 3-1
CR9000Hangup() ..1-11, 2-11, 2-12, 3-1
DownloadStart()..............1-13, 2-20, 2-21, 2-23, 2-24, 2-28, 2-29, 2-30,

2-30, 2-31, 3-1
DownloadWait()..........................2-21, 2-23, 2-24, 2-27, 2-28, 2-29, 3-1
FP2ToSingle() ...1-8, 2-75, 2-76, 3-3
GetCR9KApiVers() ...1-8, 2-75, 3-3
GetCurrentValue()1-15, 2-9, 2-37, 2-48, 2-49, 2-50, 2-51, 3-2
GetDirectory() ... 2-18, 2-19, 2-21, 2-23, 3-1
GetFieldName() 2-38, 2-40, 2-41, 2-42, 2-43, 2-44, 2-45, 2-46, 2-48,

2-49, 2-50, 2-51, 2-52, 2-56, 2-60, 2-64, 2-69, 3-2
GetFieldName2() .. 1-4, 2-41, 2-52, 2-56, 3-2
GetLgrIdent() ...2-8, 2-9, 3-1
GetModemStatus() ..1-9, 2-6, 2-7, 3-1
GetPartialFieldArray()1-7, 1-15, 2-61, 2-65, 2-68, 2-71, 3-3
GetPartialFieldValues()...............1-15, 2-61, 2-65, 2-68, 2-69, 2-71, 3-3
GetRecentRecords() . 1-15, 2-37, 2-52, 2-53, 2-55, 2-56, 2-60, 2-64, 3-2
GetRecentRecordsTS() 1-15, 2-52, 2-53, 2-54, 2-55, 3-2
GetRecentValues()1-15, 2-387, 2-60, 2-61, 2-64, 2-65, 3-2
GetRecentValuesTS() 1-15, 2-60, 2-61, 2-62, 2-63, 3-2
GetRecordsSinceLast()1-15, 2-53, 2-55, 2-56, 2-59, 2-60, 2-64, 3-2
GetRecordsSinceLastTS()...........1-15, 2-55, 2-56, 2-57, 2-58, 2-59, 3-2
GetStatusValue() ...1-15, 2-48, 2-50, 3-2
GetTableName()................1-6, 1-12, 1-13, 2-35, 2-36, 2-37, 2-38, 2-41,

2-45, 2-47, 3-2
GetTableName2()........................2-35, 2-36, 2-37, 2-38, 2-45, 2-47, 3-2
GetValuesSinceLast() 1-15, 2-60, 2-61, 2-64, 2-65, 3-3
GetValuesSinceLastTS()...................... 1-15, 2-64, 2-65, 2-66, 2-68, 3-3
GetVariable() ... 1-7, 1-15, 2-44, 2-45, 2-46, 3-2
LogTable() ... 1-4, 1-15, 2-72, 2-73, 2-74, 3-3
LongFromString() ...1-8, 2-76, 2-77, 3-3
OpenCom()..1-9, 1-11, 2-1, 2-2, 2-13, 2-15, 3-1
OpenCSICard() ... 1-9, 1-11, 2-3, 2-4, 3-1
OpenLpt().. 1-9, 1-11, 2-2, 2-3, 3-1
OpenSock() .. 1-9, 1-11, 2-4, 2-5, 2-6, 3-1
RdStatus() ..1-9, 2-78, 3-3
SetLgrClock().. 1-9, 1-11, 2-10, 2-11, 3-1
SetLgrName()..2-8, 2-9, 2-10, 3-1
SetVariable() ..2-46, 2-47, 3-2
SingleFromString() ..1-9, 2-77, 3-3
StartIOLog()..1-9, 2-12, 2-13, 3-1
StopIOLog() ..1-9, 2-12, 2-13, 3-1
TableCtrl()..2-43, 2-44, 3-2
UploadFile() .. 2-30, 2-31, 2-32, 2-33, 3-2
UploadStart()... 2-30, 2-31, 2-32, 2-34, 3-2
UploadStop()...2-31, 2-33, 2-34, 3-2
UploadWait() .. 2-30, 2-31, 2-33, 2-34, 3-2
UserRd()......................... 1-8, 1-9, 2-6, 2-12, 2-13, 2-14, 2-15, 2-16, 3-1
UserWr() ...1-9, 2-6, 2-12, 2-13, 2-14, 2-15, 3-1

Index

Index-2

This is a blank page.

Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES

www.campbellsci.com
info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)
PO Box 2450

Somerset West 7129
SOUTH AFRICA

www.csafrica.co.za
sales@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 444

Thuringowa Central
QLD 4812 AUSTRALIA
www.campbellsci.com.au
info@campbellsci.com.au

Campbell Scientific do Brazil Ltda. (CSB)
Rua Luisa Crapsi Orsi, 15 Butantã

CEP: 005543-000 São Paulo SP BRAZIL
www.campbellsci.com.br

suporte@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)
11564 - 149th Street NW

Edmonton, Alberta T5M 1W7
CANADA

www.campbellsci.ca
dataloggers@campbellsci.ca

Campbell Scientific Ltd. (CSL)
Campbell Park

80 Hathern Road
Shepshed, Loughborough LE12 9GX

UNITED KINGDOM
www.campbellsci.co.uk
sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)
Miniparc du Verger - Bat. H

1, rue de Terre Neuve - Les Ulis
91967 COURTABOEUF CEDEX

FRANCE
www.campbellsci.fr

campbell.scientific@wanadoo.fr

Campbell Scientific Spain, S. L.
Psg. Font 14, local 8

08013 Barcelona
SPAIN

www.campbellsci.es
info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or International representative.

mailto:suporte@campbellsci.com.br

	Revision and Copyright Information
	License for Use
	Limited Warranty
	Table of Contents
	Section 1. PC9000 SDK Overview
	1.1 General Notes on DLL Usage
	1.2 Declaring and Calling DLL Functions from Visual Basic
	1.3 PC9000.DLL Function Arguments and Return Codes
	1.3.1 Interpreting Single Data Types
	1.3.1.1 "Not A Number" Conditions

	1.3.2 Interpreting Integer Data Types
	1.3.3 Handling String Data Types
	1.3.4 DLL Function Return Values

	1.4 General Notes on the Use of PC9000.DLL Functions
	1.4.1 Functions Not Directly Controlling Datalogger Communication
	1.4.2 Open Port Instructions and Related Issues
	1.4.4 Port Timeout Issues
	1.4.5 Order of Operations for Data Retrieval
	1.4.6 Wait States Between Commands
	1.4.7 Selecting the Best-Suited Data Retrieval Functions

	Section 2. PC9000.DLL Function Reference
	2.1 Port Control Functions
	OpenCom() - Open RS-232 Serial Port
	OpenLpt() - Open Parallel Port for use with PLA100 Parallel Link Adapter
	2.1.3 OpenCsiCard() - Open Port for BLC100 Bus Link Card
	2.1.4 OpenSock() - Open TCP/IP Port for use with NL100/NL105 Network Link Interface
	2.1.5 GetModemStatus() - Retrieves Modem Control Register Values
	2.1.6 ClosePort() - Close an I/O Port Opened by any one of the Open Port Instructions

	2.2 Datalogger Utility Functions
	2.2.1 GetLgrIdent () - Gets the Datalogger Protocol Version, Model, Serial #, and Name
	2.2.2 SetLgrName () - Sets the Station Name of a Datalogger
	2.2.3 SetLgrClock() - Set or Check the Datalogger Clock
	2.2.4 CR9000Dial\(\) – Executes a Link Dial �
	2.2.5 StartIOLog () - Start Logging Low Level I/O to a File; StopIOLog () - Stop Logging Low Level I/O
	2.2.6 UserWr() - Write the Specified ASCII Character String Directly to the Port
	2.2.7 UserRd () - Returns up to the Allocated Number of Characters in a Port's Input Buffer

	2.3 Datalogger File/Directory Functions
	2.3.1 BootFromLinkStart() - Start the Cold Boot Datalogger Transaction
	2.3.2 BootFromLinkMore() - Continue with Cold Boot from Link Transaction
	2.3.3 GetDirectory() - Get a Directory of Files (programs) that are in Datalogger
	2.3.4 DownloadStart() - Initiate Downloading and Other File Management Options
	2.3.5 DownloadWait() - Monitor Status of Download Operation in Progress
	2.3.6 UploadFile() - Upload Program or Data File from the Datalogger with One Command
	2.3.7 UploadStart() - Start File Upload from the Datalogger Using a Progress Loop
	2.3.8 UploadWait() - Monitor Status of Upload Operation in Progress
	2.3.9 UploadStop() - Terminate Upload Operation in Progress

	2.4 Datalogger Table Management Functions
	2.4.1 GetTableName() - Retrieves the Names and Sizes of All Available Datalogger Tables
	2.4.2 GetTableName2() - Retrieves the Names, Sizes and Times of All Datalogger Tables
	2.4.3 GetFieldName() - Retrieves Field Names and Basic Associated Information
	2.4.4 GetFieldName2() - Retrieves Field Names and Extended Associated Information
	2.4.5 TableCtrl() - Clear Logged Records in a Table, or Insert File Marks in File-based Table

	2.5 Data Retrieval Functions
	2.5.1 GetVariable() - Get the Current Value of a Floating Point Variable
	2.5.2 SetVariable() - Set the Current Value of a Floating Point Variable
	2.5.3 GetCurrentValue() - Get the Most Recent Value of a Field, in ASCII Format
	2.5.4 GetStatusValue\(\) – Optimized Status �
	2.5.5 GetRecentRecords() - Get All Data from Most Recent Records of the Specified Table; GetRecentRecordsTS() - Get Recent Records with Timestamps
	2.5.6 GetRecordsSinceLast() - Get Data from Specified Table Starting at Specified Record and GetRecordsSinceLastTS() - Get Specified Record Data with Timestamps
	2.5.7 GetRecentValues() - Get Most Recent Values of the Specified Table and Field; GetRecentValuesTS() - Get Recent Values with Timestamps
	2.5.8 GetValuesSinceLast() - Get Individual Field Values Beginning at a Specified Record; GetValuesSinceLastTS() - Get Field Values with Timestamps
	2.5.9 GetPartialFieldValues() - Get Part of an Array from the Specified Table and Field
	2.5.10 GetPartialFieldArray() - Get Part of an Array from the Specified Table and Field
	2.5.11 LogTable() - Log Table Contents to a PC Disk File

	2.6 Miscellaneous Utility Functions
	2.6.1 GetCR9KApiVers() - Get Extended Version Information Regarding PC9000.DLL
	2.6.2 FP2ToSingle\(\) – Converts a CSI 2-byt�
	2.6.3 LongFromString\(\) – Loads a 4-byte Pa�
	2.6.4 SingleFromString\(\) – Loads a 4-byte�
	2.6.5 RdStatus () - Read a String from the DLL's Internal Status Message Queue

	Section 3. Function Declarations
	Index
	Campbell Scientific Contact Information

