

Open-Path CO_/H_O Gas Analyzer and Sonic Anemometer

Innovative Design

Use as part of open-path eddy-covariance system

Overview

Campbell Scientific's EC150 is an open-path analyzer specifically designed for eddy covariance flux measurements. Combined with the CSAT3A sonic anemometer as shown above, these two components

of an open-path eddy-covariance system simultaneously measure carbon dioxide, water vapor, air temperature, barometric pressure, and three-dimensional wind speed and sonic air temperature.

Benefits and Features

- Unique optical configuration gives a slim aerodynamic shape with minimal wind distortion
- Analyzer and sonic anemometer measurements are synchronized by a common set of electronics
- Maximum output rate of 60 Hz with 20 Hz bandwidth
- Low power consumption; suitable for solar power applications
- Low noise
- Measurements are temperature compensated without active heat control
- Angled windows to shed water and are tolerant to window contamination
- Field rugged

- > Field serviceable
- Factory calibrated over wide range of CO₂, H₂O, pressure, and temperature in all combinations encountered in practice
- **)** Extensive set of diagnostic parameters
- Fully compatible with Campbell Scientific dataloggers; field setup, configuration, and field zero and span can be accomplished directly from the datalogger
- Speed of Sound: Determined from three acoustic paths; corrected for crosswind effects
- Rain: Innovative signal processing and transducer wicks considerably improve performance of the anemometer during precipitation events

Outputs

CSAT3A

) U_v (m/s)

) U (m/s)

) U_ (m/s)

> Sonic Temperature (°C)

Sonic Diagnostic

EC150

> CO₂ Density (mg/m³)

H₂O Density (g/m³)

→ Gas Analyzer Diagnostic

→ Ambient Temperature (°C)

→ Atmospheric Pressure (kPa)

> CO₂ Signal Strength

H₂O Signal Strength

Source Temperature (°C)

General Specifications^a

- ▶ Operating Temperature Range: -30° to +50°C
- Calibrated Pressure Range: 70 to 106 kPa
- Input Voltage: 10 to 16 Vdc
- Power @ 25°C: 5 W (steady state and power up)
- Measurement Rate: 60 Hz
- Output Bandwidth: 5, 10, 12.5, or 20 Hz; user programmable
- Output Options: SDM, RS-485, USB, analog (CO₂ and H₂O only)
- Auxiliary Inputs: air temperature and pressure
- EC150 Head and Cables Weight: 2.0 kg (4.4 lb)
- CSAT3A Head and Cables Weight: 1.7 kg (3.7 lb)
- ▶ EC100 Electronics Weight: 3.2 kg (7.1 lb)
- Cable Length: 3 m (10 ft) from EC150 and CSAT3A to EC100
- Gas Analyzer/Sonic Volume Separation: 5.0 cm (2.0 in)
- Warranty: 3 years or 17,500 hours of operation, whichever comes first

Gas Analyzer Specificationsa,b

) Path Length: 15.37 cm (6.05 in)

Performance

	CO ₂	H ₂ O
Accuracy ^c	1% ^d	2% ^d
Precision RMS (maximum) ^e	0.2 mg/m³ (0.15 μmol/mol)	0.004 g/m³ (0.006 mmol/mol)
Calibrated Range	0 to 1,000 μmol/mol ^f	0 to 72 mmol/mol (38°C dewpoint)
Zero Drift with Temperature (maximum)	±0.55 mg/m³/°C (±0.3 μmol/mol/°C)	±0.037 g/m³/°C (±0.05 mmol/mol/°C)
Gain Drift with Temperature (maximum)	±0.1% of reading/°C	±0.3% of reading/°C
Cross Sensitivity (maximum)	±1.1 x 10 ⁻⁴ mol CO ₂ /mol H ₂ O	±0.1 mol H ₂ O/mol CO ₂

Sonic Anemometer Specifications^a

Measurement Path

- Vertical: 10.0 cm (3.9 in)
- Horizontal: 5.8 cm (2.3 in)

Transducer Diameter

> 0.64 cm (0.25 in)

Range

- **)** u_v: ±30 m s⁻¹
-) u: ±60 m s⁻¹
-) u_: ±8 m s⁻¹
- $T_{c}:-50^{\circ} \text{ to } +60^{\circ}\text{C}$
- Wind Direction: ±170°

Accuracy^g

Offset Error

 u_{x} , u_{y} : $<\pm 8.0$ cm s⁻¹

 u_{z}^{-} : $< \pm 4.0$ cm s⁻¹

Wind Direction: ±0.7° while horizontal wind at 1 m s⁻¹

Gain Error

Wind Vector within $\pm 5^{\circ}$ of horizontal: $<\pm 2\%$ of reading Wind Vector within $\pm 10^{\circ}$ of horizontal: $<\pm 3\%$ of reading Wind Vector within $\pm 20^{\circ}$ of horizontal: $<\pm 6\%$ of reading

Measurement Precision RMS

 u_{x} , u_{y} : 1 mm s^{-1} u_{z} : 0.5 mm s^{-1}

Sonic Temperature: 0.025°C

Wind Direction: 0.6°

Barometer Specifications^a

	-BB Basic Barometer	-EB Enhanced Barometer (Vaisala PTB110)
Total Accuracy	± 3.7 kPa at -30°C, falling linearly to ± 1.5 kPa at 0°C (-30° to 0°C), ± 1.5 kPa (0° to 50°C)	±0.15 kPa (-30° to +50°C)
Measurement Rate	10 Hz	1 Hz

Ambient Temperature Specifications^a

Manufacturer: BetaTherm 100K6A1IA

→ Total Accuracy: ±0.15°C (-30° to +50°C)

 f0 to 3,000 μ mol/mol available upon request.

 g The accuracy specification for the sonic anemometer is for wind speeds < 30 m s $^{-1}$ and wind angles between ±170°.

^aSubject to change without notice.

^bA temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration.

 $[^]c$ Assumes the gas analyzer was properly zero and spanned using the appropriate standards; CO $_2$ span concentration was 400 ppm; H $_2$ O span dewpoint was at 12°C (16.7 ppt); zero/span temperature was 25°C; zero/span pressure was 84 kPa; subsequent measurements made at or near the span concentration; temperature is not more than ± 6 °C from the zero/span temperature; and ambient temperature is within the gas analyzer operating temperature range.

^dStandard deviation of calibration residuals.

^eNominal conditions for precision verification test: 25°C, 86 kPa, 400 µmol/mol CO₂, 12°C dewpoint, and 20 Hz bandwidth.