

IOD CDECIFICATIONS

AIR TEMPERATURE & RELATIVE HUMIDITY

Typically capacitive RH chips and PRTs

Rugged, Reliable, and Ready for any Application

Air temperature and relative humidity probes typically consist of two separate sensors packaged in the same housing. Often relative hu midity is measured with a capacitive RH chip, while air temperature is measured by a PRT. The HMP155A, HC2S3 or CS215 is recommended

in humid areas or applications in which accurate measurements of RH (especially above the 90% RH level) are important. Solar radia tion shields are required for most applications, where the probes are exposed to sunlight.

MAJOR SPECIFICATIONS	Sensor	Measurement Range	Accuracy	Field Replacable Chip or Recalibrate
CS215 SDI-12 Output Competitively priced, general pur pose temperature and RH sensor	Sensirion SHT75)	Relative Humidity 0 to 100% RH Temperature -40° to +70°C	Relative Humidity (at 25C) ±2% to ±4%, depending on RH Temperature ±0.3°C at 25°C; ±0.4°C (+5° to +40°C); ±0.9°C (-40° to +70°C)	field replaceable chip
HMP60 Accurate, Rugged Ideal for long-term, unattended applications	Relative Humidity Vaisala's INTERCAP capacitive chip Temperature PT100 RTD	Relative Humidity 0 to 100% RH Temperature -40° to +60°C	Relative Humidity ±3% to ±7% depending on RH Temperature ±0.6°C	field replaceable chip (RH only)
HC2S3 Accurate and Rugged Superior performance and reliability	Relative Humidity ROTRONIC® Hygromer IN-1 <u>Temperature</u> PT100 RTD	Relative Humidity 0 to 100% RH Temperature -40° to +60°C	Relative Humidity ±0.8% RH with standard configuration settings Temperature ±0.1°C with standard configuration settings	recalibrate
HMP155A Accurate, Wide Temperature Range Higher end sensor where higher accuracy is required	Relative Humidity HUMICAP® 180R <u>Temperature</u> PT100 RTD	Relative Humidity 0.8 to 100% RH Temperature -80° to +60°C	Relative Humidity ±1% to ±1.7% depending on RH <u>Temperature</u> ±(0.055 - 0.0057 x temperature)°C	recalibrate
O83E Commonly used with the WMS100 for wind-farm power performance measurements	Relative Humidity Thin film polymer capacitor Temperature Thermistor (precision multi-element)	Relative Humidity 0 to 100% RH Temperature -50° to +50°C	Relative Humidity ±2.0% Temperature ±0.10°C (0.18°C)	recalibrate

CAMPBELL® Campbell Scientific (Canada) Corp. | 14532 131 Avenue NW | Edmonton AB T5L 4X4 | 780.454.2505 | www.campbellsci.ca SCIENTIFIC AUSTRALIA | BRAZIL | CANADA | COSTA RICA | FRANCE | GERMANY | SOUTH AFRICA | SPAIN | UNITED KINGDOM | USA

© 2013 Campbell Scientific, Inc. August 23, 2013

