MODEL 013A WIND SPEED SENSOR OPERATION MANUAL

1600 Washington Blvd. Grants Pass, Oregon 97526 Telephone 541-471-7111 Facsimile 541-471-7116

Regional Sales & Service 3206 Main St., Suite 106 Rowlett, Texas 75088 Telephone 214-412-4747 Facsimile 214-412-4716

WARRANTY AND ASSISTANCE

This equipment is warranted by CAMPBELL SCIENTIFIC (CANADA) CORP. ("CSC") to be free from defects in materials and workmanship under normal use and service for **twelve (12) months** from date of shipment unless specified otherwise. ***** **Batteries are not warranted.** ***** CSC's obligation under this warranty is limited to repairing or replacing (at CSC's option) defective products. The customer shall assume all costs of removing, reinstalling, and shipping defective products to CSC. CSC will return such products by surface carrier prepaid. This warranty shall not apply to any CSC products which have been subjected to modification, misuse, neglect, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied, including warranties of merchantability or fitness for a particular purpose. CSC is not liable for special, indirect, incidental, or consequential damages.

Products may not be returned without prior authorization. To obtain a Return Merchandise Authorization (RMA), contact CAMPBELL SCIENTIFIC (CANADA) CORP., at (780) 454-2505. An RMA number will be issued in order to facilitate Repair Personnel in identifying an instrument upon arrival. Please write this number clearly on the outside of the shipping container. Include description of symptoms and all pertinent details.

CAMPBELL SCIENTIFIC (CANADA) CORP. does not accept collect calls.

Non-warranty products returned for repair should be accompanied by a purchase order to cover repair costs.

11564 - 149 street - edmonton - alberta - T5M 1W7 tel 780.454.2505 fax 780.454.2655 www.campbellsci.ca

013A WIND SPEED SENSOR OPERATION MANUAL

1.0 GENERAL INFORMATION

- 1.1 The Met One Instruments 013A Wind Speed Sensor uses a highly ruggedized, anti-icing three-cup anemometer assembly and simple magnet-reed switch assembly to produce a series of contact closures whose frequency is proportional to wind speed.
- 1.2 The Sensor Cable has a quick-connect connector with vinyl-jacketed, shielded cable.

 Cable length is given in -XX feet on each cable part number. An 1805-XX cable is used with translators having terminal strip connectors, and an 1808-XX cable is used with translators having circular MS type connectors. Refer to drawing.

Table 1-1 Model 013A Wind Speed Sensor Specifications

Performance Characteristics

Maximum Operating Range Starting Speed Calibrated Range Accuracy Temperature Range 0-60 meters/sec or 0-125 mph .5 meters/sec or 1 mph 0-50 meters/sec or 0-100 mph $\pm 1.5\%$ or 0.25 mph -50°C to +85 °C

Distance Constant*

Standard 1908 Aluminum Cup Assembly

Less than 15 feet

*The distance traveled by the air after a sharp-edged gust has occurred for the anemometer rate to reach 63% of the new speed.

Electrical Characteristics

Output Signal

Contact closure at frequency f = .5589 (V-1) (V = wind speed in mph)

Physical Characteristics

Weight
Finish
Mounting Fixtures
Cabling

1.5 pounds
Black anodized
Use with 191 Crossarm
Two-conductor Cable; XX is cable
length in feet

2.0 INSTALLATION

2.1 <u>013A Wind Speed Sensor Installation</u>

- A. Check to see that the cup assembly rotates freely (threshold, bearing check).
- B. Install the sensor in the end of the 191 mounting arm (the end without the bushing).
- C. Apply a small amount of silicone grease to the set screws to prevent "freezing up" in corrosive environments. Tighten the locking set screws; do not overtighten.
- D. Connect the cable assembly to the keyed sensor receptacle and tape it of the mounting arm.

2.2 Wiring.

A. The cable assembly contains two wires. Typical installation hookup is shown in Figure 2-1.

3.0 OPERATIONAL CHECK-OUT

3.1 013A Wind Speed Sensor Check-Out

- A. Slowly spinning the anemometer cup assembly will produce a series of pulses. To verify the sensor output, monitor this signal with either the 1680B Translator Module or an ohmmeter.
- B. Inspect the cup assembly for loose cup arms or other damage. The cup assembly cannot change calibration unless a mechanical part has come loose or has been broken.

4.0 MAINTENANCE AND TROUBLESHOOTING

4.1 General Maintenance Schedule*

6-12 Month Intervals:

- A. Inspect sensor for proper operation per Section 3.0.
- B. Replace the Wind Speed Sensor bearings in extremely adverse environments per Section 4.5.

12-24 Month Intervals:

Replacement of sensor bearings.

*Schedule is based on average to adverse environments.

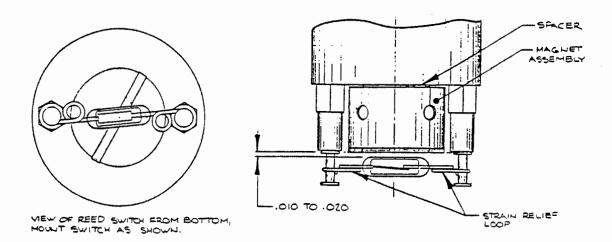
Table 4-1 Troubleshooting Table

Symptom	Probable Cause	Remedy
No sensor output	Faulty reed switch	Replace reed switch
No sensor output	Faulty bearings	Replace bearings

4.2 <u>013A Wind Speed Sensor: 6-12 Month Periodic Service</u>

- A. At the crossarm assembly, disconnect the Sensor Cable from the Sensor (leave the cable secured to the crossarm) and remove the Sensor from the crossarm assembly.
- B. Loosen the two set screws and remove the anemometer cup assembly.
- C. Visually inspect the anemometer cups for cracks and breaks and make sure that each is securely attached to the cup assembly hub.
- D. Inspect the Sensor for any signs of corrosion and dust buildup.
- E. Rotate the Sensor shaft hub assembly to make sure that it turns freely and that the Sensor bearings are not damaged. <u>Make sure that the magnet assembly is not contacting the reed switch.</u>

- F. A moisture vent is located on the base of the Sensor. Make sure that this vent is unobstructed.
- G Re-install Sensor as per installation procedure (Section 2.0) and verify proper operation using procedures in Section 3.0.
- 4.3 013A Wind Speed Sensor General Assembly (refer to 013A Assembly Drawing)


The following steps cover basic disassembly:

- A. At the crossarm assembly, disconnect the Sensor Cable from the Sensor (leave the cable secured to the crossarm) and remove the Sensor from the crossarm assembly.
- B. Loosen the two set screws and remove the anemometer cup assembly.
- C. Remove the three (3) flathead screws at the top of the Sensor and lift out the bearing mount assembly.
- 4.4 Reed Switch Replacement Procedure

Use the following procedure to replace Sensor Reed Switch:

- A. Remove bearing mount assembly as per Section 4.3.
- B. Unsolder the 15-16 wires on the ends of the Reed Switch (10), un-solder, and remove the switch from the two mounting terminals (13).
- C. Solder the new switch onto the sides on the switch mounting terminals, taking care not to stress the point where the leads enter the glass reed switch body. Measure the distance between the bottom of the rotating magnet and the top of the switch envelope, as shown in Figure 4 -1. The spacing should measure between .010 and .020 of an inch.
- D. Spin the shaft and verify switch operation by listening for faint sound of switch closures. Monitor the output on the translator module and spin shaft for an upscale indication. If switch seems to falter, adjust switch slightly closer to magnet.
- E. If possible, connect the shaft to an 1800 RPM motor, use flexible coupling, and verify an output of 108 mph with a 50% duty cycle.
- F. Reassemble Sensor by reversing procedure.

FIGURE 4-1: REED SWITCH INSTALLATION

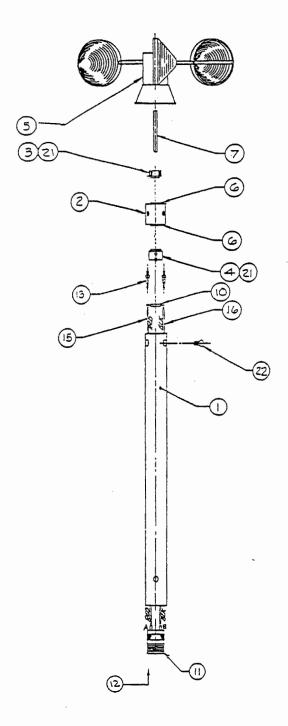
4.5 Bearing Replacement Procedures

The bearings used in 013A Sensor are special stainless steel ball bearings with a protective shield. Bearings are lubricated and sealed. Do not lubricate bearings as the lubrication will attract dust and will form an oil/dust glue. Use the following procedure for bearing replacement:

- A. Remove bearing mount assembly as per Section 4.3.
- B. Loosen set screws(21) in magnet assembly (4), lift shaft (7) and collar (3) up and out of bearing mount (2). Be sure to retain lower spacer. (19)
- C. Insert a right-angle type of tool, such as an allen wrench into bearing, cock it slightly to one side and remove bearing. Remove both bearings.
- D. Install new bearings. Be careful not to introduce dirt particles into bearings. CLEAN HANDS ONLY! DO NOT ADD LUBRICATION OF ANY KIND.
- E. Reassemble the Sensor in reverse order. Be sure to include spacers (19) over the bearings when replacing the shaft in the bearing mount. After the magnet assembly (4) has been tightened, a barely perceptible amount (.007) of endplay should be felt when the shaft is moved up and down.

4.6 013A Wind Speed Sensor Repair and Recalibration Service

This service provided by the factory enables fast, economical service for the user. This repair and calibration service includes disassembly, inspection, calibration and re assembly. Service also includes replacement of bearings regardless of apparent condition. Service also includes replacement of the following items.


A. Shaft

B. Set screws.

Service also includes functional test of Sensor. Other components will be replaced as required. Additional charges for additional materials only will be added to the basic service charge.

Table 4 - 2 REPLACEABLE PARTS LIST

ITEM #	PART #	DESCRIPTION
1	1685-2	WS SUPPORT
2	1685-4	BEARING MOUNT
3	1685-7	COLLAR
4	1715	MAGNET ASSY
5	1908	CUP ASSEMBLY (ALUM)
6	1898	BEARING
7	860001	SHAFT
10	880160	SWITCH REED
12	510020	CAP FOR CONNECTOR
13	970062	TERMINAL HH SMITH
19	860250	SPACER
21	601250	SET SCREW 4-40X 1/8
22	601230	FLAT HD. 4-40X 1/4 SCREW

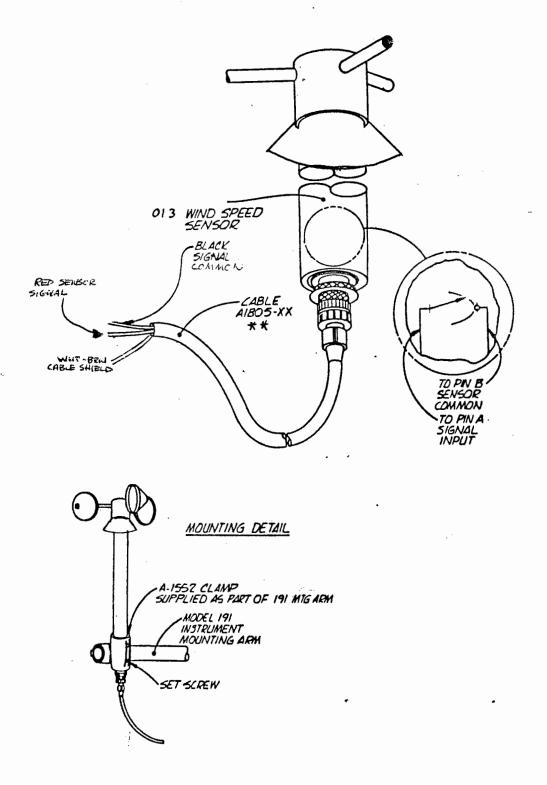
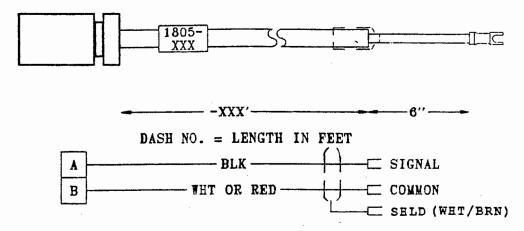
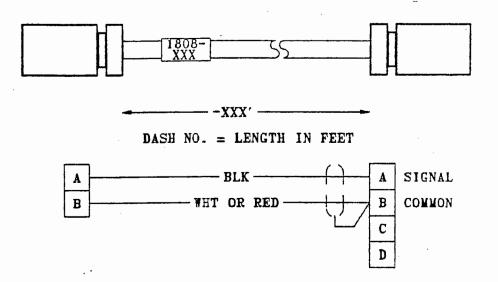


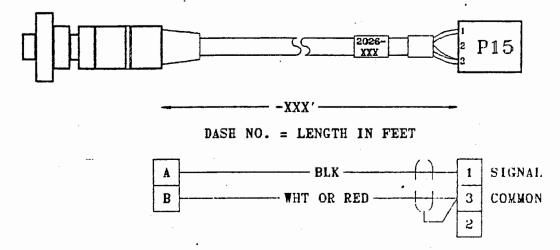
Figure 2-1 Typical 013 Installation


Table 3-1

Model 013 Wind Speed Sensor Calibration


WIND VELOCITY VS OUTPUT FREQUENCY			RPI	RPM VS WIND SPEED			
	in Miles						
V mph	RPS	F hz	RPM	MPS	MPH	F hz	
10	2.515	5.030	100	3.113	6.964	3.333	
20	5.310	10.619	200	5.779	12.928	6.667	
30	8.104	16.208	*300	8.446	18.892	10.000	
40	10.899	21.797	400	11.112	24.856	13.333	
50	13.693	27.386	500	13.778	30.820	16.667	
60	16.488	32.975	*600	16.444	36.785	20.000	
70	19.282	38.564	700	19.110	42.749	23.333	
80	2 2.077	44.153	800	21.777	48.713	26.667	
90	24.871	49.742	900	24.443	54.670	30.000	
100	27.666	55.331	1000	27.109	60.641	33.333	
110	30.460	60.920	1100	29.775	66.605	36.667	
120	3 3.255	66.509	1200	32.441	72.569	40.000	
			1300	35.108	78.533	43.333	
SPEED			1400	37.774	84.497	46.600	
V mps	RPS	F hz	1500	40.440	90.461	50.000	
2.5	1.284	2.567	1600	43.106	96.426	53.333	
_ 5	2.846	5.693	1700	45.772	102.390	56.667	
7.5	4.409	8.819	*1800	48.438	108.354	60.000	
10	5.972	11.945	+ OTAND	455 64 IDD 4	TOD TEST DOW	ITO	
12.5	7.535	15.071	* STANDARD CALIBRATOR TEST POINTS				
15	9.098	18.197		\/b	DDM . 4		
17.5	10.661	21.323	V mph <u>= RPM</u> + 1 16.767				
20	12.224	24.449		•	0.707		
22.5	13.787	27.575					
25	15.350	30.701 .		\/ -	RPM + .44704		
27.5	16.913	33.827	V mps = <u>RPM</u> + .44704 37.5067				
30	18.476	36.953		3/	.5067		
32.5 35	20.039	40.079		Pased or	ocustion for 55	90 (\/_1)	
35 37.5	21.602	43.205 46.331	Based on equation f= .5589 (V-1) where f is the output frequency.				
37.5 40	2 3.165 2 4.728	49.457	V is wind speed miles per hour.				
42.5	26.291	52.583					
42.5	27.854	52.363 55.709	RPS = cup revolution per second. 1 MPH = 0.44707 meters/sec				
45 47.5	29.417	58.835		1 1411 11 =	- 0.44 707 1110101	0,000	
47.5 50	30.980	61.961					
52.5	30.980	65.087					
52.5 55	34.106	68.212			•		
57.5		71.338			•		
5/.5	3 5.669	71.338					

60 37.232 74.464


1805 SENSOR CABLE - TERMINATES IN SPADE LUGS

1808 SENSOR CABLE - USE WITH 110 WEATHERPROOF TRANSLATOR

2026 CABLE - USE WITH MET-SET 4B AND 4C

