

KH20 Krypton Hygrometer

- Measures water vapor fluctuations only
 - Signal offset drift precludes use for absolute water vapor measurements

KH20 Specifications

- •Frequency response
 →100 Hz
- •Voltage output range →0 to 5 Vdc
- Current consumption
 →20 mA max at 12Vdc unregulated power supply

KH20 Measurement Theory

- Uses krypton lamp
 - Emits two absorption lines
 - Major line at 123.58 *n*m
 - Minor line at 116.49 nm
- •Both of these lines are absorbed by water vapor, and minor line by oxygen (small)

KH20 Measurement Theory

Voltage output V of KH20

· Without the response of oxygen

$$V = V_0 e^{-k_w x \rho_w}$$

$$\rho_{w} = \frac{1}{-k_{w}x} \left(\ln V - \ln V_{0} \right)$$

output with no absorption effective water vapor absorption coefficient

path length between source and detector tubes

water vapor density

KH20 Measurement Theory

•Vapor flux E can be calculated

$$E = \overline{w \rho_w}$$

vertical wind speed

· overbar time average fluctuations about the mean • prime

$$\rho_{w} = \rho_{w} - \overline{\rho_{w}}$$

$$\rho_{w} = \frac{1}{-k_{w}x} \left(\ln V - \overline{\ln V} \right)$$

KH20 Measurement Theory

Voltage Output V of KH20

• With the Response of Oxygen

$$V = V_0 e^{-k_w x \rho_w} e^{-k_o x \rho o}$$

$$\rho'_{w} = \frac{1}{-k_{w}x} \left(\ln V - \overline{\ln V} \right) \left(\frac{k_{o}}{k_{w}} \rho'_{o} \right)$$

effective oxygen (O2) absorption coefficient

KH20 Measurement Theory

 Oxygen fluctuations are caused by pressure and temperature changes •Using ideal gas law we obtain oxygen density

$$\rho_o = \frac{C_o M_o P}{RT}$$

KH20 Measurement Theory

•Differentiating the oxygen density we obtain the density fluctuations

$$\rho_o = \frac{C_o M_o P}{RT}$$

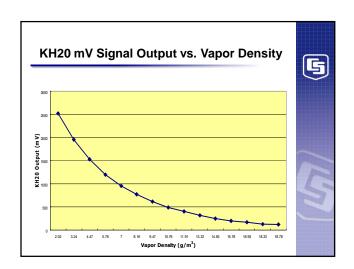
$$\rho_o' = \left[\frac{C_o M_o}{RT}\right] P' - \left[\frac{C_o M_o P}{RT^2}\right] T'$$

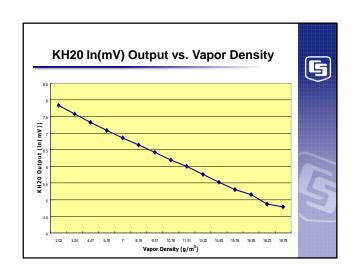
KH20 Measurement Theory

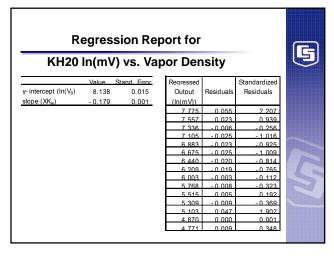
•Effect of pressure change in oxygen density change is negligible

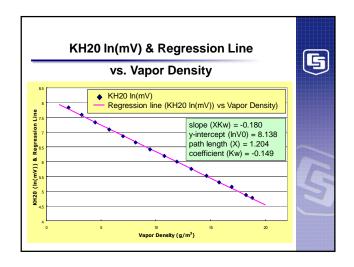
$$\rho_{o} = \left[\frac{C_{o}M_{o}}{RT}\right]P - \left[\frac{C_{o}M_{o}P}{RT^{2}}\right]T$$

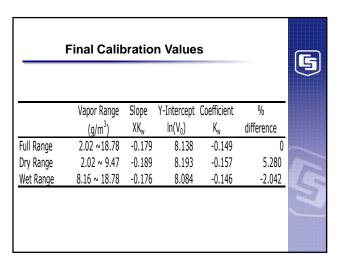
KH20 Measurement Theory




•Recall vapor flux E


$$E = \overline{\overline{w'\rho'_w}}$$


•With the oxygen correction term, we obtain


$$LE = L_{v} \frac{\overline{w(\ln V)}}{k_{w}x} + L_{v} \left[\frac{C_{o}M_{o}P}{RT^{2}} \right] \left[\frac{k_{o}}{k_{w}} \right] \overline{wT}$$

Diagnosing KH20

Visual Inspection

- Make sure the optical window is clean
- Make sure the UV light is emitted from the source tube (the longer of the two tubes and on top)
 - → Note: Minimize exposure
 - If you see faint or flickering blue light
 - → check the current drain
 - → current drain of around 5 mA indicates the source lamp problem
 - → Typical current drain for KH20 is 15~20 mA

KH20 Maintenance

- •Old KH20 used to suffer permanent damage when exposed to water
 - corrosion; loss of vacuum

Managing the Scaling of KH20

- Clean when the window scaling is detected (low output signal)
 →Use distilled water and cotton swab to clean
- Use the scaled calibration coefficient when scaled