

Innovative Design

Open-Path CO,/H,O Gas Analyzer and Sonic Anemometer

EC150 and CSAT3A

Use as part of open-path eddy-covariance system

Campbell Scientific's EC150 is an open-path analyzer specifically designed for eddy covariance flux measurements. Combined with the CSAT3A sonic anemometer as shown above, these two components

Benefits and Features

- > Unique optical configuration gives a slim aerodynamic shape with minimal wind distortion
- > Analyzer and sonic anemometer measurements are synchronized by a common set of electronics
- Maximum output rate of 60 Hz with 20 Hz bandwidth
- Low power consumption; suitable for solar power applications
- > Low noise
- > Measurements are temperature compensated without active heat control
- Angled windows to shed water and are tolerant to window contamination

of an open-path eddy-covariance system simultaneously measure carbon dioxide, water vapor, air temperature, barometric pressure, and three-dimensional wind speed and sonic air temperature.

- > Field rugged
- > Field serviceable
- Factory calibrated over wide range of CO₂, H₂O, pressure, and temperature in all combinations encountered in practice
- > Extensive set of diagnostic parameters
- Fully compatible with Campbell Scientific dataloggers; field setup, configuration, and field zero and span can be accomplished directly from the datalogger
- > Speed of Sound: Determined from three acoustic paths; corrected for crosswind effects
- Rain: Innovative signal processing and transducer wicks considerably improve performance of the anemometer during precipitation events

Outputs

- CSAT3A
-) U_x (m/s)
-) U_y (m/s)
-) U_z (m/s)
- Sonic Temperature (°C)
- > Sonic Diagnostic

- EC150
- CO₂ Density (mg/m³)
- H₂O Density (g/m³)
- Gas Analyzer Diagnostic
- Ambient Temperature (°C)

- Atmospheric Pressure (kPa)
- CO₂ Signal Strength
- H₂O Signal Strength
- > Source Temperature (°C)

General Specifications^a

- > Operating Temperature Range: -30° to +50°C
- Calibrated Pressure Range: 70 to 106 kPa
- Input Voltage: 10 to 16 Vdc
- Power @ 25°C: 5 W (steady state and power up)
- Measurement Rate: 60 Hz
- Output Bandwidth: 5, 10, 12.5, or 20 Hz; user programmable
- Output Options: SDM, RS-485, USB, analog (CO₂ and H₂O only)

Gas Analyzer Specifications^{a,b}

Path Length: 15.37 cm (6.05 in)

Performance

- > Auxiliary Inputs: air temperature and pressure
- EC150 Head and Cables Weight: 2.0 kg (4.4 lb)
- CSAT3A Head and Cables Weight: 1.7 kg (3.7 lb)
- EC100 Electronics Weight: 3.2 kg (7.1 lb)
- Cable Length: 3 m (10 ft) from EC150 and CSAT3A to EC100
- Gas Analyzer/Sonic Volume Separation: 5.0 cm (2.0 in)
- Warranty: 3 years or 17,500 hours of operation, whichever comes first

	CO2	H ₂ O	
Accuracy ^c	1% ^d 2% ^d		
Precision RMS (maximum) ^e	0.2 mg/m³ (0.15 μmol/mol)	0.004 g/m ³ (0.006 mmol/mol)	
Calibrated Range	0 to 1,000 μmol/mol ^f	0 to 72 mmol/mol (38°C dewpoint)	
Zero Drift with Temperature (maximum)	±0.55 mg/m³/°C (±0.3 μmol/mol/°C)	±0.037 g/m ³ /°C (±0.05 mmol/mol/°C)	
Gain Drift with Temperature (maximum)	±0.1% of reading/°C	±0.3% of reading/°C	
Cross Sensitivity (maximum)	$\pm 1.1 \text{ x } 10^{-4} \text{ mol CO}_2/\text{mol H}_2\text{O}$	$\pm 0.1 \text{ mol H}_2\text{O/mol CO}_2$	

Sonic Anemometer Specifications^a

Measurement Path

- Vertical: 10.0 cm (3.9 in)
- Horizontal: 5.8 cm (2.3 in)

Transducer Diameter

> 0.64 cm (0.25 in)

Range

-) u:±3
- **)** u: ±6
-) u: ±8 m s

Accuracy^g

- > Offset Error u, u: <±8.0 cm s⁻¹ u_: < ±4.0 cm s⁻¹ Wind Direction: ±0.7° while horizontal wind at 1 m s⁻¹ Gain Error Wind Vector within $\pm 5^{\circ}$ of horizontal: $<\pm 2\%$ of reading Wind Vector within $\pm 10^{\circ}$ of horizontal: $<\pm 3\%$ of reading Wind Vector within $\pm 20^{\circ}$ of horizontal: $<\pm 6\%$ of reading Measurement Precision RMS u., u.: 1 mm s⁻¹
 - u_: 0.5 mm s⁻¹ Sónic Temperature: 0.025°C Wind Direction: 0.6°

Barometer Specifications^a

	-BB Basic Barometer	-EB Enhanced Barometer (Vaisala PTB110)
Total Accuracy	± 3.7 kPa at -30°C, falling linearly to ± 1.5 kPa at 0°C (-30° to 0°C), ± 1.5 kPa (0° to 50°C)	±0.15 kPa (-30° to +50°C)
Measurement Rate	10 Hz	1 Hz

Ambient Temperature Specifications^a

Manufacturer: BetaTherm 100K6A1IA

Total Accuracy: ±0.15°C (-30° to +50°C)

^aSubject to change without notice.

^bA temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration.

^cAssumes the gas analyzer was properly zero and spanned using the appropriate standards; CO, span concentration was 400 ppm; H₂O span dewpoint was at 12°C (16.7 ppt); zero/span temperature was 25°C; zero/span pressure was 84 kPa; subsequent measurements made at or near the span concentration; temperature is not more than $\pm 6^{\circ}$ C from the zero/span temperature; and ambient temperature is within the gas analyzer operating temperature range. ^{*d*}Standard deviation of calibration residuals.

*Nominal conditions for precision verification test: 25°C, 86 kPa, 400 µmol/mol CO., 12°C dewpoint, and 20 Hz bandwidth. ^f0 to 3,000 µmol/mol available upon request.

^{*g*}The accuracy specification for the sonic anemometer is for wind speeds <30 m s⁻¹ and wind angles between $\pm 170^{\circ}$.

CAMPBELL[®] Campbell Scientific (Canada) Corp. | 14532 131 Avenue NW | Edmonton AB T5L 4X4 | 780.454.2505 | www.campbellsci.ca SCIENTIFIC AUSTRALIA | BRAZIL | CANADA | COSTA RICA | FRANCE | GERMANY | SOUTH AFRICA | SPAIN | UNITED KINGDOM | USA

© 2011, 2015 Campbell Scientific, Inc. September 24, 2015

	/	
)		
30 m s ⁻¹		
60 m s ⁻¹		
8 m s ⁻¹		

- T: -50° to +60°C
- Wind Direction: ±170°