TVINVIA S/ dO0LVIHddO

Want to get going? Go to the Quickstart (p. 41) section. Want
to see notes pertaining to this preliminary manual release?
Go to Release Notes (p. 34).

CR800-Series Dataloggers

Preliminary for OS v.28: 4/20/15

Copyright © 2000 - 2015
Campbell Scientific, Inc.

Warranty

The CR800 Measurement and Control Datalogger is warranted for three (3) years
subject to this limited warranty:

Limited Warranty: Products manufactured by CSI are warranted by CSI to be free
from defects in materials and workmanship under normal use and service for
twelve months from the date of shipment unless otherwise specified in the
corresponding product manual. (Product manuals are available for review online
at www.campbellsci.com.) Products not manufactured by CSI, but that are resold
by CSI, are warranted only to the limits extended by the original manufacturer.
Batteries, fine-wire thermocouples, desiccant, and other consumables have no
warranty. CSI's obligation under this warranty is limited to repairing or replacing
(at CSI's option) defective Products, which shall be the sole and exclusive remedy
under this warranty. The Customer assumes all costs of removing, reinstalling,
and shipping defective Products to CSI. CSI will return such Products by surface
carrier prepaid within the continental United States of America. To all other
locations, CSI will return such Products best way CIP (port of entry) per
Incoterms ® 2010. This warranty shall not apply to any Products which have been
subjected to modification, misuse, neglect, improper service, accidents of nature,
or shipping damage. This warranty is in lieu of all other warranties, expressed or
implied. The warranty for installation services performed by CSI such as
programming to customer specifications, electrical connections to Products
manufactured by CSI, and Product specific training, is part of CSI's product
warranty. CSI EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CSI hereby disclaims, to the fullest extent allowed by
applicable law, any and all warranties and conditions with respect to the Products,
whether express, implied or statutory, other than those expressly provided herein.

Assistance

Products may not be returned without prior authorization. The following contact
information is for US and International customers residing in countries served by
Campbell Scientific, Inc. directly. Affiliate companies handle repairs for
customers within their territories. Please visit www.campbellsci.com to determine
which Campbell Scientific company serves your country.

To obtain a Returned Materials Authorization (RMA), contact CAMPBELL
SCIENTIFIC, INC., phone (435) 227-2342. After an application engineer
determines the nature of the problem, an RMA number will be issued. Please
write this number clearly on the outside of the shipping container. Campbell
Scientific's shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#
815 West 1800 North
Logan, Utah 84321-1784

For all returns, the customer must fill out a "Statement of Product Cleanliness and
Decontamination" form and comply with the requirements specified in it. The
form is available from our web site at www.campbellsci.com/repair. A completed
form must be either emailed to repair@campbellsci.com or faxed to 435-227-
9579. Campbell Scientific is unable to process any returns until we receive this
form. If the form is not received within three days of product receipt or is
incomplete, the product will be returned to the customer at the customer's
expense. Campbell Scientific reserves the right to refuse service on products that
were exposed to contaminants that may cause health or safety concerns for our
employees.

Precautions

DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING,
USING, MAINTAINING, AND WORKING ON OR AROUND TRIPODS,
TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH
AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC. FAILURE
TO PROPERLY AND COMPLETELY ASSEMBLE, INSTALL, OPERATE,
USE, AND MAINTAIN TRIPODS, TOWERS, AND ATTACHMENTS, AND
FAILURE TO HEED WARNINGS, INCREASES THE RISK OF DEATH,
ACCIDENT, SERIOUS INJURY, PROPERTY DAMAGE, AND PRODUCT
FAILURE. TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE
HAZARDS. CHECK WITH YOUR ORGANIZATION'S SAFETY
COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED
PROTECTIVE EQUIPMENT PRIOR TO PERFORMING ANY WORK.

Use tripods, towers, and attachments to tripods and towers only for purposes for
which they are designed. Do not exceed design limits. Be familiar and comply
with all instructions provided in product manuals. Manuals are available at
www.campbellsci.com or by telephoning 435-227-9000 (USA). You are
responsible for conformance with governing codes and regulations, including
safety regulations, and the integrity and location of structures or land to which
towers, tripods, and any attachments are attached. Installation sites should be
evaluated and approved by a qualified engineer. If questions or concerns arise
regarding installation, use, or maintenance of tripods, towers, attachments, or
electrical connections, consult with a licensed and qualified engineer or
electrician.

General

e Prior to performing site or installation work, obtain required approvals and
permits. Comply with all governing structure-height regulations, such as
those of the FAA in the USA.

e Use only qualified personnel for installation, use, and maintenance of tripods
and towers, and any attachments to tripods and towers. The use of licensed
and qualified contractors is highly recommended.

e Read all applicable instructions carefully and understand procedures
thoroughly before beginning work.

e Wear a hardhat and eye protection, and take other appropriate safety
precautions while working on or around tripods and towers.

e Do not climb tripods or towers at any time, and prohibit climbing by other
persons. Take reasonable precautions to secure tripod and tower sites from
trespassers.

e Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical

® You can be killed or sustain serious bodily injury if the tripod, tower, or
attachments you are installing, constructing, using, or maintaining, or a tool,
stake, or anchor, come in contact with overhead or underground utility lines.

e Maintain a distance of at least one-and-one-half times structure height, or 20
feet, or the distance required by applicable law, whichever is greater, between
overhead utility lines and the structure (tripod, tower, attachments, or tools).

e Prior to performing site or installation work, inform all utility companies and
have all underground utilities marked.

e Comply with all electrical codes. Electrical equipment and related grounding
devices should be installed by a licensed and qualified electrician.

Elevated Work and Weather

e Exercise extreme caution when performing elevated work.

e Use appropriate equipment and safety practices.

e During installation and maintenance, keep tower and tripod sites clear of un-
trained or non-essential personnel. Take precautions to prevent elevated tools
and objects from dropping.

e Do not perform any work in inclement weather, including wind, rain, snow,
lightning, etc.

Maintenance

e Periodically (at least yearly) check for wear and damage, including corrosion,
stress cracks, frayed cables, loose cable clamps, cable tightness, etc. and take
necessary corrective actions.

e Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST
DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS, THE
CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING
FROM IMPROPER INSTALLATION, USE, OR MAINTENANCE OF
TRIPODS, TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS
SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.

Table of Contents

1. Introduction............omee 33
0 N = 21 5 5 USSP 33

1.2 TYPOZIAPRY ..ottt 33

1.3 Capturing CRBasic Codeccciriiriiiieriieeee e 34

1.4 ReElEaSE NOESovieiiieiieiieieie ettt sttt sttt ee st sae s eaeens 34

2. Cautionary Statements..........cceeeceiiiiiiiimnnnrecenns 37
3. Initial Inspection ... 39
4. System Quickstart...........cceoiiiiinii 41
4.1 Data-Acquisition Systems — QuicKStartccooceereerienieiineeeene 41

4.2 Sensors — QUICKSTAI........cccuieiiieeiieciiecie et 42

4.3 Datalogger — QUICKSTAITcovieriiiiiiiiiiienieeeieee e 43

4.3.1.1 Wiring Panel — Quickstart.........cccoeveeeierieneninineececeee 43

4.4 Power Supplies — QUIiCKStartcocuevieriiiieiiieee e, 44

4.4.1 Internal Battery — QUICKStartccccceeveevieeciiicieiiesieseeieeenes 45

4.5 Data Retrieval and Telecommunications — Quickstart........................ 45

4.6 Datalogger Support Software — Quickstart..........ccceeveeeererercienieniennnns 46

4.7 Tutorial: Measuring a Thermocouple.........c.ccceveerieniniiinieniesiesees 46

4.7.1 What You Will Needcccoevierininininicieiecce e 46

4.7.2 Hardware SELUPccceeverreieiienininienieeieeeeteeesese e 47

4.7.2.1 External Power Supply........ccccoveveerviiiienininininenccieecnenn 47

4.7.3 PC200W Software Setupccccoceeerererienieieniineneneneeeereneennes 48

4.7.4 Write CRBasic Program with Short Cut............ccccceciniininnnen, 50

4.7.4.1 Procedure: (Short Cut Steps 1 t0 5)..cccvevievieiieiieierieeee 50

4.7.4.2 Procedure: (Short Cut Steps 6 t0 7)...ccceeveereeieeeiinienieeiens 51

4.7.4.3 Procedure: (Short Cut Step 8)cceeovvevvevieriieiieieeieeeeiens 52

4.7.4.4 Procedure: (Short Cut Steps 9t0 12)..c.ccoveeviieciieiiiiiiienens 53

4.7.4.5 Procedure: (Short Cut Steps 13 10 14)...ccccecveveieiicieirienens 54

4.7.5 Send Program and Collect Data............cccoceerienienieeniinieeieeeeeenns 55

4.7.5.1 Procedure: (PC200W Step 1)....cccvevvvevieeieiieiieeeie e 55

4.7.5.2 Procedure: (PC200W Steps 2 t04) ..oecvveveeveneeneeieeieeeenne 55

4.7.5.3 Procedure: (PC200W Step 5) ...coveerireieeieiieniieeee e 56

4.7.5.4 Procedure: (PC200W Step 6)....ccceevveeieeeeerieiieneeeeie e 57

4.7.5.5 Procedure: (PC200W Steps 7 t0 10) ..eovveeveeveeieieieene 58

4.7.5.6 Procedure: (PC200W Steps 11 t0 12) ..ooeevievieniiiiiiiene 59

4.7.5.7 Procedure: (PC200W Steps 13 t0 14) ..ooeerievieniiiiiieeee 59

5. System OVerview..........cccooviiimmmmmmremmssssssnnseeesssssnnssnses 61
5.1 Measurements — OVEIVIEWccueerueereriiiienienieenieeieeieeeeesieesieenieenees 62

5.1.1 Time Keeping — OVEIVIEW.......ccvevuieveeiereeniieieeveeneeeeesee e 63

5.1.2 Analog Measurements — OVEIVIEW.........ccceerueerreeveevenveseenneennes 63

5.1.2.1 Voltage Measurements — OVEIrVIEWccvveververererneenne 63

5.1.2.1.1 Single-Ended Measurements — Overview................ 65

5.1.2.1.2 Differential Measurements — Overview................... 66

5.1.2.2 Current Measurements — OVEIVIEW........c.ccererenerennennee. 66

5.1.2.3 Resistance Measurements — OVErVIEW.......cccceeeeeeeevveinnnnens 66

Table of Contents

10

52
53

5.1.2.3.1 Voltage EXCItationcceevuereerierieniienieeieeeeeeeeeens 67

5.1.2.4 Strain Measurements — OVEIVIEWcccceereereerneereeneenne 68
5.1.3 Pulse Measurements — OVEIVIEW.........cocuereeriereeneeniennieneeneenne 68
5.1.3.1 Pulses Measured..........ccocuereeieriereneiieieeie e 69
5.1.3.2 Pulse-Input Channelsccccoeeveeereecierienieneeeeie e 69
5.1.3.3 Pulse Sensor WirlNg..........ccceevveevreeereecieniesieseenieenseeneenens 70
5.1.4 Period Averaging — OVEIVIEWccceevveevveeiereeiieneenieenreeneenenns 70
5.1.5 Vibrating-Wire Measurements — OVErvieWccocverveeveennenns 71
5.1.6 Reading Smart Sensors — OVEIVIEWccceevverververeenveerveanenns 72
5.1.6.1 SDI-12 Sensor Support — OVEIrVIeWccceeeervverreerveennenns 72
5.1.6.2 RS-232 — OVEIVIEWeeiiuiieeeiiecirieeiree st sve e 72
5.1.7 Field Calibration — OVEIVIEWccceevveerrieiieeririecreeeeveesreeenes 73
5.1.8 Cabling Effects — OVeIVIEW.......ccccoverirereeieicicnenineneeieeeenen 73
5.1.9 Synchronizing Measurements — OVEIVIEWcccceveerueererennnns 74
PLC Control — OVEIVIEW.....cceeiiiriieriieieeieeiie sttt 74
Datalogger — OVEIVIEW ...cccueeiiiiiiieiieieeieeee sttt 75
5.3.1 Time Keeping — OVEIVIEW......cccveiuiruirieieieieneee et 75
5.3.2 Wiring Panel — OVEIVIEWccccoceviririeieienierese e 75
5.3.2.1 Switched Voltage Output — OVerview...........coceeceeeereennene 78
5.3.2.2 Voltage Excitation — OVErVIEWccceevveevvieeeeienierieenenns 79
5.3.2.3 Grounding Terminalsccccccerevereereeneerieeieeieseeseeenens 79
5.3.2.4 Power Terminalsccccocevererereeieienienencsenieeceeeeene 80
5.3.2.4.1 PoWer INu...co.ooiiiiiiiiiiiiiiiiiiiieccccec e 80
5.3.2.4.2 Power Out Terminals.........c.ccceveeriveriienieeienienieeeens 80

5.3.2.5 Communication PoOrts..........ccceevveeeiienieeniiecieeeie e 81
5.3.2.5.1 CST/O POItuccuiiiiiieiieiieeieieieesee et 81
5.3.2.5.2 RS-232 POILS...ccuiiuieeieuieiieieiesie ettt 81
5.3.2.5.3 SDI-12 POTtS .cuveviiieiieieieieiere e 82
5.3.2.5.4 SDM POrt...cooiiiiiiiiiieieieee et 82
5.3.2.5.5 CPIPOIt .ottt 82
5.3.2.5.6 Ethernet Port........ccccecieieiinininininiccicccneeee 82

5.3.3 Keyboard Display — OVEIVIEWcccecvvecuerverieniienieenieeeesnenenenns 82
5.3.3.1 Integrated Keyboard Displayccccccevvevienvenienieeiennenns 83
5.3.3.2 Character Set.....cccovuieeiieriieeieeeieeeie et esre e e sve e 83
5.3.3.3 Custom Menus — OVEIVIEW........ccevvrerereerreerrrenreesreeneneens 83
5.3.4 Measurement and Control Peripherals — Overview 84
5.3.5 Power Supplies — OVEIVIEW......cceevueeiiiriinieiieiiesieeie e 85
5.3.6 CR800 Configuration — OVeIrVIEWcccevuerierieneenieeieeeeeeenns 85
5.3.7 CRBasic Programming — OVEIVIeW.........ccccerveerieneenieneaeeaeenns 86
5.3.8 MemOry — OVEIVIEWeccvieerieeieerierriereeieeneeeeeseeeseeesseesseesseennens 86
5.3.9 Data Retrieval and Telecommunications — Overview 87
5.3.9.1 PakBus® Communications — OVervieW...........ccceeeveennenns 88
5.3.9.2 TelecOMMUNICALIONSc..coververuirieriieiieieieie et 88
5.3.9.3 Mass-Storage DEVICEc..ccereereerieeriieieiieseeseenieeie e 88
5.3.9.4 Data-File Formats in CR800 Memory............cccecverveerennene 89
5.3.9.5 Data Format on COmMPULET........c.ceevrueiriiierireeriienieenieenneens 89
5.3.10 Alternate Telecommunications — OVEIVIEWccccervervrennenns 89
5.3.10.1 MOADUS....coviiiieieiieiieieeee ettt 89
5.3.10.2 DNP3 — OVEIVIEW ..cvveiinieieeiieiienienieieieseeeeeeeeeneeeneneenee s 90
5.3.10.3 TCP/IP — OVEIVIEW ...ecovveerieeiieeieeeeieeereeeireereeeeneeveeas 90
5.3.11 Security — OVEIVIEWcc.eeouieueriieniieniienieenieeie et sieesieeneeeeens 90
5.3.12 Maintenance — OVEIVIEWc.cocuerierierienieenieeieeieeieesecenieenieans 92

Table of Contents

5.3.12.1 Protection from Moisture — OVErviewcccceeeerueenee. 92
5.3.12.2 Protection from Voltage Transientscccceecerereecnee. 92
5.3.12.3 Factory Calibrationcccceceveeerieieiieese e 92
5.3.12.4 Internal Battery — Detailscoceevieieniieneniicecenee. 93
5.4 Datalogger Support Software — OVEIVIEWccceeververieerieeieseeneeennes 93

6. Specificationscccceiirrciiircirr 0. 9D

P 1 K53 = 11 1= 11 (oY o T * ¥ £

7.1 Protection from Moisture — DetailScccooeevieneeniiniiiiiienieneecee, 97
7.2 Temperature Rangecccceeviierieeiiienieerieeeieesiee e esveesveesere e 97
7.3 ENCLOSUTES -...enitiiiiiieiieeeee ettt 97
7.4 Power Supplies — Detailsccceoveerieiieniieiicieeieeeeeee e 98
7.4.1 CR800 Power Requirementccecveevveeeeneenieenieniennesne e 99
7.4.2 Calculating Power Consumptioncceeeeeevereeenieesvenvesnesnennes 99
T.4.3 POWET SOUICESceveeuvieiiiriiiniiinieeniieieete ettt 99
7.4.3.1 Vehicle Power Connectionsceceereeveereeseeneeneeeeenne 100

7.4.4 Uninterruptable Power Supply (UPS)......cccccceovivinininininennn 100
7.4.5 External Power Supply Installationcccccceveninicnenennennn. 100

7.5 Switched Voltage Output — Details........coeceevieiiiieiiiiiienceeeee 101
7.5.1 Switched-Voltage EXcitationcccceveeiieneiieiieicenceeeee 102
7.5.2 Continuous Regulated (5V Terminal)..........cocceeveviiioencennannns 102
7.5.3 Continuous Unregulated Voltage (12V Terminal) 103
7.5.4 Switched Unregulated Voltage (SW12 Terminal)...................... 103

7.6 GIOUNAINGocvvieeiiiieiieiteeie et ettt et eb et eseaesteesteeaeesaesenesseesseesseens 103
7.6.1 ESD ProteCtionc..ceeeieieienenienieniiniieiieieneeie et 103
7.6.1.1 Lightning Protectioncccceeeverciereenieneenieeceeeeeseennens 105

7.6.2 Single-Ended Measurement Reference...........ccccoveveveeiinieniennnns 106
7.6.3 Ground-Potential Differences...........cccceceevveninencnenenceienicnnenn 107
7.6.3.1 Soil Temperature Thermocouple...........ceecvevveeeieciereennnns 107

7.6.3.2 External Signal Conditioner...........cccceveevienienereiienienene 107

7.6.4 Ground Looping in lonic Measurements............cccceceeveenerueruenne. 107

7.7 CR800 Configuration — DetailS........cccceeveiriiiiiiniiniinienieeeieeieene 109
7.7.1 Configuration TOOIS.........cceeieviiiiirieriieieeie e 109
7.7.1.1 Configuration with DevConfigcceeveviinveniiieenenns 109

7.7.1.2 Network PIannercccccevereninenineeieieeseseseeeeene 110

7.7 1.2.1 OVEIVIEW ..ottt 111

7.7.1.2.2 BASICS weevverviriiriieiieientenenie ettt 112

7.7.1.3 Configuration with Status/Settings/DTIL.............cc0eevveneene 112

7.7.1.4 Configuration with Executable CPU: Files.......c..c.ccccceuee. 113
7.7.1.4.1 Default.cr8 File........ccoocevvienieieieeceeeeee e 114

7.7.1.4.2 Executable File Run Priorities..........ccccoeovevvenerennne 114

7.7.2 CR800 Configuration — Detailsccceevereeriieiiinieneeeeee 115
7.7.2.1 Updating the Operating System (OS).......ccccoceveevverrenennne 115
7.7.2.1.1 OS Update with DevConfig Send OS Tab............... 116

7.7.2.1.2 OS Update with DevConfig........c.ccceevververeeriannnns 117

7.7.2.1.3 OS Update with DevConfig..........ccccccererirenencnee. 117

7.7.2.1.4 OS Update with DevConfig........c..ccceeevervenvenrinnnne 119

7.7.2.2 Restoring Factory Defaultscccooveviivciiiciinieeniciies 120

7.7.2.3 Saving and Restoring Configurationsc.cceeverveennnne 120

7.8 CRBasic Programming — Detailsccoeeeveeriieieniieiiecieneeieeene 120
7.8.1 Program StrUCTUTE......ccueerieiriierieerieeeiee sttt siee e s e 121

11

Table of Contents

7.8.2 Writing and Editing Programsccceveeiieiinienienceeeeee, 123
7.8.2.1 Short Cut Programming Wizard............ccccceeeeenenennnenne. 123
7.8.2.2 CRBaSIC EdItOrcceoviiieieieieeeeeeeeeee e 123

7.8.2.2.1 Inserting Comments into Program..........c..ccccccceee. 124
7.8.2.2.2 Conserving Program Memorycccccceevervvennenne. 124

7.8.3 Sending CRBasic Programs.............cccceceeveenienieenieeeesneseeseeenne 124
7.8.3.1 Preserving Data at Program Send...........c.cccceeevvrvenvennnnne. 125

7.8.4 Programming SYNTaXcceccvereerieerierierieniienieeseeseenesnesseens 126
7.8.4.1 Program Statementsccceecveervueerieeriieeniueenieeenieessneennne 126

7.8.4.1.1 Multiple Statements on One Line.........c...ccecuvennenne. 126
7.8.4.1.2 One Statement on Multiple Linesc..ccccocerueeueee 126
7.8.4.2 Single-Statement Declarationscecceceeverenenenennennns 127
7.8.4.3 Declaring Variables..........cccccoevenineneneeienenenencneeeens 127
7.8.4.3.1 Declaring Data Typesccceeeeeveerienieeieniecieneee 128
7.8.4.3.2 Dimensioning Numeric Variablesc.cccccceeeenee. 132
7.8.4.3.3 Dimensioning String Variables...........ccccecereenenne. 132
7.8.4.3.4 Declaring Flag Variablescccccoeniienincncncnne. 133
7.8.4.4 Declaring ATITAYScccceeeverierierieeeeeieeiieeeie e 133
7.8.4.5 Declaring Local and Global Variables.............c.cccceeerueeee. 134
7.8.4.6 Initializing Variables..........c.ceceveverierienieniieieeeeeeesieennns 135
7.8.4.7 Declaring CONnStantsccceeeveeevereereereenreesseseesaesseesnens 135
7.8.4.7.1 Predefined Constantsccceceeceevuerieneneneneeeenens 136
7.8.4.8 Declaring Aliases and UnitS...........cceeeeevverieevienienieneennens 136
7.8.4.9 Numerical FOrmats........c.ccocevererererienieneneneneneeeeeenen 137
7.8.4.10 Multi-Statement Declarationscccccevvevveceenieneennen. 138
7.8.4.10.1 Declaring Data Tablesccccoeeevverrecirnienienen. 138
7.8.4.10.2 Declaring Subroutingsc...coceeeverenereeeeeenens 145
7.8.4.10.3 'Include' Fileccooeirineininciniincincceccee 145
7.8.4.10.4 Declaring Subroutinesccoeeeeveereeeseeneeneennn. 149
7.8.4.10.5 Declaring Incidental Sequences...........c.cccecuerueennee. 149
7.8.4.11 Execution and Task Priority.........cccccceevvevieviiecieecnennennen. 149
7.8.4.11.1 Pipeline Mode.........cceeverieniieniieiieieeiesiieeeie e 150
7.8.4.11.2 Sequential Mode.........ccoevvereieriieciieieeieceeeeeeee, 151
7.8.4.12 Execution Timing........cccceeveereerienienieieeieeeeseeseeee e 152
7.8.4.12.1 Scan() / NeXtSCanceveerererieiieieeieseeseeeeeenees 153
7.8.4.12.2 SlowSequence / EndSequence...........ccccverueennnnee. 153
7.8.4.12.3 SubScan() / NextSubScan..........ccecvevvveerriercveennen. 154
7.8.4.12.4 Scan Priorities in Sequential Mode........................ 154
7.8.4.13 Programming InStructionscccceevueeveeeeneenceneeneennne. 156
7.8.4.13.1 Measurement and Data-Storage Processing........... 156
7.8.4.13.2 Argument TYPES ..c.ceecvevvriieeiiieeiieeiie e 157
7.8.4.13.3 Names in ATgUMENLSc.cccvevreerreerreererrenerenneennes 157
7.8.4.14 EXpressions in ArgUMENLS.........c.cecverreerveerreecvennesvenseennes 158
7.8.4.15 Programming Expression Typesccccceevvvecveecvervennnenne. 158
7.8.4.15.1 Floating-Point Arithmetic.........cccecevvenenenercnnene 159
7.8.4.15.2 Mathematical Operations..........ccceeeevvererenerernne 159
7.8.4.15.3 Expressions with Numeric Data Types........c......... 160
7.8.4.15.4 Logical EXPressions.ccoeeeevueenieenieesieneeneeneennes 162
7.8.4.15.5 String EXPressionscceeeeeereereenieesienieneeneene 164
7.8.4.16 Programming Access to Data Tablesccccoecuereerennne. 165
7.8.4.17 Programming to Use Signatures........cc.cceceeeevveneenieennen. 167
7.9 Programming Resource Librarycccoocevoeiiriiienienieninenc e 167

12

Table of Contents

7.9.1 Advanced Programming Techniques...........ccoccovveevvenieiinennnnnne 167
7.9.1.1 Capturing EVents........ccoccevvieriinienieinienieneeeee e 167
7.9.1.2 Conditional OULPUL..........ccueriiriririeieieieee e 168
7.9.1.3 Groundwater Pump Testcccceevieiiniiniiiieneececeee 169
7.9.1.4 Miscellaneous Features............cocoecevereeiienienenenienciceene 172
7.9.1.5 PulseCountReset InStructioncecceeeeveenerenenencenns 175
7.9.1.6 SCAlING AITAY ...ccvvevieriiiieieeieeieerte e ereeeee e e e sreesaeesae e 175
7.9.1.7 Signatures: Example Programscccecevvverveneenieenenne 176

7.9.1.7.1 TeXt SINALULEccvvevieeiereieiieieeieeresresiee e eeeenens 176
7.9.1.7.2 Binary Runtime Signaturec.cccceveververeenueenenne 176
7.9.1.7.3 Executable Code Signatures.........c.cccccvverereruerneeneee 176
7.9.1.8 Use of Multiple Scans........ccccoceverereeeenieneneneneneneenens 177

7.9.2 Compiling: Conditional Code........c..cccererereeienenineneneneeenn 178

7.9.3 Displaying Data: Custom Menus — Details...........cccceevvenreens 180

7.9.4 Data Input: Loading Large Data Setsccecceeeueiieneeneenreenns 186

7.9.5 Data Input: Array-Assigned EXpressionccocceveeeveenvenreenns 187

7.9.6 Data Output: Calculating Running Average...........c.ccoceeeeeenee. 190

7.9.7 Data Output: Triggers and Omitting Samplesc.cccceeeeeneee. 193

7.9.8 Data Output: Two Intervals in One Data Table............c..c......... 195

7.9.9 Data Output: Using Data Type BoolS8..........cccceeevvviirvenieiienens 196

7.9.10 Data Output: Using Data Type NSECcccceeeiviivienieiiennns 200
7.9.10.1 NSEC OPtONS.....ceteieiinieniinenieeiieteienieniesie e sieeieesenens 200

7.9.11 Field Calibration — Details.........coceevereeienienienininenceieeene 203
7.9.11.1 Field Calibration CAL Files......ccccccceeereninenenienneeicnnns 204
7.9.11.2 Field Calibration Programming............cccceeveveereeneennne 204
7.9.11.3 Field Calibration Wizard OVerviewcccecceeeerueennnne 205
7.9.11.4 Field Calibration Numeric Monitor Procedures.............. 205

7.9.11.4.1 One-Point Calibrations (Zero or Offset)................ 206
7.9.11.4.2 Two-Point Calibrations (gain and offset) 206
7.9.11.4.3 Zero Basis Point Calibration...........cccccecceveenienne 207
7.9.11.5 Field Calibration Examples...........cccceevvrevercienienieieennns 207
7.9.11.5.1 FieldCal() Zero or Tare (Opt 0) Example.............. 207
7.9.11.5.2 FieldCal() Offset (Opt 1) Example...........c.c.o....... 209
7.9.11.5.3 FieldCal() Slope and Offset (Opt 2) Example 211
7.9.11.5.4 FieldCal() Slope (Opt 3) Example..........ccceeunee. 214
7.9.11.5.5 FieldCal() Zero Basis (Opt 4) Example --
8 10 30t 216
7.9.11.6 Field Calibration Strain Examplescccccooveevirinnene 216
7.9.11.6.1 Field Calibration Strain Examples............ccccccee.. 217
7.9.11.6.2 Field Calibration Strain Examples...............c........ 217
7.9.11.6.3 FieldCalStrain() Quarter-Bridge Shunt Example... 219
7.9.11.6.4 FieldCalStrain() Quarter-Bridge Zero 220

7.9.12 Measurement: Excite, Delay, Measurec.ocevevervenneeneennnns 221

7.9.13 Measurement: Faster Analog Rates........ccccoeevveeeevcienienieeinennnn. 221
7.9.13.1 Measurements from 1 to 100 HZ.........c.cceevvnieniiennnn. 223
7.9.13.2 Measurement Rate: 101 to 600 Hz..........ccoceevieeniennnnnn. 224

7.9.13.2.1 Measurements from 101 to 600 Hz 2 224
7.9.13.3 Measurement Rate: 601 to 2000 Hz...........cccoceeveerenennne 225

7.9.14 Measurement: PRTcoocooiiiiiiiiieeee e 227

7.9.14.1 Measuring PT100s (100 Q PRTS)ceovrieiiiiieiieieene 227
7.9.14.1.1 Self-Heating and Resolution............ccccceeereeeeneenee. 227
7.9.14.1.2 PRT Calculation Standards...........cccccocerereeeeenee. 227

7.9.14.2 PT100 in Four-Wire Half-Bridge..........ccccooeerirenreeneenne 231

13

Table of Contents

14

7.9.14.2.1 Calculating the Excitation Voltage....................... 231
7.9.14.2.2 Calculating the BrHalf4W() Multiplier 232
7.9.14.2.3 Choosing Rf.......ccccooiiiiiiiiiiieeeeeee, 232
7.9.14.3 PT100 in Three-Wire Half Bridge..........cccccevevenennnecnne. 233
7.9.14.4 PT100 in Four-Wire Full-Bridge..........c.ccceevvevverreennnnen. 235
7.9.15 PLC Control — Details........ccccoceririeiienienienenescnceeeesieee 237
7.9.16 Serial I/O: Capturing Serial Data...........cccoveevievieeieneereenenen. 238
7.9.16.1 INtroduction........c.ccocevererereeienienieneneeeeeeeeeeene e 238
7.9.16.2 T/O POILS c..cvenenieiiienieciteieeeee et 239
7.9.16.3 ProtoCOIS...c..eevteiiriniinierieieeeeseeeeee e 240
7.9.16.4 Glossary of Serial I/O Termsccecceveevereevenenenennenns 240
7.9.16.5 Serial I/O CRBasic Programming............c.cceccvevereeneee 242
7.9.16.5.1 Serial I/O Programming Basicsccoccecevereennee 242
7.9.16.5.2 Serial I/O Input Programming Basics.................... 244
7.9.16.5.3 Serial I/O Output Programming Basics 245
7.9.16.5.4 Serial I/O Translating Bytesccccceeeeeeriencenne. 245
7.9.16.5.5 Serial I/O Memory Considerations........................ 246
7.9.16.5.6 Demonstration Program..............cccceoevenenencenenne. 247
7.9.16.6 Serial /0O Application Testingcccceeererererereeneennn. 248
7.9.16.6.1 Configure HyperTerminalcccoevvveireienneennen. 248
7.9.16.6.2 Create Send-Text File........cceceveiinincninineene 251
7.9.16.6.3 Create Text-Capture Fileccocvevvevvecirniiienen. 251
7.9.16.6.4 Serial I/O Example IL.........ccoocvveieiieiieiiieee 251
7.9.16.7 Serial /O Q & A ..ceeiviiiiiinieiceee e 257
7.9.17 Serial I/O: SDI-12 Sensor Support — Programming
RESOUICE ...ttt 259
7.9.17.1 SDI-12 Transparent Mode..........ccccecuerenenerenenceeennennen 260
7.9.17.1.1 SDI-12 Transparent Mode Commands.................. 261
7.9.17.2 SDI-12 Recorder Modecceoeeeerienieniieieeieeieeeeeen 265
7.9.17.3 SDI-12 Sensor Mode..........ceceeverriiriiiienieeeieeieeee e 272
7.9.17.4 SDI-12 Power Considerations........c..cecceceeveeruenenenenenne 274
7.9.18 String OPErationsc.ecverreerueerueereerrerrenseereeesseesesaeseesseeses 275
7.9.18.1 String OPEratorscceevveerueereeerereerieereeereereeeesnenseennes 275
7.9.18.2 String Concatenationcceeeueeeereeerieesienseeeeeneeneeennes 276
7.9.18.3 String NULL Characterccccoceeerereeieneenieneneneneenn 278
7.9.18.4 Inserting String Characters..........coceeeeeeveneenreneneneneenn 279
7.9.18.5 Extracting String Characterscc.cceeeeveeeeneeneeneennen. 279
7.9.18.6 String Use of ASCII/ ANSII Codescccoceveervenueanen. 279
7.9.18.7 Formatting Strings........ccceceeeveriereeneeneeieeie e 280
7.9.18.8 Formatting String Hexadecimal Variables...................... 280
7.9.19 SUDTOULNESeeueeniiieieieieeieetieee ettt st 281
7.9.20 TCP/IP — Details ...cc.eoueeeieieieieieesieeieeeeee e 282
7.9.20.1 PakBus Over TCP/IP and Callback..........c.cccccrererennenn. 283
7.9.20.2 Default HTTP Web Server.........cocceovevevenenenicncnineenne. 283
7.9.20.3 Custom HTTP Web Servercccccceveveninincnicneenecnn. 284
7.9.20.4 FTP SEIVET ..ccueruiriiiiiiiiiinienieniceieeieeteeetenie e 287
7.9.20.5 FTP CHENt...cc.eoveiiiiiiiiiinienerieeeecceeene e 287
7.9.20.6 TeINCt ...c..eoeieiieiieieeieee e 287
7.9.20.7 SNMP ..ottt 287
7.9.20.8 PING (IP) .eueeviriiieiiiiieineeeree e 288
7.9.20.9 Micro-Serial SerVer.......ccooerienieniieieeieeieseeeee e 288
7.9.20.10 Modbus TCP/IP.......cccoceveviriniiiinieieineeeseeeeeee 288

Table of Contents

7.9.20.11 DHCP....ooiiiiiieeeeeeeee ettt 288
7.9.20.12 DINS L.ttt 288
7.9.20.13 SMTP .o 288
7.9.21 WiInNd VECIOT ..o.eviieiieiiieeiee ettt ettt e e veeevee e 288
7.9.21.1 OutputOpt Parameters.........ccccveeveerrireerienirieeieesieeeneenn 289
7.9.21.2 Wind Vector Processing..........ccoevvereerieerveiceeseeseenieenens 289
7.9.21.2.1 Measured Raw Datacccccovevrieiieieiienieiienns 290
7.9.21.2.2 Calculations..........ccveeveevereeneenieeieseesreseeeneeeneens 291

8. Operation ... ————— 295

8.1 Measurements — Detailsccceverieiiiieniniinincneecccceeee 295
8.1.1 Time Keeping — DetailS........cccecverieriieiieieeieeiesieseeie e 295
8.1.1.1 Time StAmMPSccvevrieriieieeierienieerieeieeve e sreeseenaesnesenees 295
8.1.2 Analog Measurements — Details...........ccccereerieiienienenres 297
8.1.2.1 Voltage Measurements — Details.........ccceveereenrecrnnene 297
8.1.2.1.1 Voltage Measurement Mechanics............ccceevuerneenne 297
8.1.2.1.2 Voltage Measurement Limitationsc..ccccceeueenee 300
8.1.2.1.3 Voltage Measurement Quality..........cccceveevvrnrneene 303

8.1.2.2 Thermocouple Measurements —- Details............c.ccc...... 319
8.1.2.3 Current Measurements — Detailsccccceoererenenienne 319
8.1.2.4 Resistance Measurements — Detailscccooceveneniennne 319
8.1.2.4.1 Ac EXCItationcccuevviiieriiriiiieieieee e 323
8.1.2.4.2 Resistance Measurements — ACCUIacy................... 323

8.1.2.5 Strain Measurements — Details...........ccccoveveninencnnnnns 324
8.1.2.6 Auto-Calibration — DetailScceevvereeerierienieieieene 326
8.1.2.6.1 Auto Calibration Process..........c.cceeeververvenrenerannnne 326

8.1.3 Pulse Measurements — Detailsccoeceeviereieicienienieiieieens 331
8.1.3.1 Pulse Measurement Terminalsccccceveeereinieeniennenene 333
8.1.3.2 Low-Level Ac Measurements — Details............cccceeneene 334
8.1.3.3 High-Frequency Measurementscceeeevveeveeeveneenneene 334
8.1.3.3.1 Frequency Resolution............ccceeevevverveneenieeieenenns 335
8.1.3.3.2 Frequency Measurement Q & A.......c.eeevvevvvenueenns 336

8.1.3.4 Switch-Closure and Open-Collector Measurements.......... 336
8.1.3.5 Edge Timing.......cceocvevviriiieienieieeiieie et ese e 337
8.1.3.6 Edge Countingccceeevveierieniieiieieeie e 337
8.1.3.7 Pulse Measurement Tipscccecvervierieecierienieneenieeieenenns 338
8.1.3.7.1 TimerIO() NAN Conditionscccccvererererereencee 340
8.1.3.7.2 Input Filters and Signal Attenuation.........c....c........ 340

8.1.4 Period Averaging — Details...........ccooverieiinienieiiececeeee 341
8.1.5 Vibrating-Wire Measurements — Detailsccccceveenerienne 343
8.1.5.1 Time-Domain Measurementcccecueeeereeneenueenueeeenne 343
8.1.6 Reading Smart Sensors — Details.........cccecoereerieiienieniirens 344
8.1.6.1 RS-232and TTL ...oouiiiiiiiiee e 344
8.1.6.2 SDI-12 Sensor Support — Detailscccccveveereenreeniennnns 344
8.1.7 Field Calibration — OVEIVIEWccceeereeierienienienienieneeeeieenen 345
8.1.8 Cabling EffectScccvevvieriieiieiicieciieeee e 345
8.1.8.1 Analog-Sensor Cables..........cceoverrieriercienieiieneeneereeeens 345
8.1.8.2 PulSe SenSOrscccceoveieviirineriininccicecce e 345
8.1.8.3 RS-232 SENSOTS....cetriiriiniieiieieeieeientenee e 346
8.1.8.4 SDI-12 SENSOTS ...couvieuririreniieiieieeieereere st seenieenae e enneees 346
8.1.9 Synchronizing Measurements.............cceceereereerreeseeneenieeneeeneenns 346
8.2 Measurement and Control Peripherals — Details...........cccccevveirennene 348

15

Table of Contents

16

8.3

8.4

8.5

8.2.1 Analog-Input Modules...........cccuereeriiiiriieieeeeeereee e 348
8.2.2 Pulse-Input Modules..........ccceruiriinieniiniiiiiieeeeeeeee 348
8.2.2.1 Low-Level Ac Input Modules — Overview 348
8.2.3 Serial I/O Modules — Detailsccocevereiieieieieseseeeeeeeene 348
8.2.4 Terminal-Input Modules.........cccoecvieierierieniieie e 349
8.2.5 Vibrating-Wire Modules..........c..ccveviirierienieiieie e 349
8.2.6 Analog-Output Modulescccoecvieierienienieie e 349
8.2.7 PLC Control Modules — OVEIVIEWcccceceeveeerienenenenennns 349
8.2.7.1 Terminals Configured for Control.............ccccevvervenurnnnnn. 349
8.2.7.2 Relays and Relay DIivers.........ccccooceerverieecieecienienieieennens 350
8.2.7.3 Component-Built Relays........c.ccocvvererienenininincnencenn. 350
MEIMOTY ...ttt s 351
8.3.1 Storage Media........ccevuiririreriiiiiiieneseseeceteee e 351
8.3.1.1 Memory Drives — On-Boardccccoviriiiiiniieenene 355
8.3.1.1.1 Data Table SRAMcccceoiiiiiiiiiiieeeeeeeeene 355
8.3.1.1.2 CPU: DIIVe .eoouiiiieiieieeieeiee ettt 355
8.3.1.1.3 USRI DIIVe .cueiuiiiiiiieieeeeeeeeee e 355
8.3.1.1.4 USB: DIIVe ..uteuiiiiiiieiieeieeeeieee et 356

8.3.2 Data-File FOrmatscceceeoieiiiiiiiie e 357
8.3.3 Resetting the CR800c.cccvevieiieiieieeieceecee e 360
8.3.3.1 Full Memory Reset........cccuevvieeiiiieiienieieeeie e 360
8.3.3.2 Program Send ReSet.........ccveviirierienieieeeie e 361
8.3.3.3 Manual Data-Table Reset.........ccceeceeienieneninincncnieenees 361
8.3.3.4 Formatting DIIVeScceceerveeriieieiierieeeeie e 361
8.3.4 File Managementcceeuerueerieniienieeee e 361
8.3.4.1 File AtIIDULES ...oeevvieeiiecieeciee e 363
8.3.4.2 Files Manager........ccceeeevuieniieiieieeee et 363
8.3.4.3 Data Preservationccocceveeeieeienienieneeieee e 364
8.3.4.4 Powerup.ini File — Details........ccccceevveviievieiienieiieieeeene 365
8.3.4.4.1 Creating and Editing Powerup.ini............ccccvevvennnne 366

8.3.4.5 File Management Q & A.......ccoeoveviveriiecieeieeieeeeeeie e 368
8.3.5 File NAMES ...c.erueiiiiieieiinieeierieet ettt 368
8.3.6 File-System EITOrs........c.cccveviieiiieiieieciecieeee e 368
Data Retrieval and Telecommunications — Detailsccccceeveenee.. 370
84,1 PIOtOCOIS ...vvieiiieiiieiieeiee ettt et e et e e e ebe e enae e 370
8.4.2 Conserving Bandwidthcccccceveiinininininiininnnceceeee 370
8.4.3 Initiating Telecommunications (Callback)...........ccccceeceervenennnen. 371
PakBus® Communications — Detailscccoecereniniiniiniires 372
8.5.1 PakBus AddIesses.......ccoueruieriieiiieiieieeiesiiesie e 372
8.5.2 Nodes: Leaf Nodes and ROULETScceererieienienienicniiceceee 372
8.5.2.1 Router and Leaf-Node Configuration............c...ceevevennnne 373
8.5.3 Linking PakBus Nodes: Neighbor Discovery.........c.ccccoevenveennen. 374
8.5.3.1 Hello-MESSaE.......cccvervieiieiieieeiieriesieeie e srae e 375
8.5.3.2 BRACON. ..ccuiiiiiiiiiiiiicieceet e 375
8.5.3.3 Hello-RequUest........coeeriieriieiieiecie et 375
8.5.3.4 Neighbor ListS.....c.ccceevieriieiieieeie et 375
8.5.3.5 Adjusting Links.........ccceevuierieeiierieiieniee e 375
8.5.3.6 Maintaining Linkscccceeeeeiiriieiienieiecee e 376
8.5.4 PakBus Troubleshooting...........cceoeereriiiiinienieceeeeeeeeee 376
8.5.4.1 Link INtEGIILY ...eovvevieeieiieieieie et 376
8.5.4.1.1 Automatic Packet-Size Adjustment.............cc......... 376

8.5.4.2 Ping (PakBuUs)ccceviiiiieiiieiiiieie et 377

Table of Contents

8.5.4.3 Traffic FIOW ..c.eoeiiiiiiieeeeee e 377
8.5.5 LoggerNet Network-Map Configuration............cccceeveeneeeencenns 377
8.5.6 PakBus LAN EXample.......cccoooiiiiniiniiiiieienienieceeeeeee e 379

8.5.6.1 LAN WITING ...eitiiiiiieiieieiesiesere sttt 379

8.5.6.2 LAN SCUUD c-veveteiieeiieiieieiertese ettt 380

8.5.6.3 LoggerNet SEtUPoevvveeriieeiieeiie ettt 382
8.5.7 RoUte FIlterscooueviiriiriiiieiieieeeee e 384
8.5.8 PakBUSROULES........ccueriiiiriiriieieieiercec e 384
8.5.9 NEIGNDOTS ...cevieiiieiieiiecie ettt ees 385
8.5.10 PakBus ENCryptioncccceevverieniieniieieeiesie e seeseeeseese e 385

8.6 Alternate Telecommunications — Detailsccoecereerierienrenirene 386
8.6.1 DNP3 — DEtailS.....ccceeieieieieieeiieiieiieieieiesie e 387
8.6.1.1 DNP3 Introduction..........ccceeveeerieeriierieeieeieseeseesee e 387
8.6.1.2 Programming for DNP3cccoiiiiiiiiiiiieceeee 387
8.6.1.2.1 Declarations (DNP3 Programming)ccccceue... 387
8.6.1.2.2 CRBasic Instructions (DNP3)cccceevvveeiienreenne. 388
8.6.1.2.3 Programming for DNP3 Data Acquisition............... 389

8.6.2 Modbus — Details.......cceuerieriiiiiiiieieieee e 391
8.6.2.1 Modbus Terminology..........cceceeveererenenineiieieeeieeee 391
8.6.2.1.1 Glossary of Modbus Termscccceeeveeveriereennnnns 392

8.6.2.2 Programming for Modbus..........ccccevveriieriieciieieeiesiieiens 392
8.6.2.2.1 Declarations (Modbus Programming) 392
8.6.2.2.2 CRBasic Instructions (Modbus)c.cccevverrennne 393
8.6.2.2.3 Addressing (ModbusAddr)........ccceevvveevircienieniiennns 393
8.6.2.2.4 Supported Modbus Function Codes...........ccccuennenn. 393
8.6.2.2.5 Reading Inverse-Format Modbus Registers 394

8.6.2.3 Troubleshooting (Modbus)..........ccccevierieririieieeiereene 394

8.6.2.4 Modbus over IP........cccooiiiiiiiiiiieeeeee 394

8.6.2.5 Modbus Q and Acceeoveeeiiiieiieeie e 395

8.6.2.6 Converting Modbus 16-Bit to 32-Bit Longs 395
8.6.3 TCP/IP — DetailS....cceoeruereeriieiieieienieniesieeeeeeteeese e 396

8.6.3.1 PakBus Over TCP/IP and Callback...........cccccovenerercnunne 396

8.6.3.2 Default HTTP Web Server.......c.ccocvveveeienienieninencncnene 397

8.6.3.3 Custom HTTP Web Servercccceevvrienienieneeeeeeeenne 398

8.6.3.4 FTP SEIVEr ...ocueeiiieiietee et 400

8.6.3.5 FTP CleNt....ccuiceieiieiieiieieieieeieee et 400

8.6.3.6 TEINEL ..o 401

8.0.3.7 SNMP....oiiiiii ettt 401

8.6.3.8 PiNG (IP) .ueiiiiieiieiieeieeee et 401

8.6.3.9 Micro-Serial Server........cocovviiirieieieee e 401

8.6.3.10 Modbus TCP/IP......ccoiiiiiiieieieeeee e 401

8.0.3.11 DHCP ..ottt 401

8.0.3.12 DINS Lo 402

8.0.3.13 SMTP ..ot 402

8.0.3.14 Web APL....co.oiiiiiiiiiiieecccee e 402

8.6.3.14.1 Authenticationc.ccecevvereeieneenenineneneeieeenne 402
8.6.3.14.2 Command SYNtaxccceveereerueerierrerienieneeeneens 403
8.6.3.14.3 Time SYNtAX ...eeoeeeuieiiieiiieiierieeie et 405
8.6.3.14.4 Data Management — BrowseSymbols

ComMANdcoceeiieiieieeee e 405
8.6.3.14.5 Data Management — DataQuery Command......... 409
8.6.3.14.6 Control — SetValueEx Commandcc..c....... 415
8.6.3.14.7 Clock Functions — ClockSet Command............... 417

17

Table of Contents

8.6.3.14.8 Clock Functions — ClockCheck Command.......... 419

8.6.3.14.9 File Management — Sending a File to a
Datalog@erooveieiieeeiieieeee e 420
8.6.3.14.10 File Management — FileControl Command 422
8.6.3.14.11 File Management — ListFiles Command............ 424
8.6.3.14.12 File Management — NewestFile Command........ 428
8.7 Datalogger Support Software — DetailS.........ccceeevvveiivienieniieieeienens 429
8.8 Keyboard Display — Detailsccoccuevierienieieeie e 430
8.8.1 Data DISPlaycceecverieriieriieiieieeieeie sttt 432
8.8.1.1 Real-Time Tables and Graphs...........ccccceveverveniieciervennnnns 433
8.8.1.2 Real-Time CuStOmccueveeriieriieieeie e 433
8.8.1.3 Final-Memory Tables......c..cccccoeruerinenenieninieiciencncnans 435
8.8.2 Run/Stop Programccccecevererieienicniininineeceecceseseee 436
8.8.3 File Display.....ccceeiiiieiieiieieeeeeseee e 437
8.8.3.1 File: Edit.ccuecieieiiiiii et 437
8.8.4 Ports and Status.........cceeieiiieiieieeieeieeee e 438
8.8.5 SELLINES ..euvevieieiieiieiee ettt 439
8.8.5.1 Set Time / Date......cccceeueeieiieieieieieeeeceee e 439
8.8.5.2 PakBus Settings........cccceeeerierierienieiieeiieiceieie e 440
8.8.6 Configure Display.........cccceevieviieciieierierienie et 440
8.9 Program and OS File Compression Q and A...........cccoeevvevenieneenieennnn. 440
8.10 Security — DEtailSccuveeieieeiieiieieeieee e 443
8.10.1 VUuINerabilitiesccccocevereririeniirienieneneeeeteteie e 443
8.10.2 Pass-Code Lockout.......cccceeeieiiniinininineeicieicienecseseeeeene 444
8.10.2.1 Pass-Code Lockout By-Pass.........ccccceevievieiiniinieienen. 445
8.10.3 PaSSWOIAS ..c..eeveieiieieeieeiieeiee ettt 446
8.10.3.1 .cSIPASSWA ..eoniieieeeiieiieieeee e 446
8.10.3.2 PakBus INStructions.........cccceeerieiienienienceieeeeceecenee 446
8.10.3.3 TCP/IP INStrUCtIONSccvveueeuieieiinierieeieeeeieneeniese e 446
8.10.3.4 Settings — Passwordscceeuevverieriierieeieneeneeieennns 446
8.10.4 File ENCIYPHON ..ottt 447
8.10.5 Communication ENCryption..........ccceeevereerreniieniesieenieneeieennns 447
8.10.6 Hiding Filescocvveiieiieiieiieiieieee et 447
8.10.7 SIZNATUIESeeeeieiieiieieeeieetieste ettt ettt 447
9. Maintenance — Details............ccoeiiiiiiiimmiieccci, 449
9.1 Protection from Moisture — Detailsc.ccooeerieiieiiniiieieeeeeee, 449
9.2 Replacing the Internal Battery..........ccccoeveerieiinienierieeeeee e 449
9.3 Factory Calibration or Repair Procedure............cccoceevieiiniininenenne. 452
10. Troubleshooting...........cmmrmmiiiiimmicsii e, 455
10.1 Troubleshooting — Essential TOOIScccoceevienieniiiiieiecieeeeee, 455
10.2 Troubleshooting — Basic Procedure..........cccoooeeieieiienineniieecee 455
10.3 Troubleshooting — EIror SOUICES........cceeerueeuieieieie e 455
10.4 Troubleshooting — Status Table..........ccccoeceririeiieieiireee e 457
10.5 Programiming..........c.ccceeeveeereeeueivereeseesseesseesesssesseesseessesssesssessesseesses 457
10.5.1 Program Does Not Compile...........ccvevieierienienieenieereere e 457
10.5.2 Program Compiles / Does Not Run Correctlyccccocereeueeee. 457
10.5.3 NAN and £INFooiiiiiiiiiieieeeeeetee e 458
10.5.3.1 Measurements and NANccccocevvirieieneneneneneneeene 458

18

Table of Contents

10.5.3.1.1 Voltage Measurementsccccceeeereeeneeesueeuennnnns 458

10.5.3.1.2 SDI-12 Measurements.........cc.cceeuereereeneeneeenuennens 458

10.5.3.2 Floating-Point Math, NAN, and £INFc.cccceeeee. 458
10.5.3.3 Data Types, NAN, and £INFccoceiiiiiiiniiiieee 459
10.5.3.4 Output Processing and NANccccceevieviiiviieienienieennene 460

10.5.4 Status Table as Debug Resource..........ccccevveviievieieeieneenieennns 461
10.5.4.1 CompileReSUltScceevvieviieiiiieiiereeeere e 461
10.5.4.2 SKIpPedSCan.........ccuevveriierieeieiieiieseene e 463
10.5.4.3 SKippedSIoWScan.........cceecveriereerieneerieee e eve e 463
10.5.4.4 SKippedRecord........cccvevieriieiiiiieiieriereee e 464
10.5.4.5 PrOGEITOIS ..coiuiiiiiiiiiieiiteeiee ettt ettt 464
10.5.4.6 MemOryFree.......cocoooiiiiiiiiiiieieeeccccceeee e 464
10.5.4.7 VarOutOfBoundsceceeeuieierienieniee e 464
10.5.4.8 Watchdog EITOrScovuieiiiiiieiecieceeee e 464
10.5.4.8.1 Status Table WatchdogErrors..........cccocevienieennenn. 465

10.5.4.8.2 Watchdoginfo.txt File........ccccceriiniiiiiiiniiee 465

10.6 Troubleshooting — Operating SyStemsccceeeeruerererereeeeneeeenn 466
10.7 Troubleshooting — Auto-Calibration Errorscccceeceveeeeeeninnnene 466
10.8 COMMUNICATIONS ...eouvienteeniieiieiiientienteete et stte st este ettt seeesieenieeneeens 466
T0.8.1 RS-232 ittt 466
10.8.2 Communicating with Multiple PCScccocvevieviiiciiniiniennnns 467
10.8.3 Comms Memory EIrorscoooveviiiiinienniiiinieniiecieeieeeee e 467
10.8.3.1 CommsMemFTee(1).....cceevverviriiirieiieiieieeie e 467
10.8.3.2 CommSMemFTE(2)cceevvveririeeierierienierie e 468
10.8.3.3 CommsMemFTee(3)cccevvvervieriirieeieeieeeereee e 469

10.9 Troubleshooting — Power SUpplies........ccecceeruerierieneenieeeieeieieens 469
10.9.1 Troubleshooting Power Supplies — Overviewc.cceeunee. 470
10.9.2 Troubleshooting Power Supplies — Examples -- 8 10 30........ 470
10.9.3 Troubleshooting Power Supplies — Procedures 470
10.9.3.1 Battery TeSt..cccuieviieeiieiiieeiie ettt 470
10.9.3.2 Charging Regulator with Solar-Panel Test...................... 471
10.9.3.3 Charging Regulator with Transformer Test 473
10.9.3.4 Adjusting Charging Voltageccceevevveecveeienvenieennen. 474

10.10 Terminal Mode.........cocueeeieiiiieiieieee e 475
10.10.1 Serial Talk Through and Comms Watchccccceveenenen. 477
LOULT LLOZS . ueetiieiietereeiiete sttt ettt ettt sttt st sttt st eb e eene 478
10.12 Troubleshooting — Data Recovery.........coocovveniiniinieiineiieceee 478
TR €] (o E=T=T- 1 481
L1.T TOIMMS ettt ettt sttt 481
11,2 COMCOPLS ..ttt sttt ettt sttt 507
11.2.1 Accuracy, Precision, and Resolutionccoceeeninincncncnne 507

12. Attributions ... e e eenen . D09

Appendices
A. CRBasic Programming Instructions...................... 511
A.1 Program Declarations...........cocueveereeniinieniiiienieneesieeeee e 511
A.1.1 Variable Declarations & Modifiers........c..cocecerererinencnenencnncnn 512

19

Table of Contents

20

A.1.2 Constant Declarations............cceceeeueeeeeienieneeneere e 513
A.2 Data-Table Declarations..........c.cceeeeeierienienienieie e 514
A.2.1 Data-Table MOdifiers.........ccceeruerireniiiiceieieee e 514
A.2.2 Data DestinationsS.........cecuereerieriienieeieeieeeesee e 515
A.2.3 Processing for Output to Final-Data Memory.............ccceeeveeneenne 516
A.2.3.1 SiNGLE-SOUICEecvieeiierieiieiieiieie ettt 516

A.2.3.2 MUltiple-SOUICE.......cceivierierieiieieeieeee e eae e 518

A.3 Single Execution at Compile...........ceeveriieriiecieeienienieseee e 518
A.4 Program Control INStruCtionsc.ecveveeriiecienieniesiesieesieeee e e 519
A.4.1 Common Program Controlsccecveeveeceerreniieneenieneeieenens 519
A.4.2 Advanced Program Controls..........cocceereeeecienienenineneneneene. 522
A.5 Measurement INStIUCLIONSc.eecveeeiereierieiieieeie et seeesee e 524
A.5.1 DIAGNOSLICS ...ouvinviviieriieiieiietetententene ettt 524
AS5.2 VOIAZE. .o 525
A.5.3 Thermocouples.ccovierieiiieiiiieeieeeee e 525
A.5.4 Resistive-Bridge Measurementsccecceeeeeeiereeneeneeneeeeans 525
A.5.5 EXCIHAION ..ttt st 526
A.5.6 Pulse and Frequencyccoovvveierieniieniieieeieeieseesre e 527
A5.T Digital T/O .o 527
AS5.T.1 COntIOL .. 528

A.5.7.2 MEASUTEMENLcoueiuiiiiiiiiiiieiteieeieeiresire sttt 529

A.5.8 SDI-12 Sensor Suppport — Instructionscccceeververeeennenne 529
A.5.9 SPECIfiC SENSOTS....cuveiieriieiieiieieeieeeet et 529
A.5.9.1 Wireless Sensor Networkccceceeveneninencnienicncnnenn 532

A.5.10 Peripheral Device SUPPOITt......ccccceeveeriierieriieeeie e 532
A.6 PLC Control — InStructions.ecueeeeeieeiesiienieereeie e 536
A.7 Processing and Math Instructions...........ccoeceeveenieiieienieiieceeceee 537
A.7.1 Mathematical Operators...........ccceevuirieruienienieeiene e 537
A.7.2 Arithmetic OPeratorscceceerueeiirieniienieneee et 537
A.7.3 BitwiSe OPErations.........cceeveereerrierreerreereeeeseeseesseesseessessseseenns 537
A.7.4 Compound-Assignment OPerators...........cceeverveerreerrersversuennenns 539
A.7.5 Logical OPEratorscceecveeeeereierieeieeieeaesreseesseesseessesnsessnenes 539
A.7.6 Trigonometric FUNCHONS.cccvevvieriieciinieiie e 540
A.7.6.1 Intrinsic Trigonometric Functions............cccccevvevvenreenne 540

A.7.6.2 Derived Trigonometric Functionscccccevevevveneeenne 541

A.7.7 Arithmetic FUNCHONSc.ooovieeiieiieiieiieeee e 542
A.7.8 Integrated ProcessSing........ccoeouerierienienienienie et 544
A.7.9 Spatial ProCesSINGcccevuieiieiiiieniiesieeieee et 545
A.7.10 Other FUNCHONS.coiuieiieiieieeiiesiesieeee e 546
A7.10.1 HiStOZIAMS ..eovveeerieerieiieeiieiieeieereeere e eeee e ereeeeeneeene e 547

A8 String FUNCHONSceeeviiiiieiiciicie ettt 548
A.8.1 String OPErationsccvevveevieeerienreerreereereeseseesreesseesseeneenns 548
A.8.2 String Commandsc.ecuvevuereerienieriieieeie e e seeseesse e e 549
A.9 Time Keeping — INSIUCHONS ...c..eevieevirieeiieiieieeie e 552
A.10 Voice-Modem INStruCtionscecveeeueeeeerierienienieee e eeeseeseeeneens 554
A.11 Custom Menus — INStrucCtions.........oeeeeeevenienieneneneneneeeereneeiene 555
A.12 Serial Input / OULPUL.....cceerieiieier et 556
A.13 Peer-to-Peer PakBus® Communications.cccceeevereereeereeeneeeeenne 558
A.14 Variable Managementccceeeeeieeienieneenieeieeie et see e 562
A.15 File Management..........cccereerueenieenieeieeieeiiesteeieeieeeesee e see e 563
A.16 Data-Table Access and Managementcccceveeereeceeeneenieneennenn 565
A.17 TCP/IP — INStIUCLIONS ...euieiteiiieiieetieicenieie et 567

Table of Contents

A18 Modem Controlooouiiiiiiiieeecee e 571
ATO SCADA ..ot 571
A.20 Calibration FUNCLIONSc.ecoeviiiiiieieieeecieeceee e 572
A21 Satellite SYSTEIMS ..overuieeieieieiiieiieieeieeiteeee ettt 573
AL2TT ATZOS evieiiieeieeeite et ett e et site e st e et esteesibeesaaeesabeessteennseenaneens 573
A21.2 GOES ...t 574
A21.3 OMNISAT .ot et 575
A21.4 INMARSAT-C .ot 575
A.22 User-Defined FUNCHONScceevviiiiieeiiiiieeeieccie e 576

B. Status, Settings, and Data Table Information

(Status/Settings/DTI).........ciiiiiiiiiiiiccci s 577

B.1 Status/Settings/DTI Dir€CtOri€sccververreerieerieeieriesiereeeneeeveeaesenens 578

B.2 Status/Settings/DTI Descriptions (Alphabetical)..........ccceoveervrrennne 585

C. Serial Port Pinouts...........cccoimmieeiciiiinnneeenes 609
C.1 CS I/O Communication POrt.........c..coceeereeieniinineninenceiecencneee 609

C.2 RS-232 Communication Port........ccccoeeereeieniininininencceeceeee 609

C.2.1 PIN-OUL.iiiniiiiiiiecieecieeceeete ettt e e s b e sveeeve e sbaeeareaens 609

C.2.2 POWET StALES....cccueieiiieiieeiieeiieeeieeeteeeieesreeereeebeesseeseseesnnaennns 610

D. ASCII/ ANSI Table........oeeerce e e 613
E. FP2 Data Format..........ccuueniiiiiiiiiiccciiiineeeenes 617
F. Endianness ... 619
G. Supporting Products Listsccccceceiiirreennciiinnncnnn. 621
G.1 Datalog@ers — LiSt ...c.ccceerieriieiieiieieeieseese ettt 621

G.2 Measurement and Control Peripherals — Lists.......cc.ccoecvervecrreiennnene 622

G.3 Sensor-Input Modules Lists.........cccoeoerierierieieiesereeseeeee e 622

G.3.1 Analog-Input Modules List........cccecoeeiiriiriiiiiriereeeeieeeene 622

G.3.2 Pulse-Input Modules List........cccecvvierienienieieeeeeeeeeeieeene 622

G.3.3 Serial /O Modules LiStceceeiirieniinienieeieeceeceeeeeene 622

G.3.4 Vibrating-Wire Input Modules Listcccceeviiiiniinienieneenene 623

G.3.5 Passive Signal Conditioners ListS........cccceevvreeirieenienieniievennnns 623

G.3.5.1 Resistive-Bridge TIM Modules List.........c..ccceevverrievrnnnnne 623

G.3.5.2 Voltage-Divider Modules Listccceeevveiieienienieieennen. 623

G.3.5.3 Current-Shunt Modules List........ccccoceecerveeviininincncncnnn. 624

G.3.5.4 Transient-Voltage Suppressors Listcceeevvenienirnnnne 624

G.3.6 Terminal-Strip Covers LiSt.........cceeerierienieriieieeieeeeieeieeennn 624

G.4 PLC Control Modules — LiStS........ccovueeeiiieiieeiieeiieeiee e 624

G.4.1 Digital-I/O Modules LiStcccoevueverenenenenienicnicneneneneenne 625

G.4.2 Continuous-Analog-Output (CAO) Modules Listcc.c...... 625

G.4.3 Relay-Drivers — LiStcceevieiiiiiieieiierieieec e 625

G.4.4 Current-Excitation Modules LiStcccevienieniiiiniiiieiceen. 625

G.5 SenSOrS — LASES...ceiuiiiiiiiieiieiieeiiest ettt 626

G.5.1 Wired-Sensor Types LiSt.......ccceevieeieieiiienieneenieeieeeeeeeeeieenns 626

21

Table of Contents

22

G.5.2 Wireless-Network Sensors LiSt........ccooceeveerieieniienieneeneeeenee. 627
G.6 Data Retrieval and Telecommunication Peripherals — Lists.............. 627
G.6.1 Keyboard Display — LiSt.....ccceeeierieriiieieeiieieieiesee e 627
G.6.2 Hardwire, Single-Connection Comms Devices List.................. 628
G.6.3 Hardwire, Networking Devices Listccccvevveviecieecneiieneeenne. 628
G.6.4 TCP/IP Links — LSt ...eoueiuieiiiieieienienierie e 629
G.6.5 Telephone Modems Listccccceeveeviieiieiieienienieeie e 629
G.6.6 Private-Network Radios List........ccccoceveririnieenienenincncnieeeneen 629
G.6.7 Satellite Transceivers List........cccceverinereniriienenenineneeeeeenen 629
G.7 Data-Storage Devices — LiSt......cccccevcierienieniieiieieeieseeeeie e 629
G.8 Datalogger Support Software — LiStS.......ccceeceeeevieneneninieneneneenenn 630
G.8.1 Starter SOftware LiSt.........cceeceeriierienieiieieeeeeeee e 630
G.8.2 Datalogger Support Software — LiSt.......ccceceevuerenincncneenenne. 631
G.8.2.1 LoggerNet Suite List.......cevoeevieiieiiieienierieeeeeee e 631
G.8.3 Software Tools List......ccceereroiiriirieieieeeeeeeee e 632
G.8.4 Software Development Kits List.........cccoeveeiinieniieniineeeeee 633
G.9 Power Supplies — Productscceevvevierieriieieeiecieeeeceeieee e 633
G.9.1 Battery / Regulator Combinations Listcccccocevinininneniennene 633
(G.9.2 Batteries LiSt.......ccooiririeieieieieeiesceeee e 634
(G.9.3 Regulators LiSt......cccceervieriieciiiieiiesieieeee et 634
G.9.4 Primary Power Sources List.........ccccvevieriieviinienienieieeieeee e, 634
G.9.5 24 Vdc Power Supply Kits LiStccceevevereveiieieeieeieieeieeee e, 635
G.10 Enclosures — Products..........c.cccevenerininenienieneneneneeceeeeeneee e 635
G.11 Tripods, Towers, and Mounts LiSts.........cccccvevveeveecrenieneenieeieneeenn. 636
G.12 ENCloSures LiSt.......ccceeierieiieieie et 636
INAEX ..o ——— 637
List of Figures
Figure 1. Data-Acquisition System COmMpPONentscceceeveeerueereeereenseennenns 42
Figure 2. Wiring Panelccooooiiiiiiiiiec e 44
Figure 3. Power and Serial Communication Connections..........c..cccceeuene. 48
Figure 4. PC200W Main WindowW.........cccoeoerieniiniinieieieneereeieeeee e 49
Figure 5. Short Cut Temperature Sensor Folderccoovevveviieiiieciiniennnnns 51
Figure 6. Short Cut Thermocouple Wiring...........cocveeveviereeneeneeieeveeveeenns 52
Figure 7. Short Cut Outputs Tabcccoccvevieiierieiiceceeeeeeee e 53
Figure 8. Short Cut Outputs Tabccceeeviviiieiirieieeee e 54
Figure 9. Short Cut Compile Confirmation............ceccvevveeeververeenieecieeeenenens 54

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.

PC200W Main WINAOWcovuveeieerieeieeeee e 55
PC200W Monitor Data Tab — Public Table...........cceeuvvvveerrennnnn. 56
PC200W Monitor Data Tab — Public and OneMin Tables 57
PC200W Collect Data Tab.........coooeouiviiiiiiiiiiieeeeeeieeeeeeeee 57
PC200W View Data ULtycoceeviivieiieiieieieieee e 58
PC200W View Data Table.........coooovuvviiiiiiiiiiiieeieeeeeieeeeee e 59
PC200W View Line Graph..........ccocceeiiriinienieiieeeeee e 60
Data-Acquisition System — OVErVIEW.......c.cccvevverueerreeveereenenns 62
Analog Sensor Wired to Single-Ended Channel #1 64

Figure 19. Analog Sensor Wired to Differential Channel #1 64
Figure 20. Simplified Differential-Voltage Measurement Sequence............ 66
Figure 21. Half-Bridge Wiring Example — Wind Vane Potentiometer 67
Figure 22. Full-Bridge Wiring Example — Pressure Transducer 68

Table of Contents

Figure 23. Pulse-Sensor Output-Signal Typescccceeveereenveneeierieneeeene 69
Figure 24. Pulse-Input Wiring Example — Anemometer-.............c.cccceeeeueee 70
Figure 25. Terminals Configurable for RS-232 Input........cccccooeninincnencnns 73
Figure 26. Use of RS-232 and Digital I/O when Reading RS-232

DIEVICES. ..ttt ettt e 73
Figure 27. Wiring Panel...........cccoooviiviiiiiiiiieiecieeeceece e 76
Figure 28. Control and Monitoring with C Terminalsc.cccceverenennnne. 79
Figure 29. CR1000KD Keyboard Displayccceecverierienienienieeieeeeeienne &3
Figure 30. Custom Menu EXamplecccooveviieiiieciinieniecieseee e 84
Figure 31, ENCIOSUIEcovviiiieiieicceeeeee et 98
Figure 32. Connecting to Vehicle Power Supplyccccoceeveevciicninencncnne. 100
Figure 33. Schematic of Grounds.........c.cceceeeevierieneninienenieecieneneseeeene
Figure 34. Lightning-Protection Scheme
Figure 35. Model of a Ground Loop with a Resistive Sensor 108
Figure 36. Device Configuration Utility (DevConfig)cceceeveeiiveinnnnene 110
Figure 37. Network Planner Setupccccceeeiieiiiieeieeeciesceeeeee e 111
Figure 38. Summary of CR800 Configuration..............ccceevvrveeneenreereennnne 120
Figure 39. CRBasic Editor Program Send File Control window 125
Figure 40. "Include File" Settings Via DevConfig........c.cccoveverienenencnncnne. 147
Figure 41. "Include File" Settings Via PakBusGraphccccevvvevennnne 147
Figure 42. Sequential-Mode Scan Priority Flow Diagramsc..c....... 156
Figure 43. Custom Menu Example — Home Screen...........ccccocevenencnnenne. 181
Figure 44. Custom Menu Example — View Data Window..........c..ccc...... 181
Figure 45. Custom Menu Example — Make Notes Sub Menu................... 182
Figure 46. Custom Menu Example — Predefined Notes Pick List............. 182
Figure 47. Custom Menu Example — Free Entry Notes Window.............. 182
Figure 48. Custom Menu Example — Accept / Clear Notes Window........ 182
Figure 49. Custom Menu Example — Control Sub Menu...........c.cccce..... 183
Figure 50. Custom Menu Example — Control LED Pick List 183
Figure 51. Custom Menu Example — Control LED Boolean Pick List..... 183
Figure 52. Running-Average Frequency Response.........c.ccccovvevvecveenennnene 192
Figure 53. Running-Average Signal Attenuation..........c..cecceceevereenienennenne. 193
Figure 54. Data from TrigVar Program............ccccceveeviercienienieneeieeieeenens 194
Figure 55. Alarms Toggled in Bit-Shift Exampleccoccevienveiinnnnnen. 197
Figure 56. Bool8 Data from Bit-Shift Example (Numeric Monitor)........... 197
Figure 57. Bool8 Data from Bit-Shift Example (PC Data File)................... 198
Figure 58. Quarter-Bridge Strain-Gage with RC Resistor Shunt................ 218
Figure 59. Strain-Gage Shunt Calibration Startccccoeveniiiiincnnnnen. 219
Figure 60. Strain-Gage Shunt Calibration Finish...........ccccoccooiiniininnne, 220
Figure 61. Zero Procedure Start...........ccoecveeeereeriieiieeie e 220
Figure 62. Zero Procedure Finish...........cccoovveiieniiiiiiiiiicceescceeeeeens 220
Figure 63. PT100 in Four-Wire Half-Bridge..........cccccovvviiriienieiieiieienn, 233
Figure 64. PT100 in Three-Wire Half-Bridge..........ccccocevininincnencnnnnnn 235
Figure 65. PT100 in Four-Wire Full-Bridgecocveevveciinienieieeeeeen, 237
Figure 66. HyperTerminal New Connection Descriptioncc.ccccceueunee. 249
Figure 67. HyperTerminal Connect-To Settings.........c.ccoccvevercreeucnennenn 249
Figure 68. HyperTerminal COM-Port Settings Tab.......c..c.ccecevveeieruinnnncnn 250
Figure 69. HyperTerminal ASCII S€tupcccevoeerieiieiieieieieeeeeeee, 250
Figure 70. HyperTerminal Send Text-File Example.........cccccooceeieeinnnnnnen. 251
Figure 71. HyperTerminal Text-Capture File Exampleccccceeveenee. 251
Figure 72. Entering SDI-12 Transparent Mode..........cccccoceverininieiienennne 261
Figure 73. Preconfigured HTML Home Page.........ccccooeiiniiininieie 284
Figure 74. Home Page Created Using WebPageBegin() Instruction 285

23

Table of Contents

24

Figure 75. Customized Numeric-Monitor Web Page............ccoccoocinnnnn 285
Figure 76. Input Sample VECTOTS.cceiieirieieiesiesie e 291
Figure 77. Mean Wind-Vector Graphcoocoviiiiiiiienieiiieccceceeee 292
Figure 78. Standard Deviation of Directioncccceeeeeierienieneseeeeeenenne 293
Figure 79. Simplified voltage measurement sequencecceevervvennenne.. 298
Figure 80. Programmable Gain Input Amplifier (PGIA)cccoeevevevennene. 298
Figure 81. PGIA with Input-Signal Decomposition.............cccceererercnnnne. 302

Figure 82. Example voltage measurement accuracy band, including the
effects of percent of reading and offset, for a differential
measurement with input reversal at a temperature between 0 to

40 OC ettt st 306
Figure 83. Ac-Power Noise-Rejection Techniquescccceeverenencnennenne 308
Figure 84. Input-voltage rise and transient decay........c..cccceeevvererencrenene 310
Figure 85. Settling Time for Pressure Transducer............ccccoveevveiennrncene 313
Figure 86. Pulse-Sensor Output-Signal TYPesccceeovereerienieneeneieeeenne 332
Figure 87. Switch-Closure Pulse Sensorccccoeoevieniiiinniiciecee 332
Figure 88. Terminals Configurable for Pulse Input..........cccccoceveninincnncne. 332
Figure 89. Amplitude reduction of pulse-count waveform (before and

after 1 us ps time-constant filter)..........cccceevvveeviiviiivienierece e, 341
Figure 90. Input Conditioning Circuit for Period Averaging 342
Figure 91. Vibrating-Wire SEeNSOTcccvevvieriiiieiiereeniienieereereseeeseeesieennas 343
Figure 92. Circuit to Limit C Terminal Input to 5 Vdccc.cccevveiininnnnene 344
Figure 93. Current-Limiting Resistor in a Rain Gage Circuit.............c..... 346
Figure 94. Current sourcing from C terminals configured for control 350
Figure 95. Relay Driver Circuit with Relaycooccoveiiiiiniiii 351
Figure 96. Power Switching without Relay...........cccooooiiiiiniiiiiii 351
Figure 97. PakBus Network Addressingcoeceeeereereeneenieerieseeeceenns 373
Figure 98. Flat Map.......cooiiiiiiiiiiieeeee et 378
Figure 99. Tree Map......cooeiiiiiieiiiiereeeee ettt 378
Figure 100. Configuration and Wiring of PakBus LANcccoceviennn. 379
Figure 101. DevConfig Deployment Tab..........cccceveevvieciinienienieieeeenen. 380
Figure 102. DevConfig Deployment | ComPorts Settings Tab 381
Figure 103. DevConfig Deployment | Advanced Tab..........ccccceevvevueennennen. 381
Figure 104. LoggerNet Network-Map Setup: COM port........ccceveeveeennenne. 382
Figure 105. LoggerNet Network-Map Setup: PakBusPort.............c............ 383
Figure 106. LoggerNet Network-Map Setup: Dataloggersccccuen.e.... 383
Figure 107. Preconfigured HTML Home Pageccccceoeeeeieneieneneene 397
Figure 108. Home Page Created Using WebPageBegin() Instruction......... 398
Figure 109. Customized Numeric-Monitor Web Page............cccccocenienee 399
Figure 110. Using the Keyboard / Display..........cccceevevviecrincienieneerieenenen. 431
Figure 111. Displaying Data with the Keyboard / Displayccccccceeuennee. 432
Figure 112. Real-Time Tables and Graphs...........cccceveevieciieienieneenieenenen. 433
Figure 113. Real-Time CuStOm.........cccvevuveriiecieeieniieniienieeieeee e 434
Figure 114. Final-Memory Tables..........cc.cccveeieeierienieieeieeie e 435
Figure 115. Run/Stop Program..........cocceceeereeienienienicninenceieeeeceneeee 436
Figure 116. File Display........cccccoevinininininieieienicenceenceeeeeeeeneee e 437
Figure 117. File: Editccocoeiiiiiiiiinieectccccsee e 438
Figure 118. C Terminals (Ports) Statuscccoeeeevienieieiiiee e 439
Figure 119. SEttingscooeeiueiiiiieeieseee ettt 439
Figure 120. Configure Display.........ccoceerierieiinieniesieseeeeee e 440
Figure 121. Remove Retention NULScccoeoeiieriniiiiincecceeee e 450
Figure 122. Pull Edge Away from Panel............ccoocoiiiinininiinicce 451

Table of Contents

Figure 123. Remove Nuts to Disassemble Canister.............cccceevvevereeennenne 451
Figure 124. Remove and Replace Battery..........ccooeveriiiniiieieeee e, 452
Figure 125. Potentiometer R3 on PS100 and CH100 Charger / Regulator . 475
Figure 126. DevConfig Terminal Tab...........ccccoooeiiniiiiinieiee e 477
Figure 127. Relationships of Accuracy, Precision, and Resolution 508
List of Tables
Table 1. PC200W EZSetup Wizard Example Selections...........ccceeeveeveennenne 49
Table 2. Differential and Single-Ended Input Terminalsc.cccceverennenne 65
Table 3. Pulse-Input Terminals and Measurementsccocceevveevveeveennenns 69
Table 4. CR800 Wiring Panel Terminal Definitions..........cccccocevevererennns 77
Table 5. Current Source and Sink Limits.......c.ccccevererieeiiciieniniencncncnene. 101
Table 6. Status/Setting/DTI: Access Pointsccoccevverievieciencienienieennen. 113
Table 7. Common Configuration Actions and Toolsc.ccccevererereennee 115
Table 8. CRBasic Program Structurecoceeererereeienencnicneneneenenn 121
Table 9. Program Send Options that Reset Memory*..........c.ccoccvevercennene. 125
Table 10. Data Table StrucCturescoeereereererieiie e 126
Table 11. Data Types in Variable MemOrycccceeceevienienieniieienieceeenn 128
Table 12. Data Types in Final-Data Memory.........c.cccoccevvenienienienieneennen. 129
Table 13. Formats for Entering Numbers in CRBasicccccecvveveeneennen. 137
Table 14. Typical Data Table........c..ccceevverierieiieiecieceeceeeee e 139
Table 15. TOAS Environment Lineccccooeviiirinienenieniencnencececee 139
Table 16. Datalnterval() Lapse Parameter Options............ccceevvveveeverevennen. 143
Table 17. Program Tasks..........cccecuieiirienieniieiecie e 150
Table 18. Pipeline Mode Task Priorities........ceccveeverevereeneenieeieeieseereeeneens 151
Table 19. Program Timing INStructionsc.cceceveeereeeienienineneneneenenn 152
Table 20. Rules for Names..........cccceererieieniinineneeieeeicienece e 158
Table 21. Binary Conditions of TRUE and FALSE............ccoccvniiiinennnen. 163
Table 22. Logical Expression Examplescccoooceveiveenienieiieieeieceeen 163
Table 23. Data Process AbDIeviationsccecceeeeereeereeneeneeenieeeeeeeseeens 166
Table 24. CRBasic Example. Array Assigned Expression: Sum
Columns and ROWScc.eiieieiiiiierese e 188
Table 25. CRBasic Example. Array Assigned Expression: Transpose an
ATTAY ettt ettt ettt ettt et e ettt e et be et e e s beennbeennbeennrs 188
Table 26. CRBasic Example. Array Assigned Expression: Comparison /
Boolean Evaluation..........ccccoevirireriiieienienicencsesceteeeeesiene e 189
Table 27. CRBasic Example. Array Assigned Expression: Fill Array
DIMENSION ...ttt ettt et 190
Table 28. FieldCal() Codescerirrierieiieieeiesiieseesie e 205
Table 29. Calibration Report for Relative Humidity Sensor....................... 207
Table 30. Calibration Report for Salinity Sensor..........ccccceceveeeveeneeneennen. 209
Table 31. Calibration Report for Flow Meter............cocceevieiiiiinienieeeen. 212
Table 32. Calibration Report for Water Content Sensorcccceeveennen. 214
Table 33. Summary of Analog Voltage Measurement Rates....................... 222
Table 34. Parameters for Analog Burst Mode (601 to 2000 Hz) 226
Table 35. PRTCalc() Type-Code-1 Sensorccecvevverieeeeeeneenieeieennns 229
Table 36. PRTCalc() Type-Code-2 Sensorcceevervvenveeieeveneeneeieennns 229
Table 37. PRTCalc() Type-Code-3 Sensorccoeeereeeereneenenenenenneenn 229
Table 38. PRTCalc() Type-Code-4 Sensorcceeveveverveneeeeenieneeeieennnns 230
Table 39. PRTCalc() Type-Code-5 Sensorccceeeevevevieveeeeenienieeieennens 230
Table 40. PRTCalc() Type-Code-6 Sensorccccceeveeereenieeeeneenieeieennen. 231
Table 41. ASCII / ANSI Equivalents..........ccceceiierieneenieceeeeereeeeene 238

25

Table of Contents

26

Table 42. CR800 Serial POItSccceiieiieiieieeieeieseeeee e 239
Table 43. SDI-12 Commands for Transparent Mode.............ccceceereerueninnnee. 262
Table 44. SDI-12 Sensor Setup CRBasic Example — Results 274
Table 45. Example Power Usage Profile for a Network of SDI-12

PrODES. ...t e 274
Table 46. String OPEIAtOrScccvevveerveerreeieieereerreesreereereeeesreesseesseesvesenas 275
Table 47. String Concatenation Examplescccoeveevieeiinienieneenieenenen. 277
Table 48. String NULL Character Examplescccocveevincienienennieneenen. 278
Table 49. Extracting String Characterscceevvereeereecieneeneesieesieneeeees 279
Table 50. Use of ASCII / ANSII Codes Examples...........cccecververieenrennennen. 279
Table 51. Formatting Strings EXamplesccccoceevveveneneninincneenienennenn 280
Table 52. Formatting Hexadecimal Variables — Examples............c..c...... 280
Table 53. WindVector() OutputOpt Options.........c.ceceeveevrerenereeeeneneennen 289
Table 54. CRBasic Parameters Varying Measurement Sequence and

TN ettt sb e bt ettt eeaeenaeens 299
Table 55. Analog Voltage Input Ranges and Options...........cccceeveeveereennen. 301
Table 56. Analog-Voltage Measurement ACCUracy 'ccoeveeivirirnrrennnas 305
Table 57. Analog-Voltage Measurement Offsets.........c.ccccevvvevverienieenenen. 305
Table 58. Analog-Voltage Measurement Resolutionc.cceeverueennenne.. 305
Table 59. Analog Measurement Integration............c.cceevevveeveevenvenneneeenne. 308
Table 60. Ac Noise Rejection on Small Signals’c.cccoeveveceeeeeeennnnn. 309
Table 61. Ac Noise Rejection on Large Signals'ccocooeveveecceennnnne. 309
Table 62. CRBasic Measurement Settling Times..........cccccoeeuereereeneeneenne. 310
Table 63. First Six Values of Settling-Time Dataccoccevenieneennnnee. 313
Table 64. Range-Code Option C Over-Voltages.........cccoeerueeieeeienenienene 314
Table 65. Offset Voltage Compensation Options..........ccceeeeeeereereeneeneennene 317
Table 66. Resistive-Bridge Circuits with Voltage Excitation 321
Table 67. Ratiometric-Resistance Measurement Accuracy..........ccocveeeenee.. 324
Table 68. StrainCalc() Instruction EQuationscccevveeveeienieneenieenenen. 325
Table 69. Auto Calibration Gains and OffSetsc..ccceeeevierenenerencnenne. 328
Table 70. Calibrate() Instruction Results...........ccoocvevieriiecincinieieeeeee, 329
Table 71. Pulse Measurements:, Terminals and Programming.................... 333
Table 72. Example. E for a 10 Hz input signal............cccoecvvvverieneeneenenee. 335
Table 73. Frequency Resolution CompariSonccecveeveeeereeeneeneeneennne. 336
Table 74. Switch Closures and Open Collectors on P Terminals................ 338
Table 75. Switch Closures and Open Collectors on C Terminals 338
Table 76. Three Specifications Differing Between P and C Terminals....... 340
Table 77. TIMe CONSLANES (T) c.vveeevreerrrreireeiiieeriieerieeeeeesieeesireeseeeeseaeeneeeenes 341
Table 78. Low-Level Ac Amplitude and Maximum Measured

FreQUENCY ... viiiiiieiiiece ettt et s 341
Table 79. CR800 Memory Allocation..........ccccecueeeereenreenieenieereeieeeeesieenes 352
Table 80. CR800 Main MEMOTYc.cccvervierieeieeeeeeieenreenreereereeeneseeeseeenes 354
Table 81. MemOry DIIVEScceecviiieriieriieiienie e eee et see e eere e seee e nas 355
Table 82. TableFile() Instruction Data-File Formats............ccccoceverenenncnee. 357
Table 83. File-Control FUNCtionsScceevevieriieiieeieieeeeeeee e 362
Table 84. CR800 File AUITDULEScc.cocveeeriirieniiniinieniieiceciesicene e 363
Table 85. Data-Preserve OPtionS........cuevveriereerieeiesieneesieeeeeve e seneseeeees 365
Table 86. Powerup.ini Commands and Applicationsccecceeeeereenuennee. 367
Table 87. Powerup.ini Example. Code Format and Syntax.............cccc.c..... 367
Table 88. Powerup.ini Example. Run Program on Power-up...................... 367
Table 89. Powerup.ini Example. Format the USR: Drive........c.ccccceuvenneen.. 367
Table 90. Powerup.ini Example. Send OS on Power-up.........ccccccevenuenee. 368

Table of Contents

Table 91. Powerup.ini Example. Run Program from USB: Drive 368
Table 92. Powerup.ini Example. Run Program Always, Erase Data 368
Table 93. Powerup.ini Example. Run Program Now, Erase Data............... 368
Table 94. File System Error Codescocueieririeniniiieieieeese e 369
Table 95. PakBus Leaf-Node and Router Device Configuration................ 373
Table 96. PakBus Link-Performance Gage..........cccccevvveviieeieieneeneereennnns 377
Table 97. PakBus-LAN Example Datalogger-Communication Settings 382
Table 98. Router Port NUMDETS.........cccevereeiiierieninineneceeceresesc e 384
Table 99. DNP3 Implementation — Data Types Required to Store Data

in Public Tables for Object Groups.........cceeeevveecverieneenieeieereeee e 388
Table 100. Modbus to Campbell Scientific Equivalents...........c.ccoccveneeee. 391
Table 101. CRBasic Ports, Flags, Variables, and, Modbus Registers......... 393
Table 102. Supported Modbus Function Codesc..ceccecvereivrenenencnnenne. 394
Table 103. API Commands, Parameters, and Arguments............cccccccueeee.. 404
Table 104. BrowseSymbols API Command Parameters..............cccceecuenneen. 406
Table 105. BrowseSymbols API Command Responseccccceveeeennnen. 406
Table 106. DataQuery API Command Parameters..............ccoccveevenreeneennnnn 410
Table 107. SetValueEx API Command Parameters.............ccccocevuerencnnnne. 415
Table 108. SetValue API Command ReSponse..........ccceeevveviereeeesreesreennens 416
Table 109. ClockSet API Command Parameterscc.ccceverereneencnnnnne. 417
Table 110. ClockSet API Command Response..........cccceevveevieeeneeneenieennnn. 418
Table 111. ClockCheck API Command Parametersccccceverenennenne. 419
Table 112. ClockCheck APT Command Response..........cccecvrvervenireiennnen. 419
Table 113. Curl HTTPPut Request Parameters..........cccoeevveeeereenieneeieennnn. 421
Table 114. FileControl API Command Parameters.............ccccceevvevreeennnnne 423
Table 115. FileControl API Command Response...........ccccceevvervecireeennnnne 424
Table 116. ListFiles API Command Parameters.............cccoceevverveierneennnnne 424
Table 117. ListFiles API Command Responsec..ccoceveenieninienieneene 425
Table 118. NewestFile APl Command Parameters..........cc.ccooceeveeienienncne 428
Table 119. Special Keyboard-Display Key Functionscc.ccecceeeeeeeeneee 430
Table 120. Typical Gzip File Compression Results...........cccoevevvveciieiennnns 442
Table 121. Internal Lithium-Battery Specifications............ccccceevveeveereennenns 450
Table 122. Math Expressions and CRBasic Resultsc..cccceceevenencnenne. 459
Table 123. Variable and Final-Memory Data Types with NAN and

DN ettt ettt ne e enas 460
Table 124. Warning Message EXamplescccooeeveereneenienieneeeeeeeene 462
Table 125. CommsMemPFree(1) Defaults and Use Example, TLS Not

ALCHIVE .ttt et et 468
Table 126. CommsMemPFree(1) Defaults and Use Example, TLS

ALCHIVE ...ttt 468
Table 127. CR800 Terminal Commands...........cccoeerererieienienienieneneneenes 476
Table 128. Log LOCAtIONSccveeeiecrieiieiieieeieceesie et et sveesve v enneas 478
Table 129. Program Send Commandccccceeverienieenieesienienieneeieeenns 498
Table 130. Arithmetic OPErators.........cccvevveeeveeveriereerieerieeeeseeseesseesseenens 537
Table 131. Compound-Assignment OPerators...........coceeeeeeeeerverenrenennennes 539
Table 132. Derived Trigonometric Functions...........cccceeeveeeeecienieneenieennnn. 542
Table 133. String OPErationscceeeerueerueerieseeseeneeeseeeeeseeseesseeseeeeens 548
Table 134. Asynchronous-Port Baud Ratescccccoveeviiiiiiiniinieceee 562
Table 135. Status/Setting/DTI: Access Pointscccceevveiiiiinienieneenen. 577
Table 136. Status/Settings/DTI: DireCtoriescccceeveereereeeeeseeneeieennens 578
Table 137. Status/Settings/DTI: Frequently Used.........c.ccecerenenenencnncne. 578
Table 138. Status/Settings/DTI: Alphabetical Listing of Keywords........... 579

27

Table of Contents

28

Table 139. Status/Settings/DTI: Status Table Entries on CR1000KD

Keyboard Displaycoceveerieiieiieieeeee e 580
Table 140. Status/Settings/DTI: Settings (General) on CR1000KD

Keyboard Displaycoccevierieniieiiieeeeee e 581
Table 141. Status/Settings/DTI: Settings (comport) on CR1000KD

Keyboard DiSplayccceveerieeriiiiiiiesieeeeieete et 581
Table 142. Status/Settings/DTI: Settings (TCP/IP) on CR1000KD

Keyboard DISplayc.ccceeierieriieiieiicie et 581
Table 143. Status/Settings/DTI: Settings Only in Settings Editor............... 582
Table 144. Status/Settings/DTI: Data Table Information Table (DTI)

5 A 0] ¢ S S 582
Table 145. Status/Settings/DTI: Auto-Calibration.........c.ccccceeeererencnncnne. 582
Table 146. Status/Settings/DTI: Communications, General....................... 582
Table 147. Status/Settings/DTI: Communications, PakBus..........c............. 582
Table 148. Status/Settings/DTI: Communications, TCP_IPI..................... 582
Table 149. Status/Settings/DTI: Communications, TCP_IP II.................... 583
Table 150. Status/Settings/DTI: Communications, TCP_IP III 583
Table 151. Status/Settings/DTI: CRBasic Program I.............ccccoooeninennee 583
Table 152. Status/Settings/DTI: CRBasic Program II.............ccoceeenenne. 583
Table 153. Status/Settings/DTI: Data.........cccovveevieeeeieeienieieeieeee e 583
Table 154. Status/Settings/DTI: MemOry.......cccveveeierierienieereere e 583
Table 155. Status/Settings/DTI: Miscellaneousccceevevveecreevenveneeenne. 584
Table 156. Status/Settings/DTI: ObSOlEtecccvveveeierierieieeieeie e 584
Table 157. Status/Settings/DTI: OS and Hardware Versioning................... 584
Table 158. Status/Settings/DTI: Power Monitors...........cccceevvreeneeneeneeenne. 584
Table 159. Status/Settings/DTI: SECULILYcovvveeeeierieieeeeeeeeeeee 584
Table 160. Status/Settings/DTI: Signaturescccoceeceeveecvencnenenenenene 584
Table 161. Status/Settings/DTI: B.....coooieiiiiiiieeeeeeeeeeee 585
Table 162. Baudrate() Array, Keywords, and Default Settings................... 585
Table 163. Beacon() Array, Keywords, and Default Settings..................... 586
Table 164. Status/Settings/DTI: C....cceovvveiieiieiicieceeeeeeee e 586
Table 165. Status/Settings/DTI: D ...cceovvveiiiiieiicieeeeeeeeee e 589
Table 166. Status/Settings/DTI: E.....cccooveviiiviieiiciieeeeeeeeeee e 589
Table 167. Status/Settings/DTL: F....oooeevvveiiieiieiceeeeeeeee e 590
Table 168. Status/Settings/DTI: Hccooovveviieriieiieieeieeeeeeeee e 591
Table 169. Status/Settings/DTI: L......cccovveiieriieiieieeieeereee e 591
Table 170. Status/Settings/DTIL: L......ooiiiiiiieieeeeee e 594
Table 171. Status/Settings/DTI: M.....coooiiiiiiieeeeee e 595
Table 172. Status/Settings/DTT: N ...ooiiiiiiiiieeeeeeee e 596
Table 173. Status/Settings/DTI: O ...cceovvveiieiieiicieeeeeeeee e 597
Table 174. Status/Settings/DTI: Po...oceevieiiiiieiiceeeeeeeeee e 597
Table 175. Status/Settings/DTI: R....cccooviiiieriieiicieeieceeeeeeeeee e 601
Table 176. Status/Settings/DTI: S.....ccoooieiieiieeeeeeeeeeee e 602
Table 177. Status/Settings/DTL: T....oceveieriieieeeeeeeeeeee e 604
Table 178. Status/Settings/DTI: Ucoccocieiiriinininininicicencnene e 605
Table 179. Status/Settings/DTI: V .cc.cocviiiniinininiiiieiciciecene e 606
Table 180. Status/Settings/DTI: Wcccccuiviinininininicieicencnene e 607
Table 181. CS I/O Pin DesCription.........ccceereerieeiienieniesieeieeeeee e 609
Table 182. CR800 RS-232 Pin-OUt........coeeuririirinieieinieieeneeeeseeeiees 610
Table 183. Standard Null-Modem Cable or Adapter-Pin Connections....... 611
Table 184. Decimal and hexadecimal Codes and Characters Used with

CREBO0 TOOLS .ttt 613

Table of Contents

Table 185. FP2 Data-Format Bit Descriptionsccccceeeeereenieneenieeiennnnns 617
Table 186. FP2 Decimal-Locater Bits..........ccccevereninenieieiceeseeceee 617
Table 187. Endianness in Campbell Scientific Instruments........................ 619
Table 188. Datalog@Erscc.eeeeieieriieieeieeiieiee et 621
Table 189. Analog-Input Modulesccoecveeieriiniieniieiieecieceeeeve e 622
Table 190. Pulse-Input Modulesccceovieeiieieiieiienieeie e 622
Table 191. Serial I/O Modules List.........cccoecueriereninininieieeeneeeceee 623
Table 192. Vibrating-Wire Input Modules...........ccocceevverieniecienienieieeen. 623
Table 193. Resistive Bridge TIM!' Modules.............cceeureeerevevevererererenene. 623
Table 194. Voltage Divider Modules...........ccoeeuerierienieniieieeiesieeeeeeeene 623
Table 195. Current-Shunt Modules...........ccocceeierieiieniereeeeeeeeeeeee 624
Table 196. Transient Voltage SupPressors........cooovereereereereesreereeneeereeenens 624
Table 197. Terminal-Strip COVETS.......ccverieerieeieeieeiierieee e 624
Table 198. Digital [/O Modulesccceerieiinienienieniecee e 625
Table 199. Continuous-Analog-Output (CAO) Modules.........cccceveeeennnen. 625
Table 200. Relay-Drivers — Productsccocevoeieeneeniiniienieceeeene 625
Table 201. Current-Excitation Modules...........ccccoveririeieienenenesenceee 625
Table 202. Wired Sensor TYPEScccvereerrierieeiieiierienieesieeeeeveeeesreesseenens 626
Table 203. Wireless Sensor Modules..........c.cooeveririnieiieiienenenceeeceeee 627
Table 204. Sensors Types Available for Connection to CWS900 627
Table 205. Datalogger / Keyboard Display Availability and

ComPALIDIILY ! ...ttt 628
Table 206. Hardwire, Single-Connection Comms Devices..........c.cccccueunee. 628
Table 207. Hardwire, Networking Devices.........cccevveereriirienienieeeieeene 628
Table 208. TCP/IP LiNKS......ccveiiiieiiieiiieieiieiee e 629
Table 209. Telephone Modems............cccceeeeierieieieniieeeeeee e 629
Table 210. Private-Network Radioscccocevieiiininiiiiiinecccceee 629
Table 211. Satellite TranSCEIVETScc.eeerueeierierierienieeieeeeiteeee e 629
Table 212. Mass-Storage DEVICEScvevveevieierierieenieeieeee e sreesreeveennens 630
Table 213. Starter SOftWare.........cc.eoeveririnirieieeee e 630
Table 214. Datalogger Support SOftwarececcvevverieereeciesieriereeieenne 631
Table 215. LoggerNet SUite!?..........coeveveveieeeeeeeeeeeeeeeeeee e 631
Table 216. Software TOOIScccceriririreriiieieneeeeteece e 632
Table 217. Software Development Kitscccoveeiieiiniiniinieeeceieeee 633
Table 218. Battery / Regulator Combinations...........c.ccceceeveenieneeenieeeennnnns 634
Table 219. BAtEris .. .ccoueeeerierieriieie ettt sttt 634
Table 220. REGUIALOTScocveiuiiiiieiieieeieeeete et 634
Table 221. Primary POWer SOUICEScccevieiiiiiiiiiieiiencescee e 634
Table 222. 24 Vdc Power Supply Kitsccccevieiiiiiniiniicenieceeeeee 635
Table 223. Enclosures — Productsccocevoeeierienenenenenceeeee e, 635
Table 224. Prewired ENClOSUIES........cccoevuiriiiieieieieeseeeceeeeee e 635
Table 225. Tripods, Towers, and MOUNESccceeeveeiereerieniieieereeeeeiens 636
Table 226. Protection from Moisture — Productsc..cccceceeveieienennenne. 636

List of CRBasic Examples
CRBasic Example 1. Simple Default.cr8 File to Control SW12

Terminal........ccooveiiiniiiiicie e 114
CRBasic Example 2. Inserting Commentscccceeveereereereeneeneenieennns 124
CRBasic Example 3. Data Type Declarations...........cccceeveeveerieneeneeniennnen. 131
CRBasic Example 4. Using Variable Array Dimension Indices................. 132
CRBasic Example 5. Flag Declaration and Use.........c.ccocceeveereenienienieennen. 133
CRBasic Example 6. Using a Variable Array in Calculations 134

29

Table of Contents

30

CRBasic Example 7. Initializing Variables...........cccceeiveiinvinienieneeeee.
CRBasic Example 8. Using the Const Declarationc.cccceeerenenennene
CRBasic Example 9. Load binary information into a variable....................

CRBasic Example 10.
CRBasic Example 11.
CRBasic Example 12.
CRBasic Example 13.
CRBasic Example 14.

Syntaxceceenee
CRBasic Example 15.
CRBasic Example 16.
CRBasic Example 17.
CRBasic Example 18.
CRBasic Example 19.
CRBasic Example 20.
CRBasic Example 21.
CRBasic Example 22.
CRBasic Example 23.
CRBasic Example 24.
CRBasic Example 25.
CRBasic Example 26.
CRBasic Example 27.
CRBasic Example 28.
CRBasic Example 29.
CRBasic Example 30.
CRBasic Example 31.
CRBasic Example 32.
CRBasic Example 33.
CRBasic Example 34.

Operator
CRBasic Example 35.
CRBasic Example 36.
CRBasic Example 37.
CRBasic Example 38.
CRBasic Example 39.
CRBasic Example 40.
CRBasic Example 41.
CRBasic Example 42.
CRBasic Example 43.
CRBasic Example 44.
CRBasic Example 45.
CRBasic Example 46.
CRBasic Example 47.
CRBasic Example 48.
CRBasic Example 49.
CRBasic Example 50.
CRBasic Example 51.
CRBasic Example 52.
CRBasic Example 53.
CRBasic Example 54.
CRBasic Example 55.
CRBasic Example 56.

Definition and Use of a Data Table........................
Use of the Disable Variableccccevvvevveeinnnen.
Using an 'Include’ File........ccccovvieviieiinienienieienne,
'Include' File to Control SW12 Terminal
BeginProg / Scan() / NextScan / EndProg

Measurement Instruction Syntax..........c.ccceevenenee.
Use of Move() to Conserve Code Space.................
Use of Variable Arrays to Conserve Code Space....
Conversion of FLOAT / LONG to Boolean............
Evaluation of Integersccccceveevveniiecieniecieeenee,
Constants to LONGSs or FLOATS.......cccceveeveeeennee.
String and Variable Concatenationccccc......
BeginProg / Scan / NextScan / EndProg Syntax.....
Conditional QutpuL........c.ccceevviervierriereeieieereesieene
Groundwater Pump Testccccvevvieciieieiieieeieenne.
Miscellaneous Program Featurescccccveneee.
ScaliNg ATITAY ..c.veeveeeieiieriierieeie e see e
Program Signatures............ccoccveevervenivenieecienneneene
Use of Multiple Scans...........ccecevvervenencienreneene.
Conditional Codec.coeveeeeienienienincneneneeee
CUustom MENUSoeceeeiieieiieiieieeie e
Loading Large Data Sets........ccccoeeveveeneerereenenne.
Using TrigVar to Trigger Data Storage...................
Two Data-Output Intervals in One Data Table........
Programming with Bool8 and a Bit-Shift

NSEC — One Element Time Array..........cccceveneenn.
NSEC — Two Element Time Arraycccvenu...
NSEC — Seven and Nine Element Time Arrays....
NSEC —Convert Timestamp to Universal Time....
FieldCal() Zero......coeeeveeevieeeciieeieeeiie e
FieldCal() OffSet......ccccvveviiieciieiieeie e
FieldCal() Two-Point Slope and Offset
FieldCal() Multiplier.........cccocevinieniniineneeeene.
FieldCalStrain() Calibration...........ccccceveevveervrenne..
Measurement with Excitation and Delay
Measuring VOltSE() at 1 Hz........ccooeevveviviiiieene.
Measuring VoltSE() at 100 Hz.........c..ccceeverevenenne.
Measuring VoltSE() at 200 Hz...........ccceeevvevrnnne.
Measuring VoltSE() at 2000 Hz...........ccccvvvennenne.
PT100 in Four-Wire Half-Bridge.........c..cccceceeeeuee
PT100 in Three-wire Half-bridge.........c.cccccvceeeeuee
PT100 in Four-Wire Full-Bridge..........c.cccccoceeeeuee
Receiving an RS-232 String........cccoeeeveeveneneenne.
Measure Sensors / Send RS-232 Data.....................
Using SDI12Sensor() to Test Cv Command...........
Using Alternate Concurrent Command (aC)...........
Using an SDI-12 Extended Command....................

Table of Contents

CRBasic Example 57. SDI-12 Sensor Setup.......cccecceeveereereeneeneeieeieeneens 273
CRBasic Example 58. Concatenation of Numbers and Strings................... 277
CRBasic Example 59. Formatting Stringscocceeeeeeieienieneneneeeeeene 280
CRBasic Example 60. Subroutine with Global and Local Variables.......... 281
CRBasic Example 61. Custom Web Page HTML...........cccoeevevieniieneennn. 286
CRBasic Example 62. Time Stamping with System Time..........c..c.co..... 296
CRBasic Example 63. Measuring Settling Time............cccoeevveveneeneenreennnne 312
CRBasic Example 64. Four-Wire Full-Bridge Measurement and

PrOCESSING ...cvvienieeii ettt 323
CRBasic Example 65. Implementation of DNP3...........ccccooiviinienieieennne 389
CRBasic Example 66. Concatenating Modbus Long Variables.................. 395
CRBasic Example 67. Custom Web Page HTML.........ccccoceeivininincnnene. 399
CRBasic Example 68. Using NAN to Filter Data.........cccccceeeveninencnenne. 461
CRBasic Example 69. Using Bit-Shift Operatorsccceccevveevienienieennen. 538

31

1.

Introduction

1.1

1.2

HELLO

Whether in extreme cold in Antarctica, scorching heat in Death Valley, salt spray
from the Pacific, micro-gravity in space, or the harsh environment of your office,
Campbell Scientific dataloggers support research and operations all over the
world. Our customers work a spectrum of applications, from those more complex
than any of us imagined, to those simpler than any of us thought practical. The
limits of the CR800 are defined by our customers. Our intent with this operator's
manual is to guide you to the tools you need to explore the limits of your
application.

You can take advantage of the advanced CR800 analog and digital measurement
features by spending a few minutes working through the System Quickstart @p. 41)
and the System Overview (p. 61. For more demanding applications, the remainder
of the manual and other Campbell Scientific publications are available. If you are
programming with CRBasic, you will need the extensive help available with the
CRBasic Editor software. Formal CR800 training is also available from
Campbell Scientific.

This manual is organized to take you progressively deeper into the complexity of
CR800 functions. You may not find it necessary to progress beyond the System
Quickstart p. 41) or System Overview (. 61) sections. System Quickstart (p. 41) is a
cursory view of CR800 data-acquisition and walks you through a first attempt at
data-acquisition. System Overview (p. 61 reviews salient topics that are covered in-
depth in subsequent sections and appendices.

Review the exhaustive table of contents to learn how the manual is organized,
and, when looking for a topic, use the index and PDF reader search.

More in-depth study requires other Campbell Scientific publications, most of
which are available on-line at www.campbellsci.com. Generally, if a particular
feature of the CR800 requires a peripheral hardware device, more information is
available in the manual written for that device.

If you are unable to find the information you need, need assistance with ordering,
or just wish to speak with one of our many product experts about your application,
please call us at (435) 227-9100 or email support@campbellsci.com. In earlier
days, Campbell Scientific dataloggers greeted our customers with a cheery
HELLO at the flip of the ON switch. While the user interface of the CR800
datalogger has advanced beyond those simpler days, you can still hear the cheery
HELLO echoed in the voices you hear at Campbell Scientific.

Typography

The following type faces are used throughout the CR800 Operator's Manual.
Type color other than black on white does not appear in printed versions of the
manual:

e Underscore — Information specifically flagged as unverified. Usually found
only in a draft or a preliminary released version.

e Capitalization — beginning of sentences, phrases, titles, names, Campbell
Scientific product model numbers.

33

Section 1. Introduction

¢ Bold — CRBasic instructions within the body text, input commands, output
responses, GUI commands, text on product labels, names of data tables.

® Page numbers — 1n the PDF version of the manual, hyperlink to the page
represented by the number.

e [talic — glossary entries and titles of publications, software, sections, tables,
figures, and examples.

e Bold italic — CRBasic instruction parameters and arguments within the body
text.

e Blue — CRBasic instructions when set on a dedicated line.

e Teal italic — CRBasic program comments.

e CRBasic code, input commands, and output responses when set apart on
dedicated lines or in program examples, as follows:
Lucida Sans Typewriter

1.3 Capturing CRBasic Code

Many examples of CRBasic code are found throughout this manual. The manual
is designed to make using this code as easy as possible. Keep the following in
mind when copying code from this manual into CRBasic Editor:

If an example crosses pages, select and copy only the contents of one page at a
time. Doing so will help avoid unwanted characters that may originate from page
headings, page numbers, and hidden characters.

14 Release Notes

34

Preliminary Version 4/13/15 for OS v.28:
Reviewers

If feasible, please wait until a future preliminary version is available, perhaps in
June of 2015, for a comprehensive review.

Readers

If any information in this manual, which is preliminary to address OS v. 28
changes, is mission critical, please consult a Campbell Scientific application
engineer.

Primary changes since Version 5/13 are addition of the Precautions (p. 7) section
and completion of about 90% of appendix Status, Settings and Data Table
Information (p. 577) to reflect the major changes to the status, settings, and data
table information registers introduced in OS v. 28.

The remaining sections, from Installation (p. 97) through the appendix Supporting
Product Lists (p. 621), are slated for numerous updates. The following topics are
among those yet to be added or updated:

Analog measurement
Arrays

CDM

Constant table

Data types

DNP3 (major revision)
Function() instruction
Keyboard display

Section 1. Introduction

Modbus

NewFile() instruction
Operating system management
Period averaging
Precision of variables
Programming

Route() instruction
Security

Skipped records
Subroutines

SW12 and 12V terminals
Task sequencer
Terminal mode

Time and clock
Troubleshooting
Watchdog resets

35

2.

Cautionary Statements

DANGER: Fire, explosion, and severe-burn hazard. Misuse or improper
installation of the internal lithium battery can cause severe injury. Do not
recharge, disassemble, heat above 100 °C (212 °F), solder directly to the cell,
incinerate, or expose contents to water. Dispose of spent lithium batteries
properly.

WARNING:

o Protect from over-voltage
o Protect from water
o Protect from ESD (. 103)

CAUTION: Disuse accelerates depletion of the internal battery, which backs
up several functions. The internal battery will be depleted in three years or
less if a CR800 is left on the shelf. When the CR800 is continuously used,
the internal battery may last up to 10 or more years. See section Internal
Battery — Details (p. 93) for more information.

IMPORTANT: Maintain a level of calibration appropriate to the application.
Campbell Scientific recommends factory recalibration of the CR800 every
three years.

37

3.

Initial Inspection

Check the Ships With tab at http://www.campbellsci.com/CR800 for a list of
items shipped with the CR800. Among other things, the following are
provided for immediate use:

o Screwdriver to connect wires to terminals

o Type-T thermocouple for use in the System Quickstart (p. 41 tutorial

o A datalogger program pre-loaded into the CR800 that measures power-
supply voltage and wiring-panel temperature.

o A serial communication cable to connect the CR800 to a PC

o A ResourceDVD that contains product manuals and the following starter
software:

— Short Cut
- PC200w
— DevConfig

Upon receipt of the CR800, inspect the packaging and contents for damage.
File damage claims with the shipping company.

Immediately check package contents. Thoroughly check all packaging
material for product that may be concealed. Check model numbers, part
numbers, and product descriptions against the shipping documents. Model or
part numbers are found on each product. On cabled items, the number is
often found at the end of the cable that connects to the measurement device.
The Campbell Scientific number may differ from the part or model number
printed on the sensor by the sensor vendor. Ensure that the expected lengths
of cables were received. Contact Campbell Scientific immediately if there
are any discrepancies.

Check the operating system version in the CR800 as outlined in the section
Sending the Operating System (OS) (p. 115), and update as needed.

39

4. System Quickstart

Related Topics

* Quickstart (p. 41)

* Specifications (p. 93)
« Installation . 97)

* Operation (p. 293)

This tutorial presents an introduction to CR800 data acquisition and a practical
programming and data retrieval exercise.

4.1 Data-Acquisition Systems — Quickstart

Related Topics:
* Data-Acquisition Systems — Quickstart (p. 41)
* Data-Acquisition Systems — Overview (p. 62)

Acquiring data with a Campbell Scientific datalogger is a fairly defined procedure
involving the use of electronic sensor technology, the CR800 datalogger, a
telecommunication link, and datalogger support sofiware (p. 483

A CRB800 is only one part of a data-acquisition system. To acquire good data,
suitable sensors and a reliable data-retrieval method are required. A failure in any
part of the system can lead to "bad" data or no data. A typical data-acquisition
system is conceptualized in figure Data-Acquisition System Components (p. 42)
Following is a list of typical system components:

Sensors (p. 42— Electronic sensors convert the state of a phenomenon to an
electrical signal.

Datalogger (p. 43— The CR800 measures electrical signals or reads serial
characters. It converts the measurement or reading to engineering units,
performs calculations, and reduces data to statistical values. Data are stored
in memory to await transfer to a PC by way of an external storage device or a
telecommunication link.

Data Retrieval and Telecommunications (p. 45)— Data are copied (not moved)
from the CR800, usually to a PC, by one or more methods using datalogger
support software. Most of these telecommunication options are bi-directional
and so allow programs and settings to be sent to the CR800.

Datalogger Support Software (p. 46 — Software retrieves data and sends
programs and settings. The software manages the telecommunication link
and has options for data display.

Programmable Logic Control (p. 74— Some data-acquisition systems require
the control of external devices to facilitate a measurement or to control a
device based on measurements. The CR800 is adept at programmable logic
control. Unfortunately, there is little discussion of these capabilities in this
manual. Consult CRBasic Editor Help (p. 123) or a Campbell Scientific
Application Engineer for more information.

Measurement and Control Peripherals (p. 84 — Some system requirements
exceed the standard input or output compliment of the CR800. Most of these
requirements can be met by addition of input and output expansion modules.

41

Section 4. System Quickstart

Figure 1. Data-Acquisition System Components

Se/nsors é{f

Datalogger Support
Software

Link

4.2 Sensors — Quickstart

Related Topics:

» Sensors — Quickstart p. 42)

* Measurements — Overview (p. 62)
* Measurements — Details (p. 295)

o Sensors — Lists (p. 626)

Sensors transduce phenomena into measurable electrical forms by modulating
voltage, current, resistance, status, or pulse output signals. Suitable sensors do
this accurately and precisely . 507. Smart sensors have internal measurement and
processing components and simply output a digital value in binary, hexadecimal,
or ASCII character form. The CR800, sometimes with the assistance of various
peripheral devices, can measure or read nearly all electronic sensor output types.

Sensor types supported include:

e Analog
o Voltage
o Current
o Thermocouples
o Resistive bridges

e Pulse

o High frequency
o Switch closure
o Low-level ac

e Period average
e Vibrating wire
e Smart sensors

o SDI-12
o RS-232

42

Section 4. System Quickstart

o Modbus
o DNP3
o RS-485

Refer to the appendix Sensors — Lists (p. 626) for a list of specific sensors available
from Campbell Scientific. A library of sensor manuals and application notes are
available at www.campbellsci.com to assist in measuring many sensor types. The
previous list of supported sensors is not necessarily comprehensive. Consult with
a Campbell Scientific application engineer for assistance in measuring unfamiliar
sensors.

4.3 Datalogger — Quickstart

Related Topics:

* Datalogger — Quickstart (p. 43)
* Datalogger — Overview (p. 75)
* Dataloggers — List @p. 621)

The CR800 can measure almost any sensor with an electrical response. The
CR800 measures electrical signals and converts the measurement to engineering
units, performs calculations and reduces data to statistical values. Most
applications do not require that every measurement be stored but rather combined
with other measurements in statistical or computational summaries. The CR800
will store data in memory to await transfer to the PC with an external storage
devices or telecommunications.

CRS800 electronics are protected in a sealed stainless steel shell. This design
makes the CR800 economical, small, and very rugged.

4.3.1.1 Wiring Panel — Quickstart

Related Topics

» Wiring Panel — Quickstart (p. 43)

» Wiring Panel — Overview (p. 75)

* Measurement and Control Peripherals (p. 348)

As shown in figure Wiring Panel p. 44, the CR800 wiring panel provides terminals
for connecting sensors, power, and communication devices. Surge protection is
incorporated internally in most wiring panel connectors.

43

Section 4. System Quickstart

44

Figure 2. Wiring Panel

H/L Terminals Switched-Voltage P Terminals

Analog Input Excitation Pulse Input
Differential Resistive-Bridge Low-Level Ac
Single-Ended Sensors

Period Average

(Status LED)

Signal Ground

Earth Ground

Keyboard and
Display

(CR850 Only)

Switched 12V
Peripheral/ ;

Sensor L L0m.e [
Power '

CS1/0 12V Out C Terminals

Communication Peripheral | | Pulse Counting SDI-12, SDM

Peripheral and Sensor | | Digital [/O TTL RS-232

Power Switched Voltage

4.4 Power Supplies — Quickstart

Related Topics:

* Power Supplies — Specifications

* Power Supplies — Quickstart (p. 44)

* Power Supplies — Overview (p. 83)

» Power Supplies — Details (p. 98)

» Power Supplies — Products (p. 633)

e Power Sources (. 99

* Troubleshooting — Power Supplies (p. 469)

The CR800 requires a power supply. Be sure that any power supply components
match the specifications of the device to which they are connected. When
connecting power, first switch off the power supply, then make the connection
before switching the supply on.

The CR800 is operable with power from 9.6 to 16 Vdc applied at the POWER IN
terminals of the green connector on the face of the wiring panel.

External power connects through the green POWER IN connector on the face of
the CR800. The positive power lead connects to 12V. The negative lead

Section 4. System Quickstart

connects to G. The connection is internally reverse-polarity protected.

The CR800 is internally protected against accidental polarity reversal on the
power inputs.

4.4.1 Internal Battery — Quickstart

Related Topics:
o Internal Battery — Quickstart @p. 45)
o Internal Battery — Details (p. 93)

Warning Misuse or improper installation of the internal lithium battery can
cause severe injury. Fire, explosion, and severe burns can result. Do not recharge,
disassemble, heat above 100 °C (212 °F), solder directly to the cell, incinerate, or
expose contents to water. Dispose of spent lithium batteries properly.

A lithium battery backs up the CR800 clock, program, and memory.

4.5 Data Retrieval and Telecommunications — Quickstart

Related Topics:

* Data Retrieval and Telecommunications — Quickstart (p. 43)

* Data Retrieval and Telecommunications — Overview (p. 87)

* Data Retrieval and Telecommunications — Details (p. 370)

* Data Retrieval and Telecommunication Peripherals — Lists (p. 627)

If the CR800 datalogger sits near a PC, direct-connect serial communication is
usually the best solution. In the field, direct serial, a data-storage device, can be
used during a site visit. A remote telecommunication option (or a combination of
options) allows you to collect data from your PC over long distances and gives
you the power to discover problems early.

A Campbell Scientific application engineer can help you make a shopping list for
any of these telecommunication options:

e Standard
o RS-232 serial

e Options

Ethernet

Mass Storage
Cellular, Telephone
i0S, Android

PDA

Multidrop, Fiber Optic
Radio, Satellite

O 0O 0 O O O O

Some telecommunication options can be combined.

45

Section 4. System Quickstart

46

4.6

4.7

4.71

Datalogger Support Software — Quickstart

Tutorial:

Reading List:

* Datalogger Support Software — Quickstart (p. 46)
* Datalogger Support Software — Overview (p. 93)
* Datalogger Support Software — Details (p. 429)

* Datalogger Support Software — Lists (p. 630)

Datalogger support software are PC or Linux software available from Campbell
Scientific that facilitate communication between the computer and the CR800. A
wide array of software are available, but this section focuses on the following:

e Short Cut Program Generator for Windows (SCWin)
e PC200W Datalogger Starter Software for Windows
e LoggerLink Mobile Datalogger Starter software for iOS and Android

A CRBasic program must be loaded into the CR800 to enable it to make
measurements, read sensors, and store data. Short Cut is used to write simple
CRBasic programs without the need to learn the CRBasic programming language.
Short Cut is an easy-to-use wizard that steps you through the program building
process.

After the CRBasic program is written, it is loaded onto the CR800. Then, after
sufficient time has elapsed for measurements to be made and data to be stored,

data are retrieved to a computer. These functions are supported by PC200W and
LoggerLink Mobile.

Short Cut and PC200W are available at no charge at
www.campbellsci.com/downloads (http://www.campbellsci.com/downloads).

Note More information about software available from Campbell Scientific can be
found at www.campbellsci.com http://www.campbellsci.com. Please consult with
a Campbell Scientific application engineer for a software recommendation to fit a
specific application.

Measuring a Thermocouple

This tutorial illustrates the primary functions of the CR800. The exercise
highlights the following:

Attaching a sensor to the datalogger

Creating a program for the CR800 to measure the sensor
Making a simple measurement

Storing measurement data

Collecting data from the CR800 with a PC

Viewing real-time and historical data from the CR800

What You Will Need

The following items are used in this exercise. If you do not have all of these
items, you can provide suitable substitutes. If you have questions about
compatible power supplies or serial cables, please consult a Campbell Scientific
application engineer.

http://www.campbellsci.com/downloads
http://www.campbellsci.com/

Section 4. System Quickstart

CR800 datalogger

Power supply with an output between 10 to 16 Vdc

Thermocouple, 4 to 5 inches long, which is shipped with the CR800

Personal computer (PC) with an available nine-pin RS-232 serial port, or with

a USB port and a USB-to-RS-232 adapter

e Nine-pin female to nine-pin male RS-232 cable, which is shipped with the
CR800

e PC200W software, which is available on the Campbell Scientific resource

DVD or thumb drive, or at www.campbellsci.com.

Note If the CR800 datalogger is connected to the PC during normal operations,
use the Campbell Scientific SC32B interface to provide optical isolation through
the CS I/0 port. Doing so protects low-level analog measurements from
grounding disturbances.

4.7.2 Hardware Setup

Note The thermocouple is attached to the CR800 later in this exercise.

4.7.2.1 External Power Supply

With reference to the figure Power and Serial Communication Connections (p. 48),
proceed as follows:

1. Remove the green power connector from the CR800 wiring panel.
2. Switch off the power supply.

3. Connect the positive lead of the power supply to the 12V terminal of the green
power connector. Connect the negative (ground) lead of the power supply to
the G terminal of the green connector.

4. After confirming the power supply connections have the correct polarity, insert
the green power connector into its receptacle on the CR800 wiring panel.

5. Connect the serial cable between the RS-232 port on the CR800 and the RS-
232 port on the PC.

6. Switch the power supply on.

47

Section 4. System Quickstart

Figure 3. Power and Serial Communication Connections

BATTERY - intemal (12V 7 AMP HOUR) cAMPBELL Made in USA
BATTERY - Exteral rechargeable battery SCIENTIFIC 43
55
(D || CHaROE e otaseprsen
OFF ~ ON - Power to 12V terminais
@ I E Liftto
oNANaE Remove
CHARGE} ot
+12v
+12v
S * PS100
12V Power supply with charging regulator

Power Connection
RS-232 Connection

CAMPBELL
SCIENTIFIC

4.7.3 PC200W Software Setup

1. Install PC200W software onto the PC. Follow on-screen prompts during the
installation process. Use the default folders.

2. Open PC200W. Your PC should display a window similar to figure PC200W
Main Window . 49. When PC200W is first run, the EZSetup Wizard will run
automatically in a new window. This will configure the software to
communicate with the CR800 datalogger. The table PC200W EZSetup Wizard
Example Selections (p. 49) indicates what information to enter on each screen of
the wizard. Click Next at the lower portion of the window to advance.

See More! A video tutorial is available at
www.youtube.com/playlist?list=PL9E364463D4A3520A4 &feature=plcp. Other
video tutorials are available at www.campbellsci.com/videos.

After exiting the wizard, the main PC200W window becomes visible. This
window has several tabs. The Clock/Program tab displays information on the
currently selected CR800 with clock and program functions. Monitor Data and
Collect Data tabs are also available. Icons across the top of the window access
additional functions.

48

Section 4. System Quickstart

Figure 4. PC200W Main Window

) PC200W 4.2 Datalogger Support Software - CR & |(CR o) (o ® =
File Datalogger Network Tools Help

\ Disconnect % ! ’ D E B F @ !:)
a Clock/Program | Monitor Data‘Collec‘ Data

CR Datalogger Information Clocks
Datalogger Name: CR e
Datalogger Type: CR Datalogger 6/10/2014 8:53:28 AM
Reported Station Name: 23877 pC 6/10/2014 8:53:28 AM
Direct Connect Connection
COM Port: Communications Port (COM1) Pause Clock Update
Datalogger Settings
Baud Rate: 9600 Datalogger Time Zone Offset
Paksus Address: 1 Set Clock 0 hours Om 2
Security Code: 0
Extra Response Time: 0s
Datalogger Program
Data File Paths
Status: C:\Campbellsci\PC200W\CR _Status.dat Current Program
Public: C:\Campbellsci\PC200W\CR “# _Public.dat MyTemperature.CR1

OneMin: C:\Campbellsci\PC200W\CR _OneMin.dat
Send Program...

Retrieve Program...

Table 1. PC200W EZSetup Wizard Example Selections

Start the wizard to follow table entries.

Screen Name Information Needed

Provides an introduction to the EZSetup Wizard along with

Introduction instructions on how to navigate through the wizard.

Select the CR800 from the list box.

Datalogger Type and Name
Accept the default name of "CR800."

Select the correct PC COM port for the serial connection.
Typically, this will be COM1. Other COM numbers are
possible, especially when using a USB cable.

Leave COM Port Communication Delay at 00 seconds.

. Note When using USB serial cables, the COM number may
COM Port Selection change if the cable is moved to a different USB port. This will
prevent data transfer between the software and CR800. Should
this occur, simply move the cable back to the original port. If
this is not possible, close then reopen the PC200W software to
refresh the available COM ports. Click on Edit Datalogger
Setup and change the COM port to the new port number.

Configures how the CR800 communicates with the PC.
Datalogger Settings . . .
For this tutorial, accept the default settings.

Datalogger Settings - For this tutorial, Security Code should be set to 0 and PakBus
Security Encryption Key should be left blank.

Communication Setup Provides a summary of settings in previous screens. No changes
Summary are needed for this tutorial. Press Finish to exit the wizard.

49

Section 4. System Quickstart

4.7.4 Write CRBasic Program with Short Cut

Short Cut objectives:

e Create a program to measure the voltage of the CR800 power supply,
temperature of the CR800 wiring-panel, and ambient air temperature using a
thermocouple.

e When program is downloaded to the CR800, it takes samples once per second
and stores averages of these values at one-minute intervals.

See More A video tutorial is available at
www.youtube.com/playlist?list=PLCDOCAFEAD0390434&feature=plcp
http://'www.youtube.com/playlist?list=PLCDOCAFEAD0390434 &feature=plcp.
Other video resources are available at www.campbellsci.com/videos.

4.7.41 Procedure: (Short Cut Steps 1 to 5)

50

1. Click on the Short Cut icon in the upper-right corner of the PC200W window.
The icon resembles a clock face.

2. The Short Cut window is shown. Click New Program.
3. In the Datalogger Model drop-down list, select CR800.

4. In the Scan Interval box, enter 1 and select Seconds in the drop-down list box.
Click Next.

Note The first time Short Cut is run, a prompt will appear asking for a choice of
ac noise rejection. Select 60 Hz for the United States and areas using 60 Hz ac
voltage. Select 50 Hz for most of Europe and areas that operate at 50 Hz.

A second prompt lists sensor support options. Campbell Scientific, Inc. (US) is
probably the best fit if you are outside Europe.

5. The next window displays Available Sensors and Devices. Expand the
Sensors folder by clicking on the » symbol. This shows several sub-folders.
Expand the Temperature folder to view available sensors. Note that a wiring
panel temperature (PTemp_C in the Selected column) is selected by default.

http://www.youtube.com/playlist?list=PLCD0CAFEAD0390434&feature=plcp

Section 4.

System Quickstart

Figure 5. Short Cut Temperature Sensor Folder

Wiring Diagram
Wiring Text

) C\Campbellsci\SCWin\untitled.scw

Available Sensors and Devices
d Generic Measurements
d Geotechnical & Structural
_d Meteorological
d Miscellaneous Sensors
4 .y Temperature

@ Short Cut (CR
File Program Tools Help
Progress
1. New/Open
2. Datalogger
3. Sensors
4. Outputs
5. Finish
Wiring

«

_) 105E (chromel-constantan) The
L) 105T (copper-constantan) Ther _
) 107 Temperature Probe iy
|) 108 Temperature Probe

| 109 Temperature Probe

| 110PV Surface Temperature Prc
d 43347

_) IRTS-P Precision Infrared Temp¢
L) SI-111 Precision Infrared Radior
_) Type E (chromel-constantan) T
) Type J (iron-constantan) Therm
] Type K (chromel-alumel) Therm:

Scan Interval = 5.0000 Seconds

Selected
Sensor
4« CR

4 Default

_]LTyp-:a T (copper-constantan Them‘vocoup\ej

| Wiring Panel Temperature -

n »

CR

A Type T (copper-constantan) Thermocouple

Units for Temperature: Deg C, Deg F, K

A wiring panel temperature reference in degrees C is required for this sensor.
Therefore, a wiring panel temperature sensor must be selected and
configured for degrees C before selecting and configuring this sensor. v

o8
Measurement
Battv
PTemp_C

n

i 4 Previous

Next b ‘

Finish ‘ i

Help

4.7.4.2 Procedure: (Short Cut Steps 6 to 7)

6. Double-click Type T (copper-constantan) Thermocouple to add it into the
Selected column. A dialog window is presented with several fields. By
immediately clicking OK, you accept default options that include selection of
1 sensor and PTemp_C as the reference temperature measurement.

Note BattV (battery voltage) and PTempC (wiring panel temperature) are
default measurements. During operation, battery and temperature should be
recorded at least daily to assist in monitoring system status.

7. At the left portion of the main Short Cut window, click Wiring Diagram.
Attach the physical type-T thermocouple to the CR800 as shown in the
diagram. Click on 3. Sensors in the left portion of the window to return to the
sensor selection screen.

51

Section 4. System Quickstart

Figure 6. Short Cut Thermocouple Wiring

{8 Short Cut (CR+#+) C\Campbellsc\SCWin\untitledscw Scan Interval = 1.0000 Seconds | = || = |[wdm]
File Program Tools Help
Progress K]
1. New/Open CR wiring Diagram for untitled.scw [Wiring details can be found in the help filz.)
2. Datalogger
e Type T TC - Temp_C CR-—
Blue 1H
4. Outputs
Red L
5. Finish
Wiring
Wiring Diagram
Wiring Text
4Prevmu5 Next Finish I [Help

4.7.4.3 Procedure: (Short Cut Step 8)

52

Historical Note In the space-race era, measuring thermocouples in the field was
a complicated and cumbersome process incorporating a three-junction
thermocouple, a micro-voltmeter, a vacuum flask filled with an ice slurry, and a
thick reference book. One junction connected to the micro-voltmeter. Another sat
in the vacuum flask as a 0 °C reference. The third was inserted into the location of
the temperature of interest. When the microvolt measurement settled out, the
microvolt reading was recorded by hand. This value was then looked up on the
appropriate table in the reference book to determine the equivalent temperature.

Then along came Eric and Evan Campbell. Campbell Scientific designed the first
CR7 datalogger to make thermocouple measurements without the need for
vacuum flasks, reference books, or three junctions. Now, there's an idea!

Nowadays, a thermocouple need only consist of two wires of dissimilar metals,
such as copper and constantan, joined at one end. The joined end is the
measurement junction; the junction that is created when the two wires of
dissimilar metals are wired to CR800 analog input terminals is the reference
junction.

When the two junctions are at different temperatures, a voltage proportional to the
temperature difference is induced in the wires. The thermocouple measurement
requires the reference-junction temperature to calculate the measurement-junction
temperature using proprietary algorithms in the CR800 operating system.

8. Click Next to advance to the Qutputs tab, which displays the list Selected
Sensors to the left and data storage tables to the right under Selected Outputs.

Section 4. System Quickstart

Figure 7. Short Cut Outputs Tab

(@ Short Cut (CR =) C:\Campbellsci\SCWin\untitiedscw Scan Interval = 5.0000 Seconds o[@
Eile Program Tools Help
Selected Sensors Selected Outputs
Progress s M ™
oneor aase. Table Name |Tablel
1. New/Open 4CR
2. Datalogger = == Store Every IGO {Minutes =
3. Sensors PTemp_C PCCard
4. Outputs Type TTC Temp_C a SC115 CS 1/0-to-USB Flash Memory Drive
5. Finish Sensor :asureme rocessin Jtput Lat Units
Wiring
Wiring Diagram
Wiring Text
Advanced Outputs (all tables) “m%‘c
[Add Table | [Delete Table|
=} Eﬂ‘ﬁ: Next (Finish ‘ Help

4.7.4.4 Procedure: (Short Cut Steps 9 to 12)

9. Two output tables (1 Tablel and 2 Table2 tabs) are initially available. Both
tables have a Store Every field and a drop-down list from which to select the
time units. These are used to set the time intervals when data are stored.

10. Only one table is needed for this tutorial, so Table 2 can be removed. Click 2
Table2, then click Delete Table.

11. Change the name of the remaining table from Tablel to OneMin, and then
change the Store Every interval to 1 Minutes.

12. Add measurements to the table by selecting BattV under Selected Sensors,
and then clicking Average in the center column of buttons. Repeat this
procedure for PTemp_C and Temp_C.

53

Section 4. System Quickstart

Figure 8. Short Cut Outputs Tab

@ Short Cut (CR) C:\Campbellsci\SCWin\MyTemp w
File Program Tools Help
Selected Sensors

Scan Interval = 5.0000 Seconds [o] & =

Selected Outputs

Progress)
e Sensor Measure... age | | raple Name ,70“”""
s 4 CR)
Store Every |60 Minutes » 4
2. Datalogger 4 Default Battv P v |
3. Sensors — PCCard
PTemp_C .
4. Outputs Type TTC |Temp_C sk | SC115 CS 1/0-to-USB Flash Memory Drive
Sample . "
S. Finish = Sensor :asureme rocessin itput Lat Units
Wiring Total

Type T1 Temp_C Average Temp_C_ Deg C

Wiring Diagram windVector

Wiring Text

"‘1 OneMin Az Table2 /
Add Table | Delete Table Edit

R | ——

["] Advanced Outputs (all tables)

4.7.4.5 Procedure: (Short Cut Steps 13 to 14)

54

13. Click Finish to compile the program. Give the program the name

MyTemperature. A summary screen will appear showing the compiler
results. Any errors during compiling will be displayed.

Figure 9. Short Cut Compile Confirmation

@ Short Cut (CR) C\Campbellsci\SCWin\MyTemperature.scw
File Program Tools Help
Results | s, munaryJ Advancedi

Short Cut File
Your Short Cut program settings have been saved in: C:\Campbellsci\SCWin\MyTemperature.scw

Scan Interval = 5.0000 Seconds (o] @] =

Progress

1. New/Open
2. Datalogger

3. Sensors logg g fully Generated!
4. Outputs The following datalogger program has been created: C:\Campbellsci\SCWin\MyTemperature.CR1
5. Finish

Use PC200W, PC400, LoggerNet, RTDAQ, or VisualWeather to transmit C:\Campbellsci\SCWin\MyTempe

Or, you can send the program to the datalogger now.

Wiring
Wiring Diagram
Wiring Text

Confirm =%
The program was created successfully.
Do you wish to send the program to a datalogger?

Print

TR v | m——

Section 4. System Quickstart

14. Close this window by clicking on X in the upper right corner.

4.7.5 Send Program and Collect Data
PC200W Datalogger Support Software objectives:

e Send the CRBasic program created by Short Cut in the previous procedure to
the CR800.

e Collect data from the CR800.
e Store the data on the PC.

4.7.5.1 Procedure: (PC200W Step 1)

1. From the PC200W Clock/Program tab, click on Connect button to establish
communications with the CR800. When communications have been
established, the button will change to Disconnect.

Figure 10. PC200W Main Window

) PC200W 4.2 Datalogger Support Software - CR & |(CR o) (o ® =
File Datalogger Network Tools Help

Yowns| MBS OO BEE @ O
a Clock/Program | Monitor Data}Collec: Data

CR Datalogger Information Clocks
Datalogger Name: CR

Datalogger Type: CR Datalogger 6/10/2014 8:53:28 AM

Reported Station Name: 23877 pC 6/10/2014 8:53:28 AM
Direct Connect Connection

COM Port: Communications Port (COM1) Pause Clock Update
Datalogger Settings

Baud Rate: 9600 Datalogger Time Zone Offset

PakBus Address: 1 Set Clock 0Ohours O0m

Security Code: 0

Extra Response Time: 0s

Datalogger Program

Data File Paths

Status: C:\Campbellsci\PC200W\CR _Status.dat Current Program

Public: C:\Campbellsci\PC200W\CR _Public.dat MyTemperature.CR1

OneMin: C:\Campbellsci\PC200W\CR _OneMin.dat
Send Program...

Retrieve Program...

‘Connection Time 0:01:29

4.7.5.2 Procedure: (PC200W Steps 2 to 4)
2. Click Set Clock to synchronize the CR800 clock with the computer clock.

3. Click Send Program.... A warning will appear that data on the datalogger will
be erased. Click Yes. A dialog box will open. Browse to the
C:\CampbellSci\SCWin folder. Select the MyTemperature.cr8 file. Click
Open. A status bar will appear while the program is sent to the CR800
followed by a confirmation that the transfer was successful. Click OK to
close the confirmation.

4. After sending a program to the CR800, a good practice is to monitor the
measurements to ensure they are reasonable. Select the Monitor Data tab.
The window now displays data found in the CR800 Public table.

55

Section 4. System Quickstart

Figure 11. PC200W Monitor Data Tab — Public Table

Y PC200W 4.2 Datalogger Support Software - CR = [(CR s ()
File Datalogger Network Tools Help

Yo | MEmER DD BGER @ O
a Clock/Program | Monitor Data | Collect Data
= |) Updatelnterval: | 00mOls 5

CR Add ciete PorfFlag | DecimalPlacess 2 (3

RecNum 565
TimeStamp 10:19:26
BattV 13.15
PTemp_C 22.53
Temp_C NAN

4.7.5.3 Procedure: (PC200W Step 5)

5. To view the OneMin table, select an empty cell in the display area. Click
Add. Inthe Add Selection window Tables field, click on OneMin, then
click Paste. The OneMin table is now displayed.

56

Section 4. System Quickstart

Figure 12. PC200W Monitor Data Tab — Public and OneMin Tables

) PC200W 4.2 Datalogger Support Software - CR s | (CR e)
File Datalogger Network Tools Help

\p'm""m\ 1!,\ D\ EE\ @\ O

; @
CR Add Delete Por/Flag| DecimalPlaces 2 @&

a Clock/Program | Monitor Data | Collect Data
= = 4 2 Updatelntervak | 00mo01s %

RecNum 177 RecNum 14
TimeStamp 10:39:07 TimeStamp 10:39:00
BattV 13.15PTemp_C_Avg 22 .47
PTemp_C 22.47Temp_C_Avg 21.44
Temp_C 21.44

4.7.5.4 Procedure: (PC200W Step 6)

6. Click on the Collect Data tab and select data to be collected and the storage

location on the PC.

Figure 13. PC200W Collect Data Tab

) PC200W 4.2 Datalogger Support Software - CR ## (CR w)
File Datalogger Network Tools Help

‘\owm‘ = s> D B < INCOIN)
E ‘ CIDck/Program[Monitor Data| Collect Data

CRI== What to Collect

[E=8 EoR |

Q) New data from datalogger \
(Append to data files)

All data from datalogger
(Overwrite data files) {

Change Table's Output File... ‘

Start Data Collection ‘

Table File Name

¥| OneMin C:\Campbellsci\PC200W\CR
Public C\Campbellsci\PC200W\CR
Status C:\Campbellsci\PC200W\CR!

|_OneMin.dat
_Public.dat
_Status.dat

57

Section 4. System Quickstart

4.7.5.5 Procedure: (PC200W Steps 7 to 10)

7. Click the OneMin box so a check mark appears in the box. Under What to
Collect, select New data from datalogger. This selects the data to be
collected.

8. Click on a table in the list to highlight it, then click Change Table's Output
File... to change the name of the destination file.

9. Click on Collect. A progress bar will appear as data are collected, followed by
a Collection Complete message. Click OK to continue.

10. To view data, click the E icon at the top of the PC200W window to open
the View utility.

Figure 14. PC200W View Data Ultility

Open File Expand Tabs Show Graph
CA\Canfpbellsc\PC200WACR3000_OneMin.dat / - / [E=RREN
T;{/ﬁaw Help / /////’
@(BBH’FI Allarrays - B+ B g
TIMESTAMP RECORD BattV Avg

"2009-10-06 15:29:00" 0 13.03

"2009-10-06 15:30:00" 1 13.03

"2009-10-06 15:31:00" 2 13.03

"2009-10-06 15: Halih 3 13.03

"2009-10-0& 15: 100" 4 13.03

"2009-10-06 15:34:00" 5 13.02

"2009-10-06 15:35:00" 5 13.02

"2009-10-06 15:36:00" 7 13.02

"2009-10-06 15:37:00" 8 13.02

"2009-10-06 15:38:00" F] 13.02

"2009-10-06 15:39:00" 10 13.02

"2009-10-06 15:40:00" 11 13.02

"2009-10-06 15:41:00" 12 13.02

"2009-10-06 15:42:00" 13 13.02

-
4] |
[View32 - Graph : — @E‘%
[& 9\ Max Points To Display ‘ﬁ B
C:\CampbellsciPC200VACR3000_OneMin.dat

—&— Temp_C_Avg

2465
246"
2455
2451
2445 |1
244]
2435
243];
R 24.:12

242 i | 10/672009
o 15:31:00
241 ,‘_—w

T T T T T T T T T T T T T
10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009 10/6/2009
15:29:00 15:30:00 15:31:00 15:32:00 15:33:00 15:34:00 15:35:00 15:36:00 15:37:00 15:38:00 15:39:00 15:40:00 15:41:00 15:42:00

< | |»

58

Section 4. System Quickstart

4.7.5.6 Procedure: (PC200W Steps 11 to 12)

11. Click on 'q?& to open a file for viewing. In the dialog box, select the
CR800_OneMin.dat file and click Open.

12. The collected data are now shown.

Figure 15. PC200W View Data Table

(Bviews2 E=RECR =)

File Edit View Window Help

oA=L M =REARAR N = =1

[CR = _OneMin.dat (No Graph Associated) 20 Records o | @ [
TIMESTAMP _RECORD PTemp_C_Avq Temp_C_Avg
2014-06-09 10:36:00 11 2247 21.67
2014-06-09 10:37:00 12 22.48 21.47
2014-06-09 10:38:00 13 22.47 21.46
2014-06-09 10:39:00 14 2247 21.44
2014-06-09 10:40:00 15 2247 21.45
2014-06-09 10:41:00 16 22.46 21.44
2014-06-09 10:42:00 17 22.45 21.45
2014-06-09 10:43:00 18 22.45 21.42
2014-06-09 10:44:00 19 22.45 214
2014-06-09 10:45:00 20 22.45 214
2014-06-09 10:46:00 21 2244 21.48
2014-06-09 10:47:00 22 22.42 21.46
2014-06-09 10:48:00 23 2242 21.46
2014-06-09 10:49:00 24 22.42 21.43
2014-06-09 10:50:00 25 2242 21.44
2014-06-09 10:51:00 26 22.42 21.45
2014-06-09 10:52:00 27 22.42 21.45
2014-06-09 10:53:00 28 22.42 21.49
2014-06-09 10:54:00 29 2242 21.48
2014-06-09 10:55:00 30 22.42 21.49

4.7.5.7 Procedure: (PC200W Steps 13 to 14)
13. Click the heading of any data column. To display the data in that column in a
line graph, click the icon.
14. Close the Graph and View windows, and then close the PC200W program.

59

Section 4. System Quickstart

Figure 16. PC200W View Line Graph

60

5.

System Overview

Related Topics

* Quickstart (p. 41)

* Specifications (p. 93)
« Installation . 97)

* Operation (p. 293)

A Campbell Scientific data-acquisition system is made up of the following basic

components:
e Sensors
e Datalogger, which includes:
o Clock
o Measurement and control circuitry
o Hardware and firmware to communicate with telecommunication devices
o User-entered CRBasic program

Telecommunication link or external storage device
Datalogger support software (p. 485)

The figure Data-Acquisition Systems — Overview (p. 62) illustrates a common
CR800-based data-acquisition system.

61

Section 5. System Overview

62

5.1

Figure 17. Data-Acquisition System — Overview

Analog Signal
Output Sensor

Pulse Frequency
Output Sensor

Smart Sensor

Y Y
Terminals Terminals
Configured for Configured for
Analog Input Pulse Input

Terminals
Configured for
Digital Serial Input

Analog Measurement

Pulse Measurement

[}
§ Instructions Instructions
S
Q
= o)
s3])
= 2 8 : Measurement
3 = Time Keeping ——m—o— b .
= ‘a’ rocessing
: .
5} = Instructions
=
S
b}
= Control
Instructions

Data Storage
|

Ground
Lug

Serial Input/
Parsing Instructions

)

Power Regulator/Battery

External Power Source

Terminals Configured
for Control

Telecommunication
Hardware

Packets

Desiccant

Y

Controlled Device

Datalogger Support
Software (PC)

Measurements — Overview

Earth Ground

Related Topics:

» Sensors — Quickstart p. 42)

* Measurements — Overview (p. 62)
* Measurements — Details (p. 295)

e Sensors — Lists (p. 626)

(

Section 5. System Overview

Most electronic sensors, whether or not they are supplied by Campbell Scientific,
can be connected directly to the CR800.

Manuals that discuss alternative input routes, such as external multiplexers,
peripheral measurement devices, or a wireless sensor network, can be found at
www.campbellsci.com/manuals (http://www.campbellsci.com/manuals). You can
also consult with a Campbell Scientific application engineer.

This section discusses direct sensor-to-datalogger connections and applicable
CRBasic programming to instruct the CR800 how to make, process, and store the
measurements. The CR800 wiring panel has terminals for the following
measurement inputs:

5.1.1 Time Keeping — Overview

Related Topics:
» Time Keeping — Overview (p. 75
» Time Keeping — Details (p. 295)

Measurement of time is an essential function of the CR800. Time measurement
with the on-board clock enables the CR800 to attach time stamps to data, measure
the interval between events, and time the initiation of control functions.

5.1.2 Analog Measurements — Overview

Related Topics:
* Analog Measurements — Overview (p. 63)
* Analog Measurements — Details (p. 297)

Analog sensors output a continuous voltage or current signal that varies with the
phenomena measured. Sensors compatible with the CR800 output a voltage.
Current output can be made compatible with a resistive shunt.

Sensor connection is to H/L] terminals configurable for differential (DIFF) or
single-ended (SE) inputs. For example, differential channel 1 is comprised of
terminals 1H and 1L, with 1H as high and 1L as low.

5.1.2.1 Voltage Measurements — Overview

Related Topics:

* Voltage Measurements — Specifications
* Voltage Measurements — Overview (p. 63)
* Voltage Measurements — Details (p. 297)

e Maximum input voltage range: 5000 mV
e Measurement resolution range: 0.67 pV to 1333 uV

Single-ended and differential connections are illustrated in the figures Analog
Sensor Wired to Single-Ended Channel #1 (p. 64) and Analog Sensor Wired to
Differential Channel #1 (p. 64. Table Differential and Single-Ended Input
Terminals . 65) lists CR800 analog-input channel termnal assignments.

Conceptually, analog-voltage sensors output two signals: high and low.
Sometimes, the low signal is simply sensor ground. A single-ended measurement
measures the high signal with reference to ground, with the low signal tied to

63

http://www.campbellsci.com/manuals

Section 5. System Overview

64

ground. A differential measurement measures the high signal with reference to
the low signal. Each configuration has a purpose, but the differential
configuration is usually preferred.

A differential configuration may significantly improve the voltage measurement.
Following are conditions the often indicate that a differential measurement should
be used:

e Ground currents cause voltage drop between the sensor and the signal-ground
terminal. Currents >5 mA are usually considered undesirable. These
currents may result from resistive-bridge sensors using voltage excitation, but
these currents only flow when the voltage excitation is applied. Return
currents associated with voltage excitation cannot influence other single-
ended measurements of small voltage unless the same voltage-excitation
terminal is enabled during the unrelated measurements.

e Measured voltage is less than 200 mV.

Figure 18. Analog Sensor Wired to Single-Ended Channel #1

Section 5. System Overview

Table 2. Differential and Single-Ended Input
Terminals
DIFF Terminals SE Terminals
1H 1
1L 2
2H 3
2L 4
3H 5
3L 6

5.1.2.1.1 Single-Ended Measurements — Overview

Related Topics:
o Single-Ended Measurements — Overview (p. 65)
* Single-Ended Measurements — Details (p. 299)

A single-ended measurement measures the difference in voltage between the
terminal configured for single-ended input and the reference ground. The
measurement sequence is illustrated in figure Simplified Voltage Measurement
Sequence p. 298. While differential measurements are usually preferred, a single-
ended measurement is often adequate in applications wherein some types of noise
are not a problem and care is taken to avoid problems caused by ground currents.
Examples of applications wherein a single-ended measurement may be preferred
include:

Not enough differential terminals available. Differential measurements use
twice as many H/L] terminals as do single-ended measurements.

Rapid sampling is required. Single-ended measurement time is about half
that of differential measurement time.

Sensor is not designed for differential measurements. Many Campbell
Scientific sensors are not designed for differential measurement, but the draw
backs of a single-ended measurement are usually mitigated by large
programmed excitation and/or sensor output voltages.

However, be aware that because a single-ended measurement is referenced to
CR800 ground, any difference in ground potential between the sensor and the
CR800 will result in error, as emphasized in the following examples:

If the measuring junction of a thermocouple used to measure soil temperature
is not insulated, and the potential of earth ground is greater at the sensor than
at the point where the CR800 is grounded, a measurement error will result.
For example, if the difference in grounds is 1 mV, with a copper-constantan
thermocouple, the error will be approximately 25 °C.

If signal conditioning circuitry, such as might be found in a gas analyzer, and
the CR800 use a common power supply, differences in current drain and lead
resistance often result in different ground potentials at the two instruments
despite the use of a common ground. A differential measurement should be
made on the analog output from the external signal conditioner to avoid error.

65

Section 5. System Overview

5.1.2.1.2 Differential Measurements — Overview

Related Topics:
* Differential Measurements — Overview (p. 66)
* Differential Measurements — Details (p. 300)

Summary Use a differential configuration when making voltage measurements,
unless constrained to do otherwise.

A differential measurement measures the difference in voltage between two input
terminals. Its sequence is illustrated in the figure Simplified Differential-Voltage
Measurement Sequence (p. 66), and is characterized by multiple automatic
measurements, the results of which are averaged automatically before the final
value is reported. For example, the sequence on a differential measurement using
the VoltDiff() instruction involves two measurements — first with the high input
referenced to the low, then with the inputs reversed. Reversing the inputs before
the second measurement cancels noise common to both leads as well as small
errors caused by junctions of different metals that are throughout the measurement
electronics.

Switch/Settle

Switch/Settle

Figure 20. Simplified Differential-Voltage Measurement Sequence

5.1.2.2 Current Measurements — Overview

Related Topics:
» Current Measurements — Overview (p. 66)
e Current Measurements — Details (p. 319

A measurement of current is accomplished through the use of external resistors to
convert current to voltage, then measure the voltage as explained in the section
Differential Measurements — Overview (p. 66). The voltage is measured with the
CR800 voltage measurement circuitry.

5.1.2.3 Resistance Measurements — Overview

Related Topics:

+ Resistance Measurements — Specifications

* Resistance Measurements — Overview (p. 66)

* Resistance Measurements — Details p. 319

e Resistance Measurements — Instructions (p. 525)

Many analog sensors use a variable-resistive device as the fundamental sensing
element. These elements are placed in a wheatstone bridge or related circuit. The
CR800 can measure most bridge circuit configurations. A bridge measurement is

66

Section 5. System Overview

a special case voltage measurement. Examples include:

e Strain gage: resistance in a pressure-transducer strain gage correlates to a
water pressure.

e Position potentiometer: a change in resistance in a wind-vane potentiometer
correlates to a change in wind direction.

5.1.2.3.1 Voltage Excitation

Bridge resistance is determined by measuring the difference between a known
voltage applied to the excitation (input) arm of a resistor bridge and the voltage
measured on the output arm. The CR800 supplies a precise-voltage excitation via
Vx terminals . Return voltage is measured on H/L] terminals configured for
single-ended or differential input. Examples of bridge-sensor wiring using
voltage excitation are illustrated in figures Half-Bridge Wiring — Wind Vane
Potentiometer (p. 67 and Full-Bridge Wiring — Pressure Transducer (p. 68).

Figure 21. Half-Bridge Wiring Example — Wind Vane Potentiometer

67

Section 5. System Overview

Figure 22. Full-Bridge Wiring Example — Pressure Transducer

5.1.2.4 Strain Measurements — Overview

Related Topics:

o Strain Measurements — Overview (p. 68)
o Strain Measurements — Details (. 324)

* FieldCalStrain() Examples (p. 216)

Strain gage measurements are usually associated with structural-stress analysis.
When making strain measurements, please first consult with a Campbell Scientific

application engineer.

5.1.3 Pulse Measurements — Overview

Related Topics:
* Pulse Measurements — Specifications
» Pulse Measurements — Overview (p. 68)
o Pulse Measurements — Details (p. 331)
* Pulse Measurements — Instructions (p. 527)

The output signal generated by a pulse sensor is a series of voltage waves. The
sensor couples its output signal to the measured phenomenon by modulating wave
frequency. The CR800 detects the state transition as each wave varies between
voltage extremes (high-to-low or low-to-high). Measurements are processed and
presented as counts, frequency, or timing data.

P terminals are configurable for pulse input to measure counts or frequency from
the following signal types:

e High-frequency 5 Vdc square-wave
e Switch closure
e Low-level ac

68

Section 5. System Overview

C terminals configurable for input for the following:

e State
e Edge counting
e Edge timing

o Resolution — 540 ns

Note A period-averaging sensor has a frequency output, but it is connected to a
SE terminal configured for period-average input and measured with the
PeriodAverage() instruction (see section Period Averaging — Overview (p. 70)).

5.1.3.1 Pulses Measured

Pulse outputs vary. These variations are illustrated in the figure Pulse-Sensor
Output-Signal Types (p. 69.

Figure 23. Pulse-Sensor Output-Signal Types

Vdc High-frequency square-wave

t

P e e e N N
ac / \-/ \-/ \-/ \ Oow-level ac sihe-wave
t

Closed

Vdc Switch-closure series

.
Open

5.1.3.2 Pulse-Input Channels

Table Pulse-Input Channels and Measurements (p. 69) lists devices, channels and
options for measuring pulse signals.

Table 3. Pulse-Input Terminals and Measurements

Pulse-Input CRBasic
Terminal Input Type Data Option Instruction

(] Counts
(] Low-level ac

P Terminal e High-frequency ® Frequency PulseCount()

o Run average

® Switch-closure
of frequency

(] Low-level ac with (] Counts
LLACA (p. 622)

. module o Frequency PulseCount()
C Terminal Ti 0
® High-frequency ® Running imer100
average of
® Switch-closure frequency

69

Section 5. System Overview

Table 3. Pulse-Input Terminals and Measurements

Pulse-Input
Terminal

Input Type

Data Option

CRBasic
Instruction

Interval

Period

State

5.1.3.3 Pulse Sensor Wiring

Read More See the section Pulse Measurement Tips (p. 338)

An example of a pulse sensor connection is illustrated in figure Pulse-Input
Wiring Example — Anemometer Switch (. 70). Pulse sensors have two active

wires, one of which is ground. Connect the ground wire to a == (signal ground)
terminal. Connect the other wire to a P terminal. Sometimes the sensor will
require power from the CR800, so there may be two power wires — one of which
will be power ground. Connect power ground to a G terminal. Do not confuse
the pulse wire with the positive-power wire, or damage to the sensor or CR800

may result. Some switch-closure sensors may require a pull-up resistor.

Figure 24. Pulse-Input Wiring Example — Anemometer

5.1.4 Period Averaging — Overview

Related Topics:

* Period Averaging — Specifications
* Period Averaging — Overview (p. 70)
* Period Averaging — Details (p. 341)

The CR800 can measure the period of an analog signal.

Numbered SE terminals are configurable for period average:

e Voltage gain: 1, 10, 33, 100

e Maximum frequency: 200 kHz

70

Section 5. System Overview

e Resolution: 136 ns

Note Both pulse-count and period-average measurements are used to measure
frequency output sensors. Yet pulse-count and period-average measurement
methods are different. Pulse-count measurements use dedicated hardware — pulse
count accumulators, which are always monitoring the input signal, even when the
CR800 is between program scans. In contrast, period-average measurement
instructions only monitor the input signal during a program scan. Consequently,
pulse-count scans can usually be much less frequent than period-average scans.
Pulse counters may be more susceptible to low-frequency noise because they are
always "listening", whereas period averaging may filter the noise by reason of
being "asleep" most of the time. Pulse-count measurements are not appropriate for
sensors that are powered off between scans, whereas period-average
measurements work well since they can be placed in the scan to execute only
when the sensor is powered and transmitting the signal.

Period-average measurements use a high-frequency digital clock to measure time
differences between signal transitions, whereas pulse-count measurements simply
accumulate the number of counts. As a result, period-average measurements offer
much better frequency resolution per measurement interval, as compared to pulse-
count measurements. The frequency resolution of pulse-count measurements can
be improved by extending the measurement interval by increasing the scan
interval and by averaging. For information on frequency resolution, see
Frequency Resolution (p. 335).

5.1.5 Vibrating-Wire Measurements — Overview

Related Topics:

* Vibrating-Wire Measurements — Specifications
* Vibrating-Wire Measurements — Overview (p. 71)
* Vibrating-Wire Measurements — Details (p. 343)

Vibrating-wire sensors impart long term stability to many environmental and
industrial measurement applications. The CR800 is equipped to measure these
sensors either directly or through interface modules.

A thermistor included in most sensors can be measured to compensate for
temperature errors.

Measuring the resonant frequency by means of period averaging is the classic
technique, but Campbell Scientific has developed static and dynamic spectral-
analysis techniques (Vspect (p. 506™) that produce superior noise rejection, higher
resolution, diagnostic data, and, in the case of dynamic Vspect, measurements up
to 333.3 Hz. Dynamic measurements require addition of an interface module.

SE terminals are configurable for time-domain vibrating-wire measurement,
which is a technique now superseded in most applications by Vspect . 506)
vibrating-wire analysis. See appendix Vibrating-Wire Input Modules List (p. 623)
for more information.

71

Section 5. System Overview

72

5.1.6 Reading Smart Sensors — Overview

Related Topics:
* Reading Smart Sensors — Overview (p. 72)
* Reading Smart Sensors — Details (p. 344)

A smart sensor is equipped with independent measurement circuitry that makes
the basic measurement and sends measurement and measurement related data to
the CR800. Smart sensors vary widely in output modes. Many have multiple
output options. Output options supported by the CR800 include SDI-12 (p. 259,
RS-232 p. 238, Modbus p. 391), and DNP3 . 387).

The following smart sensor types can be measured on the indicated terminals:

e SDI-12 devices: C

e Synchronous Devices for Measurement (SDM): C

e Smart sensors: C terminals, RS-232 port, and CS I/O port with the
appropriate interface.

e Modbus or DNP3 network: RS-232 port and CS 1/O port with the appropriate
interface

e Other serial I/0O devices: C terminals, RS-232 port, and CS 1/O port with the
appropriate interface

5.1.6.1 SDI-12 Sensor Support — Overview

Related Topics:
» SDI-12 Sensor Support — Overview (p. 72)
» SDI-12 Sensor Support — Details (p. 344)
* Serial I/0: SDI-12 Sensor Support — Programming Resource (p. 259)
* SDI-12 Sensor Support — Instructions (p. 529

SDI-12 is a smart-sensor protocol that uses one SDI-12 port and is powered by 12
Vdc. Itis fully supported by the CR800 datalogger. Refer to the chart CR800
Terminal Definitions (p. 76), which indicates C terminals that can be configured for
SDI-12 input. For more information about SDI-12 support, see section Serial I/0:
SDI-12 Sensor Support — Details (p. 259.

5.1.6.2 RS-232 — Overview

The CR800 has 4 ports available for RS-232 input as shown in figure Terminals
Configurable for RS-232 Input p. 73).

Note With the correct adapter, the CS I/0 port can often be used as an RS-232
1/0 port.

As indicated in figure Use of RS-232 and Digital I/0 when Reading RS-232
Devices (p. 73), RS-232 sensors can often be connected to C terminal pairs
configured for serial 1/0, to the RS-232 port, or to the CS I/O port with the proper
adapter. Ports can be set up for baud rate, parity, stop-bit, and so forth as
described in CRBasic Editor Help.

Section 5. System Overview

Figure 25. Terminals Configurable for RS-232 Input

H
7

7

v

CAMPBELL
SCIENTIFIC, INC.
Logan, Utah

(LN (O

Figure 26. Use of RS-232 and Digital I/0O when Reading RS-232 Devices

Receive
-
v Transmit 0 o o
0 0 0 o,
——
Sensor RS-232
\e 28 8/
Transmit ?: 1 [
\
|

(
—>
=, Receive © E{

5.1.7 Field Calibration — Overview

[

Related Topics:
 Field Calibration — Overview (p. 73)
e Field Calibration — Details (p. 203)

Calibration increases accuracy of a measurement device by adjusting its output, or
the measurement of its output, to match independently verified quantities.
Adjusting sensor output directly is preferred, but not always possible or practical.
By adding FieldCal() or FieldCalStrain() instructions to the CR800 CRBasic
program, measurements of a linear sensor can be adjusted by modifying the
programmed multiplier and offset applied to the measurement.

5.1.8 Cabling Effects — Overview

Related Topics:
* Cabling Effects — Overview (p. 73)
* Cabling Effects — Details (p. 345)

Sensor cabling can have significant effects on sensor response and accuracy. This
is usually only a concern with sensors acquired from manufacturers other than

73

Section 5. System Overview

Campbell Scientific. Campbell Scientific sensors are engineered for optimal
performance with factory-installed cables.

5.1.9 Synchronizing Measurements — Overview

Related Topics:
» Synchronizing Measurements — Overview (p. 74)
» Synchronizing Measurements — Details (p. 346)

Timing of a measurement is usually controlled relative to the CR800 clock.
When sensors in a sensor network are measured by a single CR800, measurement
times are synchronized, often within a few milliseconds, depending on sensor
number and measurement type. Large numbers of sensors, cable length
restrictions, or long distances between measurement sites may require use of
multiple CR800s.

5.2 PLC Control — Overview

Related Topics:

PLC Control — Overview . 74)

PLC Control — Details (p. 237

PLC Control Modules — Overview (p. 349)
PLC Control Modules — Lists (p. 624)

PLC Control — Instructions (p. 536)
Switched Voltage Output — Specifications
Switched Voltage Output — Overview (p. 78)
Switched Voltage Output — Details (p. 101)

This section is slated for expansion. Below are a few tips.

74

Short Cut programming wizard has provisions for simple on/off control.

PID control can be done with the CR800. Ask a Campbell Scientific
application engineer for more information.

When controlling a PID algorithm, a delay between processing (algorithm
input) and the control (algorithm output) is not usually desirable. A delay
will not occur in either sequential mode (p. 501) or pipeline mode (p. 497,
assuming an appropriately fast scan interval is programmed, and the program
is not skipping scans. In sequential mode, if some task occurs that pushes
processing time outside the scan interval, skipped scans will occur and the
PID control may fail. In pipeline mode, with an appropriately sized scan
buffer, no skipped scans will occur. However, the PID control may fail as the
processing instructions work through the scan buffer.

To avoid these potential problems, bracket the processing instructions in the
CRBasic program with ProcHiPri and EndProcHiPri. Processing
instructions between these instructions are given the same high priority as
measurement instructions and do not slip into the scan buffer if processing
time is increased. ProcHiPri and EndProcHiPri may not be selectable in
CRBasic Editor. You can type them in anyway, and the compiler will
recognize them.

Section 5. System Overview

5.3 Datalogger — Overview

Related Topics:

* Datalogger — Quickstart (p. 43)
* Datalogger — Overview (p. 75)
* Dataloggers — List (p. 621)

The CR800 datalogger is the principal component of a data-acquisition system. It
is a precision instrument designed for demanding environments and low-power
applications. CPU, analog and digital measurements, analog and digital outputs,
and memory usage are controlled by the operating system, the on-board clock, and
the CRBasic application program you write.

The application program is written in CRBasic, a programming language that
includes measurement, data processing, and analysis routines and a standard
BASIC instruction set. Short Cut (p. 501), a very user-friendly program generator
software application, can be used to write programs for many basic measurement
and control applications. CRBasic Editor, a software application available in
some datalogger support software (p. 485 packages, is used to write more complex
programs.

Measurement data are stored in non-volatile memory. Most applications do not
require that every measurement be recorded. Rather, measurements are usually
combined in statistical or computational summaries. The CR800 has the option of
evaluating programmed instructions sequentially (sequential mode), or in the
more efficient pipeline mode. In pipeline mode, the CR800 determines the order
of instruction execution.

5.3.1 Time Keeping — Overview

Related Topics:
» Time Keeping — Overview (p. 75
» Time Keeping — Instructions (p. 552)

Nearly all CR800 functions depend on the internal clock. The operating system
and the CRBasic user program use the clock for scheduling operations. The
CRBasic program times functions through various instructions, but the method of
timing is nearly always in the form of "time into an interval." For example, 6:00
AM is represented in CRBasic as "360 minutes into a 1440 minute interval", 1440
minutes being the length of a day and 360 minutes into that day corresponding to
6:00 AM.

Zero minutes into an interval puts it at the "top" of that interval, that is at the
beginning of the second, minute, hours, or day. For example, 0 minutes into a
1440 minute interval corresponds to Midnight. When an interval of a week is
programmed, the week begins at Midnight on Monday morning.

5.3.2 Wiring Panel — Overview

Related Topics

» Wiring Panel — Quickstart (p. 43)

* Wiring Panel — Overview (p. 73)

* Measurement and Control Peripherals (p. 348)

75

Section 5. System Overview

The wiring panel of the CR800 is the interface to most functions. These functions
are introduced in the following sections while reviewing wiring-panel features
illustrated in the figure Wiring Panel . 44. The table CR800 Terminal Definitions
(. 76) details the functions of the various terminals on the wiring panel.
Measurement and control peripherals expand the input and output capabilities of
the wiring panel.

Figure 27. Wiring Panel

H/L Terminals Switched-Voltage P Terminals

Analog Input Excitation Pulse Input
Differential Resistive-Bridge Low-Level Ac
Single-Ended Sensors

Period Average (Power In)

Signal Ground

Power Ground

Earth Ground

(Status LED)

Keyboard and
Display
(CR850 Only)

Switched 12V

Peripheral/

Sensor

Power
CS1ro 12V Out C Terminals
Communication Peripheral | | Pulse Counting SDI-12, SDM
Peripheral and Sensor | | Digital [/O TTL RS-232

Power Switched Voltage

76

Section 5. System Overview

Analog Input

Single-ended v I v | v | v | v | v 6

Differential (high/low) v 4 v 3

Analog period average vV iIv |V |V v |V 6

Vibrating wire VIYYlr Y 6

Analog Output

Switched Precision Voltage | | | | | v | v | | | | 2

Pulse Counting

Switch closure vViviv |v |v |V 6

High frequency Viviv v v IV 6

Low-level Vac Vv 2

Digital I/O

Control vi|v |v | Vv 4

Status vi|v |v | Vv 4

General /O (TX,RX) v v 2
g Pulse-width modulation v | v |V v 4
‘é Timer VO vilvi|v]|v 4
LE Interrupt vi|v v |V 4

Continuous Regulated3

HEEEENEEEEEEEOEEEEE

Continuous Um'egulated3

HEEEEIEEEEEEEEGEEEE

Switched Regulated3

s vae HEEEEEEENGEAEEEERE

Switched Um'egulated3

HEEEENEEEEEEEEEGEEE

UART

v

True RS-232 (TX/RX) V|4 |2

TTL RS-232 (TX/RX) v v 2

SDI-12 v v 4

SDM (Data/Clock/Enable) v 1

77

Section 5. System Overview

78

! Terminal expansion modules are available. See section Measurement and Control Peripherals — Overview (p. 84).
2 Static, time domain measurement. Obsolete.
3 Check the table Current Source and Sink Limits (p. 101).

CS I/O requires an interfacing device for sensor input. See section Data Retrieval and Telecommunication Peripherals — Lists

(p. 627).

See section Vibrating-Wire Measurements — Overview (p. 71).

5.3.2.1 Switched Voltage Output — Overview

Related Topics:

Switched Voltage Output — Specifications
Switched Voltage Output — Overview (p. 78)
Switched Voltage Output — Details (p. 101)
PLC Control — Overview . 74)

PLC Control — Details (p. 237

PLC Control Modules — Overview (p. 349)
PLC Control Modules — Lists (p. 624)

PLC Control — Instructions (p. 536)

C terminals are selectable as binary inputs, control outputs, or communication
ports. See the section Measurement — Overview (p. 62) for a summary of
measurement functions. Other functions include device-driven interrupts,
asynchronous communications and SDI-12 communications. Table CR800
Terminal Definitions (p. 76) summarizes available options.

Figure Control and Monitoring with C Terminals (p. 79 illustrates a simple
application wherein a C terminal configured for digital input and another
configured for control output are used to control a device (turn it on or off) and
monitor the state of the device (whether the device is on or off).

Section 5. System Overview

Figure 28. Control and Monitoring with C Terminals

To Ground

5.3.2.2 Voltage Excitation — Overview

Related Topics:
* Voltage and Current Excitation — Specifications
* Voltage Excitation — Overview @p. 79)

The CR800 has several terminals designed to supply switched voltage to
peripherals, sensors, or control devices:

e Voltage Excitation (switched-analog output) — Vx terminals supply precise
voltage in the range of £2500 mV. These terminals are regularly used with
resistive-bridge measurements. Each terminal will source up to £25 mA.

e Digital [/O — C terminals configured for on / off and PWM (pulse width
modulation) or PDM (pulse duration modulation) on C4.

e Switched 12 Vdc — SW12 terminals. Primary battery voltage under
program control to switch external devices (such as humidity sensors)
requiring nominal 12 Vdc. SW12 terminals can source up to 900 mA. See
the table Current Source and Sink Limits (p. 101).

e Continuous Analog Output — available by adding a peripheral analog output
device available from Campbell Scientific. Refer to section Analog-Output

Modules (p. 349) for information on available expansion modules.

5.3.2.3 Grounding Terminals

Read More See Grounding (p. 103).

79

Section 5. System Overview

80

Proper grounding lends stability and protection to a data acquisition system. It is
the easiest and least expensive insurance against data loss — and often the most
neglected. The following terminals are provided for connection of sensor and
CR800 datalogger grounds:

Signal Ground (=) — reference for single-ended analog inputs, pulse inputs,
excitation returns, and as a ground for sensor shield wires. Signal returns for
pulse inputs should use == terminals located next to the pulse input terminal.
Current loop sensors, however, should be grounded to power ground.

Power Ground (G) — return for 5V, SW12, 12V, current loop sensors, and C
configured for control. Use of G grounds for these outputs minimizes
potentially large current flow through the analog-voltage-measurement
section of the wiring panel, which can cause single-ended voltage
measurement errors.

Earth Ground Lug (%) — connection point for a heavy-gage earth-ground
wire. A good earth connection is necessary to secure the ground potential of
the CR800 and shunt transients away from electronics. Minimum 14 AWG
wire is recommended.

5.3.2.4 Power Terminals

Related Topics:
» Power Supplies — Specifications

Power Supplies — Quickstart p. 44
Power Supplies — Overview (p. 83)

Power Supplies — Details (p. 98)

Power Supplies — Products (p. 633)

Power Sources p. 99

Troubleshooting — Power Supplies (p. 469

5.3.2.4.1 Power In

The POWER IN connector is the connection point for external power supply
components.

5.3.2.4.2 Power Out Terminals

Note Refer to the section Switched Voltage Output — Details (p. 101) for more
information on using the CR800 as a power supply for sensors and peripheral
devices.

The CR800 can be used as a power source for sensors and peripherals. The
following voltages are available:

12V terminals: unregulated nominal 12 Vdc. This supply closely tracks the
primary CR800 supply voltage, so it may rise above or drop below the power
requirement of the sensor or peripheral. Precautions should be taken to
prevent damage to sensors or peripherals from over- or under-voltage
conditions, and to minimize the error associated with the measurement of
underpowered sensors. See section Power Supplies — Overview (p. 85).

5V terminals: regulated 5 Vdc at 300 mA. The 5 Vdc supply is regulated to
within a few millivolts of 5 Vdc so long as the main power supply for the

Section 5. System Overview

CR800 does not drop below <MinPwrSupplyVolts>.

5.3.2.5 Communication Ports

Read More See sections RS-232 and TTL (. 344), Data Retrieval and
Telecommunications — Details (p. 370), and PakBus — Overview (p. 88).

The CR800 is equipped with hardware ports that allow communication with other
devices and networks, such as:

PC

Smart sensors

Modbus and DNP3 networks

Ethernet

Modems

Campbell Scientific PakBus networks
Other Campbell Scientific dataloggers
Campbell Scientific datalogger peripherals

Communication ports include:

CS1/0

RS-232

SDI-12

SDM

CPI (requires a peripheral device)
Ethernet (requires a peripheral device)

5.3.2.5.1 CS I/O Port

Read More See the appendix Serial Port Pinouts (p. 609).

e One nine-pin port, labeled CS 1/0, for communicating with a PC or modem
through Campbell Scientific communication interfaces, modems, or
peripherals. CS I/O telecommunication interfaces are listed in the appendix
Serial 1/0 Modules List (p. 622).

Note CS I/O communications normally operate well over only a few feet of serial
cable.

5.3.2.5.2 RS-232 Ports

Note RS-232 communications normally operate well up to a transmission cable
capacitance of 2500 picofarads, or approximately 50 feet of commonly available
serial cable.

e One nine-pin DCE port, labeled RS-232, normally used to communicate with
a PC running datalogger support sofiware (p. 631), or to connect a third-party
modem. With a null-modem adapter attached, it serves as a DTE device.

Read More See the appendix Serial Port Pinouts (p. 609).

e Two-terminal (TX and RX) RS-232 ports can be configured:

o Upto Two TTL ports, configured from C terminals.

81

Section 5. System Overview

82

Note RS-232 ports are not isolated (p. 492).

5.3.2.5.3 SDI-12 Ports

Read More See the section Serial 1/0: SDI-12 Sensor Support — Details (p. 259.

SDI-12 is a 1200 baud protocol that supports many smart sensors. Each port
requires one terminal and supports up to 16 individually addressed sensors.

e Up to two ports configured from C terminals.

5.3.2.5.4 SDM Port

SDM is a protocol proprietary to Campbell Scientific that supports several
Campbell Scientific digital sensor and telecommunication input and output
expansion peripherals and select smart sensors.

e One SDM port configured from C1, C2, and C3 terminals.

5.3.2.5.5 CPI Port

CPI is a new proprietary protocol that supports an expanding line of Campbell
Scientific CDM modules. CDM modules are higher-speed input- and output-
expansion peripherals. CPI ports also enable networking between compatible
Campbell Scientific dataloggers.

e Connection to CDM devices requires a peripheral CPI interface as listed in
the appendix CDM/CPI Interfaces (p. 623).

5.3.2.5.6 Ethernet Port

Read More See the section TCP/IP (p. 282).

e FEthernet capability requires a peripheral Ethernet interface device, as listed
in the appendix Network Links List (p. 629).

5.3.3 Keyboard Display — Overview

Related Topics:

* Keyboard Display — Overview (p. 82)

» Keyboard Display — Details (p. 430)

» Keyboard Display — List . 627)

e Custom Menus — Overview (p. 83, p. 555)

The CR1000KD Keyboard Display is a powerful tool for field use. The
CR1000KD, illustrated in figure CR1000KD Keyboard Display (p. 83), is a
peripheral optional to the CR800.

The keyboard display is an essential installation, maintenance, and
troubleshooting tool for many applications. It allows interrogation and
programming of the CR800 datalogger independent of other telecommunication
links. More information on the use of the keyboard display is available in the
section Custom Menus — Overview (p. 83, p. 555.. See the appendix Keyboard
Displays List . 627) for more information on available products.

Section 5. System Overview

Figure 29. CR1000KD Keyboard Display

5.3.3.1 Integrated Keyboard Display

The integrated keyboard display, illustrated in figure Wiring Panel . 44, is a
purchased option when buying a CR800 series datalogger.

5.3.3.2 Character Set

The keyboard display character set is accessed using one of the following three
procedures:

e Most keys have a characters shown in blue printed above the key. To enter a
character, press Shift one to three times to select the position of the character
shown above the key, then press the key. For example, to enter Y, press Shift
three times, then press the PgDn.

e To insert a space (Spc) or change case (Cap), press Shift one to two times for
the position, then press BkSpc.

e To insert a character not printed on the keyboard, enter Ins , scroll down to
Character, press Enter, then scroll up, down, left, or right to the desired
character in the list, then press Enter.

5.3.3.3 Custom Menus — Overview

Related Topics:

o Custom Menus — Overview (p. 83, p. 555)

* Data Displays: Custom Menus — Details (p. 180)
* Custom Menus — Instruction Set (p. 555)

* Keyboard Display — Overview (p. 82)

* CRBasic Editor Help for DisplayMenu()

CRBasic programming in the CR800 facilitates creation of custom menus for the
CR1000KD Keyboard Display.

Figure Custom Menu Example p. 84 shows windows from a simple custom menu
named DataView. DataView appears as the main menu on the keyboard display.
DataView has menu item Counter, and submenus PanelTemps, TCTemps and

83

Section 5. System Overview

System Menu. Counter allows selection of one of four values. Each submenu
displays two values from CR800 memory. PanelTemps shows the CR800 wiring-
panel temperature at each scan, and the one-minute sample of panel temperature.
TCTemps displays two thermocouple temperatures. For more information on

creating custom menus, see section Data Displays: Custom Menus — Details (p.
180).

Figure 30. Custom Menu Example

DataView Panel Temps:
PanelTemps > ——P»| scan 23.4960
Counter 0.00000 Final Stg 23.5000
TCTemps >
System Menu >
rTCTemps:)
TC_Temp_1 29.4355
TC_Temp_2 32.3133
Data)
' Run/Stop Program
File
Ports and Status
Configure, Settings

5.3.4 Measurement and Control Peripherals — Overview

84

Related Topics:

* Measurement and Control Peripherals — Overview (p. 84)
* Measurement and Control Peripherals — Details (p. 348)

* Measurement and Control Peripherals — Lists (p. 622)

Modules are available from Campbell Scientific to expand the number of
terminals on the CR800. These include:

Multiplexers

Multiplexers increase the input capacity of terminals configured for analog-input,
and the output capacity of Vx excitation terminals.

SDM Devices

Serial Device for Measurement expand the input and output capacity of the
CR800. These devices connect to the CR800 through terminals C1, C2, and C3.

CDM Devices

Campbell Distributed Modules are a growing line of measurement and control
modules that use the higher speed CAN Peripheral Interface (CPI) bus
technology. These connect through the SC-CPI interface.

Section 5. System Overview

5.3.5 Power Supplies — Overview

Related Topics:

* Power Supplies — Specifications

* Power Supplies — Quickstart (p. 44)

* Power Supplies — Overview (p. 85

* Power Supplies — Details (p. 98)

* Power Supplies — Products (p. 633)

e Power Sources (p. 99)

* Troubleshooting — Power Supplies (p. 469)

The CR800 is powered by a nominal 12 Vdc source. Acceptable power range is
9.6 to 16 Vdc.

External power connects through the green POWER IN connector on the face of
the CR800. The positive power lead connects to 12V. The negative lead
connects to G. The connection is internally reverse-polarity protected.

The CR800 is internally protected against accidental polarity reversal on the
power inputs.

The CR800 has a modest-input power requirement. For example, in low-power
applications, it can operate for several months on non-rechargeable batteries.
Power systems for longer-term remote applications typically consist of a charging
source, a charge controller, and a rechargeable battery. When ac line power is
available, a Vac-to-Vac or Vac-to-Vdc wall adapter, a peripheral charging
regulator, and a rechargeable battery can be used to construct a UPS (un-
interruptible power supply).

5.3.6 CRB800 Configuration — Overview

Related Topics:

* CR800 Configuration — Overview (p. 83)

* CR800 Configuration — Details (p. 109)

o Status, Settings, and Data Table Information (Status/Settings/DTI) (p. 577)

The CR800 is shipped factory-ready with an operating system (OS) installed.
Settings default to those necessary to communicate with a PC via RS-232 and to
accept and execute user-application programs. For more complex applications,
some settings may need adjustment. Settings can be changed with the following:

o DevConfig (Device Configuration Utility). See section Device Configuration
Utility . 109))

e CRI1000KD Keyboard Display. See section Keyboard Display — Details (p.
430) and the appendix Keyboard Display — List p. 627)

e Datalogger support software. See section Datalogger Support Software —
Overview (p. 93).

OS files are sent to the CR800 with DevConfig or through the program Send
button in datalogger support software. When the OS is sent with DevConfig, most
settings are cleared, whereas, when sent with datalogger support software, most
settings are retained. Operating systems can also be transferred to the CR800
with a Campbell Scientific mass storage device.

85

Section 5. System Overview

OS updates are occasionally made available at www.campbellsci.com. OS and
settings remain intact when power is cycled.

5.3.7 CRBasic Programming — Overview

Related Topics:

* CRBasic Programming — Overview (p. 86)

* CRBasic Programming — Details (. 120)

* CRBasic Programming — Instructions (p. 511)
* Programming Resource Library (. 167)

* CRBasic Editor Help

A CRBasic program directs the CR800 how and when sensors are to be measured,
calculations made, and data stored. A program is created on a PC and sent to the
CR800. The CR800 can store a number of programs in memory, but only one
program is active at a given time. Two Campbell Scientific software applications,
Short Cut and CRBasic Editor, are used to create CR800 programs.

e Short Cut creates a datalogger program and wiring diagram in four easy steps.
It supports most sensors sold by Campbell Scientific and is recommended for
creating simple programs to measure sensors and store data.

e Programs generated by Short Cut are easily imported into CRBasic Editor for
additional editing. For complex applications, experienced programmers often
create essential measurement and data storage code with Short Cut, then add
more complex code with CRBasic Editor.

Note Once a Short Cut generated program has been edited with CRBasic Editor
(- 123), it can no longer be modified with Short Cut.

5.3.8 Memory — Overview

86

Related Topics:

* Memory — Overview (p. 86)

* Memory — Details (p. 351)

* Data Storage Devices — List (p. 629)

Data concerning CR800 memory are posted in the Status (. 577) table. Memory is
organized as follows:

e OSFlash

2 MB

Operating system (OS)

Serial number and board rev

Boot code

Erased when loading new OS (boot code only erased if changed)

e Serial Flash

512 KB

Device settings
Write protected
Non-volatile

O O O O O

O O O O

Section 5. System Overview

o CPU: drive residence

Automatically allocated

FAT file system

Limited write cycles (100,000)
Slow (serial accesses)

e Main Memory

O O O O O O O O

o O

4 MB SRAM

Battery backed

OS variables

CRBasic compiled program binary structure (490 KB maximum)
CRBasic variables

Data memory

Communication memory

USR: drive

User allocated

FAT32 RAM drive

Photographic images (See the appendix Cameras)

Data files from TableFile() instruction (TOAS, TOB1, CSIXML
and CSIJSON)

Keep (p. 492 memory (OS variables not initialized)
Dynamic runtime memory allocation

Note CR800s with serial numbers smaller than 3605 were usually supplied with
only 2 MB of SRAM.

Memory for data can be increased with the addition of a mass storage device
(thumb drive) that connects to CS I/0. See the appendix Data-Storage Devices
— List (p. 629) for information on available memory expansion products.

By default, final-data memory (memory for stored data) is organized as ring
memory. When the ring is full, oldest data are overwritten by newest data. The
DataTable() instruction, however, has an option to set a data table to Fill and

Stop.

5.3.9 Data Retrieval and Telecommunications — Overview

Related Topics:

* Data Retrieval and Telecommunications — Quickstart (p. 43)

e Data Retrieval and Telecommunications — Overview (. 87)

e Data Retrieval and Telecommunications — Details . 370)

* Data Retrieval and Telecommunication Peripherals — Lists (p. 627)

Final data are written to tables in final-data memory. When retreived, data are
copied to PC files via a telecommunication link (Data Retrieval and
Telecommunications — Details (p. 3709)) or by transporting a or a Campbell
Scientific mass storage media (USB: drive) to the PC.

87

Section 5. System Overview

5.3.9.1 PakBus® Communications — Overview

Related Topics:

e PakBus® Communications — Overview . 88)

o PakBus® Communications — Details ®.372)

e PakBus® Communications — Instructions (p. 558

* PakBus Networking Guide (available at www.campbellsci.com/manuals
(http://www.campbellsci.com/manuals))

The CR800 communicates with datalogger support software (. 630),
telecommunication peripherals p. 627), and other dataloggers (. 621) with PakBus, a
proprietary network communication protocol. PakBus is a protocol similar in
concept to IP (Internet Protocol). By using signatured data packets, PakBus
increases the number of communication and networking options available to the
CR800. Communication can occur via TCP/IP, on the RS-232 port, CS 1/0 port,
and C terminals.

Advantages of PakBus are as follows:

e Simultaneous communication between the CR800 and other devices.

e Peer-to-peer communication — no PC required. Special CRBasic
instructions simplify transferring data between dataloggers for distributed
decision making or control.

e Data consolidation — other PakBus dataloggers can be used as "sensors" to
consolidate all data into one CR800.

e Routing — the CR800 can act as a router, passing on messages intended for
another Campbell Scientific datalogger. PakBus supports automatic route
detection and selection.

e Short distance networks — with no extra hardware, a CR800 can talk to
another CR800 over distances up to 30 feet by connecting transmit, receive
and ground wires between the dataloggers.

In a PakBus network, each datalogger is set to a unique address. The default
PakBus address in most devices is 1. To communicate with the CR800, the
datalogger support software must know the CR800 PakBus address. The PakBus
address is changed using the CR1000KD Keyboard Display (p. 430, DevConfig
utility (p. 109, CR800 Status table . 577), or PakBus Graph (p. 496) software.

5.3.9.2 Telecommunications

Data are usually copied through a telecommunication link to a file on the
supporting PC using Campbell Scientific datalogger support software . 631). See
also the manual and Help for the software being used.

5.3.9.3 Mass-Storage Device

Caution When removing a Campbell Scientific mass storage device (thumb
drive) from the CR800, do so only when the LED is not lit or flashing. Removing
the device while it is active can cause data corruption.

Data stored on a Campbell Scientific mass storage device are retrieved via a
telecommunication link to the CR800, if the device remains on the CS 1/0 port,
or by removing the device, connecting it to a PC, and copying files using

88

http://www.campbellsci.com/manuals

Section 5. System Overview

Windows File Explorer.

5.3.9.4 Data-File Formats in CR800 Memory

Routine CR800 operations store data in binary data tables. However, when the
TableFile() instruction is used, data are also stored in one of several formats in
discrete text files in internal or external memory. See Data Storage — On-board
(. 355 for more information on the use of the TableFile() instruction.

5.3.9.5 Data Format on Computer

CR800 data stored on a PC with datalogger support software (p. 631) are formatted
as either ASCII or binary depending on the file type selected in the support
software. Consult the software manual for details on available data-file formats.

5.3.10 Alternate Telecommunications — Overview

Related Topics:
e Alternate Telecommunications — Overview (p. 89)
» Alternate Telecommunications — Details (p. 386)

The CR800 communicates with external devices to receive programs, send data,
or act in concert with a network. The primary communication protocol is PakBus
(p- 496). Other telecommunication protocols are supported, including Web API (p.
402), Modbus (p. 391, and DNP3 (p. 387). Refer to the section Specifications (p. 95) for a
complete list of supported protocols. The appendix Data Retrieval and
Telecommunications — Peripherals Lists (p. 627) lists peripheral communication
devices available from Campbell Scientific.

Keyboard displays also communicate with the CR800. See Keyboard Display —
Overview (p. 82) for more information.

5.3.10.1 Modbus

Related Topics:
e Modbus — Overview (p. 89
e Modbus — Details (p. 391)

The CR800 supports Modbus master and Modbus slave communications for
inclusion in Modbus SCADA networks. Modbus is a widely used SCADA
communication protocol that facilitates exchange of information and data between
computers / HMI software, instruments (RTUs) and Modbus-compatible sensors.
The CR800 communicates with Modbus over RS-232, RS-485 (with a RS-232 to
RS-485 adapter), and TCP.

Modbus systems consist of a master (PC), RTU / PLC slaves, field instruments
(sensors), and the communication-network hardware. The communication port,
baud rate, data bits, stop bits, and parity are set in the Modbus driver of the master
and / or the slaves. The Modbus standard has two communication modes, RTU
and ASCII. However, CR800s communicate in RTU mode exclusively.

Field instruments can be queried by the CR800. Because Modbus has a set
command structure, programming the CR800 to get data from field instruments is
much simpler than from serial sensors. Because Modbus uses a common bus and

89

Section 5. System Overview

addresses each node, field instruments are effectively multiplexed to a CR800
without additional hardware.

5.3.10.2DNP3 — Overview

Related Topics:
* DNP3 — Overview (p. 90)
e DNP3 — Details (p. 387)

The CR800 supports DNP3 slave communications for inclusion in DNP3 SCADA
networks.

5.3.10.3TCP/IP — Overview

Related Topics:

TCP/IP — Overview (p. 90)
TCP/IP — Details (p. 402
TCP/IP — Instructions (p. 567)
TCP/IP Links — List (p. 629

The CR800 supports the following TCP/IP protocols:

DHCP

DNS

FTP

HTML

HTTP
Micro-serial server
NTCIP

NTP

PakBus over TCP/IP
Ping

POP3

SMTP

SNMP

Telnet

Web API

e XML

5.3.11 Security — Overview

Related Topics:
o Security — Overview (p. 90)
» Security — Details (p. 443)

The CR800 is supplied void of active security measures. By default, RS-232,
Telnet, FTP and HTTP services, all of which give high level access to CR800 data
and CRBasic programs, are enabled without password protection.

You may wish to secure your CR800 from mistakes or tampering. The following
may be reasons to concern yourself with datalogger security:

e Collection of sensitive data

90

Section 5. System Overview

e Operation of critical systems
e Networks accessible by many individuals

If you are concerned about security, especially TCP/IP threats, you should send
the latest operating system (p. 85) to the CR800, disable un-used services, and
secure those that are used. Security actions to take may include the following:

Set passcode lockouts

Set PakBus/TCP password

Set FTP username and password

Set AES-128 PakBus encryption key

Set .csipasswd file for securing HTTP and web API

Track signatures

Encrypt program files if they contain sensitive information

Hide program files for extra protection

Secure the physical CR800 and power supply under lock and key

Note All security features can be subverted through physical access to the
CR&800. If absolute security is a requirement, the physical CR800 must be kept in
a secure location.

Related Topics

e Auto Calibration — Overview . 91)

e Auto Calibration — Details (p. 326)

e Auto-Calibration — Errors (p. 466)

* Offset Voltage Compensation (p. 315

* Factory Calibration (p. 92)

» Factory Calibration or Repair Procedure (p. 452)

The CR800 auto-calibrates to compensate for changes caused by changing
operating temperatures and aging. With auto-calibration disabled, measurement
accuracy over the operational temperature range is specified as less accurate by a
factor of 10. That is, over the extended temperature range of —40 °C to 85 °C, the
accuracy specification of £0.12% of reading can degrade to £1% of reading with
auto-calibration disabled. If the temperature of the CR800 remains the same,
there is little calibration drift if auto-calibration is disabled. Auto-calibration can
become disabled when the scan rate is too small. It can be disabled by the
CRBasic program when using the Calibrate() instruction.

Note The CR800 is equipped with an internal voltage reference used for
calibration. The voltage reference should be periodically checked and re-
calibrated by Campbell Scientific for applications with critical analog voltage
measurement requirements. A minimum two-year recalibration cycle is
recommended.

Unless a Calibrate() instruction is present, the CR800 automatically auto-
calibrates during spare time in the background as an automatic slow sequence (.
155) with a segment of the calibration occurring every four seconds. If there is
insufficient time to do the background calibration because of a scan-consuming
user program, the CR800 will display the following warning at compile time:
Warning: Background calibration is disabled.

91

Section 5. System Overview

5.3.12 Maintenance — Overview

Related Topics:
* Maintenance — Overview (p. 92)
* Maintenance — Details (p. 449)

With reasonable care, the CR800 should give many years of reliable service.

5.3.12.1 Protection from Moisture — Overview

Protection from Moisture — Overview (p. 92)
Protection from Moisture — Details (p. 97)
Protection from Moisture — Products (p. 636)

The CR800 and most of its peripherals must be protected from moisture.
Moisture in the electronics will seriously damage, and probably render un-
repairable, the CR800. Water can come from flooding or sprinkler irrigation, but
most often comes as condensation. In most cases, protection from water is easily
accomplished by placing the CR800 in a weather-tight enclosure with desiccant
and elevating the enclosure above the ground. The CR800 is shipped with
internal desiccant packs to reduce humidity. Desiccant in enclosures should be
changed periodically.

Note Do not completely seal the enclosure if lead-acid batteries are present;
hydrogen gas generated by the batteries may build up to an explosive
concentration.

Refer to Enclosures List @p. 635 for information on available weather-tight
enclosures.

5.3.12.2 Protection from Voltage Transients

Read More See Grounding (p. 103).

The CR800 must be grounded to minimize the risk of damage by voltage
transients associated with power surges and lightning-induced transients. Earth
grounding is required to form a complete circuit for voltage-clamping devices
internal to the CR800. Refer to the appendix Transient-Voltage Suppressors List
(- 624) for information on available surge-protection devices.

5.3.12.3 Factory Calibration

92

Related Topics

* Auto Calibration — Overview (. 91)

* Auto Calibration — Details . 326)

* Auto-Calibration — Errors (p. 466)

Offset Voltage Compensation (p. 315)

* Factory Calibration (p. 92)

* Factory Calibration or Repair Procedure (p. 452)

The CR800 uses an internal voltage reference to routinely calibrate itself.
Campbell Scientific recommends factory recalibration every two years. If
calibration services are required, refer to the section entitled Assistance (p. 5) at the

Section 5. System Overview

front of this manual.

5.3.12.4 Internal Battery — Details

Related Topics:
o Internal Battery — Quickstart (p. 45)
o Internal Battery — Details (p. 93)

Warning Misuse or improper installation of the internal lithium battery can
cause severe injury. Fire, explosion, and severe burns can result. Do not recharge,
disassemble, heat above 100 °C (212 °F), solder directly to the cell, incinerate, or
expose contents to water. Dispose of spent lithium batteries properly.

The CR800 contains a lithium battery that operates the clock and powers SRAM
when the CR800 is not externally powered. In a CR800 stored at room
temperature, the lithium battery should last approximately three years (less at
temperature extremes). If the CR800 is continuously powered, the lithium cell
should last much longer. Internal lithium battery voltage can be monitored from
the CR800 Status table. Operating range of the battery is approximately 2.7 to
3.6 Vdc. Replace the battery as directed in Replacing the Internal Battery (p. 449)
when the voltage is below 2.7 Vdc.

The lithium battery is not rechargeable. Its design is one of the safest available
and uses lithium thionyl chloride technology. Maximum discharge current is
limited to a few mA. It is protected from discharging excessive current to the
internal circuits (there is no direct path outside) with a 100 ohm resistor. The
design is UL listed. See:

http://www.tadiran-batterie.de/download/eng/LBRO6Eng.pdf.
The battery is rated from -55 °C up to 85 °C.

54 Datalogger Support Software — Overview

Reading List:

* Datalogger Support Software — Quickstart (p. 46)
* Datalogger Support Software — Overview (p. 93)
* Datalogger Support Sofiware — Details (p. 429)

* Datalogger Support Software — Lists (p. 630)

Datalogger support software are PC or Linux software available from Campbell
Scientific that facilitate communication between the computer and the CR800. A
wide array of software are available, but most of the heavy lifting gets done by the
following:

e Short Cut Program Generator for Windows (SCWin) — Short Cut is used to
write simple CRBasic programs without the need to learn the CRBasic
programming language. Short Cut is an easy-to-use wizard that steps you
through the program building process.

e PC200W Datalogger Starter Software for Windows — Supports only direct
serial connection to the CR800 with hardwire or spread-spectrum radio. It
supports sending a CRBasic program, data collection, and setting the CR800
clock. PC200W is available at no charge at www.campbellsci.com/downloads
(http://www.campbellsci.com/downloads).

93

http://www.campbellsci.com/downloads

Section 5. System Overview

94

o LoggerLink Mobile Apps — Simple tool that allows an iOS or Android
device to communicate with [P-enabled CR800s. It includes most PC200W
functionality.

e PC400 Datalogger Support Software — Includes PC200W functions,
CRBasic Editor, and supports all telecommunication modes (except satellite)
in attended mode.

e LoggerNet Datalogger Support Software — Includes all PC400 functions and
supports all telecommunication options (except satellite) in unattended mode.
It also includes many enhancements such as graphical data displays.

Note More information about software available from Campbell Scientific can be
found at www.campbellsci.com http://www.campbellsci.com. Please consult with
a Campbell Scientific application engineer for a software recommendation to fit a
specific application.

http://www.campbellsci.com/

6.

Specifications

CR800 specifications are valid from —25° to 50°C in non-condensing environments unless otherwise specified. Recalibration is recommended every two years. Critical specifications and system
configurations should be confirmed with a Campbell Scientific application engineer before purchase.

PROGRAM EXECUTION RATE
10 ms to one day at 10 ms increments
ANALOG INPUTS (SE 1-6, DIFF 1-3)
Three differential (DIFF) or six single-ended (SE) individually
configured input channels. Channel expansion provided by
optional analog multiplexers.
RANGES and RESOLUTION: With reference to the following table,
basic resolution (Basic Res) is the resolution of a single A/D (p.
481) conversion. A DIFF measurement with input reversal has
better (finer) resolution by twice than Basic Res.

DIFF Basic

Range (mV)! Res (uV)? Res (LV)
+5000 667 1333
+2500 333 667
+250 333 66.7
+25 3.33 6.7

+7.5 1.0 2.0

+2.5 0.33 0.67

1Range overhead of =9% on all ranges guarantees full-scale
voltage will not cause over-range.
2Resolution of DIFF measurements with input reversal.

ANALOG INPUT ACCURACY3:

+(0.06% of reading + offset3), 0° to 40°C

+(0.12% of reading + offset3), -25° to 50°C

+(0.18% of reading + offset3), -55° to 85°C (-XT only)

3Accuracy does not include sensor and measurement noise.

Offset definitions:

Offset = 1.5 x Basic Res + 1.0 uV (for DIFF measurement w/ input
reversal)

Offset = 3 x Basic Res + 2.0 pV (for DIFF measurement w/o input
reversal)

Offset = 3 x Basic Res + 3.0 pV (for SE measurement)

ANALOG MEASUREMENT SPEED:

--Total Time*---

Inte- SE DIFF
gration Inte- with with
Type gration Settling no Input
Code Time Time Rev Rev
250 250 ps 450 ps =1lms =12 ms
_60Hz> 16.67 ms 3ms =20 ms =40 ms

50Hz> 20.00ms 3 ms =25 ms =50 ms
4Includes 250 ps for conversion to engineering units.
SAC line noise filter

INPUT-NOISE VOLTAGE: For DIFF measurements with input
reversal on 2.5 mV input range (digital resolution dominates for
higher ranges):

250 ps Integration: 0.34 pvV RMS

50/60 Hz Integration: 0.19 uV RMS

INPUT LIMITS: 5 Vdc

DC COMMON-MODE REJECTION: >100 dB

NORMAL-MODE REJECTION: 70 dB @ 60 Hz when using 60 Hz
rejection

INPUT VOLTAGE RANGE W/O MEASUREMENT CORRUPTION: 8.6
Vdc max.
SUSTAINED-INPUT VOLTAGE W/O DAMAGE: +16 Vdc max

INPUT CURRENT: +1 nA typical, 6 nA max. @ 50°C; +90 nA @ 85°C

INPUT RESISTANCE: 20 GQ typical
ACCURACY OF BUILT-IN REFERENCE JUNCTION THERMISTOR (for
thermocouple measurements):
+0.3°C, -25° to 50°C
+0.8°C, -55° to 85°C (-XT only)
ANALOG OUTPUTS (VX 1-2)
Two switched voltage outputs sequentially active only during
measurement.
RANGES AND RESOLUTION:

PERIOD AVERAGE

Any of the 6 SE analog inputs can be used for period averaging.

Accuracy is £(0.01% of reading + resolution), where resolution
is 136 ns divided by the specified number of cycles to be
measured.

INPUT AMPLITUDE AND FREQUENCY:

Input

Signal Min
Volt- Peak-Peak Pulse Max
age Range Min Max Width Freq
Gain Code mVve ' us kHz®
1 mV250 500 10 2.5 200
10 mV25 10 2 10 50
33 mv7s |5 2 62 8
100 mV2_5 2 2 100 5

%Signal to be centered around Threshold (see PeriodAvg()
instruction).

’Signal to be centered around ground.

8The maximum frequency = 1/(twice minimum pulse width)
for 50% of duty cycle signals.

RATIOMETRIC MEASUREMENTS
MEASUREMENT TYPES: The CR800 provides ratiometric
resistance measurements using voltage excitation. Three
switched voltage excitation outputs are available for
measurement of four- and six-wire full bridges, and two-,
three-, and four-wire half bridges. Optional excitation polarity
reversal minimizes dc errors.
RATIOMETRIC MEASUREMENT ACCURACY%11
Note Important assumptions outlined in footnote 9:
+(0.04% of Voltage Measurement + Offset!?)
9Accuracy specification assumes excitation reversal for
excitation voltages < 1000 mV. Assumption does not include
bridge resistor errors and sensor and measurement noise.
11Estimated accuracy, AX (where X is value returned from
measurement with Multiplier =1, Offset = 0):
BRHalf() Instruction: AX = AV1/Vx.

BREFull() Instruction; AX = 1000 x AV1/Vx, expressed as mVeV-1,

Note AV1 is calculated from the ratiometric measurement
accuracy. See manual section Resistance Measurements (p.
319) for more information.
120ffset definitions:
Offset = 1.5 x Basic Res + 1.0 pV (for DIFF measurement w/
input reversal)
Offset = 3 x Basic Res + 2.0 uV (for DIFF measurement w/o
input reversal)
Offset = 3 x Basic Res + 3.0 uV (for SE measurement)
Note Excitation reversal reduces offsets by a factor of two.
PULSE COUNTERS (P 1-2)
Two inputs individually selectable for switch closure, high-
frequency pulse, or low-level ac. Independent 24-bit counters
for each input.
MAXIMUM COUNTS PER SCAN: 16.7 x 108
SWITCH-CLOSURE MODE:
Minimum Switch Closed Time: 5 ms
Minimum Switch Open Time: 6 ms
Max. Bounce Time: 1 ms open without being counted
HIGH-FREQUENCY PULSE MODE:
Maximum-Input Frequency: 250 kHz
Maximum-Input Voltage: +20 V
Voltage Thresholds: Count upon transition from below 0.9 V to
above 2.2 V after input filter with 1.2 ps time constant.
LOW-LEVEL AC MODE: Internal ac coupling removes dc offsets
up to +0.5 Vdc.
Input Hysteresis: 12 mV RMS @ 1 Hz
Maximum ac-Input Voltage: +20 V
Minimum ac-Input Voltage:

Current glge wave (mV RMS) | ?a:)ngez(gz)

Resolu- Source 200 05 10 200
Channel Range tion / Sink 2000 0.3 to 10,000
(VX 1-2) +2.5 Vdc 0.67 mV +25 mA 5000 0.3 to 20,000

ANALOG OUTPUT ACCURACY (VX):

+(0.06% of setting + 0.8 mV, 0° to 40°C

+(0.12% of setting + 0.8 mV, -25° to 50°C

+(0.18% of setting + 0.8 mV, -55° to 85°C (-XT only)

VX FREQUENCY SWEEP FUNCTION: Switched outputs provide a
programmable swept frequency, 0 to 2500 mV square waves for
exciting vibrating wire transducers.

DIGITAL I/O PORTS (C 1-4)

Four ports software selectable as binary inputs or control
outputs. Provide on/off, pulse width modulation, edge timing,
subroutine interrupts / wake up, switch-closure pulse counting,
high-frequency pulse counting, asynchronous communications
(UARTSs), and SDI-12 communications. SDM communications
are also supported.

DIGITAL I/O PORTS (C 1-4)

Four ports software selectable as binary inputs or control
outputs. Provide on/off, pulse width modulation, edge timing,
subroutine interrupts / wake up, switch-closure pulse counting,
high-frequency pulse counting, asynchronous communications
(UARTSs), and SDI-12 communications. SDM communications are
also supported.

LOW FREQUENCY MODE MAX: <1 kHz

HIGH FREQUENCY MODE MAX: 400 kHz

SWITCH-CLOSURE FREQUENCY MAX: 150 Hz

EDGE-TIMING RESOLUTION: 540 ns

OUTPUT VOLTAGES (no load): high 5.0 V 0.1 V; low < 0.1V
OUTPUT RESISTANCE: 330 Q

INPUT STATE: high 3.8 to 16 V; low -8.0to 1.2 V

INPUT HYSTERISIS: 1.4 V

INPUT RESISTANCE:

100 kQ with inputs < 6.2 Vdc

220 Q with inputs 2 6.2 Vdc

SERIAL DEVICE / RS-232 SUPPORT: 0 to 5 Vdc UART

SWITCHED 12 Vdc (SW12)

One independent 12 Vdc unregulated terminal switched on and
off under program control. Thermal fuse hold current = 900 mA
at 20°C, 650 mA at 50°C, and 360 mA at 85°C.

CE COMPLIANCE

STANDARD(S) TO WHICH CONFORMITY IS DECLARED:
1EC61326:2002

COMMUNICATION

RS-232 PORTS:
DCE nine-pin: (not electrically isolated) for computer connection
or connection of modems not manufactured by Campbell
Scientific.

COM1 to COM2: two independent Tx/Rx pairs on control ports
(non-isolated); 0 to 5 Vdc UART

Baud Rate: selectable from 300 bps to 115.2 kbps.

Default Format: eight data bits; one stop bits; no parity.
Optional Formats: seven data bits; two stop bits; odd, even
parity.

CS I/0 PORT: Interface with telecommunication peripherals
manufactured by Campbell Scientific.

SDI-12: Digital control ports C1, C3 are individually configurable
and meet SDI-12 Standard v. 1.3 for datalogger mode. Up to ten
SDI-12 sensors are supported per port.

PROTOCOLS SUPPORTED: PakBus, AES-128 Encrypted PakBus,
Modbus, DNP3, FTP, HTTP, XML, HTML, POP3, SMTP, Telnet,
NTCIP, NTP, web API, SDI-12, SDM.
SYSTEM
PROCESSOR: Renesas H8S 2322 (16-bit CPU with 32-bit internal
core running at 7.3 MHz)
MEMORY: 2 MB of flash for operating system; 4 MB of battery-
backed SRAM for CPU, CRBasic programs, and data.
REAL-TIME CLOCK ACCURACY: £3 min. per year. Correction via
GPS optional.
RTC CLOCK RESOLUTION: 10 ms
SYSTEM POWER REQUIREMENTS
VOLTAGE: 9.6 to 16 Vdc
INTERNAL BATTERY: 1200 mAhr lithium battery for clock and
SRAM backup. Typically provides three years of back-up.

EXTERNAL BATTERIES: Optional 12 Vdc nominal alkaline and
rechargeable available. Power connection is reverse polarity
protected.
TYPICAL CURRENT DRAIN at 12 Vdc:
Sleep Mode: 0.7 mA typical; 0.9 mA maximum
1 Hz Sample Rate (one fast SE meas.) mA
100 Hz Sample Rate (one fast SE meas.): 16 mA
100 Hz Sample Rate (one fast SE meas. with RS-232
communications): 28 mA
Active external keyboard display adds 7 mA (100 mA with
backlight on).
PHYSICAL
DIMENSIONS: 241 x 104 x 51 mm (9.5 x 4.1 x 2 in.) ; additional
clearance required for cables and leads.
MASS / WEIGHT: 0.7 kg / 1.5 Ibs
WARRANTY
Warranty is stated in the published price list and in opening
pages of this and other user manuals.

95

7.

7.2

7.3

Installation

Related Topics

* Quickstart (p. 41)

* Specifications (p. 93)
« Installation . 97)

* Operation (p. 293)

71 Protection from Moisture — Details

Protection from Moisture — Overview (p. 92)
Protection from Moisture — Details (p. 97)
Protection from Moisture — Products (p. 636)

When humidity levels reach the dew point, condensation occurs and damage to
CR800 electronics can result. Effective humidity control is the responsibility of
the user.

The CR800 module is protected by a packet of silica gel desiccant, which is
installed at the factory. This packet is replaced whenever the CR800 is repaired at
Campbell Scientific. The module should not normally be opened except to
replace the internal lithium battery.

Adequate desiccant should be placed in the instrumentation enclosure to provide
added protection.

Temperature Range

The CR800 is designed to operate reliably from —40 to 75 °C (55 °C to 85 °C,
optional) in non-condensing environments.

Enclosures

Enclosures — Details . 97
Enclosures — Products (p. 635)

lustrated in figure Enclosure (p. 98) is the typical use of enclosures available from
Campbell Scientific designed for housing the CR800. This style of enclosure is
classified as NEMA 4X (watertight, dust-tight, corrosion-resistant, indoor and
outdoor use). Enclosures have back plates to which are mounted the CR800
datalogger and associated peripherals. Back plates are perforated on one-inch
centers with a grid of holes that are lined as needed with anchoring nylon inserts.
The CR800 base has mounting holes (some models may be shipped with rubber
inserts in these holes) through which small screws are inserted into the nylon
anchors. Remove rubber inserts, if any, to access the mounting holes. Screws
and nylon anchors are supplied in a kit that is included with the enclosure.

97

Section 7. Installation

98

7.4

Figure 31. Enclosure

Power Supplies — Details

Related Topics:

* Power Supplies — Specifications

* Power Supplies — Quickstart (p. 44)

* Power Supplies — Overview (p. 83

* Power Supplies — Details (p. 98)

» Power Supplies — Products (p. 633)

» Power Sources (p. 99)

* Troubleshooting — Power Supplies (p. 469)

Reliable power is the foundation of a reliable data-acquisition system. When
designing a power supply, consideration should be made regarding worst-case
power requirements and environmental extremes. For example, the power
requirement of a weather station may be substantially higher during extreme cold,
while at the same time, the extreme cold constricts the power available from the
power supply.

The CR800 is internally protected against accidental polarity reversal on the
power inputs.

The CR800 has a modest-input power requirement. For example, in low-power
applications, it can operate for several months on non-rechargeable batteries.
Power systems for longer-term remote applications typically consist of a charging
source, a charge controller, and a rechargeable battery. When ac line power is
available, a Vac-to-Vac or Vac-to-Vdc wall adapter, a peripheral charging

Section 7. Installation

regulator, and a rechargeable battery can be used to construct a UPS (un-
interruptible power supply).

Contact a Campbell Scientific application engineer if assistance in selecting a
power supply is needed, particularly with applications in extreme environments.

7.41 CR800 Power Requirement

The CR800 is operable with power from 9.6 to 16 Vdc applied at the POWER IN
terminals of the green connector on the face of the wiring panel.

The CR800 is internally protected against accidental polarity reversal on the
power inputs. A transient voltage suppressor (TVS) diode at the POWER IN 12V
terminals provides protection from intermittent high voltages by clamping these
transients to within the range of 19 to 21 V . Sustained input voltages in excess of
19 V, can damage the TVS diode.

Caution Voltage levels at the 12V and switched SW12 terminals, and pin 8 on
the CS I/0 port, are tied closely to the voltage levels of the main power supply.
For example, if the power received at the POWER IN 12V and G terminals is 16
Vdc, the 12V and SW12 terminals, and pin 8 on the CS I/O port, will supply 16
Vdc to a connected peripheral. If the connected peripheral or sensor is not
designed for that voltage level, it may be damaged.

7.4.2 Calculating Power Consumption

Read More Power Supplies — Overview (p. 85).

System operating time for batteries can be determined by dividing the battery
capacity (ampere-hours) by the average system current drain (amperes). The
CR800 typically has a quiescent current drain of 0.5 mA (with display off) 0.6
mA with a 1 Hz sample rate, and >10 mA with a 100 Hz scan rate. When the
CR1000KD Keyboard Display is active, an additional 7 mA is added to the
current drain while enabling the backlight for the display adds 100 mA.

7.4.3 Power Sources

Related Topics:

* Power Supplies — Specifications

» Power Supplies — Quickstart (p. 44)

* Power Supplies — Overview (p. 85

* Power Supplies — Details (p. 98)

* Power Supplies — Products (p. 633)

e Power Sources (. 99

* Troubleshooting — Power Supplies (p. 469)

Be aware that some Vac-to-Vdc power converters produce switching noise or ac
(. 481 ripple as an artifact of the ac-to-dc rectification process. Excessive
switching noise on the output side of a power supply can increase measurement
noise, and so increase measurement error. Noise from grid or mains power also
may be transmitted through the transformer, or induced electro-magnetically from
nearby motors, heaters, or power lines.

99

Section 7. Installation

High-quality power regulators typically reduce noise due to power regulation.
Using the optional 50 Hz or 60 Hz rejection arguments for CRBasic analog input
measurement instructions (see Sensor Support (p. 295)) often improves rejection of
noise sourced from power mains. The CRBasic standard deviation instruction,
SDEV(), can be used to evaluate measurement noise.

The main power for the CR800 is provided by an external-power supply.

7.4.3.1 Vehicle Power Connections

If a CR800 is powered by a motor-vehicle power supply, a second power supply
may be needed. When starting the motor of the vehicle, battery voltage often
drops below the voltage required for datalogger operation. This may cause the
CR800 to stop measurements until the voltage again equals or exceeds the lower
limit. A second supply can be provided to prevent measurement lapses during
vehicle starting. The figure Connecting CR800 to Vehicle Power Supply . 100)
illustrates how a second power supply is connected to the CR800. The diode OR
connection causes the supply with the largest voltage to power the CR800 and
prevents the second backup supply from attempting to power the vehicle.

Figure 32. Connecting to Vehicle Power Supply

Datalogger
Terminals

POWERINO I K000 Vehicle +12 Vdo
POWERINO [O Vehicle ==
IQ ZRA001 O Second Supply +12 Vdc
O Second Supply —é—

7.4.4 Uninterruptable Power Supply (UPS)

If external alkaline power is used, the alkaline battery pack is connected directly
to the POWER IN 12V and G terminals (9.6 to 16 Vdc).

A UPS (un-interruptible power supply) is often the best power source for long-
term installations. An external UPS consists of a primary-power source, a
charging regulator external to the CR800, and an external battery. The primary
power source, which is often a transformer, power converter, or solar panel,
connects to the charging regulator, as does a nominal 12 Vdc sealed rechargeable
battery. A third connection connects the charging regulator to the 12V and G
terminals of the POWER IN connector..

7.4.5 External Power Supply Installation

100

When connecting external power to the CR800, remove the green POWER IN
connector from the CR800 face. Insert the positive lead into the green connector,
then insert the negative lead. Re-seat the green connector into the CR800. The

Section 7. Installation

CR800 is internally protected against reversed external-power polarity. Should
this occur, correct the wire connections.

7.5 Switched Voltage Output — Details

Related Topics:

» Switched Voltage Output — Specifications
o Switched Voltage Output — Overview (p. 78)
Switched Voltage Output — Details (p. 101)

e PLC Control — Overview p. 74)

e PLC Control — Details (p. 237

e PLC Control Modules — Overview (p. 349)

e PLC Control Modules — Lists (p. 624

e PLC Control — Instructions (p. 536)

The CR800 wiring panel is a convenient power distribution device for powering
sensors and peripherals that require a 5 Vdc, or 12 Vdc source. It has one
continuous 12 Vdc terminal (12V), one program-controlled, switched, 12 Vdc
terminal (SW12), and one continuous 5 Vdc terminal (5V). SW12, 12V, and 5V
terminals limit current internally for protection against accidental short circuits.
Voltage on the 12V and SW12 terminals can vary widely and will fluctuate with
the dc supply used to power the CR800, so be careful to match the datalogger
power supply to the requirements of the sensors. The 5V terminal is internally
regulated to within +4%, which is good regulation as a power source, but typically
not adequate for bridge sensor excitation. Table Current Sourcing Limits (p. 101)
lists the current limits of 12V and 5V terminals. Greatly reduced output voltages
on these terminals may occur if the current limits are exceeded. See the section
Terminals Configured for Control (p. 349 for more information.

Table 5. Current Source and Sink Limits

Terminal Limit1

VX or EX (voltage excitation)2 +25 mA maximum

swi2’ <900 mA @ 20°C
<630 mA @ 50°C
<450 mA @ 70°C

12V + SW12 (combined)” <3.00 A @ 20°C
<234 A @ 50°C
<1.80 A @ 70°C
<1.50 A @ 85°C

5V + CS I/O (combined)” <200 mA

101

Section 7. Installation

102

7.51

Table 5. Current Source and Sink Limits

Terminal Limit!

Ly " " Wil :
Source" is positive amperage; "sink" is negative amperage ().

2 Exceeding current limits will cause voltage output to become unstable. Voltage should stabilize
once current is again reduced to within stated limits.

3 A polyfuse is used to limit power. Result of overload is a voltage drop. To reset, disconnect
and allow circuit to cool. Operating at the current limit is OK so long a a little fluctuation can be
tolerated.

4 Polyfuse protected. See footnote 3.

3 Current is limited by a current limiting circuit, which holds the current at the maximum by
dropping the voltage when the load is too great.

Switched-Voltage Excitation

Two switched, analog-output (excitation) terminals (VX1 to VX2) operate under
program control to provide £2500 mV dc excitation. Check the accuracy
specification of terminals configured for exctitation in CR800 Specifications (p. 93)
to understand their limitations. Specifications are applicable only for loads not
exceeding £25 mA.

Read More Table Current Source and Sink Limits (p. 101) has more information on
excitation load capacity.

CRBasic instructions that control voltage excitation include the following:

e BrFull()

e BrFulléW()
e BrHalf()

e BrHalf3W()
e BrHalf4Ww()
e ExciteV()

Note Square-wave ac excitation for use with polarizing bridge sensors is
configured with the RevEx parameter of the bridge instructions.

7.5.2 Continuous Regulated (5V Terminal)

The 5V terminal is regulated and remains near 5 Vdc (£4%) so long as the CR800
supply voltage remains above 9.6 Vdc. It is intended for power sensors or devices
requiring a 5 Vdc power supply. It is not intended as an excitation source for
bridge measurements. However, measurement of the 5V terminal output, by
means of jumpering to an analog input on the same CR800), will facilitate an
accurate bridge measurement if 5V must be used.

Note Table Current Source and Sink Limits (p. 101 has more information on
excitation load capacity.

Section 7. Installation

7.5.3 Continuous Unregulated Voltage (12V Terminal)

Use 12V terminals to continuously power devices that require 12 Vdc. Voltage
on the 12V terminals will change with CR800 supply voltage.

Caution Voltage levels at the 12V and switched SW12 terminals, and pin 8 on
the CS I/O port, are tied closely to the voltage levels of the main power supply.
For example, if the power received at the POWER IN 12V and G terminals is 16
Vdc, the 12V and SW12 terminals, and pin § on the CS 1/O port, will supply 16
Vdc to a connected peripheral. If the connected peripheral or sensor is not
designed for that voltage level, it may be damaged.

7.5.4 Switched Unregulated Voltage (SW12 Terminal)

The SW12 terminal is often used to power devices such as sensors that require 12
Vdc during measurement. Current sourcing must be limited to 900 mA or less at
20 °C. See table Current Source and Sink Limits (p. 101). Voltage on a SW12
terminal will change with CR800 supply voltage. Two CRBasic instructions,
SW12() and PortSet(), control the SW12 terminal. Each instruction is handled
differently by the CR800. SW12() is a processing task. Use it when controlling
power to SDI-12 and serial sensors that use SDI12Recorder() or Serialln()
instructions respectively. CRBasic programming using IF THEN constructs to
control SW12, such as when used for cell phone control, should also use the
SW12() instruction.

PortSet() is a measurement task instruction. Use it when powering analog input
sensors that need to be powered just prior to measurement.

A 12 Vdc switching circuit designed to be driven by a C terminal is available

from Campbell Scientific. It is listed in the appendix Relay Drivers — Products (p.
625).

Note SW12 terminal power is unregulated and can supply up to 900 mA at 20
°C. See table Current Source and Sink Limits (. 10n. A resettable polymeric fuse
protects against over-current. Reset is accomplished by removing the load or
turning off the SW12 terminal for several seconds.

The SW12 terminal may behave differently under pipeline p. 150) and sequential (p.
151 modes. See CRBasic Editor Help for more information.

7.6 Grounding

Grounding the CR800 with its peripheral devices and sensors is critical in all
applications. Proper grounding will ensure maximum ESD (electrostatic
discharge) protection and measurement accuracy.

7.6.1 ESD Protection

Reading List:
e ESD Protection (p. 103)
» Lightening Protection (p. 105

ESD (electrostatic discharge) can originate from several sources, the most
common and destructive being lightning strikes. Primary lightning strikes hit the

103

Section 7. Installation

104

CR800 or sensors directly. Secondary strikes induce a high voltage in power lines
O Sensor wires.

The primary devices for protection against ESD are gas-discharge tubes (GDT).
All critical inputs and outputs on the CR800 are protected with GDTs or transient
voltage suppression diodes. GDTs fire at 150 V to allow current to be diverted to
the earth ground lug. To be effective, the earth ground lug must be properly
connected to earth (chassis) ground. As shown in figure Schematic of Grounds (.
105), signal grounds and power grounds have independent paths to the earth-ground
lug.

Communication ports are another path for transients. You should provide
communication paths, such as telephone or short-haul modem lines, with spark-
gap protection. Spark-gap protection is usually an option with these products, so
request it when ordering. Spark gaps must be connected to either the earth ground
lug, the enclosure ground, or to the earth (chassis) ground.

A good earth (chassis) ground will minimize damage to the datalogger and
sensors by providing a low-resistance path around the system to a point of low
potential. Campbell Scientific recommends that all dataloggers be earth (chassis)
grounded. All components of the system (dataloggers, sensors, external power
supplies, mounts, housings, etc.) should be referenced to one common earth
(chassis) ground.

In the field, at a minimum, a proper earth ground will consist of a 6 to 8 foot
copper-sheathed grounding rod driven into the earth and connected to the large
brass ground lug on the wiring panel with a 12 AWG wire. In low-conductive
substrates, such as sand, very dry soil, ice, or rock, a single ground rod will
probably not provide an adequate earth ground. For these situations, search for
published literature on lightning protection or contact a qualified lightning-
protection consultant.

In vehicle applications, the earth ground lug should be firmly attached to the
vehicle chassis with 12 AWG wire or larger.

In laboratory applications, locating a stable earth ground is challenging, but still
necessary. In older buildings, new Vac receptacles on older Vac wiring may
indicate that a safety ground exists when, in fact, the socket is not grounded. If a
safety ground does exist, good practice dictates the verification that it carries no
current. If the integrity of the Vac power ground is in doubt, also ground the
system through the building plumbing, or use another verified connection to earth
ground.

Section 7. Installation

Figure 33. Schematic of Grounds

Connect analog-signal
shields and returns to

grounds (=) that are Connect the return (negative lead) of a pulse-count device to the ground
located adjacent to terminal (=) that is adjacent to the pulse channel. Connect returns of
analog-input channels. large excitations to pulse grounds as well to minimize induced single-

ended offset voltages when making half-bridge measurements.

Connect 5V, SW12, 12V, and C1+ C4 External
Analog ground plane returns to power grounds (G). power input

To CR800 electromcs<—|
/ [I
3-Amp .

thermal —
fuse

0.9-Amp thermal fuse

Star ground at
GROUND
LUG =

1.85-Amp
thermal fuse

7.6.1.1 Lightning Protection

Reading List:
e ESD Protection (p. 103)
» Lightening Protection (p. 105

The most common and destructive ESDs are primary and secondary lightning
strikes. Primary lightning strikes hit instrumentation directly. Secondary strikes
induce voltage in power lines or wires connected to instrumentation. While
elaborate, expensive, and nearly infallible lightning protection systems are on the
market, Campbell Scientific, for many years, has employed a simple and
inexpensive design that protects most systems in most circumstances. The system
employs a lightening rod, metal mast, heavy-gage ground wire, and ground rod to
direct damaging current away from the CR800. This system, however, not
infallible. Figure Lightning-Protection Scheme (p. 106) is a drawing of a typical
application of the system.

105

Section 7. Installation

106

Note Lightning strikes may damage or destroy the CR800 and associated sensors
and power supplies.

In addition to protections discussed in, use of a simple lightning rod and low-
resistance path to earth ground is adequate protection in many installations. .

Figure 34. Lightning-Protection Scheme
Lightning

Charge Dissipation

‘\\/Z‘: Lightning Rod
Ve N

Path of Least
Resistance
Highly Conductive
Metal Mast
Instrument
Enclosure
14AWG S 4AWG
Copper Wire N Copper Cable
\
Q /
Copper-Clad /EW
Ground Rod E Strike Dissipation

7.6.2 Single-Ended Measurement Reference

Low-level, single-ended voltage measurements (<200 mV) are sensitive to ground
potential fluctuation due to changing return currents from 12V, SW12, 5V, and
C1 — C4 terminals. The CR800 grounding scheme is designed to minimize these

Section 7. Installation

fluctuations by separating signal grounds (=) from power grounds (G). To take
advantage of this design, observe the following rules:

e Connect grounds associated with 12V, SW12, 5V, and C1 — C4 terminals to
G terminals.

e Connect excitation grounds to the nearest = terminal on the same terminal
block.

e Connect the low side of single-ended sensors to the nearest = terminal on
the same terminal block.

e Connect shield wires to the = terminal nearest the terminals to which the
sensor signal wires are connected.

Note Several ground wires can be connected to the same ground terminal.

If offset problems occur because of shield or ground leads with large current flow,
tying the problem leads into == terminals next to terminals configured for
excitation and pulse-count should help. Problem leads can also be tied directly to
the ground lug to minimize induced single-ended offset voltages.

7.6.3 Ground-Potential Differences

Because a single-ended measurement is referenced to CR800 ground, any
difference in ground potential between the sensor and the CR800 will result in a
measurement error. Differential measurements MUST be used when the input
ground is known to be at a different ground potential from CR800 ground. See
the section Single-Ended Measurements — Details (p. 299 for more information.

Ground potential differences are a common problem when measuring full-bridge
sensors (strain gages, pressure transducers, etc), and when measuring
thermocouples in soil.

7.6.3.1 Soil Temperature Thermocouple

If the measuring junction of a thermocouple is not insulated when in soil or water,
and the potential of earth ground is, for example, 1 mV greater at the sensor than
at the point where the CR800 is grounded, the measured voltage is 1 mV greater
than the thermocouple output. With a copper-constantan thermocouple, 1 mV
equates to approximately 25 °C measurement error.

7.6.3.2 External Signal Conditioner

External instruments with integrated signal conditioners, such as an infrared gas
analyzer (IRGA), are frequently used to make measurements and send analog
information to the CR800. These instruments are often powered by the same
Vac-line source as the CR800. Despite being tied to the same ground, differences
in current drain and lead resistance result in different ground potentials at the two
instruments. For this reason, a differential measurement should be made on the
analog output from the external signal conditioner.

7.6.4 Ground Looping in lonic Measurements

When measuring soil-moisture with a resistance block, or water conductivity with
a resistance cell, the potential exists for a ground loop error. In the case of an
ionic soil matric potential (soil moisture) sensor, a ground loop arises because soil

107

Section 7. Installation

108

and water provide an alternate path for the excitation to return to CR800 ground.
This example is modeled in the diagram Mode! of a Ground Loop with a Resistive
Sensor p. 109. With Rg in the resistor network, the signal measured from the sensor
is described by the following equation:

Rs
“(Rs + Ry) + RRAR,

V, =V

where

Vi is the excitation voltage

Rris a fixed resistor

Rs is the sensor resistance

Ry is the resistance between the excited electrode and CR800 earth ground.

RxR#/Rg is the source of error due to the ground loop. When Ry is large, the error
is negligible. Note that the geometry of the electrodes has a great effect on the
magnitude of this error. The Delmhorst gypsum block used in the Campbell
Scientific 227 probe has two concentric cylindrical electrodes. The center
electrode is used for excitation; because it is encircled by the ground electrode, the
path for a ground loop through the soil is greatly reduced. Moisture blocks which
consist of two parallel plate electrodes are particularly susceptible to ground loop
problems. Similar considerations apply to the geometry of the electrodes in water
conductivity sensors.

The ground electrode of the conductivity or soil moisture probe and the CR800
earth ground form a galvanic cell, with the water/soil solution acting as the
electrolyte. If current is allowed to flow, the resulting oxidation or reduction will
soon damage the electrode, just as if dc excitation was used to make the
measurement. Campbell Scientific resistive soil probes and conductivity probes
are built with series capacitors to block this dc current. In addition to preventing
sensor deterioration, the capacitors block any dc component from affecting the
measurement.

Figure 35. Model of a Ground Loop with a Resistive Sensor

Datalogger
Terminals

voltage excitation

R¢

|— SE c single-ended hd
v R,
|_ —1

—_ ground

= Earth

Section 7. Installation

7.7 CR800 Configuration — Details

Related Topics:

* CR800 Configuration — Overview (p. 83)

* CR800 Configuration — Details (p. 109)

o Status, Settings, and Data Table Information (Status/Settings/DTI) . 577)

Your new CR800 is already configured to communicate with Campbell Scientific
datalogger support software (p. 93) on the RS-232 port, and over most
telecommunication links. If you find that an older CR800 no longer
communicates with these simple links, do a full reset of the unit, as described in
the section Resetting the CR800 (. 360. Some applications, especially those
implementing TCP/IP features, may require changes to factory defaults.

Configuration (verb) includes actions that modify firmware or software in the
CR800. Most of these actions are associated with CR800 settings registers. For
the purpose of this discussion, the CRBasic program, which, of course, configures
the CR800, is discussed in a separate section (CRBasic Programming — Details
(. 120)).

7.7.1 Configuration Tools
Configuration tools include the following:

Device Configuration Utility (p. 109)
Network Planner . 110)
Status/Settings/DTI . 112)
CRBasic program (p. 113)
Executable CPU: files p. 113)
Keyboard display . 439

Terminal emulator

7.7.1.1 Configuration with DevConfig

The most versatile configuration tool is Device Configuration Utility, or
DevConfig. It is bundled with LoggerNet, PC400, RTDAQ, or it can be
downloaded from www.campbellsci.com/downloads
(http://www.campbellsci.com/downloads). It has the following basic features:

e Extensive context sensitive help

e Connects directly to the CR800 over a serial or IP connection

e Facilitates access to most settings, status registers, and data table information
registers

e Includes a terminal emulator that facilitates access to the command prompt of
the CR800

DevConfig Help guides you through connection and use. The simplest connection
is to, connect a serial cable from the computer COM port or USB port to the RS-
232 port on the CR800 as shown in figure Power and Serial Communication
Connections (p. 48). DevConfig updates are available at
www.campbellsci.com/downloads (http.//www.campbellsci.com/downloads).

109

http://www.campbellsci.com/downloads
http://www.campbellsci.com/downloads

Section 7. Installation

Figure 36. Device Configuration Ulility (DevConfig)
) Device Configuration Utility 2.08 [l & =

Eile Backup Options Help

CR800 Series | Send 0S

Device Type
CR1000 B 1 -
CR800 Series
CR10X-PB
CR200 Series In order to configure the CR800, power (+12 Volts DC) must be supplied to the datalogger on its
CR23X-PB Power In port. A nine pin cable should also be connected between one of your computer's
RS-232 Ports and the RS-232 port on the datalogger. When these requirements have been met,
CR3000 select the appropriate serial port in the left panel and press the Connect button.
CRS10-PB
CR6
)
CRVW Series 1
@ Datalogger (Other)
@ Datalogging Sensor
& Network Peripheral
@ Peripheral 3
@ Phone Modem
@ Radio
@ Sampler
Communication Port
com1 ()
Use JP Connection
PakBus Encryption Key If the datalogger has an NL200 configured in bridge mode attached to its CS 1/O port, it may be
possible to connect to the datalogger using TCP/IP. In order to do this, click on the Use IP
Connection check box in the left panel and enter the IP address or domain name for the
Baud Rate datalogger in the Communication Port control. For datalogger operating system version 23
115200 v and newer, clicking on the browse button to the right of the Communication Port control will
bring up a dialog that searches your local area network for any available dataloggers. If the
datalogger has a non-empty PakBus/TCP Password setting specified, you will also need to
specify that password in the TCP Password field in order for the connection to succeed 2

7.7.1.2 Network Planner

Network Planner is a drag-and-drop application used in designing PakBus
datalogger networks. You interact with Network Planner through a drawing
canvas upon which are placed PC and datalogger nodes. Links representing
various telecommunication options are drawn between nodes. Activities to take
place between the nodes are specified. Network Planner automatically specifies
settings for individual devices and creates configuring XML files to download to
each device through DevConfig . 109.

110

Section 7. Installation

Figure 37. Network Planner Setup

= Network Planner 1.2 - [C:\Campbellsci\NetworkPlanner\manual.nwp] =101 x|

Edt Yiew Options Help
IR TEY e X s

Configure Devices ax

Program settings for Base:RF- &

Program settings for DF_N So
 Program settings for DF S Soi
Program settings for DF_S Sol
Program settings for SD_E Soi.
Program settings for SD_E Soi
Program settings for SD_W S¢
Program settings for SD_W
Program settings for Weather v

Settings need to be
stored in “DF_N
Soil_Leaf CRB50"

Click Here

74| csto

ﬂ ET107

" * WeatherHa...

DF_N
Soil_Leaf

Edit Station Properties

CRB50
FA

E

—AVW200
—AVW206

—AVW211

—— AVW216 Rabic Jun 24:200 lat_42.116287 lon -111.852689° elev K1 _»1']

7.7.1.2.1 Overview
Network Planner allows you to

e Create a graphical representation of a network, as shown in figure Network
Planner Setup . 111),

e Determine settings for devices and LoggerNet, and

e Program devices and LoggerNet with new settings.

Why is Network Planner needed?

PakBus protocol allows complex networks to be developed.
Setup of individual devices is difficult.

Settings are distributed across a network.

Different device types need settings coordinated.

Caveats

Network Planner aids in, but does not replace, the design process.

It aids development of PakBus networks only.

It does not make hardware recommendations.

It does not generate datalogger programs.

It does not understand distances or topography; that is, it does not warn when
broadcast distances are exceeded, nor does it identify obstacles to radio
transmission.

For more detailed information on Network Planner, please consult the LoggerNet
manual, which is available at www.campbellsci.com.

111

Section 7. Installation

112

7.7.1.2.2 Basics

PakBus Settings

Device addresses are automatically allocated but can be changed.

Device connections are used to determine whether neighbor lists should be
specified.

Verification intervals will depend on the activities between devices.
Beacon intervals will be assigned but will have default values.

Network role (for example, router or leaf node) will be assigned based on
device links.

Device Links and Communication Resources

Disallow links that will not work.

Comparative desirability of links.

Prevent over-allocation of resources.

Optimal RS-232 and CS I/O ME baud rates based on device links.
Optimal packet-size limits based on anticipated routes.

Fundamentals of Using Network Planner

Add a background (optional)

Place stations, peripherals, etc.

Establish links

Set up activities (scheduled poll, callback)

Configure devices

Configure LoggerNet (adds the planned network to the LoggerNet Network
Map)

7.7.1.3 Configuration with Status/Settings/DTI

Related Topics:

o Status, Settings, and Data Table Information (Status/Settings/DTI) . 577)
* Common Uses of the Status Table (. 578)

o Status Table as Debug Resource (p. 461)

The Status table, CR800 settings, and the DataTableInfo table (collectively,
Status/Settings/DTI) contain registers, settings, and information essential to
setup, programming, and debugging of many advanced CR800 systems.
Status/Settings/DTI are numerous. Note the following:

All Status/Settings/DTI, except a handful, are accessible through a keyword.
This discussion is organized around these keywords. Keywords and
descriptions are listed alphabetically in sub-appendix Status/Settings/DTI
Descriptions (Alphabetical) (p. 585).

Status fields are read only (mostly). Some are resettable.

Settings are read/write (mostly).

DTI are read only.

Directories in sub-appendix Status/Settings/DTI Directories (p. 578 list several
groupings of keywords. Each keyword listed in these groups is linked to the
relevant description.

Some Status/Settings/DTI have multiple names depending on the interface

Section 7. Installation

used to access them.
e No single interface accesses all Status/Settings/DTI. Interfaces used for
access include the following:

Table 6. Status/Setting/DTI: Access Points
Access Point Locate in...
Device Configuration Utility, LoggerNet Connect screen,
Settings Editor PakBus Graph. See Datalogger Support Software — Details (p.
429).
Status View as a data table in a numeric monitor (p. 493).
DataTablelnfo View as a data table in a numeric monitor (p. 495).
Station Status Menu item in datalogger support software (p. 631).
Edit Settings Menu item in PakBusGraph software.
Settings Menu item in CR1000KD Keyboard Display Configure,
Settings
status.keyword/settings.keyword Syntax in CRBasic program
! Information presented in Station Status is not updated automatically. Click the Refresh button to update.

Note Communication and processor bandwidth are consumed when generating
the Status and DataTablelnfo tables. If the CR800 is very tight on processing
time, as may occur in very long or complex operations, retrieving the Status table
repeatedly may cause skipped scans (p. 463).

Status577/Settings/DTI (p. 577)can be set or accessed using CRBasic instructions
SetStatus() or SetSetting().

For example, to set the setting StationName to BlackIceCouloir, the following
syntax is used:

SetSetting("StationName","BlackIceCouloir")

where StationName is the keyword for the setting, and BlackIceCouloir is the set
value.

Settings can be requested by the CRBasic program using the following syntax:
x = Status.[setting]
where Setting is the keyword for a setting.

For example, to acquire the value set in setting StationName, use the following
statement:

X = Status.StationName

7.7.1.4 Configuration with Executable CPU: Files

Many CR800 settings can be changed remotely over a telecommunication link
either directly, or as discussed in section Configuration with CRBasic Program (p.
113), as part of the CRBasic program. These conveniences come with the risk of
inadvertently changing settings and disabling communications. Such an
occurence will likely require an on-site visit to correct the problem if at least one
of the provisions discussed in this section is not put in place. For example,

113

Section 7. Installation

wireless-ethernet (cell) modems are often controlled by a switched 12 Vdc
(SW12) terminal. SW12 is normally off;, so, if the program controlling SW12 is
disabled, such as by replacing it with a program that neglects SW12 control, the
cell modem is switched off and the remote CR800 drops out of
telecommunications.

Executable CPU: files automatically execute according to the schedule outlined in
table . Each can contain code to set specific settings in the CR800.

Executable CPU: files include the following:

e 'Include’ file (p. 145
o Default.cr8 file . 1149)
o Powerup.ini file . 363

To be used, each file needs to be created and then placed on the CPU: drive of the
CR800. The 'include' file and default.cr8 file consist of CRBasic code.
Powerup.ini has a different, limited programming language.

7.7.1.4.1 Default.cr8 File

A file named default.cr8 can be stored on the CR800 CPU: drive. At power up,
the CR800 loads default.cr8 if no other program takes priority (see Executable
File Run Priorities (p. 114)). Default.cr8 can be edited to preserve critical
datalogger settings such as communication settings, but cannot be more than a
few lines of code.

Downloading operating systems over telecommunications requires much of the
available CR800 memory. If the intent is to load operating systems via a
telecommunication link, and have a default.cr8 file in the CR800, the default.cr8
program should not allocate significant memory, as might happen by allocating a
large USR: drive. Do not use a DataTable() instruction set for auto allocation of
memory, either. Refer to the section Updating the Operating System (OS) . 115)
for information about sending the operating system.

Execution of default.cr§ at power-up can be aborted by holding down the DEL
key on the CR1000KD Keyboard Display.

CRBasic Example 1. Simple Default.cr8 File to Control SW12 Terminal

'"This program example demonstrates use of a Default.cr8 file. It must be restricted
"to few Tines of code. This program controls the SW12 switched power terminal, which
'may be helpful in assuring that the default power state of a remote modem is ON.

BeginProg
Scan(1,Sec,0,0)
If TimeIntoInterval(15,60,Sec) Then SwWi12(1)
If TimeIntoInterval(45,60,Sec) Then Sw12(0)
NextScan
EndProg

7.7.1.4.2 Executable File Run Priorities

1. When the CR800 powers up, it executes commands in the powerup.ini file (on
Campbell Scientific mass storage device including commands to set the
CRBasic program file attributes to Run Now or Run On Power-up.

2. When the CR800 powers up, a program file marked as Run On Power-up will

114

Section 7. Installation

be the current program. Otherwise, any file marked as Run Now will be used.

3. If there is a file specified in the Include File Name setting, it is compiled at the
end of the program selected in step.

4. If there is no file selected in step 1, or if the selected file cannot be compiled,
the CR800 will attempt to run the program listed in the Include File Name
setting. The CR800 allows a SlowSequence statement to take the place of the
BeginProg statement. This allows the "Include File" to act as the default
program.

5. If the program listed in the Include File Name setting cannot be run or if no
program is specified, the CR800 will attempt to run the program named
default.cr8 on its CPU: drive.

6. If there is no default.cr8 file or it cannot be compiled, the CR800 will not
automatically run any program.

7.7.2 CR800 Configuration — Details

Following are a few common configuration actions:

Updating the operating system (p. 115).

Access a CR800 register (p. 112 to help troubleshoot
Set the CR800 clock

Save current configuration

Restore a configuration

Tools available to perform these actions are listed in the following table:

Table 7. Common Configuration Actions and Tools

Action Tools to Use1

DevConfig (p. 109) software, Program Send (p.

Updating the operating system 498), memory card, mass storage device

DevConfig, PakBus Graph, CRBasic program,

Access a register 'Include’ file (p. 145), Default.cr$ file (p. 114).

Set the CR800 clock DevConfig, PC200W, PC400, LoggerNet

Save / restore configuration DevConfig

! Tools are listed in order of preference.

7.7.2.1 Updating the Operating System (OS)

The CR800 is shipped with the operating system pre-loaded. Check the pre-
loaded version by connecting your PC to the CR800 using the procedure outlined
in DevConfig Help. OS version is displayed in the following location:

Deployment tab
Datalogger tab
OS Version text box

Update the OS on the CR800 as directed in DevConfig Help. The current version
of the OS is found at www.campbellsci.com/downloads. OS updates are free of
charge.

115

Section 7. Installation

Note An OS file has a .obj extension. It can be compressed using the gzip
compression algorithm. The datalogger will accept and decompress the file on
receipt. See the appendix Program and OS Compression (p. 440).

Note the following precautions:

e Since sending an OS resets CR800 memory, data loss will certainly occur.
Depending on several factors, the CR800 may also become incapacitated for
a time.

o Is sending the OS necessary to correct a critical problem? If not,
consider waiting until a scheduled maintenance visit to the site.

o Is the site conveniently accessible such that a site visit can be undertaken
to correct a problem of reset settings without excessive expense?

o Ifthe OS must be sent, and the site is difficult or expensive to access, try
the OS download procedure on an identically programmed, more
conveniently located CR800.

e Campbell Scientific recommends upgrading operating systems only with a
direct-hardwire link. However, the Send Program (. 498) button in the
datalogger support software (p. 6309) allows the OS to be sent over all software
supported telecommunication systems.

o Operating systems are very large files — be cautious of line charges.

o Updating the OS may reset CR800 settings, even settings critical to
supporting the telecommunication link. Newer operating systems
minimize this risk.

Note Beginning with OS 25, the OS has become large enough that a CR800 with
serial number < 3604, which has only 2 MB of SRAM, may not have enough
memory to receive it under some circumstances. If problems are encountered
with a 2 MB CR800, sending the OS over a direct serial connection is usually
successful.

The operating system is updated with one of the following tools:

7.7.2.1.1 OS Update with DevConfig Send OS Tab

116

Using this method results in the CR800 being restored to factory defaults. The
existing OS is over written as it is received. Failure to receive the complete new
OS will leave the CR800 in an unstable state. Use this method only with a direct
hardwire serial connection.

How

Use the following procedure with DevConfig: Do not software Connect to the
CR800.

1. Select CR800 from the list of devices at left

2. Select the appropriate communication port and baud rate at the bottom left
3. Click the Send OS tab located at the top of DevConfig window

4. Follow the on-screen OS Download Instructions

Pros/Cons

Section 7. Installation

This is a good way to recover a CR800 that has gone into an unresponsive state.
Often, an operating system can be loaded even if you are unable to communicate
with the CR800 through other means.

Loading an operating system through this method will do the following:
1. Restore all CR800 settings to factory defaults

2. Delete data in final storage

3. Delete data from and remove the USR drive

4. Delete program files stored on the datalogger

7.7.2.1.2 OS Update with DevConfig

This method is very similar to sending an OS as a program, with the exception
that you have to manually prepare the datalogger to accept the new OS.

How

1. Connect to the CR800 with Connect or DevConfig

2. Collect data

3. Transfer a default. CR1 (p. 114) program file to the CR800 CPU: drive
4

. Stop the current program and select the option to delete associated data (this
will free up SRAM memory allocated for data storage)

5. Collect files from the USR: drive (if applicable)

6. Delete the USR: drive (if applicable)

7. Send the new .obj OS file to the CR800

8. Restart the previous program (default. CR1 will be running after OS compiles)
Pros/Cons

This method is preferred because the user must manually configure the datalogger
to receive an OS and thus should be cognizant of what is happening (loss of data,
program being stopped, etc.).

Loading an operating system through this method will do the following:
1. Preserve all CR800 settings

2. Delete all data in final storage

3. Delete USR: drive

4. Stop current program deletes data and clears run options

5. Deletes data generated using the CardOut() or TableFile() instructions

7.7.2.1.3 OS Update with DevConfig

A send program command is a feature of DevConfig and other datalogger support
software (p. 630). Location of this command in the software is listed in table
Program Send Command Locations

117

Section 7. Installation

118

Program Send Command Locations

Datalogger Support Name of Button Location of Button

Software

DevConfig Send Program Logger Control tab lower left
LoggerNet Send New... Connect window, lower right
PC400 Send Program Main window, lower right
PC200W Send Program Main window, lower right
RTDAQ Send Program Main window, lower right

This method results in the CR800 retaining its settings (a feature since OS version
16). The new OS file is temporarily stored in CR800 SRAM memory, which
necessitates the following:

e Sufficient memory needs to be available. Before attempting to send the OS,
you may need to delete other files in the CPU: and USR: drives, and you may
need to remove the USR: drive altogether. Since OS 25, older 2 MB CR800s
do not have sufficient memory to perform this operation.

e SRAM will be cleared to make room, so program run options and data will be
lost. If CR800 communications are controlled with the current program, first
load a default.cr8 CRBasic program on to the CPU: drive. Default.cr8 will
run by default after the CR800 compiles the new OS and clears the current
run options.

How

From the LoggerNet Connect window, perform the following steps:
1. Connect to the station

2. Collect data

3. Click the Send New...

4. Select the OS file to send

5. Restart the existing program through File Control, or send a new program with
CRBasic Editor and specify new run options.

Pros/Cons

This is the best way to load a new operating system on the CR800 and have its
settings retained (most of the time). This means that you will still be able to
communicate with the station because the PakBus address is preserved and
PakBusTCP client connections are maintained. Plus, if you are using a TCP/IP
connection, the file transfer is much faster than loading a new OS directly through
DevConfig.

The bad news is that, since it clears the run options for the current program, you
can lose communications with the station if power is toggled to a communication
peripheral under program control, such as turning a cell modem on/off to conserve
power use.

Also, if sufficient memory is not available, instability may result. It’s probably
best to clear out the memory before attempting to send the new OS file. If you
have defined a USR drive you will probably need to remove it as well.

Section 7. Installation

Loading an operating system through this method will do the following:
1. Preserve all CR800 settings

2. Delete all data in final storage

3. Stop current program (Stop and deletes data) and clears run options

4. Deletes data generated using the CardOut() instruction

7.7.2.1.4 OS Update with DevConfig

How

1. Place a powerup.ini (. 365) text file and operating system .obj file on the external
memory device

2. Attached the external memory device to the datalogger
3. Power cycle the datalogger
Pros/Cons

This is a great way to change the OS without a laptop in the field. The down side
is only if you want to do more than one thing with the powerup.ini, such as
change OS and load a new program, which necessitates that you use separate
cards or modify the .ini file between the two tasks you wish to perform.

Loading an operating system through this method will do the following:
1. Preserve all datalogger settings

2. Delete all data in final storage

3. Preserve USR drive and data stored there

4. Maintains program run options

5. Deletes data generated using the CardOut() or TableFile() instructions

DevConfig Send OS tab:

e Ifyou are having trouble communicating with the CR800
e Ifyou want to return the CR800 to a known configuration

Send Program (. 498) or Send New... command:

e Ifyou want to send an OS remotely
e Ifyou are not too concerned about the consequences

File Control tab:

e Ifyou want to update the OS remotely
e Ifyour only connection to the CR800 is over IP
e If you have IP access and want to change the OS for testing purposes

External memory and PowerUp.ini file:

e If you want to change the OS without a PC

119

Section 7. Installation

7.7.2.2 Restoring Factory Defaults

In DevConfig, clicking the Factory Defaults button at the base of the Settings
Editor tab sends a command to the CR800 to revert to its factory default settings.
The reverted values will not take effect until the changes have been applied.

7.7.2.3 Saving and Restoring Configurations

In DevConfig, clicking Save on a summary screen saves the configuration to an
XML file. This file can be used to load a saved configuration back into the
CR800 by clicking Read File and Apply.

Figure 38. Summary of CR800 Configuration

datalogger Current Settings

Configuration of CR | 23,877

Configured on: Monday, June 09, 2014 11:07:00 AM

Setting Name 'Setting Value
[0S Version [cR std27
Serial Number [23,877
Station Name 23877
PakBus Address 1

Security Level 1 [o

Security Level 2 [o

Security Level 3 0

Port Number Via Neighbor Address PakBus Address Response Time

Routes
1 4,092 4,092 5,000

1 4,089 4,089 1,000
Ethernet IP Address 0.0.0.0
Ethernet Subnet Mask 255.255.255.0
Ethernet Default Gateway [0000 "

Ok Save Print Compare

7.8 CRBasic Programming — Details

Related Topics:

* CRBasic Programming — Overview (p. 86)

* CRBasic Programming — Details (p. 120)

* CRBasic Programming — Instructions (p. 511)
* Programming Resource Library (. 167)

* CRBasic Editor Help

Programs are created with either Short Cut p. 501) or CRBasic Editor . 123. Old
CR10X and CR23X programs can be converted to CRBasic code using
Transformer.exe (executable file included with LoggerNef). Programs can be up
to 490 KB in size; most programs, however, are much smaller.

120

Section 7. Installation

7.8.1

Program Structure

Essential elements of a CRBasic program are listed in the table CRBasic Program
Structure (. 121 and demonstrated in CRBasic example Program Structure (p. 121).

Table 8. CRBasic Program Structure

Declarations

Define CR800 memory usage. Declare constants,
variables, aliases, units, and data tables.

Declare constants

List fixed constants.

Declare Public variables

List / dimension variables viewable during program
execution.

Declare Dim variables

List / dimension variables not viewable during
program execution.

Define Aliases

Assign aliases to variables.

Define Units

Assign engineering units to variable (optional).
Units are strictly for documentation. The CR800
makes no use of Units nor checks Unit accuracy.

Define data tables.

Define stored data tables.

Process / store trigger

Set triggers when data should be stored. Triggers
may be a fixed interval, a condition, or both.

Table size

Set the size of a data table.

Other on-line storage devices

Send data to a Campbell Scientific mass storage
device if available.

Processing of data

List data to be stored in the data table, e.g. samples,
averages, maxima, minima, etc.

Processes or calculations repeated during program
execution can be packaged in a subroutine and
called when needed rather than repeating the code
each time.

Begin program

Begin program defines the beginning of statements
defining CR800 actions.

Set scan interval

The scan sets the interval for a series of
measurements.

Measurements

Enter measurements to make.

Processing

Enter any additional processing.

Call data table(s)

Declared data tables must be called to process and
store data.

Initiate controls

Check measurements and initiate controls if
necessary.

NextScan

Loop back to set scan and wait for the next scan.

End program

End program defines the ending of statements
defining CR800 actions.

121

Section 7. Installation

122

CRBasic Program Structure

'Declarations

'Define Constants
Const RevDiff = 1
Const Del = 0 'default
Const Integ = 250
Const Mult = 1

Const Offset = 0

'Define public variables
Public RefTemp

PubTic TC(6)

'Define Units
Units RefTemp = degC
Units TC = DegC

'Define data tables
DataTable(Temp,1,2000)
DataInterval(0,10,min,10)
Average(1l,RefTemp,FP2,0)
Average(6,TC(),FP2,0)
EndTable

'"Begin Program
BeginProg

'Set scan interval
Scan(1,Sec,3,0)

'Measurements
PanelTemp(RefTemp,250)
TCDiff(TCQ)...0ffset)

'"Processing (None in this
"example)

'Call data table
CallTable Temp

"Controls (None in this
"example)

"Loop to next scan
NextScan

"End Program
EndProg

Declare constants

Declare public variables,
dimension array, and declare
units.

Define data table

Measure

Call data table

Declarations

Scan loop

Section 7. Installation

7.8.2 Writing and Editing Programs
7.8.2.1 Short Cut Programming Wizard

Short Cut is easy-to-use, menu-driven software that presents lists of predefined
measurement, processing, and control algorithms from which to choose. You
make choices, and Short Cut writes the CRBasic code required to perform the
tasks. Short Cut creates a wiring diagram to simplify connection of sensors and
external devices. Quickstart Tutorial (p. 41) works through a measurement example
using Short Cut.

For many complex applications, Short Cut is still a good place to start. When as
much information as possible is entered, Short Cut will create a program template
from which to work, already formatted with most of the proper structure,
measurement routines, and variables. The program can then be edited further
using CRBasic Program Editor.

7.8.2.2 CRBasic Editor

CR800 application programs are written in a variation of BASIC (Beginner's All-
purpose Symbolic Instruction Code) computer language, CRBasic (Campbell
Recorder BASIC). CRBasic Editor is a text editor that facilitates creation and
modification of the ASCII text file that constitutes the CR800 application
program. CRBasic Editor is a component of LoggerNet . 631), RTDAQ, and
PC400 datalogger support sofiware (p. 93).

Fundamental elements of CRBasic include the following:

e Variables — named packets of CR800 memory into which are stored values
that normally vary during program execution. Values are typically the result
of measurements and processing. Variables are given an alphanumeric name
and can be dimensioned into arrays of related data.

e Constants — discrete packets of CR800 memory into which are stored
specific values that do not vary during program executions. Constants are
given alphanumeric names and assigned values at the beginning declarations
of a CRBasic program.

Note Keywords and predefined constants are reserved for internal CR800 use. If
a user-programmed variable happens to be a keyword or predefined constant, a
runtime or compile error will occur. To correct the error, simply change the
variable name by adding or deleting one or more letters, numbers, or the
underscore (_) from the variable name, then recompile and resend the program.
CRBasic Editor Help provides a list of keywords and predefined constants.

e Common instructions — instructions (called "commands" in BASIC) and
operators used in most BASIC languages, including program control
statements, and logic and mathematical operators.

e Special instructions — instructions (commands) unique to CRBasic,
including measurement instructions, and processing instructions that
compress many common calculations used in CR800 dataloggers.

These four elements must be properly placed within the program structure.

123

Section 7. Installation

124

7.8.2.2.1 Inserting Comments into Program

Comments are non-executable text placed within the body of a program to
document or clarify program algorithms.

As shown in CRBasic example Inserting Comments (p. 124), comments are inserted
into a program by preceding the comment with a single quote (*). Comments can
be entered either as independent lines or following CR800 code. When the CR800
compiler sees a single quote ('), it ignores the rest of the line.

CRBasic Example 2. Inserting Comments

'"This program example demonstrates the insertion of comments into a program. Comments are
'placed in two places: to occupy single lines, such as this explanation does, or to be
'placed after a statement.

'Declaration of variables starts here.
Public Start(6) 'Declare the start time array

BeginProg
EndProg

7.8.2.2.2 Conserving Program Memory

One or more of the following memory-saving techniques can be used on the rare
occasions when a program reaches memory limits:

e Declare variables as DIM instead of Public. DIM variables do not require
buffer memory for data retrieval.

e Reduce arrays to the minimum size needed. Arrays save memory over the
use of scalars as there is less "meta-data" required per value. However, as a
rough approximation, 192000 (4 kB memory) or 87000 (2 kB memory)
variables will fill available memory.

e Use variable arrays with aliases instead of individual variables with unique
names. Aliases consume less memory than unique variable names.

e Confine string concatenation to DIM variables.

e Dimension string variables only to the size required.

Read More More information on string variable-memory use and conservation is
available in String Operations (p. 275).

7.8.3 Sending CRBasic Programs

The CR800 requires that a CRBasic program file be sent to its memory to direct
measurement, processing, and data-storage operations. The program file can have
the extension cr8 or .dld and can be compressed using the GZip algorithm before
sending it to the CR800. Upon receipt of the file, the CR800 automatically
decompresses the file and uses it just as any other program file. See the appendix
Program and OS Compression (p. 449) for more information.

Options for sending a program include the following:

e Program Send . 499 command in datalogger-support software (p. 93)
e Program send command in Device Configuration Utility (DevConfig (. 109)
e Campbell Scientific mass storage device (p. 629

Section 7. Installation

A good practice is to always retrieve data from the CR800 before sending a
program; otherwise, data may be lost.

Read More See File Management (. 361) and the Campbell Scientific mass
storage device documentation available at www.campbellsci.com.

7.8.3.1 Preserving Data at Program Send

When sending programs to the CR800 through the software options listed in table
Program Send Options that Reset Memory (p. 125, memory is reset and data are
erased.

When data retention is desired, send programs using the File Control Send (. 488
command or CRBasic Editor command Compile, Save, Send in the Compile
menu. The window shown in the figure CRBasic Editor Program Send File
Control Window (p. 125) is displayed before the program is sent. Select Run Now,
Run On Power-up, and Preserve data if no table changed before pressing Send
Program.

Note To retain data, Preserve data if no table changed must be selected
whether or not a Campbell Scientific mass storage device is connected.

Regardless of the program-upload tool used, if any change occurs to data table
structures listed in table Data Table Structures (p. 126), data will be erased when a
new program is sent.

Table 9. Program Send Options that Reset
Memory*

LoggerNet | Connect | Program Send

PC400 | Clock/Program | Send Program

PC200W | Clock/Program | Send Program

RTDAQ | Clock/Program | Send Program

DevConfig | Logger Control | Send Program

*Reset memory and set program attributes to Run Always

Figure 39. CRBasic Editor Program Send File Control window

Download Temperature.CR!
Select the destination Run Options
cREEm | 71 Run Now

Q) Preserve data if no table changed

Delete associated data tables
Run On Power-up

Compress File

Send Cancel Help Select Server...

125

Section 7. Installation

Table 10. Data Table
Structures

—Data table name(s)

—Data-output interval or offset

—Number of fields per record

—Number of bytes per field

—Field type, size, name, or position

—Number of records in table

7.8.4 Programming Syntax
7.8.4.1 Program Statements

CRBasic programs are made up of a series of statements. Each statement
normally occupies one line of text in the program file. Statements consist of
instructions, variables, constants, expressions, or a combination of these.
"Instructions" are CRBasic commands. Normally, only one instruction is
included in a statement. However, some instructions, such as If and Then, are
allowed to be included in the same statement.

Lists of instructions and expression operators can be found in the appendix
CRBasic Programming Instructions (. 511). A full treatment of each instruction
and operator is located in the Help files of CRBasic Editor (p. 123).

7.8.4.1.1 Multiple Statements on One Line

Multiple short statements can be placed on a single text line if they are separated
by a colon (:). This is a convenient feature in some programs. However, in
general, programs that confine text lines to single statements are easier for
humans to read.

In most cases, regarding statements separated by : as being separate lines is safe.
However, in the case of an implied EndIf, CRBasic behaves in what may be an
unexpected manner. In the case of an If...Then...Else...EndIf statement, where
the Endlf is only implied, it is implied after the last statement on the line. For
example:

If AthenB : C: D
does not mean:

If A then B (implied EndIf) : C : D
Rather, it does mean:

If A then B : C : D (implied EndIf)

7.8.4.1.2 One Statement on Multiple Lines

126

Long statements that overrun the CRBasic Editor page width can be continued on
the next line if the statement break includes a space and an underscore (_). The
underscore must be the last character in a text line, other than additional white
space.

Section 7. Installation

Note CRBasic statements are limited to 512 characters, whether or not a line
continuation is used.

Examples:

Public A, B
c,D, E, F

If (A And B) _
Or (C And D) _
Or (E And F) then ExitScan

7.8.4.2 Single-Statement Declarations

Single-statements are used to declare variables, constants, variable and constant
related elements, and the station name. The following instructions are used
usually before the BeginProg instruction:

Public

Dim
Constant
Units

Alias
StationName

The table Rules for Names . 157) lists declaration names and allowed lengths. See
the section Predefined Constants (p. 136) for other naming limitations.

7.8.4.3 Declaring Variables

A variable is a packet of memory that is given an alphanumeric name.
Measurements and processing results pass through variables during program
execution. Variables are declared as Public or Dim. Public variables are
viewable through numeric monitors (p. 495. Dim variables cannot be viewed. A
public variables can be set as read-only, using the ReadOnly instruction, so that it
cannot be changed from a numeric monitor. The program, however, continues to
have read/write access to the variable.

Declared variables are initialized once when the program starts. Additionally,
variables that are used in the Function() or Sub() declaration, or that are declared
within the body of the function or subroutine, are local to that function or
subroutine.

Variable names can be up to 39 characters in length, but most variables should be
no more than 35 characters long. This allows for four additional characters that
are added as a suffix to the variable name when it is output to a data table.
Variable names can contain the following characters:

AtoZ

atoz

0to9

_ (underscore)

$

Names must start with a letter, underscore, or dollar sign. Spaces and quote
marks are not allowed. Variable names are not case sensitive.

127

Section 7. Installation

128

Several variables can be declared on a single line, separated by commas:

Public RefTemp, AirTemp2, Batt_Volt

Variables can also be assigned initial values in the declaration. Following is an
example of declaring a variable and assigning it an initial value.

PubTlic SetTemp = {35}

In string variables, string size defaults to 24 characters (changed from 16
characters in April 2013, OS 26).

7.8.4.3.1 Declaring Data Types

Variables and data values stored in final memory can be configured with various
data types to optimize program execution and memory usage.

The declaration of variables with the Dim or Public instructions allows an
optional type descriptor As that specifies the data type. The default data type
(declaration without a descriptor) is IEEE4 floating point, which is equivalent to
the As Float declaration. Variable data types are listed in the table Data Types in
Variable Memory (p. 129, p. 128). Final-data memory data types are listed in the table
Data Types in Final-Data Memory . 129. CRBasic example Data Type
Declarations (p. 130 shows various data types in use in the declarations and output

sections of a program.

CRBasic allows mixing data types within a single array of variables; however,
this practice can result in at least one problem. The datalogger support software is
incapable of efficiently handling different data types for the same field name.
Consequently, the software mangles the field names in data file headers.

Table 11. Data Types in Variable Memory

Name Command

Word Size

Description (Bytes)

Notes

Resolution / Range

As Float or

Float As IEEE4

IEEE floating point 4

Data type of all variables unless
declared otherwise.

IEEE Standard 754

+1.4E-45 to £3.4E38

Long As Long

Signed integer 4

Use to store count data in the range of
+2,147,483,648

Speed: integer math is faster than
floating point math.

Resolution: 32 bits. Compare to 24
bits in IEEE4.

Suitable for storing whole numbers,
counting number, and integers in
final-data memory. If storing non-
integers, the fractional portion of the
value is lost.

—2,147,483,648 to +2,147,483,647

Boolean As Boolean

Signed integer 4

Use to store true or false states, such
as states of flags and control ports. 0
is always false. —1 is always true.
Depending on the application, any
other number may be interpreted as
true or false. See the section True = -
1, False = 0 (p. 162).

True = —1 or any number > 1
False = any number > 0 and < 1

Section 7. Installation

Table 11. Data Types in Variable Memory

Name Command Description Word Size Notes Resolution / Range
(Bytes)
See caution.1
String size is defined by the CR800
operating system and CRBasic
Minimum: 3 | program.) S
il | When comverting from STRING to | % S0 08 S C S0 e
terminator) FLOAT, numerics at the beginning oy .) g
. . . in multiples of four bytes; for example,
Default: 24 | of a string convert, but conversion String * 25, String * 26, String * 27, and
String As String ASCII string Maximum: | $tops when a non-numeric is String * 28 allocate 28 bytes (27 usable).

limited only
to the size of
available
CR800
memory.

encountered. If the string begins with
a non-numeric, the FLOAT will be
NAN. If the string contains multiple
numeric values separated by non-
numeric characters, the SplitStr()
instruction can be used to parse out
the numeric values. See the sections
String Operations (p. 275) and Serial
/O (p. 238).

Minimum string size is 4 (3 usable). See
CRBasic Editor Help for more information.
Maximum length is limited only by

available CR800 memory.

! CAUTION When using a very long string in a variable declared Public, the operations of datalogger support software (p. 631) will frequently transmit
the entire string over the communication link. If communication bandwidth is limited, or if communications are paid for by they byte, declaring the

variable Dim may be preferred.

Table 12. Data Types in Final-Data Memory

iy Word Size .
Name Argument Description (Bytes) Notes Resolution / Range
Zero Minimum | Maximum
0.000 +0.001 +7999.
Default final-memory data type. Use Absolute Decimal Location
o FP2 for stored data requiring 3 or 4 Value
Campbell Scientific SO S o,
FP2 FP2 floating point 2 significant digits. If more significant
ep digits are needed, use IEEE4 or an 0-7.99 X.XXX
offset. 8-79.99 XX.XX
80-799.9 XXX.X
800 —7999. XXXX.
IEEE4 IEI‘flf:tor IEEE floating point 4 IEEE Standard 754 +1.4E-45 to £3.4E38
Use to store count data in the range of
+2,147,483,648
Speed: integer math is faster than
floating point math.
Resolution: 32 bits. Compare to 24
Long Long Signed integer 4 bits in IEEE4. —2,147,483,648 to +2,147,483,647

Suitable for storing whole numbers,
counting number, and integers in
final-data memory. If storing non-
integers, the fractional portion of the
value is lost.

129

Section 7. Installation

130

Table 12. Data Types in Final-Data Memory

Name

Argument

Description

Word Size
(Bytes)

Notes

Resolution / Range

UINT2

UINT2

Unsigned integer

Use to store positive count data <
+65535.

Use to store port or flag status. See
CRBasic example Load binary
information into a variable (p. 137).

When Public FLOATS convert to
UINT? at final data storage, values
outside the range 0 — 65535 yield
unusable data. INF converts to
65535. NAN converts to 0.

0 to 65535

UINT4

UINT4

Unsigned integer

Use to store positive count data <
2147483647.

Other uses include storage of long ID
numbers (such as are read from a bar
reader), serial numbers, or address.

May also be required for use in some
Modbus devices.

0 to 2147483647

Boolean

Boolean

Signed integer

Use to store true or false states, such
as states of flags and control ports. 0
is always false. —1 is always true.
Depending on the application, any
other number may be interpreted as
true or false. See the section True = -
1, False = 0 (p. 162). To save
memory, consider using UINT2 or
BOOLS.

True = -1 or any number > 1
False = any number > 0 and < 1

Bool8

Bool8

Integer

8 bits (0 or 1) of information. Uses
less space than 32-bit BOOLEAN.
Holding the same information in
BOOLEAN will require 256 bits.
See Bool8 Data Type (p. 196).

True =1, False =0

NSEC

NSEC

Time stamp

Divided up as four bytes of seconds
since 1990 and four bytes of
nanoseconds into the second. Used to
record and process time data. See
NSEC Data Type (p. 200).

1 nanosecond

String

String

ASCII string

Minimum: 3
(4 with null
terminator)

Default: 24

Maximum:
limited only
to the size of
available
CR800
memory.

.1
See caution.

String size is defined by the CR800
operating system and CRBasic
program.

When converting from STRING to
FLOAT, numerics at the beginning
of a string convert, but conversion
stops when a non-numeric is
encountered. If the string begins with
a non-numeric, the FLOAT will be
NAN. Ifthe string contains multiple
numeric values separated by non-
numeric characters, the SplitStr()
instruction can be used to parse out
the numeric values. See the sections
String Operations (p. 275) and Serial
/0 (p. 238)..

Unless declared otherwise, string size is 24
bytes or characters. String size is allocated
in multiples of four bytes; for example,
String * 25, String * 26, String * 27, and
String * 28 allocate 28 bytes (27 usable).
Minimum string size is 4 (3 usable). See
CRBasic Editor Help for more information.
Maximum length is limited only by
available CR800 memory.

Section 7. Installation

CRBasic Example 3. Data Type Declarations

'"This program example demonstrates various data type declarations.

'Data type declarations associated with any one variable occur twice: first in a Public
'or Dim statement, then in a DataTable/EndTable segment. If not otherwise specified, data
"types default to floating point: As Float in Public or Dim declarations, FP2 in data

"table declarations.

'"Float Variable Examples
Public z
Public X As Float

"Long Variable Example
Public CR800Time As Long
Public PosCounter As Long
Public PosNegCounter As Long

'Boolean Variable Examples
PubTic Switches(8) As Boolean
Public FLAGS(16) As Boolean

'String Variable Example
Public FirstName As String * 16 'allows a string up to 16 characters long

DataTable(TabTleName,True,-1)
'"FP2 Data Storage Example
Sample(1,Z,FP2)

'"TIEEE4 / Float Data Storage Example
Sample(1,X,IEEE4)

"UINT2 Data Storage Example
Sample(1,PosCounter,UINT2)

"LONG Data Storage Example
Sample(1,PosNegCounter,Long)

'STRING Data Storage Example
Sample(1,FirstName,String)

"BOOLEAN Data Storage Example
SampTle(8,Switches(),Boolean)

'"BOOL8 Data Storage Example
Sample(2,FLAGS(),Boo18)

'"NSEC Data Storage Example
SampTle(1,CR800Time,Nsec)
EndTable

BeginProg
'"Program logic goes here
EndProg

131

Section 7. Installation

132

7.8.4.3.2 Dimensioning Numeric Variables

Some applications require multi-dimension arrays. Array dimensions are
analogous to spatial dimensions (distance, area, and volume). A single-dimension
array, declared as,

Public VariableName(x)
with (x) being the index, denotes x number of variables as a series.
A two-dimensional array, declared as,

PubTlic VariableName(x,y)

with (x,y) being the indices, denotes (x ¢ y) number of variables in a square x-by-y
matrix.

Three-dimensional arrays, declared as
PubTlic VariableName (x,y,z)

with (x,y,z) being the indices, have (x * y * z) number of variables in a cubic x-by-
y-by-z matrix. Dimensions greater than three are not permitted by CRBasic.

When using variables in place of integers as dimension indices (see CRBasic
example Using variable array dimension indices (p. 132)), declaring the indices As
Long variables is recommended. Doing so allows for more efficient use of
CR800 resources.

CRBasic Example 4. Using Variable Array Dimension Indices

'"This program example demonstrates the use of dimension indices in arrays. The variable
'"VariableName is declared with three dimensions with 4 in each index. This indicates the
'array has means it has 64 elements. Element 24 is loaded with the value 2.718.

Dim aaa As Long

Dim bbb As Long

Dim ccc As Long

Public VariableName(4,4,4) As Float

BeginProg
Scan(1,sec,0,0)
aaa = 3
bbb = 2
ccc =4
VariableName(aaa,bbb,ccc) = 2.718
NextScan
EndProg

7.8.4.3.3 Dimensioning String Variables

Strings can be declared to a maximum of two dimensions. The third "dimension"
is used for accessing characters within a string. See String Operations (p. 275).
String length can also be declared. See the table Data Types in Variable Memory.
(. 129,p. 128)

A one-dimension string array called StringVar, with five elements in the array
and each element with a length of 36 characters, is declared as

PubTic StringVar(5) As String * 36

Section 7. Installation

Five variables are declared, each 36 characters long:

StringVar(l)
StringVar(2)
StringVar(3)
StringVar(4)
StringVar(5)

7.8.4.3.4 Declaring Flag Variables

A flag is a variable, usually declared As Boolean (. 482), that indicates True or
False, on or off, go or not go, etc. Program execution can be branched based on
the value in a flag. Sometime flags are simply used to inform an observer that an
event is occurring or has occurred. While any variable of any data type can be
used as a flag, using Boolean variables, especially variables named "Flag", usually
works best in practice. CRBasic example Flag Declaration and Use (p. 133)
demonstrates changing words in a string based on a flag.

CRBasic Example 5.

Flag Declaration and Use

'"This program example

demonstrates the declaration and use of flags as Boolean variables,

'and the use of strings to report flag status. To run the demonstration, send this program
"to the CR800, then toggle variables Flag(l) and Flag(2) to true or false to see how the
'program logic sets the words "High" or "Low" in variables FlagReport(1) and FlagReport(2).
'"To set a flag to true when using LoggerNet Connect Numeric Monitor, simply click on the

"forest green dot adjacent to the word "false.
False" is made available.

o

"

If using a keyboard, a choice of "True" or

Public Flag(2) As Boolean
Public FlagReport(2) As String

BeginProg
Scan(1,Sec,0,0)
If Flag(l) = True Then
FlagReport(1l) = "High"
Else
FlagReport(1l) = "Low"
EndIf
If Flag(2) = True Then
FlagReport(2) = "High"
Else
FlagReport(2) = "Low"
EndIf
NextScan
EndProg

7.8.4.4 Declaring Arrays

Related Topics:

* Declaring Arrays (p. 133)

* Arrays of Multipliers and Offsets
* VarOutOfBounds (p. 464)

Multiple variables of the same root name can be declared. The resulting series of
like-named variables is called an array. An array is created by placing a suffix of

133

Section 7. Installation

(x) on the variable name. X number of variables are created that differ in name
only by the incrementing number in the suffix. For example, the four statements

PubTic TempCl
Public TempC2
PubTic TempC3
PubTic TempC4

can simply be condensed to

PubTic TempC(4).
This statement creates in memory the four variables TempC(1), TempC(2),
TempC(3), and TempC(4).

A variable array is useful in program operations that affect many variables in the
same way. CRBasic example Using a Variable Array in Calculations (p. 134)
shows compact code that converts four temperatures (°C) to °F.

In this example, a For/Next structure with an incrementing variable is used to
specify which elements of the array will have the logical operation applied to
them. The CRBasic For/Next function will only operate on array elements that
are clearly specified and ignore the rest. If an array element is not specifically
referenced, as is the case in the declaration

Dim TempCQ
CRBasic references only the first element of the array, TempC(1).

See CRBasic example Concatenation of Numbers and Strings (. 277) for an
example of using the += assignment operator (p. 539 when working with arrays.

CRBasic Example 6.

Using a Variable Array in Calculations

Dim T

BeginProg

Next T

NextScan
EndProg

PubTic TempC(4)
PubTic TempF(4)

Scan(1,Sec,0,0)

Therm107 (TempC(),1,
Therm107(TempC(Q),1,
Therm107 (TempC(Q,1,
Therm107 (TempC(Q), 1,

For T =1 To 4
TempF(T) = TempC(T) * 1.8 + 32

'"This program example demonstrates the use of a variable array to reduce code. In this
'example, two variable arrays are used to convert four temperature measurements from
"degree C to degrees F.

7.8.4.5 Declaring Local and Global Variables

134

Advanced programs may use subroutines (p. 281) or functions (p. 576), each of which
can have a set of Dim variables dedicated to that subroutine or function. These

Section 7. Installation

are called local variables. Names of local variable can be identical to names of
global variables (. 490) and to names of local variables declared in other
subroutines and functions. This feature allows creation of a CRBasic library of
reusable subroutines and functions that will not cause variable name conflicts. If
a program with local Dim variables attempts to use them globally, the compile
error undeclared variable will occur.

To make a local variable displayable, in cases where making it public creates a
naming conflict, sample the local variable to a data table and display the data
element table in a numeric monitor (p. 495).

When exchanging the contents of a global and local variables, declare each
passing / receiving pair with identical data types and string lengths.

7.8.4.6 Initializing Variables

By default, variables are set equal to zero at the time the datalogger program
compiles. Variables can be initialized to non-zero values in the declaration.
Examples of syntax are shown in CRBasic example Initializing Variables (p. 135).

CRBasic Example 7. Initializing Variables

'"This program example demonstrates how variables can be declared as specific data types.
"Variables not declared as a specific data type default to data type Float. Also
"demonstrated is the loading of values into variables that are being declared.

Public aaa As Long = 1 'Declaring a single variable As Long and loading the value of 1.

Public bbb(2) As String *20 = {"String_1", "String_2"} 'Declaring an array As String and
"loading strings in each element.

Public ccc As Boolean = True 'Declaring a variable As Boolean and loading the value of True.

'Initialize variable ddd elements 1,1 1,2 1,3 & 2,1.
"Elements (2,2) and (2,3) default to zero.
Dim ddd(2,3)= {1.1, 1.2, 1.3, 2.1}

'"Initialize variable eee
Dim eee = 1.5

BeginProg
EndProg

7.8.4.7 Declaring Constants

CRBasic example Using the Const Declaration (p. 135) shows use of the constant

declaration. A constant can be declared at the beginning of a program to assign an
alphanumeric name to be used in place of a value so the program can refer to the

name rather than the value itself. Using a constant in place of a value can make
the program easier to read and modify, and more secure against unintended
changes. If declared using ConstTable / EndConstTable, constants can be

changed while the program is running by using the CR1000KD Keyboard Display

menu (Configure, Settings | Constant Table) or the C command in a terminal
emulator (see Troubleshooting — Terminal Emulator (p. 475)).

Note Using all uppercase for constant names may make them easier to recognize.

135

Section 7. Installation

CRBasic Example 8. Using the Const Declaration

'"This program example demonstrates the use of the Const declaration.

'Declare variables
PubTic PTempC
PubTlic PTempF

'Declare constants
Const CtoF_Mult = 1.8
Const CtoF_Offset = 32

BeginProg
Scan(1,Sec,0,0)
PanelTemp(PTempC,250)
PTempF = PTempC * CtoF_Mult + CtoF_Offset
NextScan
EndProg

7.8.4.7.1 Predefined Constants

Many words are reserved for use by CRBasic. These words cannot be used as
variable or table names in a program. Predefined constants include instruction
names and valid alphanumeric names for instruction parameters. On account the
list of predefined constants is long and frequently increases as the operating
system is developed, the best course is to compile programs frequently during
CRBasic program development. The compiler will catch the use of any reserved
words. Following are listed predefined constants that are assigned a value:

e LoggerType =800 (as in CR800)

These may be useful in programming.

7.8.4.8 Declaring Aliases and Units

A variable can be assigned a second name, or alias, in the CRBasic program.
Aliasing is particularly useful when using arrays. Arrays are powerful tools for
complex programming, but they place near identical names on multiple variables.
Aliasing allows the power of the array to be used with the clarity of unique
names.

The declared variable name can be used interchangeably with the declared alias in
the body of the CRBasic program. However, when a value is stored to final-
memory, the value will have the alias name attached to it. So, if the CRBasic
program needs to access that value, the program must use the the alias-derived
name.

Variables in one, two, and three dimensional arrays can be assigned units. Units
are not used elsewhere in programming, but add meaning to resultant data table
headers. If different units are to be used with each element of an array, first
assign aliases to the array elements and then assign units to each alias. For
example:

Alias var_array(1) solar_radiation
Alias var_array(2) = quanta

Units solar_radiation = Wm-2
Units variable2 = moles_m-2_s-1

136

Section 7. Installation

7.8.4.9 Numerical Formats

Four numerical formats are supported by CRBasic. Most common is the use of
base-10 numbers. Scientific notation, binary, and hexadecimal formats can also
be used, as shown in the table Formats for Entering Numbers in CRBasic (p. 137).
Only standard, base-10 notation is supported by Campbell Scientific hardware and
software displays.

Table 13. Formats for Entering Numbers in CRBasic
Format Example Base-10 Equivalent Value
Standard 6.832 6.832
Scientific notation 5.67E-8 5.67X107
Binary &B1101 13
Hexadecimal &HFF 255

Binary format (1 = high, 0 = low) is useful when loading the status of multiple
flags or ports into a single variable. For example, storing the binary number
&B11100000 preserves the status of flags 8 through 1: flags 1 to 5 are low, 6 to 8
are high. CRBasic example Load binary information into a variable (p. 137) shows
an algorithm that loads binary status of flags into a LONG integer variable.

CRBasic Example 9. Load binary information into a variable

'"This program example demonstrates how binary data are loaded into a variable. The binary
"format (1 = high, 0 = Tow) is useful when Tloading the status of multiple flags

'or ports into a single variable. For example, storing the binary number &B11100000
'preserves the status of flags 8 through 1: flags 1 to 5 are low, 6 to 8 are high.

'This example demonstrates an algorithm that loads binary status of flags into a LONG
"integer variable.

Public FlagInt As Long

Public Flag(8) As Boolean
Public I

DataTable(FlagOut,True,-1)
Sample(1,FlagInt,UINT2)
EndTable

BeginProg
Scan(1,Sec,3,0)

FlagInt = 0
For I =1 To 8
If Flag(I) = true Then
FlagInt = FlagInt + 2 A (I - D
EndIf
Next I
CallTable FlagOut

NextScan
EndProg

137

Section 7. Installation

7.8.4.10 Multi-Statement Declarations

Multi-statement declarations are used to declare data tables, subroutines,
functions, and incidentals. Related instructions include the following:

DataTable() / EndTable

Sub() / EndSub

Function() / EndFunction

ShutDown / ShutdownEnd
DialSequence() / EndDialSequence
ModemHangup() / EndModemHangup
WebPageBegin() / WebPageEnd

Multi-statement declarations can be located as follows:

e Prior to BeginProg,

e After EndSequence or an infinite Scan() / NextScan and before EndProg or
SlowSequence

e Immediately following SlowSequence. SlowSequence code starts executing
after any declaration sequence. Only declaration sequences can occur after
EndSequence and before SlowSequence or EndProg.

7.8.4.10.1 Declaring Data Tables

Data are stored in tables as directed by the CRBasic program. A data table is
created by a series of CRBasic instructions entered after variable declarations but
before the BeginProg instruction. These instructions include:

DataTable()
"Output Trigger Condition(s)
"Output Processing Instructions
EndTable

A data table is essentially a file that resides in CR800 memory. The file is written
to each time data are directed to that file. The trigger that initiates data storage is
tripped either by the CR800 clock, or by an event, such as a high temperature.
The number of data tables declared is limited only by the available CR800
memory (prior to OS 28, the limit was 30 data tables). Data tables may store
individual measurements, individual calculated values, or summary data such as
averages, maxima, or minima to data tables.

Each data table is associated with overhead information that becomes part of the
ASCII file header (first few lines of the file) when data are downloaded to a PC.
Overhead information includes the following:

Table format

Datalogger type and operating system version

Name of the CRBasic program running in the datalogger

Name of the data table (limited to 20 characters)

Alphanumeric field names to attach at the head of data columns

This information is referred to as "table definitions."

138

Section 7. Installation

Table 14. Typical Data Table

TOAS CR800 CR800 1048 CR800.Std.13.06 CPU:Data.cr8 35723 OneMin

TIMESTAMP RECORD | BattVolt_Avg PTempC_Avg TempC_Avg(1) TempC_Avg(2)

TS RN Volts Deg C Deg C Deg C

Avg Avg Avg Avg

7/11/2007 16:10 0 13.18 23.5 23.54 25.12
7/11/2007 16:20 1 13.18 23.5 23.54 25.51
7/11/2007 16:30 2 13.19 23.51 23.05 25.73
7/11/2007 16:40 3 13.19 23.54 23.61 25.95
7/11/2007 16:50 4 13.19 23.55 23.09 26.05
7/11/2007 17:00 13.19 23.55 23.05 26.05
7/11/2007 17:10 6 13.18 23.55 23.06 25.04

The table Typical Data Table (p. 138 shows a data file as it appears after the
associated data table is downloaded from a CR800 programmed with the code in
CRBasic example Definition and Use of a Data Table (p. 149). The data file
consists of five or more lines. Each line consists of one or more fields. The first
four lines constitute the file header. Subsequent lines contain data.

Note Discrete data files (ASCII or binary) can also be written to a CR800
memory drive using the TableFile() instruction.

The first header line is the environment line. It consists of eight fields, listed in
table TOAS5 Environment Line (p. 139).

Table 15. TOAS Environment Line

Field Description Changed By
1 TOAS5
2 DevConfig or CRBasic program acting on

Station name the setting

3 Datalogger model

4 Datalogger serial number

5 Datalogger OS version New OS

6 Datalogger program name New program

7 Datalogger program signature New or revised program
8 Table name Revised program

The second header line reports field names. This line consists of a set of comma-
delimited strings that identify the name of individual fields as given in the
datalogger program. If the field is an element of an array, the name will be
followed by a comma-separated list of subscripts within parentheses that
identifies the array index. For example, a variable named Values, which is
declared as a two-by-two array in the datalogger program, will be represented by
four field names: Values(1,1), Values(1,2), Values(2,1), and Values(2,2). Scalar
variables will not have array subscripts. There will be one value on this line for

139

Section 7. Installation

140

each scalar value defined by the table. Default field names are a combination of
the variable names (or alias) from which data are derived and a three-letter suffix.
The suffix is an abbreviation of the data process that outputs the data to storage.
For example, Avg is the abbreviation for the data process called by the Average()
instruction. If the default field names are not acceptable to the programmer,
FieldNames() instruction can be used to customize the names. TIMESTAMP,
RECORD, Batt_Volt_Avg, PTemp_C_Avg, TempC_Avg(1), and
TempC_Avg(2) are the default field names in the table Typical Data Table (p. 138).

The third-header line identifies engineering units for that field of data. These
units are declared at the beginning of a CRBasic program, as shown in CRBasic
example Definition and Use of a Data Table (p. 1409). Units are strictly for
documentation. The CR800 does not make use of declared units, nor does it
check their accuracy.

The fourth line of the header reports abbreviations of the data process used to
produce the field of data. See the table Data Process Abbreviations (p. 166).

Subsequent lines are observed data and associated record keeping. The first field
being a time stamp, and the second being the record (data line) number.

As shown in CRBasic example Definition and Use of a Data Table (p. 140), data
table declaration begins with the DataTable() instruction and ends with the
EndTable() instruction. Between DataTable() and EndTable() are instructions
that define what data to store and under what conditions data are stored. A data
table must be called by the CRBasic program for data storage processing to occur.
Typically, data tables are called by the CallTable() instruction once each Scan.

CRBasic Example 10. Definition and Use of a Data Table

'"This program example demonstrates definition and use of data tables.

'Declare Variables
PubTic Batt_Volt
PubTic PTemp_C
PubTic Temp_C(2)

'Define Units

Units Batt_Volt=Volts
Units PTemp_C=Deg_C
Units Temp_C()=Deg_C

'Define Data Tables

DataTable(OneMin,True,-1) 'Required beginning of data table declaration
DataInterval(0,1,Min,10) '"Optional instruction to trigger table at one-minute interval
Average(l,Batt_Volt,FP2,False) 'Optional instruction to average variable Batt_Volt
Average(1,PTemp_C,FP2,False) '"Optional instruction to average variable PTemp_C
Average(2,Temp_C(Q),FP2,False) "Optional instruction to average variable Temp_C

EndTable 'Required end of data table declaration

DataTable(Tablel,True,-1)
DataInterval(0,1440,Min,0) 'Optional instruction to trigger table at 24-hour interval
Minimum(1l,Batt_Volt,FP2,False,False) 'Optional instruction to determine minimum Batt_Volt
EndTable

Section 7. Installation

'"Main Program
BeginProg
Scan(5,Sec,1,0)

'Default Datalogger Battery Voltage measurement Batt_Volt:
Battery(Batt_Volt)

'"Wiring Panel Temperature measurement PTemp_C:
Panel1Temp(PTemp_C,_60Hz)

'Type T (copper-constantan) Thermocouple measurements Temp_C:
TCDiff(Temp_C(Q,2,mv2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1,0)

"Call Data Tables and Store Data
CallTable(OneMin)
CallTable(Tablel)

NextScan
EndProg

DataTable() / EndTable Instructions

The DataTable() instruction has three parameters: a user-specified alphanumeric
name for the table such as OneMin, a trigger condition (for example, True), and
the size to make the table in memory such as -1 (automatic allocation).

e Name — The table name can be any combination of numbers, letters, and
underscore up to 20 characters in length. The first character must be a letter
or underscore.

Note While other characters may pass the precompiler and compiler, runtime
errors may occur if these naming rules are not adhered to.

e TrigVar — Controls whether or not data records are written to storage. Data
records are written to storage if TrigVar is true and if other conditions, such
as Datalnterval(), are met. Default setting is -1 (True). TrigVar may be a
variable, expression, or constant. TrigVar does not control intermediate
processing. Intermediate processing is controlled by the disable variable,
DisableVar, which is a parameter in all output processing instructions (see
section, Output Processing Instructions (p. 143)).

Read More Section, TrigVar and DisableVar — Controlling Data Output and
Output Processing (p. 193) discusses the use of TrigVar and DisableVar in
special applications.

e Size — Table size is the number of records to store in a table before new data
begins overwriting old data. If 10 is entered, 10 records are stored in the
table; the eleventh record will overwrite the first record. If —1 is entered,
memory for the table is allocated automatically at the time the program
compiles. Automatic allocation is preferred in most applications since the
CR800 sizes all tables such that they fill (and begin overwriting the oldest
data) at about the same time. Approximately 2 kB of extra data-table space
are allocated to minimize the possibility of new data overwriting the oldest
data in ring memory when datalogger support sofiware (p. 630) collects the
oldest data at the same time new data are written. These extra records are not
reported in the Status table and are not reported to the support software and
so are not collected.

141

Section 7. Installation

CRBasic example Definition and Use of a Data Table (p. 140) creates a data table
named OneMin, stores data once a minute as defined by Datalnterval(), and
retains the most recent records in SRAM. DataRecordSize entries in the
DataTableInformation table report allocated memory in terms of number of
records the tables hold.

Datalnterval() Instruction

142

Datalnterval() instructs the CR800 to both write data records at the specified
interval and to recognize when a record has been skipped. The interval is
independent of the Scan() / NextScan interval; however, it must be a multiple of
the Scan() / NextScan interval.

Sometimes, usually because of a timing issue, program logic prevents a record
from being written. If a record is not written, the CR800 recognizes the omission
as a "lapse" and increments the SkippedRecord counter in the Status table.
Lapses waste significant memory in the data table and may cause the data table to
fill sooner than expected. Datalnterval() instruction parameter Lapses controls
the CR800 response to a lapse. See table Datalnterval () Lapse Parameter
Options (p. 142) for more information.

Note Program logic that results in lapses includes scan intervals inadequate to the
length of the program (skipped scans), the use of Datalnterval() in event-driven
data tables, and logic that directs program execution around the CallTable()
instruction.

A data table consists of successive 1 KB data frames. Each data frame contains a
time stamp, frame number, and one or more records. By default, a time stamp and
record number are not stored with each record. Rather, the datalogger support
software data extraction extraction routine uses the frame time stamp and frame
number to time stamp and number each record as it is stored to computer memory.
This technique saves telecommunication bandwidth and 16 bytes of CR800
memory per record. However, when a record is skipped, or several records are
skipped contiguously, a lapse occurs, the SkippedRecords status entry is
incremented, and a 16-byte sub-header with time stamp and record number is
inserted into the data frame before the next record is written. Consequently,
programs that lapse frequently waste significant memory.

If Lapses is set to an argument of 20, the memory allocated for the data table is
increased by enough memory to accommodate 20 sub-headers (320 bytes). If
more than 20 lapses occur, the actual number of records that are written to the
data table before the oldest is overwritten (ring memory) may be less than what
was specified in the DataTable().

If a program is planned to experience multiple lapses, and if telecommunication
bandwidth is not a consideration, the Lapses parameter should be set to 0 to
ensure the CR800 allocates adequate memory for each data table.

Section 7. Installation

Table 16. Datalnterval() Lapse Parameter Options

Datalnterval() Lapse
Argument Effect

If table record number is fixed, X data frames (1 kB per data
Lapse > 0 frame) are added to data table if memory is available. If record
number is auto-allocated, no memory is added to table.

Time stamp and record number are always stored with each

Lapse =0 record.

When lapse occurs, no new data frame is created. Record time

Lapse <0 . .
P stamps calculated at data extraction may be in error.

Scan Time and System Time

In some applications, system time (see System Time (p. 504)), rather than scan time
(see Scan Time (p. 500)), is desired. To get the system time, the CallTable()
instruction must be run outside the Scan() loop. See section Time Stamps (p. 295).

Openinterval() Instruction

By default, the CR800 uses closed intervals. Data output to a data table based on
Datalnterval() includes measurements from only the current interval.
Intermediate memory that contains measurements is cleared the next time the data
table is called regardless of whether or not a record was written to the data table.

Typically, time-series data (averages, totals, maxima, etc.), that are output to a
data table based on an interval, only include measurements from the current
interval. After each data-output interval, the memory that contains the
measurements for the time-series data are cleared. If a data-output interval is
missed (because all criteria are not met for output to occur), the memory is cleared
the next time the data table is called. If the OpenlInterval instruction is contained
in the DataTable() declaration, the memory is not cleared. This results in all
measurements being included in the time-series data since the last time data were
stored (even though the data may span multiple data-output intervals).

Note Array-based dataloggers, such as CR10X and CR23X, use open intervals
exclusively.

Data-Output Processing Instructions

Data-storage processing instructions (aka, "output processing" instructions)
determine what data are stored in a data table. When a data table is called in the
CRBasic program, data-storage processing instructions process variables holding
current inputs or calculations. If trigger conditions are true, for example if the
data-output interval has expired, processed values are stored into the data table. In
CRBasic example Definition and Use of a Data Table (p. 140), three averages are
stored.

Consider the Average() instruction as an example data-storage processing
instruction. Average() stores the average of a variable over the data-output
interval. Its parameters are:

e Reps — number of sequential elements in the variable array for which
averages are calculated. Reps is set to I to average PTemp, and set to 2 to
average two thermocouple temperatures, both of which reside in the variable
array Temp_ C.

143

Section 7. Installation

144

Source — variable array to average. Variable arrays PTemp C (an array of
1) and Temp C() (an array of 2) are used.

DataType — Data type for the stored average (the example uses data type
FP2 . 617)).

Read More See Declaring Data Types (p. 128 for more information on available

data types.

DisableVar — controls whether a measurement or value is included in an
output processing function. A measurement or value is not included if
DisableVar is true (# 0). For example, if the disable variable in an
Average() instruction is true, the current value will not be included in the
average. CRBasic example Use of the Disable Variable (p. 144) and CRBasic
example Using NAN to Filter Data (p. 460) show how DisableVar can be used
to exclude values from an averaging process. In these examples, DisableVar
is controlled by Flagl. When Flagl is high, or True, DisableVar is True.
When it is False, DisableVar is False. When False is entered as the
argument for DisableVar, all readings are included in the average. The
average of variable Oscillator does not include samples occurring when
Flagl is high (True), which results in an average of 2; when Flagl is low or
False (all samples used), the average is 1.5.

Read More TrigVar and DisableVar (. 193— Controlling Data Output and

Output Processing (p. 193) and Measurements and NAN (p. 458 discuss the use of
TrigVar and DisableVar in special applications.

Read More For a complete list of output processing instructions, see the section
Final Data (Output to Memory) Precessing (p. 516).

CRBasic Example 11. Use of the Disable Variable

'"This program example demonstrates the use of the 'disable' variable, or DisableVar, which
'is a parameter in many output processing instructions. Use of the 'disable' variable

'allows source data to be sel

ectively included in averages, maxima, minima, etc. If the

"'"disable' variable equals -1, or true, data are not included; if equal to 0, or false,
'"data are included. The 'disable' variable is set to false by default.

'Declare Variables and Units
Public Oscillator As Long
PubTic Flag(l) As Boolean
PubTic DisableVar As Boolean

'Define Data Tables
DataTable(OscAvgData,True,-1)
DataInterval(0,1,Min,10)

Average(1,0scillator,FP2,Di
EndTable

sableVar)

Section 7. Installation

'"Main Program
BeginProg
Scan(1,Sec,1,0)

'Reset and Increment Counter
If Oscillator = 2 Then Oscillator = 0
Oscillator = Oscillator + 1

'Process and Control
If Oscillator =1
If Flag(l) = True Then
DisableVar = True
EndIf
Else
DisableVar = False
EndIf

"Call Data Tables and Store Data
CallTable(OscAvgData)

NextScan
EndProg

Numbers of Records

The exact number of records that can be stored in a data table is governed by a
complex set of rules, the summary of which can be found in the appendix
Numbers of Records in Data Tables.

7.8.4.10.2 Declaring Subroutines

Read More See section Subroutines (p. 281) for more information on programming
with subroutines.

Subroutines allow a section of code to be called by multiple processes in the main
body of a program. Subroutines are defined before the main program body of a
program.

Note A particular subroutine can be called by multiple program sequences
simultaneously. To preserve measurement and processing integrity, the CR800
queues calls on the subroutine, allowing only one call to be processed at a time in
the order calls are received. This may cause unexpected pauses in the conflicting
program sequences.

7.8.4.10.3 'Include’ File

An alternative to a subroutine is an 'include' file. An 'include' file is a CRBasic
program file that resides on the CR800 CPU: drive and compiles as an insert to
the CRBasic program. It may also run on its own (. 114). It is essentially a
subroutine stored in a file separate from the main program file. It can be used
once or multiple times by the main program, and by multiple programs. The file
begins with the SlowSequence instruction and can contain any code.

Procedure to use the "Include File":

1. Write the file, beginning with the SlowSequence instruction followed by any
other code.

145

Section 7. Installation

146

2. Send the file to the CR800 using tools in the File Control menu of datalogger
support software (p. 93).

3. Enter the path and name of the file in the Include File setting using DevConfig
or PakBusGraph.

Figures "Include File" Settings with DevConfig (p. 147) and "Include File" settings
with PakBusGraph (p. 147) show methods to set required settings with DevConfig or
with telecommunications. There is no restriction on the length of the file.
CRBasic example Using an "Include File" to Control Switched 12 V (p. 147) shows
a program that expects a file to control power to a modem; CRBasic example
"Include File" to Control Switched 12 V (. 148) lists the code.

Consider the the example "include file", CPU:pakbus_broker.dld. The rules used
by the CR800 when it starts are as follows:

1. If the logger is starting from power-up, any file that is marked as the "run on
power-up" program is the "current program". Otherwise, any file that is marked as
"run now" is selected. This behavior has always been present and is not affected
by this setting.

2. If there is a file specified by this setting, it is incorporated into the program
selected above.

3. If there is no current file selected or if the current file cannot be compiled, the
datalogger will run the program given by this setting as the current program.

4. If the program run by this setting cannot be run or if no program is specified,
the datalogger will attempt to run the program named default.cr8 on its CPU:
drive.

5. If there is no default.cr8 file or if that file cannot be compiled, the datalogger
will not run any program.

The CR800 will now allow a SlowSequence statement to take the place of the
BeginProg statement. This feature allows the specified file to act both as an
include file and as the default program.

The formal syntax for this setting follows:

include-setting := device-name ":" file-name "." file-extension.
device-name = "CPU" | "USR"
File-extension = "d1d" | "cr8"

Section 7. Installation

Figure 40. "Include File" Settings Via DevConfig
[Settings Edir |

Current Setting: (Include File Name =

Datalogger | TCP/IP | S YO 1P | PPP | ComPorts Settings | Network Services| Advanced |

Include File Name *
CPU:Include File.CR

Max Packet Size
1000 5

RS232 Always On

RS232 Hardware Handshaking Buffer Size

RS232 Hardware Handshaking Timeout

Transport Layer Security (TLS) Enabled =
||

IP Broadcast Filtered
o =

1P Trace COM Port

Figure 41. "Include File" Settings Via PakBusGraph

.

(Eile] view PakBus Network Help

s torosuror_——~] [Jsho s viw [Ishou og [svowrep s | § G oo
N) .
H Settings For [1] CR (=]

Current Setting: | Include File Name v/

PPP | ComPorts Settings | Network Services| Advanced | « | >
Include File Name * -
CPU:Include File.CR1

Max Packet Size

1000 -3 E|

>

Include File Name
E

This setting specifies the name of a file to be
implicitly included at the end of the current
CRBasic program or can be run as the default
program. In order to work as an include file, -
« »

[Applysciose | [cancel | [appy |

| Factory Defauts | | Read e | | summary |

147

Section 7. Installation

148

CRBasic Example 12. Using an 'Include’ File

'"This program example demonstrates the use of an 'include' file. An 'include' file is a CRBasic
file that usually

'resides on the CPU: drive of the CR800. It is essentially a subroutine that is

'stored in a file separate from the main program, but it compiles as an insert to the main
'program. It can be used once or multiple times, and by multiple programs.

"'"Include' files begin with the SlowSequence instruction and can contain any code.

'"Procedure to use an 'include' file in this example:

'1. Copy the code from the CRbasic example 'Include' File to Control Switched 12 V (p. 148) to
! CRBasic Editor, name it 'IncludeFile.cr8, and save it to the same PC folder on which
resides the main program file (this make pre-compiling possible. Including the
SlowSequence instruction as the first statement is required, followed by any other code.
'2. Send the 'include' file to the CPU: drive of the CR800 using the File Control menu

of the datalogger support software (p. 631). Be sure to de-select the Run Now and Run On
Power-up options that are presented by the software when sending the file.

'3. Add the Include instruction to the main CRBasic program at the Tlocation from which the

! "include' file is to be called (see the following code).

"4, Enter the CR800 file system path and file name after the Include() instruction, as shown
in the following code.

"IncludeFile.cr8 contains code to control power to a cellular phone modem.
"Cell phone + wire to be connected to SW12 terminal. Negative (-) wire
"to G.

PubTic PTemp, batt_volt

DataTable(Test,1,-1)
DataInterval(0,15,Sec,10)
Minimum(l,batt_volt,FP2,0,False)
Sample(1,PTemp,FP2)

EndTable

BeginProg
Scan(1,Sec,0,0)
PanelTemp(PTemp,250)
Battery(Batt_volt)
CallTable Test
NextScan
Include "CPU:IncludeFile.CR1" '<<<<<<<<<<<<<<<'include' file code executed here
EndProg

CRBasic Example 13. 'Include’ File to Control SW12 Terminal.

'"This program example demonstrates the use of an 'include' file. See the documentation in CRBasic
example
'Using an Include File (p. 147)
' <<<<<<<<<<<<<<<<<<<<<<<NOTE: No BeginProg instruction
STowSequence '<<<<<<<<<<NOTE: Begins with SlowSequence
Scan(1,Sec,0,0)
If TimeIntoInterval(9,24,Hr) Then SW12(1) '"Modem on at 9:00 AM (900 hours)
If TimeIntoInterval(1l7,24,Hr) Then SW12(0) 'Modem off at 5:00 PM (1700 hours)
NextScan

' <<<<<<<<<<<<<<<<<<<<<<<NOTE: No EndProg instruction

Section 7. Installation

7.8.4.10.4 Declaring Subroutines

Function() / EndFunction instructions allow you to create a customized CRBasic
instruction. The declaration is similar to a subroutine declaration.

7.8.4.10.5 Declaring Incidental Sequences

A sequence is two or more statements of code. Data-table sequences are essential
features of nearly all programs. Although used less frequently, subroutine and
function sequences also have a general purpose nature. In contrast, the following
sequences are used only in specific applications.

Shut-Down Sequences

Dial Sequences

The ShutDownBegin / ShutDownEnd instructions are used to define code that
will execute whenever the currently running program is shutdown by prescribed
means. More information is available in CRBasic Editor Help.

The DialSequence / EndDialSequence instructions are used to define the code

necessary to route packets to a PakBus® device. More information is available in
CRBasic Editor Help.

Modem-Hangup Sequences

Web-Page Sequences

The ModemHangup / EndModemHangup instructions are used to enclose code
that should be run when a COM port hangs up communication. More information
is available in CRBasic Editor Help.

The WebPageBegin / WebPageEnd instructions are used to declare a web page
that is displayed when a request for the defined HTML page comes from an
external source. More information is available in CRBasic Editor Help.

7.8.4.11 Execution and Task Priority

Execution of program instructions is divided among the following three tasks:

e Measurement task — rigidly timed measurement of sensors connected
directly to the CR800

e CDM task — rigidly timed measurement and control of CDM p. 483)
peripheral devices

e SDM task — rigidly timed measurement and control of SDM . 5009) peripheral
devices

e Processing task — converts measurements to numbers represented by
engineering units, performs calculations, stores data, makes decisions to
actuate controls, and performs serial I/O communication.

Instructions or commands that are handled by each task are listed in table
Program Tasks (p. 150).

These tasks are executed in either pipeline or sequential mode. When in pipeline
mode, tasks run more or less in parallel. When in sequential mode, tasks run
more or less in sequence. When a program is compiled, the CR800 evaluates the

149

Section 7. Installation

7.8.4.11.1

150

program and automatically determines which mode to use. Using the
PipelineMode or SequentialMode instruction at the beginning of the program
will force the program into one mode or the other. Mode information is included
in a message returned by the datalogger, which is displayed by the datalogger
support software (p. 631. The CRBasic Editor pre-compiler returns a similar
message.

Note A program can be forced to run in sequential or pipeline mode by placing
the SequentialMode or PipelineMode instruction in the declarations section of
the program.

Some tasks in a program may have higher priorities than others. Measurement
tasks generally take precedence over all others. Task priorities are different for
pipeline mode and sequential mode.

Table 17. Program Tasks

Measurement Task Digital Task Processing Task
® Analog ® SDM instructions, ® Processing
measurements except SDMSI04()
and SDM1016() ® Output

® Excitation
® CDM instructions / ® Serial I/O
® Read pulse counters CPI devices.
e SDMSIO4()
® Read control ports

(GetPort()) e SDMIO16()
® Set control ports e ReadlO()
(SetPort())

® WriteIO()
® VibratingWire()
® Expression evaluation and

® PeriodAvg() variable setting in measurement
and SDM instructions

e (CS616()

(] Calibrate()

Pipeline Mode

Pipeline mode handles measurement, most digital, and processing tasks
separately, and possibly simultaneously. Measurements are scheduled to execute
at exact times and with the highest priority, resulting in more precise timing of
measurement, and usually more efficient processing and power consumption.

Pipeline scheduling requires that the program be written such that measurements
are executed every scan. Because multiple tasks are taking place at the same time,
the sequence in which the instructions are executed may not be in the order in
which they appear in the program. Therefore, conditional measurements are not
allowed in pipeline mode. Because of the precise execution of measurement
instructions, processing in the current scan (including update of public variables
and data storage) is delayed until all measurements are complete. Some
processing, such as transferring variables to control instructions, like PortSet()
and ExciteV(), may not be completed until the next scan.

Section 7. Installation

When a condition is true for a task to start, it is put in a queue. Because all tasks
are given the same priority, the task is put at the back of the queue. Every 10 ms
(or faster if a new task is triggered) the task currently running is paused and put at
the back of the queue, and the next task in the queue begins running. In this way,
all tasks are given equal processing time by the CR800.

All tasks are given the same general priority. However, when a conflict arises
between tasks, program execution adheres to the priority schedule in table
Pipeline Mode Task Priorities (p. 151).

Table 18. Pipeline Mode Task Priorities

1. Measurements in main program
2. Background calibration

3. Measurements in slow sequences

4. Processing tasks

7.8.4.11.2 Sequential Mode

Sequential mode executes instructions in the sequence in which they are written in
the program. Sequential mode may be slower than pipeline mode since it executes
only one line of code at a time. After a measurement is made, the result is
converted to a value determined by processing arguments that are included in the
measurement command, and then program execution proceeds to the next
instruction. This line-by-line execution allows writing conditional measurements
into the program.

Note The exact time at which measurements are made in sequential mode may
vary if other measurements or processing are made conditionally, if there is heavy
communication activity, or if other interrupts, such as accessing a Campbell
Scientific mass storage device , occur.

When running in sequential mode, the datalogger uses a queuing system for
processing tasks similar to the one used in pipeline mode. The main difference
when running a program in sequential mode is that there is no pre-scheduling of
measurements; instead, all instructions are executed in the programmed order.

A priority scheme is used to avoid conflicting use of measurement hardware. The
main scan has the highest priority and prevents other sequences from using
measurement hardware until the main scan, including processing, is complete.
Other tasks, such as processing from other sequences and communications, can
occur while the main sequence is running. Once the main scan has finished, other
sequences have access to measurement hardware with the order of priority being
the background calibration sequence followed by the slow sequences in the order
they are declared in the program.

Note Measurement tasks have priority over other tasks such as processing and
communication to allow accurate timing needed within most measurement
instructions.

Care must be taken when initializing variables when multiple sequences are used
in a program. If any sequence relies on something (variable, port, etc.) that is
initialized in another sequence, there must be a handshaking scheme placed in the
CRBasic program to make sure that the initializing sequence has completed

151

Section 7. Installation

before the dependent task can proceed. This can be done with a simple variable or
even a delay, but understand that the CR1000 operating system will not do this
handshaking between independent tasks.

A similar concern is the reuse of the same variable in multiple tasks. Without
some sort of messaging between the two tasks placed into the CRBasic program,
unpredictable results are likely to occur. The SemaphoreGet() and
SemaphoreRelease() instruction pair provide a tool to prevent unwanted access
of an object (variable, COM port, etc.) by another task while the object is in use.
Consult CRBasic Editor Help for information on using SemaphoreGet() and
SemaphoreRelease().

7.8.4.12 Execution Timing

152

Timing of program execution is regulated by timing instructions listed in the
following table.

Table 19. Program Timing Instructions
Instructions General Guidelines Syntax Form
BeginProg
Scan()
Scan() / NextScan Use in most programs. Begins ,
/ ends the main scan. ,
NextScan
EndProg
BeginProg
Scan()
Use when measurements or NextScan
SlowSequence / processing must run at slower STowSequence
EndSequence frequencies than that of the Scan()
main program. '
NextScan
EndSequence
EndProg
BeginProg
Scan()
Use when measurements or "
processing must run at faster SubScan()
SubScan / NextSubScan frequencies than that of the !
main program. '
NextSubScan
NextScan
EndProg

Section 7. Installation

7.8.4.12.1 Scan() / NextScan

Simple CR800 programs are often built entirely within a single Scan() /
NextScan structure, with only variable and data-table declarations outside the
scan. Scan() / NextScan creates an infinite loop; each periodic pass through the
loop is synchronized to the CR800 clock. Scan() parameters allow modification
of the period in 10 ms increments up to 24 hours. As shown in CRBasic example
BeginProg / Scan() / NextScan / EndProg Syntax (p. 153), the CRBasic program
may be relatively short.

CRBasic Example 14. BeginProg / Scan() / NextScan / EndProg Syntax

'"This program example demonstrates the use of BeginProg/EndProg and Scan()/NextScan syntax.
PubTic PanelTemp_
DataTable(PanelTempData, True,-1)

DataInterval(0,1,Min,10)
Sample(1,PanelTemp_, FP2)

EndTable
BeginProg ' <<<<<<<BeginProg
Scan(1,Sec,3,0) ' <<<<<<< Scan

PanelTemp(PanelTemp_,250)
CallTable PanelTempData
NextScan ' <<<<<<< NextScan
EndProg ' <<<<<<<EndProg

Scan() determines how frequently instructions in the program are executed, as
shown in the following CRBasic code snip:

'Scan(Interval, Units, BufferSize, Count)
Scan(1,Sec,3,0)

"CRBasic instructions go here
ExitScan

Scan() has four parameters:

e Interval — the interval between scans. Interval is 10 ms < Interval <1 day.

e Units — the time unit for the interval.

e BufferSize — the size (number of scans) of a buffer in RAM that holds the
raw results of measurements. When running in pipeline mode, using a buffer
allows the processing in the scan to lag behind measurements at times
without affecting measurement timing. Use of the CRBasic Editor default
size is normal. Refer to section SkippedScan (p. 463 for troubleshooting tips.

e Count — number of scans to make before proceeding to the instruction
following NextScan. A count of § means to continue looping forever (or until
ExitScan). In the example in CRBasic example Scan Syntax, the scan is one
second, three scans are buffered, and measurements and data storage continue
indefinitely.

7.8.4.12.2 SlowSequence / EndSequence

Slow sequences include automatic and user entered sequences. Background
calibration is an automatic slow sequence. A

153

Section 7. Installation

154

7.8.4.12.3

7.8.4.12.4

Main Scans

User-entered slow sequences are declared with the SlowSequence instruction and
run outside the main-program scan. Slow sequences typically run at a slower rate
than the main scan. Up to four slow-sequence scans can be defined in a program.

Instructions in a slow-sequence scan are executed when the main scan is not
active. When running in pipeline mode, slow-sequence measurements are spliced
in after measurements in the main program, as time allows. Because of this
splicing, measurements in a slow sequence may span across multiple-scan
intervals in the main program. When no measurements need to be spliced, the
slow-sequence scan will run independent of the main scan, so slow sequences
with no measurements can run at intervals < main-scan interval (still in 10 ms
increments) without skipping scans. When measurements are spliced, checking
for skipped slow scans is done after the first splice is complete rather than
immediately after the interval comes true.

In sequential mode, all instructions in slow sequences are executed as they occur
in the program according to task priority.

Background calibration is an automatic, slow-sequence scan, as is the watchdog
task.

Read More See the section CR800 Auto Calibration — Overview (p. 91).

SubScan() / NextSubScan

SubScan() / NextSubScan are used in the control of analog multiplexers (see the
appendix Analog Multiplexers (p. 622) for information on available analog
multiplexers) or to measure analog inputs at a faster rate than the program scan.
SubScan() / NextSubScan can be used in a SlowSequenc / EndSequence with
an interval of 0. SubScan cannot be nested. PulseCount or SDM measurement
cannot be used within a sub scan.

Scan Priorities in Sequential Mode

Note Measurement tasks have priority over other tasks such as processing and
communication to allow accurate timing needed within most measurement
instructions.

A priority scheme is used in sequential mode to avoid conflicting use of
measurement hardware. As illustrated in figure Sequential-Mode Scan Priority
Flow Diagrams (p. 156), the main scan sequence has the highest priority. Other
sequences, such as slow sequences and calibration scans, must wait to access
measurement hardware until the main scan, including measurements and
processing, is complete.

Execution of the main scan usually occurs quickly, so the processor may be idle
much of the time. For example, a weather-measurement program may scan once
per second, but program execution may only occupy 250 ms, leaving 75% of
available scan time unused. The CR800 can make efficient use of this interstitial-
scan time to optimize program execution and communication control. Unless
disabled, or crowded out by a too demanding schedule, self-calibration (see
CR800 Auto Calibration — Overview (p. 91)) has priority and uses some interstitial

Section 7. Installation

scan time. If self-calibration is crowded out, a warning message is issued by the
CRBasic pre-compiler. Remaining priorities include slow-sequence scans in the
order they are programmed and digital triggers. Following is a brief introduction
to the rules and priorities that govern use of interstitial-scan time in sequential
mode. Rules and priorities governing pipeline mode are somewhat more complex
and are not expanded upon.

Permission to proceed with a measurement is granted by the measurement
semaphore (p. 501). Main scans with measurements have priority to acquire the
semaphore before measurements in a calibration or slow-sequence scan. The
semaphore is taken by the main scan at its beginning if there are measurements
included in the scan. The semaphore is released only after the last instruction in
the main scan is executed.

Slow-Sequence Scans

WaitDigTrig Scans

Slow-sequence scans begin after a SlowSequence instruction. They start
processing tasks prior to a measurement but stop to wait when a measurement
semaphore is needed. Slow sequences release the semaphore (p. 501) after complete
execution of each measurement instruction to allow the main scan to acquire the
semaphore when it needs to start. If the measurement semaphore is set by a slow-
sequence scan and the beginning of a main scan gets to the top of the queue, the
main scan will not start until it can acquire the semaphore; it waits for the slow
sequence to release the semaphore. A slow-sequence scan does not hold the
semaphore for the whole of its scan. It releases the semaphore after each use of
the hardware.

Read More See Synchronizing Measurements (p. 346).

Main scans and slow sequences usually trigger at intervals defined by the Scan()
instruction. Some applications, however, require the main- or slow-sequence scan
to be started by an external digital trigger such as a 5 Vdc pulse on a control port.
The WaitDigTrig() instruction activates a program when an external trigger is
detected. WaitDigTrig() gives priority to begin a scan, but the scan will execute
and acquire the semaphore (. 501) according to the rules stated in Main Scans . 154
and Slow-Sequence Scans (p. 155. Any processing will be time sliced with
processing from other sequences. Every time the program encounters
WaitDigTrig(), it will stop and wait to be triggered.

Note WaitDigTrig() can be used to program a CR800 to control another CR800.

155

Section 7. Installation

Main Scan

[WaitDigTrig Present?’

Yes

> { Start Time?]
[Yes [No

A]

Digital Trigger?

N
]—°>[Wait for Trigger]J

[Wait For Start Time]

Yes

Yy v

Measurement to be
made?

L

Yes

Does another sequence
(Cal or Slow) have
Semaphore?

Yes

Wait for Other Sequence
to finish Current
Measurement

Aquire Semaphore

|

Start Scan

|

Time Slice Processing (if
any) with any Queued
Slow Sequence or Cal
Sequence Prc)cessingZ

Make Measurement

ey

Start Scan]

¥

Time Slice Processing (if
any) with any Queued
Slow Sequence or Cal
Sequence Processing2

Finish Scan / Release
Semaphore if Held

1- Program with WaitDigTrig() immediately after Scan()

2- Processing (if any) time sliced with slow sequence processing only if no measurements in main scan

Slow Sequence

Figure 42. Sequential-Mode Scan Periority Flow Diagrams

—

—>[WaitDigTrig Present?’ }No
Yes

Start Time?]

|Yes No

) A]

[Digital Trigger?

]N—OP[Wait for Trigger]J

Yes

Y
| Start Scan

A

| Time Slice Processing (if
any)’ with Main Scan
Processing

\

Measurement tobe | No_

I Wait For Start Time l

\

made?

Yes
\

\

Time Slice Processing (if
any)® with Main Scan
Processing

Does Main or Call Scan

want / have Semaphore?

Yes

Wait for other scan to
finish

Aquire Semaphore

|

Complete Current
Measurement

|

Release Semaphore

3- Processing time sliced with main scan processing if no measurements in main scan, otherwise time sliced with whole main scans

7.8.4.13 Programming Instructions

7.8.4.13.1

156

Measurement and Data-Storage Processing

PanelTemp(Dest,Integ)

In addition to BASIC syntax, additional instructions are included in CRBasic to
facilitate measurements and store data. The section CRBasic Programming
Instructions (p. 511) contains a comprehensive list of these instructions.

CRBasic instructions have been created for making measurements and storing
data. Measurement instructions set up CR800 hardware to make measurements
and store results in variables. Data-storage instructions process measurements into
averages, maxima, minima, standard deviation, FFT, etc.

Each instruction is a keyword followed by a series of informational parameters
needed to complete the procedure. For example, the instruction for measuring
CR800 panel temperature is:

Section 7. Installation

PanelTemp is the keyword. Two parameters follow: Dest, a destination variable
name in which the temperature value is stored; and Integ, a length of time to
integrate the measurement. To place the panel temperature measurement in the
variable RefTemp, using a 250 ps integration time, the syntax is as shown in
CRBasic example Measurement Instruction Syntax (p. 157).

CRBasic Example 15. Measurement Instruction Syntax

'"This program example demonstrates the use of a single measurement instruction. In this
'case, the program measures the temperature of the CR800 wiring panel.

Public RefTemp 'Declare variable to receive instruction

BeginProg
Scan(1,Sec,3,0)
PanelTemp(RefTemp, 250) '<<<<<<Instruction to make measurement
NextScan
EndProg

7.8.4.13.2 Argument Types

Most CRBasic commands or instructions, have sub-commands or parameters.
Parameters are populated by the programmer with arguments. Many instructions
have parameters that allow different types of arguments. Common argument types
are listed below. Allowed argument types are specifically identified in the
description of each instruction in CRBasic Editor Help.

Constant, or Expression that evaluates as a constant
Variable

Variable or Array

Constant, Variable, or Expression

Constant, Variable, Array, or Expression

Name

Name or list of Names

Variable, or Expression

Variable, Array, or Expression

7.8.4.13.3 Names in Arguments

Table Rules for Names (p. 157) lists the maximum length and allowed characters for
the names for variables, arrays, constants, etc. The CRBasic Editor pre-compiler
will identify names that are too long or improperly formatted.

Caution Concerning characters allowed in names, characters not listed in in the
table, Rules for Names, may appear to be supported in a specific operating system.
However, they may not be supported in future operating systems.

157

Section 7. Installation

Table 20. Rules for Names

Maximum Length
Name (number of
Category1 characters) Allowed characters
Variable or array 39
Constant 38
Unit 13 Letters A to Z, ato z, _ (underscore), and
s numbers 0 to 9. Names must start with a letter
Alias 39 or underscore. CRBasic is not case sensitive.
- Units are excepted from the above rules. Since
Station name 64 units are strings that ride along with the data,
Data-table name 20 they are not squ ectefi to the stringent syntax
checking that is applied to variables, constants,
Field name 39 subroutines, tables, and other names.
Fleld-.na‘me 64
description

1

Variables, constants, units, aliases, station names, field names, data table names, and file names
can share identical names; that is, once a name is used, it is reserved only in that category. See
the section Predefined Constants (p. 136) for another naming limitation.

7.8.4.14 Expressions in Arguments

Read More See Programming Express Types (p. 158 for more information on
expressions.

Many CRBasic instruction parameters allow the entry of arguments as
expressions. If an expression is a comparison, it will return -1 if true and 0 if false.
(See the section Logical Expressions (p. 162)). The following code snip shows the
use of an expressions as an argument in the TrigVar parameter of the
DataTable() instruction:

'DataTable (Name, TrigVar, Size)
DataTable(Temp, TC > 100, 5000)

When the trigger is TC > 100, a thermocouple temperature greater than 100 sets
the trigger to True and data are stored.

7.8.4.15 Programming Expression Types

158

An expression is a series of words, operators, or numbers that produce a value or
result. Expressions are evaluated from left to right, with deference to precedence
rules. The result of each stage of the evaluation is of type Long (integer, 32 bits) if
the variables are of type Long (constants are integers) and the functions give
integer results, such as occurs with INTDV(). If part of the equation has a
floating point variable or constant (24 bits), or a function that results in a floating
point, the rest of the expression is evaluated using floating-point, 24-bit math,
even if the final function is to convert the result to an integer, so precision can be
lost; for example, INT((rtYear-1993)*.25). This is a critical feature to consider
when, 1) trying to use integer math to retain numerical resolution beyond the limit
of floating point variables, or 2) if the result is to be tested for equivalence against
another value. See section Floating-Point Arithmetic (p. 159) for limits.

Two types of expressions, mathematical and programming, are used in CRBasic.
A useful property of expressions in CRBasic is that they are equivalent to and

Section 7. Installation

often interchangeable with their results.

Consider the expressions:

Xx = (z * 1.8) + 32 "(mathematical expression)
If x = 23 theny =5 '(programming expression)

The variable x can be omitted and the expressions combined and written as:
If (z * 1.8 + 32 = 23) theny =5

Replacing the result with the expression should be done judiciously and with the
realization that doing so may make program code more difficult to decipher.

7.8.4.15.1 Floating-Point Arithmetic

Variables and calculations are performed internally in single-precision IEEE four-
byte floating point with some operations calculated in double precision.

Note Single-precision float has 24 bits of mantissa. Double precision has a 32-bit
extension of the mantissa, resulting in 56 bits of precision. Instructions that use
double precision are AddPrecise(), Average(), AvgRun(), AvgSpa(), CovSpa(),
MovePrecise(), RMSSpa(), StdDev(), StdDevSpa(), Totalize(), and TotRun().

Floating-point arithmetic is common in many electronic, computational systems,
but it has pitfalls high-level programmers should be aware of. Several sources
discuss floating-point arithmetic thoroughly. One readily available source is the
topic Floating Point at www.wikipedia.org. In summary, CR800 programmers
should consider at least the following:

e Floating-point numbers do not perfectly mimic real numbers.

e Floating-point arithmetic does not perfectly mimic true arithmetic.

e Avoid use of equality in conditional statements. Use >= and <= instead. For
example, use If X >=Y then do rather than If X =Y then do.

e When programming extended-cyclical summation of non-integers, use the
AddPrecise() instruction. Otherwise, as the size of the sum increases,
fractional addends will have an ever decreasing effect on the magnitude of
the sum, because normal floating-point numbers are limited to about 7 digits
of resolution.

7.8.4.15.2 Mathematical Operations

Mathematical operations are written out much as they are algebraically. For
example, to convert Celsius temperature to Fahrenheit, the syntax is:

TempF = TempC * 1.8 + 32

Read More Code space can be conserved while filling an array or partial array
with the same value. See an example of how this is done in the CRBasic example
Use of Move() to Conserve Code Space. CRBasic example Use of Variable
Arrays to Conserve Code Space (p. 160) shows example code to convert twenty
temperatures in a variable array from °C to °F.

159

Section 7. Installation

CRBasic Example 16. Use of Move() to Conserve Code Space

Move (counter(1),6,0,1) 'Reset six counters to zero. Keep array
"filled with the ten most current readings
Move (TempC(2),9,TempC(1),9) 'Shift previous nine readings to make room

"for new measurement

'"New measurement:
TCDiff(TempC(1),1,mv2_5C,8,TypeT,PTemp,True,0,_60Hz,1.0,0)

CRBasic Example 17. Use of Variable Arrays to Conserve Code Space

For I =1 to 20
TCTemp(I) = TCTemp(I) * 1.8 + 32
Next I

7.8.4.15.3 Expressions with Numeric Data Types

FLOATS, LONGs and Booleans are cross-converted to other data types, such as
FP2, by using '=".

Boolean from FLOAT or LONG

When a FLOAT or LONG is converted to a Boolean as shown in CRBasic
example Conversion of FLOAT / LONG to Boolean (p. 160), zero becomes false (0)
and non-zero becomes true (-1).

CRBasic Example 18. Conversion of FLOAT / LONG to Boolean

'"This program example demonstrates conversion of Float and Long data types to Boolean
"data type.

PubTic Fa As Float
PubTic Fb As Float
Public L As Long
PubTic Ba As Boolean
PubTic Bb As Boolean
PubTic Bc As Boolean

BeginProg
Fa =0
Fb = 0.125
L = 126
Ba = Fa '"This will set Ba = False (0)
Bb = Fb '"This will Set Bb = True (-1)
Bc = L '"This will Set Bc = True (-1)
EndProg

FLOAT from LONG or Boolean

When a LONG or Boolean is converted to FLOAT, the integer value is loaded
into the FLOAT. Booleans are converted to -1 or 0. LONG integers greater than
24 bits (16,777,215; the size of the mantissa for a FLOAT) will lose resolution
when converted to FLOAT.

160

Section 7. Installation

LONG from FLOAT or Boolean

When converted to Long, Boolean is converted to -1 or 0. When a FLOAT is
converted to a LONG, it is truncated. This conversion is the same as the INT
function (Arithmetic Functions (p. 542)). The conversion is to an integer equal to or
less than the value of the float; for example, 4.6 becomes 4 and —4.6 becomes —5).

If a FLOAT is greater than the largest allowable LONG (+2,147,483,647), the
integer is set to the maximum. If a FLOAT is less than the smallest allowable
LONG (-2,147,483,648), the integer is set to the minimum.

Integers in Expressions

LONGsS are evaluated in expressions as integers when possible. CRBasic example
Evaluation of Integers (p. 161 illustrates evaluation of integers as LONGs and
FLOATS.

CRBasic Example 19. Evaluation of Integers

'"This program example demonstrates the evaluation of integers.

Public I As Long
Public X As Float

BeginProg
I =126
X = (I+3) * 3.4
'I+3 is evaluated as an integer, then converted to Float data type before it is
'multiplied by 3.4.
EndProg

Constants Conversion

Constants are not declared with a data type, so the CR800 assigns the data type as
needed. If a constant (either entered as a number or declared with CONST) can be
expressed correctly as an integer, the compiler will use the type that is most
efficient in each expression. The integer version is used if possible, for example, if
the expression has not yet encountered a FLOAT. CRBasic example Constants to
LONGsS or FLOATS: (p. 161) lists a programming case wherein a value normally
considered an integer (10) is assigned by the CR800 to be As FLOAT.

CRBasic Example 20. Constants to LONGs or FLOATs

'"This program example demonstrates conversion of constants to Long or Float data types.

Public L As Long
Public F1 As Float
Public F2 As Float
Const ID = 10

BeginProg
F1 = F2 + ID
L=1ID*5
EndProg

In CRBasic example Constants to LONGs or FLOATSs . 161), 1 is an integer. Al
and A2 are FLOATS. The number 5 is loaded As FLOAT to add efficiently with
constant ID, which was compiled As FLOAT for the previous expression to avoid

161

Section 7. Installation

162

an inefficient runtime conversion from LONG to FLOAT before each floating
point addition.

7.8.4.15.4 Logical Expressions

True = -1, False =0

Measurements can indicate absence or presence of an event. For example, an RH
measurement of 100% indicates a condensation event such as fog, rain, or dew.
The CR800 can render the state of the event into binary form for further
processing, so the event is either occurring (true), or the event has not occurred
(false).

In all cases, the argument 0 is translated as FALSE in logical expressions; by
extension, any non-zero number is considered "non-FALSE." However, the
argument TRUE is predefined in the CR800 operating system to only equal -1, so
only the argument -1 is always translated as TRUE. Consider the expression

If Condition(1l) = TRUE Then...

This condition is true only when Condition(1) = -1. If Condition(1) is any other
non-zero, the condition will not be found true because the constant TRUE is
predefined as -1 in the CR800 system memory. By entering = TRUE, a literal
comparison is done. So, to be absolutely certain a function is true, it must be set
to TRUE or -1.

Note TRUE is -1 so that every bit is set high (-1 is &B11111111 for all four
bytes). This allows the AND operation to work correctly. The AND operation
does an AND boolean function on every bit, so TRUE AND X will be non-zero if
at least one of the bits in X is non-zero (if X is not zero). When a variable of data
type BOOLEAN is assigned any non-zero number, the CR800 internally converts
it to -1.

The CR800 is able to translate the conditions listed in table Binary Conditions of
TRUE and FALSE . 162 to binary form (-1 or 0), using the listed instructions and
saving the binary form in the memory location indicated. Table Logical
Expression Examples (p. 163) explains some logical expressions.

Non-Zero = True (Sometimes)

Any argument other than 0 or -1 will be translated as TRUE in some cases and
FALSE in other cases. While using only -1 as the numerical representation of
TRUE is safe, it may not always be the best programming technique. Consider
the expression

If Condition(1l) then...

Since = True is omitted from the expression, Condition(1) is considered true if it
equals any non-zero value.

Section 7. Installation

Table 21. Binary Conditions of TRUE and FALSE
CRBasic Instruction(s) Memory Location of Binary
Condition Used Result
Time TimelIntoInterval() Variable, System
IfTime() Variable, System
TimelsBetween() Variable, System
Control Port Trigger WaitDigTrig() System
Communications VoiceBeg() System
ComPortIsActive() Variable
PPPClose() Variable
Measurement Event DataEvent() System

Using TRUE or FALSE conditions with logic operators such as AND and OR,
logical expressions can be encoded to perform one of the following three general
logic functions. Doing so facilitates conditional processing and control
applications:

1. Evaluate an expression, take one path or action if the expression is true (= —1),
and / or another path or action if the expression is false (= 0).

2. Evaluate multiple expressions linked with AND or OR.
3. Evaluate multiple AND or OR links.

The following commands and logical operators are used to construct logical
expressions. CRBasic example Logical Expression Examples (p. 163) demonstrate
some logical expressions.

IF
AND
OR
NOT
XOR
IMP
IIF

Table 22. Logical Expression Examples

If X >= 5 thenY =0

Sets the variable Y to 0 if the expression "X >= 5" is true, i.e. if X is greater than or equal to 5. The CR800 evaluates the
expression (X >= 5) and registers in system memory a -1 if the expression is true, or a 0 if the expression is false.

If X>>50RZ=2thenY =0
Sets Y = 0 if either X >= 5 or Z = 2 is true.

If X>=5AND Z =2 thenY =0
Sets Y = 0 only if both X >= 5 and Z =2 are true.

If 6 then Y = 0.

If 6 is true since 6 (a non-zero number) is returned, so Y is set to 0 every time the statement is executed.

If 0 then Y = 0.
If 0 is false since 0 is returned, so Y will never be set to 0 by this statement.

Z=X>Y).
Zequals -1if X>Y, or Z will equal 0 if X <=Y.

163

Section 7. Installation

Table 22. Logical Expression Examples

Example Program

"BOOLEAN, it becomes TRUE.
PubTic a As LONG
PubTic b As LONG
PubTlic is_true As Boolean

BeginProg
a =26
b =a

Scan (1,Sec,0,0)
is_true = a AND b

NextScan
EndProg

PubTic not_is_true As Boolean
PubTic not_a_and_b As Boolean

not_is_true = NOT (is_true)
not_a_and_b = NOT (a AND b)

The NOT operator complements every bit in the word. A Boolean can be FALSE (0 or all bits set to 0) or TRUE (-1 or all bits set to 1).
“Complementing” a Boolean turns TRUE to FALSE (all bits complemented to 0).

"(a AND b) = (26 AND 26) = (&b11010 AND &b11010) =
'&b11010. NOT (&b11010) yields &b00101.

'This is non-zero, so when converted to a

'This evaluates to TRUE.
'This evaluates to FALSE.
'This evaluates to TRUE!

7.8.4.15.5 String Expressions

CRBasic facilitates concatenation of string variables to variables of all data types
using & and + operators. To ensure consistent results, use & when concatenating
strings. Use + when concatenating strings to other variable types. CRBasic
example String and Variable Concatenation (p. 164 demonstrates CRBasic code for
concatenating strings and integers. See section String Operations (p. 275) in the
Programming Resource Library (. 167) for more information on string
programming.

CRBasic Example 21. String and Variable Concatenation

r

'Declare Variables
Dim PhraseNum(2) As Long
Dim Word(15) As String * 10

'Declare Data Table
DataTable(HAL,1,-1)
DataInterval(0,15,Sec,10)

Sample(2,Phrase,String)
EndTable

164

Public Phrase(2) As String * 80

'"Write phrases to data table "Test

'"This program example demonstrates the concatenation of variables declared As String to
'other strings and to variables declared as other data types.

"

Section 7. Installation

"Program
BeginProg
Scan(1,Sec,0,0)

'Assign strings to String variables
Word(1) = "Good"
Word(2) = "morning"
Word(3) = "Dave"
Word(4) = "I'm"
Word(5) = "sorry"
Word(6) = "afraid"
Word(7) = "I"
Word(8) = "can't"
Word(9) = "do"
Word(10) = "that"
Word(11) "
Word(12) "
Word(13) "
Word(14) "o
Word(15) = Chr(34)

'Assign integers to Long variables
PhraseNum(1) =1
PhraseNum(2) 2

'Concatenate string "1. Good morning, Dave"
Phrase(1l) = PhraseNum(1)+Word(14)+Word(11)&Word(15)&Word(1)&Word(11)&Word(2)& _
Word(12)&Word(11)&Word(3)&Word(14)&Word(15)

"Concatenate string "2. I'm afraid I can't do that, Dave."

Phrase(2) = PhraseNum(2)+Word(14)&Word(11)&Word(15)&Word(4)&Word(11)&Word(6)&Word(11)& _
Word(7)&Word(11)&Word(8)&Word(11)&Word(9)&Word(11)&Word(10)&Word(12)& _
Word(11)&Word(3)&Word(14)&Word(15)

CallTable HAL

NextScan
EndProg

7.8.4.16 Programming Access to Data Tables

A data table is a memory location where data records are stored. Sometimes, the
stored data needs to be used in the CRBasic program. For example, a program
can be written to retrieve the average temperature of the last five days for further
processing. CRBasic has syntax provisions facilitating access to these table data,
or to meta data relating to the data table. Except when using the GetRecord()
instruction (Data Table Access and Management (. 565)), the syntax is entered
directly into the CRBasic program through a variable name. The general form is:

TableName.FieldName_Prc(Fieldname Index, Records Back)

Where:

e TableName is the name of the data table.

o FieldName is the name of the variable from which the processed value is
derived.

e Prc is the abbreviation of the name of the data process used. See table Data
Process Abbreviations . 166) for a complete list of these abbreviations. This is
not needed for values from Status or Public tables.

165

Section 7. Installation

166

¢ Fieldname Index is the array element number in fields that are arrays
(optional).

e Records Back is how far back into the table to go to get the value (optional).
If left blank, the most recent record is acquired.

Table 23. Data Process Abbreviations
Abbreviation Process Name
Tot Totalize
Avg Average
Max Maximum
Min Minimum
SMM Sample at Max or Min
Std Standard Deviation
MMT Moment
No abbreviation Sample
Hst Histogram !
H4D Histogram4D
FFT FFT
Cov Covariance
RFH Rainflow Histogram
LCr Level Crossing
WVe WindVector
Med Median
ETsz ET
RSo Solar Radiation (from ET)
TMx Time of Max
TMn Time of Min
let is reported in the form Hst,20,1.0000e+00,0.0000e+00,1.0000e+01 where Hst denotes a
histogram, 20 = 20 bins, 1 = weighting factor, 0 = lower bound, 10 = upper bound.

For example, to access the number of watchdog errors, use the statement
wderr = status.watchdogerrors

where wderr is a declared variable, status is the table name, and watchdogerrors
is the keyword for the watchdog error field.

Seven special variable names are used to access information about a table.

EventCount
EventEnd
Output
Record
TableFull
TableSize
TimeStamp

Section 7. Installation

Consult CRBasic Editor Help index topic DataTable access for complete
information.

The DataTableInformation table also include this information. See Status,
Settings, and Data Table Information (Status/Settings/DTI) (p. 577).

7.8.4.17 Programming to Use Signatures

Signatures help assure system integrity and security. The following resources
provide information on using signatures.

« Signature() instruction in Diagnostics (p. 524)

« RunSignature entry in table Signature Status/Settings/DTI (p. 577)
« ProgSignature entry in table Signature Status/Settings/DTI . 577)
« OSSignature entry in table Signature Status/Settings/DTI (p. 577)

o Security (p. 90)

Many signatures are recorded in the Status table, which is a type of data table.
Signatures recorded in the Status table can be copied to a variable using the

programming technique described in the Programming Access to Data Tables (p.

165). Once in variable form, signatures can be sampled as part of another data
table for archiving.

7.9 Programming Resource Library

This library of notes and CRBasic code addresses a narrow selection of CR800
applications. Consult a Campbell Scientific application engineer if other
resources are needed.

7.9.1 Advanced Programming Techniques
7.9.1.1 Capturing Events

CRBasic example Capturing Events (p. 167) demonstrates programming to output
data to a data table at the occurrence of an event.

CRBasic Example 22. BeginProg / Scan / NextScan / EndProg Syntax

'"This program example demonstrates detection and recording of an event. An event has a
'beginning and an end. This program records an event as occurring at the end of the event.
'The event recorded is the transition of a delta temperature above 3 degrees. The event 1is
"recorded when the delta temperature drops back below 3 degrees.

'The DataEvent instruction forces a record in data table Event each time an
"event ends. Number of events is written to the reserved variable
'"EventCount(1,1). In this program, EventCount(1,1) is recorded in the
'"OneMinute Table.

'"Note : the DataEvent instruction must be used within a data table with a
'more frequent record interval than the expected frequency of the event.

'Declare Variables
PubTic PTemp_C, AirTemp_C, DeltaT_C
Public EventCounter

167

Section 7. Installation

'Declare Event Driven Data Table

DataTable(Event,True,1000)
DataEvent(0,DeltaT_C>=3,DeltaT_C<3,0)
Sample(1,PTemp_C, FP2)
Sample(1,AirTemp_C, FP2)
Sample(1,DeltaT_C, FP2)

EndTable

'Declare Time Driven Data Table
DataTable(OneMin,True,-1)
DataInterval(0,1,Min,10)
Sample(1,EventCounter, FP2)
EndTable

BeginProg
Scan(1,Sec,1,0)

'"Wiring Panel Temperature
PanelTemp(PTemp_C,_60Hz)

'"Type T Thermocouple measurements:
TCDiff(AirTemp_C,1,mvV2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1,0)

"Calculate the difference between air and panel temps
DeltaT_C = AirTemp_C - PTemp_C

'"Update Event Counter (uses special syntax Event.EventCount(1,1))
EventCounter = Event.EventCount(l,1)

"Call data table(s)
CallTable(Event)
CallTable(OneMin)

NextScan
EndProg

7.9.1.2 Conditional Output

CRBasic example Conditional Output @p. 168) demonstrates programming to output
data to a data table conditional on a trigger other than time.

CRBasic Example 23. Conditional Output

'"This program example demonstrates the conditional writing of data to a data table. It
'also demonstrates use of StationName() and Units instructions.

'Declare Station Name (saved to Status table)
StationName(Delta_Temp_Station)

'Declare Variables
PubTic PTemp_C, AirTemp_C, DeltaT_C

168

Section 7. Installation

'Declare Units

Units PTemp_C = deg C
Units AirTemp_C = deg C
Units DeltaT_C = deg C

'Declare Output Table -- Output Conditional on Delta T >=3
'Table stores data at the Scan rate (once per second) when condition met
'because Datalnterval instruction is not included in table declaration.
DataTable(DeltaT,DeltaT_C >= 3,-1)

Sample(1l,Status.StationName,String)

Sample(1,DeltaT_C,FP2)

Sample(1,PTemp_C, FP2)

Sample(1,AirTemp_C,FP2)
EndTable

BeginProg
Scan(1,Sec,1,0)
'Measure wiring panel temperature
PanelTemp(PTemp_C,_60Hz)

'Measure type T thermocouple
TCDiff(AirTemp_C,1,mvV2_5C,1,TypeT,PTemp_C,True,0, _60Hz,1,0)

'"Calculate the difference between air and panel temps
DeltaT_C = AirTemp_C - PTemp_C

'Call data table(s)
CallTable(DeltaT)

NextScan
EndProg

7.9.1.3 Groundwater Pump Test
CRBasic example Groundwater Pump Test (p. 169 demonstrates:

How to write multiple-interval data to the same data table

Use of program-control instructions outside the Scan() / NextScan structure
One way to execute conditional code

Use of multiple sequential scans, each with a scan count

169

Section 7. Installation

CRBasic Example 24. Groundwater Pump Test

'"This program example demonstrates the use of multiple scans in a program by running a
"groundwater pump test. Note that Scan() time units of Sec have been changed to mSec for
"this demonstration to allow the program to run its course in a short time. To use this
'program for an actual pump test, change the Scan() instruction mSec arguments to Sec. You
'will also need to put a Tevel measurement in the Measurelevel subroutine.

'A groundwater pump test requires that water Tlevel be measured and recorded
'according to the following schedule:

'Minutes into Test Data-Output Interval
! 0-10 10 seconds
! 10-30 30 seconds
! 30-100 60 seconds
! 100-300 120 seconds
" 300-1000 300 seconds
! 1000+ 600 seconds

'Declare Variables

PubTic PTemp

PubTic Batt_Volt

Public Level

PubTic LevelMeasureCount As Long
Public ScanCounter(6) As Long

'Declare Data Table

DataTable(LogTable,1,-1)
Minimum(1l,Batt_Volt,FP2,0,False)
Sample(1,PTemp, FP2)
Sample(1,Level,FP2)

EndTable

'Declare Level Measurement Subroutine

Sub MeasurelLevel
LevelMeasureCount = LevelMeasureCount + 1 'Included to show passes through sub-routine

"Level measurement instructions goes here
EndSub

'"Main Program
BeginProg

'"Minute 0 to 10 of test: 10-second data-output interval
Scan(10,mSec,0,60) 'There are 60 10-second scans in 10 minutes
ScanCounter(1l) = ScanCounter(l) + 1 'Included to show passes through this scan
Battery(Batt_volt)
PanelTemp(PTemp,250)
Call Measurelevel

"Call Output Tables
CallTable LogTable
NextScan

170

Section 7. Installation

'Minute 10 to 30 of test: 30-second data-output interval
Scan(30,mSec,0,40) 'There are 40 30-second scans in 20 minutes
ScanCounter(2) = ScanCounter(2) + 1 'Included to show passes through this scan
Battery(Batt_volt)
PanelTemp(PTemp,250)
Call Measurelevel

"Call Output Tables
CallTable LogTable
NextScan

'"Minute 30 to 100 of test: 60-second data-output interval
Scan(60,mSec,0,70) 'There are 70 60-second scans in 70 minutes
ScanCounter(3) = ScanCounter(3) + 1 'Included to show passes through this scan
Battery(Batt_volt)
PanelTemp(PTemp,250)
Call Measurelevel

"Call Output Tables
CallTable LogTable
NextScan

'Minute 100 to 300 of test: 120-second data-output interval
Scan(120,mSec,0,200) 'There are 200 120-second scans in 10 minutes
ScanCounter(4) = ScanCounter(4) + 1 'Included to show passes through this scan
Battery(Batt_volt)
PanelTemp(PTemp,250)
Call Measurelevel

'Call Output Tables
CallTable LogTable
NextScan

'"Minute 300 to 1000 of test: 300-second data-output interval
Scan(300,mSec,0,140) 'There are 140 300-second scans in 700 minutes
ScanCounter(5) = ScanCounter(5) + 1 'Included to show passes through this scan
Battery(Batt_volt)
PanelTemp(PTemp,250)
Call Measurelevel

"Call Output Tables
CallTable LogTable
NextScan

'Minute 1000+ of test: 600-second data-output interval

Scan(600,mSec,0,0) 'At minute 1000, continue 600-second scans indefinitely
ScanCounter(6) = ScanCounter(6) + 1 'Included to show passes through this scan
Battery(Batt_volt)
PanelTemp(PTemp,250)
Call Measurelevel

"Call Output Tables
CallTable LogTable
NextScan

EndProg

171

Section 7. Installation

7.9.1.4 Miscellaneous Features

CRBasic example Miscellaneous Features (p. 172) demonstrates use of several
CRBasic features: data type, units, names, event counters, flags, data-output
intervals, and control.

CRBasic Example 25. Miscellaneous Program Features

'"This program example demonstrates the use of a single measurement instruction. In this
'case, the program measures the temperature of the CR800 wiring panel.

Public RefTemp 'Declare variable to receive instruction

BeginProg
Scan(1,Sec,3,0)
PanelTemp(RefTemp, 250) 'Instruction to make measurement
NextScan
EndProg

'"A program can be (and should be!) extensively documented. Any text preceded by an
'apostrophe is ignored by the CRBasic compiler.

'"One thermocouple is measured twice using the wiring panel temperature as the reference
"temperature. The first measurement is reported in Degrees C, the second in Degrees F.
'"The first measurement is then converted from Degree C to Degrees F on the subsequent
"lTine, the result being placed in another variable. The difference between the panel
'reference temperature and the first measurement is calculated, the difference is then
'used to control the status of a program control flag. Program control then
"transitions into device control as the status of the flag is used to determine the
'state of a control port that controls an LED (light emitting diode).

'"Battery voltage is measured and stored just because good programming practice dictates
"it be so.

"Two data storage tables are created. Table “OneMin” is an interval driven table that
'stores data every minute as determined by the CR1000 clock. Table “Event” is an event

"driven table that only stores data when certain conditions are met.

'Declare Public (viewable) Variables

PubTic Batt_Volt As FLOAT 'Declared as Float

PubTic PTemp_C '"Float by default

Public AirTemp_C '"Float by default

Public AirTemp_F '"Float by default

PubTic AirTemp2_F '"Float by default

Public DeltaT_C '"Float by default

PubT1ic HowMany '"Float by default

PubTic Counter As Long 'Declared as Long so counter does not have
"rounding error

PubTic SiteName As String * 16 'Declared as String with 16 chars for a

'site name (optional)

'Declare program control flags & terms. Set the words “High” and “Low” to equal “TRUE”
"and "FALSE” respectively

Public Flag(l) As Boolean

Const High = True

Const Low = False

172

Section 7. Installation

'"Optional - Declare a Station Name into a location in the Status table.

StationName (CR1000_on_desk)

'"Optional -- Declare units. Units are not used in programming, but only appear in the

'data file header.
Units Batt_Volt = Volts
Units PTemp = deg C
Units AirTemp = deg C
Units AirTempF2 = deg F
Units DeltaT_C = deg C

'Declare an interval driven output table

DataTable(OneMin,True,-1)
DataInterval(0,1,Min,0)
Average(1l,AirTemp_C,IEEE4,0)
Maximum(1l,AirTemp_C,IEEE4,0,False)
Minimum(l,AirTemp_C,FP2,0,False)
Minimum(1l,Batt_Volt,FP2,0,False)
Sample(1,Counter,Long)
Sample(1,SiteName,String)
Sample(1,HowMany, FP2)

EndTable

'Declare an event driven data output table

DataTable(Event,True,1000)
DataInterval(0,5,Sec,10)
DataEvent(0,DeltaT_C >= 3,DeltaT_C < 3,0)
Maximum(1l,AirTemp_C,FP2,0,False)
Minimum(l,AirTemp_C,FP2,0,False)
Sample(1,DeltaT_C, FP2)
Sample(1,HowMany, FP2)

EndTable

BeginProg

'"Time driven data storage

"Controls the interval

'Stores temperature average in high
'"resolution format

'Stores temperature maximum in high
"resolution format

'Stores temperature minimum in Tow
"resolution format

'Stores battery voltage minimum in Tow
'resolution format

'Stores counter in integer format

'Stores site name as a string

'Stores how many data events in Tow
"resolution format

'Data table - event driven

'"-AND 1interval driven

'-AND event range driven

'Stores temperature maximum in Tow
'"resolution format

'Stores temperature minimum in Tow
"resolution format

'Stores temp difference sample in Tow
'resolution format

'Stores how many data events in Tow
'resolution format

'A second way of naming a station is to load the name into a string variable. The is
'place here so it is executed only once, which saves a small amount of program

'execution time.

SiteName = "CR1000SiteName"

173

Section 7. Installation

174

Scan(1,Sec,1,0)
'Measurements

'"Battery Voltage
Battery(Batt_Volt)

'"Wiring Panel Temperature
PanelTemp(PTemp_C,_60Hz)

'"Type T Thermocouple measurements:
TCDiff(AirTemp_C,1,mv2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1,0)
TCDiff(AirTemp_F,1,mv2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1.8,32)

"Convert from degree C to degree F
AirTemp2_F = AirTemp_C * 1.8 + 32

"Count the number of times through the program. This demonstrates the use of a
"Long integer variable in counters.
Counter = Counter + 1

"Calculate the difference between air and panel temps
DeltaT_C = AirTemp_C - PTemp_C

"Control the flag based on the difference in temperature. If DeltaT >= 3 then
'set Flag 1 high, otherwise set it low
If DeltaT_C >= 3 Then
Flag(l) = high
Else
Flag(1)
EndIf

Tow

"Turn LED connected to Port 1 on when Flag 1 is high
If Flag(l) = high Then

PortSet(1,1) 'alternate syntax: PortSet(1,high)
Else

PortSet(1,0) 'alternate syntax: PortSet(1, low)
EndIf

"Count how many times the DataEvent “DeltaT_C>=3" has occurred. The
'"TableName.EventCount syntax is used to return the number of data storage events
"that have occurred for an event driven table. This example looks in the data
"table “Event”, which is declared above, and reports the event count. The (1,1)
'after EventCount just needs to be included.

HowMany = Event.EventCount(l1,1)

'"Call Data Tables
CallTable(OneMin)
CallTable(Event)

NextScan
EndProg

Section 7. Installation

7.9.1.5 PulseCountReset Instruction

PulseCountReset is used in rare instances to force the reset or zeroing of CR800
pulse accumulators (see Measurements — Overview (p. 62)).

PulseCountReset is needed in applications wherein two separate PulseCount()
instructions in separate scans measure the same pulse-input terminal. While the
compiler does not allow multiple PulseCount() instructions in the same scan to
measure the same terminal, multiple scans using the same terminal are allowed.
PulseCount() information is not maintained globally, but for each individual
instruction occurrence. So, if a program needs to alternate between fast and slow
scan times, two separate scans can be used with logic to jump between them. If a
PulseCount() is used in both scans, then a PulseCountReset is used prior to
entering each scan.

7.9.1.6 Scaling Array

CRBasic example Scaling Array (p. 175) demonstrates programming to create and
use a scaling array. Several multipliers and offsets are entered at the beginning of
the program and then used by several measurement instructions throughout the
program.

CRBasic Example 26.

Scaling Array

'"This program example demonstrates the use of a scaling array. An array of three
"temperatures are measured. The first is expressed as degrees Celsius, the second as
'Kelvin, and the third as degrees Fahrenheit.

'Declare viewable variables
Public PTemp_C

PubTic Temp_C(3)
PubTic Count

'Declare scaling arrays as non-viewable variables
Dim Mult(3)
Dim Offset(3)

'Declare Output Table
DataTable(Min_5,True,-1)
DataInterval(0,5,Min,0)

Average(1l,PTemp_C,FP2,0)
Maximum(l,PTemp_C,FP2,0,0)
Minimum(l,PTemp_C,FP2,0,0)
Average(3,Temp_C(),FP2,0)
Minimum(3,Temp_C(1),FP2,0,0)
Maximum(3,Temp_C(1),FP2,0,0)

EndTable

'"Begin Program

BeginProg

"Load scaling array
1.0 :
1.0 :
1.8 :

Mult(1)
Mult(2)
Mult(3)

Offset (1)
Offset(2)

=0 'Scales 1st thermocouple temperature to Celsius
= 273.15 'Scales 2nd thermocouple temperature to Kelvin
Offset(3) = 32 'Scales 3rd thermocouple temperature to Fahrenheit

175

Section 7. Installation

176

Scan(5,Sec,1,0)

'Measure reference temperature
PanelTemp(PTemp_C,_60Hz)

'Measure three thermocouples and scale each. Scaling factors from the scaling array
'are applied to each measurement because the syntax uses an argument of 3 in the Reps
'parameter of the TCDiff() instruction and scaling variable arrays as arguments in the
'"Multiplier and Offset parameters.

TCDiff(Temp_CQ, 3, mv2_5C,1,TypeT,PTemp_C,True,0,250,Mult(),0ffset())

CallTabTe(Min_5)

NextScan

EndProg

7.9.1.7 Signatures: Example Programs

A program signature is a unique integer calculated from all characters in a given
set of code. When a character changes, the signature changes. Incorporating
signature data into a the CR800 data set allows system administrators to track
program changes and assure data quality. The following program signatures are
available.

e text signature
e binary-runtime signature
e cxecutable-code signatures

7.9.1.7.1 Text Signature

The text signature is the most-widely used program signature. This signature is
calculated from all text in a program, including blank lines and comments. The
program text signature is found in the Status table as ProgSignature. See
CRBasic example Program Signatures (p. 176).

7.9.1.7.2 Binary Runtime Signature
The binary runtime signature is calculated only from program code. It does not

include comments or blank lines. See CRBasic example Program Signatures (p.
176).

7.9.1.7.3 Executable Code Signatures

Executable code signatures allow signatures to be calculated on discrete sections
of executable code. Executable code is code that resides between BeginProg and
EndProg instructions. See CRBasic example Program Signatures (p. 176).

CRBasic Example 27. Program Signatures

'"This program example demonstrates how to request the program text signature (ProgSig =
Status.ProgSignature), and the

'"binary run-time signature (RunSig = Status.RunSignature). It also calculates two
'executable code segment signatures (ExeSig(1l), ExeSig(2))

'Define Public Variables
Public RunSig, ProgSig, ExeSig(2),x,y

Section 7. Installation

'Define Data Table
DataTable(Signatures,1,1000)
DataInterval(0,1,Day,10)
Sample(1,ProgSig, FP2)

Sample(1,RunSig, FP2)
Sample(2,ExeSig(),FP2)

EndTable
"Program
BeginProg
ExeSig() = Signature "initialize executable code signature
"function
Scan(1,Sec,0,0)
ProgSig = Status.ProgSignature 'Set variable to Status table entry
""ProgSignature"
RunSig = Status.RunSignature 'Set variable to Status table entry
""RunSignature"
x = 24
ExeSig(1l) = Signature 'signature includes code since initial
'Signature instruction
y = 43
ExeSig(2) = Signature 'Signature includes all code since

'"ExeSig(1) = Signature
CallTable Signatures
NextScan

7.9.1.8 Use of Multiple Scans

CRBasic example Use of Multiple Scans (p. 177) demonstrates the use of multiple
scans. Some applications require measurements or processing to occur at an
interval different from that of the main program scan. Secondary, or slow
sequence, scans are prefaced with the SlowSequence instruction.

CRBasic Example 28. Use of Multiple Scans

'This program example demonstrates the use of multiple scans. Some applications require
'measurements or processing to occur at an interval different from that of the main
'program scan. Secondary scans are preceded with the SlowSequence instruction.

'Declare Public Variables
Public PTemp
Public Counterl

'Declare Data Table 1
DataTable(DataTablel,1,-1) 'DataTablel is event driven.
'"The event is the scan.
Sample(1,PTemp, FP2)
Sample(1l, Counterl, fp2)
EndTable

'"Main Program
BeginProg 'Begin executable section of program
Scan(1,Sec,0,0) 'Begin main scan
PanelTemp(PTemp,250)
Counterl = Counterl + 1
CallTable DataTablel "Call DataTablel
NextScan "End main scan

177

Section 7. Installation

178

SlowSequence

'Begin slow sequence

'Declare Public Variables for Secondary Scan (can be declared at head of program)

Public Batt_Volt
PubTic Counter2

'Declare Data Table

DataTable(DataTable2,1,-1) 'DataTable2? is event driven.

'The event is the scan.

Sample(1l,Batt_Volt,FP2)
Sample(1,Counter2,FP2)

EndTable

Scan(5,Sec,0,0)

'Begin 1st secondary scan

Counter2 = Counter2 + 1

Battery(Batt_Volt)
CallTable DataTable2
NextScan
EndProg

'Call DataTable2
'"End slow sequence scan
'"End executable section of program

7.9.2 Compiling: Conditional Code

When a CRBasic user program is sent to the CR800, an exact copy of the program
is saved as a file on the CPU: drive (p. 352.. A binary version of the program, the
"operating program", is created by the CR800 compiler and written to Operating
Memory (. 353. This is the program version that runs the CR800.

CRBasic allows definition of conditional code, preceded by a hash character (#),
in the CRBasic program that is compiled into the operating program depending on
the conditional settings. In addition, all Campbell Scientific datalogger (except
the CR200) accept program files, or Include() instruction files, with .DLD
extensions. This feature circumvents system filters that look at file extensions for
specific loggers; it makes possible the writing of a single file of code to run on
multiple models of CRBasic dataloggers.

Note Do not confuse CRBasic files with .DLD extensions with files of .DLD
type used by legacy Campbell Scientific dataloggers.

As an example, pseudo code using this feature might be written as:

#Const Destination = LoggerType
#If Destination = 3000 Then
<code specific to the CR3000>
#ETself Destination = 1000 Then
<code specific to the CR1000>
#E1seIf Destination = 800 Then
<code specific to the CR800>
#ETseIf Destination = 6 Then
<code specific to the CR6>
#Else
<code to include otherwise>
#EndIf

This logic allows a simple change of a constant to direct, for instance, which
measurement instructions to include.

CRBasic Editor now features a pre-compile option that enables the creation of a
CRBasic text file with only the desired conditional statements from a larger
master program. This option can also be used at the pre-compiler command line

Section 7. Installation

by using -p <outfile name>. This feature allows the smallest size program file
possible to be sent to the CR800, which may help keep costs down over very
expensive telecommunication links.

CRBasic example Conditional Code (p. 179 shows a sample program that
demonstrates use of conditional compilation features in CRBasic. Within the
program are examples showing the use of the predefined LoggerType constant
and associated predefined datalogger constants (6, 800, 1000, and 3000).

CRBasic Example 29. Conditional Code

'"This program example demonstrates program compilation than is conditional on datalogger
'model and program speed. Key instructions include #If, #Elself, #Else and #EndIf.

'Set program options based on:

" LoggerType, which is a constant predefined in the CR800 operating system
ProgramSpeed, which is defined in the following statement:

Const ProgramSpeed = 2

[

#If ProgramSpeed = 1
Const ScanRate = 1 'l second
Const Speed = "1 Second"

#E1seIf ProgramSpeed = 2
Const ScanRate = 10 '10 seconds
Const Speed = "10 Second"

#E1seIf ProgramSpeed = 3

Const ScanRate = 30 "30 seconds
Const Speed = "30 Second"

#E1se
Const ScanRate = 5 '5 seconds
Const Speed = "5 Second"

#EndIf

"Public Variables
Public ValueRead, SelectedSpeed As String * 50

'"Main Program
BeginProg

'Return the selected speed and logger type for display.
#If LoggerType = 3000

SelectedSpeed = "CR3000 running at " & Speed & " intervals."
#El1seIf LoggerType = 1000

SelectedSpeed = "CR1000 running at " & Speed & " intervals."
#E1seIf LoggerType = 800

SelectedSpeed = "CR800 running at " & Speed & " intervals."
#E1seIf LoggerType = 6

SelectedSpeed = "CR6 running at " & Speed & " intervals."
#E1se

SelectedSpeed = "Unknown Logger " & Speed & " intervals."
#EndIf

'"Open the serial port
SerialOpen(Com(C1,9600,10,0,10000)

'"Main Scan

Scan(ScanRate, Sec,0,0)
'Measure using different parameters and a different SE channel depending
'on the datalogger type the program is running in.

179

Section 7. Installation

180

#If LoggerType = 3000
'This instruction is used if the datalogger is a CR3000
VoltSe(ValueRead,1,mv1000,22,0,0,_50Hz,0.1,-30)

#E1seIf LoggerType = 1000
'"This instruction is used if the datalogger is a CR1000
VoltSe(ValueRead,1,mvV2500,12,0,0,_50Hz,0.1,-30)

#E1seIf LoggerType = 800
'"This instruction is used if the datalogger is a CR800 Series
VoltSe(ValueRead,1,mv2500,3,0,0,_50Hz,0.1,-30)

#E1seIf LoggerType = 6
'This instruction is used if the datalogger is a CR6 Series
VoltSe(ValueRead,1,mv1000,U3,0,0,50,0.1,-30)

#E1se
ValueRead = NAN

#EndIf

NextScan

EndProg

7.9.3 Displaying Data: Custom Menus — Details

Related Topics:

* Custom Menus — Overview (p. 83, p. 555)

* Data Displays: Custom Menus — Details (p. 180)
* Custom Menus — Instruction Set (p. 555)

* Keyboard Display — Overview (p. 82)

* CRBasic Editor Help for DisplayMenu()

Menus for the CR1000KD Keyboard Display can be customized to simplify
routine operations. Viewing data, toggling control functions, or entering notes are
common applications. Individual menu screens support up to eight lines of text
with up to seven variables.

Use the following CRBasic instructions. Refer to CRBasic Editor Help for
complete information.

DisplayMenu()

Marks the beginning and end of a custom menu. Only one allowed per
program.

Note Label must be at least six characters long to mask default display clock.

EndMenu
Marks the end of a custom menu. Only one allowed per program.
DisplayValue()

Defines a label and displays a value (variable or data table value) not to be
edited, such as a measurement.

Menultem()

Defines a label and displays a variable to be edited by typing or from a pick
list defined by MenuPick ().

MenuPick()

Creates a pick list from which to edit a Menultem() variable. Follows

Section 7. Installation

immediately after Menultem(). If variable is declared As Boolean,
MenuPick() allows only True or False or declared equivalents. Otherwise,
many items are allowed in the pick list. Order of items in list is determined by
order of instruction; however, item displayed initially in Menultem() is
determined by the value of the item.

SubMenu() / EndSubMenu

Defines the beginning and end of a second-level menu.

Note SubMenu() label must be at least six characters long to mask default
display clock.

CRBasic example Custom Menus (p. 183) lists CRBasic programming for a custom
menu that facilitates viewing data, entering notes, and controlling a device.
Following is a list of figures that show the organization of the custom menu that is
programmed using CRBasic example Custom Menus (p. 183).

Custom Menu Example — Home Screen (p. 181)

Custom Menu Example — View Data Window (p. 181)

Custom Menu Example — Make Notes Sub Menu (p. 182)

Custom Menu Example — Predefined Notes Pick List (p. 182)
Custom Menu Example — Free Entry Notes Window (p. 182)
Custom Menu Example — Accept / Clear Notes Window (p. 182)
Custom Menu Example — Control Sub Menu (p. 183)

Custom Menu Example — Control LED Pick List (p. 183)

Custom Menu Example — Control LED Boolean Pick List (p. 183)

Figure 43. Custom Menu Example — Home Screen

s

** CUSTOM MENU DEMO * *

View Data
Make Notes
Control

V V V V

Figure 44. Custom Menu Example — View Data Window

s

View Data

Ref Temp C | 25.7643
TC1Temp C | 24.3663
TC2Temp C | 24.2643

181

Section 7. Installation

Figure 45. Custom Menu Example — Make Notes Sub Menu
Make Notes
Predefined |
Free Entry |

Figure 46. Custom Menu Example — Predefined Notes Pick List

s

Predefined
Cal_Done
Offset_Changed

Figure 47. Custom Menu Example — Free Entry Notes Window

s

Modify Value
Free Entry

Current Value:

New Value:

Figure 48. Custom Menu Example — Accept / Clear Notes Window

s

Accept / Clear
Accept
Clear

182

Section 7. Installation

Figure 49. Custom Menu Example — Control Sub Menu

Control :
Count to LED | 0
Manual LED | Off

Figure 50. Custom Menu Example — Control LED Pick List

s

Count to LED
15
30
45
60

Figure 51. Custom Menu Example — Control LED Boolean Pick List

s

Manual LED
On
Off

Note See figures Custom Menu Example — Home Screen (p. 181) through Custom
Menu Example — Control LED Boolean Pick List (p. 183) in reference to the
following CRBasic example Custom Menus (p. 83, p. 555).

CRBasic Example 30. Custom Menus

'"This program example demonstrates the building of a custom CR1I000KD Keyboard Display menu.

'Declarations supporting View Data menu 1item

Public RefTemp
PubTic TCTemp(2)

'Reference Temp Variable
"Thermocouple Temp Array

'Delarations supporting blank Tine menu 1item

Const Escape = "Hit Esc" "Word indicates action to exit dead end

183

Section 7. Installation

184

'Declarations supporting Enter Notes menu 1item

PubTic SelectNote As String * 20
Const Cal_Done = "Cal Done"

Const Offst_Chgd = "Offset Changed"
Const Blank = ""

PubTic EnterNote As String * 30
PubTic CycleNotes As String * 20
Const Accept = "Accept"

Const Clear = "Clear"

'Declarations supporting Control menu item
Const On = true

Const Off = false

Public StartFlag As Boolean

Pub1lic CountDown As Long

PubTic ToggleLED As Boolean

'Define Note DataTable
DataTable(Notes,1,-1)
Sample(1,SelectNote,String)
Sample(1l,EnterNote,String)
EndTable

'Define temperature DataTable
DataTable(TempC,1,-1)
DataInterval(0,60,Sec,10)
Sample(1,RefTemp, FP2)
Sample(1,TCTemp(1),FP2)
Sample(1,TCTemp(2),FP2)
EndTable

"Custom Menu Declarations
DisplayMenu("**CUSTOM MENU DEMO**",-3)

SubMenu("™)
DisplayValue(
EndSubMenu

,Escape)

SubMenu("View Data ")
DisplayValue("Ref Temp C",RefTemp)
DisplayValue("TC 1 Temp C",TCTemp(1))
DisplayValue("TC 2 Temp C",TCTemp(2))
EndSubMenu

SubMenu("Make Notes ")
MenuItem("Predefined",SelectNote)
MenuPick(Cal_Done,0ffset_Changed)
MenuItem("Free Entry",EnterNote)
MenuItem("Accept/Clear",CycleNotes)
MenuPick (Accept,Clear)

EndSubMenu

'Hold predefined pick 1ist note

'"Word stored when Cal_Don selected
'"Word stored when Offst_Chgd selected
'"Word stored when blank selected
'"Variable to hold free entry note
"Variable to hold notes control word
'Notes control word

'Notes control word

'Assign "On" as Boolean True
'Assign "Off" as Boolean False
'"LED Control Process Variable
"LED Count Down Variable

"LED Control Variable

'Set up Notes data table, written
"to when a note is accepted
'Sample Pick List Note

'Sample Free Entry Note

'Set up temperature data table.
'"Written to every 60 seconds with:

'Sample of reference temperature
'Sample of thermocouple 1
'Sample of thermocouple 2

'Create Menu; Upon power up, the custom menu
"is displayed. The system menu is hidden
"from the user.

"Dummy Sub menu to write a blank Tine
'a blank Tine
'"End of dummy submenu

'"Create Submenu named PanelTemps
'Item for Submenu from Public
'ITtem for Submenu - TCTemps(1)
'Ttem for Submenu - TCTemps(2)
'"End of Submenu

'"Create Submenu named PanelTemps
'"Choose predefined notes Menu Item
'"Create pick 1ist of predefined notes
'User entered notes Menu Item

Section 7. Installation

SubMenu("Control ") "Create Submenu named PanelTemps
MenuItem("Count to LED",CountDown) "Create menu item CountDown
MenuPick(15,30,45,60) "Create a pick list for CountDown
MenuItem("Manual LED",togglelLED) 'Manual LED control Menu Item
MenuPick(On,O0ff)

EndSubMenu
EndMenu "End custom menu creation

'"Main Program
BeginProg

CycleNotes = "??????" '"Initialize Notes Sub Menu,
'write ???7?7 as a null
Scan(1,Sec,3,0)

'Measurements

PanelTemp(RefTemp,250) '"Measure Reference Temperature
'Measure Two Thermocouples

TCDiff(TCTemp(),2,mvV2_5C,1,TypeT,RefTemp,True,0,_60Hz,1.0,0)

CallTable TempC '"Call data table

'Menu Item "Make Notes" Support Code
If CycleNotes = "Accept" Then

CallTable Notes '"Write data to Notes data table
CycleNotes = "Accepted" '"Write "Accepted" after written
Delay(1,500,mSec) '"Pause so user can read "Accepted"
SelectNote = "" "Clear pick 1ist note
EnterNote = "" "Clear free entry note
CycleNotes = "?7?7???" '"Write ?????7 as a null prompt
EndIf
If CycleNotes = "Clear" Then "Clear notes when requested
SelectNote = "" "Clear pick Tist note
EnterNote = "" "Clear free entry note
CycleNotes = "?77?7?27?" '"Write ????? as a null prompt
EndIf
'"Menu Item "Control" Menu Support Code
CountDown = CountDown - 1 "Count down by 1
If CountDown <= 0 'Stop count down from passing 0
CountDown = 0
EndIf
If CountDown > 0 Then
StartFlag = True "Indicate countdown started
EndIf

If StartFlag = True AND CountDown = 0 Then'Interprocess count down
"and manual LED

ToggleLED = True
StartFlag = False
EndIf

If StartFlag = True AND CountDown <> 0 Then'Interprocess count down and manual LED
ToggleLED = False

EndIf
PortSet(4,TogglelLED) 'Set control port according
"to result of processing
NextScan
EndProg

185

Section 7. Installation

186

7.9.4 Data Input: Loading Large Data Sets

Large data sets, such as look up tables or tag numbers, can be loaded in the
CR800 for use by the CRBasic program. This is efficiently accomplished by
using the Data, DataLong, and Read instructions, as demonstrated in CRBasic
example Loading Large Data Sets (p. 186).

CRBasic Example 31. Loading Large Data Sets

'"This program example demonstrates how to load a set of data into variables. Twenty values
'are loaded into two arrays: one declared As Float, one declared As Long. Individual Data
"lines can be many more values long than shown (Timited only by maximum statement Tlength),
"and many more lines can be written. Thousands of values can be loaded in this way.

'Declare Float and Long variables. Can also be declared as Dim.
PubTic DataSetFloat(10) As Float

PubTic DataSetLong(10) As Long

Dim x

'"Write data set to CR800 memory
Data 1.1,2.2,3.3,4.4,5.5

Data -1.1,-2.2,-3.3,-4.4,-5.5
Datalong 1,2,3,4,5

DatalLong -1,-2,-3,-4,-5

'Declare data table

DataTable (DataSet_,True,-1)
Sample (10,DataSetFloat(),Float)
Sample (10,DataSetLong(),Long)

EndTable

BeginProg

'Assign Float data to variable array declared As Float
For x = 1 To 10

Read DataSetFloat(x)
Next x

'Assign Long data to variable array declared As Long
For x =1 To 10

Read DataSetLong(x)
Next x

Scan(1,sec,0,1)

'"Write all data to final-data memory
CallTable DataSet_

NextScan

EndProg

Section 7. Installation

7.9.5 Data Input: Array-Assigned Expression

CRBasic provides for the following operations on one dimension of a multi-
dimensional array:

Initialize
Transpose
Copy
Mathematical
Logical

Examples include:

e Process a variable array without use of For/Next

e Create boolean arrays based on comparisons with another array or a scalar
variable

e Copy a dimension to a new location

e Perform logical operations for each element in a dimension using scalar or
similarly located elements in different arrays and dimensions

Note Array-assigned expression notation is an alternative to For/Next
instructions, typically for use by more advanced programmers. It will probably
not reduce processing time significantly over the use of For/Next. To reduce
processing time, consider using the Move() instruction, which requires more
intensive programming.

Syntax rules:
e Definitions:

o Least-significant dimension — the last or right-most figure in an array
index. For example, in the array array(a,b), b is the least-significant
dimension index. In the array array(a,b,c), c is least significant.

o Negate — place a negative or minus sign (-) before the array index. For
example, when negating the least-significant dimension in array(a,b,c),
the notion is array(a,b,-c)

e An empty set of parentheses designates an array-assigned expression. For
example, reference array() or array(a,b,c)().

e Only one dimension of the array is operated on at a time.

e To select the dimension to be operated on, negate the dimension of index of
interest.

e Operations will not cross dimensions. An operation begins at the specified
starting point and continues to one of the following:

o End of the dimension
o Where the dimension is specified by a negative
o Where the dimension is the least significant (default)

e Ifindices are not specified, or none have been preceded with a minus sign,
the least significant dimension of the array is assumed.

e The offset into the dimension being accessed is given by (a,b,c).

e Ifthe array is referenced as array(), the starting point is array(1,1,1) and the
least significant dimension is accessed. For example, if the array is declared
as test(a,b,c), and subsequently referenced as test(), then the starting point is
test(1,1,1) and dimension c is accessed.

187

Section 7. Installation

188

Table 24. CRBasic Example. Array Assigned Expression: Sum Columns and Rows

'"This example sums three rows and two columns of a 3x2 array.

'Source array image:
'1.23,2.34
'3.45,4.56
'5.67,6.78

PubTic Array(3,2) = {1.23,2.34,3.45,4.56,5.67,6.78} 'Toad values into source array

Pub1ic RowSum(3)
PubTic ColumnSum(2)

BeginProg
Scan(1,Sec,0,0)
'"For each row, add up the two columns
RowSum() = Array(-1,1D0O + Array(-1,2)Q
'"For each column, add up the three rows
ColumnSum() = Array(1,-1)Q + Array(2,-1DO + Array(3,-1)0
NextScan
EndProg

Table 25. CRBasic Example. Array Assigned Expression: Transpose an Array

'This example transposes a 3x2 array to a 2x3 array
'Source array image:

'1,2

'3,4

'5,6

'Destination array image (transpose of source):
'1,3,5
'2,4,6

'Dimension and initialize source array
Public AC3,2) = {1,2,3,4,5,6}

'Dimension destination array
PubTic At(2,3)

'Delcare For/Next counter
Dim i

BeginProg
Scan (1,Sec,0,0)
For i = 1 To 2
'"For each column of the source array A(), copy the column into a row of the
'"destination array At()
At(i,-DO = AC-1,9)0
Next i
NextScan

EndProg

Section 7. Installation

Table 26. CRBasic Example. Array Assigned Expression: Comparison / Boolean Evaluation

"Example: Comparison / Boolean Evaluation

'"Element-wise comparisons is performed through scalar expansion or by comparing each
'element in one array to a similarly Tlocated element in another array to generate a
"resultant boolean array to be used for decision making and control, such as

'an array input to a SDM-CD16AC.

Public TempC(3) = {15.1234,20.5678,25.9876}
PubTic TempC_Rounded(3)

Public TempDiff(3)

Public TempC_Alarm(3) As Boolean

Public TempF_Thresh(3) = {55,60,80}

Public TempF_Alarm(3) As Boolean

BeginProg
Scan(1,Sec,0,0)

'element-wise comparison of each temperature in the array to a scalar value
'set corresponding alarm boolean value true if temperature exceeds 20 degC
TempC_Alarm() = TempC() > 20

'some, not all or most, instructions will accept this array notation to auto-index
"through the array

"round each temperature to the nearest tenth of a degree
TempC_Rounded() = Round(TempC(),1)

'element-wise subtraction

'each element in TempC_Rounded is subtracted from the similarly located element inTempC
'calculate the difference between each TempC value and the rounded counterpart
TempDiff() = TempC() - TempC_Rounded()

'element-wise operations can be mixed with scalar expansion operations

'set corresponding alarm boolean value true if temperature, after being
'converted to degF, exceeds it's corresponding alarm threshold value in degF
TempF_ATarm() = (TempC(Q * 1.8 + 32) > TempF_Thresh()

NextScan
EndProg

189

Section 7. Installation

190

Table 27. CRBasic Example. Array Assigned Expression: Fill Array Dimension

"Example: Fill Array Dimension

PubTic AQ3)

PubTlic B(3,2)

Public C(4,3,2)

Public Da(3,2) = {1,1,1,1,1,1}

PubTic Db(3,2)

Public DMultiplier(3) = {10,100,1000}
Public DOffset(3) = {1,2,3}

BeginProg
Scan(1,Sec,0,0)

A =1 'set all elements of 1D array or first dimension to 1

B(1,1)() = 100 'set B(1,1) and B(1,2) to 100
B(-2,1)() = 200 'set B(2,1) and B(3,1) to 200
B(-2,2)() = 300 'set B(2,2) and B(3,2) to 300

CA,-1,1)0 = AQ 'copy A(1), A(2), and A(3) into C(1,1,1), C(1,2,1), and C(1,3,1),
"respectively
AQ * 1.8 + 32 'scale and then copy A(1), A(2), and A(3) into C(2,1,1),
'C(2,2,1), and C(2,3,1), respectively

C€2,-1,10

'scale the first column of Da by corresponding multiplier and offset
"copy the result into the first column of Db

"then set second column of Db to NAN

Db(-1,1)(= Da(-1,1)() * DMultiplier() + DOffset()

Db(-1,2)() = NAN

NextScan
EndProg

7.9.6 Data Output: Calculating Running Average

The AvgRun() instruction calculates a running average of a measurement or
calculated value. A running average (Des?) is the average of the last N values
where N is the number of values, as expressed in the running-average equation:

X
Dest = —i\; I

where Xy is the most recent value of the source variable and Xx.; is the previous
value (X is the oldest value included in the average, i.c., N-1 values back from
the most recent). NANSs are ignored in the processing of AvgRun() unless all
values in the population are NAN.

AvgRun() uses high-precision math, so a 32-bit extension of the mantissa is saved
and used internally resulting in 56 bits of precision.

Note This instruction should not normally be inserted within a For/Next
construct with the Source and Destination parameters indexed and Reps set to 1.
Doing so will perform a single running average, using the values of the different

Section 7. Installation

elements of the array, instead of performing an independent running average on
each element of the array. The results will be a running average of a spatial
average of the various source array elements.

A running average is a digital low-pass filter; its output is attenuated as a function
of frequency, and its output is delayed in time. Degree of attenuation and phase
shift (time delay) depend on the frequency of the input signal and the time length
(which is related to the number of points) of the running average.

The figure Running-Average Frequency Response (p. 192) is a graph of signal
attenuation plotted against signal frequency normalized to 1/(running average
duration). The signal is attenuated by a synchronizing filter with an order of 1
(simple averaging): Sin(nX) / (1X), where X is the ratio of the input signal
frequency to the running-average frequency (running-average frequency = 1/
time length of the running average).

Example:
Scan period = 1 ms,
N value = 4 (number of points to average),
Running-average duration = 4 ms
Running-average frequency = 1 / (running-average duration = 250 Hz)
Input-signal frequency = 100 Hz
Input frequency to running average (normalized frequency) = 100 /250 = 0.4

Sin(0.4m) / (0.4w) = 0.757 (or read from figure Running-Average Frequency
Response (p. 192, where the X axis is 0.4)

For a 100 Hz input signal with an amplitude of 10 V peak-to-peak, a running

average outputs a 100 Hz signal with an amplitude of 7.57 V peak-to-peak.
There is also a phase shift, or delay, in the AvgRun() output. The formula for
calculating the delay, in number of samples, is:

Delay in samples = (N-1)/2

Note N = number of points in running average

To calculate the delay in time, multiply the result from the above equation by the
period at which the running average is executed (usually the scan period):

Delay in time = (scan period) * (N-1) /2
For the example above, the delay is:

Delay intime=(1 ms)*(4—-1)/2=15ms
Example:

An accelerometer was tested while mounted on a beam. The test had the
following characteristics:

o Accelerometer resonant frequency = 36 Hz
o Measurement period = 2 ms
o Running average duration = 20 ms (frequency of 50 Hz)

191

Section 7. Installation

192

Normalized resonant frequency was calculated as follows:

36 Hz / 50 Hz = 0.72
SINC0.72m) / (0.72m) = 0.34.

So, the recorded amplitude was about 1/3 of the input-signal amplitude. A
CRBasic program was written with variables Accel2 and Accel2RA. The
raw measurement was stored in Accel2. Accel2RA held the result of
performing a running average on the Accel2. Both values were stored at a
rate of 500 Hz. Figure Running-Average Signal Attenuation (p. 193 shows the
two variables plotted to illustrate the attenuation. The running-average value
has the lower amplitude.

The resultant delay, Dy, is calculated as follows:

D. = (scan rate) - (N-1)/2 = 2 ms (10-1)/2
=9 ms

D: is about 1/3 of the input-signal period.

Figure 52. Running-Average Frequency Response

REL RESPONSE

0.8

0.6

0.4

0.2

0.0

FREQUENCY RESPONSE OF SIGNAL
PROCESSED THROUGH A RUNNING AVERAGE

Sinc Filter Order 1
\ |

TN\ PRy

\/

0.0 02 04 06 08 10 12 14 16 18 20 22 24 26 28 3.0 32 34 36 38 40 42 44 46 48 50 52 54
FREQUENCY
NORMALIZED TO (1/(RUNNING AVERAGE DURATION))

AT TN

Section 7. Installation

Figure 53. Running-Average Signal Attenuation

[— Accel2 —— Accel2RA |

—_—
—

b LA A A DD ADAAAARA
19VAVAV A VAT VA VAV AR R A R A A

1
—_
P I
.

15:45:40.000 15:45:41.000

7.9.7 Data Output: Triggers and Omitting Samples

TrigVar is the third parameter in the DataTable() instruction. It controls whether
or not a data record is written to final memory. TrigVar control is subject to other
conditional instructions such as the Datalnterval() and DataEvent() instructions.

DisableVar is the last parameter in most output processing instructions, such as
Average(), Maximum(), Minimum(), etc. It controls whether or not a particular
measurement or value is included in the affected output-processing function.

For individual measurements to affect summary data, output processing
instructions such as Average() must be executed whenever the data table is called
from the program — normally once each scan. For example, for an average to be
calculated for the hour, each measurement must be added to a total over the hour.
This accumulation of data is not affected by TrigVar. TrigVar controls only the
moment when the final calculation is performed and the processed data (the
average) are written to the data table. For this summary moment to occur,
TrigVar and all other conditions (such as Datalnterval() and DataEvent()) must
be true. Expressed another way, when TrigVar is false, output processing
instructions (for example, Average()) perform intermediate processing but not the
final process, and a new record will not be created.

Note In many applications, output records are solely interval based and TrigVar
is always set to TRUE (-1). In such applications, Datalnterval() is the sole
specifier of the output trigger condition.

Figure Data from TrigVar Program (p. 194) shows data produced by CRBasic
example Using TrigVar to Trigger Data Storage (p. 194), which uses TrigVar rather
than Datalnterval() to trigger data storage.

193

Section 7. Installation

Figure 54. Data from TrigVar Program

C:\Campbellsci\PC200W\CR #4% _Test.dat %
File View Help
BECRH [Memas | Bv: EE BE &
TIMESTAMP RECORD counter counter Avg counter_Tot

"2009-09-29 10:18: 249 2 1.75 7
"2009-09-29 10:18: 249 3 3 3
"2009-09-29 10:18: 25 2 1.75 i,
"2009-09-29 10:18: 25 3 3 3
"2009-09-29 10:18: 25 2 1.75 7
"2009-09-29 10:18: 253 3 3 3
"2009-09-29 10:18: 254 2 1.75 7
"2009-09-29 10:18: 25 3 3 3
"2009-09-29 10:18: 254 2 1.75 7
"2009-09-29 10:18: 257 3 3 3
"2009-09-29 10:19: 25¢ 2 1.75 i
"2009-09-29 10:19: 259 3 3 3
"2009-09-29 10:19: 26 2 1.75 7
"2009-09-29 10:19: 26 3 3 3
"2009-09-29 10:19: 26 2 1.75 7]
"2009-09-29 10:19: 263 3 3 3
"2009-09-29 10:19: 264 2 1.75 7
"2009-09-29 10:19: 26 3 3 3 =

o Gl

L =4

CRBasic Example 32. Using TrigVar to Trigger Data Storage

'"This program example demonstrates the use of the TrigVar parameter in the DataTable()
"instruction to trigger data storage. In this example, the variable Counter 1is
"incremented by 1 at each scan. The data table, which includes the Sample(), Average(), and
'"Totalize() instructions, is called every scan. Data are stored when TrigVar is true, and
'"TrigVar is True when Counter = 2 or Counter = 3. Data stored are the sample, average,
'and total of the variable Counter, which is equal to 0, 1, 2, 3, or 4 when the data table
"is called.

PubTic Counter

DataTable(Test,Counter=2 or Counter=3,100)
Sample(1,Counter, FP2)
Average(l,Counter,FP2,False)
Totalize(l,Counter,FP2,False)

EndTable

BeginProg
Scan(1,Sec,0,0)
Counter = Counter + 1
If Counter = 5 Then
Counter = 0
EndIf
CallTable Test
NextScan
EndProg

194

Section 7. Installation

7.9.8 Data Output: Two Intervals in One Data Table

CRBasic Example 33. Two Data-Output Intervals in One Data Table

'"This program example demonstrates the use of two time intervals in a data table. One time
"interval in a data table is the norm, but some applications require two.

'A table with two time intervals should be allocated memory as is done with a conditional table:
'"rather than auto-allocate, set a fixed number of records.

'Declare Public Variables
Public PTemp, batt_volt, airtempC, deltaT
Public int_fast As Boolean
PubTic int_slow As Boolean
Public counter(4) As Long

'Declare Data Table
'"Table is output on one of two intervals, depending on condition.
'"Note the parenthesis around the TriggerVariable AND statements.

DataTable(TwoInt, (int_fast AND TimeIntoInterval(0,5,Sec)) OR (int_sTlow AND _
TimeIntoInterval(0,15,sec)),-1)
Minimum(1l,batt_volt,FP2,0,False)
Sample(1,PTemp, FP2)
Maximum(1l, counter(l),Long,False,False)
Minimum(l,counter(l),Long,False,False)
Maximum(1l,deltaT,FP2,False,False)
Minimum(1l,deltaT,FP2,False,False)
Average(l,deltaT,IEEE4,false)
EndTable

'"Main Program
BeginProg
Scan(1,Sec,0,0)

PanelTemp(PTemp,250)
Battery(Batt_volt)
counter(l) = counter(l) + 1

'Measure thermocouple
TCDiff(AirTempC,1,mv2_5C,1,TypeT,PTemp,True,0,250,1.0,0)
'calculate the difference in air temperature and panel temperature
deltaT = airtempC - PTemp

'"When the difference in air temperatures is >=3 turn LED on and trigger the faster of
"the two data-table intervals.
If deltaT >= 3 Then
PortSet(4,true)
int_fast = true
int_slow = false
Else
PortSet(4,false)
int_fast = false
int_slow = true
EndIf

195

Section 7. Installation

"Call output tables
CallTable TwoInt

NextScan
EndProg

7.9.9 Data Output: Using Data Type Bool8

196

Variables used exclusively to store either True or False are usually declared As
BOOLEAN. When recorded in final-data memory, the state of Boolean variables
is typically stored in BOOLEAN data type. BOOLEAN data type uses a four-
byte integer format. To conserve final-data memory or telecommunication band,
you can use the BOOLS data type. A BOOLS is a one-byte value that holds eight
bits of information (eight states with one bit per state). To store the same
information using a 32 bit BOOLEAN data type, 256 bits are required (8 states *
32 bits per state).

When programming with BOOLS data type, repetitions in the output processing
DataTable() instruction must be divisible by two, since an odd number of bytes
cannot be stored. Also note that when the CR800 converts a LONG or FLOAT
data type to BOOLS, only the least significant eight bits of the binary equivalent
are used, i.e., only the binary representation of the decimal integer modulo divide
(. 494 256 1s used.

Example:

Given: LONG 1integer 5435
Find: BOOL8 representation of 5435
Solution:
5435 / 256 = 21.2304687
0.2304687 * 256 = 59
Binary representation of 59 = 00111011 (CR800 stores
these bits in reverse order)

When datalogger support software (p. 93 retrieves the BOOLS value, it splits it
apart into eight fields of -1 or 0 when storing to an ASCII file. Consequently,
more memory is required for the ASCII file, but CR800 memory is conserved.
The compact BOOLS data type also uses less telecommunication band width
when transmitted.

CRBasic example Programming with Bool8 and Bit-Shift Operators (p. 198)
programs the CR800 to monitor the state of 32 "alarms" as a tutorial exercise.
The alarms are toggled by manually entering zero or non-zero (e.g., 0 or 1) in
each public variable representing an alarm as shown in figure Alarms Toggled in
Bit-Shift Example (. 197. Samples of the four public variables FlagsBool8(1),
FlagsBool8(2), FlagsBool8(3), and FlagsBool8(4) are stored in data table
Bool8Data as four one-byte values. However, as shown in figure Bool8 Data
from Bit-Shift Example (Numeric Monitor) (p. 197), when viewing the data table in a
numeric monitor (p. 495), data are conveniently translated into 32 values of True or
False. In addition, as shown in figure Bool8 Data from Bit-Shift Example (PC
Data File) . 198), when datalogger support software (p. 93) stores the data in an
ASCII file, it is stored as 32 columns of either -1 or 0, each column representing
the state of an alarm. You can use variable aliasing (. 136) in the CRBasic
program to make the data more understandable.

Section 7. Installation

Figure 55. Alarms Toggled in Bit-Shift Example

(D o

T3 CR1000 Numeric Display T: RealTime
Alarm(1) 0/Alarm(19) 0
Add.. Alarm(2) 1/Alarm(20) 0
Alarm(3) 0/Alarm(21) 1
Alarm(4) 0/Alarm(22) 0
Alarm(5) 0/Alarm(23) 1 I
Alarm(6) 0/Alarm(24) 1
Alarm(7) 0/Alarm(25) 0
Alarm(8) 0/Alarm(26) 0
1/Alarm(27) 0
Alarm(10) 0/Alarm(28) 1
Alarm(11) 1/Alarm(29) 1
Alarm(12) 1/Alarm(30) 0
Alarm(13) 0/Alarm(31) 0
Slop \ Alarm(14) 0/Alarm(32) 1
Alarm(15) 0
Alarm(16) 1
Alarm(17) 1
Alarm(18) 1
Update Interval | 00m 01 000 ms] E]
——= —— =
Figure 56. Bool8 Data from Bit-Shift Example (Numeric Monitor)
G N D e [— ,
FlagsBool8(1) false|FlagsBool8~2(5, false
Add._. FlagsBool8(2) false|FlagsBool8~2(6, false
FlagsBool8(3) false|FlagsBool8~2(7 true
FlagsBool8(4) false|FlagsBool8~2(8 false
FlagsBool8(5) false FlagsBoolg~2(9] true
FlagsBool8(6) false FlagsBool8~2(1 true
FlagsBool8(7) false FlagsBool8~2(1 false
FlagsBool8(8) false FlagsBool8~2(1 false
FlagsBool8(9) true|FlagsBool8~2(1 false:
FlagsBool8(10) false|FlagsBool8~2(1 true
FlagsBool8(11) true|FlagsBool8~2(1 true
FlagsBool8(12) true|FlagsBool8~2(1 false
FlagsBool8(13) false FlagsBool8~2(1 false
Stop FlagsBool8(14) false FlagsBool8~2(1 true
FlagsBool8(15) false
FlagsBool8(16) true
FlagsBool8~2(3 true
FlagsBool8~2(4 true
Update Interval 00m 01 s 000 ms L@‘ @

197

Section 7. Installation

Figure 57. Bool8 Data from Bit-Shift Example (PC Data File)
J& C\Campbelisc\PC200WACR ‘ o5 |

File View Help
B@ECR s | Aemms - mf | BE BE B
TIMESTAMP RECORD FlagsBool8(1l) FlagsBool€(2) FlagsBool®(3) FlagsBool€(4) FlagsBool8(S) FlagsBool8(6) Fla
"2009-12-08 2" 0 -1 0 -1 -1 :I
"2009-12-08 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 1] 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 11: 0 0 -1 0 -1 -1
"2009-12-08 11: 0 0 -1 0 -1 -1
"2009-12-08 1. 0 0 -1 0 -1 -1
"2009-12-08 11: 0 0 -1 0 -1 -1
"2009-12-08 11: 0 0 -1 0 -1 -1
"2009-12-0: 0 0 -1 0 -1 -1
"2009-12-0 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 i 0 b | |
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 0 0 -1 0 -1 -1
"2009-12-08 11: 0 0 -1 0 -1 -1
"2009-12-08 11: 0 0 -1 0 -1 -1
"2009-12-08 11: 0 0 -1 0 -1 -1
"2009-12-08 11:47: 070 0 0 -1 0 -1 -1
S
4 »

CRBasic Example 34. Programming with Bool8 and a Bit-Shift Operator

'"This program example demonstrates the use of the Bool8 data type and the ">>" bit-shift
"operator.

Public Alarm(32)
PubTic Flags As Long
Public FlagsBoo18(4) As Long

DataTable(Bool8Data,True,-1)
DataInterval(0,1,Sec,10)
'store bits 1 through 16 in columns 1 through 16 of data file
Sample(2,FlagsBoo18(1),Boo18)
'store bits 17 through 32 in columns 17 through 32 of data file
Sample(2,FlagsBoo18(3),Boo18)

EndTable

BeginProg
Scan(1,Sec,3,0)

'Reset all bits each pass before setting bits selectively
Flags = &h0O

'Set bits selectively. Hex is used to save space.

"Logical OR bitwise comparison

198

Section 7. Installation

'"If bit in
'Flags Is

r

[

[

[

[

OR

bit in

Bin/Hex Is

The result

Is

'Binary equivalent of Hex:

If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If
If

Alarm(1)

Alarm(2)

Alarm(3)

Alarm(4)

Alarm(5)

Alarm(6)

Alarm(7)

Alarm(8)

Alarm(9)

Alarm(10)
Alarm(11)
Alarm(12)
Alarm(13)
Alarm(14)
Alarm(15)
Alarm(16)
Alarm(17)
Alarm(18)
Alarm(19)
Alarm(20)
Alarm(21)
Alarm(22)
Alarm(23)
Alarm(24)
Alarm(25)
Alarm(26)
Alarm(27)
Alarm(28)
Alarm(29)
Alarm(30)
Alarm(31)
Alarm(32)

Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then
Then

'Note &HFF = &B11

'data type), the first 8 bits in the four Longs FlagsBool8(4) are loaded with alarm
'states. Only the first 8 bits of each Long 'FlagsBool8' are stored when converted
"to Bool8.

Flags =
Flags =
Flags =
Flags =
Flags =
Flags =
Flags =
Flags =
Flags =
Flags
Flags
Flags
Flags

Flags =

Flags

Flags =
Flags =

Flags

Flags =

Flags
Flags
Flags
Flags
Flags

Flags =
Flags =
Flags =
Flags =

Flags
Flags
Flags
Flags

111111.

Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags
Flags

By shifting at 8 bit increments along 32-bit 'Flags' (Long

OR
OR
OR
OR
OR
OR
OR
OR
OR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

"Logical AND bitwise comparison

'"If bit in
'Flags Is

OR

bit in

Bin/Hex Is

&hl

&h2

&h4

&h8

&h10

&h20

&h40

&h80

&h100

R &h200

R &h400

R &h800

R &h1000

R &h2000

R &h4000

R &h8000

R &h10000

R &h20000

R &h40000

R &h80000

R &h100000

R &h200000

R &h400000

R &h800000

R &h1000000

R &h2000000

R &h4000000

R &h8000000

R &h10000000
R &h20000000
R &h40000000
R &h80000000

The result

Is

! &bl
! &b10
! &b100
! &b1000
! &b10000
! &b100000
! &b1000000
! &b10000000
! &b100000000
! &b1000000000
! &b10000000000
! &b100000000000
' &b1000000000000
' &b10000000000000
' &b100000000000000
' &b1000000000000000
! &b10000000000000000
! &b100000000000000000
! &b1000000000000000000
! &b10000000000000000000
! &b100000000000000000000
! &b1000000000000000000000
! &b10000000000000000000000
' &b100000000000000000000000
' &b1000000000000000000000000
! &b10000000000000000000000000
! &b100000000000000000000000000
! &b1000000000000000000000000000
" &b10000000000000000000000000000
" &b100000000000000000000000000000
' &b1000000000000000000000000000000
'&10000000000000000000000000000000

199

Section 7. Installation

200

FlagsBoo18(1) = Flags AND &HFF 'AND 1st 8 bits of "Flags" & 11111111
FlagsBoo18(2) = (Flags >> 8) AND &HFF 'AND 2nd 8 bits of "Flags" & 11111111
FlagsBoo18(3) = (Flags >> 16) AND &HFF '"AND 3rd 8 bits of "Flags" & 11111111
FlagsBoo18(4) = (Flags >> 24) AND &HFF "AND 4th 8 bits of "Flags" & 11111111
CallTable(Bool8Data)
NextScan
EndProg

7.9.10 Data Output: Using Data Type NSEC

Data of NSEC type reside only in final-data memory. A datum of NSEC consists
of eight bytes — four bytes of seconds since 1990 and four bytes of nanoseconds
into the second. Nsec is declared in the Data Type parameter in final-data
memory output-processing instructions (p. 516. It is used in the following
applications:

e Placing a time stamp in a second position in a record.

e Accessing a time stamp from a data table and subsequently storing it as part
of a larger data table. Maximum(), Minimum(), and FileTime() instructions
produce a time stamp that may be accessed from the program after being
written to a data table. The time of other events, such as alarms, can be stored
using the RealTime() instruction.

e Accessing and storing a time stamp from another datalogger in a PakBus
network.

7.9.10.1 NSEC Options

NSEC is used in a CRBasic program one of the following ways. In all cases, the
time variable is only sampled with a Sample() instruction, Reps = 1.

1. Time variable is declared As Long. Sample() instruction assumes the time
variable holds seconds since 1990 and microseconds into the second is 0. The
value stored in final-data memory is a standard time stamp. See CRBasic
example NSEC — One Element Time Array (p. 200).

2. Time-variable array dimensioned to (2) and As Long — Sample() instruction
assumes the first time variable array element holds seconds since 1990 and the
second element holds microseconds into the second. See CRBasic example
NSEC — Two Element Time Array (p. 201).

3. Time-variable array dimensioned to (7) or (9) and As Long or As Float —
Sample() instruction assumes data are stored in the variable array in the
sequence year, month, day of year, hour, minutes, seconds, and milliseconds.
See CRBasic example NSEC — Seven and Nine Element Time Arrays (p. 202).

CRBasic example NSEC — Convert Time Stamp to Universal Time (p. 2000 shows
one of several practical uses of the NSEC data type.

Section 7. Installation

CRBasic Example 35. NSEC — One Element Time Array

'"This program example demonstrates the use of NSEC data type to determine seconds since
'00:00:00 1 January 1990. A time stamp is retrieved into variable TimeVar(1l) as seconds
'since 00:00:00 1 January 1990. Because the variable is dimensioned to 1, NSEC assumes
"the value = seconds since 00:00:00 1 January 1990.

'Declarations
Public PTemp
Public TimeVar(l) As Long

DataTable(FirstTable,True,-1)
DataInterval(0,1,Sec,10)
Sample(1,PTemp, FP2)
EndTable

DataTable(SecondTable,True,-1)
DataInterval(0,5,Sec,10)
Sample(1,TimeVar,Nsec)
EndTable

"Program

BeginProg

Scan(1,Sec,0,0)
TimeVar = FirstTable.TimeStamp
CallTable FirstTable
CallTable SecondTable

NextScan

EndProg

CRBasic Example 36. NSEC — Two Element Time Array

'"This program example demonstrates how to determine seconds since 00:00:00 1 January 1990,
'and microseconds into the last second. This is done by retrieving variable TimeStamp into
'variables TimeOfMaxVar (1) and TimeOfMaxVar(2). Because the variable TimeOfMaxVar() 1is
"dimensioned to 2, NSEC assumes the following:

" 1) TimeOfMaxVar(1l) = seconds since 00:00:00 1 January 1990, and

" 2) TimeOfMaxVar(2) = microseconds into a second.

'Declarations
Public PTempC
Public MaxVar
Public TimeOfMaxVar(2) As Long

DataTable(FirstTable,True,-1)
DataInterval(0,1,Min,10)
Maximum(l,PTempC,FP2,False,True)

EndTable

DataTable(SecondTable,True,-1)
DataInterval(0,5,Min,10)
Sample(1,MaxVar,FP2)
SampTle(1,TimeOfMaxVar,Nsec)

EndTable

201

Section 7. Installation

202

"Program
BeginProg
Scan(1,Sec,0,0)

Pane1Temp (PTempC,250)

MaxVar = FirstTable.PTempC_Max
TimeOfMaxVar = FirstTable.PTempC_TMx
CallTable FirstTable

CallTable SecondTable

NextScan
EndProg

CRBasic Example 37. NSEC — Seven and Nine Element Time Arrays

'"This program example demonstrates the use of NSEC data type to sample a time stamp into
"final-data memory using an array dimensioned to 7 or 9.

'A time stamp is retrieved into variable rTime(1) through rTime(9) as year, month, day,
"hour, minutes, seconds, and microseconds using the RealTime() instruction. The first
'seven time values are copied to variable rTime2(1) through rTime2(7). Because the
'variables are dimensioned to 7 or greater, NSEC assumes the first seven time factors
"in the arrays are year, month, day, hour, minutes, seconds, and microseconds.

'Declarations

Public rTime(9) As Long "(or Float)
Public rTime2(7) As Long "(or Float)
Dim x

DataTable(SecondTable,True,-1)
DataInterval(0,5,Sec,10)
Sample(1, rTime,NSEC)
Sample(1, rTime2,NSEC)

EndTable

"Program
BeginProg
Scan(1,Sec,0,0)

RealTime(rTime)

For x = 1 To 7
rTime2(x) = rTime(x)

Next

CallTable SecondTable

NextScan

EndProg

Section 7. Installation

CRBasic Example 38. NSEC —Convert Timestamp to Universal Time

'"This program example demonstrates the use of NSEC data type to convert a data time stamp
"to universal time.

'"Application: the CR800 needs to display Universal Time (UT) in human readable
'string forms. The CR800 can calculate UT by adding the appropriate offset to a
'standard time stamp. Adding offsets requires the time stamp be converted to numeric
"form, the offset applied, then the new time be converted back to string forms.

'"These are accomplished by:

" 1) reading Public.TimeStamp into a LONG numeric variable.

' 2) store it into a type NSEC datum in final-data memory.

" 3) sample it back into string form using the TableName.FieldName notation.

'Declarations
Public UTTime(3) As String * 30

Dim TimeLong As Long
Const UTC_Offset = -7 * 3600 '-7 hours offset (as seconds)

DataTable(TimeTable, true, 1)
Sample(1,TimeLong,Nsec)
EndTable

"Program
BeginProg
Scan(1,Sec,0,0)

'1) Read Public.TimeStamp into a LONG numeric variable. Note that TimeStamp is a
! system variable, so it is not declared.
TimeLong = Public.TimeStamp(1,1) + UTC_Offset

'2) Store it into a type NSEC datum in final-data memory.
CallTable(TimeTable)

'3) sample time to three string forms using the TableName.FieldName notation.
'"Form 1: "mm/dd/yyyy hr:mm:ss

UTTime(1l) = TimeTable.TimeLong(1,1)

"Form 2: "dd/mm/yyyy hr:mm:ss

UTTime(2) = TimeTable.TimelLong(3,1)

"Form 3: "ccyy-mm-dd hr:mm:ss (ISO 8601 Int'l Date)

UTTime(3) = TimeTable.TimeLong(4,1)

NextScan
EndProg

7.9.11 Field Calibration — Details

Related Topics:
 Field Calibration — Overview (. 73)
 Field Calibration — Details (p. 203)

Calibration increases accuracy of a sensor by adjusting or correcting its output to
match independently verified quantities. Adjusting a sensor output signal is
preferred, but not always possible or practical. By using the FieldCal() or
FieldCalStrain() instruction, a linear sensor output can be corrected in the CR800
after the measurement by adjusting the multiplier and offset.

203

Section 7. Installation

When included in the CRBasic program, FieldCal() and FieldCalStrain() can be
used through a datalogger support software calibration wizard (p. 483). Help for
using the wizard is available in the software.

A more arcane procedure that does not require a PC can be executed though the
CR1000KD Keyboard / Displayor. If you do not have a keyboard, the same
procedure can be done in a numeric monitor (p. 495. Numeric monitor screen
captures are used in the following procedures. Running through these procedures
will give you a foundation for how field calibration works, but use of the
calibration wizard for routine work is recommended.

Syntax of FieldCal() and FieldCalStrain() is summarized in the section
Calibration Functions (p. 572. More detail is available in CRBasic Editor Help.

7.9.11.1 Field Calibration CAL Files

Calibration data are stored automatically, usually on the CR800 CPU: drive, in
CAL (.cal) files. These data become the source for calibration factors when
requested by the LoadFieldCal() instruction. A file is created automatically on
the same CR800 memory drive and given the same name as the program that
creates and uses it. For example, the CRBasic program file CPU:MyProg.cr8
generates the CAL file CPU:MyProg.cal.

CAL files are created if a program using FieldCal() or FieldCalStrain() does not
find an existing, compatible CAL file. Files are updated with each successful
calibration with new calibration factors factors. A calibration history is recorded
only if the CRBasic program creates a data table (. 485 with the
SampleFieldCal() instruction.

Note CAL files created by FieldCal() and FieldCalStrain() differ from files
created by the CalFile() instruction (File Management (p. 361)).

7.9.11.2 Field Calibration Programming

204

Field-calibration functionality is included in a CRBasic program through either of
the following instructions:

e FieldCal() — the principal instruction used for non-strain gage type sensors.
For introductory purposes, use one FieldCal() instruction and a unique set of
FieldCal() variables for each sensor. For more advanced applications, use
variable arrays.

¢ FieldCalStrain() — the principal instruction used for strain gages measuring
microstrain. Use one FieldCalStrain() instruction and a unique set of
FieldCalStrain() variables for each sensor. For more advanced applications,
use variable arrays.

FieldCal() and FieldCalStrain() use the following instructions:

o LoadFieldCal() — an optional instruction that evaluates the validity of, and
loads values from a CAL file.

e SampleFieldCal — an optional data-storage output instruction that writes the
latest calibration values to a data table (not to the CAL file).

FieldCal() and FieldCalStrain() use the following reserved Boolean variable:

e NewFieldCal — a reserved Boolean variable under CR800 control used to

Section 7. Installation

optionally trigger a data storage output table one time after a calibration has
succeeded.

See CRBasic Editor Help for operational details on CRBasic instructions.

7.9.11.3Field Calibration Wizard Overview

The LoggerNet and RTDAQ field calibration wizards step you through the
procedure by performing the mode-variable changes and measurements
automatically. You set the sensor to known values and input those values into the
wizard.

When a program with FieldCal() or FieldCalStrain() is running, select
LoggerNet or RTDAQ | Datalogger | Calibration Wizard to start the wizard. A
list of measurements used is shown.

For more information on using the calibration wizard, consult LoggerNet or
RTDAQ Help.

7.9.11.4Field Calibration Numeric Monitor Procedures

Manual field calibration through the numeric monitor (in lieu of a CR1000KD
Keyboard / Display is presented here to introduce the use and function of the
FieldCal() and FieldCalStrain() instructions. This section is not a
comprehensive treatment of field-calibration topics. The most comprehensive
resource to date covering use of FieldCal() and FieldCalStrain() is RTDAQ
software documentation available at www.campbellsci.com
http://www.campbellsci.com. Be aware of the following precautions:

e The CR800 does not check for out-of-bounds values in mode variables.
e Valid mode variable entries are 1 or 4.

Before, during, and after calibration, one of the following codes will be stored in
the CalMode variable:

Table 28. FieldCal() Codes
Value Returned | State

-1 Error in the calibration setup

-2 Multiplier set to 0 or NAN; measurement = NAN

-3 Reps is set to a value other than I or the size of MeasureVar

0 No calibration

1 Ready to calculate (KnownVar holds the first of a two point
calibration)

2 Working

3 First point done (only applicable for two point calibrations)

4 Ready to calculate (KnownVar holds the second of a two-point
calibration)

5 Working (only applicable for two point calibrations)

6 Calibration complete

205

http://www.campbellsci.com/

Section 7. Installation

7.9.11.4.1 One-Point Calibrations (Zero or Offset)

Zero operation applies an offset of equal magnitude but opposite sign. For
example, when performing a zeroing operation on a measurement of 15.3, the
value —15.3 will be added to subsequent measurements.

Offset operation applies an offset of equal magnitude and same sign. For
example, when performing an offset operation on a measurement of 15.3, the
value 15.3 will be added to subsequent measurements.

See FieldCal() Zero or Tare (Opt 0) Example . 207) and FieldCal() Offset (Opt 1)
Example (p. 209) for demonstration programs:

1. Use a separate FieldCal() instruction and variables for each sensor to be
calibrated. In the CRBasic program , put the FieldCal() instruction
immediately below the associated measurement instruction.

2. Set mode variable = 0 or 6 before starting.
3. Place the sensor into zeroing or offset condition.
4. Set KnownVar variable to the offset or zero value.

5. Set mode variable = 1 to start calibration.

7.9.11.4.2 Two-Point Calibrations (gain and offset)

Use this two-point calibration procedure to adjust multipliers (slopes) and offsets
(y intercepts). See FieldCal() Slope and Offset (Opt 2) Example . 211) and
FieldCal() Slope (Opt 3) Example (p. 214) for demonstration programs:

1. Use a separate FieldCal() instruction and separate variables for each sensor to
be calibrated.

2. Ensure mode variable = 0 or 6 before starting.
a. If Mode > 0 and # 6, calibration is in progress.
b. If Mode < 0, calibration encountered an error.
3. Place sensor into first known point condition.
4. Set KnownVar variable to first known point.
5. Set Mode variable = 1 to start first part of calibration.
a. Mode = 2 (automatic) during the first point calibration.
b. Mode = 3 (automatic) when the first point is completed.
6. Place sensor into second known point condition.
7. Set KnownVar variable to second known point.
8. Set Mode = 4 to start second part of calibration.
a. Mode =5 (automatic) during second point calibration.

b. Mode = 6 (automatic) when calibration is complete.

206

Section 7. Installation

7.9.11.4.3

Zero Basis Point Calibration

Zero-basis calibration (FieldCal() instruction Option 4) is designed for use with

static vibrating-wire measurements. It loads values into zero-point variables
to track conditions at the time of the zero calibration. See FieldCal() Zero
Basis (Opt 4) Example (p. 216) for a demonstration program.

7.9.11.5Field Calibration Examples
FieldCal() has the following calibration options:

Zero

Offset

Two-point slope and offset

Two-point slope only

Zero basis (designed for use with static vibrating-wire measurements)

These demonstration programs are provided as an aid in becoming familiar with
the FieldCal() features at a test bench without actual sensors. For the purpose of
the demonstration, sensor signals are simulated by CR800 terminals configured
for excitation. To reset tests, use the support software File Control (p. 488) menu
commands to delete .cal files, and then send the demonstration program again to
the CR800. Term equivalents are as follows:

7.9.11.5.1

zero"
gain"

"offset" = "y- intercept”
"multiplier" = "slope" ="

FieldCal() Zero or Tare (Opt 0) Example

Most CRBasic measurement instructions have a multiplier and offset parameter.
FieldCal() Option 0 adjusts the offset argument such that the output of the sensor
being calibrated is set to the value of the FieldCal() KnownVar parameter, which
is set to 0. Subsequent measurements have the same offset subtracted. Option 0
does not affect the multiplier argument.

Example Case: A sensor measures the relative humidity (RH) of air. Multiplier is
known to be stable, but sensor offset drifts and requires regular zeroing in a
desiccated chamber. The following procedure zeros the RH sensor to obtain the
calibration report shown. To step through the example, use the CR1000KD
Keyboard Display or software numeric monitor (p. 495) to change variable values as

directed.
Table 29. Calibration Report for Relative Humidity Sensor
CRBasic Variable At Deployment At 30-Day Service

SimulatedRHSignal output 100 mV 105 mV

KnownRH (desiccated 0% 0%

chamber)

RHMultiplier 0.05 % / mV 0.05 % / mV

RHOffset S5 % -5.25 %

RH 0% 0%

1. Send CRBasic example FieldCal() Zero (p. 208 to the CR800. A terminal
configured for excitation has been programmed to simulate a sensor output.

207

Section 7. Installation

208

2. To place the simulated RH sensor in a simulated-calibration condition (in the
field it would be placed in a desiccated chamber), place a jumper wire between
terminals VX1 and SE1. The following variables are preset by the program:
SimulatedRHSignal = 100, KnownRH = (.

3. To start the 'calibration', set variable CalMode = 1. When CalMode increments
to 6, zero calibration is complete. Calibrated RHOffSet will equal -5% at this
stage of this example.

4. To continue this example and simulate a zero-drift condition, set variable
SimulatedRHSignal = 105.

5. To simulate conditions for a 30-day-service calibration, again with desiccated
chamber conditions, keep variable KnownRH = 0.0. Set variable CalMode =
1 to start calibration. When CalMode increments to 6, simulated 30-day-
service zero calibration is complete. Calibrated RHOffset will equal -5.2 %.

CRBasic Example 39. FieldCal() Zero

'"This program example demonstrates the use of FieldCal() in calculating and applying a zero
"calibration. A zero calibration measures the signal magnitude of a sensor in a known zero
"condition and calculates the negative magnitude to use as an offset in subsequent
'measurements. It does not affect the multiplier.

r

'"This program demonstrates the zero calibration with the following procedure:
" -- Simulate a signal from a relative-humidity sensor.

" -- Measure the 'sensor' signal.

" -- Calculate and apply a zero calibration.

"You can set up the simulation by loading this program into the CR800 and interconnecting
"the following terminals with a jumper wire to simulate the relative-humidity sensor signal

'as follows:
" Vx1 --- SEI

'"For the simulation, the initial 'sensor' signal is set automatically. Start the zero routine
'by setting variable CalMode = 1. When CalMode = 6 (will occur automatically after 10
'measurements), the routine is complete. Note the new value in variable RHOffset. Now

'enter the following millivolt value as the simulated sensor signal and note how the new

'offset is added to the measurement:
" SimulatedRHSignal = 1000

'"NOTE: This program places a .cal file on the CPU: drive of the CR800. The .cal file must
'be erased to reset the demonstration.

'"DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MILLIVOLT SIGNAL MAGNITUDE
PubTic SimulatedRHSignal = 100

"DECLARE CALIBRATION STANDARD VARIABLE AND SET PERCENT RH MAGNITUDE
PubTic KnownRH = 0

"DECLARE MEASUREMENT RESULT VARIABLE.
PubTic RH

"DECLARE OFFSET RESULT VARIABLE
PubTic RHOffset

Section 7. Installation

'"DECLARE VARIABLE FOR FieldCal() CONTROL
Public CalMode

'"DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable(CalHist,NewFieldCal,200)

SampleFieldCal
EndTable

BeginProg
"LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
'"Effective after the zero calibration procedure (when variable CalMode
LoadFieldCal (true)

Scan(100,mSec,0,0)
'SIMULATE SIGNAL THEN MAKE THE MEASUREMENT
'Zero calibration is applied when variable CalMode = 6
ExciteV(Vx1l,SimulatedRHSignal,0)
VoltSE(RH,1,mv2500,1,1,0,250,0.05,RHOffset)

"PERFORM A ZERO CALIBRATION.

'Start by setting variable CalMode = 1. Finished when variable CalMode = 6.
'FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)

FieldCal(0,RH,1,0,RHOffset,CalMode,KnownRH,1,30)

'"If there was a calibration, store calibration values into data table CalHist

CallTable(CaTlHist)

NextScan
EndProg

7.9.11.5.2 FieldCal() Offset (Opt 1) Example

Most CRBasic measurement instructions have a multiplier and offset parameter.
FieldCal() Option 1 adjusts the offSet argument such that the output of the sensor
being calibrated is set to the magnitude of the FieldCal() KnownVar parameter.
Subsequent measurements have the same offset added. Option 0 does not affect
the multiplier argument. Option 0 does not affect the multiplier argument.

Example Case: A sensor measures the salinity of water. Multiplier is known to be
stable, but sensor offset drifts and requires regular offset correction using a
standard solution. The following procedure offsets the measurement to obtain the

calibration report shown.

Table 30. Calibration Report for Salinity Sensor

CRBasic Variable At Deployment At Seven-Day Service
SimulatedSalinitySignal output | 1350 mV 1345 mV
KnownSalintiy (standard 30 mg/l 30 mg/1
solution)
SalinityMultiplier 0.05 mg/l/mV 0.05 mg/l/mV
SalinityOffset -37.50 mg/1 -37.23 mg/l
Salinity reading 30 mg/1 30 mg/1

1. Send CRBasic example FieldCal() Offset @p. 210) to the CR800. A terminal

configured for excitation has been programmed to simulate a sensor output.

209

Section 7. Installation

210

2. To simulate the salinity sensor in a simulated-calibration condition, (in the field
it would be placed in a 30 mg/l standard solution), place a jumper wire
between terminals VX1 and SE1. The following variables are preset by the
program: SimulatedSalinitySignal = 1350, KnownSalinity = 30.

3. To start a simulated calibration, set variable CalMode = 1. When CalMode
increments to 6, offset calibration is complete. The calibrated offset will equal
-37.48 mg/1.

4. To continue this example and simulate an offset-drift condition, set variable
SimulatedSalinitySignal = 1345.

5. To simulate seven-day-service calibration conditions (30 mg/1 standard
solution), the variable KnownsSalinity remains at 30.0. Change the value in
variable CalMode to 1 to start the calibration. When CalMode increments to 6,
the seven-day-service offset calibration is complete. Calibrated offset will
equal -37.23 mg/I.

CRBasic Example 40. FieldCal() Offset

'"This program example demonstrates the use of FieldCal() in calculating and applying an
'offset calibration. An offset calibration compares the signal magnitude of a sensor to a
"known standard and calculates an offset to adjust the sensor output to the known value.
'"The offset is then used to adjust subsequent measurements.

'"This program demonstrates the offset calibration with the following procedure:
" -- Simulate a signal from a salinity sensor.

-- Measure the 'sensor' signal.

-- Calculate and apply an offset.

r
r

"You can set up the simulation by loading this program into the CR800 and interconnecting the
"following terminals with a jumper wire to simulate the salinity sensor signal as follows:
" Vx1 --- SEI

"For the simulation, the value of the calibration standard and the initial 'sensor' signal
'are set automatically. Start the calibration routine by setting variable CalMode = 1. When
"CalMode = 6 (will occur automatically after 10 measurements), the routine is complete.

'"Note the new value in variable SalinityOffset. Now enter the following millivolt value as
"the simulated sensor signal and note how the new offset is added to the measurement:

" SimulatedSalinitySignal = 1345

'"NOTE: This program places a .cal file on the CPU: drive of the CR800. The .cal file must
'be erased to reset the demonstration.

'"DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MAGNITUDE
Public SimulatedSalinitySignal = 1350 'mg/1

"DECLARE CALIBRATION STANDARD VARIABLE AND SET MAGNITUDE
Public KnownSalinity = 30 'mg/1

Section 7. Installation

"DECLARE MEASUREMENT RESULT VARIABLE.
Public Salinity

'"DECLARE OFFSET RESULT VARIABLE
Public SalinityOffset

"DECLARE VARIABLE FOR FieldCal() CONTROL
Public CalMode

'"DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable(CalHist,NewFieldCal,200)

SampleFieldCal
EndTable

BeginProg
"LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
'"Effective after the zero calibration procedure (when variable CalMode = 6)
LoadFieldCal (true)

Scan(100,mSec,0,0)
'SIMULATE SIGNAL THEN MAKE THE MEASUREMENT
'Zero calibration is applied when variable CalMode = 6
ExciteV(Vx1l,SimulatedSalinitySignal,0)
VoltSE(Salinity,1,mv2500,1,1,0,250,0.05,Salinity0Offset)

"PERFORM AN OFFSET CALIBRATION.

'Start by setting variable CalMode = 1. Finished when variable CalMode = 6.
'"FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)

FieldCal(1,Salinity,1,0,SalinityOffset,CalMode,KnownSalinity,1,30)

'"If there was a calibration, store calibration values into data table CalHist

CallTable(CalHist)

NextScan
EndProg

7.9.11.5.3 FieldCal() Slope and Offset (Opt 2) Example

Most CRBasic measurement instructions have a multiplier and offset parameter.
FieldCal() Option 2 adjusts the multiplier and offset arguments such that the
output of the sensor being calibrated is set to a value consistent with the linear
relationship that intersects two known points sequentially entered in the
FieldCal() KnownVar parameter. Subsequent measurements are scaled with the
same multiplier and offset.

Example Case: A meter measures the volume of water flowing through a pipe.
Multiplier and offset are known to drift, so a two-point calibration is required
periodically at known flow rates. The following procedure adjusts multiplier and
offset to correct for meter drift as shown in the calibration report below. Note that
the flow meter outputs millivolts inversely proportional to flow.

211

Section 7. Installation

Table 31. Calibration Report for Flow Meter

CRBasic Variable At Deployment At Seven-Day Service
SimulatedFlowSignal 300 mV 285 mV
KnownFlow 30L/s 30L/s
SimulatedFlowSignal 550 mV 522 mV
KnownFlow 10L/s 10L/s
FlowMultiplier -0.0799 L/s/mV -0.0841 L/s/mV
FlowOffset 53.90 L 53.92L

1. Send CRBasic example FieldCal() Two-Point Slope and Offset (p. 212) to the
CR800.

2. To place the simulated flow sensor in a simulated calibration condition (in the
field a real sensor would be placed in a condition of know flow), place a
jumper wire between terminals VX1 and SE1.

3. Perform the simulated deployment calibration as follows:

a. For the first point, set variable SimulatedFlowSignal = 300. Set variable
KnownFlow = 30.0.

b. Start the calibration by setting variable CalMode = 1.

c. When CalMode increments to 3, for the second point, set variable
SimulatedFlowSignal = 550. Set variable KnownFlow = 10.

d. Resume the deployment calibration by setting variable CalMode = 4

4. When variable CalMode increments to 6, the deployment calibration is
complete. Calibrated multiplier is -0.08; calibrated offset is 53.9.

5. To continue this example, suppose the simulated sensor multiplier and offset
drift. Simulate a seven-day service calibration to correct the drift as follows:

a. Set variable SimulatedFlowSignal = 285. Set variable KnownFlow =
30.0.

b. Start the seven-day service calibration by setting variable CalMode = 1.

¢. When CalMode increments to 3, set variable Simulated FlowSignal = 522.
Set variable KnownFlow = 10.

d. Resume the calibration by setting variable CalMode = 4

6. When variable CalMode increments to 6, the calibration is complete. The
corrected multiplier is -0.08; offset is 53.9.

CRBasic Example 41. FieldCal() Two-Point Slope and Offset

'This program example demonstrates the use of FieldCal() in calculating and applying a
'multiplier and offset calibration. A multiplier and offset calibration compares signal
'magnitudes of a sensor to known standards. The calculated multiplier and offset scale the
"reported magnitude of the sensor to a value consistent with the Tinear relationship that
"intersects known points sequentially entered in to the FieldCal() KnownVar parameter.
'Subsequent measurements are scaled by the new multiplier and offset.

212

Section 7. Installation

'"This program demonstrates the multiplier and offset calibration with the following procedure:
" -- Simulate a signal from a flow sensor.

" -- Measure the 'sensor' signal.

" -- Calculate and apply a multiplier and offset.

"You can set up the simulation by loading this program into the CR800 and interconnecting
"the following terminals with a jumper wire to simulate a flow sensor signal as follows:

" vx1 --- SE1

"For the simulation, the value of the calibration standard and the initial 'sensor' signal
'are set automatically. Start the multiplier-and-offset routine by setting variable
'"CalMode = 1. The value in CalMode will increment automatically. When CalMode = 3, set
'variables SimulatedFlowSignal = 550 and KnownFlow = 10, then set CalMode = 4. CalMode

'will again increment automatically. When CalMode = 6 (occurs automatically after 10
'measurements), the routine is complete. Note the new values in variables FlowMultiplier and
'"FlowOffest. Now enter a new value in the simulated sensor signal as follows and note

'"how the new multiplier and offset scale the measurement:

" SimulatedFlowSignal = 1000

'"NOTE: This program places a .cal file on the CPU: drive of the CR800. The .cal file must
'be erased to reset the demonstration.

'"DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MAGNITUDE
Public SimulatedFlowSignal = 300 '"Excitation mV, second setting is 550

'"DECLARE CALIBRATION STANDARD VARIABLE AND SET MAGNITUDE
PubTic KnownFlow = 30 "Known flow, second setting is 10

"DECLARE MEASUREMENT RESULT VARIABLE.
Public Flow

'"DECLARE MULTIPLIER AND OFFSET RESULT VARIABLES AND SET INITIAL MAGNITUDES

PubTic FlowMultiplier = 1
Public FlowOffset = 0

"DECLARE VARIABLE FOR FieldCal() CONTROL
Public CalMode

"DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable(CalHist,NewFieldCal,200)

SampTleFieldCal
EndTable

BeginProg
"LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
'"Effective after the zero calibration procedure (when variable CalMode = 6)

LoadFieldCal(true)

Scan(100,mSec,0,0)
'SIMULATE SIGNAL THEN MAKE THE MEASUREMENT
'"Multiplier calibration is applied when variable CalMode = 6
ExciteV(Vx1l,SimulatedFlowSignal,0)
VoltSE(Flow,1,mv2500,1,1,0,250,FTowMultiplier,FlowOffset)

213

Section 7. Installation

214

"PERFORM A MULTIPLIER CALIBRATION.

'Start by setting variable CalMode = 1. Finished when variable CalMode = 6.
'"FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)
FieldCal(2,Flow,1,FlowMultiplier,FlowOffset,CalMode,KnownFlow,1,30)

'If there was a calibration, store it into a data table
CallTable(CalHist)

NextScan
EndProg

7.9.11.5.4 FieldCal() Slope (Opt 3) Example

Most CRBasic measurement instructions have a multiplier and offset parameter.
FieldCal() Option 3 adjusts the multiplier argument such that the output of the
sensor being calibrated is set to a value consistent with the linear relationship that
intersects two known points sequentially entered in the FieldCal() KnownVar
parameter. Subsequent measurements are scaled with the same multiplier.
FieldCal() Option 3 does not affect offset.

Some measurement applications do not require determination of offset.
Frequency analysis, for example, may only require relative data to characterize
change.

Example Case: A soil-water sensor is to be used to detect a pulse of water moving
through soil. A pulse of soil water can be detected with an offset, but sensitivity
to the pulse is important, so an accurate multiplier is essential. To adjust the
sensitivity of the sensor, two soil samples, with volumetric water contents of 10%
and 35%, will provide two known points.

Table 32. Calibration Report for Water Content Sensor
CRBasic Variable At Deployment
SimulatedWaterContentSignal 175 mV
KnownW<C 10 %
SimulatedWaterContentSignal 700 mV
KnownWC 35%
WCMultiplier 0.0476 %/mV

The following procedure sets the sensitivity of a simulated soil water-content
sensor.

1. Send CRBasic example FieldCal() Multiplier (. 215) to the CR800.

2. To simulate the soil-water sensor signal, place a jumper wire between terminals
VX1 and SE1.

3. Simulate deployment-calibration conditions in two stages as follows:

a. Set variable SimulatedWaterContentSignal to 175. Set variable
KnownWC to 10.0.

b. Start the calibration by setting variable CalMode = 1.

Section 7. Installation

¢. When CalMode increments to 3, set variable
SimulatedWaterContentSignal to 700. Set variable KnownWC to 35.

d. Resume the calibration by setting variable CalMode = 4

4. When variable CalMode increments to 6, the calibration is complete.
Calibrated multiplier is 0.0476.

CRBasic Example 42. FieldCal() Multiplier

'"This program example demonstrates the use of FieldCal() in calculating and applying a
'multiplier only calibration. A multiplier calibration compares the signal magnitude of a
'sensor to known standards. The calculated multiplier scales the reported magnitude of the
'sensor to a value consistent with the Tinear relationship that intersects known points
'sequentially entered in to the FieldCal() KnownVar parameter. Subsequent measurements are
'scaled by the multiplier.

'"This program demonstrates the multiplier calibration with the following procedure:
" -- Simulate a signal from a water content sensor.

" -- Measure the 'sensor' signal.

' -- Calculate and apply an offset.

"You can set up the simulation by loading this program into the CR800 and interconnecting
"the following terminals with a jumper wire to simulate a water content sensor signal as
"follows:

" Vx1 --- SEI

'"For the simulation, the value of the calibration standard and the initial 'sensor' signal
'are set automatically. Start the multiplier routine by setting variable CalMode = 1. When
"CalMode = 6 (occurs automatically after 10 measurements), the routine is complete. Note the
'new value in variable WCMultiplier. Now enter a new value in the simulated sensor signal
'as follows and note how the new multiplier scales the measurement:

" SimulatedWaterContentSignal = 350

'"NOTE: This program places a .cal file on the CPU: drive of the CR800. The .cal file must
'be erased to reset the demonstration.

"DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MAGNITUDE
Public SimulatedwWaterContentSignal = 175 'mV, second setting is 700 mV

"DECLARE CALIBRATION STANDARD VARIABLE AND SET MAGNITUDE
Public KnownWC = 10 '% by Volume, second setting is 35%

"DECLARE MEASUREMENT RESULT VARIABLE.
PubTic WC

"DECLARE MULTIPLIER RESULT VARIABLE AND SET INITIAL MAGNITUDE
Public WCMultiplier = 1

'"DECLARE VARIABLE FOR FieldCal() CONTROL
PubTic CalMode

'"DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable(CalHist,NewFieldCal,200)

SampTleFieldCal
EndTable

215

Section 7. Installation

216

BeginProg
"LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
'"Effective after the zero calibration procedure (when variable CalMode = 6)

LoadFieldCal(true)

Scan(100,mSec,0,0)
"SIMULATE SIGNAL THEN MAKE THE MEASUREMENT
'Multiplier calibration is applied when variable CalMode = 6
ExciteV(Vx1l,SimulatedWaterContentSignal,0)
VoltSE(WC,1,mv2500,1,1,0,250,WCMultiplier,0)

"PERFORM A MULTIPLIER CALIBRATION.
'Start by setting variable CalMode = 1. Finished when variable CalMode = 6.
'"FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)

FieldCal(3,WC,1,WCMultiplier,0,CalMode,KnownWC,1,30)

'"If there was a calibration, store it into data table CalHist
CallTable(CalHist)

NextScan
EndProg

7.9.11.5.5 FieldCal() Zero Basis (Opt 4) Example -- 8 10 30

Zero-basis calibration (FieldCal() instruction Option 4) is designed for use in
static vibrating-wire measurements. For more information, refer to these
manuals available at www.campbellsci.com:

AVW200-Series Two-Channel Vspect Vibrating-Wire Measurement Device
CR6 Measurement and Control Datalogger Operators Manual

7.9.11.6 Field Calibration Strain Examples

Related Topics:

o Strain Measurements — Overview (p. 68)
e Strain Measurements — Details (. 324)

* FieldCalStrain() Examples (p. 216)

Strain-gage systems consist of one or more strain gages, a resistive bridge in
which the gage resides, and a measurement device such as the CR800 datalogger.
The FieldCalStrain() instruction facilitates shunt calibration of strain-gage
systems and is designed exclusively for strain applications wherein microstrain is
the unit of measure. The FieldCal() instruction (FieldCal() Examples (p. 207)) is
typically used in non-microstrain applications.

Shunt calibration of strain-gage systems is common practice. However, the
technique provides many opportunities for misapplication and misinterpretation.
This section is not intended to be a primer on shunt-calibration theory, but only to
introduce use of the technique with the CR800 datalogger. Campbell Scientific
strongly urges users to study shunt-calibration theory from other sources. A
thorough treatment of strain gages and shunt-calibration theory is available from
Vishay using search terms such as 'micro-measurements', 'stress analysis', 'strain
gages', 'calculator list', at:

http://www.vishaypg.com

Section 7. Installation

Campbell Scientific application engineers also have resources that may assist you
with strain-gage applications.

7.9.11.6.1 Field Calibration Strain Examples

1. Shunt calibration does not calibrate the strain gage itself.

2. Shunt calibration does compensate for long leads and non-linearity in the
resistive bridge. Long leads reduce sensitivity because of voltage drop.
FieldCalStrain() uses the known value of the shunt resistor to adjust the gain
(multiplier / span) to compensate. The gain adjustment (S) is incorporated by
FieldCalStrain() with the manufacturer's gage factor (GF), becoming the
adjusted gage factor (GFaqj), which is then used as the gage factor in
StrainCalc(). GF is stored in the CAL file and continues to be used in
subsequent calibrations. Non-linearity of the bridge is compensated for by
selecting a shunt resistor with a value that best simulates a measurement near
the range of measurements to be made. Strain-gage manufacturers typically
specify and supply a range of resistors available for shunt calibration.

3. Shunt calibration verifies the function of the CR800.

4. The zero function of FieldCalStrain() allows a particular strain to be set as an
arbitrary zero, if desired. Zeroing is normally done after the shunt calibration.

Zero and shunt options can be combined ina single CRBasic program.

CRBasic example FieldCalStrain() Calibration (p. 218) is provided to demonstrate
use of FieldCalStrain() features. If a strain gage configured as shown in figure
Quarter-Bridge Strain-Gage with RC Resistor Shunt (p. 218) is not available, strain
signals can be simulated by building the simple circuit, substituting a 1000 Q
potentiometer for the strain gage. To reset calibration tests, use the support
software File Control (p. 488) menu to delete .cal files, and then send the
demonstration program again to the CR800.

Example Case: A 1000 Q strain gage is placed into a resistive bridge at position
R1. The resulting circuit is a quarter-bridge strain gage with alternate shunt-
resistor (Rc) positions shown. Gage specifications indicate that the gage factor is
2.0 and that with a 249 kQ shunt, measurement should be about 2000 microstrain.

Send CRBasic example FieldCalStrain() Calibration (p. 218 as a program to a
CR800 datalogger.

7.9.11.6.2 Field Calibration Strain Examples

CRBasic example FieldCalStrain() Calibration (. 218) is provided to demonstrate
use of FieldCalStrain() features. If a strain gage configured as shown in figure
Quarter-Bridge Strain-Gage with RC Resistor Shunt (p. 218) is not available, strain
signals can be simulated by building the simple circuit, substituting a 1000 Q
potentiometer for the strain gage. To reset calibration tests, use the support
software File Control (p. 488) menu to delete .cal files, and then send the
demonstration program again to the CR800.

Case: A 1000 Q strain gage is placed into a resistive bridge at position R1. The
resulting circuit is a quarter-bridge strain gage with alternate shunt-resistor (Rc)
positions shown. Gage specifications indicate that the gage factor is 2.0 and that
with a 249 kQ shunt, measurement should be about 2000 microstrain.

217

Section 7. Installation

Send CRBasic example FieldCalStrain() Calibration (p. 218) as a program to a
CR800 datalogger.
Figure 58. Quarter-Bridge Strain-Gage with RC Resistor Shunt

Datalogger
Terminals C

VX ©

voltage excitation (Vi)

differential high
Vi
—
L differential low
R,

1 1kQ

% excitation return \

CRBasic Example 43. FieldCalStrain() Calibration

'"This program example demonstrates the use of the FieldCalStrain() instruction by measuring
'"quarter-bridge strain-gage measurements.

PubTic Raw_mVperV
PubTic MicroStrain

'"Variables that are arguments in the Zero Function
Public Zero_Mode
Public Zero_mVperV

'"Variables that are arguments in the Shunt Function
PubTic Shunt_Mode

Pub1ic KnownRes

Public GF_Adj

PubTic GF_Raw

B il Tables ------——--——--—mm o
DataTable(CalHist,NewFieldCal,50)

SampleFieldCal
EndTable

IS S PROGRAM S S
BeginProg

'Set Gage Factors
GF_Raw = 2.1
GF_Adj = GF_Raw 'The adj Gage factors are used in the calculation of uStrain

'"If a calibration has been done, the following will load the zero or
'Adjusted GF from the Calibration file
LoadFieldCal(True)

218

Section 7. Installation

Scan(100,mSec,100,0)
'Measure Bridge Resistance
BrFull(Raw_mVperV,1,mv25,1,vx1,1,2500,True ,True ,0,250,1.0,0)

'"Calculate Strain for 1/4 Bridge (1 Active Element)
StrainCalc(microStrain,1l,Raw_mVperV,Zero_mVperV,1,GF_Adj,0)

'Steps (1) & (3): Zero Calibration
'Balance bridge and set Zero_Mode = 1 in numeric monitor. Repeat after
'shunt calibration.

FieldCalStrain(10,Raw_mVperV,1,0,Zero_mVperV,Zero_Mode,0,1,10,0 ,microStrain)

'Step (2) Shunt Calibration

'After zero calibration, and with bridge balanced (zeroed), set

'KnownRes = to gage resistance (resistance of gage at rest), then set
'Shunt_Mode = 1. When Shunt_Mode increments to 3, position shunt resistor
'and set KnownRes = shunt resistance, then set Shunt_Mode = 4.
FieldCalStrain(13,MicroStrain,1,GF_Adj,0,Shunt_Mode,KnownRes,1,10,GF_Raw,0)

CallTable CalHist
NextScan
EndProg

7.9.11.6.3 FieldCalStrain() Quarter-Bridge Shunt Example

With CRBasic example FieldCalStrain() Calibration (p. 218 sent to the CR800, and
the strain gage stable, use the CR1000KD Keyboard Display or software numeric
monitor to change the value in variable KnownRes to the nominal resistance of
the gage, 1000 Q, as shown in figure Strain-Gage Shunt Calibration Start (p. 219.
Set Shunt_Maode to 1 to start the two-point shunt calibration. When Shunt_Mode
increments to 3, the first step is complete.

To complete the calibration, shunt R1 with the 249 kQ resistor. Set variable
KnownRes to 249000. As shown in figure Strain-Gage Shunt Calibration Finish
(- 220), set Shunt_Mode to 4. When Shunt_Mode = 6, shunt calibration is
complete.

Figure 59. Strain-Gage Shunt Calibration Start

Faw mypery’ -1.10%9
MicroStrain 2117
fero Mode]
fero mypery 0.0000
KnownFes 1,000
GF Adj 2.100
GF Raw 2.100

219

Section 7. Installation

220

Figure 60. Strain-Gage Shunt Calibration Finish

Faw mypery’ -1.10%9
MicroStrain 225
fero Mode]
fero mypery 0.0000
Shunt Mode B
KnownFes 249 000
GF Adj -2.003
GF Raw 2.000

7.9.11.6.4 FieldCalStrain() Quarter-Bridge Zero

Continuing from FieldCalStrain() Quarter-Bridge Shunt Example (p. 219), keep the
249 kQ resistor in place to simulate a strain. Using the CR1000KD Keyboard
Display or software numeric monitor, change the value in variable Zero_Mode to
1 to start the zero calibration as shown in figure Zero Procedure Start (p. 220).
When Zero_Mode increments to 6, zero calibration is complete as shown in
figure Zero Procedure Finish (p. 220).

Figure 61. Zero Procedure Start

Faw mypery’ -1.110
MicroStrain 2214
fero Mode

fero mypery 0.0000
Shunt Mode B
KnownFes 249 000
GF Adj -2.010
GF Raw 2.000

Figure 62. Zero Procedure Finish

Faw mypery’ -1.110
MicroStrain]
fero Mode 2]
fero mypery -1.10965
Shunt Mode 5]
KnownFes 249 000
GF Adj -2.010
GF Raw 2.000

Section 7. Installation

7.9.12 Measurement: Excite, Delay, Measure

This example demonstrates how to make voltage measurements that require
excitation of controllable length prior to measurement. Overcoming the delay
caused by a very long cable length on a sensor is a common application for this
technique.

CRBasic Example 44. Measurement with Excitation and Delay

'"This program example demonstrates how to perform an excite/delay/measure operation.

'"In this example, the system requires 1 s of excitation to stabilize before the sensors
'are measured. A single-ended measurement is made, and a separate differential measurement
'is made. To see this program in action, connect the following terminal pairs to simulate

'sensor connections:

! Vx1 ------ SE1
! VX2 ------ DIFF 2 H
! DIFF 2 L ------ Ground Symbol

[

'"With these connections made, variables VoltageSE and VoltageDiff will equal 2500 mV.

'Declare variables.
Public VoltageSE As Float
Public VoltageDIFF As Float

'Declare data table

DataTable (Voltage,True,-1)
Sample (1,VoltageSE,Float)
Sample (1,VoltageDIFF,Float)

EndTable

BeginProg
Scan(5,sec,0,0)

'"Excite - delay 1 second - single-ended measurement:
ExciteV (Vx1,2500,0) '<<<<Note: Delay = 0

Delay (0,1000,mSec)

VoltSe (VoltageSE,1,mv5000,1,1,0,250,1.0,0)

'"Excite - delay 1 second - differential measurement:
ExciteV (Vx2,2500,0) '<<<<Note: Delay = 0

Delay (0,1000,mSec)

VoltDiff (VoltageDIFF,1,mv5000,2,True,0,250,1.0,0)

'"Write data to final-data memory
CallTable Voltage

NextScan

EndProg

7.9.13 Measurement: Faster Analog Rates

Certain data acquisition applications require the CR800 to make analog
measurements at rates faster than once per second (> 1 Hz (. 491). The CR800
can make continuous measurements at rates up to 100 Hz, and bursts (. 483) of

221

Section 7. Installation

measurements at rates up to 2000 Hz. Following is a discussion of fast
measurement programming techniques in association with VoltSE(), single-ended
analog voltage measurement instruction. Techniques discussed can also be used
with the following instructions:

Vol1tSEQ
VoltDiff(Q)
TCDiff(Q)
TCSEQ
Brrul1(Q)
BrFullew()
BrHalf()
BrHa1f3w()
BrHalf4w()

The table Summary of Analog Voltage Measurement Rates (p. 222), summarizes the
programming techniques used to make three classes of fast measurement: 100 Hz
maximum-rate, 600 Hz maximum-rate, and 2000 Hz maximum-rate. 100 Hz
measurements can have a 100% duty cycle p. 487). That is, measurements are not
normally suspended to allow processing to catch up. Suspended measurements
equate to lost measurement opportunities and may not be desirable. 600 Hz and
2000 Hz measurements (measurements exceeding 100 Hz) have duty cycles less

than 100%.

Table 33. Summary of Analog Voltage Measurement Rates

or 16 single-ended channels.

Buffers are continuously
"recycled", so no skipped scans.

only freed after a skipped scan.
Allocating more buffers usually
means more time will elapse
between skipped scans.

%::;’m um 100 Hz 600 Hz 2000 Hz
gml;;rnZZus Inputs Multiple inputs Fewer inputs One input
gs;;’g‘;’:le 100% <100% <100%
Maximum
Measaurements N/A Variable 65535
Per Burst
Near simultaneous Near simultaneous : .
measurements on multiple measurements on fewer A single CRBasic measurement
p channels instruction bursts on one channel.
channels Multiple channels are measured
Description Up to 8 sequential differential | Buffers maybe consumed and using multiple instructions, but

the burst on one channel
completes before the burst on the
next channel begins.

Analog Terminal

Differential: 1, 2, 3,4,5,6,7, 8,
then repeat.
Single-ended: 1, 2, 3,4,5,6, 7,

Differential and single-ended:

1,1, 1... to completion, then

2,2,2... to completion, then

Sequence 1,2, 1,2, and so forth.
q 8,9,10, 11,12, 13, 14, 15, 16, 3,3,3..., and so forth.
then repeat.
Excitation Provided in instruction.
for Bridge Provided in instruction. Provided in instruction. Measurements per excitation
Measurements must equal Repetitions

222

Section 7. Installation

Suggest using Scan() /
NextScan with ten (10) ms scan

See CRBasic example

Use Scan() / NextScan with a
20 ms or greater scan interval.
Program for the use of up to

counts.

Use Scan() / NextScan with one
(1) second scan interval. Analog

CRBasic . interval. Program for the use of é?l%lsﬂclif(r)s/ léeli(t)suusle)Scan with input Channel argument is
P’_’°gr_ammmg up to 10 buffers. 1600 b 412 preceded by a dash (-).
Highlights us sub-scan an

See CRBasic example Measuring

By
100% duty cycle.

Measuring VoltSE() at 100 Hz VoltSE() at 2000 Hz

See CRBasic example
Measuring VoltSE() at 200 Hz

7.9.13.1 Measurements from 1 to 100 Hz

Assuming a minimal CRBasic program, measurement rates between 1 and 100 Hz
are determined by the Interval and Units parameters in the Scan() / NextScan
instruction pair. The following program executes VoltSE() at 1 Hz with a 100%
duty cycle.

CRBasic Example 45. Measuring VoltSE() at 1 Hz

PipeLineMode '<<<<Pipeline mode ensures precise timing of measurements.
Public FastSE

DataTable(FastSETable,1,-1)
Sample(1,FastSE(Q),FP2)
EndTable

BeginProg
Scan(1,Sec,0,0) '<<<<Measurement rate is determined by Interval and Units
VoltSe(FastSE(),1,mv2_5,1,False,100, 250,1.0,0)
CallTable FastSETable
NextScan
EndProg

modifying the Interval, Units, and Buffers arguments, VoltSE() can be executed at 100 Hz at
The following program measures 16 analog-input terminals at 100 Hz.

CRBasic Example 46. Measuring VoltSE() at 100 Hz

PipeLineMode '<<<<Pipeline mode ensures precise timing of measurements.
Public FastSE(16)

DataTable(FastSETable,1,-1)
Sample(16,FastSE(),FP2)
EndTable

BeginProg
Scan(10,mSec,10,0) '<<<<Measurement rate is determined by Interval, Units, and Buffers
VoltSe(FastSE(),1,mv2_5,1,False,100, 250,1.0,0)
CallTable FastSETable
NextScan
EndProg

223

Section 7. Installation

224

7.9.13.2 Measurement Rate: 101 to 600 Hz

To measure at rates between 100 and 600 Hz, the SubScan() / NextSubScan
instruction pair is added. Measurements over 100 Hz do not have 100% duty
cycle, but are accomplished through measurement bursts. Each burst lasts for
some fraction of the scan interval. During the remainder of the scan interval, the
CR800 processor catches up on overhead tasks and processes data stored in the
buffers. For example, the CR800 can be programmed to measure VoItSE() on
eight sequential inputs at 200 Hz with a 95% duty cycle as demonstrated in the
following example:

CRBasic Example 47. Measuring VoltSE() at 200 Hz

PipelLineMode '<<<<Pipeline mode ensures precise timing of measurements.
Public BurstSE(8)

DataTable(BurstSETable,1,-1)
Sample(8,BurstSE(Q),FP2)
EndTable

BeginProg
Scan(1,Sec,10,0) '<<<<Buffers added
SubScan(5,mSec,190) '<<<<Interval, Units, and Count determine speed and number of measurements
VoltSe(BurstSE(),8,mv2_5,1,False,100,250,1.0,0)
CallTable BurstSETable
NextSubScan
NextScan
EndProg

Many variations of this basic code can be programmed to achieve other burst rates and duty
cycles.

The SubScan() / NextSubScan instruction pair introduce additional complexities.
The SubScan() / NextSubScan Details (p. 224), introduces some of these. Caution
dictates that a specific configuration be thoroughly tested before deployment.
Generally, faster rates require measurement of fewer inputs. When testing a
program, monitoring the SkippedScan (p. 603), BuffDepth (p. 586), and
MaxBuffDepth (p. 595) registers in the CR800 Status table may give insight into
the use of buffer resources. Bear in mind that when the number of Scan() /
NextScan buffers is exceeded, a skipped scan, and so a missed-data event, will
occur.

7.9.13.2.1 Measurements from 101 to 600 Hz 2

e The number of Counts (loops) of a sub-scan is limited to 65535

e Sub-scans exist only within the Scan() / NextScan structure with the Scan()
interval set large enough to allow a sub-scan to run to completion of its
counts.

e Sub-scan interval (i) multiplied by the number of sub-scans (n) equals a
measure time fraction (MT}), a part of "measure time", which measure time is
represented in the MeasureTime register in table Status Table Fields and
Descriptions (p. 577. The EndScan instruction occupies an additional 100 us
of measure time, so the interval of the main scan has to be > 100 ps plus
measure time outside the SubScan() / EndSubScan construct, plus the time
sub-scans consume.

Section 7. Installation

e Because the task sequencer controls sub-scans, it is not finished until all sub-
scans and any following tasks are complete. Therefore, processing does not
start until sub-scans are complete and the task sequencer has set the delay for
the start of the next main scan. So, one Scan() / NextScan buffer holds all
the raw measurements inside (and outside) the sub-scan; that is, all the
measurements made in a single main scan. For example, one execution of the
following code sequence stores 30000 measurements in one buffer:

Scan(40,Sec,3,0) 'Scan(interval, units, buffers, count)
SubScan(2,mSec,10000)
VoltSe(Measurement(),3,mv5000,1,False,150,250,1.0,0)
CallTable A174
NextSubScan
NextScan

Note Measure time in the previous code is 300 ps + 19 ms, so a Scan() interval
less than 20 ms will flag a compile error.

e Sub scans have the advantage of going at a rate faster than 100 Hz. But
measurements that can run at an integral 100 Hz have an advantage as
follows: since all sub-scans have to complete before the task sequencer can
set the delay for the main scan, processing is delayed until this point (20 ms
in the above example). So more memory is required for the raw buffer space
for the sub-scan mode to run at the same speed as the non-sub-scan mode,
and there will be more delay before all the processing is complete for the
burst. The pipeline (the raw buffer) has to fill further before processing can
start.

e One more way to view sub-scans is that they are a convenient (and only) way
to put a loop around a set of measurements. SubScan() / NextSubScan
specifies a timed loop for so many times around a set of measurements that
can be driven by the task sequencer.

7.9.13.3 Measurement Rate: 601 to 2000 Hz

To measure at rates greater than 600 Hz, VoItSE() is switched into burst mode by
placing a dash (-) before argument in SEChan parameter argument and placing
alternate arguments in other parameters. Alternate arguments are described in the
table Parameters for Analog Burst Mode (. 226). In burst mode, VoltSE() dwells
on a single channel and measures it at rates up to 2000 Hz, as demonstrated in the
CRBasic example Measuring VoltSE() at 2000 Hz. The example program has an
86% duty cycle. That is, it makes measurements over only the leading 86% of the
scan. Note that burst mode places all measurements for a given burst in a single
variable array and stores the array in a single (but very long!) record in the data
table. The exact sampling interval is calculated as,

Tsample = 1.085069 * INT((SettleUSEC / 1.085069) + 0.5

where SettleUSEC is the sample interval (us) entered in the Settling Time
parameter of the analog input instruction.

225

Section 7. Installation

CRBasic Example 48.

Measuring VolItSE() at 2000 Hz

EndTable

BeginProg

NextScan
EndProg

PubTlic BurstSE(1735)

Scan(1,Sec,10,0)
'Measurement speed and count are set within VoltSE()
VoltSe(BurstSE(),1735,mv2_5,-1,False,500,0,1.0,0)
CallTable BurstSETable

DataTable(BurstSETable,1,-1)
Sample(1735,BurstSE(),FP2)

PipeLineMode '<<<<Pipeline mode ensures precise timing of measurements.

Many variations of the burst program are possible. Multiple inputs can be measured, but one

burst is completed before the next begins.

thoroughly tested before deployment.

226

Caution dictates that a specific configuration be

Table 34. Parameters for Analog Burst Mode (601 to 2000 Hz)

CRBasic
Analog
Voltage Description when in Burst Mode
Input
Parameters
A variable array dimensioned to store all measurements from one input. For
example, the command,
L. Dim FastTemp(500)
Destination . .
dimensions array FastTemp() to store 500 measurements (one second of data
at 500 Hz, one-half second of data at 1000 Hz, etc.)
The dimension can be any integer from I to 65535.
The number of measurements to make on one input. This number usually
Repetitions equals the number of elements dimensioned in the Destination array.
Valid arguments range from 7 to 65535.
The analog input voltage range to be used during measurements. No change
Voltave Ran from standard measurement mode. Any valid voltage range can be used.
8¢ 8¢ However, ranges appended with 'C' cause measurements to be slower than
other ranges.
Single-Ended The single-ended analog input terminal number preceded by a dash (-). Valid
Channel arguments range from -7 to -6.
Differential The differential analog input terminal number preceded by a dash (-). Valid
Channel arguments range from -7 to -3.
Measure Offset No change from standard measurement mode. False allows for faster
measurements.
Measurements | Must equal the value entered in Repetitions
per Excitation
Reverse Ex No change from standard measurement mode. For fastest rate, set to False.
Rev Diff No change from standard measurement mode. For fastest rate, set to False.

Section 7. Installation

Table 34. Parameters for Analog Burst Mode (601 to 2000 Hz)

CRBasic

Analog
Voltage
Input
Parameters

Description when in Burst Mode

Settling Time

Sample interval in ps. This argument determines the measurement rate.
500 ps interval = 2000 Hz rate
750 ps interval = 1333.33 Hz rate

Integ

Ignored if set to an integer. _50Hz and _60H? are valid for AC rejection but
are seldom used in burst applications.

Multiplier

No change from standard measurement mode. Enter the proper multiplier.
This is the slope of the linear equation that equates output voltage to the
measured phenomena. Any number greater or less than 0 is valid.

Offset

No change from standard measurement mode. Enter the proper offset. This is
the Y intercept of the linear equation that equates output voltage to the
measured phenomena.

7.9.14 Measurement: PRT

PRTs (platinum resistance thermometers) are high-accuracy resistive devices used

in measuring temperature.

7.9.14.1 Measuring PT100s (100 Q PRTs)

PT100s (100 Q PRTs) are readily available. The CR800 can measure PT100s in

several configurations, each with its own advantages.

7.9.14.1.1 Self-Heating and Resolution

PRT measurements present a dichotomy. Excitation voltage should be maximized
to maximize the measurement resolution. Conversely, excitation voltage should

be minimized to minimize self-heating of the PRT.

If the voltage drop across the PRT is <25 mV, self-heating should be less than
0.001°C in still air. To maximize measurement resolution, optimize the excitation
voltage (Vx) such that the voltage drop spans, but does not exceed, the voltage

input range.

7.9.14.1.2 PRT Calculation Standards

Two CRBasic instructions are available to facilitate PRT measurements.

PRT() — an obsolete instruction. It calculates temperature from RTD

resistance using DIN standard 43760. It is superseded in probably all cases

by PRTCalc().

PRTCalc() — calculates temperature from RTD resistance according to one
of several supported standards. PRTCalc() supersedes PRT() in probably all

cases.

For industrial grade RTDs, the relationship between temperature and resistance is

characterized by the Callendar-Van Dusen (CVD) equation. Coefficients for

different sensor types are given in published standards or by the manufacturers for

227

Section 7. Installation

228

non-standard types. Measured temperatures are compared against the ITS-90
scale, a temperature instrumentation-calibration standard.

PRTCalc() follows the principles and equations given in the US ASTM E1137-04
standard for conversion of resistance to temperature. For temperature range 0 to
650 °C, a direct solution to the CVD equation results in errors < =+0.0005 °C
(caused by rounding errors in CR800 math). For the range of —200 to 0 °C, a
fourth-order polynomial is used to convert resistance to temperature resulting in
errors of <+0.003 °C.

These errors are only the errors in approximating the relationships between
temperature and resistance given in the relevant standards. The CVD equations
and the tables published from them are only an approximation to the true linearity
of an RTD, but are deemed adequate for industrial use. Errors in that
approximation can be several hundredths of a degree Celsius at different points in
the temperature range and vary from sensor to sensor. In addition, individual
sensors have errors relative to the standard, which can be up to +0.3 °C at 0 °C
with increasing errors away from 0 °C, depending on the grade of sensor. Highest
accuracy is usually achieved by calibrating individual sensors over the range of
use and applying corrections to the Rs/Ro value input to the PRTCale()
instruction (by using the calibrated value of Ro) and the multiplier and offset
parameters.

Refer to CRBasic Editor Help for specific PRTCale() parameter entries. The
following information is presented as detail beyond what is available in CRBasic
Editor Help.

The general form of the Callendar-Van Dusen (CVD) equation is shown in the
following equations.

When R/Ro< 1 (K=R/Ro—-1):
T=g*KM +h*KA3 +1% K2 +3 %K
When R/Ro>=1:
T = (SQRT(d * (R/Rp) +) -a) / f

Depending on the code entered for parameter Type, which specifies the platinum-
resistance sensor type, coefficients are assigned values according to the following
tables.

Note Coefficients are rounded to the seventh significant digit to match the CR800
math resolution.

Alpha is defined as:
o = (Ri00 — Ro) / (100 * Ry)
o= (Rioo/Ro—1)/100

where Rigo and Ry are the resistances of the PRT at 100 °C and 0 °C, respectively.

Section 7. Installation

Table 35. PRTCalc() Type-Code-1 Sensor

TEC 60751:2008 (IEC 751), alpha = 0.00385. Now internationally adopted and written into
standards ASTM E1137-04, JIS 1604:1997, EN 60751 and others. This type code is also used
with probes compliant with older standards DIN43760, BS1904, and others. (Reference: IEC
60751. ASTM E1137)

Constant Coefficient
a 3.9083000E-03
d -2.3100000E-06
e 1.7584810E-05
f -1.1550000E-06

1.7909000E+00

h -2.9236300E+00
i 9.1455000E+00
j 2.5581900E+02

Table 36. PRTCalc() Type-Code-2 Sensor

US Industrial Standard, alpha = 0.00392 (Reference: Logan Enterprises)

Constant Coefficient
a 3.9786300E-03
d -2.3452400E-06
e 1.8174740E-05
f -1.1726200E-06
g 1.7043690E+00
h -2.7795010E+00
i 8.8078440E+00
j 2.5129740E+02

Table 37. PRTCale() Type-Code-3 Sensor

US Industrial Standard, alpha = 0.00391 (Reference: OMIL R84 (2003))

Constant Coefficient
a 3.9690000E-03
d -2.3364000E-06
e 1.8089360E-05
f -1.1682000E-06
g 1.7010560E+00
h -2.6953500E+00

229

Section 7. Installation

230

Table 37. PRTCalc() Type-Code-3 Sensor

US Industrial Standard, alpha = 0.00391 (Reference: OMIL R84 (2003))

Constant Coefficient
i 8.8564290E+00
j 2.5190880E+02

Table 38. PRTCalc() Type-Code-4 Sensor

Old Japanese Standard, alpha = 0.003916 (Reference: JIS C 1604:1981, National Instruments)

Constant Coefficient
a 3.9739000E-03
d -2.3480000E-06
e 1.8139880E-05
f -1.1740000E-06
g 1.7297410E+00
h -2.8905090E+00
i 8.8326690E+00
j 2.5159480E+02

Table 39. PRTCalc() Type-Code-5 Sensor

Honeywell Industrial Sensors, alpha = 0.00375 (Reference: Honeywell)

Constant Coefficient
a 3.8100000E-03
d -2.4080000E-06
e 1.6924100E-05
f -1.2040000E-06
g 2.1790930E+00
h -5.4315860E+00
i 9.9196550E+00
j 2.6238290E+02

Section 7. Installation

Table 40. PRTCalc() Type-Code-6 Sensor

Standard ITS-90 SPRT, alpha = 0.003926 (Reference: Minco / Instrunet)

Constant Coefficient
a 3.9848000E-03
d -2.3480000E-06
e 1.8226630E-05
f -1.1740000E-06

1.6319630E+00

h -2.4709290E+00
i 8.8283240E+00
j 2.5091300E+02

7.9.14.2PT100 in Four-Wire Half-Bridge

Example shows:

e How to measure a PRT in a four-wire half-bridge configuration
e How to compensate for long leads

Advantages:

e High accuracy with long leads
Example PRT specifications:

e Alpha=0.00385 (PRT Type 1)

A four-wire half-bridge, measured with BrHalf4W(), is the best configuration for
accuracy in cases where the PRT is separated from bridge resistors by a lead
length having more than a few thousandths of an ohm resistance. In this example,
the measurement range is —10° to 40 °C. The length of the cable from the CR800
and the bridge resistors to the PRT is 500 feet.

Figure PT100 in Four-Wire Half-Bridge (. 233) shows the circuit used to measure a
100 Q PRT. The 10 kQ resistor allows the use of a high excitation voltage and a
low input range. This ensures that noise in the excitation does not have an effect
on signal noise. Because the fixed resistor (Rf) and the PRT (Rs) have
approximately the same resistance, the differential measurement of the voltage
drop across the PRT can be made on the same range as the differential
measurement of the voltage drop across Rs. The use of the same range eliminates
range translation errors that can arise from the 0.01% tolerance of the range
translation resistors internal to the CR800.

7.9.14.2.1 Calculating the Excitation Voltage

The voltage drop across the PRT is equal to Vx multiplied by the ratio of Rs to the
total resistance, and is greatest when Rg is greatest (Rs = 115.54 Q at 40 °C). To
find the maximum excitation voltage that can be used on the +£25 mV input range,
assume V> is equal to 25 mV and use Ohm's Law to solve for the resulting
current, I.

231

Section 7. Installation

7.9.14.2.2

7.9.14.2.3

232

I1=25mV/Rs =25 mV/115. 54 ohms = 0.216 mA
Next solve for Vx:
Vx=T*(Ri +Rs+Rp) =221V

If the actual resistances were the nominal values, the CR800 would not over range
with Vx =2.2 V. However, to allow for the tolerance in actual resistors, set Vx
equal to 2.1 V (e.g., if the 10 kQ resistor is 5% low, i.e., Rs/(R1+Rs+R¢)=115.54 /
9715.54, and Vx must be 2.102 V to keep Vs less than 25 mV).

Calculating the BrHalf4W() Multiplier

The result of BrHalf4W() is equivalent to Rs/R¢.
X =Rs/R¢

PRTCalc() computes the temperature (°C) for a DIN 43760 standard PRT from
the ratio of the PRT resistance to its resistance at 0 °C (Rs/Ro). Thus, a multiplier
of R¢/R is used in BrHalf4W() to obtain the desired intermediate, Rs/Ro (=Rs/R¢
* Ri/Ro). If Rs and Ry were each exactly 100 Q, the multiplier would be 1.
However, neither resistance is likely to be exact. The correct multiplier is found
by connecting the PRT to the CR800 and entering BrHalf4W() with a multiplier
of 1. The PRT is then placed in an ice bath (0 °C), and the result of the bridge
measurement is read. The reading is Rs/Ry, which is equal to Ro/R¢ since Rs=Rg
at 0 °C. The correct value of the multiplier, R¢/Ro, is the reciprocal of this
reading. The initial reading assumed for this example was 0.9890. The correct
multiplier is: R¢#/Ro = 1/0.9890 = 1.0111.

Choosing Rf

The fixed 100 Q resistor must be thermally stable. Its precision is not important
because the exact resistance is incorporated, along with that of the PRT, into the
calibrated multiplier. The 10 ppm/°C temperature coefficient of the fixed resistor
will limit the error due to its change in resistance with temperature to less than
0.15 °C over the —10° to 40 °C temperature range. Because the measurement is
ratiometric (Rs/Ry), the properties of the 10 kQ resistor do not affect the result.

A terminal-input module (TIM) can be used to complete the circuit shown in
figure PT100 in Four-Wire Half-Bridge (p. 233.. Refer to the appendix Signal
Conditioners (p. 623) for information concerning available TIM modules.

Section 7. Installation

Figure 63. PT100 in Four-Wire Half-Bridge

Datalogger
Terminals

Ry
VX1 0 A%

voltage excitation (Vy) 1 0 k Q

<10 ppm/°C

r HOwmmm high
% 100 Q PRT

L differential low
r H o differential high
% By
! 100 ©
L <10 ppm/°C
L differential low [
JR -

j— signal ground

CRBasic Example 49. PT100 in Four-Wire Half-Bridge

'"This program example demonstrates the measurement of a 100-ohm PRT using a four-wire half
'bridge. See FIGURE. PT100 in Four-Wire Half-Bridge (p. 233) for the wiring diagram

PubTic Rs_Ro
Public Deg_C

BeginProg
Scan(1,Sec,0,0)

'BrHalf4W(Dest,Reps,Rangel,Range2,DiffChanl, ExChan,MPS, Ex_mV,RevEx,RevDiff,
" Settling, Integration,Mult,Offset)
BrHalf4w(Rs_Ro,1,mV25,mv25,1,vx1,1,2200,True,True,0,250,1.0111,0)

'"PRTCalc(Destination,Reps,Source, PRTType,Mult,Offset)
PRTCalc(Deg_C,1,Rs_Ro,1,1.0,0) 'PRTType sets alpha

NextScan
EndProg

7.9.14.3PT100 in Three-Wire Half Bridge
Example shows:
e How to measure a PRT in a three-wire half-bridge configuration.
Advantages:

e Uses half as many terminals configured for analog input as four-wire half-
bridge.

Disadvantages:

e May not be as accurate as four-wire half-bridge.
Example PRT specifications:

e Alpha=0.00385 (PRTType 1)

233

Section 7. Installation

234

The temperature measurement requirements in this example are the same as in
PT100 in Four-Wire Half-Bridge (. 231. In this case, a three-wire half-bridge and
CRBasic instruction BRHalf3W() are used to measure the resistance of the PRT.
The diagram of the PRT circuit is shown in figure PT100 in Three-Wire Half-
Bridge (p. 235).

As in section PT100 in Four-Wire Half-Bridge (p. 231), the excitation voltage is
calculated to be the maximum possible, yet allows the measurement to be made
on the £25 mV input range. The 10 kQ resistor has a tolerance of +1%; thus, the
lowest resistance to expect from it is 9.9 kQ. Solve for Vx (the maximum
excitation voltage) to keep the voltage drop across the PRT less than 25 mV:

0.025 V > (Vyx * 115.54)/(9900+115.54)
Vy < 2.16 V

The excitation voltage used is 2.2 V.

The multiplier used in BRHalf3W() is determined in the same manner as in
PT100 in Four-Wire Half-Bridge (p. 231). In this example, the multiplier (R¢/Ro) is
assumed to be 100.93.

The three-wire half-bridge compensates for lead wire resistance by assuming that
the resistance of wire A is the same as the resistance of wire B. The maximum
difference expected in wire resistance is 2%, but is more likely to be on the order
of 1%. The resistance of Rg calculated with BRHalf3W() is actually Rg plus the
difference in resistance of wires A and B. The average resistance of 22 AWG
wire is 16.5 ohms per 1000 feet, which would give each 500 foot lead wire a
nominal resistance of 8.3 ohms. Two percent of 8.3 ohms is 0.17 ohms.
Assuming that the greater resistance is in wire B, the resistance measured for the
PRT (Ro = 100 ohms) in the ice bath would be 100.17 ohms, and the resistance at
40°C would be 115.71. The measured ratio Rs/Ro is 1.1551; the actual ratio is
115.54/100 = 1.1554. The temperature computed by PRTCale() from the
measured ratio will be about 0.1°C lower than the actual temperature of the PRT.
This source of error does not exist in the example in PT100 in Four-Wire Half-
Bridge (p. 231) because a four-wire half-bridge is used to measure PRT resistance.

A terminal input module can be used to complete the circuit in figure PT100 in
Three-Wire Half-Bridge (p. 235. Refer to the appendix Signal Conditioners (p. 623)
for information concerning available TIM modules.

Section 7. Installation

Figure 64. PT100 in Three-Wire Half-Bridge

Datalogger
Terminals

VX voltage excitation (Vi)
10 kQ
1%, <25 ppm/°C
HO

differential high A

.
Vl
L

LO

differential low
. R,
— —_— S
155 m (500 ft) cabling, 22 AWG @ 100 O PRT
-

(o
B

CRBasic Example 50.

PT100 in Three-wire Half-bridge

'"This program example demonstrates the measurement of a 100-ohm PRT using a three-wire half
'"bridge. See FIGURE. PT100 in Three-Wire Half-Bridge (p. 235) for wiring diagram.

Public Rs_Ro
PubTic Deg_C

BeginProg
Scan(1,Sec,0,0)

'BrHalf3W(Dest,Reps,Rangel, SEChan, ExChan,MPE,Ex_mV, True,0,250,100.93,0)
BrHalf3wW(Rs_Ro,1,mv25,1,vx1,1,2200,True,0,250,100.93,0)

'"PRTCalc(Destination,Reps,Source,PRTType,Mult,Offset)
PRTCalc(Deg_C,1,Rs_R0,1,1.0,0)

NextScan
EndProg

7.9.14.4PT100 in Four-Wire Full-Bridge

Example shows:
e How to measure a PRT in a four-wire full-bridge
Advantages:

e Uses half as many terminals configured for analog input as four-wire half-
bridge.

Example PRT Specifications:
e a=0.00392 (PRTType 2)

This example measures a 100 ohm PRT in a four-wire full-bridge, as shown in
figure PT100 in Four-Wire Full-Bridge (p. 237), using CRBasic instruction
BRFull(). In this example, the PRT is in a constant-temperature bath and the
measurement is to be used as the input for a control algorithm.

As described in table Resistive-Bridge Circuits with Voltage Excitation (p. 320), the
result of BRFull() is X,

X = 1000 Vs/Vy

235

Section 7. Installation

236

where,
Vs = measured bridge-output voltage
Vx = excitation voltage

or,
X = 1000 (Rs/(Rs+R1) — R3/(R+R3)).

With reference to figure PT100 in Four-Wire Full-Bridge (p. 237), the resistance of
the PRT (Rs) is calculated as:

Rg = Ry . X' / (1-X")
where
X' = X / 1000 + R3/(R,+R3)

Thus, to obtain the value Rs/Ro, (Ro = Rs @ 0 °C) for the temperature calculating
instruction PRTCale(), the multiplier and offset used in BRFull() are 0.001 and
R3/(R2+R3), respectively. The multiplier (Rf) used in the bridge transform
algorithm (X = R¢ (X/(X-1)) to obtain Rg/Rg is R1/Rg or (5000/100 = 50).

The application requires control of the temperature bath at 50 °C with as little
variation as possible. High resolution is desired so the control algorithm will
respond to very small changes in temperature. The highest resolution is obtained
when the temperature range results in a signal (Vs) range that fills the
measurement range selected in BRFull(). The full-bridge configuration allows
the bridge to be balanced (Vs =0 V) at or near the control temperature. Thus, the
output voltage can go both positive and negative as the bath temperature changes,
allowing the full use of the measurement range.

The resistance of the PRT is approximately 119.7 Q at 50 °C. The 120 Q fixed
resistor balances the bridge at approximately 51 °C. The output voltage is:

Vs = Vx - [Rs/(Rs+Ry) - R3/(Ry+R3)]
= Vyx - [Rs/(Rs+5000) - 0.023438]

The temperature range to be covered is 50 °C £10 °C. At 40 °C, Rs is
approximately 115.8 Q, or:

Vs = -802.24E-6 Vy.

Even with an excitation voltage (Vx) equal to 2500 mV, Vs can be measured on
the +2 5 mV scale (40 °C/ 115.8 Q/-2.006 mV, 60 °C/123.6 Q/ 1.714 mV).
There is a change of approximately 2 mV from the output at 40°C to the output at
51°C,or 181 uV /°C. With a resolution of 0.33 uV on the £2 5 mV range, this
means that the temperature resolution is 0.0009 °C.

The £5 ppm per °C temperature coefficient of the fixed resistors was chosen
because the £0.01% accuracy tolerance would hold over the desired temperature
range.

Section 7. Installation

Figure 65. PT100 in Four-Wire Full-Bridge

Datalogger
Terminals

‘v
VXO

voltage excitation (Vy)
R

2
5kQ

0.01%. <5 ppm/°C

R,
5kQ

0.01%, <5 ppm/°C

rHO

differential high
\A R.
S
L1 100 Q PRT B,
differential low 120 Q
- 0.01%, <5 ppm/°C
—_ © signal ground \I

CRBasic Example 51. PT100 in Four-Wire Full-Bridge

'"This program example demonstrates the measurement of a 100-ohm four-wire full bridge.
"FIGURE. PT100 in Four-Wire Full-Bridge (p. 237) for wiring diagram.

See

Public BrFullOut
PubTic Rs_Ro
Public Deg_C

BeginProg
Scan(1,Sec,0,0)

'BrFull(Dst,Reps,Range,DfChan, Vx1,MPS, Ex,RevEx,RevDf,Settle,Integ,Mult,0ffset)
BrFull(BrFullOut,1,mv25,1,vx1,1,2500,True,True,0,250,.001,.02344)

'BrTrans = Rf*(X/(1-X))
Rs_Ro = 50 * (BrFullOut/(1 - BrFullOut))

'"PRTCalc(Destination,Reps,Source,PRTType,Mult,Offset)
PRTCalc(Deg_C,1,Rs_Ro0,2,1.0,0)

NextScan
EndProg

7.9.15 PLC Control — Details

Related Topics:

e PLC Control — Overview . 74)

e PLC Control — Details p. 237)

e PLC Control Modules — Overview (p. 349

e PLC Control Modules — Lists (p. 624

e PLC Control — Instructions (p. 536)

» Switched Voltage Output — Specifications
o Switched Voltage Output — Overview (p. 78)
» Switched Voltage Output — Details (p. 101)

This section is slated for expansion. Below are a few tips.

e Short Cut programming wizard has provisions for simple on/off control.
e PID control can be done with the CR800. Ask a Campbell Scientific
application engineer for more information.

237

Section 7. Installation

e When controlling a PID algorithm, a delay between processing (algorithm
input) and the control (algorithm output) is not usually desirable. A delay
will not occur in either sequential mode (p. 501 or pipeline mode (p. 497),
assuming an appropriately fast scan interval is programmed, and the program
is not skipping scans. In sequential mode, if some task occurs that pushes
processing time outside the scan interval, skipped scans will occur and the
PID control may fail. In pipeline mode, with an appropriately sized scan
buffer, no skipped scans will occur. However, the PID control may fail as the
processing instructions work through the scan buffer.

e To avoid these potential problems, bracket the processing instructions in the
CRBasic program with ProcHiPri and EndProcHiPri. Processing
instructions between these instructions are given the same high priority as
measurement instructions and do not slip into the scan buffer if processing
time is increased. ProcHiPri and EndProcHiPri may not be selectable in
CRBasic Editor. You can type them in anyway, and the compiler will
recognize them.

7.9.16 Serial I/O: Capturing Serial Data

The CR800 communicates with smart sensors that deliver measurement data
through serial data protocols.

Read More Sece Telecommunications and Data Retrieval (p. 3709) for background
on CR800 serial communications.

7.9.16.1 Introduction

238

Serial denotes transmission of bits (1s and 0s) sequentially, or "serially." A byte
is a packet of sequential bits. RS-232 and TTL standards use bytes containing
eight bits each. Consider an instrument that transmits the byte "11001010" to the
CR800. The instrument does this by translating "11001010" into a series of
higher and lower voltages, which it transmits to the CR800. The CR800 receives
and reconstructs these voltage levels as "11001010." Because an RS-232 or TTL
standard is adhered to by both the instrument and the CR800, the byte
successfully passes between them.

If the byte is displayed on a terminal as it was received, it will appear as an ASCII
/ ANSI character or control code. Table ASCII / ANSI Equivalents (p. 238 shows a
sample of ASCII / ANSI character and code equivalents.

Table 41. ASCII / ANSI Equivalents
ASCII Decimal Hex
Byte Character ASCII ASCII
Received Displayed Code Code
00110010 2 50 32
1100010 b 98 62
00101011 + 43 2b
00001101 cr 13 d
00000001 © 1 1

Section 7. Installation

7.9.16.21/0 Ports

Read More See the appendix ASCII / ANSI Table (p. 613) for a complete list of
ASCII / ANSI codes and their binary and hex equivalents.

The face value of the byte, however, is not what is usually of interest. The
manufacturer of the instrument must specify what information in the byte is of
interest. For instance, two bytes may be received, one for character 2, the other for
character b. The pair of characters together, "2b", is the hexadecimal code for "+",
"+" being the information of interest. Or, perhaps, the leading bit, the MSB (Most
Significant Bit), on each of two bytes is dropped, the remaining bits combined,
and the resulting "super byte" translated from the remaining bits into a decimal
value. The variety of protocols is limited only by the number of instruments on
the market. For one in-depth example of how bits may be translated into usable
information, see the appendix FP2 Data Format (p. 617).

Note ASCII/ ANSI control character ff-form feed (binary 00001100) causes a
terminal screen to clear. This can be frustrating for a developer who prefers to see
information on a screen, rather than a blank screen. Some third party terminal
emulator programs, such as Procomm, are useful tools in serial I/O development
since they handle this and other idiosyncrasies of serial communication.

When a standardized serial protocol is supported by the CR800, such as PakBus®
or Modbus, translation of bytes is relatively easy and transparent. However, when
bytes require specialized translation, specialized code is required in the CRBasic
program, and development time can extend into several hours or days.

The CR800 supports two-way serial communication with other instruments
through ports listed in table CR800 Serial Ports (p. 239. A serial device will often
be supplied with a nine-pin D-type connector serial port. Check the manufacture's
pinout for specific information. In many cases, the standard nine-pin RS-232
scheme is used. Ifthat is the case then,

Connect sensor RX (receive, pin 2) to a U or C terminal configured for Tx (Cl1,
C3).

e Connect sensor TX (transmit, pin 3) to a U or C terminal configured for Rx
(C2,C4)
e Connect sensor ground (pin 5) to datalogger ground (G terminal)

Note Rx and Tx lines on nine-pin connectors are sometimes switched by the
manufacturer.

Table 42. CR800 Serial Ports
Serial Port Voltage Level Logic
RS-232 (9 pin) RS-232 Full-duplex asynchronous RS-232
CS I/O (9 pin) TTL Full-duplex asynchronous RS-232
COM1 (C1-C2) TTL Full-duplex asynchronous RS-232/TTL
COM2 (C3-C9) TTL Full-duplex asynchronous RS-232/TTL
Cl1 5VDC SDI-12

239

Section 7. Installation

7.9.16.3 Protocols

Table 42. CR800 Serial Ports

Serial Port Voltage Level Logic

C3 5VDC SDI-12

SDM (used with Campbell Scientific

C1,C2,C3 5VDC peripherals only)

PakBus is the protocol native to the CR800 and transparently handles routine
point-to-point and network communications among PCs and Campbell Scientific
dataloggers. Modbus and DNP3 are industry-standard networking SCADA
protocols that optionally operate in the CR800 with minimal user configuration.
PakBus®, Modbus, and DNP3 operate on the RS-232, CS I/0, and four COM
ports. SDI-12 is a protocol used by some smart sensors that requires minimal
configuration on the CR800.

Read More See SDI-12 Recording (p. 344), SDI-12 Sensor Support (p. 259), PakBus
Overview (. 372, DNP3 (p. 387), and Modbus (p. 391).

Many instruments require non-standard protocols to communicate with the
CR800.

Note If an instrument or sensor optionally supports SDI-12, Modbus, or DNP3,
consider using these protocols before programming a custom protocol. These
higher-level protocols are standardized among many manufacturers and are easy
to use, relative to a custom protocol. SDI-12, Modbus, and DNP3 also support
addressing systems that allow multiplexing of several sensors on a single
communication port, which makes for more efficient use of resources.

7.9.16.4 Glossary of Serial 1/0O Terms

240

Term. asynchronous

The transmission of data between a transmitting and a receiving device
occurs as a series of zeros and ones. For the data to be "read" correctly, the
receiving device must begin reading at the proper point in the series. In
asynchronous communication, this coordination is accomplished by having
each character surrounded by one or more start and stop bits which designate
the beginning and ending points of the information (see synchronous (p. 504)).

Indicates the sending and receiving devices are not synchronized using a
clock signal.
Term. baud rate

The rate at which data are transmitted.

Term. big endian

"Big end first." Placing the most significant integer at the beginning of a
numeric word, reading left to right. The processor in the CR800 is MSB, or
puts the most significant integer first. See the appendix Endianness (p. 619).

Section 7. Installation

Term. cr

Carriage return

Term. data bits
Number of bits used to describe the data, and fit between the start and stop
bits. Sensors typically use 7 or 8 data bits.

Term. duplex

A serial communication protocol. Serial communications can be simplex,
half-duplex, or full-duplex.

Reading list: simplex (p. 501), duplex (p. 241), half-duplex (p. 490), and full-duplex
(p- 490).

Term. If

Line feed. Often associated with carriage return (<cr>). <cr><lIf>.

Term. little endian

"Little end first." Placing the most significant integer at the end of a numeric
word, reading left to right. The processor in the CR800 is MSB, or puts the
most significant integer first. See the appendix Endianness (p. 619.

Term. LSB
Least significant bit (the trailing bit). See the appendix Endianness (p. 619).

Term. marks and spaces

RS-232 signal levels are inverted logic compared to TTL. The different levels

are called marks and spaces. When referenced to signal ground, the valid RS-

232 voltage level for a mark is —3 to —25, and for a space is +3 to +25 with -3

to + 3 defined as the transition range that contains no information. A mark is

a logic 1 and negative voltage. A space is a logic 0 and positive voltage.
Term. MSB

Most significant bit (the leading bit). See the appendix Endianness (p. 619.

Term. RS-232C

Refers to the standard used to define the hardware signals and voltage levels.
The CR800 supports several options of serial logic and voltage levels
including RS-232 logic at TTL levels and TTL logic at TTL levels.

Term. RX

Receive

Term. SP
Space

241

Section 7. Installation

Term. start bit

Is the bit used to indicate the beginning of data.

Term. stop bit
Is the end of the data bits. The stop bit can be 1, 1.5 or 2.

Term. TX

Transmit

7.9.16.5 Serial /0 CRBasic Programming

To transmit or receive RS-232 or TTL signals, a serial port (see table CR800
Serial Ports (p. 239) must be opened and configured through CRBasic with the
SerialOpen() instruction. The SerialClose() instruction can be used to close the
serial port. Below is practical advice regarding the use of SerialOpen() and
SerialClose(). Program CRBasic example Receiving an RS-232 String (p. 247)
shows the use of SerialOpen(). Consult CRBasic Editor Help for more
information.

SerialOpen(COMPort,BaudRate, Format,TXDelay,BufferSize)

e COMPort — Refer to CRBasic Editor Help for a complete list of COM ports
available for use by SerialOpen().

e BaudRate — Baud rate mismatch is frequently a problem when developing a
new application. Check for matching baud rates. Some developers prefer to
use a fixed baud rate during initial development. When set to -nnnn (where
nnnn is the baud rate) or 0, auto baud-rate detect is enabled. Autobaud is
useful when using the CS I/O and RS-232 ports since it allows ports to be
simultaneously used for sensor and PC telecommunications.

e Format — Determines data type and if PakBus® communications can occur
on the COM port. If the port is expected to read sensor data and support
normal PakBus® telemetry operations, use an auto-baud rate argument (0 or -
nnnn) and ensure this option supports PakBus® in the specific application.

o BufferSize — The buffer holds received data until it is removed. Serialln(),
SeriallnRecord(), and SeriallnBlock() instructions are used to read data
from the buffer to variables. Once data are in variables, string manipulation
instructions are used to format and parse the data.

SerialClose() must be executed before SerialOpen() can be used again to
reconfigure the same serial port, or before the port can be used to communicate
with a PC.

7.9.16.5.1 Serial I/O Programming Basics
SerialOpen()1

e Closes PPP (if active)
e Returns TRUE or FALSE when set equal to a Boolean variable
e Be aware of buffer size (ring memory)

242

Section 7. Installation

SerialClose()
e Examples of when to close

o Reopen PPP
o Finished setting new settings in a Hayes modem
o Finished dialing a modem

e Returns TRUE or FALSE when set equal to a Boolean variable
SerialFlush()

e Puts the read and write pointers back to the beginning
o Returns TRUE or FALSE when set equal to a Boolean variable

SerialIn()l

e Can wait on the string until it comes in

e Timeout is renewed after each character is received
e SeriallnRecord() tends to obsolete Serialln().

e Buffer-size margin (one extra record + one byte)
SeriallnBlock()'

e For binary data (perhaps integers, floats, data with NULL characters).
e Destination can be of any type.
e Buffer-size margin (one extra record + one byte).

SerialOutBlock()'

e Binary

e Can run in pipeline mode inside the digital measurement task (along with
SDM instructions) if the COMPort parameter is set to a constant such as
COMI1 or COM2, and the number of bytes is also entered as a constant.

SerialOut()

e Use for ASCII commands and a known response, such as Hayes-modem
commands.
e Ifopen, returns the number of bytes sent. If not open, returns 0.

SerialInRecord()2

e Can run in pipeline mode inside the digital measurement task (along with
SDM instructions) if the COMPort parameter is set to a constant argument
such as COM1 or COM2, and the number of bytes is also entered as a
constant.

e Simplifies synchronization with one way.

e Simplifies working with protocols that send a "record" of data with known
start and/or end characters, or a fixed number of records in response to a poll
command.

e Ifa start and end word is not present, then a time gap is the only remaining
separator of records. Using COM1 or COM2 coincidentally detects a time
gap of >100 bits if the records are less than 256 bytes.

e Buffer size margin (one extra record + one byte).

Processing instructions

2 . Lo L.
Measurement instruction in the pipeline mode

243

Section 7. Installation

3 . Lo .
Measurement instruction if expression evaluates to a constant

7.9.16.5.2 Serial I/O Input Programming Basics

Applications with the purpose of receiving data from another device usually
include the following procedures. Other procedures may be required depending on
the application.

1. Know what the sensor supports and exactly what the data are. Most sensors
work well with TTL voltage levels and RS-232 logic. Some things to

consider:
o Become thoroughly familiar with the data to be captured.
o Can the sensor be polled?
o Does the sensor send data on its own schedule?
o Are there markers at the beginning or end of data? Markers are very

useful for identifying a variable length record.

Does the record have a delimiter character such as a comma, space, or

tab? Delimiters are useful for parsing the received serial string into

usable numbers.

o Will the sensor be sending multiple data strings? Multiple strings usually
require filtering before parsing.

o How fast will data be sent to the CR800?

o Is power consumption critical?

o Does the sensor compute a checksum? Which type? A checksum is
useful to test for data corruption.

O

2. Open a serial port with SerialOpeny().

o Example:
SerialOpen(Coml,9600,0,0,10000)

o Designate the correct port in CRBasic.

o Correctly wire the device to the CR800.

o Match the port baud rate to the baud rate of the device in CRBasic (use a
fixed baud rate — rather than autobaud — when possible).

3. Receive serial data as a string with Serialln() or SeriallnRecord().

— Example:
SerialInRecord(Com2,SerialInString,42,0,35,"",01)

o Declare the string variable large enough to accept the string.

— Example:
PubTic SerialInString As String * 25

o Observe the input string in the input string variable in a numeric monitor
(p- 493).

Note Serialln() and SeriallnRecord() both receive data. SeriallnRecord() is
best for receiving streaming data. Serialln() is best for receiving discrete
blocks.

4. Parse (split up) the serial string using SplitStr()

o Separates string into numeric and / or string variables.

244

Section 7. Installation

o

o

Example:
SplitStr(InStringSplit,SerialInString,"",2,0)

Declare an array to accept the parsed data.

— Example:

Public InStringSplit(2) As String

— Example:

PubTic SplitResult(2) As Float

7.9.16.5.3 Serial I/O Output Programming Basics

Applications with the purpose of transmitting data to another device usually
include the following procedures. Other procedures may be required depending on
the application.

1. Open a serial port with SerialOpen() to configure it for communications.

o

o 0O O O

Parameters are set according to the requirements of the communication
link and the serial device.
Example:

SerialOpen(Coml,9600,0,0,10000)

Designate the correct port in CRBasic.

Correctly wire the device to the CR800.

Match the port baud rate to the baud rate of the device in CRBasic.
Use a fixed baud rate (rather than auto baud) when possible.

2. Build the output string.

o

Example:
SerialOutString = "*" & "27.435" & "," & "56.789" & "#"

Tip — concatenate (add) strings together using & instead of +.
Tip — use CHR() instruction to insert ASCII / ANSI characters into a
string.

3. Output string via the serial port (SerialOut() or SerialOutBlock() command).

o

Example:
SerialOut(Coml,SerialOutString,"",0,100)

Declare the output string variable large enough to hold the entire
concatenation.
Example:

PubTic SerialOutString As String * 100

e SerialOut() and SerialOutBlock() output the same data, except that
SerialOQutBlock() transmits null values while SerialQut() strings are
terminated by a null value.

7.9.16.5.4 Serial I/O Translating Bytes

One or more of three principle data formats may end up in the SeriallnString()
variable (see examples in Serial Input Programming Basics (p. 244)). Data may be
combinations or variations of these. The instrument manufacturer must provide
the rules for decoding the data

245

Section 7. Installation

7.9.16.5.5

246

e Alpha-numeric — Each digit represents an alpha-numeric value. For
example, R = the letter R, and 2 = decimal 2. This is the easiest protocol to
translate since the encode and translation are identical. Normally, the CR800
is programmed to parse (split) the string and place values in variables.

Example string from humidity, temperature, and pressure sensor:

SerialInString = "RH= 60.5 %RH T= 23.7 "C Tdf= 15.6 °C Td=
15.6 "C a= 13.0 g/m3 x= 11.1 g/kg Tw= 18.5 °C H20=
17889 ppmV pw=17.81 hPa pws 29.43 hPa h= 52.3 kJ/kg dT=
8.1 °C"

e Hex Pairs — Bytes are translated to hex pairs, consisting of digits 0 to 9 and
letters a to f. Each pair describes a hexadecimal ASCII / ANSI code. Some

codes translate to alpha-numeric values, others to symbols or non-printable
control characters.

Example sting from temperature sensor:
SerialInString = "23 30 31 38 34 0D"
which translates to

#01 84 cr

e Binary — Bytes are processed on a bit-by-bit basis. Character 0 (Null,
&b00) is a valid part of binary data streams. However, the CR800 uses Null
terminated strings, so anytime a Null is received, a string is terminated. The
termination is usually premature when reading binary data. To remedy this
problem, use SeriallnBlock() or SeriallnRecord() when reading binary data.
The input string variable must be an array set As Long data type, for
example:

Dim SerialInString As Long

Serial I/O Memory Considerations

Several points regarding memory should be considered when receiving and
processing serial data.

e Serial buffer: The serial port buffer, which is declared in SerialOpen(), must
be large enough to hold all data a device will send. The buffer holds the data
for subsequent transfer to variables. Allocate extra memory to the buffer
when needed, but recognize that memory added to the buffer reduces final-
data memory (p. 489).

Note Concerning SeriallnRecord() running in pipeline mode with NBytes
(number of bytes) parameter = 0:

For the digital measurement sequence to know how much room to allocate in
Scan() buffers (default of 3), SeriallnRecord() allocates the buffer size specified
by SerialOpen() (default 10,000, an overkill), or default 3 « 10,000 = 30 kB of
buffer space. So, while making sure enough bytes are allocated in SerialOpen()
(the number of bytes per record ¢ ((records/Scan)+1) + at least one extra byte),
there is reason not to make the buffer size too large. (Note that if the
NumberOfBytes parameter is non-zero, then SeriallnRecord() allocates only this
many bytes instead of the number of bytes specified by SerialOpen()).

e Variable Declarations — Variables used to receive data from the serial
buffer can be declared as Public or Dim. Declaring variables as Dim has the

Section 7. Installation

effect of consuming less telecommunication bandwidth. When public
variables are viewed in software, the entire Public table is transferred at the
update interval. If the Public table is large, telecommunication bandwidth
can be taxed such that other data tables are not collected.

e String Declarations — String variables are memory intensive. Determine
how large strings are and declare variables just large enough to hold the
string. If the sensor sends multiple strings at once, consider declaring a single
string variable and read incoming strings one at a time.

The CR800 adjusts upward the declared size of strings. One byte is always
added to the declared length, which is then increased by up to another three
bytes to make the length divisible by four.

Declared string length, not number of characters, determines the memory
consumed when strings are written to memory. Consequently, large strings
not filled with characters waste significant memory.

7.9.16.5.6 Demonstration Program

CRBasic example Receiving an RS-232 String (p. 247) is provided as an exercise in
serial input / output programming. The example only requires the CR800 and a
single-wire jumper between COM1 Tx and COM2 Rx. The program simulates a
temperature and relative humidity sensor transmitting RS-232 (simulated data
comes out of COM1 as an alpha-numeric string).

CRBasic Example 52. Receiving an RS-232 String

'"This program example demonstrates CR800 serial I/0 features by:
" 1. Simulating a serial sensor
" 2. Transmitting a serial string via COM1 TX.

'"The serial string is received at COM2 RX via jumper wire. Simulated
'air temperature = 27.435 F, relative humidity = 56.789 %.

'"Wiring:
"COM1 TX (C1) ----- COM2 RX (C4)

'Serial Out Declarations
Public TempOut As Float
PubTic RhOut As Float

'Declare a string variable large enough to hold the output string.
Public SerialOutString As String * 25

'Serial In Declarations
'Declare a string variable large enough to hold the input string
Public SerialInString As String * 25

'Declare strings to accept parsed data. If parsed data are strictly numeric, this
'array can be declared as Float or Long

PubTic InStringSplit(2) As String

Alias InStringSplit(1l) = Templn

Alias InStringSplit(2) = RhIn

247

Section 7. Installation

248

'"Main Program
BeginProg

'Simulate temperature and RH sensor
TempOut = 27.435 'Set simulated temperature to transmit
RhOut = 56.789 'Set simulated relative humidity to transmit

Scan(5,Sec, 3, 0)

'Serial Out Code
'"Transmits string "#27.435,56.789#" out COM1
SerialOpen(Coml,9600,0,0,10000) '"Open a serial port

'Build the output string
SerialOutString = "*" & TempOut & "," & RhOut & "#"

"Output string via the serial port
SerialOut(Coml,SerialOQutString,"",0,100)

'Serial In Code

'Receives string "27.435,56.789" via COM2

'Uses * and # character as filters
SerialOpen(Com2,9600,0,0,10000) '"Open a serial port

'Receive serial data as a string
'4?2 is ASCII code for "*", 35 is code for "#"
SerialInRecord(Com2,SerialInString,42,0,35,"",01)

'"Parse the serial string
Sp1litStr(InStringSplit(),SerialInString,"",2,0)

NextScan
EndProg

7.9.16.6 Serial 1/0 Application Testing

A common problem when developing a serial I/O application is the lack of an
immediately available serial device with which to develop and test programs.
Using HyperTerminal, a developer can simulate the output of a serial device or
capture serial input.

Note HyperTerminal is provided as a utility with Windows XP and earlier
versions of Windows. HyperTerminal is not provided with later versions of
Windows, but can be purchased separately from http://www.hilgraeve.com.
HyperTerminal automatically converts binary data to ASCII on the screen.
Binary data can be captured, saved to a file, and then viewed with a hexadecimal
editor. Other terminal emulators are available from third-party vendors that
facilitate capture of binary or hexadecimal data.

7.9.16.6.1 Configure HyperTerminal

Create a HyperTerminal instance file by clicking Start | All Programs |
Accessories | Communications | HyperTerminal. The windows in the figures
HyperTerminal Connection Description (p. 249 through HyperTerminal ASCII
Setup (p. 250 are presented. Enter an instance name and click OK.

Section 7. Installation

Figure 66. HyperTerminal New Connection Description

Connection Description ilﬂ

Enter a name and chooge an icon for the connection:

Mame:
Serial Test

lcon:

Cancel |

Figure 67. HyperTerminal Connect-To Settings
Connect To] llil

" Serial Test

Enter detailz for the phone number that you want ta dial:

Country/regiorn; IUnitEd States [1] j

Area code: 435

Phaone number: I

] I Cancel |

249

Section 7. Installation

Figure 68. HyperTerminal COM-Port Settings Tab

COM1 Properties ﬂil
Port Settings |

Bitz per zecond: ISEDD j

Data bitz: IE! j

Parity: INone j

Stop bits: |1 j

Elow contral
Bestore Defaults |
Ok I Cancel | Apply |

Click File | Properties | Settings | ASCII Setup... and set as shown.
Figure 69. HyperTerminal ASCII Setup
ASCII Setup : 7| %]

— ASCH Sending
[T Sendline ends with line feeds

"2 i_gchn twped characters locall

Line delay: IEI millizeconds.

Character delay: IEI millizeconds.

— ASCI Receiving

[T Append line feeds ta incoming line ends
[T Force incoming data to 7-bit ASCI

IV Wiap lines that exceed terminal width

1] Cancel

250

Section 7. Installation

7.9.16.6.2 Create Send-Text File

Create a file from which to send a serial string. The file shown in the figure
HyperTerminal Send Text-File Example (p. 251 will send the string
[2008:028:10:36:22]C to the CR800. Use Notepad® (Microsoft® Windows®™
utility) or some other text editor that will not place hidden characters in the file.

Figure 70. HyperTerminal Send Text-File Example

B C Command.tut-NotepadIT=[11

File Edit Format Wew Help

[zo0s:028:10:36:22]C ;I
4 F o

To send the file, click Transfer | Send Text File | Browse for file, then click OK.

7.9.16.6.3 Create Text-Capture File

Figure HyperTerminal Text-Capture File Example (p. 251 shows a HyperTerminal
capture file with some data. The file is empty before use commences.

Figure 71. HyperTerminal Text-Capture File Example

P capture.TXT - Notepad | o] 4|
File Edit Format View Help

01+0115. 02+1052 03400270 04401004 05400138 O064512.9 07404771 =
0140115, 0241052 03400270 04401004 05400138 O064512.9 07404771
01+0115. 02+1052 03400270 04401004 05400138 O064512.9 07404771
0140115, 0241053 03400270 04401274 05400138 O064650.9 07404771
0140115, 0241053 03400270 04401274 05400138 0646509 07404771
01+0115. 02+1053 03400270 04401274 05400138 O064650.9 07404771
0140115, 0241053 03400270 04401274 05400138 0646509 07404771
01+0115. 02+1053 03400270 04401274 05400138 O064650.9 07404771 =
1] | v 4

Engage text capture by clicking on Transfer | Capture Text | Browse, select the
file, and then click OK.

7.9.16.6.4 Serial I/O Example Il

CRBasic example Measure Sensors / Send RS-232 Data (p. 252) llustrates a use of
CR800 serial 1/0O features.

Example — An energy company has a large network of older CR510 dataloggers
into which new CR800 dataloggers are to be incorporated. The CR510
dataloggers are programmed to output data in the legacy Campbell Scientific
Printable ASCII format, which satisfies requirements of the customer's data-
acquisition network. The network administrator prefers to synchronize the CR510
clocks from a central computer using the legacy Campbell Scientific C command.
The CR510 datalogger is hard-coded to output printable ASCII and recognize the
C command. CR800 dataloggers, however, require custom programming to
output and accept these same ASCII strings. A similar program can be used to
emulate CR10X and CR23X dataloggers.

251

Section 7. Installation

252

Solution — CRBasic example Measure Sensors / Send RS-232 Data (p. 252) imports
and exports serial data with the CR800 RS-232 port. Imported data are expected
to have the form of the legacy Campbell Scientific time set C command. Exported
data has the form of the legacy Campbell Scientific Printable ASCII format.

Note The nine-pin RS-232 port can be used to download the CR800 program if
the SerialOpen() baud rate matches that of the datalogger support software (p. 630).
However, two-way PakBus® communications will cause the CR800 to
occasionally send unsolicited PakBus® packets out the RS-232 port for at least 40
seconds after the last PakBus® communication. This will produce some "noise" on
the intended data-output signal.

Monitor the CR800 RS-232 port with HyperTerminal as described in the section
Configure HyperTerminal p. 248. Send C-command file to set the clock according
to the text in the file.

Note The HyperTerminal file will not update automatically with actual time. The
file only simulates a clock source for the purposes of this example.

CRBasic Example 53. Measure Sensors / Send RS-232 Data

"Th
'po

is program example demonstrates the import and export serial data via the CR800 RS-232
rt. Imported data are expected to have the form of the legacy Campbell Scientific

"time set C command:

r

[YR:DAY:HR:MM:SS]C

"Exported data has the form of the legacy Campbell Scientific Printable ASCII format:

r

'De
"Vi
Pub
Pub
Pub
Pub
Pub
Pub
Pub
Pub
Pub

"Hi
Dim
Dim
Dim
Dim
Dim
Dim
Dim

01+0115. 02+135 03+00270 04+7999 05+00138 06+07999 07+04771

clarations

sible Variables

1ic StationID

Tic KWH_In

Tic KVarH_I

Tic KWHHol1d

1ic KVarHold

Tic KWHH

Tic KvarH

1ic InString As String * 25
Tic OutString As String * 100

dden Variables

i, rTime(9), OneMinData(6), OutFrag(6) As String
InStringSize, InStringSplit(5) As String

Date, Month, Year, DOY, Hour, Minute, Second, uSecond
LeapMOD4, LeapMOD100, LeapMOD400

Leap4 As Boolean, Leapl00 As Boolean, Leap400 As Boolean
LeapYear As Boolean

CTkSet(7) As Float

Section 7. Installation

'"One Minute Data Table
DataTable(OneMinTable, true,-1)
OpenInterval 'sets interval same as found in CR510
DataInterval(0,1,Min,10)
Totalize(1l, KWHH,FP2,0)
Sample(1l, KwWHHold,FP2)
Totalize(l, KvarH,FP2,0)
Sample(1l, KVarHold,FP2)
Sample(1l, StationID,FP2)
EndTable

"Clock Set Record Data Table

DataTable(ClockSetRecord,True,-1)
Sample(7,ClkSet(),FP2)

EndTable

'Subroutine to convert date formats (day-of-year to month and date)
Sub DOY2MODAY

'Store Year, DOY, Hour, Minute and Second to Input Locations.
Year = InStringSplit(1)

DOY = InStringSplit(2)

Hour = InStringSplit(3)

Minute = InStringSplit(4)

Second = InStringSplit(5)

uSecond = 0

"Check if it is a leap year:

'"If Year Mod 4 = 0 and Year Mod 100 <> 0, then it is a leap year OR
'"If Year Mod 4 = 0, Year Mod 100 = 0, and Year Mod 400 = 0, then it
'is a leap year

LeapYear 0 'Reset Tleap year status location
LeapMOD4 = Year MOD 4

LeapMOD100 = Year MOD 100

LeapMOD400 = Year MOD 400

If LeapMOD4 = 0 Then Leap4 = True Else Leap4 = False

If LeapMOD100 = O Then Leapl00 = True Else Leapl00 = False

If LeapMOD400 = 0 Then Leap400 = True Else Leap400 = False

If Leap4 = True Then
LeapYear = True
If Leapl00 = True Then
If Leap400 = True Then
LeapYear = True

Else
LeapYear = False
EndIf
EndIf
Else
LeapYear = False
EndIf

253

Section 7. Installation

'"If it is a leap year, use this section.
If (LeapYear = True) Then
Select Case DOY

Case Is < 32

Month = 1

Date = DOY
Case Is < 61

Month = 2

Date = DOY + -31
Case Is < 92

Month = 3

Date = DOY + -60
Case Is < 122

Month = 4

Date = DOY + -91
Case Is < 153

Month = 5

Date = DOY + -121
Case Is < 183

Month = 6

Date = DOY + -152
Case Is < 214

Month = 7

Date = DOY + -182
Case Is < 245

Month = 8

Date = DOY + -213
Case Is < 275

Month = 9

Date = DOY + -244
Case Is < 306

Month = 10

Date = DOY + -274
Case Is < 336

Month = 11

Date = DOY + -305
Case Is < 367

Month = 12
Date = DOY + -335
EndSelect

'"If it is not a leap year, use this section.

Else
Select Case DOY

Case Is < 32
Month = 1
Date = DOY

Case Is < 60
Month = 2
Date = DOY + -31

Case Is < 91
Month = 3

Date = DOY + -59

254

Section 7. Installation

Case Is < 121

Month = 4

Date = DOY + -90
Case Is < 152

Month = 5

Date = DOY + -120
Case Is < 182

Month = 6

Date = DOY + -151
Case Is < 213

Month = 7

Date = DOY + -181
Case Is < 244

Month = 8

Date = DOY + -212
Case Is < 274

Month = 9

Date = DOY + -243
Case Is < 305

Month = 10

Date = DOY + -273
Case Is < 336

Month = 11

Date = DOY + -304
Case Is < 366

Month = 12
Date = DOY + -334
EndSelect
EndIf

EndSub

IS S PROGRAM S S S S S S S S
BeginProg

StationID = 4771

Scan(1,Sec, 3, 0)

IS/ Measurement Section// /S S S
'PulseCount (KWH_In, 1, 1, 2, 0, 1, 0) 'Activate this line in working program
KWH_In = 4.5 'Simulation -- delete this 1line from working program

'PulseCount(KvVarH_I, 1, 2, 2, 0, 1, 0) 'Activate this line in working program
KvVarH_I = 2.3 'Simulation -- delete this 1line from working program
KWHH = KWH_In

KvarH = KVarH_I

KWHHold = KWHH + KwWHHold

KVarHold = KvarH + KVarHold

CallTable OneMinTable

IS/ /Serial 1/0 Section/ /1 S S S
SerialOpen(ComRS232,9600,0,0,10000)

255

Section 7. Installation

"/ //Serial Time Set Input Section///////////////

'Accept old C command -- [2008:028:10:36:22]C -- parse, process, set
'clock (Note: Chr(91) = "[", Chr(67) = "C")
SerialInRecord(ComRS232,InString,91,0,67,InStringSize,01)

If InStringSize <> 0 Then
Sp1itStr(InStringSplit,InString,"",5,0)
Call DOY2MODAY "Call subroutine to convert day-of-year
"to month & day
ClkSet (1) = Year
ClkSet(2) = Month
ClkSet(3) = Date
ClkSet(4) = Hour
ClkSet(5) = Minute
ClkSet(6) = Second
CT1kSet(7) = uSecond
'Note: ClkSet array requires year, month, date, hour, min, sec, msec
ClockSet(CTkSet())
CallTable(ClockSetRecord)
EndIf

LSS/ /Serial Output Section// /S
"Construct old Campbell Scientific Printable ASCII data format and output to COMI1

'Read datalogger clock

RealTime(rTime)

If TimeIntoInterval(0,5,Sec) Then
'Load OneMinData table data for processing into printable ASCII
GetRecord(OneMinData(),0OneMinTable, 1)

'Assign +/- Sign
For i=1 To 6
If OneMinData(i) < O Then
'"Note: chr45 is - sign
OutFrag(i)=CHR(45) & FormatFloat(ABS(OneMinData(i)),"%05g")
Else
'"Note: chr43 is + sign
OutFrag(i)=CHR(43) & FormatFloat(ABS(OneMinData(i)),"%05g™)
EndIf
Next i

"Concatenate Printable ASCII string, then push string out RS-232

"(first 2 fields are ID, hhmm):

OutString = "01+0115." & " 02+" & FormatFloat(rTime(4),"%02.0f") & _
FormatFloat(rTime(5),"%02.0f")

OutString = OQutString & " 03" & OutFrag(l) & " 04" & OutFrag(2) & _
" 05" & OutFrag(3)

OutString = OQutString & " 06" & OutFrag(4) & " 07" & OutFrag(5) & _
CHR(13) & CHR(10) & "" 'add CR LF null

'Send printable ASCII string out RS-232 port
SerialOut(ComRS232,0utString,"",0,220)
EndIf

NextScan
EndProg

256

Section 7. Installation

7.9.16.7 Serial 1O Q & A

Q: I am writing a CR800 program to transmit a serial command that contains a
null character. The string to transmit is:

CHR(02)+CHR(01)+"CWGTO"+CHR(03)+CHR (00) +CHR (13)+CHR(10)

How does the logger handle the null character?
Is there a way that we can get the logger to send this?

A: Strings created with CRBasic are NULL terminated. Adding strings together
means the second string will start at the first null it finds in the first string.

Use SerialOutBlock() instruction, which lets you send null characters, as shown
below.

SerialOutBlock (COMRS232, CHR(02) + CHR(01) + "CWGTO" +
CHR(03),8)

SerialOutBlock (COMRS232, CHR(0),1)

SerialOutBlock (COMRS232, CHR(13) + CHR(10),2)

Q: Please summarize when the CR800 powers the RS-232 port. I get that there is
an "always on" setting. How about when there are beacons? Does the
SerialOpen() instruction cause other power cycles?

A: The RS-232 port is left on under the following conditions:

e When the setting RS-232Power (. 601) is set
e When a SerialOpen() with argument COMRS232 is used in the program

Both conditions power-up the interface and leave it on with no timeout. If
SerialClose() is used after SerialOpen(), the port is powered down and in a state
waiting for characters to come in.

Under normal operation, the port is powered down waiting for input. After
receiving input, there is a 40 second software timeout that must expire before
shutting down. The 40 second timeout is generally circumvented when
communicating with the datalogger support software (p. 93) because the software
sends information as part of the protocol that lets the CR800 know that it can shut
down the port.

When in the "dormant" state with the interface powered down, hardware is
configured to detect activity and wake up, but there is the penalty of losing the
first character of the incoming data stream. PakBus® takes this into consideration
in the "ring packets" that are preceded with extra sync bytes at the start of the
packet. For this reason SerialOpen() leaves the interface powered up so no
incoming bytes are lost.

When the CR800 has data to send with the RS-232 port, if the data are not a
response to a received packet, such as sending a beacon, it will power up the
interface, send the data, and return to the "dormant" state with no 40 second
timeout.

Q: How can I reference specific characters in a string?

A: The third 'dimension’' of a string variable provides access to that part of the
string after the position specified. For example, if

TempData = "STOP"

257

Section 7. Installation

258

then,

TempData(l,1,2) "TOP"
TempData(l,1,3) "OoP"
TempData(l,1,1) = "STOP"

To handle single-character manipulations, declare a string with a size of 1. This
single-character string is then used to search for specific characters. In the
following example, the first character of string LargerString is determined and
used to control program logic:

Public TempData As String * 1
TempData = LargerString
If TempData = "S" Then...

A single character can be retrieved from any position in a string. The following
example retrieves the fifth character of a string:

Public TempData As String * 1
TempData = LargerString(1,1,5)

Q: How can I get Serialln(), SeriallnBlock(), and SeriallnRecord() to read
extended characters?

A: Open the port in binary mode (mode 3) instead of PakBus-enabled mode
(mode 0).

Q: Tests with an oscilloscope showed the sensor was responding quickly, but the
data were getting held up in the internals of the CR800 somewhere for 30 ms or
so. Characters at the start of a response from a sensor, which come out in 5 ms,
were apparently not accessible by the program for 30 ms or so; in fact, no data
were in the serial buffer for 30 ms or so.

A: As aresult of internal buffering in the CR800 and / or external interfaces, data
may not appear in the serial port buffer for a period ranging up to 50 ms
(depending on the serial port being used). This should be kept in mind when
setting timeouts for the Serialln() and SerialOut() instructions, or user-defined
timeouts in constructs using the SeriallnChk() instruction.

Q: What are the termination conditions that will stop incoming data from being
stored?

A: Termination conditions:

e TerminationChar argument is received
e MaxNumChars argument is met
o TimeOut argument is exceeded

Serialln() does NOT stop storing when a Null character (&h00) is received
(unless a NULL character is specified as the termination character). As a string
variable, a NULL character received will terminate the string, but nevertheless
characters after a NULL character will continue to be received into the variable
space until one of the termination conditions is met. These characters can later be
accessed with MoveBytes() if necessary.

Q: How can a variable populated by Serialln() be used in more than one
sequence and still avoid using the variable in other sequences when it contains old
data?

Section 7. Installation

A: A simple caution is that the destination variable should not be used in more
than one sequence to avoid using the variable when it contains old data.
However, this is not always possible and the root problem can be handled more
elegantly.

When data arrives independent from execution of the CRBasic program, such as
occurs with streaming data, measures must be taken to ensure that the incoming
data are updated in time for subsequent processes using that data. When the task
of writing data is separate from the task of reading data, you should control the
flow of data with deliberate control features such as the use of flags or a time-
stamped weigh point as can be obtained from a data table.

There is nothing unique about Serialln() with regard to understanding how to
correctly write to and read from global variables using multiple sequences.
Serialln() is writing into an array of characters. Many other instructions write
into an array of values (characters, floats, or longs), such as Move(),
MoveBytes(), GetVariables(), SeriallnRecord(), SeriallnBlock(). In all cases,
when writing to an array of values, it is important to understand what you are
reading, if you are reading it asynchronously, in other words reading it from some
other task that is polling for the data at the same time as it is being written,
whether that other task is some other machine reading the data, like LoggerNet, or
a different sequence, or task, within the same machine. If the process is relatively
fast, like the Move() instruction, and an asynchronous process is reading the data,
this can be even worse because the “reading old data” will happen less often but is
more insidious because it is so rare.

7.9.17 Serial 1/0O: SDI-12 Sensor Support — Programming
Resource

Related Topics:

» SDI-12 Sensor Support — Overview (p. 72)

» SDI-12 Sensor Support — Details (p. 344)

o Serial I/0: SDI-12 Sensor Support — Programming Resource (p. 259
* SDI-12 Sensor Support — Instructions (p. 529)

See the table CR800 Terminal Definitions (p. 76) for C terminal assignments for
SDI-12 input. Multiple SDI-12 sensors can be connected to each configured
terminal. If multiple sensors are wired to a single terminal, each sensor must have
a unique address. SDI-12 standard v 1.3 sensors accept addresses 0 through 9, a
through z, and A through Z. For a CRBasic programming example demonstrating
the changing of an SDI-12 address on the fly, see Campbell Scientific publication
PS200/CH200 12 V Charging Regulators, which is available at
www.campbellsci.com.

The CR800 supports SDI-12 communication through two modes — transparent
mode and programmed mode.

e Transparent mode facilitates sensor setup and troubleshooting. It allows
commands to be manually issued and the full sensor response viewed.
Transparent mode does not record data.

e Programmed mode automates much of the SDI-12 protocol and provides for
data recording.

259

Section 7. Installation

7.9.17.1 SDI-12 Transparent Mode

260

System operators can manually interrogate and enter settings in probes using
transparent mode. Transparent mode is useful in troubleshooting SDI-12 systems
because it allows direct communication with probes.

Transparent mode may need to wait for commands issued by the programmed
mode to finish before sending responses. While in transparent mode, CR800
programs may not execute. CR800 security may need to be unlocked before
transparent mode can be activated.

Transparent mode is entered while the PC is in telecommunications with the
CR800 through a terminal emulator program. It is easily accessed through a
terminal emulator. Campbell Scientific DevConfig program has a terminal utility,
as to other datalogger support software (p. 93.. Keyboard displays cannot be used.

To enter the SDI-12 transparent mode, enter the datalogger support software
terminal emulator as shown in the figure Entering SDI-12 Transparent Mode (p.
261). Press Enter until the CR800 responds with the prompt CR800>. Type
SDI12 at the prompt and press Enter. In response, the query Enter Cx Port is
presented with a list of available ports. Enter the port number assigned to the
terminal to which the SDI-12 sensor is connected. For example, port 1 is entered
for terminal C1. An Entering SDI12 Terminal response indicates that SDI-12
transparent mode is active and ready to transmit SDI-12 commands and display
responses.

Section 7. Installation

Figure 72. Entering SDI-12 Transparent Mode

Deployment [Logger Control \ Data Momtor] File Control [Send 0S [Settings Editor | Terminal

CR >

CR >SDI12

Enter Cx Port

1

Entering SDI12 Terminal

Exit SDI12 Terminal

v | All Caps Echo Input Pause | Start Export Send File

7.9.17.1.1 SDI-12 Transparent Mode Commands
Commands have three components:

e Sensor address (a) — a single character, and is the first character of the
command. Sensors are usually assigned a default address of zero by the
manufacturer. Wildcard address (?) is used in the Address Query command.
Some manufacturers may allow it to be used in other commands.

e Command body (for example, M1) — an upper case letter (the “command”)
followed by alphanumeric qualifiers.

e Command termination (!) — an exclamation mark.

An active sensor responds to each command. Responses have several standard
forms and terminate with <CR><LF> (carriage return—line feed).

SDI-12 commands and responses are defined by the SDI-12 Support Group
(www.sdi-12.0rg) and are summarized in the table Standard SDI-12 Command &
Response Set (p. 262. Sensor manufacturers determine which commands to
support. The most common commands are detailed in the table SDI-12
Commands for Transparent Mode (p. 262).

261

Section 7. Installation

262

Table 43. SDI-12 Commands for Transparent Mode

2
Response
Command Name Command Syntax1 P
Notes
Continuous
Break spacing for at least None
12 milliseconds

Address Query 7 a<CR><LF>
Acknowledge Active a! a<CR><LF>

b<CR><LF> (support for this command is required only if the sensor

!
Change Address aAb! supports software changeable addresses)
Start Concurrent Measurement aC! atttnn<CR><LF>
Additional Concurrent aC1! .. aC9! atttnn<CR><LF>
Measurements
Additional Concurrent
! !

Measurements and Request CRC aCCl! .. aCCo! atttnn<CR><LF>
Send Data aDO! ... aD9! a<values><CR><LF> or a<values><CRC><CR><LF>

allccccccecemmmmmmyvvxxx...xx<CR><LF>. For example,

013CampbellCS1234003STD.03.01 means address = 0, SDI-12 protocol
Send Identification al! version number = 1.3, manufacturer is Campbell Scientific, CS1234 is the

sensor model number (fictitious in this example), 003 is the sensor version

number, STD.03.01 indicates the sensor revision number is .01.
Start Measurement aM! atttn<CR><LF>
Start Measurement and Request CRC® aMC! atttn<CR><LF>
Additional Measurements3 aM1! ... aM9! atttn<CR><LF>
Additional Measurements and

aMC1! ... aMC9! atttn<CR><LF>

Request CRC3

Continuous Measurements aR0! ... aR9! a<values><CR><LF> (formatted like the D commands)
Continuous Measurements and aRCO0! ... aRC9! a<values><CRC><CR><LF> (formatted like the D commands)
Request CRC

Start Veriﬁcation3 aVv! atttn<CR><LF>

1If the terminator '!" is not present, the command will not be issued. The CRBasic SDI12Recorder() instruction, however, will still pick up data
resulting from a previously issued C! command.

2Complete response string can be obtained when using the SDI12Recorder() instruction by declaring the Destination variable as String.

3 . .
This command may result in a service request.

SDI-12 Address Commands

Address and identification commands request metadata about the sensor. Connect
only a single probe when using these commands.

2N

Requests the sensor address. Response is address, a.

Section 7. Installation

Syntax:

?!

aAb!

Changes the sensor address. a is the current address and b is the new address.
Response is the new address.

Syntax:
aAb!

al!

Requests the sensor identification. Response is defined by the sensor
manufacturer, but usually includes the sensor address, SDI-12 version,
manufacturer's name, and sensor model information. Serial number or other
sensor specific information may also be included.

Syntax:

al!

An example of a response from the al! command is:
013NRSYSINC1000001.2101 <CR><LF>
where:

0 is the SDI-12 address.

13 is the SDI-12 version (1.3).
NRSYSINC indicates the manufacturer.
100000 indicates the sensor model.

1.2 is the sensor version.

101 is the sensor serial number.

SDI-12 Start Measurement Commands
Measurement commands elicite responses in the form:
atttnn
where:

a is the sensor address

ttt is the time (s) until measurement data are available

nn is the number of values to be returned when one or more subsequent D!
commands are issued.

aMv!

Starts a standard measurement. Qualifier v is a variable between 1 and 9. If
supported by the sensor manufacturer, v requests variant data. Variants may
include alternate units (e.g., °C or °F), additional values (e.g., level and
temperature), or a diagnostic of the sensor internal battery.

Syntax:

aMv !

263

Section 7. Installation

As an example, the response from the command SM! is:
500410

where:
5 reports the sensor SDI-12 address.
004 indicates the data will be available in 4 seconds.
10 indicates that 10 values will be available.

The command 5M7! elicites a similar response, but the appendage 7 instructs the
sensor to return the voltage of the internal battery.

aC!

Start concurrent measurement. The CR800 requests a measurement, continues
program execution, and picks up the requested data on the next pass through the
program. A measurement request is then sent again so data are ready on the next
scan. The datalogger scan rate should be set such that the resulting skew between
time of measurement and time of data collection does not compromise data
integrity. This command is new with v. 1.2 of the SDI-12 specification.

Syntax:
aC!

Aborting an SDI-12 Measurement Command

A measurement command (M! or C!) is aborted when any other valid command is
sent to the sensor.

SDI-12 Send Data Command

Send data commands are normally issued automatically by the CR800 after the
aMv! or aCv! measurement commands. In transparent mode through CR800
terminal commands, you need to issue these commands in series. When in
automatic mode, if the expected number of data values are not returned in
response to a aD0! command, the datalogger issues aD1!, aD2!, etc., until all data
are received. In transparent mode, you must do likewise. The limiting constraint
is that the total number of characters that can be returned to a aDv! command is
35 (75 for aCv!). If the number of characters exceed the limit, the remainder of
the response are obtained with subsequent aDv! commands wherein v increments
with each iteration.

aDv!
Request data from the sensor.

Example Syntax:
aDO!

SDI-12 Continuous Measurement Command (aR0! to aR9!)

264

Sensors that are continuously monitoring, such as a shaft encoder, do not require
an M command. They can be read directly with the Continuous Measurement
Command (RO! to R9!). For example, if the sensor is operating in a continuous

Section 7. Installation

measurement mode, then aR0! will return the current reading of the sensor.
Responses to R commands are formatted like responses to send data (aDv!)
commands. The main difference is that R commands do not require a preceding
M command. The maximum number of characters returned in the <values> part
of the response is 75.

Each R command is an independent measurement. For example, aR5! need not
be preceded by aR0! through aR4!. If a sensor is unable to take a continuous
measurement, then it must return its address followed by <CR><LF> (carriage
return and line feed) in response to an R command. If a CRC was requested, then
the <CR><LF> must be preceded by the CRC.

aRv!
Request continuous data from the sensor.

Example Syntax:
aR5!

7.9.17.2 SDI-12 Recorder Mode

The CR800 can be programmed to act as an SDI-12 recording device or as an
SDI-12 sensor.

For troubleshooting purposes, responses to SDI-12 commands can be captured in
programmed mode by placing a variable declared As String in the variable
parameter. Variables not declared As String will capture only numeric data.

Another troubleshooting tool is the terminal-mode snoop utility, which allows
monitoring of SDI-12 traffic. Enter terminal mode as described in SDI-12
Transparent Mode (p. 260), issue CRLF (<Enter> key) until CR800> prompt
appears. Type W and then <Enter>. Type 9 in answer to Select:, 100 in answer
to Enter timeout (secs):, Y to ASCII (Y)?. SDI-12 communications are then
opened for viewing.

The SDI12Recorder() instruction automates the issuance of commands and
interpretation of sensor responses. Commands entered into the SDIRecorder()
instruction differ slightly in function from similar commands entered in
transparent mode. In transparent mode, for example, the operator manually enters
aM! and aD0! to initiate a measurement and get data, with the operator providing
the proper time delay between the request for measurement and the request for
data. In programmed mode, the CR800 provides command and timing services
within a single line of code. For example, when the SDI12Recorder() instruction
is programmed with the M! command (note that the SDI-12 address is a separate
instruction parameter), the CR800 issues the aM! and aD0! commands with
proper elapsed time between the two. The CR800 automatically issues retries and
performs other services that make the SDI-12 measurement work as trouble free
as possible. Table SDI-12Recorder() Commands @. 266) summarizes CR800
actions triggered by some SDI12Recorder() commands.

If the SDI12Recorder() instruction is not successful, NAN will be loaded into the
first variable. See NAN and +INF . 458 for more information.

265

Section 7. Installation

266

Command Name

SDIRecorder()
SDICommand
Argument

SDI-12 Command Sent

Sensor Response1
CR800 Response

Notes

Address Query

2!

CRB800: issues a?! command. Only one sensor can be attached to the C
terminal configured for SDI-12 for this command to elicit a response.
Sensor must support this command.

Change Address

Ab!

CR800: issues aAb! command

Concurrent Measurement

Cv!, CCv!

CR800: issues aCv! command
Sensor: responds with atttnn

CR800: if 71t = 0, issues aDv! command(s). If nnn =0 then NAN put in the
first element of the array.

Sensor: responds with data
CRB800: else, if ttt > 0 then moves to next CRBasic program instruction

CR800: at next time SDIRecorder() is executed, if elapsed time < ttt,
moves to next CRBasic instruction

CR800: else, issues aDv! command(s)
Sensor: responds with data

CR800: issues aCv! command (to request data for next scan)

Alternate Concurrent Measurement

Cv

s (2
(note — no ! termination)

CR800: tests to see if ttt expired. If ttt not expired, loads 1e9 into first variable and
then moves to next CRBasic instruction. If ttt expired, issues aDv! command(s).
See section Alternate Start Concurrent Measurement Command (Cv) (p. 266)

Sensor: responds to aDv! command(s) with data, if any. If no data, loads
NAN into variable.

CR800: moves to next CRBasic instruction (does not re-issue aCv!
command)

Send Identification

I!

CR800: issues al! command

Start Measurement

M!, Mv!, MCv!

CR800: issues aMv! command
Sensor: responds with atttnn

CR800: If nnn = 0 then NAN put in the first element of the array.

. . 3 . . .
CR800: waits until ttt™ seconds (unless a service request is received).
Issues aDv! command(s). If a service request is received, issues aDv!
immediately.

Sensor: responds with data

Continuous Measurements

Rv!, RCv!

CR800: issues aRv! command

Start Verification

V!

CR800: issues aV! command

1See table SDI-12 Commands for Transparent Mode (p. 262) for complete sensor responses.

2Use variable replacement in program to use same instance of SDI12Recorder() as issued aCV! (see the CRBasic example Using Alternate

Concurrent Command (aC) (p. 270)).

3Note that ttt is local only to the SDIRecorder() instruction. If a second SDIRecorder() instruction is used, it will have its own ttt.

Note aCv and aCv! are different commands — aCv does not end with !.

Section 7. Installation

The SDIRecorder() aCv command facilitates using the SDI-12 standard Start
Concurrent command (aCv!) without the back-to-back measurement sequence
normal to the CR800 implementation of aCv!.

Consider an application wherein four SDI-12 temperature sensors need to be near-
simultaneously measured at a five minute interval within a program that scans
every five seconds. The sensors requires 95 seconds to respond with data after a
measurement request. Complicating the application is the need for minimum
power usage, so the sensors must power down after each measurement.

This application provides a focal point for considering several measurement
strategies. The simplest measurement is to issue a M! measurement command to
each sensor as shown in the following CRBasic example:

Public BatteryVolt
Public Templ, Temp2, Temp3, Temp4

BeginProg
Scan(5,Sec,0,0)

'"Non-SDI-12 measurements here

SDI12Recorder(Templ,1,0,"M!",1.0,0)
SDI12Recorder(Temp2,1,1,"M!",1.0,0)
SDI12Recorder(Temp3,1,2,"M!",1.0,0)
SDI12Recorder(Temp4,1,3,"M!",1.0,0)

NextScan
EndProg

However, the code sequence has three problems:

1. It does not allow measurement of non-SDI-12 sensors at the required frequency
because the SDI12Recorder() instruction takes too much time.

2. It does not achieve required five-minute sample rate because each
SDI12Recorder() instruction will take about 95 seconds to complete before
the next SDI12Recorder() instruction begins, resulting is a real scan rate of
about 6.5 minutes.

3. There is a 95 s time skew between each sensor measurement.

Problem 1 can be remedied by putting the SDI-12 measurements in a
SlowSequence scan. Doing so allows the SDI-12 routine to run its course
without affecting measurement of other sensors, as follows:

Public BatteryVolt
Public Temp(4)

BeginProg

Scan(5,Sec,0,0)
'Non-SDI-12 measurements here
NextScan

STowSequence
Scan(5,Min,0,0)
SDI12Recorder(Temp(1),1,0,"M!",1.0,0)
SDI12Recorder(Temp(2),1,1,"M!",1.0,0)
SDI12Recorder(Temp(3),1,2,"M!",1.0,0)

267

Section 7. Installation

268

SDI12Recorder(Temp(4),1,3,"M!",1.0,0)
NextScan
EndSequence

EndProg

However, problems 2 and 3 still are not resolved. These can be resolved by using
the concurrent measurement command, C!. All measurements will be made at
about the same time and execution time will be about 95 seconds, well within the
5 minute scan rate requirement, as follows:

PubTic BatteryVolt
PubTic Temp(4)

BeginProg

Scan(5,Sec,0,0)
'"Non-SDI-12 measurements here
NextScan

STowSequence
Scan(5,Min,0,0)
SDI12Recorder(Temp(1),1,0,"C!",1.0,0)
SDI12Recorder(Temp(2),1,1,"C!",1.0,0)
SDI12Recorder(Temp(3),1,2,"C!",1.0,0)
SDI12Recorder(Temp(4),1,3,"C!",1.0,0)
NextScan

EndProg

A new problem introduced by the C! command, however, is that it causes high
power usage by the CR800. This application has a very tight power budget.

Since the C! command reissues a measurement request immediately after
receiving data, the sensors will be in a high power state continuously. To remedy
this problem, measurements need to be started with C! command, but stopped
short of receiving the next measurement command (hard-coded part of the C!
routine) after their data are polled. The SDI12Recorder() instruction C command
(not C!) provides this functionality as shown in CRBasic example Using Alternate
Concurrent Command (aC) (p. 279). A modification of this program can also be
used to allow near-simultaneous measurement of SDI-12 sensors without
requesting additional measurements, such as may be needed in an event-driven
measurement.

Note When only one SDI-12 sensor is attached, that is, multiple sensor
measurements do not need to start concurrently, another reliable method for
making SDI-12 measurements without affecting the main scan is to use the
CRBasic SlowSequence instruction and the SDI-12 M! command. The main
scan will continue to run during the ## time returned by the SDI-12 sensor. The
trick is to synchronize the returned SDI-12 values with the main scan.

aCv
Start alternate concurrent measurement.

Syntax:

aCv

Section 7. Installation

CRBasic Example 54. Using SDI12Sensor() to Test Cv Command

'"This program example demonstrates how to use CRBasic to simulate four SDI-12 sensors. This
program can be used to
'produce measurements to test the CRBasic example Using Alternate Concurrent Command (aC) (p. 270).

PubTlic Temp(4)

DataTable(Temp,True,0)
DataInterval(0,5,Min,10)
Sample(4,Temp(),FP2)

EndTable

BeginProg
Scan(5,Sec,0,0)

PanelTemp(Temp(1),250) 'Measure CR800 wiring panel temperature to use as base for
'simulated temperatures Temp(2), Temp(3), and Temp(4).

Temp(2) = Temp(1) + 5
Temp(3) = Temp(1) + 10
Temp(4) = Temp(1) + 15

CallTable Temp
NextScan

STowSequence
Do
'"Note SDI12SensorSetup / SDI12SensorResponse must be renewed
'after each successful SDI12Recorder() poll.
SDI12SensorSetup(1,1,0,95)
Delay(1,95,Sec)
SDI12SensorResponse(Temp(1l))
Loop
EndSequence

SlowSequence
Do
SDI12SensorSetup(1,3,1,95)
Delay(1,95,Sec)
SDI12SensorResponse(Temp(2))
Loop
EndSequence

SlowSequence
Do
SDI12SensorSetup(1,5,2,95)
Delay(1,95,Sec)
SDI12SensorResponse(Temp(3))
Loop
EndSequence

269

Section 7. Installation

STowSequence
Do
SDI12SensorSetup(l1,7,3,95)
Delay(1,95,Sec)
SDI12SensorResponse(Temp(4))
Loop
EndSequence

EndProg

CRBasic Example 55. Using Alternate Concurrent Command (aC)

'"This program example demonstrates the use of the special SDI-12 concurrent measurement
"command (aC) when back-to-back measurements are not desired, as can occur in an application
"that has a tight power budget. To make full use of the aC command, measurement control
"logic is used.

'Declare variables
Dim X

PubTic RunSDI12
Public Cmd(4)
PubTic Temp_Tmp(4)
PubTic Retry(4)
Public IndDone(4)
PubTic Temp_Meas (4)
PubTic GroupDone

'"Main Program
BeginProg

'"Preset first measurement command to C!
For X =1 To 4
cmd(X) = "CI"
Next X

'Set five-second scan rate
Scan(5,Sec,0,0)

'Other measurements here

'Set five-minute SDI-12 measurement rate
If TimeIntoInterval(0,5,Min) Then RunSDI12 = True

'Begin measurement sequence
If RunSDI12 = True Then

For X = 1 To 4
Temp_Tmp(X) = 2e9 'when 2e9 changes, indicates a change
Next X

270

Section 7. Installation

'Measure SDI-12 sensors
SDI12Recorder(Temp_Tmp(1),1,0,cmd(1),1.0,0)
SDI12Recorder(Temp_Tmp(2),1,1,cmd(2),1.0,0)
SDI12Recorder(Temp_Tmp(3),1,2,cmd(3),1.0,0)
SDI12Recorder(Temp_Tmp(4),1,3,cmd(4),1.0,0)
"Control Measurement Event
For X =1 To 4
If cmd(X) = "C!" Then Retry(X) = Retry(X) + 1
If Retry(X) > 2 Then IndDone(X) = -1

'Test to see if ttt expired. If ttt not expired, Toad "1e9" into first variable
"then move to next instruction. If ttt expired, issue aDv! command(s).
If ((Temp_Tmp(X) = 2e9) OR (Temp_Tmp(X) = 1e9)) Then

cmd(X) = "C" 'Start sending "C" command.
ElseIf(Temp_Tmp(X) = NAN) Then "Comms failed or sensor not attached
cmd(X) = "CI" 'Start measurement over

ETlse 'C!/C command sequence complete
Move (Temp_Meas(X),1,Temp_Tmp(X),1) 'Copy measurements to SDI_Val(10)
cnd(X) = "CI" 'Start next measurement with "C!"
IndDone(X) = -1
EndIf
Next X

'Summarize Measurement Event Success
For X = 1 To 4

GroupDone = GroupDone + IndDone(X)
Next X

'Stop current measurement event, reset controls
If GroupDone = -4 Then
RunSDI12 = False
GroupDone = 0
For X =1 To 4
IndDone(X) = 0
Retry(X) = 0
Next X
Else
GroupDone = 0
EndIf
EndIf "End of measurement sequence

NextScan

EndProg

SDI12Recorder() sends any string enclosed in quotation marks in the Command
parameter. If the command string is a non-standard SDI-12 command, any
response is captured into the variable assigned to the Destination parameter, so
long as that variable is declared As String. CRBasic example Use of an SDI-12
Extended Command (p. 272) shows appropriate code for sending an extended SDI-
12 command and receiving the response. The extended command feature has no
built-in provision for responding with follow-up commands. However, the
program can be coded to parse the response and issue subsequent SDI-12
commands based on a customized evaluation of the response. For more
information on parsing strings, see Input Programming Basics (p. 244).

271

Section 7. Installation

272

CRBasic Example 56. Using an SDI-12 Extended Command

'"This program example demonstrates the use of SDI-12 extended commands. In this example,
'a temperature measurement, tt.tt, is sent to a CH200 Charging Regulator using the command
'XTtt.tt!'. The response from the CH200 should be 'OOK', if 0 is the SDI-12 address.
'Declare Variables

Public PTemp As Float

Public SDI12command As String

PubTic SDI12result As String

'Main Program
BeginProg
Scan(20,Sec,3,0)
PanelTemp(PTemp,250)
SDI12command = "XT" & FormatFloat(PTemp,"%4.2f") & "!"
SDI12Recorder(SDI12result,1,0,SDI12command,1.0,0)
NextScan
EndProg

7.9.17.3SDI-12 Sensor Mode

The CR800 can be programmed to act as an SDI-12 recording device or as an
SDI-12 sensor.

For troubleshooting purposes, responses to SDI-12 commands can be captured in
programmed mode by placing a variable declared As String in the variable
parameter. Variables not declared As String will capture only numeric data.

Another troubleshooting tool is the terminal-mode snoop utility, which allows
monitoring of SDI-12 traffic. Enter terminal mode as described in SDI-12
Transparent Mode (p. 260), issue CRLF (<Enter> key) until CR800> prompt
appears. Type W and then <Enter>. Type 9 in answer to Select:, 100 in answer
to Enter timeout (secs):, Y to ASCII (Y)?. SDI-12 communications are then
opened for viewing.

The SDI12SensorSetup() / SDI12SensorResponse() instruction pair programs
the CR800 to behave as an SDI-12 sensor. A common use of this feature is the
transfer of data from the CR800 to other Campbell Scientific dataloggers over a
single-wire interface (terminal configured for SDI-12 to terminal configured for
SDI-12), or to transfer data to a third-party SDI-12 recorder.

Details of using the SDI12SensorSetup() / SDI12SensorResponse() instruction
pair can be found in the CRBasic Editor Help. Other helpful tips include:

Concerning the Reps parameter in the SDI12SensorSetup(), valid Reps when
expecting an aMx! command range from 0 to 9. Valid Reps when expecting an
aCx! command are 0 to 20. The Reps parameter is not range-checked for valid
entries at compile time. When the SDI-12 recorder receives the sensor response
of atttn to a aMx! command, or atttnn to a aCx! command, only the first digit n,
or the first two digits nn, are used. For example, if Reps is mis-programmed as
123, the SDI-12 recorder will accept only a response of n = 1 when issuing an
aMx! command, or a response of nn = 12 when issuing an aCx! command.

When programmed as an SDI-12 sensor, the CR800 will respond to SDI-12
commands M, MC, C, CC,R,RC,V, ? and I. See table SDI-12 Commands for

Section 7. Installation

Transparent Mode (. 262) for full command syntax. The following rules apply:

1. A CR800 can be assigned only one SDI-12 address per SDI-12 port. For
example, a CR800 will not respond to both 0M! AND 1M! on SDI-12 port
C1. However, different SDI-12 ports can have unique SDI-12 addresses. Use
a separate SlowSequence for each SDI-12 port configured as a sensor.

2. The CR800 will handle additional measurement (aMx!) commands. When an
SDI-12 recorder issues aMx! commands as shown in CRBasic example SDI-
12 Sensor Setup (p. 273), measurement results are returned as listed in table SDI-

12 Sensor Setup —

Results . 274).

CRBasic Example 57. SDI-12 Sensor Setup

'"This program example demonstrates the use of the SDI12SensorSetup()/SDI12SensorResponse()
"instruction pair to program the CR800 to emulate an SDI-12 sensor. A common use of this
"feature is the transfer of data from the CR800 to SDI-12 compatible instruments, including
"other Campbell Scientific dataloggers, over a single-wire interface (SDI-12 port to
'SDI-12 port). The recording datalogger simply requests the data using the aDO! command.

Public PanelTemp
Public Batt_volt
Public SDI_Source(10)

BeginProg
Scan(5,Sec,0,0)

PanelTemp(PanelTemp,250)
Battery(batt_volt)

SDI_Source(l) = PanelTemp
SDI_Source(2) = batt_volt
SDI_Source(3) = PanelTemp * 1.8 + 32
SDI_Source(4) = batt_volt
SDI_Source(5) = PanelTemp
SDI_Source(6) = batt_volt * 1000
SDI_Source(7) = PanelTemp * 1.8 + 32
SDI_Source(8) = batt_volt * 1000
SDI_Source(9) = Status.SerialNumber
SDI_Source(10) = Status.LithiumBattery

NextScan
SlowSequence

Do
SDI12SensorSetup(10,1,0,1)
Delay(1,500,mSec)
SDI12SensorResponse(SDI_Source)
Loop

EndSequence
EndProg

"temperature, degrees C
'primary power, volts dc
"temperature, degrees F
"primary power, volts dc
"temperature, degrees C
'orimary power, millivolts dc
"temperature in degrees F
"primary power, millivolts dc
'serial number

'"data backup battery, V

273

Section 7. Installation

274

Table 44. SDI-12 Sensor Setup CRBasic Example — Results

Measurement Source Variables
Accessed from the Contents of
Command from . .
CR800 acting as a Source Variables
SDI-12 Recorder
SDI-12 Sensor
oMm! Source(1), Source(2) temperature °C, battery voltage
oMo! Same as OM!
oMm1! Source(3), Source(4) temperature °F, battery voltage
om2! Source(5), Source(6) temperature °C, battery mV
om3! Source(7), Source(8) temperature °F, battery mV
OM4! Source(9), Source(10) serial number, lithium battery
voltage

7.9.17.4 SDI-12 Power Considerations

When a command is sent by the CR800 to an SDI-12 probe, all probes on the
same SDI-12 port will wake up. However, only the probe addressed by the
datalogger will respond. All other probes will remain active until the timeout
period expires.

Example:
Probe: Water Content
Power Usage:

Quiescent: 0.25 mA
Measurement: 120 mA
Measurement time: 15 s
Active: 66 mA
Timeout: 15 s

Probes 1, 2, 3, and 4 are connected to SDI-12 / control port C1.

The time line in table Example Power Usage Profile for a Network of SDI-12
Probes (p. 274) shows a 35 second power-usage profile example.

For most applications, total power usage of 318 mA for 15 seconds is not
excessive, but if 16 probes were wired to the same SDI-12 port, the resulting
power draw would be excessive. Spreading sensors over several SDI-12 terminals
will help reduce power consumption.

Table 45. Example Power Usage Profile for a Network of SDI-12 Probes

All Time
Probes Out Total
Time (s) Command Awake Expires 1mA 2mA 3mA 4 mA mA
1 IM! Yes 120 66 66 66 318
2 120 66 66 66 318

Section 7. Installation

Table 45. Example Power Usage Profile for a Network of SDI-12 Probes

All Time
Probes Out Total
Time (s) Command Awake Expires 1 mA 2mA 3mA 4 mA mA
14 120 66 66 66 318
15 Yes 120 66 66 66 318
16 1D0! Yes 66 66 66 66 264
17 66 66 66 66 264
29 66 66 66 66 264
30 Yes 66 66 66 66 264
31 0.25 0.25 0.25 0.25 1
35 0.25 0.25 0.25 0.25 1

7.9.18 String Operations

String operations are performed using CRBasic string functions, as listed in String
Functions (. 548).

7.9.18.1 String Operators

The table String Operators (p. 275) lists and describes available string operators.

String operators are case sensitive.

Table 46. String Operators

Operator Description

Concatenates strings. Forces numeric values to strings before
concatenation.

&
Example
1&2&3&"a" &5 &6 &7 ="123a567"
Adds numeric values until a string is encountered. When a string is
encountered, it is appended to the sum of the numeric values. Subsequent

+ numeric values are appended as strings.

Example:
1+2+3+"a" +5+6+ 7 ="6a567"

275

Section 7. Installation

276

Table 46. String Operators

Operator

Description

"Subtracts" NULL ("") from the end of ASCII characters for conversion to
an ASCII code (LONG data type).

Example:
magn _ omw o _ g7

ASCII codes of the first characters in each string are compared. If the
difference between the codes is zero, codes for the next characters are
compared. When unequal codes or NULL are encountered (NULL
terminates all strings), the difference between the last compared ASCII
codes is returned.

Examples:

Note — ASCII code fora=97,b=98,¢=99,d =100, e = 101, and all
strings end with NULL.

Difference between NULL and NULL
" abc" =0

Difference between e and ¢

"abe" - "abc" = 2

Difference between ¢ and b

abc

ace" - "abe" =1
Difference between d and NULL
"abcd" - "abc" = 100

<, > <> <= >= =

ASCII codes of the first characters in each string are compared. If the
difference between the codes is zero, codes for the next characters are
compared. When unequal codes or NULL are encountered (NULL
terminates all strings), the requested comparison is made. If the comparison
is true, -1 or True is returned. If false, 0 or False is returned.

Examples:

Expression Result
x = "abc" = "abc" x = -1 or True
x = "abe" = "abc" x = 0 or False
x = "ace" > "abe" X = -1 or True

7.9.18.2 String Concatenation

Concatenation is the building of strings from other strings ("abc123"), characters
("a" or chr()), numbers, or variables. The table String Concatenation Examples (p.
276) lists some expressions and expected results. CRBasic example Concatenation
of Numbers and Strings (p. 277) demonstrates several concatenation examples.

When non-string values are concatenated with strings, once a string is
encountered, all subsequent operands will first be converted to a string before the
+ operation is performed. When working with strings, exclusive use of the &
operator ensures that no string value will be converted to an integer.

Section 7. Installation

Table 47. String Concatenation Examples
Expression Comments Result
Str(l) =5.4 + 3 + " Volts" Add floats, concatenate strings "8.4 Volts"
Str(2) = 5.4 & 3 & " Volts" Concatenate floats and strings "5.43 Volts"
Lng(1) = "123" Convert string to long 123
Lng(2) = 1+2+"3" Add floats to string / convert to long 33
Lng(3) = "1"+2+43 Concatenate string and floats 123
Lng(4) = 1&2&"3" Concatenate floats and string 123

CRBasic Example 58. Concatenation of Numbers and Strings

'"This program example demonstrates the concatenation of numbers and strings to variables

"declared As Float and As String.
'Declare Variables

PubTic Num(12) As Float

Public Str(2) As String

Dim I

BeginProg
Scan(1,Sec,0,0)

I =0 'Set I to zero

'Data type of the following destination variables is Float
'because Num() array is declared As Float.
I += 1 '"Increment I by 1 to clock through sequential elements of the Num() array

'As shown in the following expression, if all parameter are numbers, the result
'of using '+' is a sum of the numbers:

Num(I) =2 + 3 + 4 '= 9

'"Following are examples of using '+' and '*'
'Parameters are processed in the standard order of operations. In the order of
'operation, once a string or an '&' is processed, all following parameters will
'be processed (concatenated) as strings:

I +=1

Num(I) = "1" + 2 + 3 + 4 '= 1234
I+=1

Num(I) =1+ "2" + 3 + 4 '= 1234
I +=1

Num(I) =1+ 2 + "3" + 4 '= 334
I +=1

Num(I) =1+ 2 + 3 + "4" '= 64

when one or more parameters are strings.

277

Section 7. Installation

278

I+=1

Num(I) =1 +2 + "3" +4 +5 + "6" '= 33456
I+=1

Num(I) =1+ 2 + "3" + (4 +5) + "6" '= 3396

I+=1

Num(I) =1+ 2 + "3" +4 *5 + "6" '= 33206
I+=1

Num(I) =1&2 +3 + 4 '= 1234

I+=1

Num(I) =1+2 +3 &4 '= 64

'"If a non-numeric string is attempted to be processed into a float destination,
'operations are truncated at that point

I +=1
Num(I) =1+ 2 + "hey" + 4 + 5 + "6" '= 3
I +=1
Num(I) =1 + 2 + "hey" + (4 + 5) + "6" '= 3

'"The same rules apply when the destination is of data type String, except in the
"case wherein a non-numeric string is encountered as follows. Data type of the
"following destination variables is String because Str() array is declared As String.
I=0

I +=1
Str(I)
I +=1
Str(I)

1+2+ "hey" +4 +5 + "6" '= 3hey456

1+ 2+ "hey" + (4 +5) + "6" '= 3hey96

NextScan
EndProg

7.9.18.3 String NULL Character

All strings are automatically NULL terminated. NULL is the same as Chr(0) or
""" counts as one of the characters in the string. Assignment of just one character
is that character followed by a NULL, unless the character is a NULL.

Table 48. String NULL Character Examples
Expression Comments Result
LongVar(5) = "#"-"" Subtract NULL, ASCII code results | 35
LongVar(6) = StrComp("#","™") Also subtracts NULL 35
Example:
Objective:

Insert a NULL character into a string, and then reconstitute the string.

Given:

StringVar(3) = "123456789"
Execute:

StringvVar(3,1,4) = "" "123<NULL>56789"
Results:

StringVar(4) = StringVar(3) "123"

Section 7. Installation

but,
StringVar(3) still = "123<NULL>56789",
SO,
StringVar(5) = StringVar(3,1,4+1)
'"56789"
StringVar(6) = StringVar(3) + 4 + StringVar(3,1,4+1)
'"123456789"

Some smart sensors send strings containing NULL characters. To manipulate a
string that has NULL characters within it (in addition to being terminated with
another NULL), use MoveBytes() instruction.

7.9.18.4Inserting String Characters
Example:
Objective:
Use MoveBytes() to change "123456789" to "123A56789"

Given:

StringVar(7) = "123456789" 'Result is
"123456789"

try (does not work):

StringVar(7,1,4) = "A" 'Result is
"123A<NULL>56789"

Instead, use:

StringVar(7) = MoveBytes(Strings(7,1,4),0,"A",0,1) 'Result is
"123A56789"

7.9.18.5 Extracting String Characters

A specific character in the string can be accessed by using the "dimensional"
syntax; that is, when the third dimension of a string is specified, the third
dimension is the character position.

Table 49. Extracting String Characters
Expression Comments Result
StringVar(3) = "Go Jazz" Loads string into variable StringvVar(3) = "Go Jazz"
StringVar(4) = StringVar(3,1,4) Extracts single character Stringvar(4) = "J"

7.9.18.6 String Use of ASCII / ANSII Codes

Table 50. Use of ASCII/ ANSII Codes Examples

Expression Comments Result
LongVar (7) = ASCII("#") 35
LongVar (8) = ASCII("*") 42

279

Section 7. Installation

280

Table 50. Use of ASCII / ANSII Codes Examples

Expression Comments Result
LongVar (9) = "#" giﬁﬁ?beconvawdtoLnngwﬁh NAN
Longvar (1) = "#"-"" giﬁgfconwxwdtoLnngwﬁhom 35
7.9.18.7 Formatting Strings
Table 51. Formatting Strings Examples
Expression Result

Str(1)=123e4

Str(2)=FormatFloat(123e4,"%12.2f")
Str(3)=FormatFloat(Values(2)," The battery is %.3g Volts ")
Str(4)=Strings(3,1,InStr(1,Strings(3),"The battery is ",4))
Str(5)=Strings(3,1,InStr(1,Strings(3),"is ",2) + 3)

1230000
1230000.00

“The battery is 12.4 Volts”

12.4 Volts
12.4 Volts

Str(6)=Replace("The battery 1is 12.4 Volts"," is "," = ")
Str(7)=LTrim("The battery 1is 12.4 Volts")
Str(8)=RTrim("The battery is 12.4 Volts")
Str(9)=Trim("The battery 1is 12.4 Volts")
Str(10)=UpperCase("The battery is 12.4 Volts")

The battery
The battery
The battery
The battery
THE BATTERY

= 12.4 Volts

is 12.4 Volts
is 12.4 Volts
is 12.4 Volts
IS 12.4 VOLTS

Str(12)=Left("The battery 1is 12.4 Volts",5) The b
Str(13)=Right("The battery is 12.4 Volts",7) Volts

CRBasic Example 59. Formatting Strings

'"This program example demonstrates the formatting of string variables. To run the
"demonstration, send this program to the CR800. String formatting will occur
"automatically.

'"Objective:
"Extract "12.4 Volts" from the string "The battery is 12.4 Volts"

Public StringVar As String

BeginProg

'"Note Tine continuation character _

StringVar() = Mid("The battery is 12.4 Volts", _

InStr(1,"The battery is 12.4 Volts"," is ",2)+3,Len("The battery is 12.4 Volts"))
EndProg

7.9.18.8 Formatting String Hexadecimal Variables

Table 52. Formatting Hexadecimal Variables — Examples

Expression Comment Result
CRLFNumeric(l) = &HOdOa Add leading zero to hex step 1 3338
StringVar(20) = "0" & Hex(CRLFNumeric) Add leading zero to hex step 2 0DOA
CRLFNumeric(2) = HexToDec(Strings(20)) Convert Hex string to Float 3338.00

Section 7. Installation

7.9.19 Subroutines

A subroutine is a group of programming instructions that is called by, but runs
outside of, the main program. Subroutines are used for the following reasons:

e To reduce program length. Subroutine code can be executed multiple times
in a program scan.

e To ease integration of proven code segments into new programs.

e To compartmentalize programs to improve organization.

By executing the Call() instruction, the main program can call a subroutine from
anywhere in the program.

A subroutine has access to all global variables (p. 4909).. Variables local (p. 493)to a
subroutine are declared within the subroutine instruction. Local variables can be
aliased (as of 4/2013; OS 26) but are not displayed in the Public table. Global
and local variables can share the same name and not conflict. If global variables
are passed to local variables of different type, the same type conversion rules
apply as apply to conversions among variables declared as Public or Dim. See
Expressions with Numeric Data Types (p. 160) for conversion types.

Note To avoid programming conflicts, pass information into local variables and /
or define some global variables and use them exclusively by a subroutine.

CRBasic example Subroutine with Global and Local Variables (p. 281 shows the
use of global and local variables. Variables counter() and pi_product are global.
Variable i_sub is global but used exclusively by subroutine process. Variables j()
and QutVar are local since they are declared as parameters in the Sub()
instruction,

Sub process(j(4) AS Long,OutVar).

Variable j() is a four-element array and variable OutVar is a single-element
array. The call statement,

Call ProcessSub (counter(1l),pi_product)

passes five values into the subroutine: pi_product and four elements of array
counter(). Array counter() is used to pass values into, and extract values from,
the subroutine. The variable pi_product is used to extract a value from the
subroutine.

Call() passes the values of all listed variables into the subroutine. Values are
passed back to the main scan at the end of the subroutine.

CRBasic Example 60. Subroutine with Global and Local Variables

'"This program example demonstrates the use of global and local variables with subroutines.

[

'"Global variables are those declared anywhere in the program as Public or Dim.
"Local variables are those declared in the Sub() instruction.

'"Program Function: Passes two variables to a subroutine. The subroutine increments each

'variable once per second, multiplies each by pi, then passes results back to the main
'program for storage in a data table.

281

Section 7. Installation

282

'"Global variables (Used only outside subroutine by choice)
'Declare Counter in the Main Scan.
PubTic counter(2) As Long

'Declare Product of PI * counter(2).
PubTic pi_product(2) As Float

'"Global variable (Used only in subroutine by choice)
"For / Next incrementor used in the subroutine.
Public i_sub As Long

'Declare Data Table
DataTable(pi_results,True,-1)
Sample(1,counter(),IEEE4)

EndTable

'Declare Subroutine
'Declares j(4) as local array (can only be used in subroutine)
Sub ProcessSub (j(2) As Long,OutVar(2) As Float)
For i_sub = 1 To 2
j(i_sub) = j(i_sub) + 1
'"Processing to show functionality

OutVar(i_sub) = j(i_sub) * 4 * ATN(1) "(Tip: 4 * ATN(1) = pi to IEEE4 precision)

Next i_sub
EndSub

BeginProg
counter(l) =1
counter(2) = 2
Scan(1,Sec,0,0)

"Pass Counter() array to j() array, pi_pruduct() to OutVar()
Call ProcessSub (counter(),pi_product())
CallTable pi_results

NextScan
EndProg

7.9.20 TCP/IP — Details

Related Topics:
e TCP/IP — Overview (p. 90)
e TCP/IP — Details (p. 402)
o TCP/IP — Instructions (p. 567)
e TCP/IP Links — List p. 629

The following TCP/IP protocols are supported by the CR800 when using network-
links (p. 629) that use the resident IP stack or when using a cell modem with the
PPP/IP key enabled. More information on some of these protocols is in the

following sections.

DHCP
DNS
FTP
HTML
HTTP

Section 7. Installation

Micro-serial server
NTCIP

NTP

PakBus over TCP/IP
Ping

POP3

SMTP

SNMP

Telnet

Web API . 102)
XML

The most up-to-date information on implementing these protocols is contained in
CRBasic Editor Help. For a list of CRBasic instructions, see the appendix
TCP/IP (p. 567).

Read More Specific information concerning the use of digital-cellular modems
for TCP/IP can be found in Campbell Scientific manuals for those modems. For
information on available TCP/IP/PPP devices, refer to the appendix Network
Links (p. 629 for model numbers. Detailed information on use of TCP/IP/PPP
devices is found in their respective manuals (available at www.campbellsci.com
http://'www.campbellsci.com) and CRBasic Editor Help.

7.9.20.1 PakBus Over TCP/IP and Callback

Once the hardware has been configured, basic PakBus® communication over
TCP/IP is possible. These functions include the following:

Sending programs

Retrieving programs

Setting the CR800 clock

Collecting data

Displaying the current record in a data table

Data callback and datalogger-to-datalogger communications are also possible over
TCP/IP. For details and example programs for callback and datalogger-to-
datalogger communications, see the network-link manual. A listing of network-
link model numbers is found in the appendix Network Links (p. 629.

7.9.20.2 Default HTTP Web Server

The CR800 has a default home page built into the operating system. The home
page can be accessed using the following URL:

http:\\ipaddress:80

Note Port 80 is implied if the port is not otherwise specified.

As shown in the figure, Preconfigured HTML Home Page (p. 284), this page
provides links to the newest record in all tables, including the Status table, Public
table, and data tables. Links are also provided for the last 24 records in each data
table. If fewer than 24 records have been stored in a data table, the link will
display all data in that table.

283

http://www.campbellsci.com/

Section 7. Installation

Newest-Record links refresh automatically every 10 seconds. Last 24-Records
link must be manually refreshed to see new data. Links will also be created
automatically for any HTML, XML, and JPEG files found on the CR800 drives.
To copy files to these drives, choose File Control from the datalogger support
software (p. 485) menu.

Figure 73. Preconfigured HTML Home Page
W& R~ Home age - Windows Int

€ | H:\SampleDataloggerHomePage\CR

HomePagehtm v |¥s | X [ll /0 Search Google

File Edit View Favorites Tools Help
v Favorites | @ CR HomePage) v B v [M v Pagev Safetyv Toolsv @~

CR = Datalogger Home Page
o Newest Record from Status
I o Newest Record from GVR

o Display Last 24 Records from DataTable GVR

o Newest Record from Public

€ Internet | Protected Mode: Off fa v HK100% ~

7.9.20.3 Custom HTTP Web Server

284

Although the default home page cannot be accessed for editing, it can be replaced
with the HTML code of a customized web page. To replace the default home
page, save the new home page under the name default. html and copy it to the
datalogger. It can be copied to a CR800 drive with File Control. Deleting
default. html will cause the CR800 to use the original, default home page.

The CR800 can be programmed to generate HTML or XML code that can be
viewed by a web browser. CRBasic example HTML (p. 286) shows how to use the
CRBasic instructions WebPageBegin() / WebPageEnd and HTTPOut() to
create HTML code. Note that for HTML code requiring the use of quotation
marks, CHR(34) is used, while regular quotation marks are used to define the
beginning and end of alphanumeric strings inside the parentheses of the
HTTPOut() instruction. For additional information, see the CRBasic Editor Help.

In this example program, the default home page is replaced by using
WebPageBegin to create a file called default.html. The new default home page
created by the program appears as shown in the figure Home Page Created using
WebPageBegin() Instruction (p. 283).

The Campbell Scientific logo in the web page comes from a file called
SHIELDWEB22.JPG that must be transferred from the PC to the CR800 CPU:
drive using File Control in the datalogger support software.

Section 7. Installation

A second web page, shown in figure Customized Numeric-Monitor Web Page (p.
285) called "monitor.html" was created by the example program that contains links
to the CR800 data tables.

Figure 74. Home Page Created Using WebPageBegin() Instruction

= -
£ H\SampleDataloggerHomePage\CR#» Home Page WebPa v | 43 | X | /- Search Google P~
File Edit View Favorites Tools Help
(¢ Favorites @ Campbell Scientific CR# Datalogger n- v (3 dm v Pagev Safetyv Toolsv @~

-

| Welcome to the Campbell Scientific CR%% Web Site

SCIENTIFIC, INC.
WA CAMPOCLLSCLCOM

Current Data:
Time: 15:59:30

Temperature: 22.90
Links:

Monitor 25

Done @ Internet | Protected Mode: Off G~ Ri0% ~

Figure 75. Customized Numeric-Monitor Web Page
' Gﬁgrmﬂwmn Vindows Internet Explorer

i \I P search Google

File Edit View Favorites Tools Help

'{,}Favorites IQH;\CR- Data Table Li... ’7‘ ﬁ v v 3 @ v Pagev Safety v Toolsv

| z
CR "w& Data Table Links

Display Last 10 Records from DataTable CR T

Current Record from CR Temp Table
Current Record from Public Table

Current Record from Status Table

Back to the Home Page

Done W Computer | Protected Mode: Off %A~ ®100% ~

285

Section 7. Installation

CRBasic Example 61. Custom Web Page HTML

'"This program example demonstrates the creation of a custom web page that resides in the
"CR800. In this example program, the default home page is replaced by using WebPageBegin to
"create a file called default.html. The graphic in the web page (in this case, the Campbell
'Scientific logo) comes from a file called SHIELDWEB2.JPG. The graphic file must be copied to
"the CR800 CPU: drive using File Control in the datalogger support software. A second web
'page is created that contains Tinks to the CR800 data tables.

'"NOTE: The "_" character used at the end of some lines allows a code statement to be wrapped
"to the next Tine.

Dim Commands As String * 200
PubTic Time(9), RefTemp,
Public Minutes As String, Seconds As String, Temperature As String

DataTable(CRTemp,True,-1)
DataInterval(0,1,Min,10)
SampTle(1,RefTemp, FP2)
Average(l,RefTemp,FP2,False)

EndTable

'Default HTML Page
WebPageBegin("default.html",Commands)
HTTPOut ("<html>")
HTTPOut ("<style>body {background-color: oldlace}</style>")
HTTPOut ("<body><title>Campbell Scientific CR800 Datalogger</title>")
HTTPOut ("<h2>Welcome To the Campbell Scientific CR800 Web Site!</h2>")
HTTPOut("<tr><td style=" + CHR(34) +"width: 290px" + CHR(34) + ">")
HTTPOut("")
HTTPOut("<img src="+ CHR(34) +"/CPU/SHIELDWEB2.jpg"+ CHR(34) + "width=" + _
CHR(34) +"128"+CHR(34)+"height="+CHR(34)+"155"+ CHR(34) + "class=" + _
CHR(34) +"stylel"+ CHR(34) +"/></td>")
HTTPOut ("<p><h2> Current Data:</h2></p>")
HTTPOut("<p>Time: " + time(4) + ":" + minutes +
HTTPOut ("<p>Temperature: " + Temperature + "</p>")
HTTPOut ("<p><h2> Links:</h2></p>")
HTTPOut ("<p>Monitor</p>")
HTTPOut ("</body>")
HTTPOut ("</html>")
WebPageEnd

+ seconds + "</p>")

'"Monitor Web Page
WebPageBegin("monitor.html",Commands)
HTTPOut("<html>")
HTTPOut ("<style>body {background-color: oldlace}</style>")
HTTPOut ("<body>")
HTTPOut ("<title>Monitor CR800 Datalogger Tables</title>")
HTTPOut ("<p><h2>CR800 Data Table Links</h2></p>")
HTTPOut("<p><a href="+ CHR(34) + "command=TableDisplay&table=CRTemp&records=10" + _
CHR(34)+">Display Last 10 Records from DataTable CR1Temp</p>")
HTTPOut("<p><a href="+ CHR(34) + "command=NewestRecord&table=CRTemp"+ CHR(34) + _
">Current Record from CRTemp Table</p>")
HTTPOut("<p><a href="+ CHR(34) + "command=NewestRecord&table=Public"+ CHR(34) + _
">Current Record from Public Table</p>")

286

Section 7. Installation

HTTPOut("<p><a href="+ CHR(34) + "command=NewestRecord&table=Status" + CHR(34) + _
">Current Record from Status Table</p>")
HTTPOut ("
<p>Back to the Home Page _
</p>")
HTTPOut ("</body>")
HTTPOut ("</html>")
WebPageEnd

BeginProg
Scan(1,Sec,3,0)
PanelTemp(RefTemp,250)
RealTime(Time())
Minutes = FormatFloat(Time(5),"%02.0f")
Seconds = FormatFloat(Time(6),"%02.0f")
Temperature = FormatFloat(RefTemp, "%02.02f™")
CallTable(CRTemp)
NextScan
EndProg

7.9.20.4FTP Server

The CR800 automatically runs an FTP server. This allows Windows® Explorer® to
access the CR800 file system with FTP, with drives on the CR800 being mapped
into directories or folders. The root directory on the CR800 can be any drive, but
the USR: drive is usually preferred. USR: is a drive created by allocating memory
in the USR: Drive Size box on the Deployment | Advanced tab of the CR800
service in DevConfig. Files can be copied / pasted between drives. Files can be
deleted through FTP.

7.9.20.5FTP Client

The CR800 can act as an FTP client to send a file or get a file from an FTP server,
such as another datalogger or web camera. This is done using the CRBasic
FTPClient() instruction. Refer to a manual for a Campbell Scientific network
link (see the appendix Network Links (. 629), available at www.campbellsci.com,
or CRBasic Editor Help for details and sample programs.

7.9.20.6 Telnet
Telnet is used to access the same commands that are available through the support
software terminal emulator (p. 504). Start a Telnet session by opening a DOS
command prompt and type in:

Telnet XXxX.XXX.XXX.Xxx <Enter>

where xxx.xxx.xxx.xxx is the IP address of the network device connected to the
CR800.

7.9.20.7 SNMP

Simple Network Management Protocol (SNMP) is a part of the IP suite used by
NTCIP and RWIS for monitoring road conditions. The CR800 supports SNMP
when a network device is attached.

287

Section 7. Installation

288

7.9.20.8 Ping (IP)

Ping can be used to verify that the IP address for the network device connected to
the CR800 is reachable. To use the Ping tool, open a command prompt on a
computer connected to the network and type in:

ping XXX.XXX.XXX.xXXx <Enter>

where xxx.xxX.xxx.xxXx is the IP address of the network device connected to the
CRS800.

7.9.20.9 Micro-Serial Server

7.9.20.10

7.9.20.11

7.9.20.12

7.9.20.13

The CR800 can be configured to allow serial communication over a TCP/IP port.
This is useful when communicating with a serial sensor over Ethernet with micro-
serial server (third-party serial to Ethernet interface) to which the serial sensor is
connected. See the network-link manual and the CRBasic Editor Help for the
TCPOpen() instruction for more information. Information on available network
links is available in the appendix Network Links (p. 629).

Modbus TCP/IP

The CR800 can perform Modbus communication over TCP/IP using the Modbus
TCP/IP interface. To set up Modbus TCP/IP, specify port 502 as the ComPort in
the ModBusMaster() and ModBusSlave() instructions. See the CRBasic Editor
Help for more information. See Modbus (p. 391).

DHCP

When connected to a server with a list of IP addresses available for assignment,
the CR800 will automatically request and obtain an IP address through the
Dynamic Host Configuration Protocol (DHCP). Once the address is assigned, use
DevConfig, PakBusGraph, Connect, or the CR1000KD Keyboard Display to look
in the CR800 Status table to see the assigned IP address. This is shown under the
field name IPInfo.

DNS

The CR800 provides a Domain Name Server (DNS) client that can query a DNS
server to determine if an IP address has been mapped to a hostname. If it has, then
the hostname can be used interchangeably with the IP address in some datalogger
instructions.

SMTP

Simple Mail Transfer Protocol (SMTP) is the standard for e-mail transmissions.
The CR800 can be programmed to send e-mail messages on a regular schedule or
based on the occurrence of an event.

7.9.21 Wind Vector

The WindVector() instruction processes wind-speed and direction measurements
to calculate mean speed, mean vector magnitude, and mean vector direction over a
data-storage interval. Measurements from polar (wind speed and direction) or

Section 7. Installation

orthogonal (fixed East and North propellers) sensors are supported. Vector
direction and standard deviation of vector direction can be calculated weighted or
unweighted for wind speed.

7.9.21.1 OutputOpt Parameters

In the CR800 WindVector() instruction, the QuiputOpt parameter defines the
processed data that are stored. All output options result in an array of values, the
elements of which have _WVe(n) as a suffix, where n is the element number. The
array uses the name of the Speed/East variable as its base. Table OutputOpt
Options (p. 289) lists and describes QuiputOpt options.

Table 53. WindVector() OutputOpt Options

Option Description (WVc() is the Output Array)

WVc(1): Mean horizontal wind speed (S)

WVc(2): Unit vector mean wind direction (©1)

0 WVc(3): Standard deviation of wind direction o(®1). Standard deviation is
calculated using the Yamartino algorithm. This option complies with EPA

guidelines for use with straight-line Gaussian dispersion models to model plume
transport.

WVc(1): Mean horizontal wind speed (S)
WVe(2): Unit vector mean wind direction (®1)

WVc(1): Mean horizontal wind speed (S)

WVc(2): Resultant mean horizontal wind speed (U)

WVe(3): Resultant mean wind direction (Qu)

2 WVc(4): Standard deviation of wind direction o(®u). This standard deviation is
calculated using Campbell Scientific's wind speed weighted algorithm. Use of the
resultant mean horizontal wind direction is not recommended for straight-line

Gaussian dispersion models, but may be used to model transport direction in a
variable-trajectory model.

3 WVc(1): Unit vector mean wind direction (©1)

WVe(1): Unit vector mean wind direction (®1)

WVe(2): Standard deviation of wind direction o(®u). This standard deviation is
4 calculated using Campbell Scientific's wind speed weighted algorithm. Use of the
resultant mean horizontal wind direction is not recommended for straight-line
Gaussian dispersion models, but may be used to model transport direction in a
variable-trajectory model.

7.9.21.2 Wind Vector Processing

WindVector() uses a zero-wind-speed measurement when processing scalar wind
speed only. Because vectors require magnitude and direction, measurements at
zero wind speed are not used in vector speed or direction calculations. This
means, for example, that manually-computed hourly vector directions from 15
minute vector directions will not agree with CR800-computed hourly vector
directions. Correct manual calculation of hourly vector direction from 15 minute
vector directions requires proper weighting of the 15 minute vector directions by
the number of valid (non-zero wind speed) wind direction samples.

Note Cup anemometers typically have a mechanical offset which is added to each
measurement. A numeric offset is usually encoded in the CRBasic program to
compensate for the mechanical offset. When this is done, a measurement will

289

Section 7. Installation

7.9.21.2.1

290

equal the offset only when wind speed is zero; consequently, additional code is
often included to zero the measurement when it equals the offset so that
WindVector() can reject measurements when wind speed is zero.

Standard deviation can be processed one of two ways: 1) using every sample
taken during the data storage interval (enter 0 for the Subinterval parameter), or
2) by averaging standard deviations processed from shorter sub-intervals of the
data-storage interval. Averaging sub-interval standard deviations minimizes the
effects of meander under light wind conditions, and it provides more complete
information for periods of transition (see EPA publication "On-site
Meteorological Program Guidance for Regulatory Modeling Applications").

Standard deviation of horizontal wind fluctuations from sub-intervals is calculated
as follows:

5(©) = [(6O)) + (0O .. + (cOyY) / M]

where: G (®) is the standard deviation over the data-storage interval, and

G®1 G®M are sub-interval standard deviations. A sub-interval is
specified as a number of scans. The number of scans for a sub-interval is given
by:

Desired sub-interval (secs) / scan rate (secs)

For example, if the scan rate is 1 second and the data-output interval is 60
minutes, the standard deviation is calculated from all 3600 scans when the sub-
interval is 0. With a sub-interval of 900 scans (15 minutes) the standard deviation
is the average of the four sub-interval standard deviations. The last sub-interval is
weighted if it does not contain the specified number of scans.

The EPA recommends hourly standard deviation of horizontal wind direction
(sigma theta) be computed from four fifteen-minute sub-intervals.

Measured Raw Data

e S;: horizontal wind speed

e O;: horizontal wind direction

e Ue;: east-west component of wind

e Unj: north-south component of wind
e N: number of samples

Section 7. Installation

7.9.21.2.2 Calculations
Input Sample Vectors
Figure 76. Input Sample Vectors
North

AV

S1 83

Se East
\\V/

In figure Input Sample Vectors (p. 291), the short, head-to-tail vectors are the input
sample vectors described by s; and ®;, the sample speed and direction, or by Ue;
and Un;, the east and north components of the sample vector. At the end of data-
storage interval T, the sum of the sample vectors is described by a vector of
magnitude U and direction @u. If the input sample interval is t, the number of
samples in data-storage interval T'is N = T'/t. The mean vector magnitude is U =
U/N.

Scalar mean horizontal wind speed, S:

S=(Ts)/N

where in the case of orthogonal sensors:
s, = (Ue’ + Un,")"”

Unit vector mean wind direction,

®, =arctan (Ux / Uy)

where
Ux=(Qsin®)/N
Uy = cos®)/N
or, in the case of orthogonal sensors
Ux=(X(Ue /U) /N
Uy =(3(Un,/ U) /N

291

Section 7. Installation

where
U, = (Ueiz + Uniz)l/z

Standard deviation of wind direction (Yamartino algorithm)
o(®,) = arcsin(e)[1 + 0.1547¢’]

where,

e=[1-((Ux)" + (Uy")]"

and Ux and Uy are as defined above.

Mean Wind Vector

Resultant mean horizontal wind speed, U:
— 2 2
U = (Ue’ + Un))
Figure 77. Mean Wind-Vector Graph

172

Un

Cl

Ue

where for polar sensors:
Ue=s sin®) /N
Un=_sicos®)/N

or, in the case of orthogonal sensors:
Ue= (2 Ue)/N
Un=(ZUn)/N

Resultant mean wind direction, Ou:

®u = arctan (Ue / Un)

292

Section 7. Installation

Standard deviation of wind direction, ¢ (®u), using Campbell Scientific
algorithm:

s(@u)=81(1-T/8)"

The algorithm for 6 (®u) is developed by noting, as shown in the figure Standard
Deviation of Direction (p. 293), that

cos (®")=U,/s,

where
®'=0,-0u

Standard Deviation of Direction

Figure 78. Standard Deviation of Direction

The Taylor Series for the Cosine function, truncated after 2 terms is:
~ 2
cos (@) 2 1-(0/)/2

For deviations less than 40 degrees, the error in this approximation is less than
1%. At deviations of 60 degrees, the error is 10%.

The speed sample can be expressed as the deviation about the mean speed,
ss=s' +8S

Equating the two expressions for Cos (0') and using the previous equation for s;;
1-(©)/2=U,/('+9S)

Solving for (®i')2, one obtains;
(@Y =2-2U,/S-(®)s'/S+2s'/S

Summing (©")> over N samples and dividing by N yields the variance of @u.

Note The sum of the last term equals 0.

(6(@u)) = (ﬁ)(@,‘)z INY=2(1-T/S)- 'zj;(((a,)z s') /NS

The term,
2((@{)2 si) /NS

is 0 if the deviations in speed are not correlated with the deviation in direction.
This assumption has been verified in tests on wind data by Campbell Scientific;

293

Section 7. Installation

the Air Resources Laboratory, NOAA, Idaho Falls, ID; and MERDI, Butte, MT.
In these tests, the maximum differences in

o(Ou) = (%(©/)'/N)"
and

c(@Ou) =2 (1-T/S))"
have never been greater than a few degrees.

The final form is arrived at by converting from radians to degrees (57.296
degrees/radian).

c@OW=02(1-T/S)*=81(1-T/S)"

294

Operation

Related Topics

* Quickstart (p. 41)

* Specifications (p. 93)
« Installation . 97)

* Operation (p. 293)

8.1 Measurements — Details

Related Topics:

o Sensors — Quickstart p. 42)

e Measurements — Overview (p. 62)
e Measurements — Details (p. 295)

e Sensors — Lists (p. 626)

Several features give the CR800 the flexibility to measure most sensor types.
Contact a Campbell Scientific application engineer if assistance is required in
assessing CR800 compatibility to a specific application or sensor type. Some
sensors require precision excitation or a source of power. See the section
Switched Voltage Output — Details (p. 101).

8.1.1 Time Keeping — Details

Related Topics:
o Time Keeping — Overview (p. 75)
» Time Keeping — Details (p. 295)

Measurement of time is an essential function of the CR800. Time measurement
with the on-board clock enables the CR800 to attach time stamps to data, measure
the interval between events, and time the initiation of control functions.

8.1.1.1 Time Stamps

A measurement without an accurate time reference has little meaning. Data on
the CR800 are stored with time stamps. How closely a time stamp corresponds to
the actual time a measurement is taken depends on several factors.

The time stamp in common CRBasic programs matches the time at the beginning
of the current scan as measured by the real-time clock in the CR800. If a scan
starts at 15:00:00, data output during that scan will have a time stamp of 15:00:00
regardless of the length of the scan or when in the scan a measurement is made.
The possibility exists that a scan will run for some time before a measurement is
made. For instance, a scan may start at 15:00:00, execute time-consuming code,
then make a measurement at 15:00:00.51. The time stamp attached to the
measurement, if the CallTable() instruction is called from within the Scan() /
NextScan construct, will be 15:00:00, resulting in a time-stamp skew of 510 ms.

Time-stamp skew is not a problem with most applications because,

e program execution times are usually short, so time stamp skew is only a few
milliseconds. Most measurement requirements allow for a few milliseconds
of skew.

295

Section 8. Operation

296

e data processed into averages, maxima, minima, and so forth are composites
of several measurements. Associated time stamps only reflect the time the
last measurement was made and processing calculations were completed, so
the significance of the exact time a specific sample was measured diminishes.

Applications measuring and storing sample data wherein exact time stamps are
required can be adversely affected by time-stamp skew. Skew can be avoided by

e Making measurements in the scan before time-consuming code.

e Programming the CR800 such that the time stamp reflects the system time
rather than the scan time. When CallTable() is executed from within the
Scan() / NextScan construct, as is normally done, the time stamp reflects
scan time. By executing the CallTable() instruction outside the Scan() /
NextScan construct, the time stamp will reflect system time instead of scan
time. CRBasic example Time Stamping with System Time (p. 296) shows the
basic code requirements. The DataTime() instruction is a more recent
introduction that facilitates time stamping with system time. See Data Table
Declarations (p. 514 and CRBasic Editor Help for more information.

CRBasic Example 62. Time Stamping with System Time

'"This program example demonstrates the time stamping of data with system time instead of
"the default use of scan time (time at which a scan started).

r

'Declare Variables

Public value

'Declare data table
DataTable(Test,True,1000)

Sample(1,Value, FP2)
EndTable

SequentialMode
BeginProg
Scan(1,Sec,10,0)

'Delay -- in an operational program, delay may be caused by other code
Delay(1,500,mSec)

'Measure Value -- can be any analog measurement
PanelTemp(Value,0)

"Immediately call SlowSequence to execute CallTable()
TriggerSequence(1,0)

NextScan

'Allow data to be stored 510 ms into the Scan with a s.51 time stamp
SlowSequence
Do
WaitTriggerSequence
CallTable(Test)
Loop

EndProg

Section 8. Operation

Other time-processing CRBasic instructions are governed by these same rules.
Consult CRBasic Editor Help for more information on specific instructions.

8.1.2 Analog Measurements — Details

Related Topics:
* Analog Measurements — Overview (p. 63)
* Analog Measurements — Details (p. 297)

The CR800 measures the following sensor analog output types:
e Voltage

o Single-ended
o Differential

Current (using a resistive shunt)
Resistance

Full-bridge

Half-bridge

Sensor connection is to H/L] terminals configurable for differential (DIFF) or
single-ended (SE) inputs. For example, differential channel 1 is comprised of
terminals 1H and 1L, with 1H as high and 1L as low.

8.1.2.1 Voltage Measurements — Details

Related Topics:

* Voltage Measurements — Specifications
* Voltage Measurements — Overview (p. 63)
* Voltage Measurements — Details (p. 297)

8.1.2.1.1 Voltage Measurement Mechanics

Measurement Sequence
An analog-voltage measurement, as illustrated in the figure Simplified Voltage
Measurement Sequence (p. 298), proceeds as follows:
1. Switch

. Settle

. Amplify

. Integrate

. A to D (successive approximation)

. Measurement scaled with multiplier and offset

~N N L BN

. Scaled value placed in memory

297

Section 8. Operation

298

FIGURE. Simplified Voltage Measurement Sequence -- 8 10 30

AtoD

Switch/Settle

Figure 79. Simplified voltage measurement sequence

Voltage measurements are made using a successive approximation 4A-to-D (p. 481)
converter to achieve a resolution of 14 bits. Prior to the A-to-D, a high
impedance programmable-gain instrumentation amplifier (PGIA) amplifies the
signal. See figure Programmable Gain Input Amplifier (PGIA) p. 298). The
CRBasic program controls amplifier gain and configuration — either single-ended
input or differential input. Internal multiplexers route individual terminals to the
PGIA.

Timing of measurement tasks is precisely controlled. The measurement schedule
is determined at compile time and loaded into memory.

Using two different voltage-measurement instructions with the same voltage
range takes about twice as long as using one instruction with two repetitions.

Parameters listed in table CRBasic Parameters Varying Measurement Sequence
and Timing (p. 299) vary sequence and timing of voltage measurement instructions.

Figure 80. Programmable Gain Input Amplifier (PGIA)

H
o——
Vo
o——
L Vo= Gain* (V)

A voltage measurement proceeds as follows:

1. Set PGIA gain for the voltage range selected with the CRBasic measurement
instruction parameter Range.

2. Turn on excitation to the level selected with ExmV..

3. Multiplex selected terminals (/nChan) to the PGIA and delay for the entered
settling time (Settling Time).

4. Integrate the signal (see section Measurement Integration . 299)) and perform
the A-to-D conversion.

5. Repeat for excitation reversal and input reversal as determined by parameters
RevEx and RevDiff.

6. Apply multitplier (Mulf) and offset (Offsef) to measured result.
The CR800 measures analog voltage by integrating the input signal for a fixed

Section 8. Operation

duration and then holding the integrated value during the successive
approximation analog-to-digital (A-to-D) conversion. The CR800 can make and
store measurements from up to three differential or six single-ended channels
configured from H/L terminals at the minimum scan interval of 10 ms (100 Hz)
using fast-measurement-programming techniques as discussed in Measurements:
Faster Analog Rates (p. 221. The maximum conversion rate is 2000 per second (2
kHz) for measurements made on a one single-ended channel.

Table 54. CRBasic Parameters Varying Measurement Sequence and
Timing

CRBasic Parameter Description

MeasOfs Correct ground offset on single-ended measurements.

SettlingTime Sensor input settling time.
Integ Duration of input signal integration.
RevDiff Reverse high and low differential inputs.
RevEx Reverse polarity of excitation voltage.

Measurement Integration

Integrating the signal removes noise that creates error in the measurement. Slow
integration removes more noise than fast integration. Integration time can be
modified to reject 50 Hz and 60 Hz mains-power line noise.

Fast integration may be preferred at times to,

e minimize time skew between successive measurements.

maximize throughput rate.

maximize life of the CR800 power supply.

minimize polarization of polar sensors such as those for measuring
conductivity, soil moisture, or leaf wetness. Polarization may cause
measurement errors or sensor degradation.

improve accuracy of an LVDT measurement. The induced voltage in an LVDT
decays with time as current in the primary coil shifts from the inductor to the
series resistance; a long integration time may result in most of signal decaying
before the measurement is complete.

Single-Ended Measurements — Details

Related Topics:
* Single-Ended Measurements — Overview (p. 65)
* Single-Ended Measurements — Details (p. 299)

With reference to the figure Programmable Gain Input Amplifier (PGIA) (p. 299),
during a single-ended measurement, the high signal (H) is routed to V+. The low
signal (L) is automatically connected internally to signal ground with the low
signal tied to ground (=) at the wiring panel. V+ corresponds to odd or even
numbered SE terminals on the CR800 wiring panel. The single-ended
configuration is used with the following CRBasic instructions:

e VoItSE()
e BrHalf()

299

Section 8. Operation

300

BrHalf3W()
TCSE()
Therm107()
Therm108()
Therm109()
Thermistor()

Related Topics:
* Differential Measurements — Overview (p. 66)
* Differential Measurements — Details (p. 300)

Differential Measurements — Details

Using the figure Programmable Gain Input Amplifier (PGIA) (. 298), for reference,
during a differential measurement, the high signal (H) is routed to V+ and the low
signal (L) is routed to V—.

An H terminal of an H/L terminal pair differential corresponds to V+. The L
terminal corresponds to V—. The differential configuration is used with the
following CRBasic instructions:

VoltDiff()
BrFull()
BrFulloW()
BrHalf4W()
TCDiff()

8.1.2.1.2 Voltage Measurement Limitations

Voltage Ranges

Caution Sustained voltages in excess of £8.6 V applied to terminals configured
for analog input can temporarily corrupt all analog measurements.

Warning Sustained voltages in excess of £16 V applied to terminals configured
for analog input will damage CR800 circuitry.

Related Topics:

* Voltage Measurements — Specifications
* Voltage Measurements — Overview (p. 63)
* Voltage Measurements — Details (p. 297)

In general, use the smallest fixed-input range that accommodates the full-scale
output of the sensor. This results in the best measurement accuracy and resolution.
The CR6 has fixed input ranges for voltage measurements and an auto-range to
automatically determine the appropriate input voltage range for a given
measurement. The table Analog Voltage Input Ranges and Options (. 301 lists
these input ranges and codes.

An approximate 9% range overhead exists on fixed input voltage ranges. In other
words, over-range on the £2500 mV input range occurs at approximately 2725
mV and —2725 mV. The CR800 indicates a measurement over-range by returning
a NAN (not a number) for the measurement.

Section 8. Operation

Automatic Range Finding

For signals that do not fluctuate too rapidly, range argument AutoRange allows
the CR800 to automatically choose the voltage range. AutoRange makes two
measurements. The first measurement determines the range to use. It is made
with a 250 ps integration on the +5000 mV range. The second measurement is
made using the range determined from the first. Both measurements use the
settling time entered in the Settling Time parameter. Auto-ranging optimizes
resolution but takes longer than a measurement on a fixed range because of the
two-measurement sequences.

An auto-ranged measurement will return NAN ("not a number") if the voltage
exceeds the range picked by the first measurement. To avoid problems with a
signal on the edge of a range, AutoRange sclects the next larger range when the
signal exceeds 90% of a range.

Use auto-ranging for a signal that occasionally exceeds a particular range, for
example, a type-J thermocouple measuring a temperature usually less than 476 °C
(£25 mV range) but occasionally as high as 500 °C (£250 mV range).
AutoRange should not be used for rapidly fluctuating signals, particularly signals
traversing multiple voltage ranges rapidly. The possibility exists that the signal
can change ranges between the internal range check and the actual measurement.

Table 55. Analog Voltage Input Ranges and Options

Range Code Description
mV5000 measures voltages between +5000 mV
mv2 5001 measures voltages between +2500 mV
my2 502 measures voltages between +250 mV
mv2 52 measures voltages between £25 mV
mv7_ 52 measures voltages between £7.5 mV
mv2_ 52 measures voltages between +2.5 mV
Auto. Range3 datalogger determines the most suitable range

! Append with C to enable common-mode null / open-input detect and set excitation to full-scale
(~2700 mV) (Example: m¥V2500)

2 Append with C to enable common-mode null / open-input detect (Example: mV25C)

3 Append with C to enable common-mode null / open-input detect on ranges < +250 mV, or just
common-mode null on ranges > +250 mV (Example: AutoRangeC)

Input Limits / Common-Mode Range

Related Topics:

* Voltage Measurements — Specifications
* Voltage Measurements — Overview (p. 63)
* Voltage Measurements — Details (p. 297)

Note This section contains advanced information not required for normal
operation of the CR800.

301

Section 8. Operation

302

Summary

* Voltage input limits for measurement are £5 Vdc. Input Limits is the
specification listed in the section Specifications (p. 95).

+ Common-mode range is not a fixed number. It varies with respect to the
magnitude of the input voltage.

» The CR800 has features that help mitigate some of the effects of signals that
exceed the Input Limits specification or the common-mode range.

With reference to the figure PGIA with Input-Signal Decomposition (p. 302), the
PGIA processes the voltage difference between V+ and V—. It ignores the
common-mode voltage, or voltages that are common to both inputs. The figure
shows the applied input voltage decomposed into a common-mode voltage (Vem)
and the differential-mode component (V4m) of a voltage signal. V¢n is the
average of the voltages on the V+ and V—inputs. So, Vem = (V++ V-)/2 or the
voltage remaining on the inputs when Vam = 0. The total voltage on the V+ and
V—inputs is given as V+ = V¢ + Vam/2, and V—= Ve — Van/2, respectively.

The PGIA ignores or rejects common-mode voltages as long as voltages at V+
and V- are within the /nput Limits specification, which for the CR6 is +5 Vdc
relative to ground. Input voltages wherein V+ or V—, or both, are beyond the +5
Vdc limit may suffer from undetected measurement errors. The Common-Mode
Range defines the range of common-mode voltages that are not expected to
induce undetected measurement errors. Common-Mode Range is different than
Input Limits when the differential mode voltage in non-negligible. The following
relationship is derived from the PGIA figure as:

Common-Mode Range = 45 Vdc — [Vam/2|.

The conclusion follows that the common-mode range is not a fixed number, but
instead decreases with increasing differential voltage. For differential voltages
that are small compared to the input limits, common-mode range is essentially
equivalent to Input Limits. Yet for a 5000 mV differential signal, the common-
mode range is reduced to +2.5 Vdc, whereas Input Limits are always £5 Vdc.
Consequently, the term Input Limits is used to specify the valid voltage range of
the V+ and V- inputs into the PGIA.

Figure 81. PGIA with Input-Signal Decomposition

Vo

Var=(VutM)/ 2
Vi = Vo + V! 2
\/L :\/cm_\/dm/2
- V, =Gain*(V,~V,.) = Gain -V,

Section 8. Operation

8.1.2.1.3 Voltage Measurement Quality

Read More Consult the following technical papers at www.campbellsci.com/app-
notes (http://'www.campbellsci.com/app-notes) for in-depth treatments of several
topics addressing voltage measurement quality:

* Preventing and Attacking Measurement Noise Problems

* Benefits of Input Reversal and Excitation Reversal for Voltage Measurements

* Voltage Measurement Accuracy, Self- Calibration, and Ratiometric
Measurements

* Estimating Measurement Accuracy for Ratiometric Measurement Instructions.

The following topics discuss methods of generally improving voltage
measurements. Related information for special case voltage measurements
(thermocouples (p. 319, current loops (p. 319), resistance (p. 319), and strain (p. 324)) is
located in sections for those measurements.

Single-Ended or Differential?

Deciding whether a differential or single-ended measurement is appropriate is
usually, by far, the most important consideration when addressing voltage
measurement quality. The decision requires trade-offs of accuracy and precision,
noise cancelation, measurement speed, available measurement hardware, and
fiscal constraints.

In broad terms, analog voltage is best measured differentially because these
measurements include noise reduction features, listed below, that are not included
in single-ended measurements.

e Passive Noise Rejection

o No voltage reference offset
o Common-mode noise rejection, which filters capacitively coupled noise

e Active Noise Rejection
o Input reversal

— Review Input and Excitation Reversal (p. 317) for details
— Increases by twice the input reversal signal integration time

Reasons for using single-ended measurements, however, include:

e Not enough differential terminals available. Differential measurements use
twice as many H/L] terminals as do single-ended measurements.

e Rapid sampling is required. Single-ended measurement time is about half
that of differential measurement time.

e Sensor is not designed for differential measurements. Many Campbell
Scientific sensors are not designed for differential measurement, but the draw
backs of a single-ended measurement are usually mitigated by large
programmed excitation and/or sensor output voltages.

Sensors with a high signal-to-noise ratio, such as a relative-humidity sensor with a
full-scale output of 0 to 1000 mV, can normally be measured as single-ended
without a significant reduction in accuracy or precision.

Sensors with a low signal-to-noise ratio, such as thermocouples, should normally
be measured differentially. However, if the measurement to be made does not
require high accuracy or precision, such as thermocouples measuring brush-fire

303

http://www.campbellsci.com/app-notes

Section 8. Operation

304

Electronic Noise

temperatures, which can exceed 2500 °C, a single-ended measurement may be
appropriate. If sensors require differential measurement, but adequate input
terminals are not available, an analog multiplexer should be acquired to expand
differential input capacity. Refer to the appendix Analog Multiplexers (p. 622) for
information concerning available multiplexers.

Because a single-ended measurement is referenced to CR800 ground, any
difference in ground potential between the sensor and the CR800 will result in an
error in the measurement. For example, if the measuring junction of a copper-
constantan thermocouple being used to measure soil temperature is not insulated,
and the potential of earth ground is 1 mV greater at the sensor than at the point
where the CR800 is grounded, the measured voltage will be 1 mV greater than the
true thermocouple output, or report a temperature that is approximately 25 °C too
high. A common problem with ground-potential difference occurs in applications
wherein external, signal-conditioning circuitry is powered by the same source as
the CR800, such as an ac mains power receptacle. Despite being tied to the same
ground, differences in current drain and lead resistance may result in a different
ground potential between the two instruments. So, as a precaution, a differential
measurement should be made on the analog output from an external signal
conditioner; differential measurements MUST be used when the low input is
known to be different from ground.

Electronic "noise" can cause significant error in a voltage measurement,
especially when measuring voltages less than 200 mV. So long as input
limitations are observed, the PGIA ignores voltages, including noise, that are
common to each side of a differential-input pair. This is the common-mode
voltage. Ignoring (rejecting or canceling) the common-mode voltage is an
essential feature of the differential input configuration that improves voltage
measurements.

Figure PGIA with Input-Signal Decomposition (. 302), illustrates the common-
mode component (V¢m) and the differential-mode component (Vgm) of a voltage
signal. Ven is the average of the voltages on the V+ and V—inputs. So, Vem =
(V++ V—)/2 or the voltage remaining on the inputs when Vgm = 0. The total
voltage on the V+ and V— inputs is given as V+ = V¢y + Van/2, and VL = Ve —
Vam/2, respectively.

Measurement Accuracy

Read More For an in-depth treatment of accuracy estimates, see the technical
paper Measurement Error Analysis available at www.campbellsci.com/app-notes
(http://'www.campbellsci.com/app-notes).

Accuracy describes the difference between a measurement and the true value.
Many factors affect accuracy. This section discusses the affect percent-or-
reading, offset, and resolution have on the accuracy of the measurement of an
analog-voltage sensor signal. Accuracy is defined as follows:

accuracy = percent-of-reading + offset

http://www.campbellsci.com/app-notes

Section 8. Operation

where percents-of-reading are tabulated in the table Analog-Voltage Measurement
Accuracy (p. 305, and offsets are tabulated in the table Analog-Voltage
Measurement Offsets (p. 303).

Note Error discussed in this section and error-related specifications of the CR800
do not include error introduced by the sensor or by the transmission of the sensor
signal to the CR800.

Table 56. Analog-Voltage Measurement Accuracy’

0to 40 °C —-25to 50 °C _55 to 85 °C2

+(0.06% of reading + offset) +(0.12% of reading + offset) +(0.18% of reading + offset)

! Assumes the CR800 is within factory specifications
2 Available only with purchased extended temperature option (-XT)

Table 57. Analog-Voltage Measurement Offsets

Differential Measurement | Differential Measurement Sinale-Ended
With Input Reversal Without Input Reversal 9

1.5 « Basic Resolution + 1.0 3 « Basic Resolution + 2.0 uV | 3 « Basic Resolution + 3.0 uV
uv

Note — the value for Basic Resolution is found in the table Analog-Voltage Measurement
Resolution (p. 305).

Table 58. Analog-Voltage Measurement Resolution

Differential
Input Measurement
Voltage Range With Input Reversal Basic Resolution

(mV) (uv) (uv)
+5000 667 1333
+2500 333 667
+250 333 66.7

25 3.33 6.7

7.5 1.0 2.0

2.5 0.33 0.67

Note — see Specifications (p. 95) for a complete tabulation of measurement resolution

As an example, figure Voltage Measurement Accuracy Band Example . 306)
shows changes in accuracy as input voltage changes on the £2500 input range.
Percent-of-reading is the principle component, so accuracy improves as input
voltage decreases. Offset is small, but could be significant in applications
wherein the sensor-signal voltage is very small, such as is encountered with
thermocouples.

Offset depends on measurement type and voltage-input range. Offsets equations
are tabulated in table Analog Voltage Measurement Offsets (. 305. For example,
for a differential measurement with input reversal on the +5000 mV input range,
the offset voltage is calculated as follows:

offset = 1.5 « Basic Resolution + 1.0 pV

305

Section 8. Operation

306

=(1.5+667 uV) + 1.0 pV
=1001.5 pV

where Basic Resolution is the published resolution is taken from the table Analog-
Voltage Measurement Resolution (p. 305).

Figure 82. Example voltage measurement accuracy band, including the
effects of percent of reading and offset, for a differential measurement
with input reversal at a temperature between 0 to 40 °C.

Voltage Measurement Error (mV)

Measurement Accuracy Example

4.

-3000

NN o060
VO NAVANY 1 900

WAA

AN,
2000

3000

Input Voltage (mV)

The following example illustrates the effect percent-of-reading and offset have on
measurement accuracy. The effect of offset is usually negligible on large signals:

Example:

Accuracy of the measurement is calculated as follows:

Sensor-signal voltage: ~2500 mV
CRBasic measurement instruction: VoltDiff()

Programmed input-voltage range (Range): mV2500 (2500 mV)
Input measurement reversal (RevDiff): True
CRS800 circuitry temperature: 10 °C

accuracy = percent-of-reading + offset

Section 8. Operation

where
percent-of-reading = 2500 mV « £0.06%
=+1.5mV
and
offset = (1.5 + 667 uV) + 1 uVv
=1.00 mV
Therefore,
accuracy =+1.5 mV + 1.00 mV

=4+2.5mV

Integration

The CR800 incorporates circuitry to perform an analog integration on voltages to
be measured prior to the 4-t0-D (p. 481) conversion. Integrating the the analog
signal removes noise that creates error in the measurement. Slow integration
removes more noise than fast integration. When the duration of the integration
matches the duration of one cycle of ac power mains noise, that noise is filtered
out. The table Analog Measurement Integration (p. 307) lists valid integration
duration arguments.

Faster integration may be preferred to achieve the following objectives:

Minimize time skew between successive measurements

Maximize throughput rate

Maximize life of the CR800 power supply

Minimize polarization of polar sensors such as those for measuring
conductivity, soil moisture, or leaf wetness. Polarization may cause
measurement errors or sensor degradation.

e Improve accuracy of an LVDT measurement. The induced voltage in an
LVDT decays with time as current in the primary coil shifts from the inductor
to the series resistance; a long integration may result in most of signal
decaying before the measurement is complete.

Read More See White Paper "Preventing and Attacking Measurement Noise
Problems" at www.campbellsci.com.

The magnitude of the frequency response of an analog integrator is a SIN(x)/x
shape, which has notches (transmission zeros) occurring at 1/(integer multiples) of
the integration duration. Consequently, noise at 1/(integer multiples) of the
integration duration is effectively rejected by an analog integrator. If reversing
the differential inputs or reversing the excitation is specified, there are two
separate integrations per measurement; if both reversals are specified, there are
four separate integrations.

307

Section 8. Operation

Table 59. Analog Measurement Integration

Integration Parameter

Integration Time (ms) Argument Comments
0 to 16000 ps 010 16000 250 ps is considered fast and
normally the minimum
16.667 ms _60Hz Filters 60 Hz noise
20 ms _50Hz Filters 50 Hz noise

Ac Power-Line Noise Rejection

Grid or mains power (50 or 60 Hz, 230 or 120 Vac) can induce electrical noise at
integer multiples of 50 or 60 Hz. Small analog voltage signals, such as
thermocouples and pyranometers, are particularly susceptible. CR800 voltage
measurements can be programmed to reject (filter) 50 Hz or 60 Hz related noise.
Noise is rejected by using a signal integration time that is relative to the length of
the ac noise cycle, as illustrated in the figure A4c Power-Line Noise Rejection
Techniques (p. 308).

FIGURE. Ac power line noise rejection techniques -- 8 10 30

308

Figure 83. Ac-Power Noise-Rejection Techniques

| Full Cycle Technigue |

|:| Full Cycle Integration

- 112 Cycle Integration

‘ 112 Cycle Technique ‘

The CR800 rejects ac power line noise on all voltage ranges except mV5000 and
mV2500 by integrating the measurement over exactly one full ac cycle before 4-
to-D (p. 481) conversion as listed in table ac Noise Rejection on Small Signals (p. 308).

Section 8. Operation

Table 60. Ac Noise Rejection on Small Signals'

Ac Power Line Measurement Integration
Frequency Duration CRBasic Integration Code
60 Hz 16.667 ms _60H?
50 Hz 20 ms _50H7

! Applies to all analog input voltage ranges except mV2500 and mV'5000.

If rejecting ac-line noise when measuring with the 2500 mV (mV2500) and 5000
mV (mV5000) ranges, the CR800 makes two fast measurements separated in time
by one-half line cycle. A 60 Hz half cycle is 8333 ps, so the second measurement
must start 8333 ps after the first measurement integration began. The A-to-D
conversion time is approximately 170 ps, leaving a maximum input-settling time
of approximately 8160 us (8333 pus — 170 ps). If the maximum input-settling time
is exceeded, 60 Hz line-noise rejection will not occur. For 50 Hz rejection, the
maximum input settling time is approximately 9830 ps (10,000 pus — 170 ps). The
CR800 does not prevent or warn against setting the settling time beyond the half-
cycle limit. Table ac Noise Rejection on Large Signals (p. 309 lists details of the
half-cycle ac-power line-noise rejection technique.

Table 61. Ac Noise Rejection on Large Signals'

Measurement CRBasic Default Maximum
Ac-Power Line Integration Integration Settling Recommendeg
Frequency Time Code Time Settling Time
60 Hz 250 s + 2 _60Hz 3000 s 8330 ps
50 Hz 250 us 2 _50H7 3000 ps 10000 ps

! Applies to analog input voltage ranges m V2500 and mV'5000.

2 Excitation time and settling time are equal in measurements requiring excitation. The CR800 cannot excite VX excitation
terminals during A-to-D conversion. The one-half-cycle technique with excitation limits the length of recommended excitation and
settling time for the first measurement to one-half-cycle. The CR800 does not prevent or warn against setting a settling time
beyond the one-half-cycle limit. For example, a settling time of up to 50000 pus can be programmed, but the CR800 will execute the

measurement as follows:

1. CR800 turns excitation on, waits 50000 ps, and then makes the first measurement.
2. During A-to-D, CR800 turns off excitation for =170 ps.

3. Excitation is switched on

Restated, when the CR800 is programmed to use the half-cycle 50 Hz or 60 Hz rejection techniques, a sensor does not see a
continuous excitation of the length entered as the settling time before the second measurement — if the settling time entered is
greater than one-half cycle. This causes a truncated second excitation. Depending on the sensor used, a truncated second excitation

may cause measurement €rrors.

again for one-half cycle, then the second measurement is made.

Signal-Settling Time

Settling time allows an analog voltage signal to settle closer to the true magnitude
prior to measurement. To minimize measurement error, signal settling is needed
when a signal has been affected by one or more of the following:

e A small transient originating from the internal multiplexing that connects a
CR800 terminal with measurement circuitry

e A relatively large transient induced by an adjacent excitation conductor on
the signal conductor, if present,because of capacitive coupling during a
bridge measurement

Section 8. Operation

e Dielectric absorption. 50 Hz or 60 Hz integrations require a relatively long
reset time of the internal integration capacitor before the next measurement.

The rate at which the signal settles is determined by the input settling-time
constant, which is a function of both the source resistance and fixed-input
capacitance (3.3 nfd) of the CR800.

Rise and decay waveforms are exponential. Figure Input Voltage Rise and
Transient Decay (p. 310) shows rising and decaying waveforms settling closer to the
true signal magnitude, Vso. The Settling Time parameter of an analog
measurement instruction allows tailoring of measurement instruction settling
times with 100 ps resolution up to 50000 ps.

Programmed settling time is a function of arguments placed in the Settling Time
and Integ parameters of a measurement instruction. Argument combinations and
resulting settling times are listed in table CRBasic Measurement Settling Times (p.
310). Default settling times (those resulting when Settling Time = 0) provide
sufficient settling in most cases. Additional settling time is often programmed
when measuring high-resistance (high-impedance) sensors or when sensors
connect to the input terminals by long leads.

Measurement time of a given instruction increases with increasing settling time.
For example, a 1 ms increase in settling time for a bridge instruction with input
reversal and excitation reversal results in a 4 ms increase in time for the CR800 to
perform the instruction.

Figure 84. Input-voltage rise and transient decay

310

Ve0H
Input
Yo T e i s
Voltage S
\ -
. T
0 Time 0.5ms
Table 62. CRBasic Measurement Settling Times
SettlingTime Integ Resultant
Argument Argument Settling Time!
0 250 450 ps
0 _50H7 3ms
0 _60Hz 3 ms
inteer > 100 integer us entered in Settling Time
ger= & argument
! 450 ps is the minimum settling time required to meet CR800 resolution specifications.

Section 8. Operation

Settling Errors

When sensors require long lead lengths, use the following general practices to
minimize settling errors:

e Do not use wire with PVC-insulated conductors. PVC has a high dielectric
constant, which extends input settling time.

e Where possible, run excitation leads and signal leads in separate shields to
minimize transients.

e When measurement speed is not a prime consideration, additional time can be
used to ensure ample settling time. The settling time required can be
measured with the CR800.

o In difficult cases, settling error can be measured as described in section
Measuring Settling Time . 311).

Measuring Settling Time

Settling time for a particular sensor and cable can be measured with the CR800.
Programming a series of measurements with increasing settling times will yield
data that indicate at what settling time a further increase results in negligible
change in the measured voltage. The programmed settling time at this point
indicates the settling time needed for the sensor / cable combination.

CRBasic example Measuring Settling Time (p. 311) presents CRBasic code to help
determine settling time for a pressure transducer using a high-capacitance
semiconductor. The code consists of a series of full-bridge measurements
(BrFull()) with increasing settling times. The pressure transducer is placed in
steady-state conditions so changes in measured voltage are attributable to settling
time rather than changes in pressure. Reviewing the section Programming (p. 120)
may help in understanding the CRBasic code in the example.

The first six measurements are shown in table First Six Values of Settling-Time
Data . 313). Each trace in figure Settling Time for Pressure Transducer (p. 313)
contains all twenty PT() mV/V values (left axis) for a given record number, along
with an average value showing the measurements as percent of final reading (right
axis). The reading has settled to 99.5% of the final value by the fourteenth
measurement, which is contained in variable PT(14). This is suitable accuracy for
the application, so a settling time of 1400 ps is determined to be adequate.

311

Section 8. Operation

CRBasic Example 63. Measuring Settling Time

'"This program example demonstrates the measurement of settling time using a single
'measurement instruction multiple times in succession. In this case, the program measures
"the temperature of the CR800 wiring panel.

Public RefTemp 'Declare variable to receive instruction

BeginProg
Scan(1,Sec,3,0)
PanelTemp(RefTemp, 250) 'Instruction to make measurement
NextScan
EndProg measures the settling time of a sensor measured with a differential
'voltage measurement

PubTic PT(20) 'Variable to hold the measurements
DataTable(Settle,True,100)

Samp1e(20,PT(),IEEE4)
EndTable

BeginProg
Scan(1,Sec,3,0)

BrFul1(PT(1),1,mv7.5,1,Vx1,2500,True,True,100, 250,1.0,0)
BrFull(PT(2),1,mv7.5,1,Vx1,2500,True,True,200, 250,1.0,0)
BrFul1(PT(3),1,mv7.5,1,Vx1,2500,True,True,300, 250,1.0,0)
BrFul1(PT(4),1,mv7.5,1,Vx1,2500,True,True,400, 250,1.0,0)
BrFull(PT(5),1,mv7.5,1,Vx1,2500,True,True,500, 250,1.0,0)
BrFul1(PT(6),1,mv7.5,1,Vx1,2500,True,True,600, 250,1.0,0)
BrFul1(PT(7),1,mv7.5,1,Vx1,2500,True,True,700, 250,1.0,0)
BrFull(PT(8),1,mv7.5,1,Vx1,2500,True,True,800, 250,1.0,0)
BrFul1(PT(9),1,mv7.5,1,Vx1,2500,True,True,900, 250,1.0,0)
BrFul1(PT(10),1,mv7.5,1,Vx1,2500,True,True,1000, 250,1.0,0)
BrFull(PT(11),1,mv7.5,1,Vx1,2500,True,True,1100, 250,1.0,0)
BrFull1(PT(12),1,mv7.5,1,Vx1,2500,True,True,1200, 250,1.0,0)
BrFull1(PT(13),1,mv7.5,1,Vx1,2500,True,True,1300, 250,1.0,0)
BrFull(PT(14),1,mVv7.5,1,Vx1,2500,True,True,1400, 250,1.0,0)
BrFull1(PT(15),1,mv7.5,1,Vx1,2500,True,True,1500, 250,1.0,0)
BrFull1(PT(16),1,mv7.5,1,Vx1,2500,True,True,1600, 250,1.0,0)
BrFull(PT(17),1,mVv7.5,1,Vx1,2500,True,True,1700, 250,1.0,0)
BrFull1(PT(18),1,mv7.5,1,Vx1,2500,True,True,1800, 250,1.0,0)
BrFul1(PT(19),1,mv7.5,1,Vx1,2500,True,True,1900, 250,1.0,0)
BrFull(PT(20),1,mv7.5,1,Vx1,2500,True,True,2000, 250,1.0,0)

CallTable Settle

NextScan
EndProg

312

Section 8. Operation

Figure 85. Settling Time for Pressure Transducer

Settling Time

0.044 /7\’d —
e 07)-“‘/“«(W 9
0.043 T
/4
N ——r
0,042 AN D .4:>«\/
M 95
0.041 y .
3 ’;’/ % —— Channel 1 L o3 g
§ 0.040 77’ —— Channel 3 e
£ —@— Channel 4 w
=¥~ Channel 5 91 52
0.039 —4— Channel 6
—m—% Final Val|
0.038 89
0.037 87
0.036 . . 85
1 2 3 4 5 6 7 8 9 10 M 12 13 14 15 16 17 18 19 20
Time (x100 ps)
Table 63. First Six Values of Settling-Time Data
TIMESTAMP REC PT(1) PT(2) PT(3) PT(4) PT(5) PT(6)
Smp Smp Smp Smp Smp Smp
1/3/2000 23:34 0 0.03638599 0.03901386 0.04022673 0.04042887 0.04103531 0.04123745
1/3/2000 23:34 1 0.03658813 0.03921601 0.04002459 0.04042887 0.04103531 0.0414396
1/3/2000 23:34 2 0.03638599 0.03941815 0.04002459 0.04063102 0.04042887 0.04123745
1/3/2000 23:34 3 0.03658813 0.03941815 0.03982244 0.04042887 0.04103531 0.04103531
1/3/2000 23:34 4 0.03679027 0.03921601 0.04022673 0.04063102 0.04063102 0.04083316

Open-Input Detect

Note Much of the information in the following section is highly technical and is
not necessary for the routine operation of the CR800. The information is included
to foster a deeper understanding of the open-input detection feature of the CR800.

Summary

* An option to detect an open-input, such as a broken sensor or loose connection,
is available in the CR800.
 The option is selected by appending a C to the Range code.
* Using this option, the result of a measurement on an open connection will be
NAN (not a number).

A useful option available to single-ended and differential measurements is the

detection of open inputs due to a broken or disconnected sensor wire. This

prevents otherwise undetectable measurement errors. Range codes appended with
C enable open-input detect for all input ranges except the £5000 mV input range
(see table Analog Voltage Input Ranges with CMN / OID . 301)).

313

Section 8. Operation

314

Appending the Range code with a C results in a 50 ps internal connection of the
V+ input of the PGIA to a large over-voltage. The V- input is connected to

ground. Upon disconnecting the inputs, the true input signal is allowed to settle
and the measurement is made normally. If the associated sensor is connected, the
signal voltage is measured. If the input is open (floating), the measurement will
over-range since the injected over-voltage will still be present on the input, with

NAN as the result.

Range codes and applicable over-voltage magnitudes are found in the table
Range-Code Option C Over-Voltages (p. 314).

The C option may not work, or may not work well, in the following applications:

If the input is not a truly open circuit, such as might occur on a wet cut cable
end, the open circuit may not be detected because the input capacitor
discharges through external leakage to ground to a normal voltage within the
settling time of the measurement. This problem is worse when a long settling
time is selected, as more time is given for the input capacitors to discharge to
a "normal" level.

If the open circuit is at the end of a very long cable, the test pulse (300 mV)
may not charge the cable (with its high capacitance) up to a voltage that
generates NAN or a distinct error voltage. The cable may even act as an aerial
and inject noise which also might not read as an error voltage.

The sensor may "object" to the test pulse being connected to its output, even
for 100 ps. There is little or no risk of damage, but the sensor output may be
caused to temporarily oscillate. Programming a longer settling time in the
CRBasic measurement instruction to allow oscillations to decay before the A-

to-D conversion may mitigate the problem.

Table 64. Range-Code Option C Over-Voltages

Input Range Over-Voltage
2.5 mV
250 mV
+2500 mV C option with caveat!
+5000 mV C option not available

1C results in the H terminal being briefly connected to a voltage greater than 2500 mV, while the
L terminal is connected to ground. The resulting common-mode voltage is 1250 mV, which is not
adequate to null residual common-mode voltage, but is adequate to facilitate a type of open-input
detect. This requires inclusion of an If / Then / Else statement in the CRBasic program to test the
results of the measurement. For example:

*The result of a VoltDiff() measurement using mV2500C as the Range code can be tested for a
result >2500 mV, which would indicate an open input.

*The result of the BrHalf() measurement, X, using the m¥2500C range code can be tested for
values >1. A result of X > 1 indicates an open input for the primary measurement, V1, where X =
V1/Vx and Vx is the excitation voltage. A similar strategy can be used with other bridge
measurements.

Section 8. Operation

Offset Voltage Compensation

Related Topics

e Auto Calibration — Overview . 91)

* Auto Calibration — Details . 326)

e Auto-Calibration — Errors (p. 466)

* Offset Voltage Compensation (p. 315)

* Factory Calibration . 92)

» Factory Calibration or Repair Procedure (p. 452)

Summary
Measurement offset voltages are unavoidable, but can be minimized.

Offset voltages originate with:

* Ground currents

+ Seebeck effect

* Residual voltage from a previous measurement

Remedies include:

+ Connect power grounds to power ground terminals (G)

 Use input reveral (RevDiff = True) with differential measurements

+ Automatic offset compensation for differential measurements when RevDiff =
False

* Automatic offset compensation for single-ended measurements when MeasOff
= False

* Better offset compensation when MeasOff = True

+ Excitation reversal (RevEx = True)

 Longer settling times

Voltage offset can be the source of significant error. For example, an offset of 3
uV on a 2500 mV signal causes an error of only 0.00012%, but the same offset on
a 0.25 mV signal causes an error of 1.2%. The primary sources of offset voltage
are ground currents and the Seebeck effect.

Single-ended measurements are susceptible to voltage drop at the ground terminal
caused by return currents from another device that is powered from the CR800
wiring panel, such as another manufacturer's telecommunication modem, or a
sensor that requires a lot of power. Currents >5 mA are usually undesirable. The
error can be avoided by routing power grounds from these other devices to a
power ground G terminal on the CR800 wiring panel, rather than using a signal
ground (&) terminal. Ground currents can be caused by the excitation of
resistive-bridge sensors, but these do not usually cause offset error. These
currents typically only flow when a voltage excitation is applied. Return currents
associated with voltage excitation cannot influence other single-ended
measurements because the excitation is usually turned off before the CR800
moves to the next measurement. However, if the CRBasic program is written in
such a way that an excitation terminal is enabled during an unrelated measurement
of a small voltage, an offset error may occur.

The Seebeck effect results in small thermally induced voltages across junctions of
dissimilar metals as are common in electronic devices. Differential measurements
are more immune to these than are single-ended measurements because of passive
voltage cancelation occurring between matched high and low pairs such as
1H/1L. So use differential measurements when measuring critical low-level

315

Section 8. Operation

316

voltages, especially those below 200 mV, such as are output from pyranometers
and thermocouples. Differential measurements also have the advantage of an
input reversal option, RevDiff. When RevDiff'is True, two differential
measurements are made, the first with a positive polarity and the second reversed.
Subtraction of opposite polarity measurements cancels some offset voltages
associated with the measurement.

Single-ended and differential measurements without input reversal use an offset
voltage measurement with the PGIA inputs grounded. For differential
measurements without input reversal, this offset voltage measurement is
performed as part of the routine auto-calibration of the CR800. Single-ended
measurement instructions VoltSE() and TCSe() MeasOff parameter determines
whether the offset voltage measured is done at the beginning of measurement
instruction, or as part of self-calibration. This option provides you with the
opportunity to weigh measurement speed against measurement accuracy. When
MeasOff = True, a measurement of the single-ended offset voltage is made at the
beginning of the VoItSE() instruction. When MeasOff = False, an offset voltage
measurement is made during self-calibration. For slowly fluctuating offset
voltages, choosing MeasOff = True for the VotSE() instruction results in better
offset voltage performance.

Ratiometric measurements use an excitation voltage or current to excite the sensor
during the measurement process. Reversing excitation polarity also reduces offset
voltage error. Setting the RevEx parameter to True programs the measurement
for excitation reversal. Excitation reversal results in a polarity change of the
measured voltage so that two measurements with opposite polarity can be
subtracted and divided by 2 for offset reduction similar to input reversal for
differential measurements. Ratiometric differential measurement instructions
allow both RevDiff and RevEx to be set True. This results in four measurement
sequences:

positive excitation polarity with positive differential input polarity
negative excitation polarity with positive differential input polarity
positive excitation polarity with negative differential input polarity
positive excitation polarity then negative excitation differential input polarity

For ratiometric single-ended measurements, such as a BrHalf(), setting RevEx =
True results in two measurements of opposite excitation polarity that are
subtracted and divided by 2 for offset voltage reduction. For RevEx = False for
ratiometric single-ended measurements, an offset-voltage measurement is made
during the self-calibration.

When analog voltage signals are measured in series by a single measurement
instruction, such as occurs when VoltSE() is programmed with Reps = 2 or more,
measurements on subsequent terminals may be affected by an offset, the
magnitude of which is a function of the voltage from the previous measurement.
While this offset is usually small and negligible when measuring large signals,
significant error, or NAN, can occur when measuring very small signals. This
effect is caused by dielectric absorption of the integrator capacitor and cannot be
overcome by circuit design. Remedies include the following:

e Program longer settling times
e Use an individual instruction for each input terminal, the effect of which is to
reset the integrator circuit prior to integration.

Section 8. Operation

e Avoid preceding a very small voltage input with a very large voltage input in
a measurement sequence if a single measurement instruction must be used.

The table Offset-Voltage Compensation Options (p. 317 lists some of the tools
available to minimize the effects of offset voltages.

Table 65. Offset Voltage Compensation Options

CRBasic
Measurement
Instruction

Measure Offset
During Background
Calibration
(RevDiff = False)
(RevEx = False)
(MeasOff = False)

Measure
Offset During
Measurement

(MeasOff = True)

Excitation
Reversal
(RevEx = True)

Input Reversal
(RevDiff =True)

VoltDiff()

v

VoltSe()

TCDiff()

TCSe()

BrHalf()

BrHalf3W()

Therm107()

Therm108()

Therm109()

BrHalf4W()

BrFull()

BrFull6W()

NIEN RN RN NN RN RN RN N N

AM25T()

AN N B NI BN
AN NI I N NN B N N EANE RN

<«

Input and Excitation Reversal

Reversing inputs (differential measurements) or reversing polarity of excitation
voltage (bridge measurements) cancels stray voltage offsets. For example, if 3
L1V offset exists in the measurement circuitry, a 5 mV signal is measured as 5.003
mV. When the input or excitation is reversed, the second sub-measurement is —
4.997 mV. Subtracting the second sub-measurement from the first and then
dividing by 2 cancels the offset:

5.003 mV - (-4.997 mV) = 10.000 mV
10.000 mV / 2 = 5.000 mV

When the CR800 reverses differential inputs or excitation polarity, it delays the
same settling time after the reversal as it does before the first sub-measurement.
So, there are two delays per measurement when either RevDiff or RevEx is used.
If both RevDiff and RevEx are True, four sub-measurements are performed;
positive and negative excitations with the inputs one way and positive and
negative excitations with the inputs reversed. The automatic procedure then is as
follows,

317

Section 8. Operation

1. Switches to the measurement terminals

2. Sets the excitation, and then settle, and then measure

3. Reverse the excitation, and then settles, and then measure

4. Reverse the excitation, reverse the input terminals, settle, measure
5. Reverse the excitation, settle, measure

There are four delays per measure. The CR800 processes the four sub-
measurements into the reported measurement. In cases of excitation reversal,
excitation time for each polarity is exactly the same to ensure that ionic sensors do
not polarize with repetitive measurements.

Read More A white paper entitled "The Benefits of Input Reversal and
Excitation Reversal for Voltage Measurements" is available at
www.campbellsci.com.

Ground Reference Offset Voltage

When MeasOff is enabled (= True), the CR800 measures the offset voltage of the
ground reference prior to each VoltSe() or TCSe() measurement. This offset
voltage is subtracted from the subsequent measurement.

From Background Calibration

If RevDiff, RevEx, or MeasOff is disabled (= False), offset voltage compensation
is continues to be automatically performed, albeit less effectively, by using
measurements from the automatic background calibration. Disabling RevDiff,
RevEx, or MeasOff speeds up measurement time; however, the increase in speed
comes at the cost of accuracy because of the following:

1 RevDiff, RevEx, and MeasOff are more effective.

2 Background calibrations are performed only periodically, so more time skew
occurs between the background calibration offsets and the measurements to
which they are applied.

Note When measurement duration must be minimal to maximize measurement
frequency, consider disabling RevDiff, RevEx, and MeasOff when CR800
module temperatures and return currents are slow to change.

Time Skew Between Measurements

318

Time skew between consecutive voltage measurements is a function of settling
and integration times, A-to-D conversion, and the number entered into the Reps
parameter of the VoltDiff() or VoItSE() instruction. A close approximation is:

time skew = settling time + integration time + A-to-D conversion time' +
reps®
1 A-to-D conversion time, which equals 15 ps.

2 If Reps > 1 (multiple measurements by a single instruction), no additional time
is required. If Reps = I in consecutive voltage instructions, add 15 ps per
instruction.

Section 8. Operation

8.1.2.2 Thermocouple Measurements —- Details

Related Topics:
* Thermocouple Measurements — Details
* Thermocouple Measurements — Instructions

Thermocouple measurements are special case voltage measurements.

Note Thermocouples are inexpensive and easy to use. However, despite the use
of a thermocouple in the Quickstart Tutorial . 41), the CR800 is not designed for
accurate thermocouple measurement when thermocouples are attached directly to
the wiring panel.

CR800 design features that cause thermocouple measurement inaccuracy include:

e lack of an insulating wiring-terminal cover.

e o high-thermal mass element incorporated in the wiring panel.

e position of the on-board reference thermistor in the wiring panel is not
optimal.

The absence of these design features causes significant error in the reference
junction temperature measurement.

If the CR800 must be used for thermocouple measurements, and those
measurements must be better than roughly 5 degrees in accuracy, an external
reference junction, such as a multiplexer (. 622), should be used. In addition, you
should carefully evaluate relevant parts of the Thermocouple Measurements
section of the CR1000 Datalogger Operator's Manual, which is available at
www.campbellsci.com/manuals (http://www.campbellsci.com/manuals).

8.1.2.3 Current Measurements — Details

Related Topics:
* Current Measurements — Overview (p. 66)
e Current Measurements — Details (p. 319)

For a complete treatment of current-loop sensors (4 to 20 mA, for example),
please consult the following publications available at www.campbellsci.com/app-
notes (http://'www.campbellsci.com/app-notes):

o Current Output Transducers Measured with Campbell Scientific Dataloggers
(2MI-B)
e CURSI100 100 Ohm Current Shunt Terminal Input Module

8.1.2.4 Resistance Measurements — Details

Related Topics:

 Resistance Measurements — Specifications

* Resistance Measurements — Overview (p. 66)

* Resistance Measurements — Details (p. 319

* Resistance Measurements — Instructions (p. 525)

By supplying a precise and known voltage to a resistive-bridge circuit and
measuring the returning voltage, resistance can be calculated.

319

http://www.campbellsci.com/manuals
http://www.campbellsci.com/app-notes

Section 8. Operation

320

CRBasic instructions for measuring resistance include:

BrHalf() — half-bridge

BrHalf3W() — three-wire half-bridge
BrHalf4W() — four-wire half-bridge
BrFull() — four-wire full-bridge
BrFulloW() — six-wire full-bridge

Read More Available resistive-bridge completion modules are listed in the
appendix Signal Conditioners (p. 623).

The CR800 has five CRBasic bridge-measurement instructions. Table Resistive-
Bridge Circuits with Voltage Excitation (p. 320 shows ideal circuits and related
equations. In the diagrams, resistors labeled R are normally the sensors and those
labeled Ry are normally precision fixed (static) resistors. CRBasic example Four-
Wire Full-Bridge Measurement (p. 322) lists CRBasic code that measures and
processes four-wire full-bridge circuits.

Offset voltages compensation applies to bridge measurements. In addition to
RevDiff and MeasOff parameters discussed in the section Offset Voltage
Compensation (p. 315, CRBasic bridge measurement instructions include the
RevEx parameter that provides the option to program a second set of
measurements with the excitation polarity reversed. Much of the offset error
inherent in bridge measurements is canceled out by setting RevDiff, MeasOff, and
RevEx to True.

Measurement speed can be slowed when using RevDiff, MeasOff, and RevEx.
When more than one measurement per sensor are necessary, such as occur with
the BrHalf3W(), BrHalf4W(), and BrFull6W instructions, input and excitation
reversal are applied separately to each measurement. For example, in the four-
wire half-bridge (BrHalf4W()), when excitation is reversed, the differential
measurement of the voltage drop across the sensor is made with excitation at both
polarities and then excitation is again applied and reversed for the measurement of
the voltage drop across the fixed resistor. Further, the results of measurement
instructions (X) must be processed further to obtain the resistance value. This
processing requires additional program execution time.

Section 8. Operation

Table 66. Resistive-Bridge Circuits with Voltage Excitation

Resistive-Bridge Type and CRBasic Instruction and Other
Circuit Diagram Fundamental Relationship Relationships
Half—Bridge1
Datalogger CRBasic Instruction: BrHalf() R e R X
Terminals JR— e
Fund I Relationship®: S 1l—x
VX undamental Relationship™:

voltage excitation (Vy)

R¢
Vi R
|— 1H Csmgle-ended X —_— V — R _l_ R R%(l S k)
v, R, X s f R F=—
L = X
Three-Wire Half—Bridge1 3
Datalogger
Terminals SN
CRBasic Instruction: BrHalf3W() Rf s Iz S / j{
VX voltage excitation (Vy)! . .2
N Fundamental Relationship™:
£

’7 SEI csmgle-ended
I SE2 csmgle-ended

signal ground

2V, -V _Rs
Vx-V; Rg

X:

7

||
7
>

Four-Wire Half—Bridgel’3

Datalogger
Terminals

VXC voltage excitation (Vy)
o
|— 2HO— high

VZ % Rs

|~2LC

differential low

|— 1HOG— high

Vi R¢

|—IL

R

_— signal ground

differential low

CRBasic Instruction: BrHalf4W()

Fundamental Relationship2:
V, R
Vi R¢

X =

=
[

ReX

Rf:RS/X

321

Section 8. Operation

322

Table 66. Resistive-Bridge Circuits with Voltage Excitation

Resistive-Bridge Type and
Circuit Diagram

CRBasic Instruction and
Fundamental Relationship

Other
Relationships

Full-Bridge'

Datalogger
Terminals

VX O

voltage excitation (Vy)

R,

differential high

differential low

CRBasic Instruction: BrFull()

Fundamental Relationshipzz
oo V1
X = 1000 7

_ R; R,
= m““(R; S v TE R:)

. . . 1
Six-Wire Full-Bridge
Datalogger
Terminals

v : lc voltage excitation (Vi) 1

o differential high

differential low

differential high

differential low

|||—

signal ground

CRBasic Instruction: BrFull6W()

Fundamental Relationshipzz

X= I(J[](]'V]

These relationships apply to BrFull() and
BrFulloW().

o = R3
X1=7000 TR; + R,

R, = Rz(lx—lxl)
~ RiX;
R=1-%X,

_ X R
~1000 " R, +R,

_ RyX,
R3=1-X,

_ R3(1-X3)
R4= %

Xs

Key: Vx = excitation voltage; V1, V2 = sensor return voltages; Rf= "fixed", "bridge" or "completion" resistor; Rs = "variable" or "sensing" resistor.

2Where X =result of the CRBasic bridge measurement instruction with a multiplier of 1 and an offset of 0.

3See the appendix Resistive Bridge Modules (p. 623) for a list of available terminal input modules to facilitate this measurement.

Section 8. Operation

CRBasic Example 64. Four-Wire Full-Bridge Measurement and Processing

'"This program example demonstrates the measurement and processing of a four-wire resistive
"full bridge. 1In this example, the default measurement stored in variable X is
"deconstructed to determine the resistance of the R1 resistor, which is the variable
'resistor in most sensors that have a four-wire full-bridge as the active element.

'Declare Variables

Public X
Public X1
PubTic R1
PubTic R2 = 1000 'Resistance of fixed resistor R2
PubTic R3 = 1000 'Resistance of fixed resistor R2
PubTic R4 = 1000 'Resistance of fixed resistor R4

'"Main Program
BeginProg
Scan(500,mSec,1,0)

"Full Bridge Measurement:
BrFull(X,1,mv2500,1,vx1,1,2500,True,True,0,_60Hz,1.0,0.0)
X1 = ((-1 * X) / 1000) + (R3 / (R3 + R4))

Rl =(R2* (1 -X1) /X1

NextScan
EndProg

8.1.2.4.1 Ac Excitation

Some resistive sensors require ac excitation. Ac excitation is defined as excitation
with equal positive (+) and negative (—) duration and magnitude. These include
electrolytic tilt sensors, soil moisture blocks, water-conductivity sensors, and
wetness-sensing grids. The use of single polarity dc excitation with these sensors
can result in polarization of sensor materials and the substance measured.
Polarization may cause erroncous measurement, calibration changes, or rapid
sensor decay.

Other sensors, for example, LVDTs (linear variable differential transformers),
require ac excitation because they require inductive coupling to provide a signal.
Dc excitation in an LVDT will result in no measurement.

CRBasic bridge-measurement instructions have the option to reverse polarity to
provide ac excitation by setting the RevEx parameter to True.

Note Take precautions against ground loops when measuring sensors that require
ac excitation. See Ground Looping in lonic Measurements (p. 107).

8.1.2.4.2 Resistance Measurements — Accuracy

Read More Consult the following technical papers at www.campbellsci.com/app-
notes (http://'www.campbellsci.com/app-notes) for in-depth treatments of several
topics addressing voltage measurement quality:

* Preventing and Attacking Measurement Noise Problems

* Benefits of Input Reversal and Excitation Reversal for Voltage Measurements

* Voltage Measurement Accuracy, Self- Calibration, and Ratiometric
Measurements

o Estimating Measurement Accuracy for Ratiometric Measurement Instructions.

323

http://www.campbellsci.com/app-notes

Section 8. Operation

Note Error discussed in this section and error-related specifications of the CR800
do not include error introduced by the sensor or by the transmission of the sensor
signal to the CR800.

The accuracy specifications for ratiometric-resistance measurements are
summarized in the tables Ratiometric-Resistance Measurement Accuracy (p. 324).

Table 67. Ratiometric-Resistance Measurement Accuracy

-25to 50 °C

+(0.04% of voltage measurement + offset)1

1Voltage measurement is variable V1 or V2 in the table Resistive-Bridge Circuits with Voltage
Excitation (p. 320). Offset is the same as that for simple analog-voltage measurements. See the
table Analog-Voltage Measurement Offsets (p. 305).

Assumptions that support the ratiometric-accuracy specification include:

e CR800 is within factory calibration specification.

e Excitation voltages less than 1000 mV are reversed during the excitation
phase of the measurement.

e Effects due to the following are not included in the specification:

o Bridge-resistor errors
o Sensor noise
o Measurement noise

For a tighter treatment of the accuracy of ratiometric measurements, consult the
technical paper Estimating Measurement Accuracy for Ratiometric Measurement
Instructions., which should be available at www.campbellsci.com/app-notes
(http://www.campbellsci.com/app-notes) in June of 2015.

8.1.2.5 Strain Measurements — Details

324

Related Topics:

o Strain Measurements — Overview (p. 68)
o Strain Measurements — Details (. 324)
 FieldCalStrain() Examples (p. 216)

A principal use of the four-wire full bridge is the measurement of strain gages in
structural stress analysis. StrainCale() calculates microstrain (pe) from the
formula for the particular strain bridge configuration used. All strain gages
supported by StrainCale() use the full-bridge schematic. In strain-gage parlance,
'quarter-bridge', 'half-bridge' and 'full-bridge' refer to the number of active
elements in the full-bridge schematic. In other words, a quarter-bridge strain gage
has one active element, a half-bridge has two, and a full-bridge has four.

StrainCalc() requires a bridge-configuration code. The table StrainCale()
Instruction Equations (p. 325 shows the equation used by each configuration code.
Each code can be preceded by a dash (-). Use a code without the dash when the
bridge is configured so the output decreases with increasing strain. Use a dashed
code when the bridge is configured so the output increases with increasing strain.
In the equations in table StrainCalc() Instruction Equations (p. 325), a dashed code

http://www.campbellsci.com/app-notes

Section 8. Operation

sets the polarity of V. to negative.

Table 68. StrainCalc() Instruction Equations

StrainCalc()
BrConfig Code Configuration

Quarter-bridge strain gage:

I — —4*%10°V,
HEGR(1+2V,

Half-bridge strain gage. One gage parallel to strain, the other at 90° to
strain.

2 _ —4*10%V,
HE GF[(1+v)2V,(-1)]

Half-bridge strain gage. One gage parallel to +&, the other parallel to -

3 _ —2*10%Vr
HEGF
Full-bridge strain gage. Two gages parallel to +&, the other two parallel
to -€:
4 —10%Vr
He= —mm

GF

Full-bridge strain gage. Half the bridge has two gages parallel to +& and
-E, and the other half to +V &€ and -V E;

5 _ —2%10Vr
HE"GR(r1)

Full-bridge strain gage. Half the bridge has two gages parallel to +& and
-V & and the other half to -V € and +E&:

6 _ 2*10%V,
M GFI v+ 1)-Vi(-1)]

where:

e V:Poisson's Ratio (0 if not applicable)

GF: Gage Factor

V:: 0.001 (Source-Zero) if BRConfig code is positive (+)
V:: =0.001 (Source-Zero) if BRConfig code is negative (-)

and where:

e "source": the result of the full-bridge measurement (X = 1000 * Vi / V) when
multiplier = 1 and offset = 0.

e "zero": gage offset to establish an arbitrary zero (see FieldCalStrain() in
FieldCal() Examples (p. 207)).

325

Section 8. Operation

StrainCalc Example: See FieldCalStrain() Examples (p. 216)

8.1.2.6 Auto-Calibration — Details

Related Topics

e Auto Calibration — Overview (. 91)

» Auto Calibration — Details . 326)

» Auto-Calibration — Errors (p. 466)

Offset Voltage Compensation (p. 315)

» Factory Calibration . 92)

» Factory Calibration or Repair Procedure (p. 452)

The CR800 auto-calibrates to compensate for changes caused by changing
operating temperatures and aging. With auto-calibration disabled, measurement
accuracy over the operational temperature range is specified as less accurate by a
factor of 10. That is, over the extended temperature range of —40 °C to 85 °C, the
accuracy specification of £0.12% of reading can degrade to £1% of reading with
auto-calibration disabled. If the temperature of the CR800 remains the same,
there is little calibration drift if auto-calibration is disabled. Auto-calibration can
become disabled when the scan rate is too small. It can be disabled by the
CRBasic program when using the Calibrate() instruction.

Note The CR800 is equipped with an internal voltage reference used for
calibration. The voltage reference should be periodically checked and re-
calibrated by Campbell Scientific for applications with critical analog voltage
measurement requirements. A minimum two-year recalibration cycle is
recommended.

Unless a Calibrate() instruction is present, the CR800 automatically auto-
calibrates during spare time in the background as an automatic slow sequence (p.
155) with a segment of the calibration occurring every four seconds. If there is
insufficient time to do the background calibration because of a scan-consuming
user program, the CR800 will display the following warning at compile time:
Warning: Background calibration is disabled.

8.1.2.6.1 Auto Calibration Process

The composite transfer function of the PGIA (p. 298 and A-to-D (p. 481) converter of
the CR800 is described by the following equation:

COUNTS=G-+Vin+B

where COUNTS is the result from an A-to-D conversion, G is the voltage gain for
a given input range, Vin is the input voltage connected to V+ and V—, and B is the
internally measured offset voltage.

Automatic self-calibration calibrates only the G and B values necessary to run a
given CRBasic program, resulting in a program dependent number of self-
calibration segments ranging from a minimum of 6 to a maximum of 91. A
typical number of segments required in self-calibration is 20 for analog ranges and
one segment for the wiring-panel temperature measurement, totaling 21 segments.
So, (21 segments) * (4 s / segment) = 84 s per complete self-calibration. The

326

Section 8. Operation

worst-case is (91 segments) * (4 s / segment) = 364 s per complete self-calibration.

During instrument power-up, the CR800 computes calibration coefficients by
averaging ten complete sets of self-calibration measurements. After power up,
newly determined G and B values are low-pass filtered as follows:

Next Value = (1/5) ¢ (new value) + (4/5) * (old value)
This results in the following settling percentages:

20% for 1 new value,
49% for 3 new values
67% for 5 new values
89% for 10 new values
96% for 14 new values

If this rate of update is too slow, the Calibrate() instruction can be used. The
Calibrate() instruction computes the necessary G and B values every scan
without any low-pass filtering.

For a VoltSe() instruction, B is determined as part of self-calibration only if the
parameter MeasOff = 0. An exception is B for VoltSe() on the £2500 input range
with a 250 us integration, which is always determined in self-calibration for use
internally. For a VoltDiff() instruction, B is determined as part of self-calibration
only if the parameter RevDiff = 0.

VoltSe() and VoltDiff() instructions, on a given input range with the same
integration durations, use the same G values but different B values. The six input-
voltage ranges (5000 mV, £2500 mV, £250 mV, and £25 mV), in combination
with the three most common integration durations (250 us, 50 Hz half-cycle, and
60 Hz half-cycle) result in a maximum of 18 different gains (G), and 18 offsets for
VoltSe() measurements (B), and 18 offsets for VoltDiff() measurements (B) to be
determined during CR800 self-calibration (maximum of 54 values). These values
can be viewed in the Status table, with entries identified as listed in table Status
Table Calibration Entries (p. 328).

Automatic self-calibration can be overridden with the Calibrate() instruction,
which forces a calibration for each execution, and does not employ low-pass
filtering on the newly determined G and B values. The Calibrate() instruction
has two parameters: CalRange and Dest. CalRange determines whether to
calibrate only the necessary input ranges for a given CRBasic program (CalRange
= () or to calibrate all input ranges (CalRange # 0). The Dest parameter should
be of sufficient dimension for all returned G and B values, which is a minimum of
two for the automatic self-calibration of VoItSE() including B (offset) for the
+2500 mV input range with first 250 ps integration, and a maximum of 54 for all
input-voltage ranges used and possible integration durations.

An example use of the Calibrate() instruction programmed to calibrate all input
ranges is given in the following CRBasic code snip:

"Calibrate(Dest,Range)
Calibrate(cal(l),true)

where Dest is an array of 54 variables, and Range # 0 to calibrate all input ranges.

Results of this command are listed in the table Calibrate() Instruction Results (p.
329.

327

Section 8. Operation

328

Table 69. Auto Calibration Gains and Offsets

Status Table
Element

Descriptions of Status Table Elements

Differential (Diff)

*mV Input

Single-Ended (SE) Offset or Gain Range Integration
CalGain(1) Gain 5000 250 ms
CalGain(2) Gain 2500 250 ms
CalGain(3) Gain 250 250 ms
CalGain(4) Gain 25 250 ms
CalGain(5) Gain 7.5 250 ms
CalGain(6) Gain 2.5 250 ms
CalGain(7) Gain 5000 60 Hz Rejection
CalGain(8) Gain 2500 60 Hz Rejection
CalGain(9) Gain 250 60 Hz Rejection
CalGain(10) Gain 25 60 Hz Rejection
CalGain(11) Gain 7.5 60 Hz Rejection
CalGain(12) Gain 2.5 60 Hz Rejection
CalGain(13) Gain 5000 50 Hz Rejection
CalGain(14) Gain 2500 50 Hz Rejection
CalGain(15) Gain 250 50 Hz Rejection
CalGain(16) Gain 25 50 Hz Rejection
CalGain(17) Gain 7.5 50 Hz Rejection
CalGain(18) Gain 2.5 50 Hz Rejection
CalSeOffset(1) SE Offset 5000 250 ms
CalSeOffset(2) SE Offset 2500 250 ms
CalSeOffset(3) SE Offset 250 250 ms
CalSeOffset(4) SE Offset 25 250 ms
CalSeOffset(5) SE Offset 7.5 250 ms
CalSeOffset(6) SE Offset 2.5 250 ms
CalSeOffset(7) SE Offset 5000 60 Hz Rejection
CalSeOffset(8) SE Offset 2500 60 Hz Rejection
CalSeOffset(9) SE Offset 250 60 Hz Rejection
CalSeOffset(10) SE Offset 25 60 Hz Rejection
CalSeOffset(11) SE Offset 7.5 60 Hz Rejection
CalSeOffset(12) SE Offset 2.5 60 Hz Rejection
CalSeOffset(13) SE Offset 5000 50 Hz Rejection
CalSeOffset(14) SE Offset 2500 50 Hz Rejection
CalSeOffset(15) SE Offset 250 50 Hz Rejection

Section 8. Operation

Table 69. Auto Calibration Gains and Offsets

Status Table

Descriptions of Status Table Elements

Element S?,;Z?g_eg::ég)({sfg) Offset or Gain i’z‘;’,g’; ut Integration
CalSeOffset(16) SE Offset 25 50 Hz Rejection
CalSeOffset(17) SE Offset 7.5 50 Hz Rejection
CalSeOffset(18) SE Offset 2.5 50 Hz Rejection
CalDiffOffset(1) Diff Offset 5000 250 ms
CalDiffOffset(2) Diff Offset 2500 250 ms
CalDiffOffset(3) Diff Offset 250 250 ms
CalDiffOffset(4) Diff Offset 25 250 ms
CalDiffOffset(5) Diff Offset 7.5 250 ms
CalDiffOffset(6) Diff Offset 2.5 250 ms
CalDiffOffset(7) Diff Offset 5000 60 Hz Rejection
CalDiffOffset(8) Diff Offset 2500 60 Hz Rejection
CalDiffOffset(9) Diff Offset 250 60 Hz Rejection

CalDiffOffset(10) Diff Offset 25 60 Hz Rejection
CalDiffOffset(11) Diff Offset 7.5 60 Hz Rejection
CalDiffOffset(12) Diff Offset 2.5 60 Hz Rejection
CalDiffOffset(13) Diff Offset 5000 50 Hz Rejection
CalDiffOffset(14) Diff Offset 2500 50 Hz Rejection
CalDiffOffset(15) Diff Offset 250 50 Hz Rejection
CalDiffOffset(16) Diff Offset 25 50 Hz Rejection
CalDiffOffset(17) Diff Offset 7.5 50 Hz Rejection
CalDiffOffset(18) Diff Offset 2.5 50 Hz Rejection
Table 70. Calibrate() Instruction Results
Array Descriptions of Array Elements
Elgrarlc(e)nt S?";Z‘Z 3:_’;'32 c(lD(’Sﬂé) Offset or Gain tn;\;rllr;g ut Integration Typical Value
1 SE Offset 5000 250 ms +5LSB
2 Diff Offset 5000 250 ms +5 LSB
3 Gain 5000 250 ms —1.34 mV/LSB
4 SE Offset 2500 250 ms +5LSB
5 Diff Offset 2500 250 ms +5 LSB
6 Gain 2500 250 ms -0.67 mV/LSB
7 SE Offset 250 250 ms +5LSB
8 Diff Offset 250 250 ms +5LSB
9 Gain 250 250 ms —0.067 mV/LSB

329

Section 8. Operation

330

Table 70. Calibrate() Instruction Results

Descriptions of Array Elements

Array)

Elce:;:gnt S[”’;Z?fg;ﬁégeg?:_) Offset or Gain t";‘,:’g’; ut Integration Typical Value
10 SE Offset 25 250 ms +5LSB
11 Diff Offset 25 250 ms +5LSB
12 Gain 25 250 ms —0.0067 mV/LSB
13 SE Offset 7.5 250 ms +10 LSB
14 Diff Offset 7.5 250 ms +10 LSB
15 Gain 7.5 250 ms —0.002 mV/LSB
16 SE Offset 2.5 250 ms +20 LSB
17 Diff Offset 2.5 250 ms +20 LSB
18 Gain 2.5 250 ms —0.00067 mV/LSB
19 SE Offset 5000 60 Hz Rejection +5LSB
20 Diff Offset 5000 60 Hz Rejection +5LSB
21 Gain 5000 60 Hz Rejection —0.67 mV/LSB
22 SE Offset 2500 60 Hz Rejection +5LSB
23 Diff Offset 2500 60 Hz Rejection +5LSB
24 Gain 2500 60 Hz Rejection —0.34 mV/LSB
25 SE Offset 250 60 Hz Rejection +5LSB
26 Diff Offset 250 60 Hz Rejection +5LSB
27 Gain 250 60 Hz Rejection —0.067 mV/LSB
28 SE Offset 25 60 Hz Rejection +5LSB
29 Diff Offset 25 60 Hz Rejection +5LSB
30 Gain 25 60 Hz Rejection —0.0067 mV/LSB
31 SE Offset 7.5 60 Hz Rejection +10 LSB
32 Diff Offset 7.5 60 Hz Rejection +10 LSB
33 Gain 7.5 60 Hz Rejection —0.002 mV/LSB
34 SE Offset 2.5 60 Hz Rejection +20 LSB
35 Diff Offset 2.5 60 Hz Rejection +20 LSB
36 Gain 2.5 60 Hz Rejection —0.00067 mV/LSB
37 SE Offset 5000 50 Hz Rejection +5LSB
38 Diff Offset 5000 50 Hz Rejection +5LSB
39 Gain 5000 50 Hz Rejection —0.67 mV/LSB
40 SE Offset 2500 50 Hz Rejection +5LSB
41 Diff Offset 2500 50 Hz Rejection +5LSB
42 Gain 2500 50 Hz Rejection -0.34 mV/LSB
43 SE Offset 250 50 Hz Rejection +5LSB

Section 8. Operation

Table 70. Calibrate() Instruction Results

Array Descriptions of Array Elements

Elg:*:c(a)nt s?,',g?fg,:ﬁé.go(g?;) Offset or Gain 1’7‘,‘;,’12’; ut Integration Typical Value
44 Diff Offset 250 50 Hz Rejection +5 LSB
45 Gain 250 50 Hz Rejection —0.067 mV/LSB
46 SE Offset 25 50 Hz Rejection +5 LSB
47 Diff Offset 25 50 Hz Rejection +5LSB
48 Gain 25 50 Hz Rejection —0.0067 mV/LSB
49 SE Offset 7.5 50 Hz Rejection +10 LSB
50 Diff Offset 7.5 50 Hz Rejection +10 LSB
51 Gain 7.5 50 Hz Rejection —0.002 mV/LSB
52 SE Offset 2.5 50 Hz Rejection +20 LSB
53 Diff Offset 2.5 50 Hz Rejection +20 LSB
54 Gain 2.5 50 Hz Rejection —0.00067 mV/LSB

8.1.3 Pulse Measurements — Details

Related Topics:

* Pulse Measurements — Specifications

e Pulse Measurements — Overview (p. 68)

e Pulse Measurements — Details (p. 331)

e Pulse Measurements — Instructions (p. 527)

Read More Review the PULSE COUNTERS (p. 331 and Pulse on C Terminals
sections in CR800 Specifications (p. 95. Review pulse measurement programming
in CRBasic Editor Help for the PulseCount() and TimerIQ() instructions.

Note Peripheral devices are available from Campbell Scientific to expand the
number of pulse-input channels measured by the CR800. Refer to the appendix
Measurement and Control Peripherals Lists (p. 348) for more information.

The figure Pulse-Sensor Output-Signal Types (p. 69) illustrates pulse signal types
measurable by the CR800:

e low-level ac
e high-frequency
e switch-closure

The figure Switch-Closure Schematic (p. 332) illustrates the basic internal circuit
and the external connections of a switch-closure pulse sensor. The table Pulse
Measurements: Terminals and Programming (p. 332 summarizes available
measurements, terminals available for those measurements, and the CRBasic
instructions used. The number of terminals configurable for pulse input is
determined from the table CR800 Terminal Definitions (p. 76).

331

Section 8. Operation

Figure 86. Pulse-Sensor Output-Signal Types

Vdc H H H H H H HHigh-frequency square-wave

t

Vac 0 /A VA WA A Low-level ac sine-wave
© NS NS T\ Lowere
t

Closed
Vdc H H H H H H HSwitCh-closure series
— o o—

Open
t

Figure 87. Switch-Closure Pulse Sensor

Datalogger
Terminals

¥
PorC O

switch closure

e { -
= @ signal ground L

Figure 88. Terminals Configurable for Pulse Input

Terminals Configurable Terminals Configurable
for Switch-Closure and for Low-Level Ac Input
High-Frequency Input

e @
0001

332

Section 8. Operation

Table 71. Pulse Measurements:, Terminals and Programming

P (o4 CRBasic

Measurement Terminals Terminals Instruction
Low-level ac, counts
Low-level ac, Hz
Low-level ac, running average v
High frequency, counts v v %
High frequency, Hz v v 5)
High frequency, running average v v E
Switch closure, counts v 4
Switch closure, Hz v v
Switch closure, running average v v

Calculated period

Calculated frequency

Time from edge on previous port

Time from edge on port 1

Count of edges

Pulse count, period

AN N N N N NG RN
TimerIO()

Pulse count, frequency

8.1.3.1 Pulse Measurement Terminals
P Terminals
e Input voltage range =—-20 to 20 V

If pulse input voltages exceed £20 V, third-party external-signal conditioners
should be employed. Contact a Campbell Scientific application engineer if
assistance is needed. Under no circumstances should voltages greater than 50 V
be measured.

C Terminals
e Input voltage range =—8 to 16 Vdc

C terminals configured for pulse input have a small 25 ns input RC-filter time
constant between the terminal block and the CMOS input buffer, which allows for
high-frequency pulse measurements up to 250 kHz and edge counting up to 400
kHz. The CMOS input buffer recognizes inputs >3.8 V as being high and inputs
<1.2'V as being low.

Open-collector (bipolar transistors) or open-drain (MOSFET) sensors are
typically measured as frequency sensors. C terminals can be conditioned for open
collector or open drain with an external pull-up resistor as shown in figure Using
a Pull-up Resistor on C terminals. The pull-up resistor counteracts an internal 100

333

Section 8. Operation

334

kQ pull-down resistor, allowing inputs to be pulled to >3.8 V for reliable
measurements.

8.1.3.2 Low-Level Ac Measurements — Details

P Terminals

C Terminals

Related Topics:

» Low-Level Ac Input Modules — Overview (p. 348)
* Low-Level Ac Measurements — Details (p. 334)

* Pulse Input Modules — Lists (p. 622)

Low-level ac (sine-wave) signals can be measured on P terminals. Sensors that
commonly output low-level ac include:

e Ac generator anemometers
Measurements include the following:

e Counts
e Frequency (Hz)
e Running average

Rotating magnetic-pickup sensors commonly generate ac voltage ranging from
thousandths of volts at low-rotational speeds to several volts at high-rotational
speeds. Terminals configured for low-level ac input have in-line signal
conditioning for measuring signals ranging from 20 mV RMS (£28 mV peak-to-
peak) to 14 V RMS (£20 V peak-to-peak).

e Maximum input frequency is dependent on input voltage:

o 1.0to20 Hzat20 mV RMS

o 0.5t0 200 Hz at 200 mV RMS
o 0.3to10kHzat 2000 mV RMS
o 0.3to20kHzat 5000 mV RMS

e CRBasic instruction: PulseCount()

Internal ac coupling is used to eliminate dc-offset voltages of up to £0.5 Vdec.

Low-level ac signals cannot be measured directly by C terminals. Refer to the
appendix Pulse Input Modules List (p. 622) for information on peripheral terminal
expansion modules available for converting low-level ac signals to square-wave
signals.

8.1.3.3 High-Frequency Measurements

High-frequency (square-wave) signals can be measured on P or C terminals.
Common sensors that output high-frequency include:

e Photo-chopper anemometers
e Flow meters

Measurements include counts, frequency in hertz, and running average. Refer to
the section Frequency Resolution (p. 335 for information about how the resolution

Section 8. Operation

P Terminals

C Terminals

of a frequency measurement can be different depending on whether the
measurement is made with the PulseCount() or TimerIO() instruction.

e Maximum input frequency =250 kHz
¢ CRBasic instructions: PulseCount()

High-frequency pulse inputs are routed to an inverting CMOS input buffer with
input hysteresis. The CMOS input buffer is at output 0 level with inputs > 2.2 V
and at output 1 level with inputs < 0.9 V. An internal 100 kQ resistor is
automatically connected to the terminal to pull it up to 5 Vdc. This pull-up
resistor accommodates open-collector (open-drain) output devices.

e Maximum input frequency = <1 kHz
e CRBasic instructions: PulseCount(), TimerIO()

8.1.3.3.1 Frequency Resolution

Resolution of a frequency measurement made with the PulseCount() instruction
is calculated as

L
FR=3

where

FR = resolution of the frequency measurement (Hz)
S = scan interval of CRBasic program

Resolution of a frequency measurement made with the TimerIO() instruction is

R/E

R = (P (R/E))

where

FR = frequency resolution of the measurement (Hz)

R =timing resolution of the TimerIO() measurement = 540 ns

P = period of input signal (seconds). For example, P=1/1000 Hz=0.001 s
E = Number of rising edges per scan or 1, whichever is greater.

Table 72. Example. E for a 10 Hz input signal
Scan Rising Edge / Scan E
5.0 50 50
0.5 5 5
0.05 0.5 1

TimerlO() instruction measures frequencies of < 1 kHz with higher frequency
resolution over short (sub-second) intervals. In contrast, sub-second frequency
measurement with PulseCount() produce measurements of lower resolution.
Consider a 1 kHz input. Table Frequency Resolution Comparison (p. 336) lists

frequency resolution to be expected for a 1 kHz signal measured by TimerIO()
and PulseCount() at 0.5 s and 5.0 s scan intervals.

335

Section 8. Operation

Increasing a measurement interval from 1 s to 10 s, either by increasing the scan
interval (when using PulseCount()) or by averaging (when using PulseCount()
or TimerIQ()), improves the resulting frequency resolution from 1 Hz to 0.1 Hz.
Averaging can be accomplished by the Average(), AvgRun(), and AvgSpa()
instructions. Also, PulseCount() has the option of entering a number greater than
1 in the POption parameter. Doing so enters an averaging interval in milliseconds
for a direct running-average computation. However, use caution when averaging.
Averaging of any measurement reduces the certainty that the result truly
represents a real aspect of the phenomenon being measured.

Table 73. Frequency Resolution Comparison

0.5 s Scan 5.0 s Scan
PulseCount(), POption=1 FR=2Hz FR=0.2Hz
TimerlO(), Function=2 FR =0.0011 Hz FR =0.00011 Hz

8.1.3.3.2 Frequency Measurement Q & A

Q: When more than one pulse is in a scan interval, what does TimerIO() return
when configured for a frequency measurement? Does it average the measured
periods and compute the frequency from that (f=1/T)? For example,

Scan(50,mSec,10,0)
TimerIO(WindSpd(),11111111,00022000,60,Sec)

A: In the background, a 32-bit-timer counter is saved each time the signal
transitions as programmed (rising or falling). This counter is running at a fixed
high frequency. A count is also incremented for each transition. When the
TimerIO() instruction executes, it uses the difference of time between the edge
prior to the last execution and the edge prior to this execution as the time
difference. The number of transitions that occur between these two times divided
by the time difference gives the calculated frequency. For multiple edges
occurring between execution intervals, this calculation does assume that the
frequency is not varying over the execution interval. The calculation returns the
average regardless of how the signal is changing.

8.1.3.4 Switch-Closure and Open-Collector Measurements

336

Switch-closure and open-collector signals can be measured on P or C terminals.
Mechanical-switch closures have a tendency to bounce before solidly closing.
Unless filtered, bounces can cause multiple counts per event. The CR800
automatically filters bounce. Because of the filtering, the maximum switch-
closure frequency is less than the maximum high-frequency measurement
frequency. Sensors that commonly output a switch-closure or open-collector
signal include:

e Tipping-bucket rain gages
e Switch-closure anemometers
e Flow meters

Data output options include counts, frequency (Hz), and running average.

Section 8. Operation

P Terminals

C Terminals

An internal 100 kQ pull-up resistor pulls an input to 5 Vdc with the switch open,
whereas a switch closure to ground pulls the input to 0 V. An internal hardware
debounce filter has a 3.3 ms time-constant. Connection configurations are
illustrated in table Switch Closures and Open Collectors on P Terminals (p. 338).

e Maximum input frequency = 90 Hz
¢ CRBasic instruction: PulseCount()

Switch-closure mode is a special case edge-count function that measures dry-
contact-switch closures or open collectors. The operating system filters bounces.
Connection configurations are illustrated in table Switch Closures and Open
Collectors on C Terminals . 338).

e Maximum input frequency = 150 Hz
¢ CRBasic instruction: PulseCount()

8.1.3.5 Edge Timing

C Terminals

Edge time and period can be measured on P or C terminals. Applications for edge
timing include:

e Measurements for feedback control using pulse-width or pulse-duration
modulation (PWM/PDM).

Measurements include time between edges expressed as frequency (Hz) or period

(us).

Maximum input frequency <1 kHz
CRBasic instruction: TimerIO()
e Rising or falling edges of a square-wave signal are detected:

o Rising edge — transition from <1.5 Vdc to >3.5 Vdc.
o Falling edge — transition from >3.5 Vdc to <1.5 Vdc.

e Edge-timing resolution is approximately 540 ns.

8.1.3.6 Edge Counting

C Terminals

Edge counts can be measured on C terminals.

e Maximum input frequency 400 kHz
e CRBasic instruction: TimerIO()
e Rising or falling edges of a square-wave signal are detected:

o Rising edge — transition from <1.5 Vdc to >3.5 Vdc.
o Falling edge — transition from >3.5 Vdc to <1.5 Vdc.

Section 8. Operation

8.1.3.7 Pulse Measurement Tips

338

Basic connection of pulse-output sensors is illustrated in table Switch Closures
and Open Collectors (p. 338, p. 338)

The PulseCount() instruction, whether measuring pulse inputs on P or C
terminals, uses dedicated 24-bit counters to accumulate all counts over the
programmed scan interval. The resolution of pulse counters is one count or 1 Hz.
Counters are read at the beginning of each scan and then cleared. Counters will
overflow if accumulated counts exceed 16,777,216, resulting in erroneous
measurements.

Counts are the preferred PulseCount() output option when measuring the
number of tips from a tipping-bucket rain gage or the number of times a door
opens. Many pulse-output sensors, such as anemometers and flow meters,
are calibrated in terms of frequency (Hz . 491)) so are usually measured using
the PulseCount() frequency-output option.

Accuracy of PulseCount() is limited by a small scan-interval error of +(3
ppm of scan interval + 10 ps), plus the measurement resolution error of +1 /
(scan interval). The sum is essentially =1 / (scan interval).

Use the LLAC4 (. 622 module to convert non-TTL-level signals, including
low-level ac signals, to TTL levels for input into C terminals.

As shown in the table Switch Closures and Open Collectors on C Terminals
- 338, C terminals, with regard to the 6.2 V Zener diode, have an input
resistance of 100 kQ with input voltages < 6.2 Vdc. For input voltages > 6.2
Vde, C terminals have an input resistance of only 220 Q.

Table 74. Switch Closures and Open Collectors on P Terminals

Switch Closure on P Terminal

Datalogger
Terminals

+
P

pulse-input
Switch-
Closure
Sensor

— O—I
j— ground

Open Collector on on P Terminal

Datalogger
Terminals

P output
Open
Collector
Sensor

j— ground

Table 75. Switch Closures and Open Collectors on C Terminals

Switch Closure on C Terminal:
No Pull-Up

Datalogger
Terminals

'
5V

power

Switch-
Closure
Sensor

C O terminal configured

for switch-closure

Section 8. Operation

Switch Closure on C Terminal:
5 Vde Pull-Up

Datalogger
Terminals
5V power
R pull up
1kQto 20kQ
C control
Switch
Closure
Sensor

- ground

Quiescent current drain < 50 pA

Open Collector on C Terminal:
5 Vde Pull-Up

Datalogger
Terminals

5V

R

1kQ to 20kQ

pull up

Open
Collector
Sensor

- ground

Quiescent current drain < 50 pA

Switch Closure on C Terminal:
12 Vdc Pull-Up

Open Collector on C Terminal:
12 Vdc pull-up

Datalogger Datalogger
Terminals Terminals
12V - 12V
power
R pull up R pull up
100kQ to 150 kQ 100kQ to 150 kQ
C control C control
Switch Open
Closure Collector
Sensor Sensor
- ground — ground
Quiescent current drain < 60 pA Quiescent current drain < 60 pA
Internal CR800 circuitry that supports open-collector
and switch-closure measurements (FYI)
‘Wiring Panel
Terminals
5 or 12 Vde 12V or 5V terminal O
Control 100 Q 66 Cmme.ctiou points
Gi it O for switch-closure
1rcur MA/\ % - and open-collector
. N terminal conﬁgur.ed type sensors that
high > 3.8 Vdc Y for control i
= gas require a pull-up
low 1.2 Vde 100 pf discharge voltage.
100 kQ capacitor 62V tube -
— Zener

—|:

diode

T o

-+

ground

Pay attention to specifications. Take time to understand the signal to be
measured and compatible input terminals and CRBasic instructions. The
table Three Differing Specifications Between P and C Terminals (p. 340)
compares specifications for pulse-input terminals to emphasize the need for
matching the proper device to the application.

Section 8. Operation

Table 76. Three Specifications Differing Between P and C Terminals
P Terminal C Terminal
High-Frequency 250 kHz 400 kHz
Maximum
Input Voltage 20 Vde 16 Vde
Maximum
State Transition Count upon transition from Count upon transition from
Thresholds <0.9 Vdc to >2.2 Vdc <1.2 Vdc to >3.8 Vdc

8.1.3.7.1 TimerlO() NAN Conditions

e NAN will be the result of a TimerIO() measurement if one of two conditions
occurs:

o Timeout expires

o The signal frequency is too fast (> 3 KHz). When a C terminal
experiences a too fast frequency, the CR800 operating system disables
the interrupt that is capturing the precise time until the next scan is
serviced. This is done so that the CR800 processor does not get occupied
by excessive interrupts. A small RC filter retrofitted to the sensor switch
should fix the problem.

8.1.3.7.2 Input Filters and Signal Attenuation

340

P and C terminals are equipped with pulse-input filters to reduce electronic noise
that can cause false counts. The higher the time constant (1) of the filter, the
tighter the filter. The table Time Constants (p. 340 lists T values. So, while a C
terminal measured with the TimerIO() frequency measurement may be superior
for clean signals, a P terminal filter (much higher) may be required to get a
measurement on an electronically noisy signal.

Input filters attenuate the amplitude (voltage) of the signal. The amount of
attenuation is a function of the frequency passing through the filter. Higher-
frequency signals are attenuated more. If a signal is attenuated enough, it may not
pass the state transition thresholds required by the detection device as listed in
table Pulse-Input Terminals and Measurements (p. 69)). To avoid over attenuation,
sensor-output voltage must be increased at higher frequencies. For example, table
Low-Level Ac Filter Attenuation (p. 341) shows that increasing voltage is required
for low-level ac inputs to overcome filter attenuation on P terminals configured
for low-level ac: 8.5 ms time constant filter (19 Hz 3 dB frequency) for low-
amplitude signals; 1 ms time constant (159 Hz 3 dB frequency) for larger (> 0.7
V) amplitude signals.

For P terminals, an RC input filter with an approximate 1 ps time constant
precedes the inverting CMOS input buffer. The resulting amplitude reduction is
illustrated in figure Amplitude Reduction of Pulse-Count Waveform (p. 341.. For a 0
to 5 Vdc square wave input to a pulse terminal, the maximum frequency that can
be counted in high-frequency mode is approximately 250 kHz.

Section 8. Operation

Table 77. Time Constants (1)

Measurement

T

P terminal low-level ac mode

See footnote of the table Filter Attenuation of
Frequency Signals (p. 341)

P terminal high-frequency mode 1.2

P terminal switch-closure mode 3300
C terminal high-frequency mode 0.025
C terminal switch-closure mode 0.025

Table 78. Low-Level Ac Amplitude and Maximum Measured

Frequency
Ac mV (RMS) Maximum Frequency
20 20
200 200
2000 10,000
5000 20,000

Figure 89. Amplitude reduction of pulse-count waveform (before and after

1 us us time-constant filter)

5 —
L4 'I
4 ," i P
It
. I. g '
! ' I' I\
Il 1 .)
7] 4 [
. [o [
l' I| " K L
1
3 . ¥ ; 4 S,
' 1 ! !
Before ;: . H \ /
' ' H K H
] \ - \ !
After f ' ! \ ;
------ : “ : 1 [
] ' [“ [
| M 'y] 1
P, t Y I “ !
[N | f |]
Al : 0N] .]
K 1 .) . [
' K S i) l'
A Y
1 *. i N .' R |
. . A
. 4 .
-01
0
-6 —6 -5 -6 -5
0 2410 4+10 6+10 8+10 1410
time

8.1.4 Period Averaging — Details

Related Topics:

* Period Averaging — Specifications
* Period Averaging — Overview (p. 70)
* Period Averaging — Details (p. 341)

341

Section 8. Operation

342

The CR800 can measure the period of a signal on a SE terminal. The specified
number of cycles is timed with a resolution of 136 ns, making the resolution of
the period measurement 136 ns ns divided by the number of cycles chosen.

Low-level signals are amplified prior to a voltage comparator. The internal
voltage comparator is referenced to the programmed threshold. The threshold
parameter allows referencing the internal voltage comparator to voltages other
than 0 V. For example, a threshold of 2500 mV allows a 0 to 5 Vdc digital signal
to be sensed by the internal comparator without the need of any additional input
conditioning circuitry. The threshold allows direct connection of standard digital
signals, but it is not recommended for small amplitude sensor signals. For sensor
amplitudes less than 20 mV peak-to-peak, a de blocking capacitor is
recommended to center the signal at CR800 ground (threshold = 0) because of
offset voltage drift along with limited accuracy (+10 mV) and resolution (1.2 mV)
of a threshold other than zero. Figure Input Conditioning Circuit for Period
Averaging (p. 342 shows an example circuit.

The minimum pulse-width requirements increase (maximum frequency decreases)
with increasing gain. Signals larger than the specified maximum for a range will
saturate the gain stages and prevent operation up to the maximum specified
frequency. As shown, back-to-back diodes are recommended to limit large
amplitude signals to within the input signal ranges.

Caution Noisy signals with slow transitions through the voltage threshold have
the potential for extra counts around the comparator switch point. A voltage
comparator with 20 mV of hysteresis follows the voltage gain stages. The
effective input-referred hysteresis equals 20 mV divided by the selected voltage
gain. The effective input referred hysteresis on the £ 25 mV range is 2 mV;
consequently, 2 mV of noise on the input signal could cause extraneous counts.
For best results, select the largest input range (smallest gain) that meets the
minimum input signal requirements.

Figure 90. Input Conditioning Circuit for Period Averaging

C TpF]
1 To Single-Ended Input
4 4 1 O
Sensor With
DC Offset
A D1 ' D2 R 10kQ
Vv,

Silicon diodes
such as TN4001

To Ground

DC Offset
(misl)

Section 8. Operation

8.1.5 Vibrating-Wire Measurements — Details

Related Topics:

* Vibrating-Wire Measurements — Specifications
* Vibrating-Wire Measurements — Overview (p. 71)
* Vibrating-Wire Measurements — Details (p. 343)

The CR800 can measure vibrating-wire or vibrating-strip sensors, including strain
gages, pressure transducers, piezometers, tilt meters, crack meters, and load cells.
These sensors are used in structural, hydrological, and geotechnical applications
because of their stability, accuracy, and durability. The CR800 can measure
vibrating-wire sensors through specialized interface modules. More sensors can
be measured by using multiplexers (see Analog Multiplexers (p. 622)).

The figure Vibrating-Wire Sensor (p. 343) illustrates basic construction of a sensor.
To make a measurement, plucking and pickup coils are excited with a swept
frequency (p. 504). The ideal behavior then is that all non-resonant frequencies
quickly decay, and the resonant frequency continues. As the resonant frequency
cuts the lines of flux in the pickup coil, the same frequency is induced on the
signal wires in the cable connecting the sensor to the CR800 or interface.

Measuring the resonant frequency by means of period averaging is the classic
technique, but Campbell Scientific has developed static and dynamic spectral-
analysis techniques (Vspect (. 506(™) that produce superior noise rejection, higher
resolution, diagnostic data, and, in the case of dynamic Vspect, measurements up
to 333.3 Hz.

A resistive-thermometer device (thermistor or RTD), which is included in most
vibrating-wire sensor housings, can be measured to compensate for temperature
errors in the measurement.

Figure 91. Vibrating-Wire Sensor

. Vibrating Plucking
L7‘“3]"|“"’L-":’m/ Wire Pickup Coil

8.1.5.1 Time-Domain Measurement

Although obsolete in many applications, time-domain period-averaging vibrating-
wire measurements can be made on H L terminals. The VibratingWire()
instruction makes the measurement. Measurements can be made directly on these
terminals, but usually are made through a vibrating-wire interface that amplifies
and conditions the vibrating-wire signal and provides inputs for embedded
thermistors or RTDs. Interfaces of this type are no longer available from
Campbell Scientific.

For most applications, the advanced techniques of static and dynamic VSPECT™
measurements are preferred.

343

Section 8. Operation

8.1.6 Reading Smart Sensors — Details

Related Topics:
* Reading Smart Sensors — Overview (p. 72)
* Reading Smart Sensors — Details (p. 344)

8.1.6.1 RS-232 and TTL

Read More Serial Input / Output Instructions . 556) and Serial I/O (p. 238).

The CR800 can receive and record most TTL (0 to 5 Vdc) and true RS-232 data
from devices such as smart sensors. See the table CR800 Terminal Definitions (p.
76) for those terminals and serial ports configurable for either TTL or true RS-232
communications. Use of the CS I/O port for true RS-232 communications
requires use of an interface device. See the appendix CS I/O Serial Interfaces (p.
628). If additional serial inputs are required, serial input expansion modules can be
connected. See the appendix Serial I/O Modules List (p. 622). Serial data are
usually captured as text strings, which are then parsed (split up) as defined in the
CRBasic program.

Note C terminals configured as Tx transmit only 0 to 5 Vdc logic. However, C
terminals configured as Rx read most true RS-232 signals. When connecting
serial sensors to a C terminal configured as Rx, the sensor power consumption
may increase by a few milliamps due to voltage clamps in the CR800. An
external resistor may need to be added in series to the Rx line to limit the current
drain, although this is not advisable at very high baud rates. Figure Circuit to
Limit C Terminal RS-232 Input to 5 Volts (p. 3449 shows a circuit that limits voltage
to 5 Vde.

Figure 92. Circuit to Limit C Terminal Input to 5 Vdc

Datalogger
Terminals

+

coM 1kQ
TX C TTL RS-232 W sensor signal
1N4688
4.7V zener diode
GO

power ground sensor ground

8.1.6.2 SDI-12 Sensor Support — Details

Related Topics:
» SDI-12 Sensor Support — Overview (p. 72)
» SDI-12 Sensor Support — Details (p. 344)
* Serial I/O: SDI-12 Sensor Support — Programming Resource (p. 259
* SDI-12 Sensor Support — Instructions (p. 529

SDI-12 is a communication protocol developed to transmit digital data from smart
sensors to data-acquisition units. It is a simple protocol, requiring only a single

344

Section 8. Operation

communication wire. Typically, the data-acquisition unit also supplies power (12
Vdc and ground) to the SDI-12 sensor. SDI12Recorder() instruction
communicates with SDI-12 sensors on terminals configured for SDI-12 input.
See the table CR800 Terminal Definitions (p. 76) to determine those terminals
configurable for SDI-12 communications.

8.1.7 Field Calibration — Overview

Related Topics:
 Field Calibration — Overview (p. 73)
 Field Calibration — Details (p. 203)

Calibration increases accuracy of a measurement device by adjusting its output, or
the measurement of its output, to match independently verified quantities.
Adjusting sensor output directly is preferred, but not always possible or practical.
By adding FieldCal() or FieldCalStrain() instructions to the CR800 CRBasic
program, measurements of a linear sensor can be adjusted by modifying the
programmed multiplier and offset applied to the measurement.

8.1.8 Cabling Effects

Related Topics:
* Cabling Effects — Overview (p. 73)
* Cabling Effects — Details (p. 345)

Sensor cabling can have significant effects on sensor response and accuracy. This
is usually only a concern with sensors acquired from manufacturers other than
Campbell Scientific. Campbell Scientific sensors are engineered for optimal

performance with factory-installed cables.

8.1.8.1 Analog-Sensor Cables
Cable length in analog sensors is most likely to affect the signal settling time. For
more information, see the section Signal Settling Time (p. 309).

8.1.8.2 Pulse Sensors
Because of the long interval between switch closures in tipping-bucket rain gages,
appreciable capacitance can build up between wires in long cables. A built-up
charge can cause arcing when the switch closes and so shorten switch life. As
shown in figure Current Limiting Resistor in a Rain Gage Circuit (p. 346), a 100 Q
resistor is connected in series at the switch to prevent arcing. This resistor is
installed on all rain gages currently sold by Campbell Scientific.

345

Section 8. Operation

346

Figure 93. Current-Limiting Resistor in a Rain Gage Circuit

Datalogger
Terminals

................

£ £ ./
PorCO switch-closure ! B ! v
1 L
' i ' i
' i ' !
i L] L]
o 7 -

signal ground)

)
~
C hield

B

1
—

8.1.8.3 RS-232 Sensors

RS-232 sensor cable lengths should be limited to 50 feet.

8.1.8.4 SDI-12 Sensors

The SDI-12 standard allows cable lengths of up to 200 feet. Campbell Scientific
does not recommend SDI-12 sensor lead lengths greater than 200 feet; however,
longer lead lengths can sometimes be accommodated by increasing the wire gage
or powering the sensor with a second 12 Vdc power supply placed near the
sensor.

8.1.9 Synchronizing Measurements

Related Topics:
» Synchronizing Measurements — Overview (p. 74)
» Synchronizing Measurements — Details (p. 346)

Timing of a measurement is usually controlled relative to the CR800 clock.
When sensors in a sensor network are measured by a single CR800, measurement
times are synchronized, often within a few milliseconds, depending on sensor
number and measurement type. Large numbers of sensors, cable length
restrictions, or long distances between measurement sites may require use of
multiple CR800s. Techniques outlined below enable network administrators to
synchronize CR800 clocks and measurements in a CR800 network.

Care should be taken when a clock-change operation is planned. Any time the
CR800 clock is changed, the deviation of the new time from the old time may be
sufficient to cause a skipped record in data tables. Any command used to
synchronize clocks should be executed after any CallTable() instructions and
timed so as to execute well clear of data-output intervals.

Techniques to synchronize measurements across a network include:

1. LoggerNet (p. 93— when reliable telecommunications are common to all CR800s
in a network, the LoggerNet automated clock check provides a simple time
synchronization function. Accuracy is limited by the system clock on the PC
running the LoggerNet server. Precision is limited by network transmission
latencies. LoggerNet compensates for latencies in many telecommunication
systems and can achieve synchronies of <100 ms deviation. Errors of 2 to 3
second may be seen on very busy RF connections or long distance internet

Section 8. Operation

connections.

Note Common PC clocks are notoriously inaccurate. Information available at
http://www.nist.gov/pml/div688/grp40/its.cfm gives some good pointers on
keeping PC clocks accurate.

2. Digital trigger — a digital trigger, rather than a clock, can provide the
synchronization signal. When cabling can be run from CR800 to CR800, each
CR800 can catch the rising edge of a digital pulse from the master CR800 and
synchronize measurements or other functions, using the WaitDigTrig()
instructions, independent of CR800 clocks or data time stamps. When
programs are running in pipeline mode, measurements can be synchronized to
within a few microseconds (see WaitDigTrig Scans (p. 155)).

3. PakBus (. 88 commands — the CR800 is a PakBus device, so it is capable of
being a node in a PakBus network. Node clocks in a PakBus network are
synchronized using the SendGetVariable(), ClockReport(), or
PakBusClock() commands. The CR800 clock has a resolution of 10 ms,
which is the resolution used by PakBus clock-sync functions. In networks
without routers, repeaters, or retries, the communication time will cause an
additional error (typically a few 10s of milliseconds). PakBus clock
commands set the time at the end of a scan to minimize the chance of skipping
arecord to a data table. This is not the same clock check process used by
LoggerNet as it does not use average round trip calculations to try to account
for network connection latency.

4. Radios — A PakBus enabled radio network has an advantage over Ethernet in
that ClockReport() can be broadcast to all dataloggers in the network
simultaneously. Each will set its clock with a single PakBus broadcast from
the master. Each datalogger in the network must be programmed with a
PakBusClock() instruction.

Note Use of PakBus clock functions re-synchronizes the Scan() instruction. Use
should not exceed once per minute. CR800 clocks drift at a slow enough rate that
a ClockReport() once per minute should be sufficient to keep clocks within 30
ms of each other.

With any synchronization method, care should be taken as to when and how
things are executed. Nudging the clock can cause skipped scans or skipped
records if the change is made at the wrong time or changed by too much.

5. GPS — clocks in CR800s can be synchronized to within about 10 ms of each
other using the GPS() instruction. CR800s built since October of 2008 (serial
numbers > [7920]) can be synchronized within a few microseconds of each
other and within =200 ps of UTC. While a GPS signal is available, the CR800
essentially uses the GPS as its continuous clock source, so the chances of
jumps in system time and skipped records are minimized.

6. Ethernet — any CR800 with a network connection (internet, GPRS, private
network) can synchronize its clock relative to Coordinated Universal Time
(UTC) using the NetworkTimeProtocol() instruction. Precisions are usually
maintained to within 10 ms. The NTP server could be another logger or any
NTP server (such as an email server or nist.gov). Try to use a local server —
something where communication latency is low, or, at least, consistent. Also,
try not to execute the NetworkTimeProtocol() at the top of a scan; try to ask
for the server time between even seconds.

347

Section 8. Operation

348

8.2 Measurement and Control Peripherals — Details

Related Topics:

* Measurement and Control Peripherals — Overview (p. 84)
* Measurement and Control Peripherals — Details (p. 348)

* Measurement and Control Peripherals — Lists (p. 622)

Peripheral devices expand the CR800 input and output capacities. Some
peripherals are designed as SDM (synchronous devices for measurement) or
CDM (CPI devices for measurement). SDM and CDM devices are intelligent
peripherals that receive instruction from, and send data to, the CR800 using
proprietary communication protocols through SDM terminals and CPI interfaces.
The following sections discuss peripherals according to measurement types.

8.2.1 Analog-Input Modules

Read More For more information see appendix Analog-Input Modules List (p. 622).

Mechanical and solid-state multiplexers are available to expand the number of
analog sensor inputs. Multiplexers are designed for single-ended, differential,
bridge-resistance, or thermocouple inputs.

8.2.2 Pulse-Input Modules

Read More For more information see appendix Pulse-Input Modules List (p. 622).

Pulse-input expansion modules are available for switch-closure, state, pulse-count
and frequency measurements, and interval timing.

8.2.2.1 Low-Level Ac Input Modules — Overview

Related Topics:

» Low-Level Ac Input Modules — Overview (p. 348)
e Low-Level Ac Measurements — Details (p. 334)

* Pulse Input Modules — Lists (p. 622)

Low-level ac input modules increase the number of low-level ac signals a CR800
can monitor by converting low-level ac to high-frequency pulse.

8.2.3 Serial /O Modules — Details

Read More For more information see appendix Serial I/O Modules List (p. 622).

Capturing input from intelligent serial-output devices can be challenging. Several
Campbell Scientific serial I/O modules are designed to facilitate reading and
parsing serial data. Campbell Scientific recommends consulting with an
application engineer when deciding which serial-input module is suited to a
particular application.

Section 8. Operation

8.2.4 Terminal-Input Modules

Read More For more information see appendix Passive Signal Conditioners List
(p- 623).

Terminal Input Modules (TIMs) are devices that provide simple measurement-
support circuits in a convenient package. TIMs include voltage dividers for
cutting the output voltage of sensors to voltage levels compatible with the CR800,
modules for completion of resistive bridges, and shunt modules for measurement
of analog-current sensors.

8.2.5 Vibrating-Wire Modules

Read More For complete information see appendix Vibrating-Wire Modules List
(. 623).

Vibrating-wire modules interface vibrating-wire transducers to the CR800.

8.2.6 Analog-Output Modules

Read More For more information see appendix Continuous-Analog-Output
(CAO) Modules List p. 625).

The CR800 can scale measured or processed values and transfer these values in
digital form to an analog output device. The analog output device performs a
digital-to-analog conversion to output an analog voltage or current. The output
level is maintained until updated by the CR800.

8.2.7 PLC Control Modules — Overview

Related Topics:

e PLC Control — Overview . 74)

e PLC Control — Details (p. 237

e PLC Control Modules — Overview (p. 349

» PLC Control Modules — Lists (p. 624)

e PLC Control — Instructions (p. 536)

» Switched Voltage Output — Specifications
o Switched Voltage Output — Overview (p. 78)
» Switched Voltage Output — Details (p. 101)

Controlling power to an external device is a common function of the CR800. On-
board control terminals and peripheral devices are available for binary (on / off)
or analog (variable) control. A switched, 12 Vdc terminal (SW12V) is also
available. See the section Switched Unregulated (Nominal 12 Volt) (p. 103).

8.2.7.1 Terminals Configured for Control

C terminals can be configured as output ports so set low (0 Vdc) or high (5 Vdc)
using the PortSet() or WriteIO() instructions. Port C4 can be configured for
pulse width modulation with a maximum period of 36.4 s. A terminal configured
for digital I/O is normally used to operate an external relay-driver circuit because
the port itself has limited drive capacity. Drive capacity is determined by the 5
Vdc supply and a 330 Q output resistance. It is expressed as:

349

Section 8. Operation

Vo:4.9V—(330 Q) ® Io

Where V, is the drive limit, and I, is the current required by the external device.
Figure Control Port Current Sourcing (p. 350) plots the relationship.

Figure 94. Current sourcing from C terminals configured for control
50 \
45 ‘\

4.0 N

35 \‘
| N

3.0 N

3 25 ‘\

20 N

Output Voltage (V)

0'00 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15

IO
Output Current (mA)

8.2.7.2 Relays and Relay Drivers

Read More For more information see appendix Relay Drivers Modules List (p.
625).

Several relay drivers are manufactured by Campbell Scientific. Compatible,
inexpensive, and reliable single-channel relay drivers for a wide range of loads are

also available from electronic vendors such as Crydom, Newark, and Mouser (p.
508).

8.2.7.3 Component-Built Relays

Figure Relay Driver Circuit with Relay (p. 351 shows a typical relay driver circuit
in conjunction with a coil driven relay, which may be used to switch external
power to a device. In this example, when the terminal configured for control is set
high, 12 Vdc from the datalogger passes through the relay coil, closing the relay
which completes the power circuit and turns on the fan.

In other applications, it may be desirable to simply switch power to a device
without going through a relay. Figure Power Switching without Relay (. 351)
illustrates this. If the device to be powered draws in excess of 75 mA at room
temperature (limit of the 2N2907A medium power transistor), the use of a relay is
required.

350

Section 8. Operation

Figure 95. Relay Driver Circuit with Relay

Supply: 40 Vdc maximum

Maximum current

12Vde “—=="_ to coil:
N4148 2; battery ——— t'51.\11}%@25 °C
40 mA @-50 °C
Datalogger
Terminals
voL5kQ
C 2N2222A
1
— ©

Figure 96. Power Switching without Relay

@ Supply: 40 Vdc Maximum

10kQ

2N2907A

2kQ
Datalqgger Peripheral Maximum c\q‘rel}t
Terminals to be t_oS lz;i;pléﬂzasl Clé
powered 40 mA @-50 °C.
C 2N2222A
—l
— o ?
8.3 Memory
Related Topics:

* Memory — Overview (p. 86)
* Memory — Details (p. 351
* Data Storage Devices — List (p. 629)

8.3.1 Storage Media

CR800 memory consists of four non-volatile storage media:

Internal battery-backed SRAM

Internal flash

Internal serial flash

External flash (optional flash USB: drive)

351

Section 8. Operation

Table CR800 Memory Allocation (p. 352 and table CR800 SRAM Memory (p. 353)
illustrate the structure of CR800 memory around these media. The CR800 uses
and maintains most memory features automatically. However, users should
periodically review areas of memory wherein data files, CRBasic program files,
and image files reside. See section File Management in CR800 Memory (p. 361) for
more information.

By default, final-data memory (memory for stored data) is organized as ring
memory. When the ring is full, oldest data are overwritten by newest data. The
DataTable() instruction, however, has an option to set a data table to Fill and
Stop.

352

Table 79. CR800 Memory Allocation

Memory
Sector

Main
Battery-Backed SRAM1
4 MB*

Operating System

Flash Memory2
2 MB

OS variables

Comments

CRBASIC compiled program binary structure

CRBASIC variables
Final-data memory
Communication memory
USR: FAT32 RAM drive

'Keep' memory

Dynamic runtime memory allocation

See table CR800 SRAM Memory (p. 353) for detail.

Operating system
Serial number
Board revision
Boot code

Erased when loading new OS

. Boot code erased only if changed.

Section 8. Operation

Table 79. CR800 Memory Allocation

Internal
ferna ® Device settings (12 kB) — PakBus address and settings, station name. Rebuilt
. 3 .
Serial Flash when a setting changes.
512 kB . I
® CPU:drive (500 kB) — program files, field calibration files, other files not
frequently overwritten. When a program is compiled and run, it is copied here
automatically for loading on subsequent power-ups. Files accumulate until deleted
with File Control or the FilesManage() instruction. Use USR: drive to store other
file types. Available CPU: memory is reported in Status table field
CPUDriveFree.
® FAT32 file system
® Limited write cycles (100,000)
® Slow serial access
External Flash USB: drive (p. 629)— Holds program files. Holds a copy of requested final-memory
(Optional) table data as files when TableFile() instruction is used. USB: data can be retrieved
from the storage device with Windows Explorer. USB: drive can facilitate the use of
2 GB: USB: drive Powerup.ini.

'srRaM
‘CR800 series changed from 2 to 4 MB SRAM in Sept 2007. SNs > 3605 are 4 MB.
2 Flash is rated for > 1 million overwrites.

3 Serial flash is rated for 100,000 overwrites (50,000 overwrites on 128 kB units). Care should be taken in programs that
overwrite memory to use the CRD: or USR: drives so as not to wear-out the CPU: drive.

-The CR800 series changed from 128 to 512 kB serial flash in May 2007. SNs > 2787 are 512 kB.

353

Section 8. Operation

Table 80. CR800 Main Memory

Use

Static Memory

Operating Settings and Properties

CRBasic Program
Operating Memory

Variables & Constants

Final-Data Memory

Communication Memory 1

Communication Memory 2

USR: drive
<=3.6 MB (4 MB Mem)
<= 1.5 MB (2 MB Mem)

Less on older units with more
limited memory.

Comments

Operational memory used by the operating system. Rebuilt at power-up,
program re-compile, and watchdog events.

"Keep" (p. 492) memory. Stores settings such as PakBus address, station name,
beacon intervals, neighbor lists, etc. Also stores dynamic properties such as the
routing table, communication timeouts, etc.

Stores the currently compiled and running user program. This sector is rebuilt on
power-up, recompile, and watchdog events.

Stores variables used by the CRBasic program. These values may persist
through power-up, recompile, and watchdog events if the PreserveVariables
instruction is in the running program.

Stores data. Fills memory remaining after all other demands are satisfied.
Configurable as ring or fill-and-stop memory. Compile error occurs if
insufficient memory is available for user-allocated data tables. Given lowest
priority in SRAM memory allocation.

Construction and temporary storage of PakBus packets.

Constructed Routing Table: list of known nodes and routes to nodes. Routers use
more space than leaf nodes because routes to neighbors must be remembered.
Increasing the PakBusNodes field in the Status table will increase this allocation.

Optionally allocated. Holds image files. Holds a copy of final-data memory
when TableFile() instruction used. Provides memory for FileRead() and
FileWrite() operations. Managed in File Control. Status reported in Status
table fields "USRDriveSize" and "USRDriveFree."

354

Section 8. Operation

Table 81. Memory Drives

Drive Recommended File Types
cru:! o8, .CAL

USR: or8, CAL

USB: .DAT

1The CPU: drive uses a FAT16 file system, so it is limited to 128 file. If the file names are longer
than 8.3 characters (e.g. 12345678.123), you can store less.

2The USR: drive uses a FAT32 file system, so there is no limit, beyond practicality and available
memory, to the number of files that can be stored. While a FAT file system is subject to
fragmentation, performance degradation is not likely to be noticed since the drive has very fast
access because it has a relatively small amount of solid state RAM.

3The CRD: drive is a CompactFlash card attached to the CR800 by use of a CF card storage

module (p. 629). Cards should be formatted as FAT32 for optimal performance. The card format
feature in the CR800 will format the card with the same format previously used on the card.

8.3.1.1 Memory Drives — On-Board

Data-storage drives are listed in table CR800 Memory Drives (p. 354. Data-table
SRAM and the CPU: drive are automatically partitioned for use in the CR800.

The USR: drive can be partitioned as needed. The USB: drive is automatically
partitioned when a Campbell Scientific mass-storage device (p. 629 is connected.

8.3.1.1.1 Data Table SRAM

Primary storage for measurement data are those areas in SRAM allocated to data
tables as detailed in table CR800 SRAM Memory (p. 353. Measurement data can be
also be stored as discrete files on USR: or USB: by using TableFile() instruction.

The CR800 can be programmed to store each measurement or, more commonly,
to store processed values such as averages, maxima, minima, histograms, FFTs,
etc. Data are stored periodically or conditionally in data tables in SRAM as
directed by the CRBasic program (see Structure (p. 121)). The DataTable()
instruction allows the size of a data table to be programmed. Discrete data files
are normally created only on a PC when data are retrieved using datalogger
support software (p. 93).

Data are usually erased from this area when a program is sent to the CR800.
However, when using support software File Control menu Send (. 488 command
or CRBasic Editor Compile, Save and Send (. 485 command, options are
available to preserve data when downloading programs.

8.3.1.1.2 CPU: Drive

CPU: is the default drive on which programs and calibration files are stored. It is
formatted as FAT16, so it has a limit of 128 files. Do not store data on CPU: or
premature failure of memory will likely result.

8.3.1.1.3 USR: Drive

SRAM can be partitioned to create a FAT32 USR: drive, analogous to partitioning
a second drive on a PC hard disk. Certain types of files are stored to USR: to

355

Section 8. Operation

reserve limited CPU: memory for datalogger programs and calibration files.
Partitioning also helps prevent interference from data table SRAM. USR: is
configured using DevConfig settings or SetStatus() instruction in a CRBasic
program. Partition USR: drive to at least 11264 bytes in 512-byte increments. If
the value entered is not a multiple of 512 bytes, the size is rounded up. Maximum
size of USR: is the total RAM size less 400 kB; i.e., for a CR800 with 4 MB
memory, the maximum size of USR: is about 2.99 MB.

USR: is not affected by program recompilation or formatting of other drives. It
will only be reset if the USR: drive is formatted, a new operating system is
loaded, or the size of USR: is changed. USR: size is changed manually by
accessing it in the Status table or by loading a CRBasic program with a different
USR: drive size entered in a SetStatus() or SetSetting() instruction. See section
Configuration with CRBasic Program (. 113).

Measurement data can be stored on USR: as discrete files by using the
TableFile() instruction. Table TableFile()-Instruction Data-File Formats (p. 357)
describes available data-file formats.

Note Placing an optional USR: size setting in the CRBasic program over-rides
manual changes to USR: size. When USR: size is changed manually, the
CRBasic program restarts and the programmed size for USR: takes immediate
effect.

The USR: drive holds any file type within the constraints of the size of the drive
and the limitations on filenames. Files typically stored include image files from
cameras (see the appendix Cameras), certain configuration files, files written for
FTP retrieval, HTML files for viewing with web access, and files created with the
TableFile() instruction. Files on USR: can be collected using datalogger support
software (p. 93 Retrieve (p. 489 command, or automatically using the datalogger
support software Setup File Retrieval tab functions.

Monitor use of available USR: memory to ensure adequate space to store new
files. FileManage() command can be used in the CRBasic program to remove
files. Files also can be removed using datalogger support software Delete . 488)
command.

Two Status table registers monitor use and size of the USR: drive. Bytes
remaining are indicated in register USRDriveFree. Total size is indicated in
register USRDriveSize. Memory allocated to USR: drive, less overhead for
directory use, is shown in datalogger support software File Control (. 488
window.

8.3.1.1.4 USB: Drive

356

USB: drive uses Flash . 4899 memory on a Campbell Scientific mass storage
device (see the appendix Mass Storage Devices (p. 629). Its primary purpose is the
storage of ASCII data files. Measurement data can be stored on USB: as discrete
files by using the TableFile() instruction. Table 7abieFite()-Instruction Data-File Formats (p.
3snrerm. Flash . 489)describes available data-file formats.

Caution When removing mass-storage devices, do so when the LED is not
flashing or lit.

Section 8. Operation

Consider the following when using Campbell Scientific mass-storage devices:

e format as FAT32
e connect to the CR800 CS 1/0 port
e remove only when inactive or data corruption may result

8.3.2 Data-File Formats

Data-file format options are available with the TableFile() instruction. Time-
series data have an option to include header, time stamp and record number. See
the table TableFile() Instruction Data-File Formats (p. 357. For a format to be
compatible with datalogger support software (p. 93) graphing and reporting tools,
header, time stamps, and record numbers are usually required. Fully compatible
formats are indicated with an asterisk. A more detailed discussion of data-file
formats is available in the Campbell Scientific publication LoggerNet Instruction
Manual, which is available at www.campbellsci.com.

Table 82. TableFile() Instruction Data-File Formats
Elements Included
TableFile() Base
Format File
Option Format Header Time Record
Information Stamp Number
0 TOBI v v v
1 TOBI v v
2 TOB1 4 v
3 TOBI1 v
4 TOB1 v v
5 TOB1
6 TOBI v
7 TOB1
8! TOAS v v v
9 TOAS v v
10 TOA5S v v
11 TOAS 4
12 TOA5S v v
13 TOAS
14 TOAS v
15 TOA5S
16" CSIXML v v v
17 CSIXML v v
18 CSIXML v v
19 CSIXML v
32! CSIISON v v v

357

Section 8. Operation

358

Table 82. TableFile() Instruction Data-File Formats

Elements Included
TableFile() Base
Format File)
Option Format Header Time Record
Information Stamp Number
33 CSIJSON v v
34 CSIJSON v v
35 CSIJSON v
642 TOB3

1F ormats compatible with datalogger support software (p. 93) data-viewing and graphing utilities

2See Writing High-Frequency Data to Memory Cards for more information on using option 64.

Data-File Format Examples
TOB1

TOBI files may contain an ASCII header and binary data. The last line in the
example contains cryptic text which represents binary data.

Example:

"ToB1","11467","CR1000","11467","CR1000.Std.20","CPU:file format.CR1","61449","Test"
"SECONDS", "NANOSECONDS", "RECORD", "battfivoltfiMin","PTemp"
"SECONDS", "NANOSECONDS™, "RN","",""

wn w g wgp o
"ULONG", "ULONG" , "ULONG", "FP2","FP2"
Wp' E1HEYp' E1H>Vp' E1HaVp' E1H'Vp' E1H

TOA5
TOAS files contain ASCII (p. 481) header and comma-separated data.

Example:

"TOA5","11467","CR1000","11467","CR1000.Std.20","CPU:file format.CR1","26243","Test"
"TIMESTAMP", "RECORD", "battfivoltfiMin", " "PTemp"

TS MRNT, T

e gt igmnn

"2010-12-20 11:31:30",7,13.29,20.77

"2010-12-20 11:31:45",8,13.26,20.77

"2010-12-20 11:32:00",9,13.29,20.8
CSIXML

CSIXML files contain header information and data in an XML . 507) format.

Section 8. Operation

Example:

<?xml version="1.0" standalone="yes"?>
<csixml version="1.0">
<head>
<environment>
<station-name>11467</station-name>
<table-name>Test</table-name>
<mode1>CR1000</model>
<serial-no>11467</serial-no>
<os-version>CR1000.Std.20</os-version>
<dld-name>CPU:file format.CR1l</dld-name>
</environment>
<fields>
<field name="battfivoltfiMin" type="xsd:float" process="Min"/>
<field name="PTemp" type="xsd:float" process="Smp"/>
</fields>
</head>
<data>
<r time="2010-12-20T11:37:45" no="10"><v1>13.29</v1><v2>21.04</v2></r>
<r time="2010-12-20T11:38:00" no="11"><v1>13.29</v1><v2>21.04</v2></r>
<r time="2010-12-20T11:38:15" no="12"><v1>13.29</v1><v2>21.04</v2></r>

</data>
</csixml>
CSIJSON

CSIJSON files contain header information and data in a JSON . 492) format.
Example:

"signature": 38611,"environment": {"stationfiname": "11467","tablefiname":

"Test","model": "CR1000","serialfino": "11467",

"osfiversion": "CR1000.Std.21.03","progfiname": "CPU:file format.CR1"},"fields":

[{"name": "battfivoltfiMin","type": "xsd:float",

"process": "Min"},{"name": "PTemp","type": 'xsd:float","process": "Smp"}]1},

"data": [{"time": "2011-01-06T15:04:15","no": 0,"vals": [13.28,21.29]},

{"time": "2011-01-06T15:04:30","no": 1,"vals": [13.28,21.29]},

{"time": "2011-01-06T15:04:45","no": 2,"vals": [13.28,21.29]%},

{"time": "2011-01-06T15:05:00","no": 3,"vals": [13.28,21.29]3}1}

Data File-Format Elements
Header

File headers provide metadata that describe the data in the file. A TOAS
header contains the metadata described below. Other data formats contain
similar information unless a non-header format option is selected in the
TableFile() instruction in the CR800 CRBasic program.

Line 1 — Data Origins

Includes the following metadata series: file type, station name, CR800 model
name, CR800 serial number, OS version, CRBasic program name, program
signature, data-table name.

Line 2 — Data-Field Names

Lists the name of individual data fields. If the field is an element of an array,
the name will be followed by a comma-separated list of subscripts within

359

Section 8. Operation

360

parentheses that identifies the array index. For example, a variable named
“values” that is declared as a two-by-two array, i.e.,

Public Values(2,2)

will be represented by four field names: “values(1,1)”, “values(1,2)”,
“values(2,1)”, and “values(2,2)”. Scalar (non-array) variables will not have
subscripts.

Line 3 — Data Units

Includes the units associated with each field in the record. If no units are
programmed in the CR800 CRBasic program, an empty string is entered for
that field.

Line 4 — Data-Processing Descriptors

Entries describe what type of processing was performed in the CR800 to
produce corresponding data, e.g., Smp indicates samples, Min indicates
minima. If there is no recognized processing for a field, it is assigned an
empty string. There will be one descriptor for each field name given on
Header Line 2.

Record Element 1 — Timestamp

Data without timestamps are usually meaningless. Nevertheless, the
TableFile() instruction optionally includes timestamps in some formats.

Record Element 2 — Record Number

Record numbers are optionally provided in some formats as a means to
ensure data integrity and provide an up-count data field for graphing
operations. The maximum record number is &hffffffff (a 32-bit number),
then the record number sequence restarts at zero. The CR800 reports back to
the datalogger support software 31 bits, or a maximum of &h7fffffff, then it
restarts at 0. For example, if the record number increments once a second,
restart at zero will occur about once every 68 years (yes, years).

8.3.3 Resetting the CR800

A reset is referred to as a "memory reset." Be sure to backup the current CR800
configuration before a reset in case you need to revert to the old settings.

The following features are available for complete or selective reset of CR800

memory:

e Full memory reset

e Program send reset

e Manual data-table reset

e Formatting memory drives

8.3.3.1 Full Memory Reset

Full memory reset occurs when an operating system is sent to the CR800 using
DevConfig or when entering 98765 in the Status table field FullMemReset. A
full memory reset does the following:

Clears and formats CPU: drive (all program files erased)
Clears SRAM data tables

Section 8. Operation

Clears Status-table elements
Restores settings to default
Initializes system variables
Clears communication memory
Recompiles current program

Operating systems can also be sent using the program Send feature in datalogger
support software (p. 93). A full reset does not occur in this case. Beginning with
CR800 operating system v.16, settings and registers in the Status table are
preserved when sending a subsequent operating system by this method; data
tables are erased. Rely on this feature only with an abundance of caution when
sending an OS to CR800s in remote, expensive to get to, or difficult-to-access
locations.

8.3.3.2 Program Send Reset

Final-memory (. 489) data are erased when user programs are uploaded, unless
preserve / erase data options are used. Preserve / erase data options are presented
when sending programs using File Control Send (. 488 command and CRBasic
Editor Compile, Save and Send (p. 485. See Preserving Data at Program Send (p.
125) for a more-detailed discussion of preserve / erase data at program send.

8.3.3.3 Manual Data-Table Reset
Data-table memory is selectively reset from

e Support software Station Status (. 503 command
e CRI1000KD Keyboard Display: Data | Reset Data Tables

8.3.3.4 Formatting Drives

CPU:, USR:, andUSB: drives can be formatted individually. Formatting a drive
erases all files on that drive. If the currently running user program is found on the
drive to be formatted, the program will cease running and any SRAM data
associated with the program are erased. Drive formatting is performed through
datalogger support software (p. 631) Format (p. 488) command.

8.3.4 File Management

As summarized in table File Control Functions (p. 361), files in CR800 memory
(program, data, CAL, image) can be managed or controlled with datalogger
support software (p. 93), CR800 Web API (p. 402), or CoraScript (p. 484.. Use of
CoraScript is described in the LoggerNet software manual, which is available at
www.campbellsci.com. More information on file attributes that enhance
datalogger security, see the Security (p. 909) section.

361

Section 8. Operation

362

Table 83. File-Control Functions

File-Control Functions

Accessed Through

Sending programs to the CR800

Program Sendl, File Control Sendz, DevConﬁg3, keyboard or

5

powerup.ini with a Campbell Scientific mass storage device4 5,
web API (p. 402) HTTPPut (Sending a File to a Datalogger)

Setting program file attributes. See File Attributes (p. 363)

File Controlz;power-up with Campbell Scientific mass storage

devices, FileManage() instructioné, web API FileControl

Sending an OS to the CR800. Reset CR800 settings.

DevConfig® Send OS tab; DevConfig® File Control tab;

Campbell Scientific mass storage device5

Sending an OS to the CR800. Preserve CR800 settings.

Sendl; DevConﬁg3 File Control tab; power-up with Campbell

Scientific mass storage device with default.cr8 ﬁles, web API
HTTPPut (Sending a File to a Datalogger)

Formatting CR800 memory drives

File Controlz, power-up with Campbell Scientific mass storage
devices, web API FileControl

Retrieving programs from the CR800

Retrieve7, File Controlz, keyboard with Campbell Scientific

mass storage device4, web API NewestFile

Prescribes the disposition (preserve or delete) of old data files
on Campbell Scientific mass storage device

File Controlz, power-up with Campbell Scientific mass storage
devices, web API (p. 402) FileControl

Deleting files from memory drives

File Controlz, power-up with Campbell Scientific mass storage
devices, web API FileControl

Stopping program execution

File Controlz, web API FileControl

Renaming a file

FileRename()6

Time-stamping a file

FileTime()°

List files

File Control’, FileList()°, web API ListFiles

Create a data file from a data table

TableFile()®

CR1000KD Keyboard Display , LoggerNet | PakBusGraph, web

JPEG files manager API NewestFile
Hiding files Web API FileControl
Encrypting files Web API FileControl

Abort program on power-up

Hold DEL down on datalogger keypad

1Duttutlogger support software (p. 93) Program Send (p. 498) command

Datalogger support software File Control (p. 488) utility
Device Configuration Utility (DevConfig) (p. 109) software

~N N W B W N

Datalogger support software Retrieve (p. 488) command

Manual with Campbell Scientific mass storage device. See Data Storage (p. 355)
Automatic with Campbell Scientific mass storage device and Powerup.ini. See Power-up (p. 365)

CRBasic instructions (commands). See Data-Table Declarations (p. 514) and File Management (p. 361) and CRBasic Editor Help

Section 8. Operation

8.3.4.1 File Attributes

A feature of program files is the file attribute. Table CR800 File Attributes (p. 363)
lists available file attributes, their functions, and when attributes are typically
used. For example, a program file sent with the support software Program Send
(p. 499 command, runs a) immediately ("run now"), and b) when power is cycled
on the CR800 ("run on power-up'). This functionality is invoked because
Program Send (p. 498 sets two CR800 file attributes on the program file, i.e., Run
Now and Run on Power-up. When together, Run Now and Run on Power-up
are tagged as Run Always.

Note Activation of the run-on-power-up file can be prevented by holding down
the Del key on the CR1000KD Keyboard Display while the CR800 is powering

up.
Table 84. CR800 File Attributes
Attribute Function Attribute for Programs Sent to CR800 with:
a) Send (p. 488) !
Run Always b) File Control2 with Run Now & Run on Power-up
Runs now and on selected.
(run on power-up + L .
run now) power-up. ¢) Campbell Scientific mass storage device power-

up~ using commands 1 & 13 (see table Powerup.ini
Commands (p. 366)).

a) File Control2 with Run on Power-up checked.
Runs only on b) Campbell Scientific mass storage device power-

Run on Power-up
power-up

up” using command 2 (see table Powerup.ini
Commands (p. 366)).

a) File Control2 with Run Now checked.
b) Campbell Scientific mass storage device power-

Runs only when up” using commands 6 & 14 (see the table

file sent to CR800 | Powerup.ini Commands (p. 366)). However, if the
external storage device remains connected, the
program loads again from the external storage
device.

Run Now

1Support software program Send (p. 488) command. See software Help.

2Support software File Control (p. 488). See software Help & Preserving Data at Program Send
(. 125).

3Automatic on power-up of CR800 with Campbell Scientific mass storage device and
Powerup.ini. See Power-up (p. 365).

8.3.4.2 Files Manager

FilesManager := { " (" pakbus-address "," name-prefix "," number-
files ")" }.

pakbus-address := number. ; 0 < number < 4095

name-prefix := string.

number_files := number. ; 0 <= number < 10000000

This setting specifies the numbers of files of a designated type that are saved
when received from a specified node. There can be up to four such settings. The
files are renamed by using the specified file name optionally altered by a serial
number inserted before the file type. This serial number is used by the datalogger

363

Section 8. Operation

to know which file to delete after the serial number exceeds the specified number
of files to retain. If the number of files is 0, the serial number is not inserted. A
special node PakBus address of 3210 can be used if the files are sent with FTP
protocol, or 3211 if the files are written with CRBasic.

Note This setting will operate only on a file whose name is not a null string.

Example:

(129,CPU:NorthWest.JPG,2)
(130,CRD:SouthEast. JPG,20)
(130,CPU:Message.TXT,0)

In the example above, *.JPG files from node 129 are named
CPU:NorthWestnnn.JPG and two files are retained . The nnn serial number starts
at 1 and will advance beyond nine digits. In this example, all *. TXT files from
node 130 are stored with the name CPU:Message.Txt, with no serial number
inserted.

A second instance of a setting can be configured using the same node PakBus
address and same file type, in which case two files will be written according to
each of the two settings. For example,

(55,USR:photo.JPG,100)
(55:USR:NewestPhoto.JPG,0)

will store two files each time a JPG file is received from node 55. They will be
named USR:photonnn.JPG and USR:NewestPhoto.JPG. This feature is used
when a number of files are to be retained, but a copy of one file whose name
never changes is also needed. The second instance of the file can also be
serialized and used when a number of files are to be saved to different drives.

Entering 3212 as the PakBus address activates storing IP trace information to a
file. The "number of files" parameter specifies the size of the file. The file is a
ring file, so the newest tracing is kept. The boundary between newest and oldest
is found by looking at the time stamps of the tracing. Logged information may be
out of sequence.

Example:
(3212, USR:IPTrace.txt, 5000)

This syntax will create a file on the USR: drive called IPTrace.txt that will grow
to approximately 5 KB in size, and then new data will begin overwriting old data.

8.3.4.3 Data Preservation

364

Associated with file attributes is the option to preserve data in CR800 memory
when a program is sent. This option applies to data table SRAM and datalogger
support software (p. 485) cache data (p. 485.. Depending on the application, retention
of data files when a program is downloaded may be desirable. When sending a
program to the CR800 with datalogger support software Send command, data are
always deleted before the program runs. When the program is sent using support
software File Control Send (. 488) command or CRBasic Editor Compile, Save
and Send (. 485) command, options to preserve (not erase) or not preserve (erase)
data are presented. The logic in the table Data-Preserve Options (p. 365)
summarizes the disposition of CR800 data depending on the data preservation

Section 8. Operation

option selected.

Table 85. Data-Preserve Options

if "Preserve data if no table changed"

if current program = overwritten program
keep CPU data
keep cache data

else
erase CPU data
erase cache data

end if

end if

if "erase data"
erase CPU data

erase cache data
end if

8.3.4.4 Powerup.ini File — Details

Uploading a CR800 OS (. 493 file or user-program file in the field can be
challenging, particularly during weather extremes. Heat, cold, snow, rain,
altitude, blowing sand, and distance to hike influence how easily programming
with a laptop or palm PC may be. An alternative is to carry the file to the field on
a light-weight, external-memory device such as a USB: (. 629 drive. Steps to
download the new OS or CRBasic program from an external-memory drive are:

1. Place a text file named powerup.ini, with appropriate commands entered in the
file, on the external-memory device along with the new OS or CRBasic
program file.

2. Connect the external device to the CR800 and then cycle power to the
datalogger.

This simple process results in the file uploading to the CR800 with optional run
attributes, such as Run Now, Run on Power Up, or Run Always set for
individual files. Simply copying a file to a specified drive with no run attributes,
or to format a memory drive, is also possible. Command options for powerup.ini
options also allow final-data memory management on CF cards comparable to the
datalogger support software (p. 93) File Control feature.

Options for powerup.ini also allow final-data memory management comparable
File Control (. 453).

Caution Test the powerup.ini file and procedures in the lab before going to the
field. Always carry a laptop or mobile device (with datalogger support software)
into difficult- or expensive-to-access places as backup.

Powerup.ini commands include the following functions:

e Sending programs to the CR800.
e Optionally setting run attributes of CR800 program files.
e Sending an OS to the CR800.

365

Section 8. Operation

e Formatting memory drives.
e Deleting data files associated with the previously running program.

When power is connected to the CR800, it searches for powerup.ini and executes
the command(s) prior to compiling a program. Powerup.ini performs three
operations:

1. Copies the program file to a memory drive

2. Optionally sets a file run attribute (Run Now, Run on Power Up, or Run
Always) for the program file.

3. Optionally deletes data files stored from the overwritten (just previous)
program.

4. Formats a specified drive.

Execution of powerup.ini takes precedence during CR800 power-up. Although
powerup.ini sets file attributes for the uploaded programs, its presence on a drive
does not allow those file attributes to control the power-up process. To avoid
confusion, either remove the external drive on which powerup.ini resides or
delete the file after the power-up operation is complete.

8.3.4.4.1 Creating and Editing Powerup.ini

Powerup.ini is created with a text editor on a PC, then saved on a memory drive
of the CR800. The file is saved to the memory drive, along with the operating
system or user program file, using the datalogger support software (p. 631) File
Control | Send (. 488) command.

Note Some text editors (such as MicroSoft® WordPad®™) will attach header
information to the powerup.ini file causing it to abort. Check the text of a
powerup.ini file in the CR800 with the CR1000KD Keyboard Display to see what
the CR800 actually sees.

Comments can be added to the file by preceding them with a single-quote
character ('). All text after the comment mark on the same line is ignored.

Syntax
Syntax for powerup.ini is:
Command, File,Device
where,

e Command is one of the numeric commands in table Powerup.ini Commands
(p- 366).

e File is the accompanying operating system or user program file. File name
can be up to 22 characters long.

e Device is the CR800 memory drive to which the accompanying operating
system or user program file is copied (usually CPU:). If left blank or with an
invalid option, default device will be CPU:. Use the same drive designation
as the transporting external device if the preference is to not copy the file.

366

Section 8. Operation

Table 86. Powerup.ini Commands and Applications
Command Description Applications
Copies the specified program to the
1! Run always, preserve data designated drive and sets the run attribute
of the program to Run Always.
Copies the specified program to the
designated drive. The program specified
2 Run on power-up in command 2 will be set to Run Always
unless command 6 or 14 is used to set a
separate Run Now program.
5 Format Formats the designated drive.
Copies the specified program to the
61 Run now, preserve data designated drive and sets the run attribute
of the program to Run Now.
Copy file to specified drive with no run
” attributes. Use to copy Include (p. 491) or | Copies the specified file to the designated
program support files to the CPU: drive drive with no run attributes.
before copying the program file to run.
9 Load OS (File = .obj)
Copies the specified program to the
13 Run always, erase data designated drive and sets the run attribute
of the program to Run Always.
Copies the specified program to the
14 Run now, erase files designated drive and sets the run attribute
to Run Now.
1By using PreserveVariables() instruction in the CRBasic program, with commands 7 and 6, data and variables can be preserved.

Example Power-up.ini Files

Table 87. Powerup.ini Example. Code Format and Syntax

'"Code format and syntax

"Command = numeric power-up command
'"File = file associated with the action
'Device = device to which File is copied. Defaults to CPU:

"Command, File,Device
13,Write2CRD_2.crl,cpu:

Table 88. Powerup.ini Example. Run Program on Power-up

"Copy program file pwrup.crl from the external drive to CPU:
'"File will run only when CR800 powered-up later.
2,pwrup.crl,cpu:

Table 89. Powerup.ini Example. Format the USR: Drive

'"Format the USR: drive
5,,Usr:

367

Section 8. Operation

Table 90. Powerup.ini Example. Send OS on Power-up

"Load an operating system (.obj) file into FLASH as the new OS.
9,CR800.Std.28.0bj

Table 91. Powerup.ini Example. Run Program from USB: Drive

'A program file is carried on an external USB: drive.
'Do not copy program file from USB:

'"Run program always, erase data.

13, toobigforcpu.crl,usb:

Table 92. Powerup.ini Example. Run Program Always, Erase Data

'Run a program file always, erase data.
13,pwrup_l.crl,cpu:

Table 93. Powerup.ini Example. Run Program Now, Erase Data

"Run a program file now, erase data now.
14,run.crl,cpu:

Power-up.ini Execution

After powerup.ini is processed, the following rules determine what CR800
program to run:

e [fthe run-now program is changed, then it is the program that runs.

e Ifno change is made to run-now program, but run-on-power-up program is
changed, the new run-on-power-up program runs.

e Ifneither run-on-power-up nor run-now programs are changed, the previous
run-on-power-up program runs.

8.3.4.5 File Management Q & A

Q: How do I hide a program file on the CR800 without using the CRBasic
FileManage() instruction?

A: Use the CoraScript (p. 484) File-Control command, or the web API (p. 402)
FileControl command.

8.3.5 File Names

The maximum size of the file name that can be stored, run as a program, or FTP
transferred in the CR800 is 59 characters. If the name is longer than 59 characters,
an Invalid Filename error is displayed. If several files are stored, each with a
long filename, memory allocated to the root directory can be exceeded before the
actual memory of storing files is exceeded. When this occurs, an "insufficient
resources or memory full" error is displayed.

8.3.6 File-System Errors

Table File System Error Codes (p. 369 lists error codes associated with the CR800
file system. Errors can occur when attempting to access files on any of the
available drives.

368

Section 8. Operation

Table 94. File System Error Codes
Error Code Description
1 Invalid format
2 Device capabilities error
3 Unable to allocate memory for file operation
4 Max number of available files exceeded
5 No file entry exists in directory
6 Disk change occurred
7 Part of the path (subdirectory) was not found
8 File at EOF
9 Bad cluster encountered
10 No file buffer available
11 Filename too long or has bad chars
12 File in path is not a directory
13 Access pern"lissi(‘)n,. opening DIR or LABEL as file, or trying to open file as
DIR or mkdir existing file
14 Opening read-only file for write
15 Disk full (can't allocate new cluster)
16 Root directory is full
17 Bad file ptr (pointer) or device not initialized
18 Device does not support this operation
19 Bad function argument supplied
20 Seek out-of-file bounds
21 Trying to mkdir an existing dir
22 Bad partition sector signature
23 Unexpected system ID byte in partition entry
24 Path already open
25 Access to uninitialized ram drive
26 Attempted rename across devices
27 Subdirectory is not empty
31 Attempted write to Write Protected disk
32 No response from drive (Door possibly open)
33 Address mark or sector not found
34 Bad sector encountered
35 DMA memory boundary crossing error
36 Miscellaneous 1/0 error
37 Pipe size of 0 requested
38 Memory-release error (relmem)

369

Section 8. Operation

Table 94. File System Error Codes
Error Code Description
39 FAT sectors unreadable (all copies)
40 Bad BPB sector
41 Time-out waiting for filesystem available
42 Controller failure error
43 Pathname exceeds . MAX PATHNAME

8.4 Data Retrieval and Telecommunications — Details

Related Topics:

* Data Retrieval and Telecommunications — Quickstart (p. 43)

* Data Retrieval and Telecommunications — Overview (p. 87)

* Data Retrieval and Telecommunications — Details (p. 370)

* Data Retrieval and Telecommunication Peripherals — Lists (p. 627)

Telecommunications, in the context of CR800 operation, is the movement of
information between the CR800 and another computing device, usually a PC.
The information can be data, program, files, or control commands.

Telecommunication systems require three principal components: hardware, carrier
signal, and protocol. For example, a common way to communicate with the
CR800 is with PC200W software by way of a PC COM port. In this example,
hardware are the PC COM port, CR800 RS-232 port, and a serial cable. The
carrier signal is RS-232, and the protocol is PakBus®. Of these three, you will
most often be required to choose only the hardware, since carrier signal and
protocol are transparent in most applications.

Systems usually require a single type of hardware and carrier signal. Some
applications, however, require hybrid systems of two or more hardware and signal
carriers.

Contact a Campbell Scientific application engineer for assistance in configuring a
telecommunication system.

Synopses of software to support telecommunication devices and protocols are
found in the appendix Support Sofiware . 630. Of special note is Network
Planner, a LoggerNet client designed to simplify the configuration of PakBus
telecommunication networks.

8.4.1 Protocols

The CR800 communicates with datalogger support software (p. 93) and other
Campbell Scientific dataloggers (p. 621) using the PakBus (p. 496) protocol. See the
section Alternate Telecommunications — Details (p. 386) for information on other
supported protocols, such as TCP/IP, Modbus, etc.

8.4.2 Conserving Bandwidth

Some telecommunication services, such as satellite networks, can be expensive to
send and receive information. Best practices for reducing expense include:

370

Section 8. Operation

e Declare Public only those variables that need to be public.

e Be conservative with use of string variables and string variable sizes. Make
string variables as big as they need to be and no more; remember the
minimum is actually 24 bytes. Declare string variables Public and sample
string variables into data tables only as needed.

e When using GetVariables() / SendVariables() to send values between
dataloggers, put the data in an array and use one command to get the multiple
values. Using one command to get 10 values from an array and swath of 10
is much more efficient (requires only 1 transaction) than using 10 commands
to get 10 single values (requires 10 transactions).

e Set the CR800 to be a PakBus router only as needed. When the CR800 is a
router, and it connects to another router like LoggerNet, it exchanges routing
information with that router and, possibly (depending on your settings), with
other routers in the network.

o Set PakBus beacons and verify intervals properly. For example, there is no
need to verify routes every five minutes if communications are expected only
every 6 hours.

8.4.3 Initiating Telecommunications (Callback)

Telecommunication sessions are usually initiated by a PC. Once
telecommunication is established, the PC issues commands to send programs, set
clocks, collect data, etc. Because data retrieval is managed by the PC, several PCs
can have access to a CR800 without disrupting the continuity of data. PakBus®
allows multiple PCs to communicate with the CR800 simultaneously when proper
telecommunication networks are installed.

Typically, the PC initiates telecommunications with the CR800 with datalogger
support software (p. 631. However, some applications require the CR800 to call
back the PC (initiate telecommunications). This feature is called 'Callback'.
Special LoggerNet (. 631) features enable the PC to receive calls from the CR800.

For example, if a fruit grower wants a frost alarm, the CR800 can contact him by
calling a PC, sending an email, text message, or page, or calling him with
synthesized-voice over telephone. Callback has been used in applications
including Ethernet, land-line telephone, digital cellular, and direct connection.
Callback with telephone is well documented in CRBasic Editor Help (search term
"callback"). For more information on other available Callback features, manuals
for various telecommunication hardware may discuss Callback options. Contact a
Campbell Scientific application engineer for the latest information in Callback
applications.

Caution When using the ComME communication port with non-PakBus
protocols, incoming characters can be corrupted by concurrent use of the CS I/O
for SDC communications. PakBus communications use a low-level protocol
(pause / finish / ready sequence) to stop incoming data while SDC occurs.

Non-PakBus communications include TCP/IP protocols, ModBus, DNP3, and
generic, CRBasic-driven use of CS I/O.

Though usually unnoticed, a short burst of SDC communications occurs at power-
up and other times when the datalogger is reset, such as when compiling a
program or changing settings that require recompiling. This activity is the
datalogger querying to see if the CR1000KD Keyboard Display is available.

371

Section 8. Operation

When DevConfig and PakBus Graph retrieve settings, the CR800 queries to
determine what SDC devices are connected. Results of the query can be seen in
the DevConfig and PakBusGraph settings tables. SDC queries occur whether or
not an SDC device is attached.

8.5 PakBus® Communications — Details

Related Topics:

o PakBus® Communications — Overview . 88)

o PakBus® Communications — Details ®.372)

o PakBus® Communications — Instructions (p. 558

* PakBus Networking Guide (available at www.campbellsci.com/manuals
(http://www.campbellsci.com/manuals))

The CR800 communicates with computers or other Campbell Scientific
dataloggers with PakBus. PakBus is a proprietary telecommunication protocol
similar in concept to IP (Internet protocol). PakBus allows compatible Campbell
Scientific dataloggers and telecommunication peripherals to seamlessly join a
PakBus network.

Read More This section is provided as a primer to PakBus communications.
More information is available in the appendicies Peer-to-Peer PakBus
Communications (p. 558 and Status/Settings/DTI: PakBus Information and the
PakBus Networking Guide, available at www.campbellsci.com.

8.5.1 PakBus Addresses

CR800s are assigned PakBus® address 1 as a factory default. Networks with more
than a few stations should be organized with an addressing scheme that
guarantees unique addresses for all nodes. One approach, demonstrated in figure
PakBus Network Addressing . 373), is to assign single-digit addresses to the first
tier of nodes, double-digit to the second tier, triple-digit to the third, etc. Note that
each node on a branch starts with the same digit. Devices, such as PCs, with
addresses greater than 4000 are given special administrative access to the network

PakBus addresses are set using DevConfig, PakBusGraph, CR800 Status table, or
with an CR1000KD Keyboard Display. DevConfig (Device Configuration Utility)
is the primary settings editor. It requires a hardwire serial connection to a PC and
allows backup of settings on the PC hard drive. PakBusGraph is used over a
telecommunication link to change settings, but has no provision for backup.

Caution Care should be taken when changing PakBus® addresses with
PakBusGraph or in the Status table. If an address is changed to an unknown
value, a field visit with a laptop and DevConfig may be required to discover the
unknown address.

8.5.2 Nodes: Leaf Nodes and Routers

e A PakBus® network consists of two to 4093 linked nodes.
e One or more leaf nodes and routers can exist in a network.

372

http://www.campbellsci.com/manuals

Section 8. Operation

network.

o Leafnodes can be linked to any router.
o A leaf node cannot route packets but can originate or receive them.

other linked routers or leaf nodes.

Leaf nodes are measurement devices at the end of a branch of the PakBus

Routers are measurement or telecommunication devices that route packets to

o Routers can be branch routers. Branch routers only know as neighbors
central routers, routers in route to central routers, and routers one level
outward in the network.

o Routers can be central routers. Central routers know the entire network.
A PC running LoggerNet is typically a central router.

o Routers can be router-capable dataloggers or communication devices.

The CR800 is a leaf node by factory default. It can be configured as a router by
setting IsRouter in its Status table to 1 or True. The network shown in figure
PakBus Network Addressing (p. 373) contains six routers and eight leaf nodes.

8.5.2.1 Router and Leaf-Node Configuration

CR1000 (311)
leaf node «——

CR850 (31)

router

Consult the appendix Router and Leaf-Node Hardware for a table of available
PakBus® leaf-node and router devices. LoggerNet is configured by default as a
router and can route datalogger- to-datalogger communications.

Figure 97. PakBus Network Addressing

CR6 (3)

router

CR3000 (32)

leaf node

|- datalogger (PakBus address) CR206 (1 1 1)
[= PakBus device type leaf node
CRS800 (11) CR6 (12) CR206 (21) CR206 (22)
router leaf node leaf node leaf node
PC / LoggerNet CR1000 (1
(4094) router () CRI 01'(0)\?&(2)
router
CR206 (13) CR206 (23)
leaf node leaf node

Table 95. PakBus Leaf-Node and Router Device Configuration

Network Description PakBus PakBus PakBus Transparent
Device P Leaf Node Router Aware P
CR200X Datalogger .
CR6 CS1/0
Port Datalogger

CR800 Datalogger . .

CR1000 Datalogger . .

CR3000 Datalogger . .

373

Section 8. Operation

Table 95. PakBus Leaf-Node and Router Device Configuration

Network Descriotion PakBus PakBus PakBus Transparent
Device p Leaf Node Router Aware P
CR5000 Datalogger . .
LoggerNet Software .
CR6 Ethernet Network link
Port
Serial port
NL100 network link
Peripheral port
NL115 phera’ poy .
network link
Peripheral port
NL120 phera’ poy .
network link
Serial port
NL200 network link
Wireless
NL240 network link
MD485 Multidrop . .
RF401,
RF430, Radio . . .
RF450
CC640 Camera .
SC105 Serial interface .
SC32B Serial interface .
SC932A Serial interface .
COM220 Telephone .
modem
COM310 Telephone .
modem
SRM-5A Short-haul .
modem

lThis network link is not compatible with CR800 datalogger.

8.5.3 Linking PakBus Nodes: Neighbor Discovery

New terms (see Nodes: Leaf Nodes and Routers (p.372)):

374

node
link

hello

neighbor
neighbor-filters

hello-exchange
hello-message
hello-request

Section 8. Operation

e (VI
e beacon

To form a network, nodes must establish links with neighbors (neighbors are
adjacent nodes). Links are established through a process called discovery.
Discovery occurs when nodes exchange hellos. A hello-exchange occurs during a
hello-message between two nodes.

8.5.3.1 Hello-Message

8.5.3.2 Beacon

A hello-message is a two-way exchange between nodes to negotiate a neighbor
link. A hello-message is sent out in response to one or both of either a beacon or
a hello-request.

A beacon is a one-way broadcast sent by a node at a specified interval telling all
nodes within hearing that a hello-message can be sent. If a node wishes to
establish itself as a neighbor to the beaconing node, it will then send a hello-
message to the beaconing node. Nodes already established as neighbors will not
respond to a beacon.

8.5.3.3 Hello-Request

A hello-request is a one-way broadcast. All nodes hearing a hello-request
(existing and potential neighbors) will issue a hello-message to negotiate or re-
negotiate a neighbor relationship with the broadcasting node.

8.5.3.4 Neighbor Lists

PakBus devices in a network can be configured with a neighbor list. The CR800
sends out a hello-message to each node in the list whose CVI (. 485 has expired at
a random interval'. If a node responds, a hello-message is exchanged and the node
becomes a neighbor.

Neighbor filters dictate which nodes are neighbors and force packets to take
routes specified by the network administrator. LoggerNet, which is a PakBus
node, derives its neighbor filter from link information in the LoggerNet Setup
device map.

1Interval is a random number of seconds between the interval and two times the interval, where the
interval is the CVI (if non-zero) or 300 seconds if the CVI setting is set to zero.

8.5.3.5 Adjusting Links

PakBusGraph, a client of LoggerNet, is particularly useful when testing and
adjusting PakBus routes. Paths established by way of beaconing may be
redundant and vary in reliability. Redundant paths can provide backup links in the
event the primary path fails. Redundant and unreliable paths can be eliminated by
activating neighbor-filters in the various nodes and by disabling some beacons.

375

Section 8. Operation

8.5.3.6 Maintaining Links

Links are maintained by means of the CVI (p. 485. The CVI can be specified in
each node with the Verify Interval setting in DevConfig (ComPorts Settings).
The following rules apply:

Note During the hello-message, a CVI must be negotiated between two
neighbors. The negotiated CVI is the lesser of the first node's CVI and 6/5ths of
the neighbor's CVI.

If Verify Interval = 0, then CVI = 2.5 x Beacon Interval

If Verify Interval = 60, then CVI = 60 seconds

If Beacon Interval = 0 and Verify Interval = 0, then CVI = 300 seconds
If the router or master does not hear from a neighbor for one CVI, it begins
again to send a hello-message to that node at the random interval.

Users should base the Verify Interval setting on the timing of normal
communications such as scheduled LoggerNet-data collections or datalogger-to-
datalogger communications. The idea is to not allow the CVI to expire before
normal communications. If the CVI expires, the devices will initiate hello-
exchanges in an attempt to regain neighbor status, which will increase traffic on
the network.

8.5.4 PakBus Troubleshooting

Various tools and methods have been developed to assist in troubleshooting
PakBus networks.

8.5.4.1 Link Integrity

With beaconing or neighbor-filter discovery, links are established and verified
using relatively small data packets (hello-messages). When links are used for
regular telecommunications, however, longer messages are used. Consequently, a
link may be reliable enough for discovery using hello-messages but unreliable
with the longer messages or packets. This condition is most common in radio
networks, particularly when maximum packet size is >200.

PakBus communications over marginal links can often be improved by reducing
the size of the PakBus packets with the Max Packet Size setting in DevConfig
Advanced tab. Best results are obtained when the maximum packet sizes in both
nodes are reduced.

8.5.4.1.1 Automatic Packet-Size Adjustment

376

The BMPS5 file-receive transaction allows the BMP5 client (LoggerNef) to specify
the size of the next fragment of the file that the CR800 sends.

Note PakBus uses the file-receive transaction to get table definitions from the
datalogger.

Because LoggerNet must specify a size for the next fragment of the file, it uses
whatever size restrictions that apply to the link.

Section 8. Operation

Hence, the size of the responses to the file-receive commands that the CR800
sends is governed by the Max Packet Size setting for the datalogger as well as
that of any of its parents in the LoggerNet network map. Note that this calculation
also takes into account the error rate for devices in the link.

BMPS5 data-collection transaction does not provide any way for the client to
specify a cap on the size of the response message. This is the main reason why the
Max Packet Size setting exists. The CR800 can look at this setting at the point
where it is forming a response message and cut short the amount of data that it
would normally send if the setting limits the message size.

8.5.4.2 Ping (PakBus)

Link integrity can be verified with the following procedure by using
PakBusGraph Ping Node. Nodes can be pinged with packets of 50, 100, 200, or
500 bytes.

Note Do not use packet sizes greater than 90 when pinging with 100 mW radio
modems and radio enabled dataloggers. See the appendix Data Retrieval and
Telecommunication Peripherals — Lists (p. 627).

Pinging with ten repetitions of each packet size will characterize the link. Before
pinging, all other network traffic (scheduled data collections, clock checks, etc.)
should be temporarily disabled. Begin by pinging the first layer of links
(neighbors) from the PC / LoggerNet router, then proceed to nodes that are more
than one hop away. Table PakBus Link-Performance Gage (p. 377 provides a link-
performance gage.

Table 96. PakBus Link-Performance Gage
500 byte
Pings Sent Successes Link Status
10 10 excellent
10 9 good
10 7-8 adequate
10 <7 marginal

8.5.4.3 Traffic Flow

Keep beacon intervals as long as possible with higher traffic (large numbers of
nodes and / or frequent data collection). Long beacon intervals minimize
collisions with other packets and resulting retries. The minimum recommended
Beacon Interval setting is 60 seconds. If communication traffic is high, consider
setting beacon intervals of several minutes. If data throughput needs are great,
maximize data bandwidth by creating some branch routers, or by eliminating
beacons altogether and setting up neighbor filters.

8.5.5 LoggerNet Network-Map Configuration

As shown in figure Flat Map (. 378 and figure Tree Map (. 378), the essential
element of a PakBus network device map in LoggerNet is the PakBusPort. After
adding the root port (COM, IP, etc), add a PakBusPort and the dataloggers.

377

Section 8. Operation

378

Figure 98. Flat Map

Entire Network
« %9 COM1

« <y PakBusPort

= CR 1

= CR 2

= CR 3

= CR 4

Check Apply Cancel

Figure 99. Tree Map

Entire Network
4%y COM1
4 % PakBusPort
«=aCR 3
«=a CR 2

4= CR 1 3
= CR 4

Check ‘ ; Apply Cancel

The difference between the two configurations is that the flat map configures the
router with static routes that report that all of the dataloggers are neighbours to the
server. The tree map configures static routes wherein "CR800" is configured as a
neighbour and "CR800 2", "CR800 3", and "CR800 4" are configured to use
"CR800" as the router. Deeper nesting, while allowed, is meaningless in terms of
PakBus because PakBus does not allow dictation of the entire communication
path. You can specify the router address for only the first hop.

Within the server, dynamically discovered routes take precedence over static
routes, so once the network is learned, communications will work smoothly.
However, having the correct static route to begin is often crucial because an
attempt to ring a false neighbor can time out before routing can be discovered
from the real neighbor.

Stated another way, use the tree configuration when communication requires
routers. The shape of the map serves to disallow a direct LoggerNet connection to
CR800 2 and CR800 3, and it implies constrained routes that will probably be
established by user-installed neighbor filters in the routers. This assumes that
LoggerNet beacons are turned off. Otherwise, with a default address of 4094,
LoggerNet beacons will penetrate the neighbor filter of any in-range node.

Section 8. Operation

8.5.6 PakBus LAN Example

To demonstrate PakBus networking, a small LAN (Local Area Network) of
CR800s can be configured as shown in figure Configuration and Wiring of
PakBus LAN . 379. A PC running LoggerNet uses the RS-232 port of the first
CR800 to communicate with all CR800s. All LoggerNet functions, such as send
programs, monitor measurements, and collect data, are available to each CR800.
CR800s can also be programmed to exchange data with each other (the data
exchange feature is not demonstrated in this example).

8.5.6.1 LAN Wiring

Use three-conductor cable to connect CR800s as shown in figure Configuration
and Wiring of CR800 LAN (p. 379). Cable length between any two CR800s must be
less than 25 feet (7.6 m). COM1 Tx (transmit) and Rx (receive) are CR800
terminals C1 and C2, respectively; COM2 Tx and Rx are terminals C3 and C4,
respectively. Tx from a CR800 is connected to Rx of an adjacent CR800.

Figure 100. Configuration and Wiring of PakBus LAN

PC
RS-232
CR v # RS-232 CR v #3
PakBus Address = 1 PakBus Address = 3
COM1 COM2 COM1 COM2
TX RX G G RX TX RX TX G TX RX G
CR v #2 CR v #4
PakBus Address = 2 PakBus Address = 4
COM1 COM1
G TX RX G TX RX

379

Section 8. Operation

8.5.6.2 LAN Setup
Configure CR800s before connecting them to the LAN:

1. Start Device Configuration Utility (DevConfig). Click on Device Type: select
CR800. Follow on-screen instructions to power CR800s and connect them to
the PC. Close other programs that may be using the PC COM port, such as
LoggerNet, PC400, PC200W, HotSync, etc.

2. Click on the Connect button at the lower left.

3. Set settings using DevConfig as outlined in table PakBus-LAN Example
Datalogger-Communication Settings (p. 381). Leave unspecified settings at
default values. Example DevConfig screen captures are shown in figure
DevConfig Deployment | Datalogger Tab (. 380 through figure DevConfig
Deployment | Advanced Tab . 381. If the CR800s are not new, upgrading the

operating system or setting factory defaults before working this example is
advised.

Figure 101. DevConfig Deployment Tab

Deployment

Datalogger ComPorts Settings | TCP/IP | CS YO IP | PPP Network Services | Advanced
PakBus Security
Serial Number: 23877

Security Code 1: 0
0S Version: CR .Std.27

Security Code 2:
Station Name: 23877

Security Code 3:
PakBus Address: 1
PakBus Encryption Key:

Confirm PakBus Encryption Key:

380

Section 8. Operation

Figure 102. DevConfig Deployment | ComPorts Settings Tab
Deployment
Datalogger | ComPorts Settings | TCP/IP | CS /O IP | PPP | Network Services | Advanced
Select the ComPort Neighbors
Baud Rate: [115.2K Auto v | :eg'" f”d
Beacon Interval: 0 Y
Verify Interval: 0 —
1 — 0 -

Figure 103. DevConfig Deployment | Advanced Tab
Deployment

Datalogger | ComPorts Settings | TCP/IP | CS VO IP | PP | Network Services | Advanced

Is Router: g."LJ vl RS-232 Power/Handshake
Communication Allocation: 50 = Port always on
SOC Baud Rate: (115.2K Fixed | Handshake Buffer Size: 0 s

Max Packet Size: 1000 - Handshake Timeout: 0

USR: Drive Size: 0 =
Files Manager
PakBus Address Files Manager File Name Count

1 = 0 s

381

Section 8. Operation

382

Table 97. PakBus-LAN Example Datalogger-Communication Settings

Software— Device Configuration Utility (DevConfig)
Tab— Deployment
Sub-Tab— Datalogger ComPort Settings Advanced
Setting— PakBus Adr COM1 COM2 Is Router
Sub-Setting— Baud Rate Neighborsl Baud Rate Neighbors1
Datalogger | Begin: End: Begin: End:
CRS800_1 1 115.2K Fixed 2 2 115.2K Fixed 3 4 Yes
CR800_2 2 115.2K Fixed 1 1 Disabled No
CR800_3 3 115.2K Fixed 1 1 115.2K Fixed 4 4 Yes
CRS800_4 4 115.2K Fixed 3 3 Disabled No
1Setup can be simplified by setting all neighbor lists to Begin: 1 End: 4.
8.5.6.3 LoggerNet Setup
Figure 104. LoggerNet Network-Map Setup: COM port
Setup Screen folie |
Eile View Backup Tools Help
= % | B T B W | i
Display Add Root Add Delete Rename Undo Redo EZ View
Entire Network %
alZy coM1 COML1 : ComPort
P < PakBusPort Hardware | Notes
=3 CR 1]
Standard
= CR - [¥] communications Enabled
=CR 3 ComPort Connection Communications Port (COM1) -
&= (R 4
Advanced
DCaH'Eack Enabled
Extra Response Time 00 s B
Delay Hangup 00 & 000 s —
ComPort Communication Delay | 00s =
\ Check ‘ \ Apply ‘ I Cancel ‘

In LoggerNet Setup, click Add Root and add a ComPort. Then Add a
PakBusPort, and (4) CR800 dataloggers to the device map as shown in figure
LoggerNet Device-Map Setup (p. 382

Section 8. Operation

Figure 105. LoggerNet Network-Map Setup: PakBusPort
Setup Screen E@
File View Backup Tools Help
) T T B % 2
Display Add Root Add Delete Rename Undo Redo EZ View
Entire Network d
a -y COM1 PakBusPort : PakBusPort
“ EsiBniBusRor Hardware |New PakBus. Nndasl Notes ‘
= CR 1]
Standard
-= CR 2 [¥] Communications Enabled
=8 CR 3 || Pakeus Port Always Open
-E=3 CR 4
Maximum Time On-Line 00 h 00m 00 s =
EBeacon Interval 00h00m00s =
PakBus Verify Interval ’W:
Advanced —
Extra Response Time 00's 3
PakBus Address 4094
Delay Hangup 00 5 000 ms -
l Check l l Apply l I Cancel l

As shown in figure LoggerNet Device Map Setup: PakBusPort (p. 383), set the
PakBusPort maximum baud rate to 115200. Leave other settings at the defaults.

Figure 106. LoggerNet Network-Map Setup: Dataloggers

ES Setup Sreen E=en

File View Backup Tools Help

% | B T T| w &

Display Add Root Add Delete Rename Undo Redo EZ View

Entire Network =

a2y COM1 CR1000_1 : CR1000

4% PakBusPort
“ Hardware |Schedu\e | Data Fi\esl Clock | Program | File Retrieval | Notes |
== CR L1 |
Standard
= R 2 [] communications Enabled
& CR 3 [] Call-Back Enabled
= CR 4

PakBus Address 1
Advanced
Maximum Packet Size 998
Security Code 0
Delay Hangup 00 5 000 ms =
PakBus Encryption Key

l Check l l Apply l | Cancel l

As shown in figure LoggerNet Device-Map Setup: Dataloggers (p. 383), set the
PakBus® address for each CR800 as listed in table PakBus-LAN Example
Datalogger-Communication Settings (p. 381).

383

Section 8. Operation

8.5.7 Route Filters

The Route Filters setting restricts routing or processing of some PakBus message
types so that a "state changing" message can only be processed or forwarded by
this CR800 if the source address of that message is in one of the source ranges
and the destination address of that message is in the corresponding destination
range. If no ranges are specified (the default), the CR800 will not apply any
routing restrictions. "State changing" message types include set variable, table
reset, file control send file, set settings, and revert settings.

For example, if this setting was set to a value of (4094, 4094, 1, 10), the CR800
would only process or forward "state changing" messages that originated from
address 4094 and were destined to an address in the range between one and ten.

This is displayed and parsed using the following formal syntax:

route-filters := { "(" source-begin "," source-end ","
dest-begin "," dest-end ")" }.

source-begin := uint2. ; 1 < source-begin <= 4094
source-end := uint2. ; source-begin <= source-end <= 4094
dest-begin := uint2. ; 1 < dest-begin <= 4094

dest-end uint2. ; dest-begin <= dest-end <= 4094

8.5.8 PakBusRoutes

384

PakBusRoutes() lists the routes (in the case of a router), or the router neighbors
(in the case of a leaf node), that were known to the CR800 at the time the setting
was read. Each route is represented by four components separated by commas
and enclosed in parentheses:

PakBusRoutes(port, via neighbor adr, pakbus adr, response time)
Descriptions of PakBusRoutes() parameters:
port

Specifies a numeric code for the port the router will use:

Table 98. Router Port Numbers

Port Description Numeric Code

—_—

ComRS232

ComME

ComSDC6 (Com310)
ComSDC7
ComSDCS8
ComSDC9 (Com320)
ComSDC10
ComSDCl11

O 0 N N W B~ W N

Coml (C1,C2)
Com2 (C3,C4) 10

1p! 101,102,...

Section 8. Operation

! If the value of the port number is > 101, the connection is made through PakBus/TCP, either by
the CR800 executing a TCPOpen() instruction or by having a connection made to the PakBus/TCP
CR800 service.

via neighbor adr

Specifies address of neighbor / router to be used to send messages for this
route. If the route is for a neighbor, this value is the same as the address.

pakbus adr
For a router, specifies the address the route reaches. If a leaf node, this is 0.
response time

For a router, specifies time in milliseconds that is allowed for the route. Ifa
leaf node, this is 0.

8.5.9 Neighbors

Settings Editor name: Neighbors Allowed xxx
Array of integers indicating PakBus neighbors for comumunication ports:

RS-232, ME, SDC7, SDC8, SDC10, SDC11
Coml (C1,C2)
Com2 (C3,C4)

This setting specifies, for a given port, the explicit list of PakBus node addresses
that the CR800 will accept as neighbors. If the list is empty (the default
condition), any node is accepted as a neighbor. This setting will not affect the
acceptance of a neighbor if that neighbor address is greater than 3999. The formal
syntax for this setting follows:

neighbor := { "(" range-begin range-end ")" }.

range-begin := pakbus-address. ;
range-end := pakbus-address.
pakbus-address := number. ; 0 < number < 4000

If more than 10 neighbors are in the allowed list and the beacon interval is 0, the
beacon interval is changed to 60 seconds and beaconing is used for neighbor
discovery instead of directed hello requests that consume communication
memory.

8.5.10 PakBus Encryption

Two PakBus devices can exchange encrypted commands and data. Encryption
uses the AES-128 algorithm. Routers and other leaf nodes do not need to be set
for encryption. The CR800 has a setting accessed through DevConfig (p. 109) that
sets it to send and receive only encrypted commands and data. LoggerNet (p. 631),
likewise, has a setting attached to the specific station that enables it to send and
receive only encrypted commands and data. Header level information needed for
routing is not encrypted. An encrypted CR800 can also communicate with an
unencrypted datalogger. Use an EncryptExempt() instruction in the CRBasic
program to define one or more PakBus addresses to which encrypted messages
will not be sent.

385

Section 8. Operation

8.6

386

Campbell Scientific products supporting PakBus encryption include the
following:

LoggerNet 4.2

CR1000 datalogger (OS26 and later)
CR3000 datalogger (OS26 and later)
CR800 series dataloggers (0S26 and later)
CR800 series dataloggers (OS1 and later)

Device Configuration Utility (DevConfig) v. 2.04 and later

e Network Planner v. 1.6 and later.

Portions of the protocol to which PakBus encryption is applied include:

e All BMP5 messages
e All settings related messages

Note Basic PakBus messages such as Hello, Hello Request, Send Neighbors,
Get Neighbors, and Echo are NOT encrypted.

The PakBus encryption key can be set in the CR800 datalogger through:

e DevConfig Deployment tab

e DevConfig Settings Editor tab

e PakBusGraph settings editor dialog
¢ Keyboard display

Be careful to record the encryption key in a secure location. If the encryption key
is lost, it needs to be reset. Reset the key on the keyboard display by deleting the
bullet characters that appear in the field, then enter the new key.

Note Encryption key cannot be set through the CRBasic program.

Setting the encryption key in datalogger support software . 485) (LoggerNet 4.2
and higher):

e Applies to CR1000, CR3000, CR800 series, and CR800 dataloggers, and
PakBus routers, and PakBus port device types.

e Can be set through the LoggerNet Set Up screen, Network Planner, or
CoraScript (only CoraScript can set the setting for a PakBus port).

Note Setting the encryption key for a PakBus port device will force all messages
it sends to use encryption.

Alternate Telecommunications — Details

Related Topics:
o Alternate Telecommunications — Overview (p. 89)
» Alternate Telecommunications — Details (p. 386)

The CR800 communicates with datalogger support software (. 93 and other
Campbell Scientific dataloggers (p. 621) using the PakBus (p. 496) protocol. Modbus,
DNP3, TCP/IP, and several industry-specific protocols are also supported. CAN
bus is supported when using the Campbell Scientific SDM-CAN p. 627)

Section 8. Operation

communication module.

8.6.1 DNP3 — Details

Related Topics:
e DNP3 — Overview (p. 90)
e DNP3 — Details (. 387)

This section is slated for a major update in 2015.

8.6.1.1 DNP3 Introduction

The CR800 is DNP3 SCADA compatible. DNP3 is a SCADA protocol primarily
used by utilities, power-generation and distribution networks, and the water- and
wastewater-treatment industry.

Distributed Network Protocol (DNP) is an open protocol used in applications to
ensure data integrity using minimal bandwidth. DNP implementation in the
CR&800 is DNP3 Level-2 Slave Compliant with some of the operations found in a
Level-3 implementation. A standard CR800 program with DNP instructions will
take arrays of real time or processed data and map them to DNP arrays in integer
or binary format. The CR800 responds to any DNP master with the requested data
or sends unsolicited responses to a specific DNP master. DNP communications
are supported in the CR800 through the RS-232 port, COM1 or COM2 or over
TCP, taking advantage of multiple communication options compatible with the
CR&800, e.g., RF, cellular phone, satellite. DNP3 state and history are preserved
through power and other resets in non-volatile memory.

DNP SCADA software enables CR800 data to move directly into a database or
display screens. Applications include monitoring weather near power transmission
lines to enhance operational decisions, monitoring and controlling irrigation from
a wastewater-treatment plant, controlling remote pumps, measuring river flow,
and monitoring air movement and quality at a power plant.

8.6.1.2 Programming for DNP3

CRBasic example Implementation of DNP3 (p. 389 lists CRBasic code to take
larray() analog data and Barray() binary data (status of control port 5) and map
them to DNP arrays. The CR800 responds to a DNP master with the specified
data or sends unsolicited responses to DNP Master 3.

8.6.1.2.1 Declarations (DNP3 Programming)

Table DNP3 Implementation — Data Types Required to Store Data in Public
Tables for Object Groups (p. 387) shows object groups supported by the CR800
DNP implementation, and the required data types. A complete list of groups and
variations is available in CRBasic Editor Help for DNPVariable().

387

Section 8. Operation

388

Table 99. DNP3 Implementation — Data Types Required to Store
Data in Public Tables for Object Groups
Data Type Group Description
Boolean 1 Binary input
2 Binary input change
10 Binary output
12 Control block
Long 30 Analog input
32 Analog change event
40 Analog output status
41 Analog output block
50 Time and date
51 Time and date CTO

8.6.1.2.2 CRBasic Instructions (DNP3)

Complete descriptions and options of commands are available in CRBasic Editor
Help.

DNP()

Sets the CR800 as a DNP slave (outstation/server) with an address and DNP3-
dedicated COM port. Normally resides between BeginProg and Scan(), so it is
executed only once. Example at CRBasic example Implementation of DNP3 (p.
389), line 20.

Syntax
DNP(ComPort, BaudRate, DNPSTaveAddr)

DNPVariable()

Associates a particular variable array with a DNP object group. When the master
polls the CR800, it returns all the variables specified along with their specific
groups. Also used to set up event data, which is sent to the master whenever the
value in the variable changes. Example at CRBasic example Implementation of
DNP3 (p. 389), line 24.

Syntax

DNPVariable(Source, Swath, DNPObject, DNPVariation, DNPClass,
DNPFlag, DNPEvent, DNPNumEvents)

DNPUpdate()

Determines when DNP slave (outstation/server) will update its arrays of DNP
elements. Specifies the address of the DNP master to which are sent unsolicited
responses (event data). Must be included once within a Scan() / NextScan for the
DNP slave to update its arrays. Typically placed in a program after the elements
in the array are updated. The CR800 will respond to any DNP master regardless
of its address.

Section 8. Operation

Syntax
DNPUpdate (DNPSTaveAddr,DNPMasterAddr)

8.6.1.2.3 Programming for DNP3 Data Acquisition

As shown in CRBasic example Implementation of DNP3 (p. 389), program the
CR800 to return data when polled by the DNP3 master using the following three
actions:

1. Place DNP() at the beginning of the program between BeginProg and Scan().
Set COM port, baud rate, and DNP3 address.

2. Setup the variables to be sent to the master using DNPVariable(). Dual
instructions cover static (current values) and event (previous ten records) data.

o For analog measurements:

DNPVariable(Variable_Name,Swath,30,2,0,&800000000,0,0)
DNPVariable(Variable_Name,Swath,32,2,3,&00000000,0,10)

o For digital measurements (control ports):
DNPVariable(Variable_Name,Swath,1,2,0,&00000000,0,0)
DNPVariable(Variable_Name,Swath,32,2,3,&00000000,0,10)

3. Place DNPUpdate() after Scan(), inside the main scan. The DNP3 master is
notified of any change in data each time DNPUpdate() runs; e.g., for a 10
second scan, the master is notified every 10 seconds.

CRBasic Example 65. Implementation of DNP3

'"This program example demonstrates a basic implementation of DNP3 in the CR800. The CR800
'is programmed to return data over IP when polled by the DNP3 master. Essential elements
'"of the program are as follows:

" 1. DNP() instruction is placed at the beginning of the program between BeginProg

! and Scan(). (COM port, baud rate, and DNP3 address are set.

" 2. Variables are set up to be sent to the master using DNPVariable(). Dual instructions
cover static data (current values) and event data (previous ten records). Following
are the sets of dual instructions for analog and digital measurements:

'"For analog measurements:
! 'DNPVariable(Variable_Name, Swath, 30,2,0,&B00000000, 0,0)
! 'DNPVariable(Variable_Name, Swath, 32,2, 3,&B00000000, 0, 10)

'"For digital measurements (control ports):
! 'DNPVariable(Variable_Name,Swath,1,2,0,&B00000000,0,0)
! 'DNPVariable(Variable_Name,Swath,32,2,3,&800000000,0, 10)

" 3. DNPUpdate() is placed after Scan(), inside the main scan. The DNP3 master is

notified of any change in data each time DNPUpdate() runs. For example, for a 10
second scan, the master is notified every 10 seconds.

389

Section 8. Operation

390

Public IArray(4) As Long
PubTic BArray(2) As Boolean

Pub1ic WindSpd
PubTic WindDir
Public Batt_Volt
Public PTemp_C

Units WindSpd=meter/Sec
Units WindDir=Degrees
Units Batt_Volt=Volts
Units PTemp_C=Deg C

'"Main Program
BeginProg

'"DNP communication over IP at 115.2kbps. CR800 DNP address is 1.
DNP(20000,115200,1)

'"DNPVariable(Source, Swath,DNPObject,DNPVariation,DNPClass,DNPFlag,DNPEvent,DNPNumEvents)
DNPVariable(IArray,4,30,2,0,&B00000000,0,0)

'"Object group 30, variation 2 is used to return analog data when the CR800
"is polled. Flag is set to an empty 8 bit number(all zeros), DNPEvent is a
'reserved parameter and is currently always set to zero. Number of events is
'only used for event data.

DNPVariable(IArray,4,32,2,3,&00000000,0,10)
DNPVariable(BArray,2,1,1,0,&B00000000,0,0)
DNPVariable(BArray,2,2,1,1,&B00000000,0,1)

Scan(1,Sec,1,0)
'"Wind Speed & Direction Sensor measurements WS_ms and WindDir:
PulseCount(WindSpd,1,1,1,3000,2,0)
IArray(1) = WindSpd * 100
BrHalf(WindDir,1,mv2500,1,vx1,1,2500,True,0,_60Hz,355,0)
If WindDir>=360 Then WindDir=0
IArray(2) = WindDir * 100

'Default Datalogger Battery Voltage measurement Batt_Volt:
Battery(Batt_Volt)
IArray(3) = Batt_Volt * 100

'"Wiring Panel Temperature measurement PTemp_C:
PanelTemp(PTemp_C,_60Hz)

IArray (1) =PTemp_C

PortGet(Barray(1),5)

'"Update DNP arrays and send unsolicited requests to DNP Master address 3
DNPUpdate(2,3)
NextScan
EndProg

Section 8. Operation

8.6.2 Modbus — Details

Related Topics:
e Modbus — Overview (p. 89)
e Modbus — Details (p. 391)

The CR800 supports Modbus master and Modbus slave communications for
inclusion in Modbus SCADA networks. Modbus is a widely used SCADA
communication protocol that facilitates exchange of information and data between
computers / HMI software, instruments (RTUs) and Modbus-compatible sensors.
The CR800 communicates with Modbus over RS-232, RS-485 (with a RS-232 to
RS-485 adapter), and TCP.

Modbus systems consist of a master (PC), RTU / PLC slaves, field instruments
(sensors), and the communication-network hardware. The communication port,
baud rate, data bits, stop bits, and parity are set in the Modbus driver of the master
and / or the slaves. The Modbus standard has two communication modes, RTU
and ASCII. However, CR800s communicate in RTU mode exclusively.

Field instruments can be queried by the CR800. Because Modbus has a set
command structure, programming the CR800 to get data from field instruments is
much simpler than from serial sensors. Because Modbus uses a common bus and
addresses each node, field instruments are effectively multiplexed to a CR800
without additional hardware.

A CR800 goes into sleep mode after 40 seconds of communication inactivity.
Once asleep, two packets are required before the CR800 will respond. The first
packet awakens the CR800; the second packet is received as data. CR800s,
through DevConfig or the Status table (see the appendix Status Table and Settings
(- 577)) can be set to keep communication ports open and awake, but at higher
power usage.

8.6.2.1 Modbus Terminology

Table Modbus to Campbell Scientific Equivalents (p. 391 lists terminology
equivalents to aid in understanding how CR800s fit into a SCADA system.

Table 100. Modbus to Campbell Scientific Equivalents

Modbus Domain Data Form Campbell Scientific

Domain

Coils Single bit Ports, flags, boolean variables

Digital registers 16 bit word Floating point variables

Input registers 16 bit word Floating point variables

Holding registers 16 bit word Floating point variables

RTU/PLC CR800

Master Usually a computer

Slave Usually a CR800

Field instrument Sensor

391

Section 8. Operation

8.6.2.1.1 Glossary of Modbus Terms

Term. coils (00001 to 09999)

Originally, "coils" referred to relay coils. In CR800s, coils are exclusively
terminals configured for control, software flags, or a Boolean-variable array.
Terminal configured for control are inferred if parameter 5 of the
ModbusSlave() instruction is set to 0. Coils are assigned to Modbus
registers 00001 to 09999.

Term. digital registers 10001 to 19999

Hold values resulting from a digital measurement. Digital registers in the
Modbus domain are read-only. In the Campbell Scientific domain, the
leading digit in Modbus registers is ignored, and so are assigned together to a
single Dim- or Public-variable array (read / write).

Term. input registers 30001 to 39999

Hold values resulting from an analog measurement. Input registers in the
Modbus domain are read-only. In the Campbell Scientific domain, the
leading digit in Modbus registers is ignored, and so are assigned together to a
single Dim- or Public- variable array (read / write).

Term. holding registers 40001 to 49999

Hold values resulting from a programming action. Holding registers in the
Modbus domain are read / write. In the Campbell Scientific domain, the
leading digit in Modbus registers is ignored, and so are assigned together to a
single Dim or Public variable array (read / write).

Term. RTU /PLC

Remote Telemetry Units (RTUs) and Programmable Logic Controllers
(PLCs) were at one time used in exclusive applications. As technology
increases, however, the distinction between RTUs and PLCs becomes more
blurred. A CR800 fits both RTU and PLC definitions.

8.6.2.2 Programming for Modbus

8.6.2.2.1 Declarations (Modbus Programming)

392

Table CRBasic Ports, Flags, Variables, and Modbus Registers (p. 392) shows the
linkage between terminals configured for control, flags and Boolean variables and
Modbus registers. Modbus does not distinguish between terminals configured for
control, flags, or Boolean variables. By declaring only terminals configured for
control, or flags, or Boolean variables, the declared feature is addressed by
default. A typical CRBasic program for a Modbus application will declare
variables and ports, or variables and flags, or variables and Boolean variables.

Section 8. Operation

Table 101. CRBasic Ports, Flags, Variables, and, Modbus Registers

Example CRBasic Equivalent Example
CR800 Feature Declaration Modbus Register
Terminal configured for .
control Public Port(4) 00001 to 00005
Flag Public Flag(17) 00001 to 00018
Boolean variable Public ArrayB(56) as |91 to 00057
Boolean
Variable PubTic A V(20)* 40001 10 40041 or
ubTic Arrayv(20) 30001 to 30041

! Because of byte-number differences, each CR800 domain variable translates to two Modbus
domain input / holding registers.

8.6.2.2.2 CRBasic Instructions (Modbus)

Complete descriptions and options of commands are available in CRBasic Editor
Help.

ModbusMaster()

Sets up a CR800 as a Modbus master to send or retrieve data from a Modbus
slave.

Syntax

ModbusMaster(ResultCode, ComPort, BaudRate, ModbusAddr,
Function, Variable, Start, Length, Tries, TimeOut)

ModbusSlave()
Sets up a CR800 as a Modbus slave device.
Syntax

ModbusSTave(ComPort, BaudRate, ModbusAddr, DataVariable,
BooleanVariable)

MoveBytes()

Moves binary bytes of data into a different memory location when translating big-
endian to little-endian data. See the appendix Endianness (p. 619.

Syntax

MoveBytes(Dest, DestOffset, Source, SourceOffset, NumBytes)

8.6.2.2.3 Addressing (ModbusAddr)

Modbus devices have a unique address in each network. Addresses range from 1
to 247. Address 0 is reserved for universal broadcasts. When using the NL240,
use the same number as the Modbus and PakBus address.

8.6.2.2.4 Supported Modbus Function Codes

Modbus protocol has many function codes. CR800 commands support the
following.

393

Section 8. Operation

Table 102. Supported Modbus Function Codes

Code Name Description

01 Read coil/port status Reads the on/off status of discrete output(s) in the
ModBusSlave

02 Read input status Reads the on/off status of discrete input(s) in the
ModBusSlave

03 Read holding registers Reads the binary contents of holding register(s) in
the ModBusSlave

04 Read input registers Reads the binary contents of input register(s) in
the ModBusSlave

05 Force single coil/port Forces a single coil/port in the ModBusSlave to
either on or off

06 Write single register Writes a value into a holding register in the
ModBusSlave

15 Force multiple coils/ports Forces multiple coils/ports in the ModBusSlave to

either on or off

16 Write multiple registers Writes values into a series of holding registers in
the ModBusSlave

8.6.2.2.5 Reading Inverse-Format Modbus Registers

Some Modbus devices require reverse byte order words (CDAB vs. ABCD). This
can be true for either floating point, or integer formats. Since a slave CR800 uses
the ABCD format, either the master has to make an adjustment, which is
sometimes possible, or the CR800 needs to output reverse-byte order words. To
reverse the byte order in the CR800, use the MoveBytes() instruction as shown in
the sample code below.

for i =1 to k
MoveBytes(InverseFloat(i),2,Float(i),0,2)
MoveBytes(InverseFloat(i),0,Float(i),2,2)

next

In the example above, InverseFloat(i) is the array holding the inverse-byte
ordered word (CDAB). Array Float(i) holds the obverse-byte ordered word
(ABCD).

See the appendix Endianness (p. 619).

8.6.2.3 Troubleshooting (Modbus)

Test Modbus functions on the CR800 with third party Modbus software. Further
information is available at the following links:

e www.simplyModbus.ca/FAQ.htm
e www.Modbus.org/tech.php
e www.lammertbies.nl/comm/info/modbus.html

8.6.2.4 Modbus over IP

394

Modbus over IP functionality is an option with the CR800. Contact Campbell
Scientific for details.

Section 8. Operation

8.6.2.5 Modbus Q and A
Q: Can Modbus be used over an RS-232 link, 7 data bits, even parity, one stop
bit?

A: Yes. Precede ModBusMaster() / ModBusSlave() with SerialOpen() and set

the numeric format of the COM port with any of the available formats, including

the option of 7 data bits, even parity. SerialOpen() and ModBusMaster() can be
used once and placed before Scan().

Concatenating two Modbus long 16-bit variables to one Modbus long 32 bit
number.

8.6.2.6 Converting Modbus 16-Bit to 32-Bit Longs

Concatenation of two Modbus long 16-bit variables to one Modbus long 32
bit number is shown in the following example.

CRBasic Example 66. Concatenating Modbus Long Variables

'"This program example demonstrates concatenation (splicing) of Long data type variables

"for Modbus operations. Program is compatible with the following or later operating systems:
" CR800 OS v.3

" CR1000 OS v.12

" CR3000 0S v.5

[

'"NOTE: The CR800 uses big-endian word order.

'Declarations

PubTic Combo As Long "Variable to hold the combined 32-bit

Public Register(2) As Long '"Array holds two 16-bit ModBus Tong
'variables
'Register(1l) = Least Significant Word
'Register(2) = Most Significant Word

Public Result 'Holds the result of the ModBus master
"query

'Aliases used for clarification

Alias Register(l) = Register_LSW 'Least significant word.

Alias Register(2) = Register_MSW '"Most significant word.

BeginProg
'"If you use the numbers below (un-comment them first)
"Combo is read as 131073 decimal
'"Register_LSW=&h0001 'Least significant word.
'Register_MSW=&h0002 ' Most significant word.

Scan(1,Sec,0,0)
'"In the case of the CR800 being the ModBus master then the
'"ModbusMaster instruction would be used (instead of fixing
"the variables as shown between the BeginProg and SCAN instructions).
ModbusMaster(Result,COMRS232,-115200,5,3,Register(),-1,2,3,100)

395

Section 8. Operation

'"MoveBytes (DestVariable,DestOffset,SourceVariable, SourceOffSet,
'"NumberOfBytes)
MoveBytes(Combo,2, Register_LSW,2,2)
MoveBytes(Combo,0, Register_MSW,2,2)
NextScan
EndProg

8.6.3 TCP/IP — Details

Related Topics:

e TCP/IP — Overview (p. 90)

e TCP/IP — Details (p. 402

o TCP/IP — Instructions (p. 567)
e TCP/IP Links — List (p. 629

The following TCP/IP protocols are supported by the CR800 when using network-
links (p. 629) that use the resident IP stack or when using a cell modem with the
PPP/IP key enabled. More information on some of these protocols is in the
following sections.

DHCP

DNS

FTP

HTML

HTTP
Micro-serial server
NTCIP

NTP

PakBus over TCP/IP
Ping

POP3

SMTP

SNMP

Telnet

Web API . 402
XML

The most up-to-date information on implementing these protocols is contained in
CRBasic Editor Help. For a list of CRBasic instructions, see the appendix
TCP/IP (p. 567).

Read More Specific information concerning the use of digital-cellular modems
for TCP/IP can be found in Campbell Scientific manuals for those modems. For
information on available TCP/IP/PPP devices, refer to the appendix Network
Links (p. 629) for model numbers. Detailed information on use of TCP/IP/PPP
devices is found in their respective manuals (available at www.campbellsci.com
http://'www.campbellsci.com) and CRBasic Editor Help.

8.6.3.1 PakBus Over TCP/IP and Callback

Once the hardware has been configured, basic PakBus® communication over
TCP/IP is possible. These functions include the following:

396

http://www.campbellsci.com/

Section 8. Operation

Sending programs

Retrieving programs

Setting the CR800 clock

Collecting data

Displaying the current record in a data table

Data callback and datalogger-to-datalogger communications are also possible over
TCP/IP. For details and example programs for callback and datalogger-to-
datalogger communications, see the network-link manual. A listing of network-
link model numbers is found in the appendix Network Links (. 629.

8.6.3.2 Default HTTP Web Server

The CR800 has a default home page built into the operating system. The home
page can be accessed using the following URL:

http:\\ipaddress:80

Note Port 80 is implied if the port is not otherwise specified.

As shown in the figure, Preconfigured HTML Home Page (p. 284), this page
provides links to the newest record in all tables, including the Status table, Public
table, and data tables. Links are also provided for the last 24 records in each data
table. If fewer than 24 records have been stored in a data table, the link will
display all data in that table.

Newest-Record links refresh automatically every 10 seconds. Last 24-Records
link must be manually refreshed to see new data. Links will also be created
automatically for any HTML, XML, and JPEG files found on the CR800 drives.
To copy files to these drives, choose File Control from the datalogger support
software (p. 485) menu.

Figure 107. Preconfigured HTML Home Page

€ | H:\SampleDataloggerHomePage\CR HomePagehtm v |43 | X P Search Google

File Edit View Favoritess Tools Help
<.¢ Favorites EcCr Home Page