
O
PE

R
A

T
O

R
'S M

A
N

U
A

L

CR800-Series Dataloggers
Preliminary for OS v.28: 4/20/15

Want to get going? Go to the Quickstart (p. 41) section. Want
to see notes pertaining to this preliminary manual release?
Go to Release Notes (p. 34).

C o p y r i g h t © 2 0 0 0 – 2 0 1 5
C a m p b e l l S c i e n t i f i c , I n c .

Warranty
The CR800 Measurement and Control Datalogger is warranted for three (3) years
subject to this limited warranty:

Limited Warranty: Products manufactured by CSI are warranted by CSI to be free
from defects in materials and workmanship under normal use and service for
twelve months from the date of shipment unless otherwise specified in the
corresponding product manual. (Product manuals are available for review online
at www.campbellsci.com.) Products not manufactured by CSI, but that are resold
by CSI, are warranted only to the limits extended by the original manufacturer.
Batteries, fine-wire thermocouples, desiccant, and other consumables have no
warranty. CSI's obligation under this warranty is limited to repairing or replacing
(at CSI's option) defective Products, which shall be the sole and exclusive remedy
under this warranty. The Customer assumes all costs of removing, reinstalling,
and shipping defective Products to CSI. CSI will return such Products by surface
carrier prepaid within the continental United States of America. To all other
locations, CSI will return such Products best way CIP (port of entry) per
Incoterms ® 2010. This warranty shall not apply to any Products which have been
subjected to modification, misuse, neglect, improper service, accidents of nature,
or shipping damage. This warranty is in lieu of all other warranties, expressed or
implied. The warranty for installation services performed by CSI such as
programming to customer specifications, electrical connections to Products
manufactured by CSI, and Product specific training, is part of CSI's product
warranty. CSI EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CSI hereby disclaims, to the fullest extent allowed by
applicable law, any and all warranties and conditions with respect to the Products,
whether express, implied or statutory, other than those expressly provided herein.

3

Assistance
Products may not be returned without prior authorization. The following contact
information is for US and International customers residing in countries served by
Campbell Scientific, Inc. directly. Affiliate companies handle repairs for
customers within their territories. Please visit www.campbellsci.com to determine
which Campbell Scientific company serves your country.

To obtain a Returned Materials Authorization (RMA), contact CAMPBELL
SCIENTIFIC, INC., phone (435) 227-2342. After an application engineer
determines the nature of the problem, an RMA number will be issued. Please
write this number clearly on the outside of the shipping container. Campbell
Scientific's shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#_____

815 West 1800 North
Logan, Utah 84321-1784

For all returns, the customer must fill out a "Statement of Product Cleanliness and
Decontamination" form and comply with the requirements specified in it. The
form is available from our web site at www.campbellsci.com/repair. A completed
form must be either emailed to repair@campbellsci.com or faxed to 435-227-
9579. Campbell Scientific is unable to process any returns until we receive this
form. If the form is not received within three days of product receipt or is
incomplete, the product will be returned to the customer at the customer's
expense. Campbell Scientific reserves the right to refuse service on products that
were exposed to contaminants that may cause health or safety concerns for our
employees.

5

Precautions
DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING,
USING, MAINTAINING, AND WORKING ON OR AROUND TRIPODS,
TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH
AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC. FAILURE
TO PROPERLY AND COMPLETELY ASSEMBLE, INSTALL, OPERATE,
USE, AND MAINTAIN TRIPODS, TOWERS, AND ATTACHMENTS, AND
FAILURE TO HEED WARNINGS, INCREASES THE RISK OF DEATH,
ACCIDENT, SERIOUS INJURY, PROPERTY DAMAGE, AND PRODUCT
FAILURE. TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE
HAZARDS. CHECK WITH YOUR ORGANIZATION'S SAFETY
COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED
PROTECTIVE EQUIPMENT PRIOR TO PERFORMING ANY WORK.

Use tripods, towers, and attachments to tripods and towers only for purposes for
which they are designed. Do not exceed design limits. Be familiar and comply
with all instructions provided in product manuals. Manuals are available at
www.campbellsci.com or by telephoning 435-227-9000 (USA). You are
responsible for conformance with governing codes and regulations, including
safety regulations, and the integrity and location of structures or land to which
towers, tripods, and any attachments are attached. Installation sites should be
evaluated and approved by a qualified engineer. If questions or concerns arise
regarding installation, use, or maintenance of tripods, towers, attachments, or
electrical connections, consult with a licensed and qualified engineer or
electrician.

General

• Prior to performing site or installation work, obtain required approvals and
permits. Comply with all governing structure-height regulations, such as
those of the FAA in the USA.

• Use only qualified personnel for installation, use, and maintenance of tripods
and towers, and any attachments to tripods and towers. The use of licensed
and qualified contractors is highly recommended.

• Read all applicable instructions carefully and understand procedures
thoroughly before beginning work.

• Wear a hardhat and eye protection, and take other appropriate safety
precautions while working on or around tripods and towers.

• Do not climb tripods or towers at any time, and prohibit climbing by other
persons. Take reasonable precautions to secure tripod and tower sites from
trespassers.

• Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical

• You can be killed or sustain serious bodily injury if the tripod, tower, or
attachments you are installing, constructing, using, or maintaining, or a tool,
stake, or anchor, come in contact with overhead or underground utility lines.

• Maintain a distance of at least one-and-one-half times structure height, or 20
feet, or the distance required by applicable law, whichever is greater, between
overhead utility lines and the structure (tripod, tower, attachments, or tools).

7

• Prior to performing site or installation work, inform all utility companies and
have all underground utilities marked.

• Comply with all electrical codes. Electrical equipment and related grounding
devices should be installed by a licensed and qualified electrician.

Elevated Work and Weather

• Exercise extreme caution when performing elevated work.
• Use appropriate equipment and safety practices.
• During installation and maintenance, keep tower and tripod sites clear of un-

trained or non-essential personnel. Take precautions to prevent elevated tools
and objects from dropping.

• Do not perform any work in inclement weather, including wind, rain, snow,
lightning, etc.

Maintenance

• Periodically (at least yearly) check for wear and damage, including corrosion,
stress cracks, frayed cables, loose cable clamps, cable tightness, etc. and take
necessary corrective actions.

• Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST
DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS, THE
CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING
FROM IMPROPER INSTALLATION, USE, OR MAINTENANCE OF
TRIPODS, TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS
SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.

8

Table of Contents

1. Introduction .. 33
1.1 HELLO .. 33
1.2 Typography .. 33
1.3 Capturing CRBasic Code ... 34
1.4 Release Notes ... 34

2. Cautionary Statements .. 37

3. Initial Inspection .. 39

4. System Quickstart ... 41
4.1 Data-Acquisition Systems — Quickstart ... 41
4.2 Sensors — Quickstart .. 42
4.3 Datalogger — Quickstart ... 43

4.3.1.1 Wiring Panel — Quickstart ... 43
4.4 Power Supplies — Quickstart .. 44

4.4.1 Internal Battery — Quickstart .. 45
4.5 Data Retrieval and Telecommunications — Quickstart 45
4.6 Datalogger Support Software — Quickstart... 46
4.7 Tutorial: Measuring a Thermocouple ... 46

4.7.1 What You Will Need .. 46
4.7.2 Hardware Setup .. 47

4.7.2.1 External Power Supply .. 47
4.7.3 PC200W Software Setup .. 48
4.7.4 Write CRBasic Program with Short Cut 50

4.7.4.1 Procedure: (Short Cut Steps 1 to 5) 50
4.7.4.2 Procedure: (Short Cut Steps 6 to 7) 51
4.7.4.3 Procedure: (Short Cut Step 8) ... 52
4.7.4.4 Procedure: (Short Cut Steps 9 to 12) 53
4.7.4.5 Procedure: (Short Cut Steps 13 to 14) 54

4.7.5 Send Program and Collect Data .. 55
4.7.5.1 Procedure: (PC200W Step 1) .. 55
4.7.5.2 Procedure: (PC200W Steps 2 to 4) 55
4.7.5.3 Procedure: (PC200W Step 5) .. 56
4.7.5.4 Procedure: (PC200W Step 6) .. 57
4.7.5.5 Procedure: (PC200W Steps 7 to 10) 58
4.7.5.6 Procedure: (PC200W Steps 11 to 12) 59
4.7.5.7 Procedure: (PC200W Steps 13 to 14) 59

5. System Overview ... 61
5.1 Measurements — Overview ... 62

5.1.1 Time Keeping — Overview .. 63
5.1.2 Analog Measurements — Overview ... 63

5.1.2.1 Voltage Measurements — Overview 63
5.1.2.1.1 Single-Ended Measurements — Overview................ 65
5.1.2.1.2 Differential Measurements — Overview 66

5.1.2.2 Current Measurements — Overview 66
5.1.2.3 Resistance Measurements — Overview 66

9

Table of Contents

5.1.2.3.1 Voltage Excitation ... 67
5.1.2.4 Strain Measurements — Overview 68

5.1.3 Pulse Measurements — Overview .. 68
5.1.3.1 Pulses Measured .. 69
5.1.3.2 Pulse-Input Channels .. 69
5.1.3.3 Pulse Sensor Wiring .. 70

5.1.4 Period Averaging — Overview .. 70
5.1.5 Vibrating-Wire Measurements — Overview 71
5.1.6 Reading Smart Sensors — Overview ... 72

5.1.6.1 SDI-12 Sensor Support — Overview 72
5.1.6.2 RS-232 — Overview ... 72

5.1.7 Field Calibration — Overview ... 73
5.1.8 Cabling Effects — Overview .. 73
5.1.9 Synchronizing Measurements — Overview 74

5.2 PLC Control — Overview .. 74
5.3 Datalogger — Overview .. 75

5.3.1 Time Keeping — Overview .. 75
5.3.2 Wiring Panel — Overview ... 75

5.3.2.1 Switched Voltage Output — Overview 78
5.3.2.2 Voltage Excitation — Overview .. 79
5.3.2.3 Grounding Terminals .. 79
5.3.2.4 Power Terminals ... 80

5.3.2.4.1 Power In ... 80
5.3.2.4.2 Power Out Terminals ... 80

5.3.2.5 Communication Ports .. 81
5.3.2.5.1 CS I/O Port .. 81
5.3.2.5.2 RS-232 Ports .. 81
5.3.2.5.3 SDI-12 Ports .. 82
5.3.2.5.4 SDM Port ... 82
5.3.2.5.5 CPI Port ... 82
5.3.2.5.6 Ethernet Port .. 82

5.3.3 Keyboard Display — Overview ... 82
5.3.3.1 Integrated Keyboard Display .. 83
5.3.3.2 Character Set ... 83
5.3.3.3 Custom Menus — Overview ... 83

5.3.4 Measurement and Control Peripherals — Overview 84
5.3.5 Power Supplies — Overview .. 85
5.3.6 CR800 Configuration — Overview .. 85
5.3.7 CRBasic Programming — Overview .. 86
5.3.8 Memory — Overview ... 86
5.3.9 Data Retrieval and Telecommunications — Overview 87

5.3.9.1 PakBus® Communications — Overview 88
5.3.9.2 Telecommunications ... 88
5.3.9.3 Mass-Storage Device .. 88
5.3.9.4 Data-File Formats in CR800 Memory 89
5.3.9.5 Data Format on Computer ... 89

5.3.10 Alternate Telecommunications — Overview 89
5.3.10.1 Modbus .. 89
5.3.10.2 DNP3 — Overview ... 90
5.3.10.3 TCP/IP — Overview ... 90

5.3.11 Security — Overview ... 90
5.3.12 Maintenance — Overview .. 92

10

Table of Contents

5.3.12.1 Protection from Moisture — Overview 92
5.3.12.2 Protection from Voltage Transients 92
5.3.12.3 Factory Calibration ... 92
5.3.12.4 Internal Battery — Details .. 93

5.4 Datalogger Support Software — Overview ... 93

6. Specifications .. 95

7. Installation .. 97
7.1 Protection from Moisture — Details .. 97
7.2 Temperature Range .. 97
7.3 Enclosures .. 97
7.4 Power Supplies — Details ... 98

7.4.1 CR800 Power Requirement .. 99
7.4.2 Calculating Power Consumption .. 99
7.4.3 Power Sources .. 99

7.4.3.1 Vehicle Power Connections .. 100
7.4.4 Uninterruptable Power Supply (UPS) ... 100
7.4.5 External Power Supply Installation .. 100

7.5 Switched Voltage Output — Details .. 101
7.5.1 Switched-Voltage Excitation .. 102
7.5.2 Continuous Regulated (5V Terminal) ... 102
7.5.3 Continuous Unregulated Voltage (12V Terminal) 103
7.5.4 Switched Unregulated Voltage (SW12 Terminal) 103

7.6 Grounding .. 103
7.6.1 ESD Protection ... 103

7.6.1.1 Lightning Protection ... 105
7.6.2 Single-Ended Measurement Reference 106
7.6.3 Ground-Potential Differences ... 107

7.6.3.1 Soil Temperature Thermocouple 107
7.6.3.2 External Signal Conditioner .. 107

7.6.4 Ground Looping in Ionic Measurements 107
7.7 CR800 Configuration — Details .. 109

7.7.1 Configuration Tools .. 109
7.7.1.1 Configuration with DevConfig ... 109
7.7.1.2 Network Planner ... 110

7.7.1.2.1 Overview ... 111
7.7.1.2.2 Basics .. 112

7.7.1.3 Configuration with Status/Settings/DTI 112
7.7.1.4 Configuration with Executable CPU: Files 113

7.7.1.4.1 Default.cr8 File .. 114
7.7.1.4.2 Executable File Run Priorities 114

7.7.2 CR800 Configuration — Details .. 115
7.7.2.1 Updating the Operating System (OS) 115

7.7.2.1.1 OS Update with DevConfig Send OS Tab 116
7.7.2.1.2 OS Update with DevConfig 117
7.7.2.1.3 OS Update with DevConfig 117
7.7.2.1.4 OS Update with DevConfig 119

7.7.2.2 Restoring Factory Defaults ... 120
7.7.2.3 Saving and Restoring Configurations 120

7.8 CRBasic Programming — Details ... 120
7.8.1 Program Structure ... 121

11

Table of Contents

7.8.2 Writing and Editing Programs .. 123
7.8.2.1 Short Cut Programming Wizard .. 123
7.8.2.2 CRBasic Editor ... 123

7.8.2.2.1 Inserting Comments into Program 124
7.8.2.2.2 Conserving Program Memory 124

7.8.3 Sending CRBasic Programs .. 124
7.8.3.1 Preserving Data at Program Send 125

7.8.4 Programming Syntax .. 126
7.8.4.1 Program Statements .. 126

7.8.4.1.1 Multiple Statements on One Line 126
7.8.4.1.2 One Statement on Multiple Lines 126

7.8.4.2 Single-Statement Declarations .. 127
7.8.4.3 Declaring Variables ... 127

7.8.4.3.1 Declaring Data Types .. 128
7.8.4.3.2 Dimensioning Numeric Variables 132
7.8.4.3.3 Dimensioning String Variables 132
7.8.4.3.4 Declaring Flag Variables ... 133

7.8.4.4 Declaring Arrays ... 133
7.8.4.5 Declaring Local and Global Variables 134
7.8.4.6 Initializing Variables ... 135
7.8.4.7 Declaring Constants .. 135

7.8.4.7.1 Predefined Constants ... 136
7.8.4.8 Declaring Aliases and Units .. 136
7.8.4.9 Numerical Formats .. 137
7.8.4.10 Multi-Statement Declarations ... 138

7.8.4.10.1 Declaring Data Tables ... 138
7.8.4.10.2 Declaring Subroutines ... 145
7.8.4.10.3 'Include' File .. 145
7.8.4.10.4 Declaring Subroutines ... 149
7.8.4.10.5 Declaring Incidental Sequences 149

7.8.4.11 Execution and Task Priority .. 149
7.8.4.11.1 Pipeline Mode .. 150
7.8.4.11.2 Sequential Mode .. 151

7.8.4.12 Execution Timing .. 152
7.8.4.12.1 Scan() / NextScan .. 153
7.8.4.12.2 SlowSequence / EndSequence 153
7.8.4.12.3 SubScan() / NextSubScan 154
7.8.4.12.4 Scan Priorities in Sequential Mode 154

7.8.4.13 Programming Instructions ... 156
7.8.4.13.1 Measurement and Data-Storage Processing 156
7.8.4.13.2 Argument Types .. 157
7.8.4.13.3 Names in Arguments ... 157

7.8.4.14 Expressions in Arguments ... 158
7.8.4.15 Programming Expression Types 158

7.8.4.15.1 Floating-Point Arithmetic 159
7.8.4.15.2 Mathematical Operations 159
7.8.4.15.3 Expressions with Numeric Data Types 160
7.8.4.15.4 Logical Expressions ... 162
7.8.4.15.5 String Expressions ... 164

7.8.4.16 Programming Access to Data Tables 165
7.8.4.17 Programming to Use Signatures 167

7.9 Programming Resource Library ... 167

12

Table of Contents

7.9.1 Advanced Programming Techniques .. 167
7.9.1.1 Capturing Events ... 167
7.9.1.2 Conditional Output .. 168
7.9.1.3 Groundwater Pump Test ... 169
7.9.1.4 Miscellaneous Features ... 172
7.9.1.5 PulseCountReset Instruction ... 175
7.9.1.6 Scaling Array .. 175
7.9.1.7 Signatures: Example Programs ... 176

7.9.1.7.1 Text Signature ... 176
7.9.1.7.2 Binary Runtime Signature 176
7.9.1.7.3 Executable Code Signatures 176

7.9.1.8 Use of Multiple Scans ... 177
7.9.2 Compiling: Conditional Code ... 178
7.9.3 Displaying Data: Custom Menus — Details 180
7.9.4 Data Input: Loading Large Data Sets ... 186
7.9.5 Data Input: Array-Assigned Expression 187
7.9.6 Data Output: Calculating Running Average 190
7.9.7 Data Output: Triggers and Omitting Samples 193
7.9.8 Data Output: Two Intervals in One Data Table 195
7.9.9 Data Output: Using Data Type Bool8 ... 196
7.9.10 Data Output: Using Data Type NSEC 200

7.9.10.1 NSEC Options ... 200
7.9.11 Field Calibration — Details .. 203

7.9.11.1 Field Calibration CAL Files .. 204
7.9.11.2 Field Calibration Programming 204
7.9.11.3 Field Calibration Wizard Overview 205
7.9.11.4 Field Calibration Numeric Monitor Procedures 205

7.9.11.4.1 One-Point Calibrations (Zero or Offset) 206
7.9.11.4.2 Two-Point Calibrations (gain and offset) 206
7.9.11.4.3 Zero Basis Point Calibration 207

7.9.11.5 Field Calibration Examples ... 207
7.9.11.5.1 FieldCal() Zero or Tare (Opt 0) Example 207
7.9.11.5.2 FieldCal() Offset (Opt 1) Example 209
7.9.11.5.3 FieldCal() Slope and Offset (Opt 2) Example 211
7.9.11.5.4 FieldCal() Slope (Opt 3) Example 214
7.9.11.5.5 FieldCal() Zero Basis (Opt 4) Example --

8 10 30 .. 216
7.9.11.6 Field Calibration Strain Examples 216

7.9.11.6.1 Field Calibration Strain Examples 217
7.9.11.6.2 Field Calibration Strain Examples 217
7.9.11.6.3 FieldCalStrain() Quarter-Bridge Shunt Example... 219
7.9.11.6.4 FieldCalStrain() Quarter-Bridge Zero 220

7.9.12 Measurement: Excite, Delay, Measure 221
7.9.13 Measurement: Faster Analog Rates .. 221

7.9.13.1 Measurements from 1 to 100 Hz 223
7.9.13.2 Measurement Rate: 101 to 600 Hz 224

7.9.13.2.1 Measurements from 101 to 600 Hz 2 224
7.9.13.3 Measurement Rate: 601 to 2000 Hz 225

7.9.14 Measurement: PRT ... 227
7.9.14.1 Measuring PT100s (100 Ω PRTs) 227

7.9.14.1.1 Self-Heating and Resolution 227
7.9.14.1.2 PRT Calculation Standards 227

7.9.14.2 PT100 in Four-Wire Half-Bridge 231

13

Table of Contents

7.9.14.2.1 Calculating the Excitation Voltage 231
7.9.14.2.2 Calculating the BrHalf4W() Multiplier 232
7.9.14.2.3 Choosing Rf ... 232

7.9.14.3 PT100 in Three-Wire Half Bridge 233
7.9.14.4 PT100 in Four-Wire Full-Bridge 235

7.9.15 PLC Control — Details... 237
7.9.16 Serial I/O: Capturing Serial Data .. 238

7.9.16.1 Introduction ... 238
7.9.16.2 I/O Ports .. 239
7.9.16.3 Protocols .. 240
7.9.16.4 Glossary of Serial I/O Terms .. 240
7.9.16.5 Serial I/O CRBasic Programming 242

7.9.16.5.1 Serial I/O Programming Basics 242
7.9.16.5.2 Serial I/O Input Programming Basics 244
7.9.16.5.3 Serial I/O Output Programming Basics 245
7.9.16.5.4 Serial I/O Translating Bytes 245
7.9.16.5.5 Serial I/O Memory Considerations 246
7.9.16.5.6 Demonstration Program ... 247

7.9.16.6 Serial I/O Application Testing .. 248
7.9.16.6.1 Configure HyperTerminal 248
7.9.16.6.2 Create Send-Text File .. 251
7.9.16.6.3 Create Text-Capture File 251
7.9.16.6.4 Serial I/O Example II ... 251

7.9.16.7 Serial I/O Q & A ... 257
7.9.17 Serial I/O: SDI-12 Sensor Support — Programming

Resource .. 259
7.9.17.1 SDI-12 Transparent Mode ... 260

7.9.17.1.1 SDI-12 Transparent Mode Commands 261
7.9.17.2 SDI-12 Recorder Mode ... 265
7.9.17.3 SDI-12 Sensor Mode ... 272
7.9.17.4 SDI-12 Power Considerations ... 274

7.9.18 String Operations .. 275
7.9.18.1 String Operators .. 275
7.9.18.2 String Concatenation ... 276
7.9.18.3 String NULL Character ... 278
7.9.18.4 Inserting String Characters .. 279
7.9.18.5 Extracting String Characters ... 279
7.9.18.6 String Use of ASCII / ANSII Codes 279
7.9.18.7 Formatting Strings ... 280
7.9.18.8 Formatting String Hexadecimal Variables 280

7.9.19 Subroutines ... 281
7.9.20 TCP/IP — Details ... 282

7.9.20.1 PakBus Over TCP/IP and Callback 283
7.9.20.2 Default HTTP Web Server .. 283
7.9.20.3 Custom HTTP Web Server ... 284
7.9.20.4 FTP Server .. 287
7.9.20.5 FTP Client ... 287
7.9.20.6 Telnet .. 287
7.9.20.7 SNMP .. 287
7.9.20.8 Ping (IP) .. 288
7.9.20.9 Micro-Serial Server ... 288
7.9.20.10 Modbus TCP/IP ... 288

14

Table of Contents

7.9.20.11 DHCP .. 288
7.9.20.12 DNS .. 288
7.9.20.13 SMTP .. 288

7.9.21 Wind Vector ... 288
7.9.21.1 OutputOpt Parameters ... 289
7.9.21.2 Wind Vector Processing .. 289

7.9.21.2.1 Measured Raw Data .. 290
7.9.21.2.2 Calculations ... 291

8. Operation .. 295
8.1 Measurements — Details ... 295

8.1.1 Time Keeping — Details .. 295
8.1.1.1 Time Stamps ... 295

8.1.2 Analog Measurements — Details ... 297
8.1.2.1 Voltage Measurements — Details..................................... 297

8.1.2.1.1 Voltage Measurement Mechanics 297
8.1.2.1.2 Voltage Measurement Limitations 300
8.1.2.1.3 Voltage Measurement Quality 303

8.1.2.2 Thermocouple Measurements —- Details 319
8.1.2.3 Current Measurements — Details 319
8.1.2.4 Resistance Measurements — Details 319

8.1.2.4.1 Ac Excitation ... 323
8.1.2.4.2 Resistance Measurements — Accuracy 323

8.1.2.5 Strain Measurements — Details .. 324
8.1.2.6 Auto-Calibration — Details .. 326

8.1.2.6.1 Auto Calibration Process ... 326
8.1.3 Pulse Measurements — Details .. 331

8.1.3.1 Pulse Measurement Terminals .. 333
8.1.3.2 Low-Level Ac Measurements — Details 334
8.1.3.3 High-Frequency Measurements .. 334

8.1.3.3.1 Frequency Resolution .. 335
8.1.3.3.2 Frequency Measurement Q & A 336

8.1.3.4 Switch-Closure and Open-Collector Measurements 336
8.1.3.5 Edge Timing .. 337
8.1.3.6 Edge Counting .. 337
8.1.3.7 Pulse Measurement Tips ... 338

8.1.3.7.1 TimerIO() NAN Conditions 340
8.1.3.7.2 Input Filters and Signal Attenuation 340

8.1.4 Period Averaging — Details ... 341
8.1.5 Vibrating-Wire Measurements — Details 343

8.1.5.1 Time-Domain Measurement ... 343
8.1.6 Reading Smart Sensors — Details .. 344

8.1.6.1 RS-232 and TTL ... 344
8.1.6.2 SDI-12 Sensor Support — Details 344

8.1.7 Field Calibration — Overview ... 345
8.1.8 Cabling Effects ... 345

8.1.8.1 Analog-Sensor Cables ... 345
8.1.8.2 Pulse Sensors .. 345
8.1.8.3 RS-232 Sensors ... 346
8.1.8.4 SDI-12 Sensors ... 346

8.1.9 Synchronizing Measurements ... 346
8.2 Measurement and Control Peripherals — Details 348

15

Table of Contents

8.2.1 Analog-Input Modules .. 348
8.2.2 Pulse-Input Modules ... 348

8.2.2.1 Low-Level Ac Input Modules — Overview 348
8.2.3 Serial I/O Modules — Details .. 348
8.2.4 Terminal-Input Modules ... 349
8.2.5 Vibrating-Wire Modules ... 349
8.2.6 Analog-Output Modules ... 349
8.2.7 PLC Control Modules — Overview ... 349

8.2.7.1 Terminals Configured for Control 349
8.2.7.2 Relays and Relay Drivers .. 350
8.2.7.3 Component-Built Relays ... 350

8.3 Memory .. 351
8.3.1 Storage Media ... 351

8.3.1.1 Memory Drives — On-Board ... 355
8.3.1.1.1 Data Table SRAM ... 355
8.3.1.1.2 CPU: Drive .. 355
8.3.1.1.3 USR: Drive .. 355
8.3.1.1.4 USB: Drive .. 356

8.3.2 Data-File Formats ... 357
8.3.3 Resetting the CR800 ... 360

8.3.3.1 Full Memory Reset .. 360
8.3.3.2 Program Send Reset .. 361
8.3.3.3 Manual Data-Table Reset .. 361
8.3.3.4 Formatting Drives ... 361

8.3.4 File Management .. 361
8.3.4.1 File Attributes ... 363
8.3.4.2 Files Manager .. 363
8.3.4.3 Data Preservation .. 364
8.3.4.4 Powerup.ini File — Details ... 365

8.3.4.4.1 Creating and Editing Powerup.ini 366
8.3.4.5 File Management Q & A ... 368

8.3.5 File Names .. 368
8.3.6 File-System Errors .. 368

8.4 Data Retrieval and Telecommunications — Details 370
8.4.1 Protocols ... 370
8.4.2 Conserving Bandwidth ... 370
8.4.3 Initiating Telecommunications (Callback).................................. 371

8.5 PakBus® Communications — Details ... 372
8.5.1 PakBus Addresses ... 372
8.5.2 Nodes: Leaf Nodes and Routers ... 372

8.5.2.1 Router and Leaf-Node Configuration 373
8.5.3 Linking PakBus Nodes: Neighbor Discovery 374

8.5.3.1 Hello-Message... 375
8.5.3.2 Beacon ... 375
8.5.3.3 Hello-Request .. 375
8.5.3.4 Neighbor Lists ... 375
8.5.3.5 Adjusting Links ... 375
8.5.3.6 Maintaining Links ... 376

8.5.4 PakBus Troubleshooting ... 376
8.5.4.1 Link Integrity .. 376

8.5.4.1.1 Automatic Packet-Size Adjustment 376
8.5.4.2 Ping (PakBus) ... 377

16

Table of Contents

8.5.4.3 Traffic Flow .. 377
8.5.5 LoggerNet Network-Map Configuration 377
8.5.6 PakBus LAN Example .. 379

8.5.6.1 LAN Wiring .. 379
8.5.6.2 LAN Setup .. 380
8.5.6.3 LoggerNet Setup ... 382

8.5.7 Route Filters ... 384
8.5.8 PakBusRoutes ... 384
8.5.9 Neighbors ... 385
8.5.10 PakBus Encryption ... 385

8.6 Alternate Telecommunications — Details ... 386
8.6.1 DNP3 — Details ... 387

8.6.1.1 DNP3 Introduction .. 387
8.6.1.2 Programming for DNP3 .. 387

8.6.1.2.1 Declarations (DNP3 Programming) 387
8.6.1.2.2 CRBasic Instructions (DNP3) 388
8.6.1.2.3 Programming for DNP3 Data Acquisition............... 389

8.6.2 Modbus — Details .. 391
8.6.2.1 Modbus Terminology .. 391

8.6.2.1.1 Glossary of Modbus Terms 392
8.6.2.2 Programming for Modbus ... 392

8.6.2.2.1 Declarations (Modbus Programming) 392
8.6.2.2.2 CRBasic Instructions (Modbus) 393
8.6.2.2.3 Addressing (ModbusAddr) 393
8.6.2.2.4 Supported Modbus Function Codes 393
8.6.2.2.5 Reading Inverse-Format Modbus Registers 394

8.6.2.3 Troubleshooting (Modbus) .. 394
8.6.2.4 Modbus over IP ... 394
8.6.2.5 Modbus Q and A ... 395
8.6.2.6 Converting Modbus 16-Bit to 32-Bit Longs 395

8.6.3 TCP/IP — Details ... 396
8.6.3.1 PakBus Over TCP/IP and Callback 396
8.6.3.2 Default HTTP Web Server .. 397
8.6.3.3 Custom HTTP Web Server ... 398
8.6.3.4 FTP Server .. 400
8.6.3.5 FTP Client ... 400
8.6.3.6 Telnet .. 401
8.6.3.7 SNMP .. 401
8.6.3.8 Ping (IP) .. 401
8.6.3.9 Micro-Serial Server ... 401
8.6.3.10 Modbus TCP/IP... 401
8.6.3.11 DHCP .. 401
8.6.3.12 DNS .. 402
8.6.3.13 SMTP .. 402
8.6.3.14 Web API .. 402

8.6.3.14.1 Authentication ... 402
8.6.3.14.2 Command Syntax .. 403
8.6.3.14.3 Time Syntax .. 405
8.6.3.14.4 Data Management — BrowseSymbols

Command ... 405
8.6.3.14.5 Data Management — DataQuery Command 409
8.6.3.14.6 Control — SetValueEx Command 415
8.6.3.14.7 Clock Functions — ClockSet Command 417

17

Table of Contents

8.6.3.14.8 Clock Functions — ClockCheck Command 419
8.6.3.14.9 File Management — Sending a File to a

Datalogger .. 420
8.6.3.14.10 File Management — FileControl Command 422
8.6.3.14.11 File Management — ListFiles Command 424
8.6.3.14.12 File Management — NewestFile Command 428

8.7 Datalogger Support Software — Details .. 429
8.8 Keyboard Display — Details ... 430

8.8.1 Data Display ... 432
8.8.1.1 Real-Time Tables and Graphs ... 433
8.8.1.2 Real-Time Custom .. 433
8.8.1.3 Final-Memory Tables .. 435

8.8.2 Run/Stop Program .. 436
8.8.3 File Display ... 437

8.8.3.1 File: Edit .. 437
8.8.4 Ports and Status... 438
8.8.5 Settings ... 439

8.8.5.1 Set Time / Date.. 439
8.8.5.2 PakBus Settings ... 440

8.8.6 Configure Display ... 440
8.9 Program and OS File Compression Q and A .. 440
8.10 Security — Details ... 443

8.10.1 Vulnerabilities .. 443
8.10.2 Pass-Code Lockout ... 444

8.10.2.1 Pass-Code Lockout By-Pass .. 445
8.10.3 Passwords ... 446

8.10.3.1 .csipasswd ... 446
8.10.3.2 PakBus Instructions ... 446
8.10.3.3 TCP/IP Instructions ... 446
8.10.3.4 Settings — Passwords ... 446

8.10.4 File Encryption ... 447
8.10.5 Communication Encryption .. 447
8.10.6 Hiding Files .. 447
8.10.7 Signatures ... 447

9. Maintenance — Details .. 449
9.1 Protection from Moisture — Details .. 449
9.2 Replacing the Internal Battery .. 449
9.3 Factory Calibration or Repair Procedure .. 452

10. Troubleshooting ... 455
10.1 Troubleshooting — Essential Tools ... 455
10.2 Troubleshooting — Basic Procedure .. 455
10.3 Troubleshooting — Error Sources .. 455
10.4 Troubleshooting — Status Table .. 457
10.5 Programming .. 457

10.5.1 Program Does Not Compile .. 457
10.5.2 Program Compiles / Does Not Run Correctly 457
10.5.3 NAN and ±INF ... 458

10.5.3.1 Measurements and NAN ... 458

18

Table of Contents

10.5.3.1.1 Voltage Measurements .. 458
10.5.3.1.2 SDI-12 Measurements ... 458

10.5.3.2 Floating-Point Math, NAN, and ±INF 458
10.5.3.3 Data Types, NAN, and ±INF .. 459
10.5.3.4 Output Processing and NAN ... 460

10.5.4 Status Table as Debug Resource ... 461
10.5.4.1 CompileResults ... 461
10.5.4.2 SkippedScan .. 463
10.5.4.3 SkippedSlowScan .. 463
10.5.4.4 SkippedRecord .. 464
10.5.4.5 ProgErrors ... 464
10.5.4.6 MemoryFree .. 464
10.5.4.7 VarOutOfBounds .. 464
10.5.4.8 Watchdog Errors ... 464

10.5.4.8.1 Status Table WatchdogErrors 465
10.5.4.8.2 Watchdoginfo.txt File .. 465

10.6 Troubleshooting — Operating Systems ... 466
10.7 Troubleshooting — Auto-Calibration Errors 466
10.8 Communications .. 466

10.8.1 RS-232 .. 466
10.8.2 Communicating with Multiple PCs .. 467
10.8.3 Comms Memory Errors .. 467

10.8.3.1 CommsMemFree(1) .. 467
10.8.3.2 CommsMemFree(2) .. 468
10.8.3.3 CommsMemFree(3) .. 469

10.9 Troubleshooting — Power Supplies ... 469
10.9.1 Troubleshooting Power Supplies — Overview 470
10.9.2 Troubleshooting Power Supplies — Examples -- 8 10 30 470
10.9.3 Troubleshooting Power Supplies — Procedures 470

10.9.3.1 Battery Test ... 470
10.9.3.2 Charging Regulator with Solar-Panel Test 471
10.9.3.3 Charging Regulator with Transformer Test 473
10.9.3.4 Adjusting Charging Voltage ... 474

10.10 Terminal Mode ... 475
10.10.1 Serial Talk Through and Comms Watch 477

10.11 Logs .. 478
10.12 Troubleshooting — Data Recovery .. 478

11. Glossary ... 481
11.1 Terms ... 481
11.2 Concepts ... 507

11.2.1 Accuracy, Precision, and Resolution .. 507

12. Attributions .. 509

Appendices

A. CRBasic Programming Instructions 511
A.1 Program Declarations .. 511

A.1.1 Variable Declarations & Modifiers .. 512

19

Table of Contents

A.1.2 Constant Declarations .. 513
A.2 Data-Table Declarations .. 514

A.2.1 Data-Table Modifiers ... 514
A.2.2 Data Destinations ... 515
A.2.3 Processing for Output to Final-Data Memory 516

A.2.3.1 Single-Source ... 516
A.2.3.2 Multiple-Source .. 518

A.3 Single Execution at Compile ... 518
A.4 Program Control Instructions .. 519

A.4.1 Common Program Controls ... 519
A.4.2 Advanced Program Controls .. 522

A.5 Measurement Instructions ... 524
A.5.1 Diagnostics .. 524
A.5.2 Voltage ... 525
A.5.3 Thermocouples... 525
A.5.4 Resistive-Bridge Measurements .. 525
A.5.5 Excitation ... 526
A.5.6 Pulse and Frequency .. 527
A.5.7 Digital I/O .. 527

A.5.7.1 Control.. 528
A.5.7.2 Measurement .. 529

A.5.8 SDI-12 Sensor Suppport — Instructions 529
A.5.9 Specific Sensors ... 529

A.5.9.1 Wireless Sensor Network ... 532
A.5.10 Peripheral Device Support ... 532

A.6 PLC Control — Instructions .. 536
A.7 Processing and Math Instructions .. 537

A.7.1 Mathematical Operators ... 537
A.7.2 Arithmetic Operators ... 537
A.7.3 Bitwise Operations ... 537
A.7.4 Compound-Assignment Operators ... 539
A.7.5 Logical Operators .. 539
A.7.6 Trigonometric Functions .. 540

A.7.6.1 Intrinsic Trigonometric Functions 540
A.7.6.2 Derived Trigonometric Functions 541

A.7.7 Arithmetic Functions ... 542
A.7.8 Integrated Processing ... 544
A.7.9 Spatial Processing .. 545
A.7.10 Other Functions .. 546

A.7.10.1 Histograms ... 547
A.8 String Functions .. 548

A.8.1 String Operations ... 548
A.8.2 String Commands .. 549

A.9 Time Keeping — Instructions ... 552
A.10 Voice-Modem Instructions .. 554
A.11 Custom Menus — Instructions .. 555
A.12 Serial Input / Output .. 556
A.13 Peer-to-Peer PakBus® Communications ... 558
A.14 Variable Management ... 562
A.15 File Management ... 563
A.16 Data-Table Access and Management .. 565
A.17 TCP/IP — Instructions .. 567

20

Table of Contents

A.18 Modem Control ... 571
A.19 SCADA ... 571
A.20 Calibration Functions .. 572
A.21 Satellite Systems ... 573

A.21.1 Argos ... 573
A.21.2 GOES ... 574
A.21.3 OMNISAT ... 575
A.21.4 INMARSAT-C .. 575

A.22 User-Defined Functions .. 576

B. Status, Settings, and Data Table Information
(Status/Settings/DTI) .. 577

B.1 Status/Settings/DTI Directories ... 578
B.2 Status/Settings/DTI Descriptions (Alphabetical) 585

C. Serial Port Pinouts .. 609
C.1 CS I/O Communication Port .. 609
C.2 RS-232 Communication Port ... 609

C.2.1 Pin-Out ... 609
C.2.2 Power States ... 610

D. ASCII / ANSI Table ... 613

E. FP2 Data Format .. 617

F. Endianness .. 619

G. Supporting Products Lists 621
G.1 Dataloggers — List ... 621
G.2 Measurement and Control Peripherals — Lists 622
G.3 Sensor-Input Modules Lists ... 622

G.3.1 Analog-Input Modules List .. 622
G.3.2 Pulse-Input Modules List ... 622
G.3.3 Serial I/O Modules List ... 622
G.3.4 Vibrating-Wire Input Modules List ... 623
G.3.5 Passive Signal Conditioners Lists .. 623

G.3.5.1 Resistive-Bridge TIM Modules List 623
G.3.5.2 Voltage-Divider Modules List ... 623
G.3.5.3 Current-Shunt Modules List ... 624
G.3.5.4 Transient-Voltage Suppressors List 624

G.3.6 Terminal-Strip Covers List .. 624
G.4 PLC Control Modules — Lists .. 624

G.4.1 Digital-I/O Modules List ... 625
G.4.2 Continuous-Analog-Output (CAO) Modules List 625
G.4.3 Relay-Drivers — List .. 625
G.4.4 Current-Excitation Modules List ... 625

G.5 Sensors — Lists ... 626
G.5.1 Wired-Sensor Types List ... 626

21

Table of Contents

G.5.2 Wireless-Network Sensors List .. 627
G.6 Data Retrieval and Telecommunication Peripherals — Lists 627

G.6.1 Keyboard Display — List .. 627
G.6.2 Hardwire, Single-Connection Comms Devices List 628
G.6.3 Hardwire, Networking Devices List .. 628
G.6.4 TCP/IP Links — List ... 629
G.6.5 Telephone Modems List .. 629
G.6.6 Private-Network Radios List .. 629
G.6.7 Satellite Transceivers List .. 629

G.7 Data-Storage Devices — List .. 629
G.8 Datalogger Support Software — Lists ... 630

G.8.1 Starter Software List .. 630
G.8.2 Datalogger Support Software — List ... 631

G.8.2.1 LoggerNet Suite List .. 631
G.8.3 Software Tools List .. 632
G.8.4 Software Development Kits List .. 633

G.9 Power Supplies — Products .. 633
G.9.1 Battery / Regulator Combinations List 633
G.9.2 Batteries List .. 634
G.9.3 Regulators List ... 634
G.9.4 Primary Power Sources List ... 634
G.9.5 24 Vdc Power Supply Kits List ... 635

G.10 Enclosures — Products.. 635
G.11 Tripods, Towers, and Mounts Lists ... 636
G.12 Enclosures List .. 636

Index .. 637

List of Figures
Figure 1. Data-Acquisition System Components .. 42
Figure 2. Wiring Panel .. 44
Figure 3. Power and Serial Communication Connections 48
Figure 4. PC200W Main Window ... 49
Figure 5. Short Cut Temperature Sensor Folder ... 51
Figure 6. Short Cut Thermocouple Wiring .. 52
Figure 7. Short Cut Outputs Tab ... 53
Figure 8. Short Cut Outputs Tab ... 54
Figure 9. Short Cut Compile Confirmation ... 54
Figure 10. PC200W Main Window ... 55
Figure 11. PC200W Monitor Data Tab – Public Table 56
Figure 12. PC200W Monitor Data Tab — Public and OneMin Tables 57
Figure 13. PC200W Collect Data Tab ... 57
Figure 14. PC200W View Data Utility ... 58
Figure 15. PC200W View Data Table ... 59
Figure 16. PC200W View Line Graph .. 60
Figure 17. Data-Acquisition System — Overview .. 62
Figure 18. Analog Sensor Wired to Single-Ended Channel #1 64
Figure 19. Analog Sensor Wired to Differential Channel #1 64
Figure 20. Simplified Differential-Voltage Measurement Sequence 66
Figure 21. Half-Bridge Wiring Example — Wind Vane Potentiometer 67
Figure 22. Full-Bridge Wiring Example — Pressure Transducer 68

22

Table of Contents

Figure 23. Pulse-Sensor Output-Signal Types .. 69
Figure 24. Pulse-Input Wiring Example — Anemometer 70
Figure 25. Terminals Configurable for RS-232 Input 73
Figure 26. Use of RS-232 and Digital I/O when Reading RS-232

Devices... 73
Figure 27. Wiring Panel .. 76
Figure 28. Control and Monitoring with C Terminals 79
Figure 29. CR1000KD Keyboard Display .. 83
Figure 30. Custom Menu Example ... 84
Figure 31. Enclosure ... 98
Figure 32. Connecting to Vehicle Power Supply .. 100
Figure 33. Schematic of Grounds .. 105
Figure 34. Lightning-Protection Scheme .. 106
Figure 35. Model of a Ground Loop with a Resistive Sensor 108
Figure 36. Device Configuration Utility (DevConfig) 110
Figure 37. Network Planner Setup .. 111
Figure 38. Summary of CR800 Configuration .. 120
Figure 39. CRBasic Editor Program Send File Control window 125
Figure 40. "Include File" Settings Via DevConfig 147
Figure 41. "Include File" Settings Via PakBusGraph 147
Figure 42. Sequential-Mode Scan Priority Flow Diagrams 156
Figure 43. Custom Menu Example — Home Screen 181
Figure 44. Custom Menu Example — View Data Window 181
Figure 45. Custom Menu Example — Make Notes Sub Menu 182
Figure 46. Custom Menu Example — Predefined Notes Pick List 182
Figure 47. Custom Menu Example — Free Entry Notes Window 182
Figure 48. Custom Menu Example — Accept / Clear Notes Window 182
Figure 49. Custom Menu Example — Control Sub Menu 183
Figure 50. Custom Menu Example — Control LED Pick List 183
Figure 51. Custom Menu Example — Control LED Boolean Pick List 183
Figure 52. Running-Average Frequency Response 192
Figure 53. Running-Average Signal Attenuation .. 193
Figure 54. Data from TrigVar Program... 194
Figure 55. Alarms Toggled in Bit-Shift Example 197
Figure 56. Bool8 Data from Bit-Shift Example (Numeric Monitor) 197
Figure 57. Bool8 Data from Bit-Shift Example (PC Data File) 198
Figure 58. Quarter-Bridge Strain-Gage with RC Resistor Shunt 218
Figure 59. Strain-Gage Shunt Calibration Start .. 219
Figure 60. Strain-Gage Shunt Calibration Finish .. 220
Figure 61. Zero Procedure Start .. 220
Figure 62. Zero Procedure Finish .. 220
Figure 63. PT100 in Four-Wire Half-Bridge ... 233
Figure 64. PT100 in Three-Wire Half-Bridge ... 235
Figure 65. PT100 in Four-Wire Full-Bridge ... 237
Figure 66. HyperTerminal New Connection Description 249
Figure 67. HyperTerminal Connect-To Settings ... 249
Figure 68. HyperTerminal COM-Port Settings Tab 250
Figure 69. HyperTerminal ASCII Setup ... 250
Figure 70. HyperTerminal Send Text-File Example 251
Figure 71. HyperTerminal Text-Capture File Example 251
Figure 72. Entering SDI-12 Transparent Mode ... 261
Figure 73. Preconfigured HTML Home Page ... 284
Figure 74. Home Page Created Using WebPageBegin() Instruction 285

23

Table of Contents

Figure 75. Customized Numeric-Monitor Web Page 285
Figure 76. Input Sample Vectors ... 291
Figure 77. Mean Wind-Vector Graph ... 292
Figure 78. Standard Deviation of Direction .. 293
Figure 79. Simplified voltage measurement sequence 298
Figure 80. Programmable Gain Input Amplifier (PGIA) 298
Figure 81. PGIA with Input-Signal Decomposition 302
Figure 82. Example voltage measurement accuracy band, including the

effects of percent of reading and offset, for a differential
measurement with input reversal at a temperature between 0 to
40 °C .. 306

Figure 83. Ac-Power Noise-Rejection Techniques 308
Figure 84. Input-voltage rise and transient decay .. 310
Figure 85. Settling Time for Pressure Transducer 313
Figure 86. Pulse-Sensor Output-Signal Types .. 332
Figure 87. Switch-Closure Pulse Sensor ... 332
Figure 88. Terminals Configurable for Pulse Input 332
Figure 89. Amplitude reduction of pulse-count waveform (before and

after 1 µs µs time-constant filter) ... 341
Figure 90. Input Conditioning Circuit for Period Averaging 342
Figure 91. Vibrating-Wire Sensor ... 343
Figure 92. Circuit to Limit C Terminal Input to 5 Vdc 344
Figure 93. Current-Limiting Resistor in a Rain Gage Circuit 346
Figure 94. Current sourcing from C terminals configured for control 350
Figure 95. Relay Driver Circuit with Relay .. 351
Figure 96. Power Switching without Relay ... 351
Figure 97. PakBus Network Addressing ... 373
Figure 98. Flat Map ... 378
Figure 99. Tree Map .. 378
Figure 100. Configuration and Wiring of PakBus LAN 379
Figure 101. DevConfig Deployment Tab .. 380
Figure 102. DevConfig Deployment | ComPorts Settings Tab 381
Figure 103. DevConfig Deployment | Advanced Tab 381
Figure 104. LoggerNet Network-Map Setup: COM port 382
Figure 105. LoggerNet Network-Map Setup: PakBusPort 383
Figure 106. LoggerNet Network-Map Setup: Dataloggers 383
Figure 107. Preconfigured HTML Home Page ... 397
Figure 108. Home Page Created Using WebPageBegin() Instruction 398
Figure 109. Customized Numeric-Monitor Web Page 399
Figure 110. Using the Keyboard / Display .. 431
Figure 111. Displaying Data with the Keyboard / Display 432
Figure 112. Real-Time Tables and Graphs .. 433
Figure 113. Real-Time Custom ... 434
Figure 114. Final-Memory Tables ... 435
Figure 115. Run/Stop Program .. 436
Figure 116. File Display .. 437
Figure 117. File: Edit .. 438
Figure 118. C Terminals (Ports) Status ... 439
Figure 119. Settings .. 439
Figure 120. Configure Display .. 440
Figure 121. Remove Retention Nuts ... 450
Figure 122. Pull Edge Away from Panel ... 451

24

Table of Contents

Figure 123. Remove Nuts to Disassemble Canister 451
Figure 124. Remove and Replace Battery ... 452
Figure 125. Potentiometer R3 on PS100 and CH100 Charger / Regulator . 475
Figure 126. DevConfig Terminal Tab ... 477
Figure 127. Relationships of Accuracy, Precision, and Resolution 508

List of Tables
Table 1. PC200W EZSetup Wizard Example Selections 49
Table 2. Differential and Single-Ended Input Terminals 65
Table 3. Pulse-Input Terminals and Measurements 69
Table 4. CR800 Wiring Panel Terminal Definitions 77
Table 5. Current Source and Sink Limits .. 101
Table 6. Status/Setting/DTI: Access Points .. 113
Table 7. Common Configuration Actions and Tools 115
Table 8. CRBasic Program Structure .. 121
Table 9. Program Send Options that Reset Memory* 125
Table 10. Data Table Structures .. 126
Table 11. Data Types in Variable Memory ... 128
Table 12. Data Types in Final-Data Memory .. 129
Table 13. Formats for Entering Numbers in CRBasic 137
Table 14. Typical Data Table .. 139
Table 15. TOA5 Environment Line .. 139
Table 16. DataInterval() Lapse Parameter Options 143
Table 17. Program Tasks ... 150
Table 18. Pipeline Mode Task Priorities ... 151
Table 19. Program Timing Instructions .. 152
Table 20. Rules for Names .. 158
Table 21. Binary Conditions of TRUE and FALSE 163
Table 22. Logical Expression Examples ... 163
Table 23. Data Process Abbreviations .. 166
Table 24. CRBasic Example. Array Assigned Expression: Sum

Columns and Rows .. 188
Table 25. CRBasic Example. Array Assigned Expression: Transpose an

Array .. 188
Table 26. CRBasic Example. Array Assigned Expression: Comparison /

Boolean Evaluation .. 189
Table 27. CRBasic Example. Array Assigned Expression: Fill Array

Dimension .. 190
Table 28. FieldCal() Codes ... 205
Table 29. Calibration Report for Relative Humidity Sensor 207
Table 30. Calibration Report for Salinity Sensor .. 209
Table 31. Calibration Report for Flow Meter .. 212
Table 32. Calibration Report for Water Content Sensor 214
Table 33. Summary of Analog Voltage Measurement Rates 222
Table 34. Parameters for Analog Burst Mode (601 to 2000 Hz) 226
Table 35. PRTCalc() Type-Code-1 Sensor ... 229
Table 36. PRTCalc() Type-Code-2 Sensor ... 229
Table 37. PRTCalc() Type-Code-3 Sensor ... 229
Table 38. PRTCalc() Type-Code-4 Sensor ... 230
Table 39. PRTCalc() Type-Code-5 Sensor ... 230
Table 40. PRTCalc() Type-Code-6 Sensor ... 231
Table 41. ASCII / ANSI Equivalents .. 238

25

Table of Contents

Table 42. CR800 Serial Ports .. 239
Table 43. SDI-12 Commands for Transparent Mode 262
Table 44. SDI-12 Sensor Setup CRBasic Example — Results 274
Table 45. Example Power Usage Profile for a Network of SDI-12

Probes ... 274
Table 46. String Operators .. 275
Table 47. String Concatenation Examples .. 277
Table 48. String NULL Character Examples .. 278
Table 49. Extracting String Characters ... 279
Table 50. Use of ASCII / ANSII Codes Examples 279
Table 51. Formatting Strings Examples .. 280
Table 52. Formatting Hexadecimal Variables — Examples 280
Table 53. WindVector() OutputOpt Options ... 289
Table 54. CRBasic Parameters Varying Measurement Sequence and

Timing .. 299
Table 55. Analog Voltage Input Ranges and Options 301
Table 56. Analog-Voltage Measurement Accuracy1 305
Table 57. Analog-Voltage Measurement Offsets .. 305
Table 58. Analog-Voltage Measurement Resolution 305
Table 59. Analog Measurement Integration .. 308
Table 60. Ac Noise Rejection on Small Signals1 .. 309
Table 61. Ac Noise Rejection on Large Signals1 .. 309
Table 62. CRBasic Measurement Settling Times .. 310
Table 63. First Six Values of Settling-Time Data 313
Table 64. Range-Code Option C Over-Voltages ... 314
Table 65. Offset Voltage Compensation Options .. 317
Table 66. Resistive-Bridge Circuits with Voltage Excitation 321
Table 67. Ratiometric-Resistance Measurement Accuracy 324
Table 68. StrainCalc() Instruction Equations .. 325
Table 69. Auto Calibration Gains and Offsets .. 328
Table 70. Calibrate() Instruction Results ... 329
Table 71. Pulse Measurements:, Terminals and Programming 333
Table 72. Example. E for a 10 Hz input signal.. 335
Table 73. Frequency Resolution Comparison ... 336
Table 74. Switch Closures and Open Collectors on P Terminals 338
Table 75. Switch Closures and Open Collectors on C Terminals 338
Table 76. Three Specifications Differing Between P and C Terminals 340
Table 77. Time Constants (τ) .. 341
Table 78. Low-Level Ac Amplitude and Maximum Measured

Frequency ... 341
Table 79. CR800 Memory Allocation ... 352
Table 80. CR800 Main Memory ... 354
Table 81. Memory Drives ... 355
Table 82. TableFile() Instruction Data-File Formats 357
Table 83. File-Control Functions .. 362
Table 84. CR800 File Attributes ... 363
Table 85. Data-Preserve Options ... 365
Table 86. Powerup.ini Commands and Applications 367
Table 87. Powerup.ini Example. Code Format and Syntax 367
Table 88. Powerup.ini Example. Run Program on Power-up 367
Table 89. Powerup.ini Example. Format the USR: Drive 367
Table 90. Powerup.ini Example. Send OS on Power-up 368

26

Table of Contents

Table 91. Powerup.ini Example. Run Program from USB: Drive 368
Table 92. Powerup.ini Example. Run Program Always, Erase Data 368
Table 93. Powerup.ini Example. Run Program Now, Erase Data 368
Table 94. File System Error Codes ... 369
Table 95. PakBus Leaf-Node and Router Device Configuration 373
Table 96. PakBus Link-Performance Gage ... 377
Table 97. PakBus-LAN Example Datalogger-Communication Settings 382
Table 98. Router Port Numbers ... 384
Table 99. DNP3 Implementation — Data Types Required to Store Data

in Public Tables for Object Groups .. 388
Table 100. Modbus to Campbell Scientific Equivalents 391
Table 101. CRBasic Ports, Flags, Variables, and, Modbus Registers 393
Table 102. Supported Modbus Function Codes .. 394
Table 103. API Commands, Parameters, and Arguments 404
Table 104. BrowseSymbols API Command Parameters 406
Table 105. BrowseSymbols API Command Response 406
Table 106. DataQuery API Command Parameters 410
Table 107. SetValueEx API Command Parameters 415
Table 108. SetValue API Command Response ... 416
Table 109. ClockSet API Command Parameters .. 417
Table 110. ClockSet API Command Response ... 418
Table 111. ClockCheck API Command Parameters 419
Table 112. ClockCheck API Command Response 419
Table 113. Curl HTTPPut Request Parameters ... 421
Table 114. FileControl API Command Parameters 423
Table 115. FileControl API Command Response 424
Table 116. ListFiles API Command Parameters ... 424
Table 117. ListFiles API Command Response ... 425
Table 118. NewestFile API Command Parameters 428
Table 119. Special Keyboard-Display Key Functions 430
Table 120. Typical Gzip File Compression Results 442
Table 121. Internal Lithium-Battery Specifications 450
Table 122. Math Expressions and CRBasic Results 459
Table 123. Variable and Final-Memory Data Types with NAN and

±INF ... 460
Table 124. Warning Message Examples ... 462
Table 125. CommsMemFree(1) Defaults and Use Example, TLS Not

Active ... 468
Table 126. CommsMemFree(1) Defaults and Use Example, TLS

Active ... 468
Table 127. CR800 Terminal Commands ... 476
Table 128. Log Locations ... 478
Table 129. Program Send Command .. 498
Table 130. Arithmetic Operators ... 537
Table 131. Compound-Assignment Operators .. 539
Table 132. Derived Trigonometric Functions ... 542
Table 133. String Operations .. 548
Table 134. Asynchronous-Port Baud Rates .. 562
Table 135. Status/Setting/DTI: Access Points .. 577
Table 136. Status/Settings/DTI: Directories ... 578
Table 137. Status/Settings/DTI: Frequently Used 578
Table 138. Status/Settings/DTI: Alphabetical Listing of Keywords 579

27

Table of Contents

Table 139. Status/Settings/DTI: Status Table Entries on CR1000KD
Keyboard Display .. 580

Table 140. Status/Settings/DTI: Settings (General) on CR1000KD
Keyboard Display .. 581

Table 141. Status/Settings/DTI: Settings (comport) on CR1000KD
Keyboard Display .. 581

Table 142. Status/Settings/DTI: Settings (TCP/IP) on CR1000KD
Keyboard Display .. 581

Table 143. Status/Settings/DTI: Settings Only in Settings Editor 582
Table 144. Status/Settings/DTI: Data Table Information Table (DTI)

Keywords ... 582
Table 145. Status/Settings/DTI: Auto-Calibration 582
Table 146. Status/Settings/DTI: Communications, General 582
Table 147. Status/Settings/DTI: Communications, PakBus 582
Table 148. Status/Settings/DTI: Communications, TCP_IP I 582
Table 149. Status/Settings/DTI: Communications, TCP_IP II 583
Table 150. Status/Settings/DTI: Communications, TCP_IP III 583
Table 151. Status/Settings/DTI: CRBasic Program I 583
Table 152. Status/Settings/DTI: CRBasic Program II 583
Table 153. Status/Settings/DTI: Data .. 583
Table 154. Status/Settings/DTI: Memory .. 583
Table 155. Status/Settings/DTI: Miscellaneous .. 584
Table 156. Status/Settings/DTI: Obsolete ... 584
Table 157. Status/Settings/DTI: OS and Hardware Versioning 584
Table 158. Status/Settings/DTI: Power Monitors.. 584
Table 159. Status/Settings/DTI: Security .. 584
Table 160. Status/Settings/DTI: Signatures .. 584
Table 161. Status/Settings/DTI: B ... 585
Table 162. Baudrate() Array, Keywords, and Default Settings 585
Table 163. Beacon() Array, Keywords, and Default Settings 586
Table 164. Status/Settings/DTI: C ... 586
Table 165. Status/Settings/DTI: D .. 589
Table 166. Status/Settings/DTI: E ... 589
Table 167. Status/Settings/DTI: F ... 590
Table 168. Status/Settings/DTI: H .. 591
Table 169. Status/Settings/DTI: I .. 591
Table 170. Status/Settings/DTI: L ... 594
Table 171. Status/Settings/DTI: M .. 595
Table 172. Status/Settings/DTI: N .. 596
Table 173. Status/Settings/DTI: O .. 597
Table 174. Status/Settings/DTI: P ... 597
Table 175. Status/Settings/DTI: R ... 601
Table 176. Status/Settings/DTI: S ... 602
Table 177. Status/Settings/DTI: T ... 604
Table 178. Status/Settings/DTI: U .. 605
Table 179. Status/Settings/DTI: V .. 606
Table 180. Status/Settings/DTI: W ... 607
Table 181. CS I/O Pin Description .. 609
Table 182. CR800 RS-232 Pin-Out ... 610
Table 183. Standard Null-Modem Cable or Adapter-Pin Connections 611
Table 184. Decimal and hexadecimal Codes and Characters Used with

CR800 Tools .. 613

28

Table of Contents

Table 185. FP2 Data-Format Bit Descriptions .. 617
Table 186. FP2 Decimal-Locater Bits ... 617
Table 187. Endianness in Campbell Scientific Instruments 619
Table 188. Dataloggers ... 621
Table 189. Analog-Input Modules .. 622
Table 190. Pulse-Input Modules ... 622
Table 191. Serial I/O Modules List ... 623
Table 192. Vibrating-Wire Input Modules .. 623
Table 193. Resistive Bridge TIM1 Modules .. 623
Table 194. Voltage Divider Modules .. 623
Table 195. Current-Shunt Modules ... 624
Table 196. Transient Voltage Suppressors .. 624
Table 197. Terminal-Strip Covers ... 624
Table 198. Digital I/O Modules .. 625
Table 199. Continuous-Analog-Output (CAO) Modules 625
Table 200. Relay-Drivers — Products .. 625
Table 201. Current-Excitation Modules .. 625
Table 202. Wired Sensor Types .. 626
Table 203. Wireless Sensor Modules .. 627
Table 204. Sensors Types Available for Connection to CWS900 627
Table 205. Datalogger / Keyboard Display Availability and

Compatibility1 .. 628
Table 206. Hardwire, Single-Connection Comms Devices 628
Table 207. Hardwire, Networking Devices ... 628
Table 208. TCP/IP Links ... 629
Table 209. Telephone Modems ... 629
Table 210. Private-Network Radios .. 629
Table 211. Satellite Transceivers .. 629
Table 212. Mass-Storage Devices ... 630
Table 213. Starter Software ... 630
Table 214. Datalogger Support Software .. 631
Table 215. LoggerNet Suite1,2 ... 631
Table 216. Software Tools .. 632
Table 217. Software Development Kits .. 633
Table 218. Battery / Regulator Combinations ... 634
Table 219. Batteries .. 634
Table 220. Regulators ... 634
Table 221. Primary Power Sources ... 634
Table 222. 24 Vdc Power Supply Kits .. 635
Table 223. Enclosures — Products ... 635
Table 224. Prewired Enclosures .. 635
Table 225. Tripods, Towers, and Mounts ... 636
Table 226. Protection from Moisture — Products 636

List of CRBasic Examples
CRBasic Example 1. Simple Default.cr8 File to Control SW12

Terminal ... 114
CRBasic Example 2. Inserting Comments .. 124
CRBasic Example 3. Data Type Declarations ... 131
CRBasic Example 4. Using Variable Array Dimension Indices 132
CRBasic Example 5. Flag Declaration and Use .. 133
CRBasic Example 6. Using a Variable Array in Calculations 134

29

Table of Contents

CRBasic Example 7. Initializing Variables ... 135
CRBasic Example 8. Using the Const Declaration 136
CRBasic Example 9. Load binary information into a variable 137
CRBasic Example 10. Definition and Use of a Data Table 140
CRBasic Example 11. Use of the Disable Variable 144
CRBasic Example 12. Using an 'Include' File ... 148
CRBasic Example 13. 'Include' File to Control SW12 Terminal 148
CRBasic Example 14. BeginProg / Scan() / NextScan / EndProg

Syntax .. 153
CRBasic Example 15. Measurement Instruction Syntax 157
CRBasic Example 16. Use of Move() to Conserve Code Space 160
CRBasic Example 17. Use of Variable Arrays to Conserve Code Space 160
CRBasic Example 18. Conversion of FLOAT / LONG to Boolean 160
CRBasic Example 19. Evaluation of Integers ... 161
CRBasic Example 20. Constants to LONGs or FLOATs............................ 161
CRBasic Example 21. String and Variable Concatenation 164
CRBasic Example 22. BeginProg / Scan / NextScan / EndProg Syntax 167
CRBasic Example 23. Conditional Output .. 168
CRBasic Example 24. Groundwater Pump Test ... 170
CRBasic Example 25. Miscellaneous Program Features 172
CRBasic Example 26. Scaling Array .. 175
CRBasic Example 27. Program Signatures ... 176
CRBasic Example 28. Use of Multiple Scans ... 177
CRBasic Example 29. Conditional Code .. 179
CRBasic Example 30. Custom Menus .. 183
CRBasic Example 31. Loading Large Data Sets ... 186
CRBasic Example 32. Using TrigVar to Trigger Data Storage 194
CRBasic Example 33. Two Data-Output Intervals in One Data Table 195
CRBasic Example 34. Programming with Bool8 and a Bit-Shift

Operator ... 198
CRBasic Example 35. NSEC — One Element Time Array 201
CRBasic Example 36. NSEC — Two Element Time Array 201
CRBasic Example 37. NSEC — Seven and Nine Element Time Arrays 202
CRBasic Example 38. NSEC —Convert Timestamp to Universal Time 203
CRBasic Example 39. FieldCal() Zero .. 208
CRBasic Example 40. FieldCal() Offset ... 210
CRBasic Example 41. FieldCal() Two-Point Slope and Offset 212
CRBasic Example 42. FieldCal() Multiplier ... 215
CRBasic Example 43. FieldCalStrain() Calibration 218
CRBasic Example 44. Measurement with Excitation and Delay 221
CRBasic Example 45. Measuring VoltSE() at 1 Hz 223
CRBasic Example 46. Measuring VoltSE() at 100 Hz 223
CRBasic Example 47. Measuring VoltSE() at 200 Hz 224
CRBasic Example 48. Measuring VoltSE() at 2000 Hz 226
CRBasic Example 49. PT100 in Four-Wire Half-Bridge 233
CRBasic Example 50. PT100 in Three-wire Half-bridge 235
CRBasic Example 51. PT100 in Four-Wire Full-Bridge............................. 237
CRBasic Example 52. Receiving an RS-232 String 247
CRBasic Example 53. Measure Sensors / Send RS-232 Data 252
CRBasic Example 54. Using SDI12Sensor() to Test Cv Command 269
CRBasic Example 55. Using Alternate Concurrent Command (aC) 270
CRBasic Example 56. Using an SDI-12 Extended Command 272

30

Table of Contents

CRBasic Example 57. SDI-12 Sensor Setup ... 273
CRBasic Example 58. Concatenation of Numbers and Strings 277
CRBasic Example 59. Formatting Strings .. 280
CRBasic Example 60. Subroutine with Global and Local Variables 281
CRBasic Example 61. Custom Web Page HTML....................................... 286
CRBasic Example 62. Time Stamping with System Time 296
CRBasic Example 63. Measuring Settling Time ... 312
CRBasic Example 64. Four-Wire Full-Bridge Measurement and

Processing .. 323
CRBasic Example 65. Implementation of DNP3 .. 389
CRBasic Example 66. Concatenating Modbus Long Variables 395
CRBasic Example 67. Custom Web Page HTML....................................... 399
CRBasic Example 68. Using NAN to Filter Data 461
CRBasic Example 69. Using Bit-Shift Operators 538

31

1. Introduction
1.1 HELLO

Whether in extreme cold in Antarctica, scorching heat in Death Valley, salt spray
from the Pacific, micro-gravity in space, or the harsh environment of your office,
Campbell Scientific dataloggers support research and operations all over the
world. Our customers work a spectrum of applications, from those more complex
than any of us imagined, to those simpler than any of us thought practical. The
limits of the CR800 are defined by our customers. Our intent with this operator's
manual is to guide you to the tools you need to explore the limits of your
application.

You can take advantage of the advanced CR800 analog and digital measurement
features by spending a few minutes working through the System Quickstart (p. 41)
and the System Overview (p. 61). For more demanding applications, the remainder
of the manual and other Campbell Scientific publications are available. If you are
programming with CRBasic, you will need the extensive help available with the
CRBasic Editor software. Formal CR800 training is also available from
Campbell Scientific.

This manual is organized to take you progressively deeper into the complexity of
CR800 functions. You may not find it necessary to progress beyond the System
Quickstart (p. 41) or System Overview (p. 61) sections. System Quickstart (p. 41) is a
cursory view of CR800 data-acquisition and walks you through a first attempt at
data-acquisition. System Overview (p. 61) reviews salient topics that are covered in-
depth in subsequent sections and appendices.

Review the exhaustive table of contents to learn how the manual is organized,
and, when looking for a topic, use the index and PDF reader search.

More in-depth study requires other Campbell Scientific publications, most of
which are available on-line at www.campbellsci.com. Generally, if a particular
feature of the CR800 requires a peripheral hardware device, more information is
available in the manual written for that device.

If you are unable to find the information you need, need assistance with ordering,
or just wish to speak with one of our many product experts about your application,
please call us at (435) 227-9100 or email support@campbellsci.com. In earlier
days, Campbell Scientific dataloggers greeted our customers with a cheery
HELLO at the flip of the ON switch. While the user interface of the CR800
datalogger has advanced beyond those simpler days, you can still hear the cheery
HELLO echoed in the voices you hear at Campbell Scientific.

1.2 Typography
The following type faces are used throughout the CR800 Operator's Manual.
Type color other than black on white does not appear in printed versions of the
manual:

• Underscore — Information specifically flagged as unverified. Usually found
only in a draft or a preliminary released version.

• Capitalization — beginning of sentences, phrases, titles, names, Campbell
Scientific product model numbers.

33

Section 1. Introduction

• Bold — CRBasic instructions within the body text, input commands, output
responses, GUI commands, text on product labels, names of data tables.

• Page numbers — in the PDF version of the manual, hyperlink to the page
represented by the number.

• Italic — glossary entries and titles of publications, software, sections, tables,
figures, and examples.

• Bold italic — CRBasic instruction parameters and arguments within the body
text.

• Blue — CRBasic instructions when set on a dedicated line.
• Teal italic — CRBasic program comments.
• CRBasic code, input commands, and output responses when set apart on

dedicated lines or in program examples, as follows:
Lucida Sans Typewriter

1.3 Capturing CRBasic Code
Many examples of CRBasic code are found throughout this manual. The manual
is designed to make using this code as easy as possible. Keep the following in
mind when copying code from this manual into CRBasic Editor:

If an example crosses pages, select and copy only the contents of one page at a
time. Doing so will help avoid unwanted characters that may originate from page
headings, page numbers, and hidden characters.

1.4 Release Notes
Preliminary Version 4/13/15 for OS v.28:

Reviewers

If feasible, please wait until a future preliminary version is available, perhaps in
June of 2015, for a comprehensive review.

Readers

If any information in this manual, which is preliminary to address OS v. 28
changes, is mission critical, please consult a Campbell Scientific application
engineer.

Primary changes since Version 5/13 are addition of the Precautions (p. 7) section
and completion of about 90% of appendix Status, Settings and Data Table
Information (p. 577) to reflect the major changes to the status, settings, and data
table information registers introduced in OS v. 28.

The remaining sections, from Installation (p. 97) through the appendix Supporting
Product Lists (p. 621), are slated for numerous updates. The following topics are
among those yet to be added or updated:

Analog measurement
Arrays
CDM
Constant table
Data types
DNP3 (major revision)
Function() instruction
Keyboard display

34

Section 1. Introduction

Modbus
NewFile() instruction
Operating system management
Period averaging
Precision of variables
Programming
Route() instruction
Security
Skipped records
Subroutines
SW12 and 12V terminals
Task sequencer
Terminal mode
Time and clock
Troubleshooting
Watchdog resets

35

2. Cautionary Statements
• DANGER: Fire, explosion, and severe-burn hazard. Misuse or improper

installation of the internal lithium battery can cause severe injury. Do not
recharge, disassemble, heat above 100 °C (212 °F), solder directly to the cell,
incinerate, or expose contents to water. Dispose of spent lithium batteries
properly.

• WARNING:

o Protect from over-voltage
o Protect from water
o Protect from ESD (p. 103)

• CAUTION: Disuse accelerates depletion of the internal battery, which backs
up several functions. The internal battery will be depleted in three years or
less if a CR800 is left on the shelf. When the CR800 is continuously used,
the internal battery may last up to 10 or more years. See section Internal
Battery — Details (p. 93) for more information.

• IMPORTANT: Maintain a level of calibration appropriate to the application.
Campbell Scientific recommends factory recalibration of the CR800 every
three years.

37

3. Initial Inspection
• Check the Ships With tab at http://www.campbellsci.com/CR800 for a list of

items shipped with the CR800. Among other things, the following are
provided for immediate use:

o Screwdriver to connect wires to terminals
o Type-T thermocouple for use in the System Quickstart (p. 41) tutorial
o A datalogger program pre-loaded into the CR800 that measures power-

supply voltage and wiring-panel temperature.
o A serial communication cable to connect the CR800 to a PC
o A ResourceDVD that contains product manuals and the following starter

software:

̶ Short Cut
̶ PC200W
̶ DevConfig

• Upon receipt of the CR800, inspect the packaging and contents for damage.
File damage claims with the shipping company.

• Immediately check package contents. Thoroughly check all packaging
material for product that may be concealed. Check model numbers, part
numbers, and product descriptions against the shipping documents. Model or
part numbers are found on each product. On cabled items, the number is
often found at the end of the cable that connects to the measurement device.
The Campbell Scientific number may differ from the part or model number
printed on the sensor by the sensor vendor. Ensure that the expected lengths
of cables were received. Contact Campbell Scientific immediately if there
are any discrepancies.

• Check the operating system version in the CR800 as outlined in the section
Sending the Operating System (OS) (p. 115), and update as needed.

39

4. System Quickstart
Related Topics
 • Quickstart (p. 41)
 • Specifications (p. 95)
 • Installation (p. 97)
 • Operation (p. 295)

This tutorial presents an introduction to CR800 data acquisition and a practical
programming and data retrieval exercise.

4.1 Data-Acquisition Systems — Quickstart
Related Topics:
 • Data-Acquisition Systems — Quickstart (p. 41)
 • Data-Acquisition Systems — Overview (p. 62)

Acquiring data with a Campbell Scientific datalogger is a fairly defined procedure
involving the use of electronic sensor technology, the CR800 datalogger, a
telecommunication link, and datalogger support software (p. 485)

A CR800 is only one part of a data-acquisition system. To acquire good data,
suitable sensors and a reliable data-retrieval method are required. A failure in any
part of the system can lead to "bad" data or no data. A typical data-acquisition
system is conceptualized in figure Data-Acquisition System Components (p. 42)
Following is a list of typical system components:

• Sensors (p. 42) — Electronic sensors convert the state of a phenomenon to an
electrical signal.

• Datalogger (p. 43) — The CR800 measures electrical signals or reads serial
characters. It converts the measurement or reading to engineering units,
performs calculations, and reduces data to statistical values. Data are stored
in memory to await transfer to a PC by way of an external storage device or a
telecommunication link.

• Data Retrieval and Telecommunications (p. 45) — Data are copied (not moved)
from the CR800, usually to a PC, by one or more methods using datalogger
support software. Most of these telecommunication options are bi-directional
and so allow programs and settings to be sent to the CR800.

• Datalogger Support Software (p. 46) — Software retrieves data and sends
programs and settings. The software manages the telecommunication link
and has options for data display.

• Programmable Logic Control (p. 74) — Some data-acquisition systems require
the control of external devices to facilitate a measurement or to control a
device based on measurements. The CR800 is adept at programmable logic
control. Unfortunately, there is little discussion of these capabilities in this
manual. Consult CRBasic Editor Help (p. 123) or a Campbell Scientific
Application Engineer for more information.

• Measurement and Control Peripherals (p. 84) — Some system requirements
exceed the standard input or output compliment of the CR800. Most of these
requirements can be met by addition of input and output expansion modules.

41

Section 4. System Quickstart

Figure 1. Data-Acquisition System Components

4.2 Sensors — Quickstart
Related Topics:
 • Sensors — Quickstart (p. 42)
 • Measurements — Overview (p. 62)
 • Measurements — Details (p. 295)
 • Sensors — Lists (p. 626)

Sensors transduce phenomena into measurable electrical forms by modulating
voltage, current, resistance, status, or pulse output signals. Suitable sensors do
this accurately and precisely (p. 507). Smart sensors have internal measurement and
processing components and simply output a digital value in binary, hexadecimal,
or ASCII character form. The CR800, sometimes with the assistance of various
peripheral devices, can measure or read nearly all electronic sensor output types.

Sensor types supported include:

• Analog

o Voltage
o Current
o Thermocouples
o Resistive bridges

• Pulse

o High frequency
o Switch closure
o Low-level ac

• Period average
• Vibrating wire
• Smart sensors

o SDI-12
o RS-232

42

Section 4. System Quickstart

o Modbus
o DNP3
o RS-485

Refer to the appendix Sensors — Lists (p. 626) for a list of specific sensors available
from Campbell Scientific. A library of sensor manuals and application notes are
available at www.campbellsci.com to assist in measuring many sensor types. The
previous list of supported sensors is not necessarily comprehensive. Consult with
a Campbell Scientific application engineer for assistance in measuring unfamiliar
sensors.

4.3 Datalogger — Quickstart
Related Topics:
 • Datalogger — Quickstart (p. 43)
 • Datalogger — Overview (p. 75)
 • Dataloggers — List (p. 621)

The CR800 can measure almost any sensor with an electrical response. The
CR800 measures electrical signals and converts the measurement to engineering
units, performs calculations and reduces data to statistical values. Most
applications do not require that every measurement be stored but rather combined
with other measurements in statistical or computational summaries. The CR800
will store data in memory to await transfer to the PC with an external storage
devices or telecommunications.

 CR800 electronics are protected in a sealed stainless steel shell. This design
makes the CR800 economical, small, and very rugged.

4.3.1.1 Wiring Panel — Quickstart
Related Topics
 • Wiring Panel — Quickstart (p. 43)
 • Wiring Panel — Overview (p. 75)
 • Measurement and Control Peripherals (p. 348)

As shown in figure Wiring Panel (p. 44), the CR800 wiring panel provides terminals
for connecting sensors, power, and communication devices. Surge protection is
incorporated internally in most wiring panel connectors.

43

Section 4. System Quickstart

Figure 2. Wiring Panel

4.4 Power Supplies — Quickstart
Related Topics:
 • Power Supplies — Specifications
 • Power Supplies — Quickstart (p. 44)
 • Power Supplies — Overview (p. 85)
 • Power Supplies — Details (p. 98)
 • Power Supplies — Products (p. 633)
 • Power Sources (p. 99)
 • Troubleshooting — Power Supplies (p. 469)

The CR800 requires a power supply. Be sure that any power supply components
match the specifications of the device to which they are connected. When
connecting power, first switch off the power supply, then make the connection
before switching the supply on.

The CR800 is operable with power from 9.6 to 16 Vdc applied at the POWER IN
terminals of the green connector on the face of the wiring panel.

External power connects through the green POWER IN connector on the face of
the CR800. The positive power lead connects to 12V. The negative lead

44

Section 4. System Quickstart

connects to G. The connection is internally reverse-polarity protected.

The CR800 is internally protected against accidental polarity reversal on the
power inputs.

4.4.1 Internal Battery — Quickstart
Related Topics:
 • Internal Battery — Quickstart (p. 45)
 • Internal Battery — Details (p. 93)

Warning Misuse or improper installation of the internal lithium battery can
cause severe injury. Fire, explosion, and severe burns can result. Do not recharge,
disassemble, heat above 100 °C (212 °F), solder directly to the cell, incinerate, or
expose contents to water. Dispose of spent lithium batteries properly.

A lithium battery backs up the CR800 clock, program, and memory.

4.5 Data Retrieval and Telecommunications — Quickstart
Related Topics:
 • Data Retrieval and Telecommunications — Quickstart (p. 45)
 • Data Retrieval and Telecommunications — Overview (p. 87)
 • Data Retrieval and Telecommunications — Details (p. 370)
 • Data Retrieval and Telecommunication Peripherals — Lists (p. 627)

If the CR800 datalogger sits near a PC, direct-connect serial communication is
usually the best solution. In the field, direct serial, a data-storage device, can be
used during a site visit. A remote telecommunication option (or a combination of
options) allows you to collect data from your PC over long distances and gives
you the power to discover problems early.

A Campbell Scientific application engineer can help you make a shopping list for
any of these telecommunication options:

• Standard

o RS-232 serial

• Options

o Ethernet
o Mass Storage
o Cellular, Telephone
o iOS, Android
o PDA
o Multidrop, Fiber Optic
o Radio, Satellite

Some telecommunication options can be combined.

45

Section 4. System Quickstart

4.6 Datalogger Support Software — Quickstart
Reading List:
 • Datalogger Support Software — Quickstart (p. 46)
 • Datalogger Support Software — Overview (p. 93)
 • Datalogger Support Software — Details (p. 429)
 • Datalogger Support Software — Lists (p. 630)

Datalogger support software are PC or Linux software available from Campbell
Scientific that facilitate communication between the computer and the CR800. A
wide array of software are available, but this section focuses on the following:

• Short Cut Program Generator for Windows (SCWin)
• PC200W Datalogger Starter Software for Windows
• LoggerLink Mobile Datalogger Starter software for iOS and Android

A CRBasic program must be loaded into the CR800 to enable it to make
measurements, read sensors, and store data. Short Cut is used to write simple
CRBasic programs without the need to learn the CRBasic programming language.
Short Cut is an easy-to-use wizard that steps you through the program building
process.

After the CRBasic program is written, it is loaded onto the CR800. Then, after
sufficient time has elapsed for measurements to be made and data to be stored,
data are retrieved to a computer. These functions are supported by PC200W and
LoggerLink Mobile.

Short Cut and PC200W are available at no charge at
www.campbellsci.com/downloads (http://www.campbellsci.com/downloads).

Note More information about software available from Campbell Scientific can be
found at www.campbellsci.com http://www.campbellsci.com. Please consult with
a Campbell Scientific application engineer for a software recommendation to fit a
specific application.

4.7 Tutorial: Measuring a Thermocouple
This tutorial illustrates the primary functions of the CR800. The exercise
highlights the following:

• Attaching a sensor to the datalogger
• Creating a program for the CR800 to measure the sensor
• Making a simple measurement
• Storing measurement data
• Collecting data from the CR800 with a PC
• Viewing real-time and historical data from the CR800

4.7.1 What You Will Need
The following items are used in this exercise. If you do not have all of these
items, you can provide suitable substitutes. If you have questions about
compatible power supplies or serial cables, please consult a Campbell Scientific
application engineer.

46

http://www.campbellsci.com/downloads
http://www.campbellsci.com/

Section 4. System Quickstart

• CR800 datalogger
• Power supply with an output between 10 to 16 Vdc
• Thermocouple, 4 to 5 inches long, which is shipped with the CR800
• Personal computer (PC) with an available nine-pin RS-232 serial port, or with

a USB port and a USB-to-RS-232 adapter
• Nine-pin female to nine-pin male RS-232 cable, which is shipped with the

CR800
• PC200W software, which is available on the Campbell Scientific resource

DVD or thumb drive, or at www.campbellsci.com.

Note If the CR800 datalogger is connected to the PC during normal operations,
use the Campbell Scientific SC32B interface to provide optical isolation through
the CS I/O port. Doing so protects low-level analog measurements from
grounding disturbances.

4.7.2 Hardware Setup
Note The thermocouple is attached to the CR800 later in this exercise.

4.7.2.1 External Power Supply
With reference to the figure Power and Serial Communication Connections (p. 48),
proceed as follows:

1. Remove the green power connector from the CR800 wiring panel.

2. Switch off the power supply.

3. Connect the positive lead of the power supply to the 12V terminal of the green
power connector. Connect the negative (ground) lead of the power supply to
the G terminal of the green connector.

4. After confirming the power supply connections have the correct polarity, insert
the green power connector into its receptacle on the CR800 wiring panel.

5. Connect the serial cable between the RS-232 port on the CR800 and the RS-
232 port on the PC.

6. Switch the power supply on.

47

Section 4. System Quickstart

Figure 3. Power and Serial Communication Connections

4.7.3 PC200W Software Setup
1. Install PC200W software onto the PC. Follow on-screen prompts during the

installation process. Use the default folders.

2. Open PC200W. Your PC should display a window similar to figure PC200W
Main Window (p. 49). When PC200W is first run, the EZSetup Wizard will run
automatically in a new window. This will configure the software to
communicate with the CR800 datalogger. The table PC200W EZSetup Wizard
Example Selections (p. 49) indicates what information to enter on each screen of
the wizard. Click Next at the lower portion of the window to advance.

See More! A video tutorial is available at
www.youtube.com/playlist?list=PL9E364A63D4A3520A&feature=plcp. Other
video tutorials are available at www.campbellsci.com/videos.

After exiting the wizard, the main PC200W window becomes visible. This
window has several tabs. The Clock/Program tab displays information on the
currently selected CR800 with clock and program functions. Monitor Data and
Collect Data tabs are also available. Icons across the top of the window access
additional functions.

48

Section 4. System Quickstart

Figure 4. PC200W Main Window

Table 1. PC200W EZSetup Wizard Example Selections
Start the wizard to follow table entries.

Screen Name Information Needed

Introduction Provides an introduction to the EZSetup Wizard along with
instructions on how to navigate through the wizard.

Datalogger Type and Name
Select the CR800 from the list box.
Accept the default name of "CR800."

COM Port Selection

Select the correct PC COM port for the serial connection.
Typically, this will be COM1. Other COM numbers are
possible, especially when using a USB cable.
Leave COM Port Communication Delay at 00 seconds.
Note When using USB serial cables, the COM number may
change if the cable is moved to a different USB port. This will
prevent data transfer between the software and CR800. Should
this occur, simply move the cable back to the original port. If
this is not possible, close then reopen the PC200W software to
refresh the available COM ports. Click on Edit Datalogger
Setup and change the COM port to the new port number.

Datalogger Settings
Configures how the CR800 communicates with the PC.
For this tutorial, accept the default settings.

Datalogger Settings -
Security

For this tutorial, Security Code should be set to 0 and PakBus
Encryption Key should be left blank.

Communication Setup
Summary

Provides a summary of settings in previous screens. No changes
are needed for this tutorial. Press Finish to exit the wizard.

49

Section 4. System Quickstart

4.7.4 Write CRBasic Program with Short Cut
Short Cut objectives:

• Create a program to measure the voltage of the CR800 power supply,
temperature of the CR800 wiring-panel, and ambient air temperature using a
thermocouple.

• When program is downloaded to the CR800, it takes samples once per second
and stores averages of these values at one-minute intervals.

See More A video tutorial is available at
www.youtube.com/playlist?list=PLCD0CAFEAD0390434&feature=plcp
http://www.youtube.com/playlist?list=PLCD0CAFEAD0390434&feature=plcp.
Other video resources are available at www.campbellsci.com/videos.

4.7.4.1 Procedure: (Short Cut Steps 1 to 5)
1. Click on the Short Cut icon in the upper-right corner of the PC200W window.

The icon resembles a clock face.

2. The Short Cut window is shown. Click New Program.

3. In the Datalogger Model drop-down list, select CR800.

4. In the Scan Interval box, enter 1 and select Seconds in the drop-down list box.
Click Next.

Note The first time Short Cut is run, a prompt will appear asking for a choice of
ac noise rejection. Select 60 Hz for the United States and areas using 60 Hz ac
voltage. Select 50 Hz for most of Europe and areas that operate at 50 Hz.

A second prompt lists sensor support options. Campbell Scientific, Inc. (US) is
probably the best fit if you are outside Europe.

5. The next window displays Available Sensors and Devices. Expand the
Sensors folder by clicking on the symbol. This shows several sub-folders.
Expand the Temperature folder to view available sensors. Note that a wiring
panel temperature (PTemp_C in the Selected column) is selected by default.

50

http://www.youtube.com/playlist?list=PLCD0CAFEAD0390434&feature=plcp

Section 4. System Quickstart

Figure 5. Short Cut Temperature Sensor Folder

4.7.4.2 Procedure: (Short Cut Steps 6 to 7)
6. Double-click Type T (copper-constantan) Thermocouple to add it into the

Selected column. A dialog window is presented with several fields. By
immediately clicking OK, you accept default options that include selection of
1 sensor and PTemp_C as the reference temperature measurement.

Note BattV (battery voltage) and PTempC (wiring panel temperature) are
default measurements. During operation, battery and temperature should be
recorded at least daily to assist in monitoring system status.

7. At the left portion of the main Short Cut window, click Wiring Diagram.
Attach the physical type-T thermocouple to the CR800 as shown in the
diagram. Click on 3. Sensors in the left portion of the window to return to the
sensor selection screen.

51

Section 4. System Quickstart

Figure 6. Short Cut Thermocouple Wiring

4.7.4.3 Procedure: (Short Cut Step 8)
Historical Note In the space-race era, measuring thermocouples in the field was
a complicated and cumbersome process incorporating a three-junction
thermocouple, a micro-voltmeter, a vacuum flask filled with an ice slurry, and a
thick reference book. One junction connected to the micro-voltmeter. Another sat
in the vacuum flask as a 0 °C reference. The third was inserted into the location of
the temperature of interest. When the microvolt measurement settled out, the
microvolt reading was recorded by hand. This value was then looked up on the
appropriate table in the reference book to determine the equivalent temperature.

Then along came Eric and Evan Campbell. Campbell Scientific designed the first
CR7 datalogger to make thermocouple measurements without the need for
vacuum flasks, reference books, or three junctions. Now, there's an idea!

Nowadays, a thermocouple need only consist of two wires of dissimilar metals,
such as copper and constantan, joined at one end. The joined end is the
measurement junction; the junction that is created when the two wires of
dissimilar metals are wired to CR800 analog input terminals is the reference
junction.

When the two junctions are at different temperatures, a voltage proportional to the
temperature difference is induced in the wires. The thermocouple measurement
requires the reference-junction temperature to calculate the measurement-junction
temperature using proprietary algorithms in the CR800 operating system.

8. Click Next to advance to the Outputs tab, which displays the list Selected
Sensors to the left and data storage tables to the right under Selected Outputs.

52

Section 4. System Quickstart

Figure 7. Short Cut Outputs Tab

4.7.4.4 Procedure: (Short Cut Steps 9 to 12)
9. Two output tables (1 Table1 and 2 Table2 tabs) are initially available. Both

tables have a Store Every field and a drop-down list from which to select the
time units. These are used to set the time intervals when data are stored.

10. Only one table is needed for this tutorial, so Table 2 can be removed. Click 2
Table2, then click Delete Table.

11. Change the name of the remaining table from Table1 to OneMin, and then
change the Store Every interval to 1 Minutes.

12. Add measurements to the table by selecting BattV under Selected Sensors,
and then clicking Average in the center column of buttons. Repeat this
procedure for PTemp_C and Temp_C.

53

Section 4. System Quickstart

Figure 8. Short Cut Outputs Tab

4.7.4.5 Procedure: (Short Cut Steps 13 to 14)
13. Click Finish to compile the program. Give the program the name

MyTemperature. A summary screen will appear showing the compiler
results. Any errors during compiling will be displayed.

Figure 9. Short Cut Compile Confirmation

54

Section 4. System Quickstart

14. Close this window by clicking on X in the upper right corner.

4.7.5 Send Program and Collect Data
PC200W Datalogger Support Software objectives:

• Send the CRBasic program created by Short Cut in the previous procedure to
the CR800.

• Collect data from the CR800.
• Store the data on the PC.

4.7.5.1 Procedure: (PC200W Step 1)
1. From the PC200W Clock/Program tab, click on Connect button to establish

communications with the CR800. When communications have been
established, the button will change to Disconnect.

Figure 10. PC200W Main Window

4.7.5.2 Procedure: (PC200W Steps 2 to 4)
2. Click Set Clock to synchronize the CR800 clock with the computer clock.

3. Click Send Program.... A warning will appear that data on the datalogger will
be erased. Click Yes. A dialog box will open. Browse to the
C:\CampbellSci\SCWin folder. Select the MyTemperature.cr8 file. Click
Open. A status bar will appear while the program is sent to the CR800
followed by a confirmation that the transfer was successful. Click OK to
close the confirmation.

4. After sending a program to the CR800, a good practice is to monitor the
measurements to ensure they are reasonable. Select the Monitor Data tab.
The window now displays data found in the CR800 Public table.

55

Section 4. System Quickstart

Figure 11. PC200W Monitor Data Tab – Public Table

4.7.5.3 Procedure: (PC200W Step 5)
5. To view the OneMin table, select an empty cell in the display area. Click

Add. In the Add Selection window Tables field, click on OneMin, then
click Paste. The OneMin table is now displayed.

56

Section 4. System Quickstart

Figure 12. PC200W Monitor Data Tab — Public and OneMin Tables

4.7.5.4 Procedure: (PC200W Step 6)
6. Click on the Collect Data tab and select data to be collected and the storage

location on the PC.

Figure 13. PC200W Collect Data Tab

57

Section 4. System Quickstart

4.7.5.5 Procedure: (PC200W Steps 7 to 10)
7. Click the OneMin box so a check mark appears in the box. Under What to

Collect, select New data from datalogger. This selects the data to be
collected.

8. Click on a table in the list to highlight it, then click Change Table's Output
File... to change the name of the destination file.

9. Click on Collect. A progress bar will appear as data are collected, followed by
a Collection Complete message. Click OK to continue.

10. To view data, click the icon at the top of the PC200W window to open
the View utility.

Figure 14. PC200W View Data Utility

58

Section 4. System Quickstart

4.7.5.6 Procedure: (PC200W Steps 11 to 12)

11. Click on to open a file for viewing. In the dialog box, select the
CR800_OneMin.dat file and click Open.

12. The collected data are now shown.

Figure 15. PC200W View Data Table

4.7.5.7 Procedure: (PC200W Steps 13 to 14)
13. Click the heading of any data column. To display the data in that column in a

line graph, click the icon.

14. Close the Graph and View windows, and then close the PC200W program.

59

Section 4. System Quickstart

Figure 16. PC200W View Line Graph

60

5. System Overview
Related Topics
 • Quickstart (p. 41)
 • Specifications (p. 95)
 • Installation (p. 97)
 • Operation (p. 295)

A Campbell Scientific data-acquisition system is made up of the following basic
components:

• Sensors
• Datalogger, which includes:

o Clock
o Measurement and control circuitry
o Hardware and firmware to communicate with telecommunication devices
o User-entered CRBasic program

• Telecommunication link or external storage device
• Datalogger support software (p. 485)

The figure Data-Acquisition Systems — Overview (p. 62) illustrates a common
CR800-based data-acquisition system.

61

Section 5. System Overview

Figure 17. Data-Acquisition System — Overview

5.1 Measurements — Overview
Related Topics:
 • Sensors — Quickstart (p. 42)
 • Measurements — Overview (p. 62)
 • Measurements — Details (p. 295)
 • Sensors — Lists (p. 626)

62

Section 5. System Overview

Most electronic sensors, whether or not they are supplied by Campbell Scientific,
can be connected directly to the CR800.

Manuals that discuss alternative input routes, such as external multiplexers,
peripheral measurement devices, or a wireless sensor network, can be found at
www.campbellsci.com/manuals (http://www.campbellsci.com/manuals). You can
also consult with a Campbell Scientific application engineer.

This section discusses direct sensor-to-datalogger connections and applicable
CRBasic programming to instruct the CR800 how to make, process, and store the
measurements. The CR800 wiring panel has terminals for the following
measurement inputs:

5.1.1 Time Keeping — Overview
Related Topics:
 • Time Keeping — Overview (p. 75)
 • Time Keeping — Details (p. 295)

Measurement of time is an essential function of the CR800. Time measurement
with the on-board clock enables the CR800 to attach time stamps to data, measure
the interval between events, and time the initiation of control functions.

5.1.2 Analog Measurements — Overview
Related Topics:
 • Analog Measurements — Overview (p. 63)
 • Analog Measurements — Details (p. 297)

Analog sensors output a continuous voltage or current signal that varies with the
phenomena measured. Sensors compatible with the CR800 output a voltage.
Current output can be made compatible with a resistive shunt.

Sensor connection is to H/L] terminals configurable for differential (DIFF) or
single-ended (SE) inputs. For example, differential channel 1 is comprised of
terminals 1H and 1L, with 1H as high and 1L as low.

5.1.2.1 Voltage Measurements — Overview
Related Topics:
 • Voltage Measurements — Specifications
 • Voltage Measurements — Overview (p. 63)
 • Voltage Measurements — Details (p. 297)

• Maximum input voltage range: ±5000 mV
• Measurement resolution range: 0.67 µV to 1333 µV

Single-ended and differential connections are illustrated in the figures Analog
Sensor Wired to Single-Ended Channel #1 (p. 64) and Analog Sensor Wired to
Differential Channel #1 (p. 64). Table Differential and Single-Ended Input
Terminals (p. 65) lists CR800 analog-input channel termnal assignments.

Conceptually, analog-voltage sensors output two signals: high and low.
Sometimes, the low signal is simply sensor ground. A single-ended measurement
measures the high signal with reference to ground, with the low signal tied to

63

http://www.campbellsci.com/manuals

Section 5. System Overview

ground. A differential measurement measures the high signal with reference to
the low signal. Each configuration has a purpose, but the differential
configuration is usually preferred.

A differential configuration may significantly improve the voltage measurement.
Following are conditions the often indicate that a differential measurement should
be used:

• Ground currents cause voltage drop between the sensor and the signal-ground
terminal. Currents >5 mA are usually considered undesirable. These
currents may result from resistive-bridge sensors using voltage excitation, but
these currents only flow when the voltage excitation is applied. Return
currents associated with voltage excitation cannot influence other single-
ended measurements of small voltage unless the same voltage-excitation
terminal is enabled during the unrelated measurements.

• Measured voltage is less than 200 mV.

Figure 18. Analog Sensor Wired to Single-Ended Channel #1

Figure 19. Analog Sensor Wired to Differential Channel #1

64

Section 5. System Overview

Table 2. Differential and Single-Ended Input
Terminals

DIFF Terminals SE Terminals

1H 1

1L 2

2H 3

2L 4

3H 5

3L 6

5.1.2.1.1 Single-Ended Measurements — Overview
Related Topics:
 • Single-Ended Measurements — Overview (p. 65)
 • Single-Ended Measurements — Details (p. 299)

A single-ended measurement measures the difference in voltage between the
terminal configured for single-ended input and the reference ground. The
measurement sequence is illustrated in figure Simplified Voltage Measurement
Sequence (p. 298). While differential measurements are usually preferred, a single-
ended measurement is often adequate in applications wherein some types of noise
are not a problem and care is taken to avoid problems caused by ground currents.
Examples of applications wherein a single-ended measurement may be preferred
include:

• Not enough differential terminals available. Differential measurements use
twice as many H/L] terminals as do single-ended measurements.

• Rapid sampling is required. Single-ended measurement time is about half
that of differential measurement time.

• Sensor is not designed for differential measurements. Many Campbell
Scientific sensors are not designed for differential measurement, but the draw
backs of a single-ended measurement are usually mitigated by large
programmed excitation and/or sensor output voltages.

•

However, be aware that because a single-ended measurement is referenced to
CR800 ground, any difference in ground potential between the sensor and the
CR800 will result in error, as emphasized in the following examples:

• If the measuring junction of a thermocouple used to measure soil temperature
is not insulated, and the potential of earth ground is greater at the sensor than
at the point where the CR800 is grounded, a measurement error will result.
For example, if the difference in grounds is 1 mV, with a copper-constantan
thermocouple, the error will be approximately 25 °C.

• If signal conditioning circuitry, such as might be found in a gas analyzer, and
the CR800 use a common power supply, differences in current drain and lead
resistance often result in different ground potentials at the two instruments
despite the use of a common ground. A differential measurement should be
made on the analog output from the external signal conditioner to avoid error.

65

Section 5. System Overview

5.1.2.1.2 Differential Measurements — Overview
Related Topics:
 • Differential Measurements — Overview (p. 66)
 • Differential Measurements — Details (p. 300)

Summary Use a differential configuration when making voltage measurements,
unless constrained to do otherwise.

A differential measurement measures the difference in voltage between two input
terminals. Its sequence is illustrated in the figure Simplified Differential-Voltage
Measurement Sequence (p. 66), and is characterized by multiple automatic
measurements, the results of which are averaged automatically before the final
value is reported. For example, the sequence on a differential measurement using
the VoltDiff() instruction involves two measurements — first with the high input
referenced to the low, then with the inputs reversed. Reversing the inputs before
the second measurement cancels noise common to both leads as well as small
errors caused by junctions of different metals that are throughout the measurement
electronics.

Figure 20. Simplified Differential-Voltage Measurement Sequence

5.1.2.2 Current Measurements — Overview
Related Topics:
 • Current Measurements — Overview (p. 66)
 • Current Measurements — Details (p. 319)

A measurement of current is accomplished through the use of external resistors to
convert current to voltage, then measure the voltage as explained in the section
Differential Measurements — Overview (p. 66). The voltage is measured with the
CR800 voltage measurement circuitry.

5.1.2.3 Resistance Measurements — Overview
Related Topics:
 • Resistance Measurements — Specifications
 • Resistance Measurements — Overview (p. 66)
 • Resistance Measurements — Details (p. 319)
 • Resistance Measurements — Instructions (p. 525)

Many analog sensors use a variable-resistive device as the fundamental sensing
element. These elements are placed in a wheatstone bridge or related circuit. The
CR800 can measure most bridge circuit configurations. A bridge measurement is

66

Section 5. System Overview

a special case voltage measurement. Examples include:

• Strain gage: resistance in a pressure-transducer strain gage correlates to a
water pressure.

• Position potentiometer: a change in resistance in a wind-vane potentiometer
correlates to a change in wind direction.

5.1.2.3.1 Voltage Excitation
Bridge resistance is determined by measuring the difference between a known
voltage applied to the excitation (input) arm of a resistor bridge and the voltage
measured on the output arm. The CR800 supplies a precise-voltage excitation via
Vx terminals . Return voltage is measured on H/L] terminals configured for
single-ended or differential input. Examples of bridge-sensor wiring using
voltage excitation are illustrated in figures Half-Bridge Wiring — Wind Vane
Potentiometer (p. 67) and Full-Bridge Wiring — Pressure Transducer (p. 68).

Figure 21. Half-Bridge Wiring Example — Wind Vane Potentiometer

67

Section 5. System Overview

Figure 22. Full-Bridge Wiring Example — Pressure Transducer

5.1.2.4 Strain Measurements — Overview
Related Topics:
 • Strain Measurements — Overview (p. 68)
 • Strain Measurements — Details (p. 324)
 • FieldCalStrain() Examples (p. 216)

Strain gage measurements are usually associated with structural-stress analysis.
When making strain measurements, please first consult with a Campbell Scientific
application engineer.

5.1.3 Pulse Measurements — Overview
Related Topics:
 • Pulse Measurements — Specifications
 • Pulse Measurements — Overview (p. 68)
 • Pulse Measurements — Details (p. 331)
 • Pulse Measurements — Instructions (p. 527)

The output signal generated by a pulse sensor is a series of voltage waves. The
sensor couples its output signal to the measured phenomenon by modulating wave
frequency. The CR800 detects the state transition as each wave varies between
voltage extremes (high-to-low or low-to-high). Measurements are processed and
presented as counts, frequency, or timing data.

 P terminals are configurable for pulse input to measure counts or frequency from
the following signal types:

• High-frequency 5 Vdc square-wave
• Switch closure
• Low-level ac

68

Section 5. System Overview

C terminals configurable for input for the following:

• State
• Edge counting
• Edge timing

o Resolution — 540 ns

Note A period-averaging sensor has a frequency output, but it is connected to a
SE terminal configured for period-average input and measured with the
PeriodAverage() instruction (see section Period Averaging — Overview (p. 70)).

5.1.3.1 Pulses Measured
Pulse outputs vary. These variations are illustrated in the figure Pulse-Sensor
Output-Signal Types (p. 69).

Figure 23. Pulse-Sensor Output-Signal Types

5.1.3.2 Pulse-Input Channels
 Table Pulse-Input Channels and Measurements (p. 69) lists devices, channels and
options for measuring pulse signals.

Table 3. Pulse-Input Terminals and Measurements
Pulse-Input

Terminal

Input Type

Data Option
CRBasic

Instruction

P Terminal

• Low-level ac

• High-frequency

• Switch-closure

• Counts

• Frequency

• Run average
of frequency

PulseCount()

C Terminal

• Low-level ac with
LLAC4 (p. 622)
module

• High-frequency

• Switch-closure

• Counts

• Frequency

• Running
average of
frequency

PulseCount()
TimerIO()

69

Section 5. System Overview

Table 3. Pulse-Input Terminals and Measurements
Pulse-Input

Terminal

Input Type

Data Option
CRBasic

Instruction

• Interval

• Period

• State

5.1.3.3 Pulse Sensor Wiring
Read More See the section Pulse Measurement Tips (p. 338)

An example of a pulse sensor connection is illustrated in figure Pulse-Input
Wiring Example — Anemometer Switch (p. 70). Pulse sensors have two active
wires, one of which is ground. Connect the ground wire to a (signal ground)
terminal. Connect the other wire to a P terminal. Sometimes the sensor will
require power from the CR800, so there may be two power wires — one of which
will be power ground. Connect power ground to a G terminal. Do not confuse
the pulse wire with the positive-power wire, or damage to the sensor or CR800
may result. Some switch-closure sensors may require a pull-up resistor.

Figure 24. Pulse-Input Wiring Example — Anemometer

5.1.4 Period Averaging — Overview
Related Topics:
 • Period Averaging — Specifications
 • Period Averaging — Overview (p. 70)
 • Period Averaging — Details (p. 341)

The CR800 can measure the period of an analog signal.

 Numbered SE terminals are configurable for period average:

• Voltage gain: 1, 10, 33, 100
• Maximum frequency: 200 kHz

70

Section 5. System Overview

• Resolution: 136 ns

Note Both pulse-count and period-average measurements are used to measure
frequency output sensors. Yet pulse-count and period-average measurement
methods are different. Pulse-count measurements use dedicated hardware — pulse
count accumulators, which are always monitoring the input signal, even when the
CR800 is between program scans. In contrast, period-average measurement
instructions only monitor the input signal during a program scan. Consequently,
pulse-count scans can usually be much less frequent than period-average scans.
Pulse counters may be more susceptible to low-frequency noise because they are
always "listening", whereas period averaging may filter the noise by reason of
being "asleep" most of the time. Pulse-count measurements are not appropriate for
sensors that are powered off between scans, whereas period-average
measurements work well since they can be placed in the scan to execute only
when the sensor is powered and transmitting the signal.

Period-average measurements use a high-frequency digital clock to measure time
differences between signal transitions, whereas pulse-count measurements simply
accumulate the number of counts. As a result, period-average measurements offer
much better frequency resolution per measurement interval, as compared to pulse-
count measurements. The frequency resolution of pulse-count measurements can
be improved by extending the measurement interval by increasing the scan
interval and by averaging. For information on frequency resolution, see
Frequency Resolution (p. 335).

5.1.5 Vibrating-Wire Measurements — Overview
Related Topics:
 • Vibrating-Wire Measurements — Specifications
 • Vibrating-Wire Measurements — Overview (p. 71)
 • Vibrating-Wire Measurements — Details (p. 343)

Vibrating-wire sensors impart long term stability to many environmental and
industrial measurement applications. The CR800 is equipped to measure these
sensors either directly or through interface modules.

A thermistor included in most sensors can be measured to compensate for
temperature errors.

Measuring the resonant frequency by means of period averaging is the classic
technique, but Campbell Scientific has developed static and dynamic spectral-
analysis techniques (Vspect (p. 506)tm) that produce superior noise rejection, higher
resolution, diagnostic data, and, in the case of dynamic Vspect, measurements up
to 333.3 Hz. Dynamic measurements require addition of an interface module.

 SE terminals are configurable for time-domain vibrating-wire measurement,
which is a technique now superseded in most applications by Vspect (p. 506)
vibrating-wire analysis. See appendix Vibrating-Wire Input Modules List (p. 623)
for more information.

71

Section 5. System Overview

5.1.6 Reading Smart Sensors — Overview
Related Topics:
 • Reading Smart Sensors — Overview (p. 72)
 • Reading Smart Sensors — Details (p. 344)

A smart sensor is equipped with independent measurement circuitry that makes
the basic measurement and sends measurement and measurement related data to
the CR800. Smart sensors vary widely in output modes. Many have multiple
output options. Output options supported by the CR800 include SDI-12 (p. 259),
RS-232 (p. 238), Modbus (p. 391), and DNP3 (p. 387).

The following smart sensor types can be measured on the indicated terminals:

• SDI-12 devices: C
• Synchronous Devices for Measurement (SDM): C
• Smart sensors: C terminals, RS-232 port, and CS I/O port with the

appropriate interface.
• Modbus or DNP3 network: RS-232 port and CS I/O port with the appropriate

interface
• Other serial I/O devices: C terminals, RS-232 port, and CS I/O port with the

appropriate interface

5.1.6.1 SDI-12 Sensor Support — Overview
Related Topics:
 • SDI-12 Sensor Support — Overview (p. 72)
 • SDI-12 Sensor Support — Details (p. 344)
 • Serial I/O: SDI-12 Sensor Support — Programming Resource (p. 259)
 • SDI-12 Sensor Support — Instructions (p. 529)

SDI-12 is a smart-sensor protocol that uses one SDI-12 port and is powered by 12
Vdc. It is fully supported by the CR800 datalogger. Refer to the chart CR800
Terminal Definitions (p. 76), which indicates C terminals that can be configured for
SDI-12 input. For more information about SDI-12 support, see section Serial I/O:
SDI-12 Sensor Support — Details (p. 259).

5.1.6.2 RS-232 — Overview
 The CR800 has 4 ports available for RS-232 input as shown in figure Terminals
Configurable for RS-232 Input (p. 73).

Note With the correct adapter, the CS I/O port can often be used as an RS-232
I/O port.

As indicated in figure Use of RS-232 and Digital I/O when Reading RS-232
Devices (p. 73), RS-232 sensors can often be connected to C terminal pairs
configured for serial I/O, to the RS-232 port, or to the CS I/O port with the proper
adapter. Ports can be set up for baud rate, parity, stop-bit, and so forth as
described in CRBasic Editor Help.

72

Section 5. System Overview

Figure 25. Terminals Configurable for RS-232 Input

Figure 26. Use of RS-232 and Digital I/O when Reading RS-232 Devices

5.1.7 Field Calibration — Overview
Related Topics:
 • Field Calibration — Overview (p. 73)
 • Field Calibration — Details (p. 203)

Calibration increases accuracy of a measurement device by adjusting its output, or
the measurement of its output, to match independently verified quantities.
Adjusting sensor output directly is preferred, but not always possible or practical.
By adding FieldCal() or FieldCalStrain() instructions to the CR800 CRBasic
program, measurements of a linear sensor can be adjusted by modifying the
programmed multiplier and offset applied to the measurement.

5.1.8 Cabling Effects — Overview
Related Topics:
 • Cabling Effects — Overview (p. 73)
 • Cabling Effects — Details (p. 345)

Sensor cabling can have significant effects on sensor response and accuracy. This
is usually only a concern with sensors acquired from manufacturers other than

73

Section 5. System Overview

Campbell Scientific. Campbell Scientific sensors are engineered for optimal
performance with factory-installed cables.

5.1.9 Synchronizing Measurements — Overview
Related Topics:
 • Synchronizing Measurements — Overview (p. 74)
 • Synchronizing Measurements — Details (p. 346)

Timing of a measurement is usually controlled relative to the CR800 clock.
When sensors in a sensor network are measured by a single CR800, measurement
times are synchronized, often within a few milliseconds, depending on sensor
number and measurement type. Large numbers of sensors, cable length
restrictions, or long distances between measurement sites may require use of
multiple CR800s.

5.2 PLC Control — Overview
Related Topics:
 • PLC Control — Overview (p. 74)
 • PLC Control — Details (p. 237)
 • PLC Control Modules — Overview (p. 349)
 • PLC Control Modules — Lists (p. 624)
 • PLC Control — Instructions (p. 536)
 • Switched Voltage Output — Specifications
 • Switched Voltage Output — Overview (p. 78)
 • Switched Voltage Output — Details (p. 101)

This section is slated for expansion. Below are a few tips.

• Short Cut programming wizard has provisions for simple on/off control.
• PID control can be done with the CR800. Ask a Campbell Scientific

application engineer for more information.
• When controlling a PID algorithm, a delay between processing (algorithm

input) and the control (algorithm output) is not usually desirable. A delay
will not occur in either sequential mode (p. 501) or pipeline mode (p. 497),
assuming an appropriately fast scan interval is programmed, and the program
is not skipping scans. In sequential mode, if some task occurs that pushes
processing time outside the scan interval, skipped scans will occur and the
PID control may fail. In pipeline mode, with an appropriately sized scan
buffer, no skipped scans will occur. However, the PID control may fail as the
processing instructions work through the scan buffer.

• To avoid these potential problems, bracket the processing instructions in the
CRBasic program with ProcHiPri and EndProcHiPri. Processing
instructions between these instructions are given the same high priority as
measurement instructions and do not slip into the scan buffer if processing
time is increased. ProcHiPri and EndProcHiPri may not be selectable in
CRBasic Editor. You can type them in anyway, and the compiler will
recognize them.

74

Section 5. System Overview

5.3 Datalogger — Overview
Related Topics:
 • Datalogger — Quickstart (p. 43)
 • Datalogger — Overview (p. 75)
 • Dataloggers — List (p. 621)

The CR800 datalogger is the principal component of a data-acquisition system. It
is a precision instrument designed for demanding environments and low-power
applications. CPU, analog and digital measurements, analog and digital outputs,
and memory usage are controlled by the operating system, the on-board clock, and
the CRBasic application program you write.

The application program is written in CRBasic, a programming language that
includes measurement, data processing, and analysis routines and a standard
BASIC instruction set. Short Cut (p. 501), a very user-friendly program generator
software application, can be used to write programs for many basic measurement
and control applications. CRBasic Editor, a software application available in
some datalogger support software (p. 485) packages, is used to write more complex
programs.

Measurement data are stored in non-volatile memory. Most applications do not
require that every measurement be recorded. Rather, measurements are usually
combined in statistical or computational summaries. The CR800 has the option of
evaluating programmed instructions sequentially (sequential mode), or in the
more efficient pipeline mode. In pipeline mode, the CR800 determines the order
of instruction execution.

5.3.1 Time Keeping — Overview
Related Topics:
 • Time Keeping — Overview (p. 75)
 • Time Keeping — Instructions (p. 552)

Nearly all CR800 functions depend on the internal clock. The operating system
and the CRBasic user program use the clock for scheduling operations. The
CRBasic program times functions through various instructions, but the method of
timing is nearly always in the form of "time into an interval." For example, 6:00
AM is represented in CRBasic as "360 minutes into a 1440 minute interval", 1440
minutes being the length of a day and 360 minutes into that day corresponding to
6:00 AM.

Zero minutes into an interval puts it at the "top" of that interval, that is at the
beginning of the second, minute, hours, or day. For example, 0 minutes into a
1440 minute interval corresponds to Midnight. When an interval of a week is
programmed, the week begins at Midnight on Monday morning.

5.3.2 Wiring Panel — Overview
Related Topics
 • Wiring Panel — Quickstart (p. 43)
 • Wiring Panel — Overview (p. 75)
 • Measurement and Control Peripherals (p. 348)

75

Section 5. System Overview

The wiring panel of the CR800 is the interface to most functions. These functions
are introduced in the following sections while reviewing wiring-panel features
illustrated in the figure Wiring Panel (p. 44). The table CR800 Terminal Definitions
(p. 76) details the functions of the various terminals on the wiring panel.
Measurement and control peripherals expand the input and output capabilities of
the wiring panel.

Figure 27. Wiring Panel

76

Section 5. System Overview

Table 4. CR800 Wiring Panel Terminal Definitions

La
be

ls

SE 1 2 3 4 5 6 COM1 COM2

DIFF ┌ 1 ┐ ┌ 2 ┐ ┌ 3 ┐ T
x

R
x

T
x

Rx

H L H L H L

V
X

1

V
X

2

P1

P2

C
1

C
2

C
3

C
4

5V

12
V

SW
12

R
S-

23
2

C
S

I/
O

M
ax

Fu
nc

tio
n

Analog Input

Single-ended       6

Differential (high/low)    3

Analog period average       6

Vibrating wire
2

       6

Analog Output

Switched Precision Voltage   2

Pulse Counting

Switch closure       6

High frequency       6

Low-level Vac   2

Digital I/O

Control     4

Status     4

General I/O (TX,RX)   2

Pulse-width modulation     4

Timer I/O     4

Interrupt     4

Continuous Regulated
3

5 Vdc  1

Continuous Unregulated
3

12 Vdc  1

Switched Regulated
3

5 Vdc     4

Switched Unregulated
3

12 Vdc  1

UART

True RS-232 (TX/RX) 

4

2

TTL RS-232 (TX/RX)   2

SDI-12   4

SDM (Data/Clock/Enable)  1

77

Section 5. System Overview

1 Terminal expansion modules are available. See section Measurement and Control Peripherals — Overview (p. 84).
2 Static, time domain measurement. Obsolete. See section Vibrating-Wire Measurements — Overview (p. 71).
3 Check the table Current Source and Sink Limits (p. 101).
4 CS I/O requires an interfacing device for sensor input. See section Data Retrieval and Telecommunication Peripherals — Lists
(p. 627).

5.3.2.1 Switched Voltage Output — Overview
Related Topics:
 • Switched Voltage Output — Specifications
 • Switched Voltage Output — Overview (p. 78)
 • Switched Voltage Output — Details (p. 101)
 • PLC Control — Overview (p. 74)
 • PLC Control — Details (p. 237)
 • PLC Control Modules — Overview (p. 349)
 • PLC Control Modules — Lists (p. 624)
 • PLC Control — Instructions (p. 536)

 C terminals are selectable as binary inputs, control outputs, or communication
ports. See the section Measurement — Overview (p. 62) for a summary of
measurement functions. Other functions include device-driven interrupts,
asynchronous communications and SDI-12 communications. Table CR800
Terminal Definitions (p. 76) summarizes available options.

Figure Control and Monitoring with C Terminals (p. 79) illustrates a simple
application wherein a C terminal configured for digital input and another
configured for control output are used to control a device (turn it on or off) and
monitor the state of the device (whether the device is on or off).

78

Section 5. System Overview

Figure 28. Control and Monitoring with C Terminals

5.3.2.2 Voltage Excitation — Overview
Related Topics:
 • Voltage and Current Excitation — Specifications
 • Voltage Excitation — Overview (p. 79)

The CR800 has several terminals designed to supply switched voltage to
peripherals, sensors, or control devices:

• Voltage Excitation (switched-analog output) — Vx terminals supply precise
voltage in the range of ±2500 mV. These terminals are regularly used with
resistive-bridge measurements. Each terminal will source up to ±25 mA.

•
• Digital I/O — C terminals configured for on / off and PWM (pulse width

modulation) or PDM (pulse duration modulation) on C4.
• Switched 12 Vdc — SW12 terminals. Primary battery voltage under

program control to switch external devices (such as humidity sensors)
requiring nominal 12 Vdc. SW12 terminals can source up to 900 mA. See
the table Current Source and Sink Limits (p. 101).

• Continuous Analog Output — available by adding a peripheral analog output
device available from Campbell Scientific. Refer to section Analog-Output
Modules (p. 349) for information on available expansion modules.

5.3.2.3 Grounding Terminals
Read More See Grounding (p. 103).

79

Section 5. System Overview

Proper grounding lends stability and protection to a data acquisition system. It is
the easiest and least expensive insurance against data loss — and often the most
neglected. The following terminals are provided for connection of sensor and
CR800 datalogger grounds:

• Signal Ground () — reference for single-ended analog inputs, pulse inputs,
excitation returns, and as a ground for sensor shield wires. Signal returns for
pulse inputs should use terminals located next to the pulse input terminal.
Current loop sensors, however, should be grounded to power ground.

• Power Ground (G) — return for 5V, SW12, 12V, current loop sensors, and C
configured for control. Use of G grounds for these outputs minimizes
potentially large current flow through the analog-voltage-measurement
section of the wiring panel, which can cause single-ended voltage
measurement errors.

•
• Earth Ground Lug () — connection point for a heavy-gage earth-ground

wire. A good earth connection is necessary to secure the ground potential of
the CR800 and shunt transients away from electronics. Minimum 14 AWG
wire is recommended.

5.3.2.4 Power Terminals
Related Topics:
 • Power Supplies — Specifications
 • Power Supplies — Quickstart (p. 44)
 • Power Supplies — Overview (p. 85)
 • Power Supplies — Details (p. 98)
 • Power Supplies — Products (p. 633)
 • Power Sources (p. 99)
 • Troubleshooting — Power Supplies (p. 469)

5.3.2.4.1 Power In
The POWER IN connector is the connection point for external power supply
components.

5.3.2.4.2 Power Out Terminals
Note Refer to the section Switched Voltage Output — Details (p. 101) for more
information on using the CR800 as a power supply for sensors and peripheral
devices.

The CR800 can be used as a power source for sensors and peripherals. The
following voltages are available:

• 12V terminals: unregulated nominal 12 Vdc. This supply closely tracks the
primary CR800 supply voltage, so it may rise above or drop below the power
requirement of the sensor or peripheral. Precautions should be taken to
prevent damage to sensors or peripherals from over- or under-voltage
conditions, and to minimize the error associated with the measurement of
underpowered sensors. See section Power Supplies — Overview (p. 85).

• 5V terminals: regulated 5 Vdc at 300 mA. The 5 Vdc supply is regulated to
within a few millivolts of 5 Vdc so long as the main power supply for the

80

Section 5. System Overview

CR800 does not drop below <MinPwrSupplyVolts>.

5.3.2.5 Communication Ports
Read More See sections RS-232 and TTL (p. 344), Data Retrieval and
Telecommunications — Details (p. 370), and PakBus — Overview (p. 88).

The CR800 is equipped with hardware ports that allow communication with other
devices and networks, such as:

• PC
• Smart sensors
• Modbus and DNP3 networks
• Ethernet
• Modems
• Campbell Scientific PakBus networks
• Other Campbell Scientific dataloggers
• Campbell Scientific datalogger peripherals

Communication ports include:

• CS I/O
• RS-232
• SDI-12
• SDM
• CPI (requires a peripheral device)
• Ethernet (requires a peripheral device)

5.3.2.5.1 CS I/O Port
Read More See the appendix Serial Port Pinouts (p. 609).

• One nine-pin port, labeled CS I/O, for communicating with a PC or modem
through Campbell Scientific communication interfaces, modems, or
peripherals. CS I/O telecommunication interfaces are listed in the appendix
Serial I/O Modules List (p. 622).

Note CS I/O communications normally operate well over only a few feet of serial
cable.

5.3.2.5.2 RS-232 Ports
Note RS-232 communications normally operate well up to a transmission cable
capacitance of 2500 picofarads, or approximately 50 feet of commonly available
serial cable.

• One nine-pin DCE port, labeled RS-232, normally used to communicate with
a PC running datalogger support software (p. 631), or to connect a third-party
modem. With a null-modem adapter attached, it serves as a DTE device.

Read More See the appendix Serial Port Pinouts (p. 609).

• Two-terminal (TX and RX) RS-232 ports can be configured:

o Up to Two TTL ports, configured from C terminals.

81

Section 5. System Overview

Note RS-232 ports are not isolated (p. 492).

5.3.2.5.3 SDI-12 Ports
Read More See the section Serial I/O: SDI-12 Sensor Support — Details (p. 259).

SDI-12 is a 1200 baud protocol that supports many smart sensors. Each port
requires one terminal and supports up to 16 individually addressed sensors.

• Up to two ports configured from C terminals.

5.3.2.5.4 SDM Port
SDM is a protocol proprietary to Campbell Scientific that supports several
Campbell Scientific digital sensor and telecommunication input and output
expansion peripherals and select smart sensors.

• One SDM port configured from C1, C2, and C3 terminals.

5.3.2.5.5 CPI Port
CPI is a new proprietary protocol that supports an expanding line of Campbell
Scientific CDM modules. CDM modules are higher-speed input- and output-
expansion peripherals. CPI ports also enable networking between compatible
Campbell Scientific dataloggers.

• Connection to CDM devices requires a peripheral CPI interface as listed in
the appendix CDM/CPI Interfaces (p. 623).

5.3.2.5.6 Ethernet Port
Read More See the section TCP/IP (p. 282).

• Ethernet capability requires a peripheral Ethernet interface device, as listed
in the appendix Network Links List (p. 629).

5.3.3 Keyboard Display — Overview
Related Topics:
 • Keyboard Display — Overview (p. 82)
 • Keyboard Display — Details (p. 430)
 • Keyboard Display — List (p. 627)
 • Custom Menus — Overview (p. 83, p. 555)

The CR1000KD Keyboard Display is a powerful tool for field use. The
CR1000KD, illustrated in figure CR1000KD Keyboard Display (p. 83), is a
peripheral optional to the CR800.

The keyboard display is an essential installation, maintenance, and
troubleshooting tool for many applications. It allows interrogation and
programming of the CR800 datalogger independent of other telecommunication
links. More information on the use of the keyboard display is available in the
section Custom Menus — Overview (p. 83, p. 555). See the appendix Keyboard
Displays List (p. 627) for more information on available products.

82

Section 5. System Overview

Figure 29. CR1000KD Keyboard Display

5.3.3.1 Integrated Keyboard Display
The integrated keyboard display, illustrated in figure Wiring Panel (p. 44), is a
purchased option when buying a CR800 series datalogger.

5.3.3.2 Character Set
The keyboard display character set is accessed using one of the following three
procedures:

• Most keys have a characters shown in blue printed above the key. To enter a
character, press Shift one to three times to select the position of the character
shown above the key, then press the key. For example, to enter Y, press Shift
three times, then press the PgDn.

• To insert a space (Spc) or change case (Cap), press Shift one to two times for
the position, then press BkSpc.

• To insert a character not printed on the keyboard, enter Ins , scroll down to
Character, press Enter, then scroll up, down, left, or right to the desired
character in the list, then press Enter.

5.3.3.3 Custom Menus — Overview
Related Topics:
 • Custom Menus — Overview (p. 83, p. 555)
 • Data Displays: Custom Menus — Details (p. 180)
 • Custom Menus — Instruction Set (p. 555)
 • Keyboard Display — Overview (p. 82)
 • CRBasic Editor Help for DisplayMenu()

CRBasic programming in the CR800 facilitates creation of custom menus for the
CR1000KD Keyboard Display.

Figure Custom Menu Example (p. 84) shows windows from a simple custom menu
named DataView. DataView appears as the main menu on the keyboard display.
DataView has menu item Counter, and submenus PanelTemps, TCTemps and

83

Section 5. System Overview

System Menu. Counter allows selection of one of four values. Each submenu
displays two values from CR800 memory. PanelTemps shows the CR800 wiring-
panel temperature at each scan, and the one-minute sample of panel temperature.
TCTemps displays two thermocouple temperatures. For more information on
creating custom menus, see section Data Displays: Custom Menus — Details (p.
180).

Figure 30. Custom Menu Example

5.3.4 Measurement and Control Peripherals — Overview
Related Topics:
 • Measurement and Control Peripherals — Overview (p. 84)
 • Measurement and Control Peripherals — Details (p. 348)
 • Measurement and Control Peripherals — Lists (p. 622)

Modules are available from Campbell Scientific to expand the number of
terminals on the CR800. These include:

Multiplexers

Multiplexers increase the input capacity of terminals configured for analog-input,
and the output capacity of Vx excitation terminals.

SDM Devices

Serial Device for Measurement expand the input and output capacity of the
CR800. These devices connect to the CR800 through terminals C1, C2, and C3.

CDM Devices

Campbell Distributed Modules are a growing line of measurement and control
modules that use the higher speed CAN Peripheral Interface (CPI) bus
technology. These connect through the SC-CPI interface.

84

Section 5. System Overview

5.3.5 Power Supplies — Overview
Related Topics:
 • Power Supplies — Specifications
 • Power Supplies — Quickstart (p. 44)
 • Power Supplies — Overview (p. 85)
 • Power Supplies — Details (p. 98)
 • Power Supplies — Products (p. 633)
 • Power Sources (p. 99)
 • Troubleshooting — Power Supplies (p. 469)

The CR800 is powered by a nominal 12 Vdc source. Acceptable power range is
9.6 to 16 Vdc.

External power connects through the green POWER IN connector on the face of
the CR800. The positive power lead connects to 12V. The negative lead
connects to G. The connection is internally reverse-polarity protected.

The CR800 is internally protected against accidental polarity reversal on the
power inputs.

The CR800 has a modest-input power requirement. For example, in low-power
applications, it can operate for several months on non-rechargeable batteries.
Power systems for longer-term remote applications typically consist of a charging
source, a charge controller, and a rechargeable battery. When ac line power is
available, a Vac-to-Vac or Vac-to-Vdc wall adapter, a peripheral charging
regulator, and a rechargeable battery can be used to construct a UPS (un-
interruptible power supply).

5.3.6 CR800 Configuration — Overview
Related Topics:
 • CR800 Configuration — Overview (p. 85)
 • CR800 Configuration — Details (p. 109)
 • Status, Settings, and Data Table Information (Status/Settings/DTI) (p. 577)

The CR800 is shipped factory-ready with an operating system (OS) installed.
Settings default to those necessary to communicate with a PC via RS-232 and to
accept and execute user-application programs. For more complex applications,
some settings may need adjustment. Settings can be changed with the following:

• DevConfig (Device Configuration Utility). See section Device Configuration
Utility (p. 109))

• CR1000KD Keyboard Display. See section Keyboard Display — Details (p.
430) and the appendix Keyboard Display — List (p. 627)

• Datalogger support software. See section Datalogger Support Software —
Overview (p. 93).

OS files are sent to the CR800 with DevConfig or through the program Send
button in datalogger support software. When the OS is sent with DevConfig, most
settings are cleared, whereas, when sent with datalogger support software, most
settings are retained. Operating systems can also be transferred to the CR800
with a Campbell Scientific mass storage device.

85

Section 5. System Overview

OS updates are occasionally made available at www.campbellsci.com. OS and
settings remain intact when power is cycled.

5.3.7 CRBasic Programming — Overview
Related Topics:
 • CRBasic Programming — Overview (p. 86)
 • CRBasic Programming — Details (p. 120)
 • CRBasic Programming — Instructions (p. 511)
 • Programming Resource Library (p. 167)
 • CRBasic Editor Help

A CRBasic program directs the CR800 how and when sensors are to be measured,
calculations made, and data stored. A program is created on a PC and sent to the
CR800. The CR800 can store a number of programs in memory, but only one
program is active at a given time. Two Campbell Scientific software applications,
Short Cut and CRBasic Editor, are used to create CR800 programs.

• Short Cut creates a datalogger program and wiring diagram in four easy steps.
It supports most sensors sold by Campbell Scientific and is recommended for
creating simple programs to measure sensors and store data.

• Programs generated by Short Cut are easily imported into CRBasic Editor for
additional editing. For complex applications, experienced programmers often
create essential measurement and data storage code with Short Cut, then add
more complex code with CRBasic Editor.

Note Once a Short Cut generated program has been edited with CRBasic Editor
(p. 123), it can no longer be modified with Short Cut.

5.3.8 Memory — Overview
Related Topics:
 • Memory — Overview (p. 86)
 • Memory — Details (p. 351)
 • Data Storage Devices — List (p. 629)

Data concerning CR800 memory are posted in the Status (p. 577) table. Memory is
organized as follows:

• OS Flash

o 2 MB
o Operating system (OS)
o Serial number and board rev
o Boot code
o Erased when loading new OS (boot code only erased if changed)

• Serial Flash

o 512 KB
o Device settings
o Write protected
o Non-volatile

86

Section 5. System Overview

o CPU: drive residence

̶ Automatically allocated
̶ FAT file system
̶ Limited write cycles (100,000)
̶ Slow (serial accesses)

• Main Memory

o 4 MB SRAM
o Battery backed
o OS variables
o CRBasic compiled program binary structure (490 KB maximum)
o CRBasic variables
o Data memory
o Communication memory
o USR: drive

̶ User allocated
̶ FAT32 RAM drive
̶ Photographic images (See the appendix Cameras)
̶ Data files from TableFile() instruction (TOA5, TOB1, CSIXML

and CSIJSON)

o Keep (p. 492) memory (OS variables not initialized)
o Dynamic runtime memory allocation

Note CR800s with serial numbers smaller than 3605 were usually supplied with
only 2 MB of SRAM.

Memory for data can be increased with the addition of a mass storage device
(thumb drive) that connects to CS I/O. See the appendix Data-Storage Devices
— List (p. 629) for information on available memory expansion products.

By default, final-data memory (memory for stored data) is organized as ring
memory. When the ring is full, oldest data are overwritten by newest data. The
DataTable() instruction, however, has an option to set a data table to Fill and
Stop.

5.3.9 Data Retrieval and Telecommunications — Overview
Related Topics:
 • Data Retrieval and Telecommunications — Quickstart (p. 45)
 • Data Retrieval and Telecommunications — Overview (p. 87)
 • Data Retrieval and Telecommunications — Details (p. 370)
 • Data Retrieval and Telecommunication Peripherals — Lists (p. 627)

Final data are written to tables in final-data memory. When retreived, data are
copied to PC files via a telecommunication link (Data Retrieval and
Telecommunications — Details (p. 370)) or by transporting a or a Campbell
Scientific mass storage media (USB: drive) to the PC.

87

Section 5. System Overview

5.3.9.1 PakBus® Communications — Overview
Related Topics:
 • PakBus® Communications — Overview (p. 88)

 • PakBus® Communications — Details (p. 372)

 • PakBus® Communications — Instructions (p. 558)

 • PakBus Networking Guide (available at www.campbellsci.com/manuals
(http://www.campbellsci.com/manuals))

The CR800 communicates with datalogger support software (p. 630),
telecommunication peripherals (p. 627), and other dataloggers (p. 621) with PakBus, a
proprietary network communication protocol. PakBus is a protocol similar in
concept to IP (Internet Protocol). By using signatured data packets, PakBus
increases the number of communication and networking options available to the
CR800. Communication can occur via TCP/IP, on the RS-232 port, CS I/O port,
and C terminals.

Advantages of PakBus are as follows:

• Simultaneous communication between the CR800 and other devices.
• Peer-to-peer communication — no PC required. Special CRBasic

instructions simplify transferring data between dataloggers for distributed
decision making or control.

• Data consolidation — other PakBus dataloggers can be used as "sensors" to
consolidate all data into one CR800.

• Routing — the CR800 can act as a router, passing on messages intended for
another Campbell Scientific datalogger. PakBus supports automatic route
detection and selection.

• Short distance networks — with no extra hardware, a CR800 can talk to
another CR800 over distances up to 30 feet by connecting transmit, receive
and ground wires between the dataloggers.

In a PakBus network, each datalogger is set to a unique address. The default
PakBus address in most devices is 1. To communicate with the CR800, the
datalogger support software must know the CR800 PakBus address. The PakBus
address is changed using the CR1000KD Keyboard Display (p. 430), DevConfig
utility (p. 109), CR800 Status table (p. 577), or PakBus Graph (p. 496) software.

5.3.9.2 Telecommunications
Data are usually copied through a telecommunication link to a file on the
supporting PC using Campbell Scientific datalogger support software (p. 631). See
also the manual and Help for the software being used.

5.3.9.3 Mass-Storage Device
Caution When removing a Campbell Scientific mass storage device (thumb
drive) from the CR800, do so only when the LED is not lit or flashing. Removing
the device while it is active can cause data corruption.

Data stored on a Campbell Scientific mass storage device are retrieved via a
telecommunication link to the CR800, if the device remains on the CS I/O port,
or by removing the device, connecting it to a PC, and copying files using

88

http://www.campbellsci.com/manuals

Section 5. System Overview

Windows File Explorer.

5.3.9.4 Data-File Formats in CR800 Memory
Routine CR800 operations store data in binary data tables. However, when the
TableFile() instruction is used, data are also stored in one of several formats in
discrete text files in internal or external memory. See Data Storage — On-board
(p. 355) for more information on the use of the TableFile() instruction.

5.3.9.5 Data Format on Computer
CR800 data stored on a PC with datalogger support software (p. 631) are formatted
as either ASCII or binary depending on the file type selected in the support
software. Consult the software manual for details on available data-file formats.

5.3.10 Alternate Telecommunications — Overview
Related Topics:
 • Alternate Telecommunications — Overview (p. 89)
 • Alternate Telecommunications — Details (p. 386)

The CR800 communicates with external devices to receive programs, send data,
or act in concert with a network. The primary communication protocol is PakBus
(p. 496). Other telecommunication protocols are supported, including Web API (p.
402), Modbus (p. 391), and DNP3 (p. 387). Refer to the section Specifications (p. 95) for a
complete list of supported protocols. The appendix Data Retrieval and
Telecommunications — Peripherals Lists (p. 627) lists peripheral communication
devices available from Campbell Scientific.

Keyboard displays also communicate with the CR800. See Keyboard Display —
Overview (p. 82) for more information.

5.3.10.1 Modbus

Related Topics:
 • Modbus — Overview (p. 89)
 • Modbus — Details (p. 391)

The CR800 supports Modbus master and Modbus slave communications for
inclusion in Modbus SCADA networks. Modbus is a widely used SCADA
communication protocol that facilitates exchange of information and data between
computers / HMI software, instruments (RTUs) and Modbus-compatible sensors.
The CR800 communicates with Modbus over RS-232, RS-485 (with a RS-232 to
RS-485 adapter), and TCP.

Modbus systems consist of a master (PC), RTU / PLC slaves, field instruments
(sensors), and the communication-network hardware. The communication port,
baud rate, data bits, stop bits, and parity are set in the Modbus driver of the master
and / or the slaves. The Modbus standard has two communication modes, RTU
and ASCII. However, CR800s communicate in RTU mode exclusively.

Field instruments can be queried by the CR800. Because Modbus has a set
command structure, programming the CR800 to get data from field instruments is
much simpler than from serial sensors. Because Modbus uses a common bus and

89

Section 5. System Overview

addresses each node, field instruments are effectively multiplexed to a CR800
without additional hardware.

5.3.10.2 DNP3 — Overview
Related Topics:
 • DNP3 — Overview (p. 90)
 • DNP3 — Details (p. 387)

The CR800 supports DNP3 slave communications for inclusion in DNP3 SCADA
networks.

5.3.10.3 TCP/IP — Overview
Related Topics:
 • TCP/IP — Overview (p. 90)
 • TCP/IP — Details (p. 402)
 • TCP/IP — Instructions (p. 567)
 • TCP/IP Links — List (p. 629)

The CR800 supports the following TCP/IP protocols:

• DHCP
• DNS
• FTP
• HTML
• HTTP
• Micro-serial server
• NTCIP
• NTP
• PakBus over TCP/IP
• Ping
• POP3
• SMTP
• SNMP
• Telnet
• Web API
• XML

5.3.11 Security — Overview
Related Topics:
 • Security — Overview (p. 90)
 • Security — Details (p. 443)

The CR800 is supplied void of active security measures. By default, RS-232,
Telnet, FTP and HTTP services, all of which give high level access to CR800 data
and CRBasic programs, are enabled without password protection.

You may wish to secure your CR800 from mistakes or tampering. The following
may be reasons to concern yourself with datalogger security:

• Collection of sensitive data

90

Section 5. System Overview

• Operation of critical systems
• Networks accessible by many individuals

If you are concerned about security, especially TCP/IP threats, you should send
the latest operating system (p. 85) to the CR800, disable un-used services, and
secure those that are used. Security actions to take may include the following:

• Set passcode lockouts
• Set PakBus/TCP password
• Set FTP username and password
• Set AES-128 PakBus encryption key
• Set .csipasswd file for securing HTTP and web API
• Track signatures
• Encrypt program files if they contain sensitive information
• Hide program files for extra protection
• Secure the physical CR800 and power supply under lock and key

Note All security features can be subverted through physical access to the
CR800. If absolute security is a requirement, the physical CR800 must be kept in
a secure location.

Related Topics
 • Auto Calibration — Overview (p. 91)
 • Auto Calibration — Details (p. 326)
 • Auto-Calibration — Errors (p. 466)
 • Offset Voltage Compensation (p. 315)
 • Factory Calibration (p. 92)
 • Factory Calibration or Repair Procedure (p. 452)

The CR800 auto-calibrates to compensate for changes caused by changing
operating temperatures and aging. With auto-calibration disabled, measurement
accuracy over the operational temperature range is specified as less accurate by a
factor of 10. That is, over the extended temperature range of –40 °C to 85 °C, the
accuracy specification of ±0.12% of reading can degrade to ±1% of reading with
auto-calibration disabled. If the temperature of the CR800 remains the same,
there is little calibration drift if auto-calibration is disabled. Auto-calibration can
become disabled when the scan rate is too small. It can be disabled by the
CRBasic program when using the Calibrate() instruction.

Note The CR800 is equipped with an internal voltage reference used for
calibration. The voltage reference should be periodically checked and re-
calibrated by Campbell Scientific for applications with critical analog voltage
measurement requirements. A minimum two-year recalibration cycle is
recommended.

Unless a Calibrate() instruction is present, the CR800 automatically auto-
calibrates during spare time in the background as an automatic slow sequence (p.
155) with a segment of the calibration occurring every four seconds. If there is
insufficient time to do the background calibration because of a scan-consuming
user program, the CR800 will display the following warning at compile time:
Warning: Background calibration is disabled.

91

Section 5. System Overview

5.3.12 Maintenance — Overview
Related Topics:
 • Maintenance — Overview (p. 92)
 • Maintenance — Details (p. 449)

With reasonable care, the CR800 should give many years of reliable service.

5.3.12.1 Protection from Moisture — Overview
Protection from Moisture — Overview (p. 92)
Protection from Moisture — Details (p. 97)
Protection from Moisture — Products (p. 636)

The CR800 and most of its peripherals must be protected from moisture.
Moisture in the electronics will seriously damage, and probably render un-
repairable, the CR800. Water can come from flooding or sprinkler irrigation, but
most often comes as condensation. In most cases, protection from water is easily
accomplished by placing the CR800 in a weather-tight enclosure with desiccant
and elevating the enclosure above the ground. The CR800 is shipped with
internal desiccant packs to reduce humidity. Desiccant in enclosures should be
changed periodically.

Note Do not completely seal the enclosure if lead-acid batteries are present;
hydrogen gas generated by the batteries may build up to an explosive
concentration.

Refer to Enclosures List (p. 635) for information on available weather-tight
enclosures.

5.3.12.2 Protection from Voltage Transients
Read More See Grounding (p. 103).

The CR800 must be grounded to minimize the risk of damage by voltage
transients associated with power surges and lightning-induced transients. Earth
grounding is required to form a complete circuit for voltage-clamping devices
internal to the CR800. Refer to the appendix Transient-Voltage Suppressors List
(p. 624) for information on available surge-protection devices.

5.3.12.3 Factory Calibration
Related Topics
 • Auto Calibration — Overview (p. 91)
 • Auto Calibration — Details (p. 326)
 • Auto-Calibration — Errors (p. 466)
 • Offset Voltage Compensation (p. 315)
 • Factory Calibration (p. 92)
 • Factory Calibration or Repair Procedure (p. 452)

The CR800 uses an internal voltage reference to routinely calibrate itself.
Campbell Scientific recommends factory recalibration every two years. If
calibration services are required, refer to the section entitled Assistance (p. 5) at the

92

Section 5. System Overview

front of this manual.

5.3.12.4 Internal Battery — Details
Related Topics:
 • Internal Battery — Quickstart (p. 45)
 • Internal Battery — Details (p. 93)

Warning Misuse or improper installation of the internal lithium battery can
cause severe injury. Fire, explosion, and severe burns can result. Do not recharge,
disassemble, heat above 100 °C (212 °F), solder directly to the cell, incinerate, or
expose contents to water. Dispose of spent lithium batteries properly.

The CR800 contains a lithium battery that operates the clock and powers SRAM
when the CR800 is not externally powered. In a CR800 stored at room
temperature, the lithium battery should last approximately three years (less at
temperature extremes). If the CR800 is continuously powered, the lithium cell
should last much longer. Internal lithium battery voltage can be monitored from
the CR800 Status table. Operating range of the battery is approximately 2.7 to
3.6 Vdc. Replace the battery as directed in Replacing the Internal Battery (p. 449)
when the voltage is below 2.7 Vdc.

The lithium battery is not rechargeable. Its design is one of the safest available
and uses lithium thionyl chloride technology. Maximum discharge current is
limited to a few mA. It is protected from discharging excessive current to the
internal circuits (there is no direct path outside) with a 100 ohm resistor. The
design is UL listed. See:

http://www.tadiran-batterie.de/download/eng/LBR06Eng.pdf.

The battery is rated from -55 °C up to 85 °C.

5.4 Datalogger Support Software — Overview
Reading List:
 • Datalogger Support Software — Quickstart (p. 46)
 • Datalogger Support Software — Overview (p. 93)
 • Datalogger Support Software — Details (p. 429)
 • Datalogger Support Software — Lists (p. 630)

Datalogger support software are PC or Linux software available from Campbell
Scientific that facilitate communication between the computer and the CR800. A
wide array of software are available, but most of the heavy lifting gets done by the
following:

• Short Cut Program Generator for Windows (SCWin) — Short Cut is used to
write simple CRBasic programs without the need to learn the CRBasic
programming language. Short Cut is an easy-to-use wizard that steps you
through the program building process.

• PC200W Datalogger Starter Software for Windows — Supports only direct
serial connection to the CR800 with hardwire or spread-spectrum radio. It
supports sending a CRBasic program, data collection, and setting the CR800
clock. PC200W is available at no charge at www.campbellsci.com/downloads
(http://www.campbellsci.com/downloads).

93

http://www.campbellsci.com/downloads

Section 5. System Overview

• LoggerLink Mobile Apps — Simple tool that allows an iOS or Android
device to communicate with IP-enabled CR800s. It includes most PC200W
functionality.

• PC400 Datalogger Support Software — Includes PC200W functions,
CRBasic Editor, and supports all telecommunication modes (except satellite)
in attended mode.

• LoggerNet Datalogger Support Software — Includes all PC400 functions and
supports all telecommunication options (except satellite) in unattended mode.
It also includes many enhancements such as graphical data displays.

Note More information about software available from Campbell Scientific can be
found at www.campbellsci.com http://www.campbellsci.com. Please consult with
a Campbell Scientific application engineer for a software recommendation to fit a
specific application.

94

http://www.campbellsci.com/

6. Specifications

1.1 -- 8 10 30

CR800 specifications are valid from ─25° to 50°C in non-condensing environments unless otherwise specified. Recalibration is recommended every two years. Critical specifications and system
configurations should be confirmed with a Campbell Scientific application engineer before purchase.
2.0 -- 8 10 30

PROGRAM EXECUTION RATE
2.1 -- 8 10 30

10 ms to one day at 10 ms increments
3.0 -- 8 10 30

ANALOG INPUTS (SE 1–6, DIFF 1–3)
3.0.1 -- 8 10 30

Three differential (DIFF) or six single-ended (SE) individually
configured input channels. Channel expansion provided by
optional analog multiplexers.

3.1.0 -- 8 10 30

RANGES and RESOLUTION: With reference to the following table,
basic resolution (Basic Res) is the resolution of a single A/D (p.
481) conversion. A DIFF measurement with input reversal has
better (finer) resolution by twice than Basic Res.

3.1.1 -- 8 10

Range (mV)1

DIFF
Res (μV)2

Basic
Res (μV)

±5000
±2500
±250
±25
±7.5
±2.5

667
333
33.3
3.33
1.0
0.33

1333
667
66.7
6.7
2.0
0.67

1Range overhead of ≈9% on all ranges guarantees full-scale
voltage will not cause over-range.

2Resolution of DIFF measurements with input reversal.

3.2 -- 8 10

ANALOG INPUT ACCURACY3:
±(0.06% of reading + offset3), 0° to 40°C
±(0.12% of reading + offset3), -25° to 50°C
±(0.18% of reading + offset3), -55° to 85°C (-XT only)

3.2.1 -- 8 10 30

3Accuracy does not include sensor and measurement noise.
Offset definitions:
Offset = 1.5 x Basic Res + 1.0 µV (for DIFF measurement w/ input
reversal)

Offset = 3 x Basic Res + 2.0 µV (for DIFF measurement w/o input
reversal)

Offset = 3 x Basic Res + 3.0 µV (for SE measurement)
3.3 -- 8 10 30

ANALOG MEASUREMENT SPEED:
3.3.1 -- 8 10

 ---Total Time4---
Inte-
gration
Type
Code

Inte-
gration
Time

Settling
Time

SE
with
no
Rev

DIFF
with
Input
Rev

250
_60Hz5
_50Hz5

250 µs
16.67 ms
20.00 ms

450 µs
3 ms
3 ms

≈1 ms
≈20 ms
≈25 ms

≈12 ms
≈40 ms
≈50 ms

4Includes 250 μs for conversion to engineering units.
5AC line noise filter

3.4 -- 8 10 30
3.4.1 -- 8 10 30

INPUT-NOISE VOLTAGE: For DIFF measurements with input
reversal on ±2.5 mV input range (digital resolution dominates for
higher ranges):
250 μs Integration: 0.34 μV RMS
50/60 Hz Integration: 0.19 μV RMS

3.4.2 -- 8 10 30

INPUT LIMITS: ±5 Vdc
3.4.3 -- 8 10 30

DC COMMON-MODE REJECTION: >100 dB
3.4.4 -- 8 10 30

NORMAL-MODE REJECTION: 70 dB @ 60 Hz when using 60 Hz
rejection

3.4.5 -- 8 10 30

INPUT VOLTAGE RANGE W/O MEASUREMENT CORRUPTION: ±8.6
Vdc max.

3.4.6 -- 8 10 30

SUSTAINED-INPUT VOLTAGE W/O DAMAGE: ±16 Vdc max
3.4.7 -- 8 10 30

INPUT CURRENT: ±1 nA typical, ±6 nA max. @ 50°C; ±90 nA @ 85°C
3.4.8 -- 8 10 30

INPUT RESISTANCE: 20 GΩ typical
3.4.9 -- 8 10 30

ACCURACY OF BUILT-IN REFERENCE JUNCTION THERMISTOR (for
thermocouple measurements):
±0.3°C, -25° to 50°C
±0.8°C, -55° to 85°C (-XT only)

4.0 -- 8 10 30

ANALOG OUTPUTS (VX 1–2)
4.0.1 -- 8

Two switched voltage outputs sequentially active only during
measurement.

4.0.2 -- 8 10 30

RANGES AND RESOLUTION:
4.1 -- 8 10

Channel

Range

Resolu-
tion

Current
Source
/ Sink

(VX 1–2) ±2.5 Vdc 0.67 mV ±25 mA
4.2 -- 8 10

ANALOG OUTPUT ACCURACY (VX):
±(0.06% of setting + 0.8 mV, 0° to 40°C
±(0.12% of setting + 0.8 mV, -25° to 50°C
±(0.18% of setting + 0.8 mV, -55° to 85°C (-XT only)

4.4 -- 8 10 30

VX FREQUENCY SWEEP FUNCTION: Switched outputs provide a
programmable swept frequency, 0 to 2500 mV square waves for
exciting vibrating wire transducers.

3.5.0 -- 8 10 30

PERIOD AVERAGE
3.5.0a -- 8 10 30

Any of the 6 SE analog inputs can be used for period averaging.
Accuracy is ±(0.01% of reading + resolution), where resolution
is 136 ns divided by the specified number of cycles to be
measured.
INPUT AMPLITUDE AND FREQUENCY:

3.5.1 -- 8 10

Volt-

 Input
Signal
Peak-Peak

Min
Pulse

Max

age
Gain

Range
Code

Min
mV6

Max
V7

Width
µs

Freq
kHz8

1
10
33
100

mV250
mV25
mV7_5
mV2_5

500
10
5
2

10
2
2
2

2.5
10
62
100

200
50
8
5

6Signal to be centered around Threshold (see PeriodAvg()
instruction).

7Signal to be centered around ground.
8The maximum frequency = 1/(twice minimum pulse width)
for 50% of duty cycle signals.

5.0 -- 8 10 30

RATIOMETRIC MEASUREMENTS
5.1 -- 8 10

MEASUREMENT TYPES: The CR800 provides ratiometric
resistance measurements using voltage excitation. Three
switched voltage excitation outputs are available for
measurement of four- and six-wire full bridges, and two-,
three-, and four-wire half bridges. Optional excitation polarity
reversal minimizes dc errors.

5.2 -- 8 10

RATIOMETRIC MEASUREMENT ACCURACY9,11
Note Important assumptions outlined in footnote 9:

±(0.04% of Voltage Measurement + Offset12)
5.2.1 -- 8 10 30

9Accuracy specification assumes excitation reversal for
excitation voltages < 1000 mV. Assumption does not include
bridge resistor errors and sensor and measurement noise.

11Estimated accuracy, ∆X (where X is value returned from
measurement with Multiplier =1, Offset = 0):
BRHalf() Instruction: ∆X = ∆V1/VX.
BRFull() Instruction: ∆X = 1000 x ∆V1/VX, expressed as mV•V-1.
Note ∆V1 is calculated from the ratiometric measurement
accuracy. See manual section Resistance Measurements (p.
319) for more information.

12Offset definitions:
Offset = 1.5 x Basic Res + 1.0 µV (for DIFF measurement w/
input reversal)

Offset = 3 x Basic Res + 2.0 µV (for DIFF measurement w/o
input reversal)

Offset = 3 x Basic Res + 3.0 µV (for SE measurement)
Note Excitation reversal reduces offsets by a factor of two.

6.0 -- 8 10 30

PULSE COUNTERS (P 1–2)
6.0.1 -- 8 10 30

Two inputs individually selectable for switch closure, high-
frequency pulse, or low-level ac. Independent 24-bit counters
for each input.

6.1 -- 8 10 30

MAXIMUM COUNTS PER SCAN: 16.7 x 106
6.2 -- 8 10 30

SWITCH-CLOSURE MODE:
Minimum Switch Closed Time: 5 ms
Minimum Switch Open Time: 6 ms
Max. Bounce Time: 1 ms open without being counted

6.3 -- 8 10 30

HIGH-FREQUENCY PULSE MODE:
Maximum-Input Frequency: 250 kHz
Maximum-Input Voltage: ±20 V
Voltage Thresholds: Count upon transition from below 0.9 V to
above 2.2 V after input filter with 1.2 μs time constant.

6.4 -- 8 10 30

LOW-LEVEL AC MODE: Internal ac coupling removes dc offsets
up to ±0.5 Vdc.
Input Hysteresis: 12 mV RMS @ 1 Hz
Maximum ac-Input Voltage: ±20 V
Minimum ac-Input Voltage:

6.4.1 -- 8 10 30

Sine wave (mV RMS) Range (Hz)
20
200
2000
5000

1.0 to 20
0.5 to 200
0.3 to 10,000
0.3 to 20,000

7.0 -- 8 10 30

DIGITAL I/O PORTS (C 1–4)
7.0.1 -- 8 10 30

Four ports software selectable as binary inputs or control
outputs. Provide on/off, pulse width modulation, edge timing,
subroutine interrupts / wake up, switch-closure pulse counting,
high-frequency pulse counting, asynchronous communications
(UARTs), and SDI-12 communications. SDM communications
are also supported.

7.0 -- 8 10 30

DIGITAL I/O PORTS (C 1–4)
7.0.1 -- 8 10 30

Four ports software selectable as binary inputs or control
outputs. Provide on/off, pulse width modulation, edge timing,
subroutine interrupts / wake up, switch-closure pulse counting,
high-frequency pulse counting, asynchronous communications
(UARTs), and SDI-12 communications. SDM communications are
also supported.

7.1 -- 8 10 30

LOW FREQUENCY MODE MAX: <1 kHz
7.2 -- 8 10 30

HIGH FREQUENCY MODE MAX: 400 kHz
7.3 -- 8 10 30

SWITCH-CLOSURE FREQUENCY MAX: 150 Hz
7.4 -- 8 10 30

EDGE-TIMING RESOLUTION: 540 ns
7.5 -- 8 10 30

OUTPUT VOLTAGES (no load): high 5.0 V ±0.1 V; low < 0.1 V
7.6 -- 8 10 30

OUTPUT RESISTANCE: 330 Ω
7.7 -- 8 10 30

INPUT STATE: high 3.8 to 16 V; low -8.0 to 1.2 V
7.8 -- 8 10 30

INPUT HYSTERISIS: 1.4 V
7.9 -- 8 10 30

INPUT RESISTANCE:
100 kΩ with inputs < 6.2 Vdc
220 Ω with inputs ≥ 6.2 Vdc

7.10 -- 8 10 30

SERIAL DEVICE / RS-232 SUPPORT: 0 to 5 Vdc UART

7.12 -- 8 10 30

SWITCHED 12 Vdc (SW12)
One independent 12 Vdc unregulated terminal switched on and
off under program control. Thermal fuse hold current = 900 mA
at 20°C, 650 mA at 50°C, and 360 mA at 85°C.

8.0 -- 8 10 30

CE COMPLIANCE
8.1 -- 8 10 30

STANDARD(S) TO WHICH CONFORMITY IS DECLARED:
IEC61326:2002

9.0 -- 8 10 30

COMMUNICATION
9.1 -- 8 10 30

RS-232 PORTS:
DCE nine-pin: (not electrically isolated) for computer connection
or connection of modems not manufactured by Campbell
Scientific.

COM1 to COM2: two independent Tx/Rx pairs on control ports
(non-isolated); 0 to 5 Vdc UART

Baud Rate: selectable from 300 bps to 115.2 kbps.
Default Format: eight data bits; one stop bits; no parity.
Optional Formats: seven data bits; two stop bits; odd, even
parity.

9.2 -- 8 10 30

CS I/O PORT: Interface with telecommunication peripherals
manufactured by Campbell Scientific.

9.3 -- 8 10 30

SDI-12: Digital control ports C1, C3 are individually configurable
and meet SDI-12 Standard v. 1.3 for datalogger mode. Up to ten
SDI-12 sensors are supported per port.

9.5 -- 8 10 30

PROTOCOLS SUPPORTED: PakBus, AES-128 Encrypted PakBus,
Modbus, DNP3, FTP, HTTP, XML, HTML, POP3, SMTP, Telnet,
NTCIP, NTP, web API, SDI-12, SDM.

10.0 -- 8 10 30

SYSTEM
10.1 -- 8 10 30

PROCESSOR: Renesas H8S 2322 (16-bit CPU with 32-bit internal
core running at 7.3 MHz)

10.2 -- 8 10 30

MEMORY: 2 MB of flash for operating system; 4 MB of battery-
backed SRAM for CPU, CRBasic programs, and data.

10.3 -- 8 10 30

REAL-TIME CLOCK ACCURACY: ±3 min. per year. Correction via
GPS optional.

10.4 -- 8 10 30

RTC CLOCK RESOLUTION: 10 ms
11.0 -- 8 10 30

SYSTEM POWER REQUIREMENTS
11.1 -- 8 10 30

VOLTAGE: 9.6 to 16 Vdc
11.2 -- 8 10

INTERNAL BATTERY: 1200 mAhr lithium battery for clock and
SRAM backup. Typically provides three years of back-up.

11.3 -- 8 10 30

EXTERNAL BATTERIES: Optional 12 Vdc nominal alkaline and
rechargeable available. Power connection is reverse polarity
protected.

11.4 -- 8 10 30

TYPICAL CURRENT DRAIN at 12 Vdc:
Sleep Mode: 0.7 mA typical; 0.9 mA maximum
1 Hz Sample Rate (one fast SE meas.) mA
100 Hz Sample Rate (one fast SE meas.): 16 mA
100 Hz Sample Rate (one fast SE meas. with RS-232
communications): 28 mA

Active external keyboard display adds 7 mA (100 mA with
backlight on).

12.0 -- 8 10 30

PHYSICAL
12.1

DIMENSIONS: 241 x 104 x 51 mm (9.5 x 4.1 x 2 in.) ; additional
clearance required for cables and leads.

12.2

MASS / WEIGHT: 0.7 kg / 1.5 lbs
13.0

WARRANTY
13.1

Warranty is stated in the published price list and in opening
pages of this and other user manuals.

95

7. Installation
Related Topics
 • Quickstart (p. 41)
 • Specifications (p. 95)
 • Installation (p. 97)
 • Operation (p. 295)

7.1 Protection from Moisture — Details
Protection from Moisture — Overview (p. 92)
Protection from Moisture — Details (p. 97)
Protection from Moisture — Products (p. 636)

When humidity levels reach the dew point, condensation occurs and damage to
CR800 electronics can result. Effective humidity control is the responsibility of
the user.

The CR800 module is protected by a packet of silica gel desiccant, which is
installed at the factory. This packet is replaced whenever the CR800 is repaired at
Campbell Scientific. The module should not normally be opened except to
replace the internal lithium battery.

Adequate desiccant should be placed in the instrumentation enclosure to provide
added protection.

7.2 Temperature Range
The CR800 is designed to operate reliably from –40 to 75 °C (–55 °C to 85 °C,
optional) in non-condensing environments.

7.3 Enclosures
Enclosures — Details (p. 97)
Enclosures — Products (p. 635)

Illustrated in figure Enclosure (p. 98) is the typical use of enclosures available from
Campbell Scientific designed for housing the CR800. This style of enclosure is
classified as NEMA 4X (watertight, dust-tight, corrosion-resistant, indoor and
outdoor use). Enclosures have back plates to which are mounted the CR800
datalogger and associated peripherals. Back plates are perforated on one-inch
centers with a grid of holes that are lined as needed with anchoring nylon inserts.
The CR800 base has mounting holes (some models may be shipped with rubber
inserts in these holes) through which small screws are inserted into the nylon
anchors. Remove rubber inserts, if any, to access the mounting holes. Screws
and nylon anchors are supplied in a kit that is included with the enclosure.

97

Section 7. Installation

Figure 31. Enclosure

7.4 Power Supplies — Details
Related Topics:
 • Power Supplies — Specifications
 • Power Supplies — Quickstart (p. 44)
 • Power Supplies — Overview (p. 85)
 • Power Supplies — Details (p. 98)
 • Power Supplies — Products (p. 633)
 • Power Sources (p. 99)
 • Troubleshooting — Power Supplies (p. 469)

Reliable power is the foundation of a reliable data-acquisition system. When
designing a power supply, consideration should be made regarding worst-case
power requirements and environmental extremes. For example, the power
requirement of a weather station may be substantially higher during extreme cold,
while at the same time, the extreme cold constricts the power available from the
power supply.

The CR800 is internally protected against accidental polarity reversal on the
power inputs.

The CR800 has a modest-input power requirement. For example, in low-power
applications, it can operate for several months on non-rechargeable batteries.
Power systems for longer-term remote applications typically consist of a charging
source, a charge controller, and a rechargeable battery. When ac line power is
available, a Vac-to-Vac or Vac-to-Vdc wall adapter, a peripheral charging

98

Section 7. Installation

regulator, and a rechargeable battery can be used to construct a UPS (un-
interruptible power supply).

Contact a Campbell Scientific application engineer if assistance in selecting a
power supply is needed, particularly with applications in extreme environments.

7.4.1 CR800 Power Requirement
The CR800 is operable with power from 9.6 to 16 Vdc applied at the POWER IN
terminals of the green connector on the face of the wiring panel.

The CR800 is internally protected against accidental polarity reversal on the
power inputs. A transient voltage suppressor (TVS) diode at the POWER IN 12V
terminals provides protection from intermittent high voltages by clamping these
transients to within the range of 19 to 21 V . Sustained input voltages in excess of
19 V, can damage the TVS diode.

Caution Voltage levels at the 12V and switched SW12 terminals, and pin 8 on
the CS I/O port, are tied closely to the voltage levels of the main power supply.
For example, if the power received at the POWER IN 12V and G terminals is 16
Vdc, the 12V and SW12 terminals, and pin 8 on the CS I/O port, will supply 16
Vdc to a connected peripheral. If the connected peripheral or sensor is not
designed for that voltage level, it may be damaged.

7.4.2 Calculating Power Consumption
Read More Power Supplies — Overview (p. 85).

System operating time for batteries can be determined by dividing the battery
capacity (ampere-hours) by the average system current drain (amperes). The
CR800 typically has a quiescent current drain of 0.5 mA (with display off) 0.6
mA with a 1 Hz sample rate, and >10 mA with a 100 Hz scan rate. When the
CR1000KD Keyboard Display is active, an additional 7 mA is added to the
current drain while enabling the backlight for the display adds 100 mA.

7.4.3 Power Sources
Related Topics:
 • Power Supplies — Specifications
 • Power Supplies — Quickstart (p. 44)
 • Power Supplies — Overview (p. 85)
 • Power Supplies — Details (p. 98)
 • Power Supplies — Products (p. 633)
 • Power Sources (p. 99)
 • Troubleshooting — Power Supplies (p. 469)

Be aware that some Vac-to-Vdc power converters produce switching noise or ac
(p. 481) ripple as an artifact of the ac-to-dc rectification process. Excessive
switching noise on the output side of a power supply can increase measurement
noise, and so increase measurement error. Noise from grid or mains power also
may be transmitted through the transformer, or induced electro-magnetically from
nearby motors, heaters, or power lines.

99

Section 7. Installation

High-quality power regulators typically reduce noise due to power regulation.
Using the optional 50 Hz or 60 Hz rejection arguments for CRBasic analog input
measurement instructions (see Sensor Support (p. 295)) often improves rejection of
noise sourced from power mains. The CRBasic standard deviation instruction,
SDEV(), can be used to evaluate measurement noise.

The main power for the CR800 is provided by an external-power supply.

7.4.3.1 Vehicle Power Connections
If a CR800 is powered by a motor-vehicle power supply, a second power supply
may be needed. When starting the motor of the vehicle, battery voltage often
drops below the voltage required for datalogger operation. This may cause the
CR800 to stop measurements until the voltage again equals or exceeds the lower
limit. A second supply can be provided to prevent measurement lapses during
vehicle starting. The figure Connecting CR800 to Vehicle Power Supply (p. 100)
illustrates how a second power supply is connected to the CR800. The diode OR
connection causes the supply with the largest voltage to power the CR800 and
prevents the second backup supply from attempting to power the vehicle.

Figure 32. Connecting to Vehicle Power Supply

7.4.4 Uninterruptable Power Supply (UPS)
If external alkaline power is used, the alkaline battery pack is connected directly
to the POWER IN 12V and G terminals (9.6 to 16 Vdc).

A UPS (un-interruptible power supply) is often the best power source for long-
term installations. An external UPS consists of a primary-power source, a
charging regulator external to the CR800, and an external battery. The primary
power source, which is often a transformer, power converter, or solar panel,
connects to the charging regulator, as does a nominal 12 Vdc sealed rechargeable
battery. A third connection connects the charging regulator to the 12V and G
terminals of the POWER IN connector..

7.4.5 External Power Supply Installation
When connecting external power to the CR800, remove the green POWER IN
connector from the CR800 face. Insert the positive lead into the green connector,
then insert the negative lead. Re-seat the green connector into the CR800. The

100

Section 7. Installation

CR800 is internally protected against reversed external-power polarity. Should
this occur, correct the wire connections.

7.5 Switched Voltage Output — Details
Related Topics:
 • Switched Voltage Output — Specifications
 • Switched Voltage Output — Overview (p. 78)
 • Switched Voltage Output — Details (p. 101)
 • PLC Control — Overview (p. 74)
 • PLC Control — Details (p. 237)
 • PLC Control Modules — Overview (p. 349)
 • PLC Control Modules — Lists (p. 624)
 • PLC Control — Instructions (p. 536)

The CR800 wiring panel is a convenient power distribution device for powering
sensors and peripherals that require a 5 Vdc, or 12 Vdc source. It has one
continuous 12 Vdc terminal (12V), one program-controlled, switched, 12 Vdc
terminal (SW12), and one continuous 5 Vdc terminal (5V). SW12, 12V, and 5V
terminals limit current internally for protection against accidental short circuits.
Voltage on the 12V and SW12 terminals can vary widely and will fluctuate with
the dc supply used to power the CR800, so be careful to match the datalogger
power supply to the requirements of the sensors. The 5V terminal is internally
regulated to within ±4%, which is good regulation as a power source, but typically
not adequate for bridge sensor excitation. Table Current Sourcing Limits (p. 101)
lists the current limits of 12V and 5V terminals. Greatly reduced output voltages
on these terminals may occur if the current limits are exceeded. See the section
Terminals Configured for Control (p. 349) for more information.

Table 5. Current Source and Sink Limits

Terminal Limit1

VX or EX (voltage excitation)2 ±25 mA maximum

SW123 < 900 mA @ 20°C

 < 630 mA @ 50°C

 < 450 mA @ 70°C

12V + SW12 (combined)4 < 3.00 A @ 20°C

 < 2.34 A @ 50°C

 < 1.80 A @ 70°C

 < 1.50 A @ 85°C

5V + CS I/O (combined)5 < 200 mA

101

Section 7. Installation

Table 5. Current Source and Sink Limits

Terminal Limit1

1 "Source" is positive amperage; "sink" is negative amperage (–).
2 Exceeding current limits will cause voltage output to become unstable. Voltage should stabilize
once current is again reduced to within stated limits.
3 A polyfuse is used to limit power. Result of overload is a voltage drop. To reset, disconnect
and allow circuit to cool. Operating at the current limit is OK so long a a little fluctuation can be
tolerated.
4 Polyfuse protected. See footnote 3.
5 Current is limited by a current limiting circuit, which holds the current at the maximum by
dropping the voltage when the load is too great.

7.5.1 Switched-Voltage Excitation
Two switched, analog-output (excitation) terminals (VX1 to VX2) operate under
program control to provide ±2500 mV dc excitation. Check the accuracy
specification of terminals configured for exctitation in CR800 Specifications (p. 95)
to understand their limitations. Specifications are applicable only for loads not
exceeding ±25 mA.

Read More Table Current Source and Sink Limits (p. 101) has more information on
excitation load capacity.

CRBasic instructions that control voltage excitation include the following:

• BrFull()
• BrFull6W()
• BrHalf()
• BrHalf3W()
• BrHalf4W()
• ExciteV()

Note Square-wave ac excitation for use with polarizing bridge sensors is
configured with the RevEx parameter of the bridge instructions.

7.5.2 Continuous Regulated (5V Terminal)
The 5V terminal is regulated and remains near 5 Vdc (±4%) so long as the CR800
supply voltage remains above 9.6 Vdc. It is intended for power sensors or devices
requiring a 5 Vdc power supply. It is not intended as an excitation source for
bridge measurements. However, measurement of the 5V terminal output, by
means of jumpering to an analog input on the same CR800), will facilitate an
accurate bridge measurement if 5V must be used.

Note Table Current Source and Sink Limits (p. 101) has more information on
excitation load capacity.

102

Section 7. Installation

7.5.3 Continuous Unregulated Voltage (12V Terminal)
Use 12V terminals to continuously power devices that require 12 Vdc. Voltage
on the 12V terminals will change with CR800 supply voltage.

Caution Voltage levels at the 12V and switched SW12 terminals, and pin 8 on
the CS I/O port, are tied closely to the voltage levels of the main power supply.
For example, if the power received at the POWER IN 12V and G terminals is 16
Vdc, the 12V and SW12 terminals, and pin 8 on the CS I/O port, will supply 16
Vdc to a connected peripheral. If the connected peripheral or sensor is not
designed for that voltage level, it may be damaged.

7.5.4 Switched Unregulated Voltage (SW12 Terminal)
The SW12 terminal is often used to power devices such as sensors that require 12
Vdc during measurement. Current sourcing must be limited to 900 mA or less at
20 °C. See table Current Source and Sink Limits (p. 101). Voltage on a SW12
terminal will change with CR800 supply voltage. Two CRBasic instructions,
SW12() and PortSet(), control the SW12 terminal. Each instruction is handled
differently by the CR800. SW12() is a processing task. Use it when controlling
power to SDI-12 and serial sensors that use SDI12Recorder() or SerialIn()
instructions respectively. CRBasic programming using IF THEN constructs to
control SW12, such as when used for cell phone control, should also use the
SW12() instruction.

PortSet() is a measurement task instruction. Use it when powering analog input
sensors that need to be powered just prior to measurement.

A 12 Vdc switching circuit designed to be driven by a C terminal is available
from Campbell Scientific. It is listed in the appendix Relay Drivers — Products (p.
625).

Note SW12 terminal power is unregulated and can supply up to 900 mA at 20
°C. See table Current Source and Sink Limits (p. 101). A resettable polymeric fuse
protects against over-current. Reset is accomplished by removing the load or
turning off the SW12 terminal for several seconds.

The SW12 terminal may behave differently under pipeline (p. 150) and sequential (p.
151) modes. See CRBasic Editor Help for more information.

7.6 Grounding
Grounding the CR800 with its peripheral devices and sensors is critical in all
applications. Proper grounding will ensure maximum ESD (electrostatic
discharge) protection and measurement accuracy.

7.6.1 ESD Protection
Reading List:
 • ESD Protection (p. 103)
 • Lightening Protection (p. 105)

ESD (electrostatic discharge) can originate from several sources, the most
common and destructive being lightning strikes. Primary lightning strikes hit the

103

Section 7. Installation

CR800 or sensors directly. Secondary strikes induce a high voltage in power lines
or sensor wires.

The primary devices for protection against ESD are gas-discharge tubes (GDT).
All critical inputs and outputs on the CR800 are protected with GDTs or transient
voltage suppression diodes. GDTs fire at 150 V to allow current to be diverted to
the earth ground lug. To be effective, the earth ground lug must be properly
connected to earth (chassis) ground. As shown in figure Schematic of Grounds (p.
105), signal grounds and power grounds have independent paths to the earth-ground
lug.

Communication ports are another path for transients. You should provide
communication paths, such as telephone or short-haul modem lines, with spark-
gap protection. Spark-gap protection is usually an option with these products, so
request it when ordering. Spark gaps must be connected to either the earth ground
lug, the enclosure ground, or to the earth (chassis) ground.

A good earth (chassis) ground will minimize damage to the datalogger and
sensors by providing a low-resistance path around the system to a point of low
potential. Campbell Scientific recommends that all dataloggers be earth (chassis)
grounded. All components of the system (dataloggers, sensors, external power
supplies, mounts, housings, etc.) should be referenced to one common earth
(chassis) ground.

In the field, at a minimum, a proper earth ground will consist of a 6 to 8 foot
copper-sheathed grounding rod driven into the earth and connected to the large
brass ground lug on the wiring panel with a 12 AWG wire. In low-conductive
substrates, such as sand, very dry soil, ice, or rock, a single ground rod will
probably not provide an adequate earth ground. For these situations, search for
published literature on lightning protection or contact a qualified lightning-
protection consultant.

In vehicle applications, the earth ground lug should be firmly attached to the
vehicle chassis with 12 AWG wire or larger.

In laboratory applications, locating a stable earth ground is challenging, but still
necessary. In older buildings, new Vac receptacles on older Vac wiring may
indicate that a safety ground exists when, in fact, the socket is not grounded. If a
safety ground does exist, good practice dictates the verification that it carries no
current. If the integrity of the Vac power ground is in doubt, also ground the
system through the building plumbing, or use another verified connection to earth
ground.

104

Section 7. Installation

Figure 33. Schematic of Grounds

7.6.1.1 Lightning Protection
Reading List:
 • ESD Protection (p. 103)
 • Lightening Protection (p. 105)

The most common and destructive ESDs are primary and secondary lightning
strikes. Primary lightning strikes hit instrumentation directly. Secondary strikes
induce voltage in power lines or wires connected to instrumentation. While
elaborate, expensive, and nearly infallible lightning protection systems are on the
market, Campbell Scientific, for many years, has employed a simple and
inexpensive design that protects most systems in most circumstances. The system
employs a lightening rod, metal mast, heavy-gage ground wire, and ground rod to
direct damaging current away from the CR800. This system, however, not
infallible. Figure Lightning-Protection Scheme (p. 106) is a drawing of a typical
application of the system.

105

Section 7. Installation

Note Lightning strikes may damage or destroy the CR800 and associated sensors
and power supplies.

In addition to protections discussed in , use of a simple lightning rod and low-
resistance path to earth ground is adequate protection in many installations. .

Figure 34. Lightning-Protection Scheme

7.6.2 Single-Ended Measurement Reference
Low-level, single-ended voltage measurements (<200 mV) are sensitive to ground
potential fluctuation due to changing return currents from 12V, SW12, 5V, and
C1 – C4 terminals. The CR800 grounding scheme is designed to minimize these

106

Section 7. Installation

fluctuations by separating signal grounds () from power grounds (G). To take
advantage of this design, observe the following rules:

• Connect grounds associated with 12V, SW12, 5V, and C1 – C4 terminals to
G terminals.

• Connect excitation grounds to the nearest terminal on the same terminal
block.

• Connect the low side of single-ended sensors to the nearest terminal on
the same terminal block.

• Connect shield wires to the terminal nearest the terminals to which the
sensor signal wires are connected.

Note Several ground wires can be connected to the same ground terminal.

If offset problems occur because of shield or ground leads with large current flow,
tying the problem leads into terminals next to terminals configured for
excitation and pulse-count should help. Problem leads can also be tied directly to
the ground lug to minimize induced single-ended offset voltages.

7.6.3 Ground-Potential Differences
Because a single-ended measurement is referenced to CR800 ground, any
difference in ground potential between the sensor and the CR800 will result in a
measurement error. Differential measurements MUST be used when the input
ground is known to be at a different ground potential from CR800 ground. See
the section Single-Ended Measurements — Details (p. 299) for more information.

Ground potential differences are a common problem when measuring full-bridge
sensors (strain gages, pressure transducers, etc), and when measuring
thermocouples in soil.

7.6.3.1 Soil Temperature Thermocouple
If the measuring junction of a thermocouple is not insulated when in soil or water,
and the potential of earth ground is, for example, 1 mV greater at the sensor than
at the point where the CR800 is grounded, the measured voltage is 1 mV greater
than the thermocouple output. With a copper-constantan thermocouple, 1 mV
equates to approximately 25 °C measurement error.

7.6.3.2 External Signal Conditioner
External instruments with integrated signal conditioners, such as an infrared gas
analyzer (IRGA), are frequently used to make measurements and send analog
information to the CR800. These instruments are often powered by the same
Vac-line source as the CR800. Despite being tied to the same ground, differences
in current drain and lead resistance result in different ground potentials at the two
instruments. For this reason, a differential measurement should be made on the
analog output from the external signal conditioner.

7.6.4 Ground Looping in Ionic Measurements
When measuring soil-moisture with a resistance block, or water conductivity with
a resistance cell, the potential exists for a ground loop error. In the case of an
ionic soil matric potential (soil moisture) sensor, a ground loop arises because soil

107

Section 7. Installation

and water provide an alternate path for the excitation to return to CR800 ground.
This example is modeled in the diagram Model of a Ground Loop with a Resistive
Sensor (p. 108). With Rg in the resistor network, the signal measured from the sensor
is described by the following equation:

where

Vx is the excitation voltage
Rf is a fixed resistor
Rs is the sensor resistance
Rg is the resistance between the excited electrode and CR800 earth ground.

RxRf/Rg is the source of error due to the ground loop. When Rg is large, the error
is negligible. Note that the geometry of the electrodes has a great effect on the
magnitude of this error. The Delmhorst gypsum block used in the Campbell
Scientific 227 probe has two concentric cylindrical electrodes. The center
electrode is used for excitation; because it is encircled by the ground electrode, the
path for a ground loop through the soil is greatly reduced. Moisture blocks which
consist of two parallel plate electrodes are particularly susceptible to ground loop
problems. Similar considerations apply to the geometry of the electrodes in water
conductivity sensors.

The ground electrode of the conductivity or soil moisture probe and the CR800
earth ground form a galvanic cell, with the water/soil solution acting as the
electrolyte. If current is allowed to flow, the resulting oxidation or reduction will
soon damage the electrode, just as if dc excitation was used to make the
measurement. Campbell Scientific resistive soil probes and conductivity probes
are built with series capacitors to block this dc current. In addition to preventing
sensor deterioration, the capacitors block any dc component from affecting the
measurement.

Figure 35. Model of a Ground Loop with a Resistive Sensor

108

Section 7. Installation

7.7 CR800 Configuration — Details
Related Topics:
 • CR800 Configuration — Overview (p. 85)
 • CR800 Configuration — Details (p. 109)
 • Status, Settings, and Data Table Information (Status/Settings/DTI) (p. 577)

Your new CR800 is already configured to communicate with Campbell Scientific
datalogger support software (p. 93) on the RS-232 port, and over most
telecommunication links. If you find that an older CR800 no longer
communicates with these simple links, do a full reset of the unit, as described in
the section Resetting the CR800 (p. 360). Some applications, especially those
implementing TCP/IP features, may require changes to factory defaults.

Configuration (verb) includes actions that modify firmware or software in the
CR800. Most of these actions are associated with CR800 settings registers. For
the purpose of this discussion, the CRBasic program, which, of course, configures
the CR800, is discussed in a separate section (CRBasic Programming — Details
(p. 120)).

7.7.1 Configuration Tools
Configuration tools include the following:

• Device Configuration Utility (p. 109)
• Network Planner (p. 110)
• Status/Settings/DTI (p. 112)
• CRBasic program (p. 113)
• Executable CPU: files (p. 113)
• Keyboard display (p. 439)
• Terminal emulator

7.7.1.1 Configuration with DevConfig
The most versatile configuration tool is Device Configuration Utility, or
DevConfig. It is bundled with LoggerNet, PC400, RTDAQ, or it can be
downloaded from www.campbellsci.com/downloads
(http://www.campbellsci.com/downloads). It has the following basic features:

• Extensive context sensitive help
• Connects directly to the CR800 over a serial or IP connection
• Facilitates access to most settings, status registers, and data table information

registers
• Includes a terminal emulator that facilitates access to the command prompt of

the CR800

DevConfig Help guides you through connection and use. The simplest connection
is to, connect a serial cable from the computer COM port or USB port to the RS-
232 port on the CR800 as shown in figure Power and Serial Communication
Connections (p. 48). DevConfig updates are available at
www.campbellsci.com/downloads (http://www.campbellsci.com/downloads).

109

http://www.campbellsci.com/downloads
http://www.campbellsci.com/downloads

Section 7. Installation

Figure 36. Device Configuration Utility (DevConfig)

7.7.1.2 Network Planner
Network Planner is a drag-and-drop application used in designing PakBus
datalogger networks. You interact with Network Planner through a drawing
canvas upon which are placed PC and datalogger nodes. Links representing
various telecommunication options are drawn between nodes. Activities to take
place between the nodes are specified. Network Planner automatically specifies
settings for individual devices and creates configuring XML files to download to
each device through DevConfig (p. 109).

110

Section 7. Installation

Figure 37. Network Planner Setup

7.7.1.2.1 Overview
Network Planner allows you to

• Create a graphical representation of a network, as shown in figure Network
Planner Setup (p. 111),

• Determine settings for devices and LoggerNet, and
• Program devices and LoggerNet with new settings.

Why is Network Planner needed?

• PakBus protocol allows complex networks to be developed.
• Setup of individual devices is difficult.
• Settings are distributed across a network.
• Different device types need settings coordinated.

Caveats

• Network Planner aids in, but does not replace, the design process.
• It aids development of PakBus networks only.
• It does not make hardware recommendations.
• It does not generate datalogger programs.
• It does not understand distances or topography; that is, it does not warn when

broadcast distances are exceeded, nor does it identify obstacles to radio
transmission.

For more detailed information on Network Planner, please consult the LoggerNet
manual, which is available at www.campbellsci.com.

111

Section 7. Installation

7.7.1.2.2 Basics
PakBus Settings

• Device addresses are automatically allocated but can be changed.
• Device connections are used to determine whether neighbor lists should be

specified.
• Verification intervals will depend on the activities between devices.
• Beacon intervals will be assigned but will have default values.
• Network role (for example, router or leaf node) will be assigned based on

device links.

Device Links and Communication Resources

• Disallow links that will not work.
• Comparative desirability of links.
• Prevent over-allocation of resources.
• Optimal RS-232 and CS I/O ME baud rates based on device links.
• Optimal packet-size limits based on anticipated routes.

Fundamentals of Using Network Planner

• Add a background (optional)
• Place stations, peripherals, etc.
• Establish links
• Set up activities (scheduled poll, callback)
• Configure devices
• Configure LoggerNet (adds the planned network to the LoggerNet Network

Map)

7.7.1.3 Configuration with Status/Settings/DTI

Related Topics:
 • Status, Settings, and Data Table Information (Status/Settings/DTI) (p. 577)
 • Common Uses of the Status Table (p. 578)
 • Status Table as Debug Resource (p. 461)

The Status table, CR800 settings, and the DataTableInfo table (collectively,
Status/Settings/DTI) contain registers, settings, and information essential to
setup, programming, and debugging of many advanced CR800 systems.
Status/Settings/DTI are numerous. Note the following:

• All Status/Settings/DTI, except a handful, are accessible through a keyword.
This discussion is organized around these keywords. Keywords and
descriptions are listed alphabetically in sub-appendix Status/Settings/DTI
Descriptions (Alphabetical) (p. 585).

• Status fields are read only (mostly). Some are resettable.
• Settings are read/write (mostly).
• DTI are read only.
• Directories in sub-appendix Status/Settings/DTI Directories (p. 578) list several

groupings of keywords. Each keyword listed in these groups is linked to the
relevant description.

• Some Status/Settings/DTI have multiple names depending on the interface

112

Section 7. Installation

used to access them.
• No single interface accesses all Status/Settings/DTI. Interfaces used for

access include the following:

Table 6. Status/Setting/DTI: Access Points
Access Point Locate in...

Settings Editor
Device Configuration Utility, LoggerNet Connect screen,
PakBus Graph. See Datalogger Support Software — Details (p.
429).

Status View as a data table in a numeric monitor (p. 495).

DataTableInfo View as a data table in a numeric monitor (p. 495).

Station Status Menu item in datalogger support software (p. 631).

Edit Settings Menu item in PakBusGraph software.

Settings Menu item in CR1000KD Keyboard Display Configure,
Settings

status.keyword/settings.keyword Syntax in CRBasic program

1 Information presented in Station Status is not updated automatically. Click the Refresh button to update.

Note Communication and processor bandwidth are consumed when generating
the Status and DataTableInfo tables. If the CR800 is very tight on processing
time, as may occur in very long or complex operations, retrieving the Status table
repeatedly may cause skipped scans (p. 463).

Status577/Settings/DTI (p. 577)can be set or accessed using CRBasic instructions
SetStatus() or SetSetting().

For example, to set the setting StationName to BlackIceCouloir, the following
syntax is used:

SetSetting("StationName","BlackIceCouloir")

where StationName is the keyword for the setting, and BlackIceCouloir is the set
value.

Settings can be requested by the CRBasic program using the following syntax:
x = Status.[setting]

where Setting is the keyword for a setting.

For example, to acquire the value set in setting StationName, use the following
statement:

x = Status.StationName

7.7.1.4 Configuration with Executable CPU: Files
Many CR800 settings can be changed remotely over a telecommunication link
either directly, or as discussed in section Configuration with CRBasic Program (p.
113), as part of the CRBasic program. These conveniences come with the risk of
inadvertently changing settings and disabling communications. Such an
occurence will likely require an on-site visit to correct the problem if at least one
of the provisions discussed in this section is not put in place. For example,

113

Section 7. Installation

wireless-ethernet (cell) modems are often controlled by a switched 12 Vdc
(SW12) terminal. SW12 is normally off, so, if the program controlling SW12 is
disabled, such as by replacing it with a program that neglects SW12 control, the
cell modem is switched off and the remote CR800 drops out of
telecommunications.

Executable CPU: files automatically execute according to the schedule outlined in
table . Each can contain code to set specific settings in the CR800.

Executable CPU: files include the following:

• 'Include' file (p. 145)
• Default.cr8 file (p. 114)
• Powerup.ini file (p. 365)

To be used, each file needs to be created and then placed on the CPU: drive of the
CR800. The 'include' file and default.cr8 file consist of CRBasic code.
Powerup.ini has a different, limited programming language.

7.7.1.4.1 Default.cr8 File
A file named default.cr8 can be stored on the CR800 CPU: drive. At power up,
the CR800 loads default.cr8 if no other program takes priority (see Executable
File Run Priorities (p. 114)). Default.cr8 can be edited to preserve critical
datalogger settings such as communication settings, but cannot be more than a
few lines of code.

Downloading operating systems over telecommunications requires much of the
available CR800 memory. If the intent is to load operating systems via a
telecommunication link, and have a default.cr8 file in the CR800, the default.cr8
program should not allocate significant memory, as might happen by allocating a
large USR: drive. Do not use a DataTable() instruction set for auto allocation of
memory, either. Refer to the section Updating the Operating System (OS) (p. 115)
for information about sending the operating system.

Execution of default.cr8 at power-up can be aborted by holding down the DEL
key on the CR1000KD Keyboard Display.

CRBasic Example 1. Simple Default.cr8 File to Control SW12 Terminal
'This program example demonstrates use of a Default.cr8 file. It must be restricted
'to few lines of code. This program controls the SW12 switched power terminal, which
'may be helpful in assuring that the default power state of a remote modem is ON.

BeginProg
 Scan(1,Sec,0,0)
 If TimeIntoInterval(15,60,Sec) Then SW12(1)
 If TimeIntoInterval(45,60,Sec) Then SW12(0)
 NextScan
EndProg

7.7.1.4.2 Executable File Run Priorities
1. When the CR800 powers up, it executes commands in the powerup.ini file (on

Campbell Scientific mass storage device including commands to set the
CRBasic program file attributes to Run Now or Run On Power-up.

2. When the CR800 powers up, a program file marked as Run On Power-up will

114

Section 7. Installation

be the current program. Otherwise, any file marked as Run Now will be used.

3. If there is a file specified in the Include File Name setting, it is compiled at the
end of the program selected in step.

4. If there is no file selected in step 1, or if the selected file cannot be compiled,
the CR800 will attempt to run the program listed in the Include File Name
setting. The CR800 allows a SlowSequence statement to take the place of the
BeginProg statement. This allows the "Include File" to act as the default
program.

5. If the program listed in the Include File Name setting cannot be run or if no
program is specified, the CR800 will attempt to run the program named
default.cr8 on its CPU: drive.

6. If there is no default.cr8 file or it cannot be compiled, the CR800 will not
automatically run any program.

7.7.2 CR800 Configuration — Details
Following are a few common configuration actions:

• Updating the operating system (p. 115).
• Access a CR800 register (p. 112) to help troubleshoot
• Set the CR800 clock
• Save current configuration
• Restore a configuration

Tools available to perform these actions are listed in the following table:

Table 7. Common Configuration Actions and Tools

Action Tools to Use1

Updating the operating system DevConfig (p. 109) software, Program Send (p.
498), memory card, mass storage device

Access a register DevConfig, PakBus Graph, CRBasic program,
'Include' file (p. 145), Default.cr8 file (p. 114).

Set the CR800 clock DevConfig, PC200W, PC400, LoggerNet

Save / restore configuration DevConfig

1 Tools are listed in order of preference.

7.7.2.1 Updating the Operating System (OS)
The CR800 is shipped with the operating system pre-loaded. Check the pre-
loaded version by connecting your PC to the CR800 using the procedure outlined
in DevConfig Help. OS version is displayed in the following location:

Deployment tab

Datalogger tab

OS Version text box

Update the OS on the CR800 as directed in DevConfig Help. The current version
of the OS is found at www.campbellsci.com/downloads. OS updates are free of
charge.

115

Section 7. Installation

Note An OS file has a .obj extension. It can be compressed using the gzip
compression algorithm. The datalogger will accept and decompress the file on
receipt. See the appendix Program and OS Compression (p. 440).

Note the following precautions:

• Since sending an OS resets CR800 memory, data loss will certainly occur.
Depending on several factors, the CR800 may also become incapacitated for
a time.

o Is sending the OS necessary to correct a critical problem? If not,
consider waiting until a scheduled maintenance visit to the site.

o Is the site conveniently accessible such that a site visit can be undertaken
to correct a problem of reset settings without excessive expense?

o If the OS must be sent, and the site is difficult or expensive to access, try
the OS download procedure on an identically programmed, more
conveniently located CR800.

• Campbell Scientific recommends upgrading operating systems only with a
direct-hardwire link. However, the Send Program (p. 498) button in the
datalogger support software (p. 630) allows the OS to be sent over all software
supported telecommunication systems.

o Operating systems are very large files — be cautious of line charges.
o Updating the OS may reset CR800 settings, even settings critical to

supporting the telecommunication link. Newer operating systems
minimize this risk.

Note Beginning with OS 25, the OS has become large enough that a CR800 with
serial number ≤ 3604, which has only 2 MB of SRAM, may not have enough
memory to receive it under some circumstances. If problems are encountered
with a 2 MB CR800, sending the OS over a direct serial connection is usually
successful.

The operating system is updated with one of the following tools:

7.7.2.1.1 OS Update with DevConfig Send OS Tab
Using this method results in the CR800 being restored to factory defaults. The
existing OS is over written as it is received. Failure to receive the complete new
OS will leave the CR800 in an unstable state. Use this method only with a direct
hardwire serial connection.

How

Use the following procedure with DevConfig: Do not software Connect to the
CR800.

1. Select CR800 from the list of devices at left

2. Select the appropriate communication port and baud rate at the bottom left

3. Click the Send OS tab located at the top of DevConfig window

4. Follow the on-screen OS Download Instructions

Pros/Cons

116

Section 7. Installation

This is a good way to recover a CR800 that has gone into an unresponsive state.
Often, an operating system can be loaded even if you are unable to communicate
with the CR800 through other means.

Loading an operating system through this method will do the following:

1. Restore all CR800 settings to factory defaults

2. Delete data in final storage

3. Delete data from and remove the USR drive

4. Delete program files stored on the datalogger

7.7.2.1.2 OS Update with DevConfig
This method is very similar to sending an OS as a program, with the exception
that you have to manually prepare the datalogger to accept the new OS.

How

1. Connect to the CR800 with Connect or DevConfig

2. Collect data

3. Transfer a default.CR1 (p. 114) program file to the CR800 CPU: drive

4. Stop the current program and select the option to delete associated data (this
will free up SRAM memory allocated for data storage)

5. Collect files from the USR: drive (if applicable)

6. Delete the USR: drive (if applicable)

7. Send the new .obj OS file to the CR800

8. Restart the previous program (default.CR1 will be running after OS compiles)

Pros/Cons

This method is preferred because the user must manually configure the datalogger
to receive an OS and thus should be cognizant of what is happening (loss of data,
program being stopped, etc.).

Loading an operating system through this method will do the following:

1. Preserve all CR800 settings

2. Delete all data in final storage

3. Delete USR: drive

4. Stop current program deletes data and clears run options

5. Deletes data generated using the CardOut() or TableFile() instructions

7.7.2.1.3 OS Update with DevConfig
A send program command is a feature of DevConfig and other datalogger support
software (p. 630). Location of this command in the software is listed in table
Program Send Command Locations

117

Section 7. Installation

Program Send Command Locations

Datalogger Support
Software

Name of Button Location of Button

DevConfig Send Program Logger Control tab lower left

LoggerNet Send New... Connect window, lower right

PC400 Send Program Main window, lower right

PC200W Send Program Main window, lower right

RTDAQ Send Program Main window, lower right

This method results in the CR800 retaining its settings (a feature since OS version
16). The new OS file is temporarily stored in CR800 SRAM memory, which
necessitates the following:

• Sufficient memory needs to be available. Before attempting to send the OS,
you may need to delete other files in the CPU: and USR: drives, and you may
need to remove the USR: drive altogether. Since OS 25, older 2 MB CR800s
do not have sufficient memory to perform this operation.

• SRAM will be cleared to make room, so program run options and data will be
lost. If CR800 communications are controlled with the current program, first
load a default.cr8 CRBasic program on to the CPU: drive. Default.cr8 will
run by default after the CR800 compiles the new OS and clears the current
run options.

How

From the LoggerNet Connect window, perform the following steps:

1. Connect to the station

2. Collect data

3. Click the Send New…

4. Select the OS file to send

5. Restart the existing program through File Control, or send a new program with
CRBasic Editor and specify new run options.

Pros/Cons

This is the best way to load a new operating system on the CR800 and have its
settings retained (most of the time). This means that you will still be able to
communicate with the station because the PakBus address is preserved and
PakBusTCP client connections are maintained. Plus, if you are using a TCP/IP
connection, the file transfer is much faster than loading a new OS directly through
DevConfig.

The bad news is that, since it clears the run options for the current program, you
can lose communications with the station if power is toggled to a communication
peripheral under program control, such as turning a cell modem on/off to conserve
power use.

Also, if sufficient memory is not available, instability may result. It’s probably
best to clear out the memory before attempting to send the new OS file. If you
have defined a USR drive you will probably need to remove it as well.

118

Section 7. Installation

Loading an operating system through this method will do the following:

1. Preserve all CR800 settings

2. Delete all data in final storage

3. Stop current program (Stop and deletes data) and clears run options

4. Deletes data generated using the CardOut() instruction

7.7.2.1.4 OS Update with DevConfig
How

1. Place a powerup.ini (p. 365) text file and operating system .obj file on the external
memory device

2. Attached the external memory device to the datalogger

3. Power cycle the datalogger

Pros/Cons

This is a great way to change the OS without a laptop in the field. The down side
is only if you want to do more than one thing with the powerup.ini, such as
change OS and load a new program, which necessitates that you use separate
cards or modify the .ini file between the two tasks you wish to perform.

Loading an operating system through this method will do the following:

1. Preserve all datalogger settings

2. Delete all data in final storage

3. Preserve USR drive and data stored there

4. Maintains program run options

5. Deletes data generated using the CardOut() or TableFile() instructions

DevConfig Send OS tab:

• If you are having trouble communicating with the CR800
• If you want to return the CR800 to a known configuration

Send Program (p. 498) or Send New... command:

• If you want to send an OS remotely
• If you are not too concerned about the consequences

File Control tab:

• If you want to update the OS remotely
• If your only connection to the CR800 is over IP
• If you have IP access and want to change the OS for testing purposes

External memory and PowerUp.ini file:

• If you want to change the OS without a PC

119

Section 7. Installation

7.7.2.2 Restoring Factory Defaults
In DevConfig, clicking the Factory Defaults button at the base of the Settings
Editor tab sends a command to the CR800 to revert to its factory default settings.
The reverted values will not take effect until the changes have been applied.

7.7.2.3 Saving and Restoring Configurations
In DevConfig, clicking Save on a summary screen saves the configuration to an
XML file. This file can be used to load a saved configuration back into the
CR800 by clicking Read File and Apply.

Figure 38. Summary of CR800 Configuration

7.8 CRBasic Programming — Details
Related Topics:
 • CRBasic Programming — Overview (p. 86)
 • CRBasic Programming — Details (p. 120)
 • CRBasic Programming — Instructions (p. 511)
 • Programming Resource Library (p. 167)
 • CRBasic Editor Help

Programs are created with either Short Cut (p. 501) or CRBasic Editor (p. 123). Old
CR10X and CR23X programs can be converted to CRBasic code using
Transformer.exe (executable file included with LoggerNet). Programs can be up
to 490 KB in size; most programs, however, are much smaller.

120

Section 7. Installation

7.8.1 Program Structure
Essential elements of a CRBasic program are listed in the table CRBasic Program
Structure (p. 121) and demonstrated in CRBasic example Program Structure (p. 121).

Table 8. CRBasic Program Structure

Declarations Define CR800 memory usage. Declare constants,
variables, aliases, units, and data tables.

Declare constants List fixed constants.

Declare Public variables List / dimension variables viewable during program
execution.

Declare Dim variables List / dimension variables not viewable during
program execution.

Define Aliases Assign aliases to variables.

Define Units
Assign engineering units to variable (optional).
Units are strictly for documentation. The CR800
makes no use of Units nor checks Unit accuracy.

Define data tables. Define stored data tables.

Process / store trigger Set triggers when data should be stored. Triggers
may be a fixed interval, a condition, or both.

Table size Set the size of a data table.

Other on-line storage devices Send data to a Campbell Scientific mass storage
device if available.

Processing of data

List data to be stored in the data table, e.g. samples,
averages, maxima, minima, etc.
Processes or calculations repeated during program
execution can be packaged in a subroutine and
called when needed rather than repeating the code
each time.

Begin program Begin program defines the beginning of statements
defining CR800 actions.

Set scan interval The scan sets the interval for a series of
measurements.

Measurements Enter measurements to make.

Processing Enter any additional processing.

Call data table(s) Declared data tables must be called to process and
store data.

Initiate controls Check measurements and initiate controls if
necessary.

NextScan Loop back to set scan and wait for the next scan.

End program End program defines the ending of statements
defining CR800 actions.

121

Section 7. Installation

CRBasic Program Structure

'Declarations

'Define Constants
Const RevDiff = 1
Const Del = 0 'default

Const Integ = 250
Const Mult = 1
Const Offset = 0

 Declare constants

'Define public variables
Public RefTemp
Public TC(6)

'Define Units
Units RefTemp = degC
Units TC = DegC

 Declare public variables,
dimension array, and declare
units.

 Declarations

'Define data tables
DataTable(Temp,1,2000)
 DataInterval(0,10,min,10)

 Average(1,RefTemp,FP2,0)
 Average(6,TC(),FP2,0)
EndTable

 Define data table

'Begin Program
BeginProg

 'Set scan interval
 Scan(1,Sec,3,0)

 'Measurements

 PanelTemp(RefTemp,250)
 TCDiff(TC()...Offset)

 Measure

 'Processing (None in this
 'example)

 Scan loop

 'Call data table

 CallTable Temp Call data table

 'Controls (None in this
 'example)

 'Loop to next scan
 NextScan

'End Program
EndProg

122

Section 7. Installation

7.8.2 Writing and Editing Programs
7.8.2.1 Short Cut Programming Wizard

Short Cut is easy-to-use, menu-driven software that presents lists of predefined
measurement, processing, and control algorithms from which to choose. You
make choices, and Short Cut writes the CRBasic code required to perform the
tasks. Short Cut creates a wiring diagram to simplify connection of sensors and
external devices. Quickstart Tutorial (p. 41) works through a measurement example
using Short Cut.

For many complex applications, Short Cut is still a good place to start. When as
much information as possible is entered, Short Cut will create a program template
from which to work, already formatted with most of the proper structure,
measurement routines, and variables. The program can then be edited further
using CRBasic Program Editor.

7.8.2.2 CRBasic Editor
CR800 application programs are written in a variation of BASIC (Beginner's All-
purpose Symbolic Instruction Code) computer language, CRBasic (Campbell
Recorder BASIC). CRBasic Editor is a text editor that facilitates creation and
modification of the ASCII text file that constitutes the CR800 application
program. CRBasic Editor is a component of LoggerNet (p. 631), RTDAQ, and
PC400 datalogger support software (p. 93).

Fundamental elements of CRBasic include the following:

• Variables — named packets of CR800 memory into which are stored values
that normally vary during program execution. Values are typically the result
of measurements and processing. Variables are given an alphanumeric name
and can be dimensioned into arrays of related data.

• Constants — discrete packets of CR800 memory into which are stored
specific values that do not vary during program executions. Constants are
given alphanumeric names and assigned values at the beginning declarations
of a CRBasic program.

Note Keywords and predefined constants are reserved for internal CR800 use. If
a user-programmed variable happens to be a keyword or predefined constant, a
runtime or compile error will occur. To correct the error, simply change the
variable name by adding or deleting one or more letters, numbers, or the
underscore (_) from the variable name, then recompile and resend the program.
CRBasic Editor Help provides a list of keywords and predefined constants.

• Common instructions — instructions (called "commands" in BASIC) and
operators used in most BASIC languages, including program control
statements, and logic and mathematical operators.

• Special instructions — instructions (commands) unique to CRBasic,
including measurement instructions, and processing instructions that
compress many common calculations used in CR800 dataloggers.

These four elements must be properly placed within the program structure.

123

Section 7. Installation

7.8.2.2.1 Inserting Comments into Program
Comments are non-executable text placed within the body of a program to
document or clarify program algorithms.

As shown in CRBasic example Inserting Comments (p. 124), comments are inserted
into a program by preceding the comment with a single quote ('). Comments can
be entered either as independent lines or following CR800 code. When the CR800
compiler sees a single quote ('), it ignores the rest of the line.

CRBasic Example 2. Inserting Comments
'This program example demonstrates the insertion of comments into a program. Comments are
'placed in two places: to occupy single lines, such as this explanation does, or to be
'placed after a statement.

'Declaration of variables starts here.
Public Start(6) 'Declare the start time array

BeginProg
EndProg

7.8.2.2.2 Conserving Program Memory
One or more of the following memory-saving techniques can be used on the rare
occasions when a program reaches memory limits:

• Declare variables as DIM instead of Public. DIM variables do not require
buffer memory for data retrieval.

• Reduce arrays to the minimum size needed. Arrays save memory over the
use of scalars as there is less "meta-data" required per value. However, as a
rough approximation, 192000 (4 kB memory) or 87000 (2 kB memory)
variables will fill available memory.

• Use variable arrays with aliases instead of individual variables with unique
names. Aliases consume less memory than unique variable names.

• Confine string concatenation to DIM variables.
• Dimension string variables only to the size required.

Read More More information on string variable-memory use and conservation is
available in String Operations (p. 275).

7.8.3 Sending CRBasic Programs
The CR800 requires that a CRBasic program file be sent to its memory to direct
measurement, processing, and data-storage operations. The program file can have
the extension cr8 or .dld and can be compressed using the GZip algorithm before
sending it to the CR800. Upon receipt of the file, the CR800 automatically
decompresses the file and uses it just as any other program file. See the appendix
Program and OS Compression (p. 440) for more information.

Options for sending a program include the following:

• Program Send (p. 498) command in datalogger-support software (p. 93)
• Program send command in Device Configuration Utility (DevConfig (p. 109))
• Campbell Scientific mass storage device (p. 629)

124

Section 7. Installation

A good practice is to always retrieve data from the CR800 before sending a
program; otherwise, data may be lost.

Read More See File Management (p. 361) and the Campbell Scientific mass
storage device documentation available at www.campbellsci.com.

7.8.3.1 Preserving Data at Program Send
When sending programs to the CR800 through the software options listed in table
Program Send Options that Reset Memory (p. 125), memory is reset and data are
erased.

When data retention is desired, send programs using the File Control Send (p. 488)
command or CRBasic Editor command Compile, Save, Send in the Compile
menu. The window shown in the figure CRBasic Editor Program Send File
Control Window (p. 125) is displayed before the program is sent. Select Run Now,
Run On Power-up, and Preserve data if no table changed before pressing Send
Program.

Note To retain data, Preserve data if no table changed must be selected
whether or not a Campbell Scientific mass storage device is connected.

Regardless of the program-upload tool used, if any change occurs to data table
structures listed in table Data Table Structures (p. 126), data will be erased when a
new program is sent.

Table 9. Program Send Options that Reset
Memory*

LoggerNet | Connect | Program Send

PC400 | Clock/Program | Send Program

PC200W | Clock/Program | Send Program

RTDAQ | Clock/Program | Send Program

DevConfig | Logger Control | Send Program

*Reset memory and set program attributes to Run Always

Figure 39. CRBasic Editor Program Send File Control window

125

Section 7. Installation

Table 10. Data Table
Structures

–Data table name(s)

–Data-output interval or offset

–Number of fields per record

–Number of bytes per field

–Field type, size, name, or position

–Number of records in table

7.8.4 Programming Syntax
7.8.4.1 Program Statements

CRBasic programs are made up of a series of statements. Each statement
normally occupies one line of text in the program file. Statements consist of
instructions, variables, constants, expressions, or a combination of these.
"Instructions" are CRBasic commands. Normally, only one instruction is
included in a statement. However, some instructions, such as If and Then, are
allowed to be included in the same statement.

Lists of instructions and expression operators can be found in the appendix
CRBasic Programming Instructions (p. 511). A full treatment of each instruction
and operator is located in the Help files of CRBasic Editor (p. 123).

7.8.4.1.1 Multiple Statements on One Line
Multiple short statements can be placed on a single text line if they are separated
by a colon (:). This is a convenient feature in some programs. However, in
general, programs that confine text lines to single statements are easier for
humans to read.

In most cases, regarding statements separated by : as being separate lines is safe.
However, in the case of an implied EndIf, CRBasic behaves in what may be an
unexpected manner. In the case of an If...Then...Else...EndIf statement, where
the EndIf is only implied, it is implied after the last statement on the line. For
example:

If A then B : C : D

does not mean:
If A then B (implied EndIf) : C : D

Rather, it does mean:
If A then B : C : D (implied EndIf)

7.8.4.1.2 One Statement on Multiple Lines
Long statements that overrun the CRBasic Editor page width can be continued on
the next line if the statement break includes a space and an underscore (_). The
underscore must be the last character in a text line, other than additional white
space.

126

Section 7. Installation

Note CRBasic statements are limited to 512 characters, whether or not a line
continuation is used.

Examples:
Public A, B, _
 C,D, E, F

If (A And B) _
 Or (C And D) _
 Or (E And F) then ExitScan

7.8.4.2 Single-Statement Declarations
Single-statements are used to declare variables, constants, variable and constant
related elements, and the station name. The following instructions are used
usually before the BeginProg instruction:

• Public
• Dim
• Constant
• Units
• Alias
• StationName

The table Rules for Names (p. 157) lists declaration names and allowed lengths. See
the section Predefined Constants (p. 136) for other naming limitations.

7.8.4.3 Declaring Variables
A variable is a packet of memory that is given an alphanumeric name.
Measurements and processing results pass through variables during program
execution. Variables are declared as Public or Dim. Public variables are
viewable through numeric monitors (p. 495). Dim variables cannot be viewed. A
public variables can be set as read-only, using the ReadOnly instruction, so that it
cannot be changed from a numeric monitor. The program, however, continues to
have read/write access to the variable.

Declared variables are initialized once when the program starts. Additionally,
variables that are used in the Function() or Sub() declaration, or that are declared
within the body of the function or subroutine, are local to that function or
subroutine.

Variable names can be up to 39 characters in length, but most variables should be
no more than 35 characters long. This allows for four additional characters that
are added as a suffix to the variable name when it is output to a data table.
Variable names can contain the following characters:

• A to Z
• a to z
• 0 to 9
• _ (underscore)
• $

Names must start with a letter, underscore, or dollar sign. Spaces and quote
marks are not allowed. Variable names are not case sensitive.

127

Section 7. Installation

Several variables can be declared on a single line, separated by commas:
Public RefTemp, AirTemp2, Batt_Volt

Variables can also be assigned initial values in the declaration. Following is an
example of declaring a variable and assigning it an initial value.

Public SetTemp = {35}

In string variables, string size defaults to 24 characters (changed from 16
characters in April 2013, OS 26).

7.8.4.3.1 Declaring Data Types
Variables and data values stored in final memory can be configured with various
data types to optimize program execution and memory usage.

The declaration of variables with the Dim or Public instructions allows an
optional type descriptor As that specifies the data type. The default data type
(declaration without a descriptor) is IEEE4 floating point, which is equivalent to
the As Float declaration. Variable data types are listed in the table Data Types in
Variable Memory (p. 129, p. 128). Final-data memory data types are listed in the table
Data Types in Final-Data Memory (p. 129). CRBasic example Data Type
Declarations (p. 130) shows various data types in use in the declarations and output
sections of a program.

CRBasic allows mixing data types within a single array of variables; however,
this practice can result in at least one problem. The datalogger support software is
incapable of efficiently handling different data types for the same field name.
Consequently, the software mangles the field names in data file headers.

Table 11. Data Types in Variable Memory

Name Command Description Word Size
(Bytes) Notes Resolution / Range

Float As Float or
As IEEE4 IEEE floating point 4

Data type of all variables unless
declared otherwise.
IEEE Standard 754

±1.4E–45 to ±3.4E38

Long As Long Signed integer 4

Use to store count data in the range of
±2,147,483,648
Speed: integer math is faster than
floating point math.
Resolution: 32 bits. Compare to 24
bits in IEEE4.
Suitable for storing whole numbers,
counting number, and integers in
final-data memory. If storing non-
integers, the fractional portion of the
value is lost.

–2,147,483,648 to +2,147,483,647

Boolean As Boolean Signed integer 4

Use to store true or false states, such
as states of flags and control ports. 0
is always false. –1 is always true.
Depending on the application, any
other number may be interpreted as
true or false. See the section True = -
1, False = 0 (p. 162).

True = –1 or any number ≥ 1
False = any number ≥ 0 and < 1

128

Section 7. Installation

Table 11. Data Types in Variable Memory

Name Command Description Word Size
(Bytes) Notes Resolution / Range

String As String ASCII string

Minimum: 3
(4 with null
terminator)
Default: 24
Maximum:
limited only
to the size of
available
CR800
memory.

See caution.1
String size is defined by the CR800
operating system and CRBasic
program.
When converting from STRING to
FLOAT, numerics at the beginning
of a string convert, but conversion
stops when a non-numeric is
encountered. If the string begins with
a non-numeric, the FLOAT will be
NAN. If the string contains multiple
numeric values separated by non-
numeric characters, the SplitStr()
instruction can be used to parse out
the numeric values. See the sections
String Operations (p. 275) and Serial
I/O (p. 238).

Unless declared otherwise, string size is 24
bytes or characters. String size is allocated
in multiples of four bytes; for example,
String * 25, String * 26, String * 27, and
String * 28 allocate 28 bytes (27 usable).
Minimum string size is 4 (3 usable). See
CRBasic Editor Help for more information.
Maximum length is limited only by
available CR800 memory.

1 CAUTION When using a very long string in a variable declared Public, the operations of datalogger support software (p. 631) will frequently transmit
the entire string over the communication link. If communication bandwidth is limited, or if communications are paid for by they byte, declaring the
variable Dim may be preferred.

Table 12. Data Types in Final-Data Memory

Name Argument Description Word Size
(Bytes) Notes Resolution / Range

FP2 FP2 Campbell Scientific
floating point 2

Default final-memory data type. Use
FP2 for stored data requiring 3 or 4
significant digits. If more significant
digits are needed, use IEEE4 or an
offset.

Zero Minimum Maximum

0.000 ±0.001 ±7999.

Absolute
Value Decimal Location

0 – 7.999 X.XXX

8 – 79.99 XX.XX

80 – 799.9 XXX.X

800 – 7999. XXXX.

IEEE4 IEEE4 or
Float IEEE floating point 4 IEEE Standard 754 ±1.4E–45 to ±3.4E38

Long Long Signed integer 4

Use to store count data in the range of
±2,147,483,648
Speed: integer math is faster than
floating point math.
Resolution: 32 bits. Compare to 24
bits in IEEE4.
Suitable for storing whole numbers,
counting number, and integers in
final-data memory. If storing non-
integers, the fractional portion of the
value is lost.

–2,147,483,648 to +2,147,483,647

129

Section 7. Installation

Table 12. Data Types in Final-Data Memory

Name Argument Description Word Size
(Bytes) Notes Resolution / Range

UINT2 UINT2 Unsigned integer 2

Use to store positive count data ≤
+65535.
Use to store port or flag status. See
CRBasic example Load binary
information into a variable (p. 137).
When Public FLOATs convert to
UINT2 at final data storage, values
outside the range 0 – 65535 yield
unusable data. INF converts to
65535. NAN converts to 0.

0 to 65535

UINT4 UINT4 Unsigned integer 4

Use to store positive count data ≤
2147483647.
Other uses include storage of long ID
numbers (such as are read from a bar
reader), serial numbers, or address.
May also be required for use in some
Modbus devices.

0 to 2147483647

Boolean Boolean Signed integer 4

Use to store true or false states, such
as states of flags and control ports. 0
is always false. –1 is always true.
Depending on the application, any
other number may be interpreted as
true or false. See the section True = -
1, False = 0 (p. 162). To save
memory, consider using UINT2 or
BOOL8.

True = –1 or any number ≥ 1
False = any number ≥ 0 and < 1

Bool8 Bool8 Integer 1

8 bits (0 or 1) of information. Uses
less space than 32-bit BOOLEAN.
Holding the same information in
BOOLEAN will require 256 bits.
See Bool8 Data Type (p. 196).

True = 1, False = 0

NSEC NSEC Time stamp 8

Divided up as four bytes of seconds
since 1990 and four bytes of
nanoseconds into the second. Used to
record and process time data. See
NSEC Data Type (p. 200).

1 nanosecond

String String ASCII string

Minimum: 3
(4 with null
terminator)
Default: 24
Maximum:
limited only
to the size of
available
CR800
memory.

See caution.1
String size is defined by the CR800
operating system and CRBasic
program.
When converting from STRING to
FLOAT, numerics at the beginning
of a string convert, but conversion
stops when a non-numeric is
encountered. If the string begins with
a non-numeric, the FLOAT will be
NAN. If the string contains multiple
numeric values separated by non-
numeric characters, the SplitStr()
instruction can be used to parse out
the numeric values. See the sections
String Operations (p. 275) and Serial
I/O (p. 238)..

Unless declared otherwise, string size is 24
bytes or characters. String size is allocated
in multiples of four bytes; for example,
String * 25, String * 26, String * 27, and
String * 28 allocate 28 bytes (27 usable).
Minimum string size is 4 (3 usable). See
CRBasic Editor Help for more information.
Maximum length is limited only by
available CR800 memory.

130

Section 7. Installation

CRBasic Example 3. Data Type Declarations
'This program example demonstrates various data type declarations.

'Data type declarations associated with any one variable occur twice: first in a Public
'or Dim statement, then in a DataTable/EndTable segment. If not otherwise specified, data
'types default to floating point: As Float in Public or Dim declarations, FP2 in data
'table declarations.

'Float Variable Examples
Public Z
Public X As Float

'Long Variable Example
Public CR800Time As Long
Public PosCounter As Long
Public PosNegCounter As Long

'Boolean Variable Examples
Public Switches(8) As Boolean
Public FLAGS(16) As Boolean

'String Variable Example
Public FirstName As String * 16 'allows a string up to 16 characters long

DataTable(TableName,True,-1)
 'FP2 Data Storage Example
 Sample(1,Z,FP2)

 'IEEE4 / Float Data Storage Example
 Sample(1,X,IEEE4)

 'UINT2 Data Storage Example
 Sample(1,PosCounter,UINT2)

 'LONG Data Storage Example
 Sample(1,PosNegCounter,Long)

 'STRING Data Storage Example
 Sample(1,FirstName,String)

 'BOOLEAN Data Storage Example
 Sample(8,Switches(),Boolean)

 'BOOL8 Data Storage Example
 Sample(2,FLAGS(),Bool8)

 'NSEC Data Storage Example
 Sample(1,CR800Time,Nsec)
EndTable

BeginProg
'Program logic goes here
EndProg

131

Section 7. Installation

7.8.4.3.2 Dimensioning Numeric Variables
Some applications require multi-dimension arrays. Array dimensions are
analogous to spatial dimensions (distance, area, and volume). A single-dimension
array, declared as,

Public VariableName(x)

with (x) being the index, denotes x number of variables as a series.

A two-dimensional array, declared as,
Public VariableName(x,y)

with (x,y) being the indices, denotes (x • y) number of variables in a square x-by-y
matrix.

Three-dimensional arrays, declared as
Public VariableName (x,y,z)

with (x,y,z) being the indices, have (x • y • z) number of variables in a cubic x-by-
y-by-z matrix. Dimensions greater than three are not permitted by CRBasic.

When using variables in place of integers as dimension indices (see CRBasic
example Using variable array dimension indices (p. 132)), declaring the indices As
Long variables is recommended. Doing so allows for more efficient use of
CR800 resources.

CRBasic Example 4. Using Variable Array Dimension Indices

'This program example demonstrates the use of dimension indices in arrays. The variable
'VariableName is declared with three dimensions with 4 in each index. This indicates the
'array has means it has 64 elements. Element 24 is loaded with the value 2.718.
'
Dim aaa As Long
Dim bbb As Long
Dim ccc As Long
Public VariableName(4,4,4) As Float

BeginProg
 Scan(1,sec,0,0)
 aaa = 3
 bbb = 2
 ccc = 4
 VariableName(aaa,bbb,ccc) = 2.718
 NextScan
EndProg

7.8.4.3.3 Dimensioning String Variables
Strings can be declared to a maximum of two dimensions. The third "dimension"
is used for accessing characters within a string. See String Operations (p. 275).
String length can also be declared. See the table Data Types in Variable Memory.
(p. 129, p. 128)

A one-dimension string array called StringVar, with five elements in the array
and each element with a length of 36 characters, is declared as

Public StringVar(5) As String * 36

132

Section 7. Installation

Five variables are declared, each 36 characters long:
StringVar(1)
StringVar(2)
StringVar(3)
StringVar(4)
StringVar(5)

7.8.4.3.4 Declaring Flag Variables
A flag is a variable, usually declared As Boolean (p. 482), that indicates True or
False, on or off, go or not go, etc. Program execution can be branched based on
the value in a flag. Sometime flags are simply used to inform an observer that an
event is occurring or has occurred. While any variable of any data type can be
used as a flag, using Boolean variables, especially variables named "Flag", usually
works best in practice. CRBasic example Flag Declaration and Use (p. 133)
demonstrates changing words in a string based on a flag.

CRBasic Example 5. Flag Declaration and Use
'This program example demonstrates the declaration and use of flags as Boolean variables,
'and the use of strings to report flag status. To run the demonstration, send this program
'to the CR800, then toggle variables Flag(1) and Flag(2) to true or false to see how the
'program logic sets the words "High" or "Low" in variables FlagReport(1) and FlagReport(2).
'To set a flag to true when using LoggerNet Connect Numeric Monitor, simply click on the
'forest green dot adjacent to the word "false." If using a keyboard, a choice of "True" or
'"False" is made available.

Public Flag(2) As Boolean
Public FlagReport(2) As String

BeginProg
 Scan(1,Sec,0,0)

 If Flag(1) = True Then
 FlagReport(1) = "High"
 Else
 FlagReport(1) = "Low"
 EndIf

 If Flag(2) = True Then
 FlagReport(2) = "High"
 Else
 FlagReport(2) = "Low"
 EndIf

 NextScan
EndProg

7.8.4.4 Declaring Arrays
Related Topics:
 • Declaring Arrays (p. 133)
 • Arrays of Multipliers and Offsets
 • VarOutOfBounds (p. 464)

Multiple variables of the same root name can be declared. The resulting series of
like-named variables is called an array. An array is created by placing a suffix of

133

Section 7. Installation

(x) on the variable name. X number of variables are created that differ in name
only by the incrementing number in the suffix. For example, the four statements

Public TempC1
Public TempC2
Public TempC3
Public TempC4

can simply be condensed to
Public TempC(4).

This statement creates in memory the four variables TempC(1), TempC(2),
TempC(3), and TempC(4).

A variable array is useful in program operations that affect many variables in the
same way. CRBasic example Using a Variable Array in Calculations (p. 134)
shows compact code that converts four temperatures (°C) to °F.

In this example, a For/Next structure with an incrementing variable is used to
specify which elements of the array will have the logical operation applied to
them. The CRBasic For/Next function will only operate on array elements that
are clearly specified and ignore the rest. If an array element is not specifically
referenced, as is the case in the declaration

Dim TempC()

CRBasic references only the first element of the array, TempC(1).

See CRBasic example Concatenation of Numbers and Strings (p. 277) for an
example of using the += assignment operator (p. 539) when working with arrays.

CRBasic Example 6. Using a Variable Array in Calculations
'This program example demonstrates the use of a variable array to reduce code. In this
'example, two variable arrays are used to convert four temperature measurements from
'degree C to degrees F.

Public TempC(4)
Public TempF(4)
Dim T

BeginProg
 Scan(1,Sec,0,0)

 Therm107(TempC(),1,1,Vx1,0,250,1.0,0)
 Therm107(TempC(),1,2,Vx1,0,250,1.0,0)
 Therm107(TempC(),1,3,Vx1,0,250,1.0,0)
 Therm107(TempC(),1,4,Vx1,0,250,1.0,0)

 For T = 1 To 4
 TempF(T) = TempC(T) * 1.8 + 32
 Next T

 NextScan
EndProg

7.8.4.5 Declaring Local and Global Variables
Advanced programs may use subroutines (p. 281) or functions (p. 576), each of which
can have a set of Dim variables dedicated to that subroutine or function. These

134

Section 7. Installation

are called local variables. Names of local variable can be identical to names of
global variables (p. 490) and to names of local variables declared in other
subroutines and functions. This feature allows creation of a CRBasic library of
reusable subroutines and functions that will not cause variable name conflicts. If
a program with local Dim variables attempts to use them globally, the compile
error undeclared variable will occur.

To make a local variable displayable, in cases where making it public creates a
naming conflict, sample the local variable to a data table and display the data
element table in a numeric monitor (p. 495).

When exchanging the contents of a global and local variables, declare each
passing / receiving pair with identical data types and string lengths.

7.8.4.6 Initializing Variables
By default, variables are set equal to zero at the time the datalogger program
compiles. Variables can be initialized to non-zero values in the declaration.
Examples of syntax are shown in CRBasic example Initializing Variables (p. 135).

CRBasic Example 7. Initializing Variables
'This program example demonstrates how variables can be declared as specific data types.
'Variables not declared as a specific data type default to data type Float. Also
'demonstrated is the loading of values into variables that are being declared.

Public aaa As Long = 1 'Declaring a single variable As Long and loading the value of 1.
Public bbb(2) As String *20 = {"String_1", "String_2"} 'Declaring an array As String and
 'loading strings in each element.
Public ccc As Boolean = True 'Declaring a variable As Boolean and loading the value of True.

'Initialize variable ddd elements 1,1 1,2 1,3 & 2,1.
'Elements (2,2) and (2,3) default to zero.
Dim ddd(2,3)= {1.1, 1.2, 1.3, 2.1}

'Initialize variable eee
Dim eee = 1.5

BeginProg
EndProg

7.8.4.7 Declaring Constants
CRBasic example Using the Const Declaration (p. 135) shows use of the constant
declaration. A constant can be declared at the beginning of a program to assign an
alphanumeric name to be used in place of a value so the program can refer to the
name rather than the value itself. Using a constant in place of a value can make
the program easier to read and modify, and more secure against unintended
changes. If declared using ConstTable / EndConstTable, constants can be
changed while the program is running by using the CR1000KD Keyboard Display
menu (Configure, Settings | Constant Table) or the C command in a terminal
emulator (see Troubleshooting – Terminal Emulator (p. 475)).

Note Using all uppercase for constant names may make them easier to recognize.

135

Section 7. Installation

CRBasic Example 8. Using the Const Declaration

'This program example demonstrates the use of the Const declaration.

'Declare variables
Public PTempC
Public PTempF

'Declare constants
Const CtoF_Mult = 1.8
Const CtoF_Offset = 32

BeginProg
 Scan(1,Sec,0,0)
 PanelTemp(PTempC,250)
 PTempF = PTempC * CtoF_Mult + CtoF_Offset
 NextScan
EndProg

7.8.4.7.1 Predefined Constants
Many words are reserved for use by CRBasic. These words cannot be used as
variable or table names in a program. Predefined constants include instruction
names and valid alphanumeric names for instruction parameters. On account the
list of predefined constants is long and frequently increases as the operating
system is developed, the best course is to compile programs frequently during
CRBasic program development. The compiler will catch the use of any reserved
words. Following are listed predefined constants that are assigned a value:

• LoggerType = 800 (as in CR800)

These may be useful in programming.

7.8.4.8 Declaring Aliases and Units
A variable can be assigned a second name, or alias, in the CRBasic program.
Aliasing is particularly useful when using arrays. Arrays are powerful tools for
complex programming, but they place near identical names on multiple variables.
Aliasing allows the power of the array to be used with the clarity of unique
names.

The declared variable name can be used interchangeably with the declared alias in
the body of the CRBasic program. However, when a value is stored to final-
memory, the value will have the alias name attached to it. So, if the CRBasic
program needs to access that value, the program must use the the alias-derived
name.

Variables in one, two, and three dimensional arrays can be assigned units. Units
are not used elsewhere in programming, but add meaning to resultant data table
headers. If different units are to be used with each element of an array, first
assign aliases to the array elements and then assign units to each alias. For
example:

Alias var_array(1) = solar_radiation
Alias var_array(2) = quanta

Units solar_radiation = Wm-2
Units variable2 = moles_m-2_s-1

136

Section 7. Installation

7.8.4.9 Numerical Formats
Four numerical formats are supported by CRBasic. Most common is the use of
base-10 numbers. Scientific notation, binary, and hexadecimal formats can also
be used, as shown in the table Formats for Entering Numbers in CRBasic (p. 137).
Only standard, base-10 notation is supported by Campbell Scientific hardware and
software displays.

Table 13. Formats for Entering Numbers in CRBasic
Format Example Base-10 Equivalent Value

Standard 6.832 6.832

Scientific notation 5.67E-8 5.67X10-8

Binary &B1101 13

Hexadecimal &HFF 255

Binary format (1 = high, 0 = low) is useful when loading the status of multiple
flags or ports into a single variable. For example, storing the binary number
&B11100000 preserves the status of flags 8 through 1: flags 1 to 5 are low, 6 to 8
are high. CRBasic example Load binary information into a variable (p. 137) shows
an algorithm that loads binary status of flags into a LONG integer variable.

CRBasic Example 9. Load binary information into a variable
'This program example demonstrates how binary data are loaded into a variable. The binary
'format (1 = high, 0 = low) is useful when loading the status of multiple flags
'or ports into a single variable. For example, storing the binary number &B11100000
'preserves the status of flags 8 through 1: flags 1 to 5 are low, 6 to 8 are high.
'This example demonstrates an algorithm that loads binary status of flags into a LONG
'integer variable.

Public FlagInt As Long

Public Flag(8) As Boolean
Public I

DataTable(FlagOut,True,-1)
 Sample(1,FlagInt,UINT2)
EndTable

BeginProg
 Scan(1,Sec,3,0)

 FlagInt = 0
 For I = 1 To 8
 If Flag(I) = true Then
 FlagInt = FlagInt + 2 ^ (I - 1)
 EndIf
 Next I
 CallTable FlagOut

 NextScan
EndProg

137

Section 7. Installation

7.8.4.10 Multi-Statement Declarations
Multi-statement declarations are used to declare data tables, subroutines,
functions, and incidentals. Related instructions include the following:

• DataTable() / EndTable
• Sub() / EndSub
• Function() / EndFunction
• ShutDown / ShutdownEnd
• DialSequence() / EndDialSequence
• ModemHangup() / EndModemHangup
• WebPageBegin() / WebPageEnd

Multi-statement declarations can be located as follows:

• Prior to BeginProg,
• After EndSequence or an infinite Scan() / NextScan and before EndProg or

SlowSequence
• Immediately following SlowSequence. SlowSequence code starts executing

after any declaration sequence. Only declaration sequences can occur after
EndSequence and before SlowSequence or EndProg.

7.8.4.10.1 Declaring Data Tables
Data are stored in tables as directed by the CRBasic program. A data table is
created by a series of CRBasic instructions entered after variable declarations but
before the BeginProg instruction. These instructions include:

DataTable()
 'Output Trigger Condition(s)
 'Output Processing Instructions
EndTable

A data table is essentially a file that resides in CR800 memory. The file is written
to each time data are directed to that file. The trigger that initiates data storage is
tripped either by the CR800 clock, or by an event, such as a high temperature.
The number of data tables declared is limited only by the available CR800
memory (prior to OS 28, the limit was 30 data tables). Data tables may store
individual measurements, individual calculated values, or summary data such as
averages, maxima, or minima to data tables.

Each data table is associated with overhead information that becomes part of the
ASCII file header (first few lines of the file) when data are downloaded to a PC.
Overhead information includes the following:

• Table format
• Datalogger type and operating system version
• Name of the CRBasic program running in the datalogger
• Name of the data table (limited to 20 characters)
• Alphanumeric field names to attach at the head of data columns

This information is referred to as "table definitions."

138

Section 7. Installation

Table 14. Typical Data Table
TOA5 CR800 CR800 1048 CR800.Std.13.06 CPU:Data.cr8 35723 OneMin

TIMESTAMP RECORD BattVolt_Avg PTempC_Avg TempC_Avg(1) TempC_Avg(2)

TS RN Volts Deg C Deg C Deg C

 Avg Avg Avg Avg

7/11/2007 16:10 0 13.18 23.5 23.54 25.12

7/11/2007 16:20 1 13.18 23.5 23.54 25.51

7/11/2007 16:30 2 13.19 23.51 23.05 25.73

7/11/2007 16:40 3 13.19 23.54 23.61 25.95

7/11/2007 16:50 4 13.19 23.55 23.09 26.05

7/11/2007 17:00 5 13.19 23.55 23.05 26.05

7/11/2007 17:10 6 13.18 23.55 23.06 25.04

The table Typical Data Table (p. 138) shows a data file as it appears after the
associated data table is downloaded from a CR800 programmed with the code in
CRBasic example Definition and Use of a Data Table (p. 140). The data file
consists of five or more lines. Each line consists of one or more fields. The first
four lines constitute the file header. Subsequent lines contain data.

Note Discrete data files (ASCII or binary) can also be written to a CR800
memory drive using the TableFile() instruction.

The first header line is the environment line. It consists of eight fields, listed in
table TOA5 Environment Line (p. 139).

Table 15. TOA5 Environment Line
Field Description Changed By

1 TOA5

2 Station name DevConfig or CRBasic program acting on
the setting

3 Datalogger model

4 Datalogger serial number

5 Datalogger OS version New OS

6 Datalogger program name New program

7 Datalogger program signature New or revised program

8 Table name Revised program

The second header line reports field names. This line consists of a set of comma-
delimited strings that identify the name of individual fields as given in the
datalogger program. If the field is an element of an array, the name will be
followed by a comma-separated list of subscripts within parentheses that
identifies the array index. For example, a variable named Values, which is
declared as a two-by-two array in the datalogger program, will be represented by
four field names: Values(1,1), Values(1,2), Values(2,1), and Values(2,2). Scalar
variables will not have array subscripts. There will be one value on this line for

139

Section 7. Installation

each scalar value defined by the table. Default field names are a combination of
the variable names (or alias) from which data are derived and a three-letter suffix.
The suffix is an abbreviation of the data process that outputs the data to storage.
For example, Avg is the abbreviation for the data process called by the Average()
instruction. If the default field names are not acceptable to the programmer,
FieldNames() instruction can be used to customize the names. TIMESTAMP,
RECORD, Batt_Volt_Avg, PTemp_C_Avg, TempC_Avg(1), and
TempC_Avg(2) are the default field names in the table Typical Data Table (p. 138).

The third-header line identifies engineering units for that field of data. These
units are declared at the beginning of a CRBasic program, as shown in CRBasic
example Definition and Use of a Data Table (p. 140). Units are strictly for
documentation. The CR800 does not make use of declared units, nor does it
check their accuracy.

The fourth line of the header reports abbreviations of the data process used to
produce the field of data. See the table Data Process Abbreviations (p. 166).

Subsequent lines are observed data and associated record keeping. The first field
being a time stamp, and the second being the record (data line) number.

As shown in CRBasic example Definition and Use of a Data Table (p. 140), data
table declaration begins with the DataTable() instruction and ends with the
EndTable() instruction. Between DataTable() and EndTable() are instructions
that define what data to store and under what conditions data are stored. A data
table must be called by the CRBasic program for data storage processing to occur.
Typically, data tables are called by the CallTable() instruction once each Scan.

CRBasic Example 10. Definition and Use of a Data Table
'This program example demonstrates definition and use of data tables.

'Declare Variables
Public Batt_Volt
Public PTemp_C
Public Temp_C(2)

'Define Units
Units Batt_Volt=Volts
Units PTemp_C=Deg_C
Units Temp_C()=Deg_C

'Define Data Tables
DataTable(OneMin,True,-1) 'Required beginning of data table declaration
 DataInterval(0,1,Min,10) 'Optional instruction to trigger table at one-minute interval
 Average(1,Batt_Volt,FP2,False) 'Optional instruction to average variable Batt_Volt
 Average(1,PTemp_C,FP2,False) 'Optional instruction to average variable PTemp_C
 Average(2,Temp_C(),FP2,False) 'Optional instruction to average variable Temp_C
EndTable 'Required end of data table declaration

DataTable(Table1,True,-1)
 DataInterval(0,1440,Min,0) 'Optional instruction to trigger table at 24-hour interval
 Minimum(1,Batt_Volt,FP2,False,False) 'Optional instruction to determine minimum Batt_Volt
EndTable

140

Section 7. Installation

'Main Program
BeginProg
 Scan(5,Sec,1,0)

 'Default Datalogger Battery Voltage measurement Batt_Volt:
 Battery(Batt_Volt)

 'Wiring Panel Temperature measurement PTemp_C:
 PanelTemp(PTemp_C,_60Hz)

 'Type T (copper-constantan) Thermocouple measurements Temp_C:
 TCDiff(Temp_C(),2,mV2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1,0)

 'Call Data Tables and Store Data
 CallTable(OneMin)
 CallTable(Table1)

 NextScan
EndProg

DataTable() / EndTable Instructions
The DataTable() instruction has three parameters: a user-specified alphanumeric
name for the table such as OneMin, a trigger condition (for example, True), and
the size to make the table in memory such as -1 (automatic allocation).

• Name — The table name can be any combination of numbers, letters, and
underscore up to 20 characters in length. The first character must be a letter
or underscore.

Note While other characters may pass the precompiler and compiler, runtime
errors may occur if these naming rules are not adhered to.

• TrigVar — Controls whether or not data records are written to storage. Data
records are written to storage if TrigVar is true and if other conditions, such
as DataInterval(), are met. Default setting is -1 (True). TrigVar may be a
variable, expression, or constant. TrigVar does not control intermediate
processing. Intermediate processing is controlled by the disable variable,
DisableVar, which is a parameter in all output processing instructions (see
section, Output Processing Instructions (p. 143)).

Read More Section, TrigVar and DisableVar — Controlling Data Output and
Output Processing (p. 193) discusses the use of TrigVar and DisableVar in
special applications.

• Size — Table size is the number of records to store in a table before new data
begins overwriting old data. If 10 is entered, 10 records are stored in the
table; the eleventh record will overwrite the first record. If –1 is entered,
memory for the table is allocated automatically at the time the program
compiles. Automatic allocation is preferred in most applications since the
CR800 sizes all tables such that they fill (and begin overwriting the oldest
data) at about the same time. Approximately 2 kB of extra data-table space
are allocated to minimize the possibility of new data overwriting the oldest
data in ring memory when datalogger support software (p. 630) collects the
oldest data at the same time new data are written. These extra records are not
reported in the Status table and are not reported to the support software and
so are not collected.

141

Section 7. Installation

CRBasic example Definition and Use of a Data Table (p. 140) creates a data table
named OneMin, stores data once a minute as defined by DataInterval(), and
retains the most recent records in SRAM. DataRecordSize entries in the
DataTableInformation table report allocated memory in terms of number of
records the tables hold.

DataInterval() Instruction
DataInterval() instructs the CR800 to both write data records at the specified
interval and to recognize when a record has been skipped. The interval is
independent of the Scan() / NextScan interval; however, it must be a multiple of
the Scan() / NextScan interval.

Sometimes, usually because of a timing issue, program logic prevents a record
from being written. If a record is not written, the CR800 recognizes the omission
as a "lapse" and increments the SkippedRecord counter in the Status table.
Lapses waste significant memory in the data table and may cause the data table to
fill sooner than expected. DataInterval() instruction parameter Lapses controls
the CR800 response to a lapse. See table DataInterval () Lapse Parameter
Options (p. 142) for more information.

Note Program logic that results in lapses includes scan intervals inadequate to the
length of the program (skipped scans), the use of DataInterval() in event-driven
data tables, and logic that directs program execution around the CallTable()
instruction.

A data table consists of successive 1 KB data frames. Each data frame contains a
time stamp, frame number, and one or more records. By default, a time stamp and
record number are not stored with each record. Rather, the datalogger support
software data extraction extraction routine uses the frame time stamp and frame
number to time stamp and number each record as it is stored to computer memory.
This technique saves telecommunication bandwidth and 16 bytes of CR800
memory per record. However, when a record is skipped, or several records are
skipped contiguously, a lapse occurs, the SkippedRecords status entry is
incremented, and a 16-byte sub-header with time stamp and record number is
inserted into the data frame before the next record is written. Consequently,
programs that lapse frequently waste significant memory.

If Lapses is set to an argument of 20, the memory allocated for the data table is
increased by enough memory to accommodate 20 sub-headers (320 bytes). If
more than 20 lapses occur, the actual number of records that are written to the
data table before the oldest is overwritten (ring memory) may be less than what
was specified in the DataTable().

If a program is planned to experience multiple lapses, and if telecommunication
bandwidth is not a consideration, the Lapses parameter should be set to 0 to
ensure the CR800 allocates adequate memory for each data table.

142

Section 7. Installation

Table 16. DataInterval() Lapse Parameter Options

DataInterval() Lapse
Argument Effect

Lapse > 0
If table record number is fixed, X data frames (1 kB per data
frame) are added to data table if memory is available. If record
number is auto-allocated, no memory is added to table.

Lapse = 0 Time stamp and record number are always stored with each
record.

Lapse < 0 When lapse occurs, no new data frame is created. Record time
stamps calculated at data extraction may be in error.

Scan Time and System Time
In some applications, system time (see System Time (p. 504)), rather than scan time
(see Scan Time (p. 500)), is desired. To get the system time, the CallTable()
instruction must be run outside the Scan() loop. See section Time Stamps (p. 295).

OpenInterval() Instruction
By default, the CR800 uses closed intervals. Data output to a data table based on
DataInterval() includes measurements from only the current interval.
Intermediate memory that contains measurements is cleared the next time the data
table is called regardless of whether or not a record was written to the data table.

Typically, time-series data (averages, totals, maxima, etc.), that are output to a
data table based on an interval, only include measurements from the current
interval. After each data-output interval, the memory that contains the
measurements for the time-series data are cleared. If a data-output interval is
missed (because all criteria are not met for output to occur), the memory is cleared
the next time the data table is called. If the OpenInterval instruction is contained
in the DataTable() declaration, the memory is not cleared. This results in all
measurements being included in the time-series data since the last time data were
stored (even though the data may span multiple data-output intervals).

Note Array-based dataloggers, such as CR10X and CR23X, use open intervals
exclusively.

Data-Output Processing Instructions
Data-storage processing instructions (aka, "output processing" instructions)
determine what data are stored in a data table. When a data table is called in the
CRBasic program, data-storage processing instructions process variables holding
current inputs or calculations. If trigger conditions are true, for example if the
data-output interval has expired, processed values are stored into the data table. In
CRBasic example Definition and Use of a Data Table (p. 140), three averages are
stored.

Consider the Average() instruction as an example data-storage processing
instruction. Average() stores the average of a variable over the data-output
interval. Its parameters are:

• Reps — number of sequential elements in the variable array for which
averages are calculated. Reps is set to 1 to average PTemp, and set to 2 to
average two thermocouple temperatures, both of which reside in the variable
array Temp_C.

143

Section 7. Installation

• Source — variable array to average. Variable arrays PTemp_C (an array of
1) and Temp_C() (an array of 2) are used.

• DataType — Data type for the stored average (the example uses data type
FP2 (p. 617)).

Read More See Declaring Data Types (p. 128) for more information on available
data types.

• DisableVar — controls whether a measurement or value is included in an
output processing function. A measurement or value is not included if
DisableVar is true (≠ 0). For example, if the disable variable in an
Average() instruction is true, the current value will not be included in the
average. CRBasic example Use of the Disable Variable (p. 144) and CRBasic
example Using NAN to Filter Data (p. 460) show how DisableVar can be used
to exclude values from an averaging process. In these examples, DisableVar
is controlled by Flag1. When Flag1 is high, or True, DisableVar is True.
When it is False, DisableVar is False. When False is entered as the
argument for DisableVar, all readings are included in the average. The
average of variable Oscillator does not include samples occurring when
Flag1 is high (True), which results in an average of 2; when Flag1 is low or
False (all samples used), the average is 1.5.

Read More TrigVar and DisableVar (p. 193)— Controlling Data Output and
Output Processing (p. 193) and Measurements and NAN (p. 458) discuss the use of
TrigVar and DisableVar in special applications.

Read More For a complete list of output processing instructions, see the section
Final Data (Output to Memory) Precessing (p. 516).

CRBasic Example 11. Use of the Disable Variable
'This program example demonstrates the use of the 'disable' variable, or DisableVar, which
'is a parameter in many output processing instructions. Use of the 'disable' variable
'allows source data to be selectively included in averages, maxima, minima, etc. If the
''disable' variable equals -1, or true, data are not included; if equal to 0, or false,
'data are included. The 'disable' variable is set to false by default.

'Declare Variables and Units
Public Oscillator As Long
Public Flag(1) As Boolean
Public DisableVar As Boolean

'Define Data Tables
DataTable(OscAvgData,True,-1)
 DataInterval(0,1,Min,10)
 Average(1,Oscillator,FP2,DisableVar)
EndTable

144

Section 7. Installation

'Main Program
BeginProg
 Scan(1,Sec,1,0)

 'Reset and Increment Counter
 If Oscillator = 2 Then Oscillator = 0
 Oscillator = Oscillator + 1

 'Process and Control
 If Oscillator = 1
 If Flag(1) = True Then
 DisableVar = True
 EndIf
 Else
 DisableVar = False
 EndIf

 'Call Data Tables and Store Data
 CallTable(OscAvgData)

 NextScan
EndProg

Numbers of Records
The exact number of records that can be stored in a data table is governed by a
complex set of rules, the summary of which can be found in the appendix
Numbers of Records in Data Tables.

7.8.4.10.2 Declaring Subroutines
Read More See section Subroutines (p. 281) for more information on programming
with subroutines.

Subroutines allow a section of code to be called by multiple processes in the main
body of a program. Subroutines are defined before the main program body of a
program.

Note A particular subroutine can be called by multiple program sequences
simultaneously. To preserve measurement and processing integrity, the CR800
queues calls on the subroutine, allowing only one call to be processed at a time in
the order calls are received. This may cause unexpected pauses in the conflicting
program sequences.

7.8.4.10.3 'Include' File
An alternative to a subroutine is an 'include' file. An 'include' file is a CRBasic
program file that resides on the CR800 CPU: drive and compiles as an insert to
the CRBasic program. It may also run on its own (p. 114). It is essentially a
subroutine stored in a file separate from the main program file. It can be used
once or multiple times by the main program, and by multiple programs. The file
begins with the SlowSequence instruction and can contain any code.

Procedure to use the "Include File":

1. Write the file, beginning with the SlowSequence instruction followed by any
other code.

145

Section 7. Installation

2. Send the file to the CR800 using tools in the File Control menu of datalogger
support software (p. 93).

3. Enter the path and name of the file in the Include File setting using DevConfig
or PakBusGraph.

Figures "Include File" Settings with DevConfig (p. 147) and "Include File" settings
with PakBusGraph (p. 147) show methods to set required settings with DevConfig or
with telecommunications. There is no restriction on the length of the file.
CRBasic example Using an "Include File" to Control Switched 12 V (p. 147) shows
a program that expects a file to control power to a modem; CRBasic example
"Include File" to Control Switched 12 V (p. 148) lists the code.

Consider the the example "include file", CPU:pakbus_broker.dld. The rules used
by the CR800 when it starts are as follows:

1. If the logger is starting from power-up, any file that is marked as the "run on
power-up" program is the "current program". Otherwise, any file that is marked as
"run now" is selected. This behavior has always been present and is not affected
by this setting.

2. If there is a file specified by this setting, it is incorporated into the program
selected above.

3. If there is no current file selected or if the current file cannot be compiled, the
datalogger will run the program given by this setting as the current program.

4. If the program run by this setting cannot be run or if no program is specified,
the datalogger will attempt to run the program named default.cr8 on its CPU:
drive.

5. If there is no default.cr8 file or if that file cannot be compiled, the datalogger
will not run any program.

The CR800 will now allow a SlowSequence statement to take the place of the
BeginProg statement. This feature allows the specified file to act both as an
include file and as the default program.

The formal syntax for this setting follows:
include-setting := device-name ":" file-name "." file-extension.
device-name := "CPU" | "USR"
File-extension := "dld" | "cr8"

146

Section 7. Installation

Figure 40. "Include File" Settings Via DevConfig

Figure 41. "Include File" Settings Via PakBusGraph

147

Section 7. Installation

CRBasic Example 12. Using an 'Include' File

'This program example demonstrates the use of an 'include' file. An 'include' file is a CRBasic
file that usually
'resides on the CPU: drive of the CR800. It is essentially a subroutine that is
'stored in a file separate from the main program, but it compiles as an insert to the main
'program. It can be used once or multiple times, and by multiple programs.
''Include' files begin with the SlowSequence instruction and can contain any code.
'
'Procedure to use an 'include' file in this example:
'1. Copy the code from the CRbasic example 'Include' File to Control Switched 12 V (p. 148) to
' CRBasic Editor, name it 'IncludeFile.cr8, and save it to the same PC folder on which
' resides the main program file (this make pre-compiling possible. Including the
' SlowSequence instruction as the first statement is required, followed by any other code.
'2. Send the 'include' file to the CPU: drive of the CR800 using the File Control menu
' of the datalogger support software (p. 631). Be sure to de-select the Run Now and Run On
' Power-up options that are presented by the software when sending the file.
'3. Add the Include instruction to the main CRBasic program at the location from which the
' 'include' file is to be called (see the following code).
'4. Enter the CR800 file system path and file name after the Include() instruction, as shown
' in the following code.
'
'IncludeFile.cr8 contains code to control power to a cellular phone modem.
'
'Cell phone + wire to be connected to SW12 terminal. Negative (-) wire
'to G.

Public PTemp, batt_volt

DataTable(Test,1,-1)
 DataInterval(0,15,Sec,10)
 Minimum(1,batt_volt,FP2,0,False)
 Sample(1,PTemp,FP2)
EndTable

BeginProg
 Scan(1,Sec,0,0)
 PanelTemp(PTemp,250)
 Battery(Batt_volt)
 CallTable Test
 NextScan
 Include "CPU:IncludeFile.CR1" '<<<<<<<<<<<<<<<'include' file code executed here
EndProg

CRBasic Example 13. 'Include' File to Control SW12 Terminal.
'This program example demonstrates the use of an 'include' file. See the documentation in CRBasic
example
'Using an Include File (p. 147)
'
'<<<<<<<<<<<<<<<<<<<<<<<NOTE: No BeginProg instruction
SlowSequence '<<<<<<<<<<NOTE: Begins with SlowSequence
 Scan(1,Sec,0,0)
 If TimeIntoInterval(9,24,Hr) Then SW12(1) 'Modem on at 9:00 AM (900 hours)
 If TimeIntoInterval(17,24,Hr) Then SW12(0) 'Modem off at 5:00 PM (1700 hours)
 NextScan
'
'<<<<<<<<<<<<<<<<<<<<<<<NOTE: No EndProg instruction

148

Section 7. Installation

7.8.4.10.4 Declaring Subroutines
Function() / EndFunction instructions allow you to create a customized CRBasic
instruction. The declaration is similar to a subroutine declaration.

7.8.4.10.5 Declaring Incidental Sequences
A sequence is two or more statements of code. Data-table sequences are essential
features of nearly all programs. Although used less frequently, subroutine and
function sequences also have a general purpose nature. In contrast, the following
sequences are used only in specific applications.

Shut-Down Sequences
The ShutDownBegin / ShutDownEnd instructions are used to define code that
will execute whenever the currently running program is shutdown by prescribed
means. More information is available in CRBasic Editor Help.

Dial Sequences
The DialSequence / EndDialSequence instructions are used to define the code
necessary to route packets to a PakBus® device. More information is available in
CRBasic Editor Help.

Modem-Hangup Sequences
The ModemHangup / EndModemHangup instructions are used to enclose code
that should be run when a COM port hangs up communication. More information
is available in CRBasic Editor Help.

Web-Page Sequences
The WebPageBegin / WebPageEnd instructions are used to declare a web page
that is displayed when a request for the defined HTML page comes from an
external source. More information is available in CRBasic Editor Help.

7.8.4.11 Execution and Task Priority
Execution of program instructions is divided among the following three tasks:

• Measurement task — rigidly timed measurement of sensors connected
directly to the CR800

• CDM task — rigidly timed measurement and control of CDM (p. 483)
peripheral devices

• SDM task — rigidly timed measurement and control of SDM (p. 500) peripheral
devices

• Processing task — converts measurements to numbers represented by
engineering units, performs calculations, stores data, makes decisions to
actuate controls, and performs serial I/O communication.

Instructions or commands that are handled by each task are listed in table
Program Tasks (p. 150).

These tasks are executed in either pipeline or sequential mode. When in pipeline
mode, tasks run more or less in parallel. When in sequential mode, tasks run
more or less in sequence. When a program is compiled, the CR800 evaluates the

149

Section 7. Installation

program and automatically determines which mode to use. Using the
PipelineMode or SequentialMode instruction at the beginning of the program
will force the program into one mode or the other. Mode information is included
in a message returned by the datalogger, which is displayed by the datalogger
support software (p. 631). The CRBasic Editor pre-compiler returns a similar
message.

Note A program can be forced to run in sequential or pipeline mode by placing
the SequentialMode or PipelineMode instruction in the declarations section of
the program.

Some tasks in a program may have higher priorities than others. Measurement
tasks generally take precedence over all others. Task priorities are different for
pipeline mode and sequential mode.

Table 17. Program Tasks
Measurement Task Digital Task Processing Task

• Analog
measurements

• Excitation

• Read pulse counters

• Read control ports
(GetPort())

• Set control ports
(SetPort())

• VibratingWire()

• PeriodAvg()

• CS616()

• Calibrate()

• SDM instructions,
except SDMSI04()
and SDMI016()

• CDM instructions /
CPI devices.

• Processing

• Output

• Serial I/O

• SDMSIO4()

• SDMIO16()

• ReadIO()

• WriteIO()

• Expression evaluation and
variable setting in measurement
and SDM instructions

7.8.4.11.1 Pipeline Mode
Pipeline mode handles measurement, most digital, and processing tasks
separately, and possibly simultaneously. Measurements are scheduled to execute
at exact times and with the highest priority, resulting in more precise timing of
measurement, and usually more efficient processing and power consumption.

Pipeline scheduling requires that the program be written such that measurements
are executed every scan. Because multiple tasks are taking place at the same time,
the sequence in which the instructions are executed may not be in the order in
which they appear in the program. Therefore, conditional measurements are not
allowed in pipeline mode. Because of the precise execution of measurement
instructions, processing in the current scan (including update of public variables
and data storage) is delayed until all measurements are complete. Some
processing, such as transferring variables to control instructions, like PortSet()
and ExciteV(), may not be completed until the next scan.

150

Section 7. Installation

When a condition is true for a task to start, it is put in a queue. Because all tasks
are given the same priority, the task is put at the back of the queue. Every 10 ms
(or faster if a new task is triggered) the task currently running is paused and put at
the back of the queue, and the next task in the queue begins running. In this way,
all tasks are given equal processing time by the CR800.

All tasks are given the same general priority. However, when a conflict arises
between tasks, program execution adheres to the priority schedule in table
Pipeline Mode Task Priorities (p. 151).

Table 18. Pipeline Mode Task Priorities
1. Measurements in main program

2. Background calibration

3. Measurements in slow sequences

4. Processing tasks

7.8.4.11.2 Sequential Mode
Sequential mode executes instructions in the sequence in which they are written in
the program. Sequential mode may be slower than pipeline mode since it executes
only one line of code at a time. After a measurement is made, the result is
converted to a value determined by processing arguments that are included in the
measurement command, and then program execution proceeds to the next
instruction. This line-by-line execution allows writing conditional measurements
into the program.

Note The exact time at which measurements are made in sequential mode may
vary if other measurements or processing are made conditionally, if there is heavy
communication activity, or if other interrupts, such as accessing a Campbell
Scientific mass storage device , occur.

When running in sequential mode, the datalogger uses a queuing system for
processing tasks similar to the one used in pipeline mode. The main difference
when running a program in sequential mode is that there is no pre-scheduling of
measurements; instead, all instructions are executed in the programmed order.

A priority scheme is used to avoid conflicting use of measurement hardware. The
main scan has the highest priority and prevents other sequences from using
measurement hardware until the main scan, including processing, is complete.
Other tasks, such as processing from other sequences and communications, can
occur while the main sequence is running. Once the main scan has finished, other
sequences have access to measurement hardware with the order of priority being
the background calibration sequence followed by the slow sequences in the order
they are declared in the program.

Note Measurement tasks have priority over other tasks such as processing and
communication to allow accurate timing needed within most measurement
instructions.

Care must be taken when initializing variables when multiple sequences are used
in a program. If any sequence relies on something (variable, port, etc.) that is
initialized in another sequence, there must be a handshaking scheme placed in the
CRBasic program to make sure that the initializing sequence has completed

151

Section 7. Installation

before the dependent task can proceed. This can be done with a simple variable or
even a delay, but understand that the CR1000 operating system will not do this
handshaking between independent tasks.

A similar concern is the reuse of the same variable in multiple tasks. Without
some sort of messaging between the two tasks placed into the CRBasic program,
unpredictable results are likely to occur. The SemaphoreGet() and
SemaphoreRelease() instruction pair provide a tool to prevent unwanted access
of an object (variable, COM port, etc.) by another task while the object is in use.
Consult CRBasic Editor Help for information on using SemaphoreGet() and
SemaphoreRelease().

7.8.4.12 Execution Timing
Timing of program execution is regulated by timing instructions listed in the
following table.

Table 19. Program Timing Instructions
Instructions General Guidelines Syntax Form

Scan() / NextScan Use in most programs. Begins
/ ends the main scan.

BeginProg
 Scan()
 '.
 '.
 '.
 NextScan
EndProg

SlowSequence /
EndSequence

Use when measurements or
processing must run at slower
frequencies than that of the
main program.

BeginProg
 Scan()
 '.
 '.
 '.
 NextScan
 SlowSequence
 Scan()
 '.
 '.
 '.
 NextScan
 EndSequence
EndProg

SubScan / NextSubScan

Use when measurements or
processing must run at faster
frequencies than that of the
main program.

BeginProg
 Scan()
 '.
 '.
 '.
 SubScan()
 '.
 '.
 '.
 NextSubScan
 NextScan
EndProg

152

Section 7. Installation

7.8.4.12.1 Scan() / NextScan
Simple CR800 programs are often built entirely within a single Scan() /
NextScan structure, with only variable and data-table declarations outside the
scan. Scan() / NextScan creates an infinite loop; each periodic pass through the
loop is synchronized to the CR800 clock. Scan() parameters allow modification
of the period in 10 ms increments up to 24 hours. As shown in CRBasic example
BeginProg / Scan() / NextScan / EndProg Syntax (p. 153), the CRBasic program
may be relatively short.

CRBasic Example 14. BeginProg / Scan() / NextScan / EndProg Syntax
'This program example demonstrates the use of BeginProg/EndProg and Scan()/NextScan syntax.

Public PanelTemp_

DataTable(PanelTempData,True,-1)
 DataInterval(0,1,Min,10)
 Sample(1,PanelTemp_,FP2)
EndTable

BeginProg ' <<<<<<<BeginProg
 Scan(1,Sec,3,0) ' <<<<<<< Scan
 PanelTemp(PanelTemp_,250)
 CallTable PanelTempData
 NextScan ' <<<<<<< NextScan
EndProg ' <<<<<<<EndProg

Scan() determines how frequently instructions in the program are executed, as
shown in the following CRBasic code snip:

'Scan(Interval, Units, BufferSize, Count)
Scan(1,Sec,3,0)

'CRBasic instructions go here
ExitScan

Scan() has four parameters:

• Interval — the interval between scans. Interval is 10 ms ≤ Interval ≤ 1 day.
• Units — the time unit for the interval.
• BufferSize — the size (number of scans) of a buffer in RAM that holds the

raw results of measurements. When running in pipeline mode, using a buffer
allows the processing in the scan to lag behind measurements at times
without affecting measurement timing. Use of the CRBasic Editor default
size is normal. Refer to section SkippedScan (p. 463) for troubleshooting tips.

• Count — number of scans to make before proceeding to the instruction
following NextScan. A count of 0 means to continue looping forever (or until
ExitScan). In the example in CRBasic example Scan Syntax, the scan is one
second, three scans are buffered, and measurements and data storage continue
indefinitely.

7.8.4.12.2 SlowSequence / EndSequence
Slow sequences include automatic and user entered sequences. Background
calibration is an automatic slow sequence. A

153

Section 7. Installation

User-entered slow sequences are declared with the SlowSequence instruction and
run outside the main-program scan. Slow sequences typically run at a slower rate
than the main scan. Up to four slow-sequence scans can be defined in a program.

Instructions in a slow-sequence scan are executed when the main scan is not
active. When running in pipeline mode, slow-sequence measurements are spliced
in after measurements in the main program, as time allows. Because of this
splicing, measurements in a slow sequence may span across multiple-scan
intervals in the main program. When no measurements need to be spliced, the
slow-sequence scan will run independent of the main scan, so slow sequences
with no measurements can run at intervals ≤ main-scan interval (still in 10 ms
increments) without skipping scans. When measurements are spliced, checking
for skipped slow scans is done after the first splice is complete rather than
immediately after the interval comes true.

In sequential mode, all instructions in slow sequences are executed as they occur
in the program according to task priority.

Background calibration is an automatic, slow-sequence scan, as is the watchdog
task.

Read More See the section CR800 Auto Calibration — Overview (p. 91).

7.8.4.12.3 SubScan() / NextSubScan
SubScan() / NextSubScan are used in the control of analog multiplexers (see the
appendix Analog Multiplexers (p. 622) for information on available analog
multiplexers) or to measure analog inputs at a faster rate than the program scan.
SubScan() / NextSubScan can be used in a SlowSequenc / EndSequence with
an interval of 0. SubScan cannot be nested. PulseCount or SDM measurement
cannot be used within a sub scan.

7.8.4.12.4 Scan Priorities in Sequential Mode
Note Measurement tasks have priority over other tasks such as processing and
communication to allow accurate timing needed within most measurement
instructions.

A priority scheme is used in sequential mode to avoid conflicting use of
measurement hardware. As illustrated in figure Sequential-Mode Scan Priority
Flow Diagrams (p. 156), the main scan sequence has the highest priority. Other
sequences, such as slow sequences and calibration scans, must wait to access
measurement hardware until the main scan, including measurements and
processing, is complete.

Main Scans
Execution of the main scan usually occurs quickly, so the processor may be idle
much of the time. For example, a weather-measurement program may scan once
per second, but program execution may only occupy 250 ms, leaving 75% of
available scan time unused. The CR800 can make efficient use of this interstitial-
scan time to optimize program execution and communication control. Unless
disabled, or crowded out by a too demanding schedule, self-calibration (see
CR800 Auto Calibration — Overview (p. 91)) has priority and uses some interstitial

154

Section 7. Installation

scan time. If self-calibration is crowded out, a warning message is issued by the
CRBasic pre-compiler. Remaining priorities include slow-sequence scans in the
order they are programmed and digital triggers. Following is a brief introduction
to the rules and priorities that govern use of interstitial-scan time in sequential
mode. Rules and priorities governing pipeline mode are somewhat more complex
and are not expanded upon.

Permission to proceed with a measurement is granted by the measurement
semaphore (p. 501). Main scans with measurements have priority to acquire the
semaphore before measurements in a calibration or slow-sequence scan. The
semaphore is taken by the main scan at its beginning if there are measurements
included in the scan. The semaphore is released only after the last instruction in
the main scan is executed.

Slow-Sequence Scans
Slow-sequence scans begin after a SlowSequence instruction. They start
processing tasks prior to a measurement but stop to wait when a measurement
semaphore is needed. Slow sequences release the semaphore (p. 501) after complete
execution of each measurement instruction to allow the main scan to acquire the
semaphore when it needs to start. If the measurement semaphore is set by a slow-
sequence scan and the beginning of a main scan gets to the top of the queue, the
main scan will not start until it can acquire the semaphore; it waits for the slow
sequence to release the semaphore. A slow-sequence scan does not hold the
semaphore for the whole of its scan. It releases the semaphore after each use of
the hardware.

WaitDigTrig Scans

Read More See Synchronizing Measurements (p. 346).

Main scans and slow sequences usually trigger at intervals defined by the Scan()
instruction. Some applications, however, require the main- or slow-sequence scan
to be started by an external digital trigger such as a 5 Vdc pulse on a control port.
The WaitDigTrig() instruction activates a program when an external trigger is
detected. WaitDigTrig() gives priority to begin a scan, but the scan will execute
and acquire the semaphore (p. 501) according to the rules stated in Main Scans (p. 154)
and Slow-Sequence Scans (p. 155). Any processing will be time sliced with
processing from other sequences. Every time the program encounters
WaitDigTrig(), it will stop and wait to be triggered.

Note WaitDigTrig() can be used to program a CR800 to control another CR800.

155

Section 7. Installation

Figure 42. Sequential-Mode Scan Priority Flow Diagrams

7.8.4.13 Programming Instructions
In addition to BASIC syntax, additional instructions are included in CRBasic to
facilitate measurements and store data. The section CRBasic Programming
Instructions (p. 511) contains a comprehensive list of these instructions.

7.8.4.13.1 Measurement and Data-Storage Processing
CRBasic instructions have been created for making measurements and storing
data. Measurement instructions set up CR800 hardware to make measurements
and store results in variables. Data-storage instructions process measurements into
averages, maxima, minima, standard deviation, FFT, etc.

Each instruction is a keyword followed by a series of informational parameters
needed to complete the procedure. For example, the instruction for measuring
CR800 panel temperature is:

PanelTemp(Dest,Integ)

156

Section 7. Installation

PanelTemp is the keyword. Two parameters follow: Dest, a destination variable
name in which the temperature value is stored; and Integ, a length of time to
integrate the measurement. To place the panel temperature measurement in the
variable RefTemp, using a 250 µs integration time, the syntax is as shown in
CRBasic example Measurement Instruction Syntax (p. 157).

CRBasic Example 15. Measurement Instruction Syntax
'This program example demonstrates the use of a single measurement instruction. In this
'case, the program measures the temperature of the CR800 wiring panel.

Public RefTemp 'Declare variable to receive instruction

BeginProg
 Scan(1,Sec,3,0)
 PanelTemp(RefTemp, 250) '<<<<<<Instruction to make measurement
 NextScan
EndProg

7.8.4.13.2 Argument Types
Most CRBasic commands or instructions, have sub-commands or parameters.
Parameters are populated by the programmer with arguments. Many instructions
have parameters that allow different types of arguments. Common argument types
are listed below. Allowed argument types are specifically identified in the
description of each instruction in CRBasic Editor Help.

• Constant, or Expression that evaluates as a constant
• Variable
• Variable or Array
• Constant, Variable, or Expression
• Constant, Variable, Array, or Expression
• Name
• Name or list of Names
• Variable, or Expression
• Variable, Array, or Expression

7.8.4.13.3 Names in Arguments
Table Rules for Names (p. 157) lists the maximum length and allowed characters for
the names for variables, arrays, constants, etc. The CRBasic Editor pre-compiler
will identify names that are too long or improperly formatted.

Caution Concerning characters allowed in names, characters not listed in in the
table, Rules for Names, may appear to be supported in a specific operating system.
However, they may not be supported in future operating systems.

157

Section 7. Installation

Table 20. Rules for Names

Name
Category1

Maximum Length
(number of
characters)

Allowed characters

Variable or array 39

Letters A to Z, a to z, _ (underscore), and
numbers 0 to 9. Names must start with a letter
or underscore. CRBasic is not case sensitive.
Units are excepted from the above rules. Since
units are strings that ride along with the data,
they are not subjected to the stringent syntax
checking that is applied to variables, constants,
subroutines, tables, and other names.

Constant 38

Units 38

Alias 39

Station name 64

Data-table name 20

Field name 39

Field-name
description 64

1Variables, constants, units, aliases, station names, field names, data table names, and file names
can share identical names; that is, once a name is used, it is reserved only in that category. See
the section Predefined Constants (p. 136) for another naming limitation.

7.8.4.14 Expressions in Arguments
Read More See Programming Express Types (p. 158) for more information on
expressions.

Many CRBasic instruction parameters allow the entry of arguments as
expressions. If an expression is a comparison, it will return -1 if true and 0 if false.
(See the section Logical Expressions (p. 162)). The following code snip shows the
use of an expressions as an argument in the TrigVar parameter of the
DataTable() instruction:

'DataTable(Name, TrigVar, Size)
DataTable(Temp, TC > 100, 5000)

When the trigger is TC > 100, a thermocouple temperature greater than 100 sets
the trigger to True and data are stored.

7.8.4.15 Programming Expression Types
An expression is a series of words, operators, or numbers that produce a value or
result. Expressions are evaluated from left to right, with deference to precedence
rules. The result of each stage of the evaluation is of type Long (integer, 32 bits) if
the variables are of type Long (constants are integers) and the functions give
integer results, such as occurs with INTDV(). If part of the equation has a
floating point variable or constant (24 bits), or a function that results in a floating
point, the rest of the expression is evaluated using floating-point, 24-bit math,
even if the final function is to convert the result to an integer, so precision can be
lost; for example, INT((rtYear-1993)*.25). This is a critical feature to consider
when, 1) trying to use integer math to retain numerical resolution beyond the limit
of floating point variables, or 2) if the result is to be tested for equivalence against
another value. See section Floating-Point Arithmetic (p. 159) for limits.

Two types of expressions, mathematical and programming, are used in CRBasic.
A useful property of expressions in CRBasic is that they are equivalent to and

158

Section 7. Installation

often interchangeable with their results.

Consider the expressions:
x = (z * 1.8) + 32 '(mathematical expression)
If x = 23 then y = 5 '(programming expression)

The variable x can be omitted and the expressions combined and written as:
If (z * 1.8 + 32 = 23) then y = 5

Replacing the result with the expression should be done judiciously and with the
realization that doing so may make program code more difficult to decipher.

7.8.4.15.1 Floating-Point Arithmetic
Variables and calculations are performed internally in single-precision IEEE four-
byte floating point with some operations calculated in double precision.

Note Single-precision float has 24 bits of mantissa. Double precision has a 32-bit
extension of the mantissa, resulting in 56 bits of precision. Instructions that use
double precision are AddPrecise(), Average(), AvgRun(), AvgSpa(), CovSpa(),
MovePrecise(), RMSSpa(), StdDev(), StdDevSpa(), Totalize(), and TotRun().

Floating-point arithmetic is common in many electronic, computational systems,
but it has pitfalls high-level programmers should be aware of. Several sources
discuss floating-point arithmetic thoroughly. One readily available source is the
topic Floating Point at www.wikipedia.org. In summary, CR800 programmers
should consider at least the following:

• Floating-point numbers do not perfectly mimic real numbers.
• Floating-point arithmetic does not perfectly mimic true arithmetic.
• Avoid use of equality in conditional statements. Use >= and <= instead. For

example, use If X >= Y then do rather than If X = Y then do.
• When programming extended-cyclical summation of non-integers, use the

AddPrecise() instruction. Otherwise, as the size of the sum increases,
fractional addends will have an ever decreasing effect on the magnitude of
the sum, because normal floating-point numbers are limited to about 7 digits
of resolution.

7.8.4.15.2 Mathematical Operations
Mathematical operations are written out much as they are algebraically. For
example, to convert Celsius temperature to Fahrenheit, the syntax is:

TempF = TempC * 1.8 + 32

Read More Code space can be conserved while filling an array or partial array
with the same value. See an example of how this is done in the CRBasic example
Use of Move() to Conserve Code Space. CRBasic example Use of Variable
Arrays to Conserve Code Space (p. 160) shows example code to convert twenty
temperatures in a variable array from °C to °F.

159

Section 7. Installation

CRBasic Example 16. Use of Move() to Conserve Code Space
Move(counter(1),6,0,1) 'Reset six counters to zero. Keep array
 'filled with the ten most current readings
Move(TempC(2),9,TempC(1),9) 'Shift previous nine readings to make room
 'for new measurement
'New measurement:
TCDiff(TempC(1),1,mV2_5C,8,TypeT,PTemp,True,0,_60Hz,1.0,0)

CRBasic Example 17. Use of Variable Arrays to Conserve Code Space
For I = 1 to 20
 TCTemp(I) = TCTemp(I) * 1.8 + 32
Next I

7.8.4.15.3 Expressions with Numeric Data Types
FLOATs, LONGs and Booleans are cross-converted to other data types, such as
FP2, by using '='.

Boolean from FLOAT or LONG
When a FLOAT or LONG is converted to a Boolean as shown in CRBasic
example Conversion of FLOAT / LONG to Boolean (p. 160), zero becomes false (0)
and non-zero becomes true (-1).

CRBasic Example 18. Conversion of FLOAT / LONG to Boolean

'This program example demonstrates conversion of Float and Long data types to Boolean
'data type.

Public Fa As Float
Public Fb As Float
Public L As Long
Public Ba As Boolean
Public Bb As Boolean
Public Bc As Boolean

BeginProg
 Fa = 0
 Fb = 0.125
 L = 126
 Ba = Fa 'This will set Ba = False (0)
 Bb = Fb 'This will Set Bb = True (-1)
 Bc = L 'This will Set Bc = True (-1)
EndProg

FLOAT from LONG or Boolean
When a LONG or Boolean is converted to FLOAT, the integer value is loaded
into the FLOAT. Booleans are converted to -1 or 0. LONG integers greater than
24 bits (16,777,215; the size of the mantissa for a FLOAT) will lose resolution
when converted to FLOAT.

160

Section 7. Installation

LONG from FLOAT or Boolean
When converted to Long, Boolean is converted to -1 or 0. When a FLOAT is
converted to a LONG, it is truncated. This conversion is the same as the INT
function (Arithmetic Functions (p. 542)). The conversion is to an integer equal to or
less than the value of the float; for example, 4.6 becomes 4 and –4.6 becomes –5).

If a FLOAT is greater than the largest allowable LONG (+2,147,483,647), the
integer is set to the maximum. If a FLOAT is less than the smallest allowable
LONG (–2,147,483,648), the integer is set to the minimum.

Integers in Expressions
LONGs are evaluated in expressions as integers when possible. CRBasic example
Evaluation of Integers (p. 161) illustrates evaluation of integers as LONGs and
FLOATs.

CRBasic Example 19. Evaluation of Integers
'This program example demonstrates the evaluation of integers.

Public I As Long
Public X As Float

BeginProg
 I = 126
 X = (I+3) * 3.4
 'I+3 is evaluated as an integer, then converted to Float data type before it is
 'multiplied by 3.4.
EndProg

Constants Conversion
Constants are not declared with a data type, so the CR800 assigns the data type as
needed. If a constant (either entered as a number or declared with CONST) can be
expressed correctly as an integer, the compiler will use the type that is most
efficient in each expression. The integer version is used if possible, for example, if
the expression has not yet encountered a FLOAT. CRBasic example Constants to
LONGs or FLOATs (p. 161) lists a programming case wherein a value normally
considered an integer (10) is assigned by the CR800 to be As FLOAT.

CRBasic Example 20. Constants to LONGs or FLOATs
'This program example demonstrates conversion of constants to Long or Float data types.

Public L As Long
Public F1 As Float
Public F2 As Float
Const ID = 10

BeginProg
 F1 = F2 + ID
 L = ID * 5
EndProg

In CRBasic example Constants to LONGs or FLOATs (p. 161), I is an integer. A1
and A2 are FLOATS. The number 5 is loaded As FLOAT to add efficiently with
constant ID, which was compiled As FLOAT for the previous expression to avoid

161

Section 7. Installation

an inefficient runtime conversion from LONG to FLOAT before each floating
point addition.

7.8.4.15.4 Logical Expressions
Measurements can indicate absence or presence of an event. For example, an RH
measurement of 100% indicates a condensation event such as fog, rain, or dew.
The CR800 can render the state of the event into binary form for further
processing, so the event is either occurring (true), or the event has not occurred
(false).

True = -1, False = 0
In all cases, the argument 0 is translated as FALSE in logical expressions; by
extension, any non-zero number is considered "non-FALSE." However, the
argument TRUE is predefined in the CR800 operating system to only equal -1, so
only the argument -1 is always translated as TRUE. Consider the expression

If Condition(1) = TRUE Then...

This condition is true only when Condition(1) = -1. If Condition(1) is any other
non-zero, the condition will not be found true because the constant TRUE is
predefined as -1 in the CR800 system memory. By entering = TRUE, a literal
comparison is done. So, to be absolutely certain a function is true, it must be set
to TRUE or -1.

Note TRUE is -1 so that every bit is set high (-1 is &B11111111 for all four
bytes). This allows the AND operation to work correctly. The AND operation
does an AND boolean function on every bit, so TRUE AND X will be non-zero if
at least one of the bits in X is non-zero (if X is not zero). When a variable of data
type BOOLEAN is assigned any non-zero number, the CR800 internally converts
it to -1.

The CR800 is able to translate the conditions listed in table Binary Conditions of
TRUE and FALSE (p. 162) to binary form (-1 or 0), using the listed instructions and
saving the binary form in the memory location indicated. Table Logical
Expression Examples (p. 163) explains some logical expressions.

Non-Zero = True (Sometimes)
Any argument other than 0 or -1 will be translated as TRUE in some cases and
FALSE in other cases. While using only -1 as the numerical representation of
TRUE is safe, it may not always be the best programming technique. Consider
the expression

If Condition(1) then...

Since = True is omitted from the expression, Condition(1) is considered true if it
equals any non-zero value.

162

Section 7. Installation

Table 21. Binary Conditions of TRUE and FALSE

Condition
CRBasic Instruction(s)

Used
Memory Location of Binary

Result

Time TimeIntoInterval() Variable, System

 IfTime() Variable, System

 TimeIsBetween() Variable, System

Control Port Trigger WaitDigTrig() System

Communications VoiceBeg() System

 ComPortIsActive() Variable

 PPPClose() Variable

Measurement Event DataEvent() System

Using TRUE or FALSE conditions with logic operators such as AND and OR,
logical expressions can be encoded to perform one of the following three general
logic functions. Doing so facilitates conditional processing and control
applications:

1. Evaluate an expression, take one path or action if the expression is true (= –1),
and / or another path or action if the expression is false (= 0).

2. Evaluate multiple expressions linked with AND or OR.

3. Evaluate multiple AND or OR links.

The following commands and logical operators are used to construct logical
expressions. CRBasic example Logical Expression Examples (p. 163) demonstrate
some logical expressions.

• IF
• AND
• OR
• NOT
• XOR
• IMP
• IIF

Table 22. Logical Expression Examples
If X >= 5 then Y = 0

Sets the variable Y to 0 if the expression "X >= 5" is true, i.e. if X is greater than or equal to 5. The CR800 evaluates the
expression (X >= 5) and registers in system memory a -1 if the expression is true, or a 0 if the expression is false.

If X >= 5 OR Z = 2 then Y = 0

Sets Y = 0 if either X >= 5 or Z = 2 is true.

If X >= 5 AND Z = 2 then Y = 0

Sets Y = 0 only if both X >= 5 and Z = 2 are true.

If 6 then Y = 0.

If 6 is true since 6 (a non-zero number) is returned, so Y is set to 0 every time the statement is executed.

If 0 then Y = 0.

If 0 is false since 0 is returned, so Y will never be set to 0 by this statement.

Z = (X > Y).

Z equals -1 if X > Y, or Z will equal 0 if X <= Y.

163

Section 7. Installation

Table 22. Logical Expression Examples
The NOT operator complements every bit in the word. A Boolean can be FALSE (0 or all bits set to 0) or TRUE (-1 or all bits set to 1).
“Complementing” a Boolean turns TRUE to FALSE (all bits complemented to 0).
Example Program
'(a AND b) = (26 AND 26) = (&b11010 AND &b11010) =
'&b11010. NOT (&b11010) yields &b00101.

'This is non-zero, so when converted to a
'BOOLEAN, it becomes TRUE.
Public a As LONG
Public b As LONG
Public is_true As Boolean
Public not_is_true As Boolean
Public not_a_and_b As Boolean
BeginProg
 a = 26
 b = a
 Scan (1,Sec,0,0)
 is_true = a AND b 'This evaluates to TRUE.
 not_is_true = NOT (is_true) 'This evaluates to FALSE.
 not_a_and_b = NOT (a AND b) 'This evaluates to TRUE!
 NextScan
EndProg

7.8.4.15.5 String Expressions
CRBasic facilitates concatenation of string variables to variables of all data types
using & and + operators. To ensure consistent results, use & when concatenating
strings. Use + when concatenating strings to other variable types. CRBasic
example String and Variable Concatenation (p. 164) demonstrates CRBasic code for
concatenating strings and integers. See section String Operations (p. 275) in the
Programming Resource Library (p. 167) for more information on string
programming.

CRBasic Example 21. String and Variable Concatenation
'This program example demonstrates the concatenation of variables declared As String to
'other strings and to variables declared as other data types.
'
'Declare Variables
Dim PhraseNum(2) As Long
Dim Word(15) As String * 10
Public Phrase(2) As String * 80

'Declare Data Table
DataTable(HAL,1,-1)
 DataInterval(0,15,Sec,10)

 'Write phrases to data table "Test"
 Sample(2,Phrase,String)
EndTable

164

Section 7. Installation

'Program
BeginProg
 Scan(1,Sec,0,0)

 'Assign strings to String variables
 Word(1) = "Good"
 Word(2) = "morning"
 Word(3) = "Dave"
 Word(4) = "I'm"
 Word(5) = "sorry"
 Word(6) = "afraid"
 Word(7) = "I"
 Word(8) = "can't"
 Word(9) = "do"
 Word(10) = "that"
 Word(11) = " "
 Word(12) = ","
 Word(13) = ";"
 Word(14) = "."
 Word(15) = Chr(34)

 'Assign integers to Long variables
 PhraseNum(1) = 1
 PhraseNum(2) = 2

 'Concatenate string "1. Good morning, Dave"
 Phrase(1) = PhraseNum(1)+Word(14)+Word(11)&Word(15)&Word(1)&Word(11)&Word(2)& _
 Word(12)&Word(11)&Word(3)&Word(14)&Word(15)

 'Concatenate string "2. I'm afraid I can't do that, Dave."
 Phrase(2) = PhraseNum(2)+Word(14)&Word(11)&Word(15)&Word(4)&Word(11)&Word(6)&Word(11)& _
 Word(7)&Word(11)&Word(8)&Word(11)&Word(9)&Word(11)&Word(10)&Word(12)& _
 Word(11)&Word(3)&Word(14)&Word(15)

 CallTable HAL

 NextScan
EndProg

7.8.4.16 Programming Access to Data Tables
A data table is a memory location where data records are stored. Sometimes, the
stored data needs to be used in the CRBasic program. For example, a program
can be written to retrieve the average temperature of the last five days for further
processing. CRBasic has syntax provisions facilitating access to these table data,
or to meta data relating to the data table. Except when using the GetRecord()
instruction (Data Table Access and Management (p. 565)), the syntax is entered
directly into the CRBasic program through a variable name. The general form is:

TableName.FieldName_Prc(Fieldname Index, Records Back)

Where:

• TableName is the name of the data table.
• FieldName is the name of the variable from which the processed value is

derived.
• Prc is the abbreviation of the name of the data process used. See table Data

Process Abbreviations (p. 166) for a complete list of these abbreviations. This is
not needed for values from Status or Public tables.

165

Section 7. Installation

• Fieldname Index is the array element number in fields that are arrays
(optional).

• Records Back is how far back into the table to go to get the value (optional).
If left blank, the most recent record is acquired.

Table 23. Data Process Abbreviations
Abbreviation Process Name

Tot Totalize

Avg Average

Max Maximum

Min Minimum

SMM Sample at Max or Min

Std Standard Deviation

MMT Moment

No abbreviation Sample

Hst Histogram 1

H4D Histogram4D

FFT FFT

Cov Covariance

RFH Rainflow Histogram

LCr Level Crossing

WVc WindVector

Med Median

ETsz ET

RSo Solar Radiation (from ET)

TMx Time of Max

TMn Time of Min

1Hst is reported in the form Hst,20,1.0000e+00,0.0000e+00,1.0000e+01 where Hst denotes a
histogram, 20 = 20 bins, 1 = weighting factor, 0 = lower bound, 10 = upper bound.

For example, to access the number of watchdog errors, use the statement
wderr = status.watchdogerrors

where wderr is a declared variable, status is the table name, and watchdogerrors
is the keyword for the watchdog error field.

Seven special variable names are used to access information about a table.

• EventCount
• EventEnd
• Output
• Record
• TableFull
• TableSize
• TimeStamp

166

Section 7. Installation

Consult CRBasic Editor Help index topic DataTable access for complete
information.

The DataTableInformation table also include this information. See Status,
Settings, and Data Table Information (Status/Settings/DTI) (p. 577).

7.8.4.17 Programming to Use Signatures
Signatures help assure system integrity and security. The following resources
provide information on using signatures.

• Signature() instruction in Diagnostics (p. 524)
• RunSignature entry in table Signature Status/Settings/DTI (p. 577)
• ProgSignature entry in table Signature Status/Settings/DTI (p. 577)
• OSSignature entry in table Signature Status/Settings/DTI (p. 577)
• Security (p. 90)

Many signatures are recorded in the Status table, which is a type of data table.
Signatures recorded in the Status table can be copied to a variable using the
programming technique described in the Programming Access to Data Tables (p.
165). Once in variable form, signatures can be sampled as part of another data
table for archiving.

7.9 Programming Resource Library
This library of notes and CRBasic code addresses a narrow selection of CR800
applications. Consult a Campbell Scientific application engineer if other
resources are needed.

7.9.1 Advanced Programming Techniques
7.9.1.1 Capturing Events

CRBasic example Capturing Events (p. 167) demonstrates programming to output
data to a data table at the occurrence of an event.

CRBasic Example 22. BeginProg / Scan / NextScan / EndProg Syntax
'This program example demonstrates detection and recording of an event. An event has a
'beginning and an end. This program records an event as occurring at the end of the event.
'The event recorded is the transition of a delta temperature above 3 degrees. The event is
'recorded when the delta temperature drops back below 3 degrees.

'The DataEvent instruction forces a record in data table Event each time an
'event ends. Number of events is written to the reserved variable
'EventCount(1,1). In this program, EventCount(1,1) is recorded in the
'OneMinute Table.

'Note : the DataEvent instruction must be used within a data table with a
'more frequent record interval than the expected frequency of the event.

'Declare Variables
Public PTemp_C, AirTemp_C, DeltaT_C
Public EventCounter

167

Section 7. Installation

'Declare Event Driven Data Table
DataTable(Event,True,1000)
 DataEvent(0,DeltaT_C>=3,DeltaT_C<3,0)
 Sample(1,PTemp_C, FP2)
 Sample(1,AirTemp_C, FP2)
 Sample(1,DeltaT_C, FP2)
EndTable

'Declare Time Driven Data Table
DataTable(OneMin,True,-1)
 DataInterval(0,1,Min,10)
 Sample(1,EventCounter, FP2)
EndTable

BeginProg
 Scan(1,Sec,1,0)

 'Wiring Panel Temperature
 PanelTemp(PTemp_C,_60Hz)

 'Type T Thermocouple measurements:
 TCDiff(AirTemp_C,1,mV2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1,0)

 'Calculate the difference between air and panel temps
 DeltaT_C = AirTemp_C - PTemp_C

 'Update Event Counter (uses special syntax Event.EventCount(1,1))
 EventCounter = Event.EventCount(1,1)

 'Call data table(s)
 CallTable(Event)
 CallTable(OneMin)

 NextScan
EndProg

7.9.1.2 Conditional Output
CRBasic example Conditional Output (p. 168) demonstrates programming to output
data to a data table conditional on a trigger other than time.

CRBasic Example 23. Conditional Output
'This program example demonstrates the conditional writing of data to a data table. It
'also demonstrates use of StationName() and Units instructions.

'Declare Station Name (saved to Status table)
StationName(Delta_Temp_Station)

'Declare Variables
Public PTemp_C, AirTemp_C, DeltaT_C

168

Section 7. Installation

'Declare Units
Units PTemp_C = deg C
Units AirTemp_C = deg C
Units DeltaT_C = deg C

'Declare Output Table -- Output Conditional on Delta T >=3
'Table stores data at the Scan rate (once per second) when condition met
'because DataInterval instruction is not included in table declaration.

DataTable(DeltaT,DeltaT_C >= 3,-1)
 Sample(1,Status.StationName,String)
 Sample(1,DeltaT_C,FP2)
 Sample(1,PTemp_C,FP2)
 Sample(1,AirTemp_C,FP2)
EndTable

BeginProg
 Scan(1,Sec,1,0)
 'Measure wiring panel temperature
 PanelTemp(PTemp_C,_60Hz)

 'Measure type T thermocouple
 TCDiff(AirTemp_C,1,mV2_5C,1,TypeT,PTemp_C,True,0, _60Hz,1,0)

 'Calculate the difference between air and panel temps
 DeltaT_C = AirTemp_C - PTemp_C

 'Call data table(s)
 CallTable(DeltaT)

 NextScan
EndProg

7.9.1.3 Groundwater Pump Test
CRBasic example Groundwater Pump Test (p. 169) demonstrates:

• How to write multiple-interval data to the same data table
• Use of program-control instructions outside the Scan() / NextScan structure
• One way to execute conditional code
• Use of multiple sequential scans, each with a scan count

169

Section 7. Installation

CRBasic Example 24. Groundwater Pump Test
'This program example demonstrates the use of multiple scans in a program by running a
'groundwater pump test. Note that Scan() time units of Sec have been changed to mSec for
'this demonstration to allow the program to run its course in a short time. To use this
'program for an actual pump test, change the Scan() instruction mSec arguments to Sec. You
'will also need to put a level measurement in the MeasureLevel subroutine.

'A groundwater pump test requires that water level be measured and recorded
'according to the following schedule:

'Minutes into Test Data-Output Interval
'----------------- --------------------
' 0-10 10 seconds
' 10-30 30 seconds
' 30-100 60 seconds
' 100-300 120 seconds
' 300-1000 300 seconds
' 1000+ 600 seconds

'Declare Variables
Public PTemp
Public Batt_Volt
Public Level
Public LevelMeasureCount As Long
Public ScanCounter(6) As Long

'Declare Data Table
DataTable(LogTable,1,-1)
 Minimum(1,Batt_Volt,FP2,0,False)
 Sample(1,PTemp,FP2)
 Sample(1,Level,FP2)
EndTable

'Declare Level Measurement Subroutine
Sub MeasureLevel
 LevelMeasureCount = LevelMeasureCount + 1 'Included to show passes through sub-routine
 'Level measurement instructions goes here
EndSub

'Main Program
BeginProg

 'Minute 0 to 10 of test: 10-second data-output interval
 Scan(10,mSec,0,60) 'There are 60 10-second scans in 10 minutes
 ScanCounter(1) = ScanCounter(1) + 1 'Included to show passes through this scan
 Battery(Batt_volt)
 PanelTemp(PTemp,250)
 Call MeasureLevel

 'Call Output Tables
 CallTable LogTable
 NextScan

170

Section 7. Installation

 'Minute 10 to 30 of test: 30-second data-output interval
 Scan(30,mSec,0,40)'There are 40 30-second scans in 20 minutes
 ScanCounter(2) = ScanCounter(2) + 1 'Included to show passes through this scan
 Battery(Batt_volt)
 PanelTemp(PTemp,250)
 Call MeasureLevel

 'Call Output Tables
 CallTable LogTable
 NextScan

 'Minute 30 to 100 of test: 60-second data-output interval
 Scan(60,mSec,0,70)'There are 70 60-second scans in 70 minutes
 ScanCounter(3) = ScanCounter(3) + 1 'Included to show passes through this scan
 Battery(Batt_volt)
 PanelTemp(PTemp,250)
 Call MeasureLevel

 'Call Output Tables
 CallTable LogTable
 NextScan

 'Minute 100 to 300 of test: 120-second data-output interval
 Scan(120,mSec,0,200)'There are 200 120-second scans in 10 minutes
 ScanCounter(4) = ScanCounter(4) + 1 'Included to show passes through this scan
 Battery(Batt_volt)
 PanelTemp(PTemp,250)
 Call MeasureLevel

 'Call Output Tables
 CallTable LogTable
 NextScan

 'Minute 300 to 1000 of test: 300-second data-output interval
 Scan(300,mSec,0,140)'There are 140 300-second scans in 700 minutes
 ScanCounter(5) = ScanCounter(5) + 1 'Included to show passes through this scan
 Battery(Batt_volt)
 PanelTemp(PTemp,250)
 Call MeasureLevel

 'Call Output Tables
 CallTable LogTable
 NextScan

 'Minute 1000+ of test: 600-second data-output interval
 Scan(600,mSec,0,0)'At minute 1000, continue 600-second scans indefinitely
 ScanCounter(6) = ScanCounter(6) + 1 'Included to show passes through this scan
 Battery(Batt_volt)
 PanelTemp(PTemp,250)
 Call MeasureLevel

 'Call Output Tables
 CallTable LogTable
 NextScan

EndProg

171

Section 7. Installation

7.9.1.4 Miscellaneous Features
CRBasic example Miscellaneous Features (p. 172) demonstrates use of several
CRBasic features: data type, units, names, event counters, flags, data-output
intervals, and control.

CRBasic Example 25. Miscellaneous Program Features
'This program example demonstrates the use of a single measurement instruction. In this
'case, the program measures the temperature of the CR800 wiring panel.

Public RefTemp 'Declare variable to receive instruction

BeginProg
 Scan(1,Sec,3,0)
 PanelTemp(RefTemp, 250) 'Instruction to make measurement
 NextScan
EndProg

'A program can be (and should be!) extensively documented. Any text preceded by an
'apostrophe is ignored by the CRBasic compiler.

'One thermocouple is measured twice using the wiring panel temperature as the reference
'temperature. The first measurement is reported in Degrees C, the second in Degrees F.
'The first measurement is then converted from Degree C to Degrees F on the subsequent
'line, the result being placed in another variable. The difference between the panel
'reference temperature and the first measurement is calculated, the difference is then
'used to control the status of a program control flag. Program control then
'transitions into device control as the status of the flag is used to determine the
'state of a control port that controls an LED (light emitting diode).

'Battery voltage is measured and stored just because good programming practice dictates
'it be so.

'Two data storage tables are created. Table “OneMin” is an interval driven table that
'stores data every minute as determined by the CR1000 clock. Table “Event” is an event
'driven table that only stores data when certain conditions are met.

'Declare Public (viewable) Variables
Public Batt_Volt As FLOAT 'Declared as Float
Public PTemp_C 'Float by default
Public AirTemp_C 'Float by default
Public AirTemp_F 'Float by default
Public AirTemp2_F 'Float by default
Public DeltaT_C 'Float by default
Public HowMany 'Float by default
Public Counter As Long 'Declared as Long so counter does not have
 'rounding error
Public SiteName As String * 16 'Declared as String with 16 chars for a
 'site name (optional)

'Declare program control flags & terms. Set the words “High” and “Low” to equal “TRUE”
'and “FALSE” respectively
Public Flag(1) As Boolean
Const High = True
Const Low = False

172

Section 7. Installation

'Optional – Declare a Station Name into a location in the Status table.
StationName(CR1000_on_desk)

'Optional -- Declare units. Units are not used in programming, but only appear in the
'data file header.
Units Batt_Volt = Volts
Units PTemp = deg C
Units AirTemp = deg C
Units AirTempF2 = deg F
Units DeltaT_C = deg C

'Declare an interval driven output table
DataTable(OneMin,True,-1) 'Time driven data storage
 DataInterval(0,1,Min,0) 'Controls the interval
 Average(1,AirTemp_C,IEEE4,0) 'Stores temperature average in high
 'resolution format
 Maximum(1,AirTemp_C,IEEE4,0,False) 'Stores temperature maximum in high
 'resolution format
 Minimum(1,AirTemp_C,FP2,0,False) 'Stores temperature minimum in low
 'resolution format
 Minimum(1,Batt_Volt,FP2,0,False) 'Stores battery voltage minimum in low
 'resolution format
 Sample(1,Counter,Long) 'Stores counter in integer format
 Sample(1,SiteName,String) 'Stores site name as a string
 Sample(1,HowMany, FP2) 'Stores how many data events in low
 'resolution format
EndTable

'Declare an event driven data output table
DataTable(Event,True,1000) 'Data table – event driven
 DataInterval(0,5,Sec,10) '—AND interval driven
 DataEvent(0,DeltaT_C >= 3,DeltaT_C < 3,0) '—AND event range driven
 Maximum(1,AirTemp_C,FP2,0,False) 'Stores temperature maximum in low
 'resolution format
 Minimum(1,AirTemp_C,FP2,0,False) 'Stores temperature minimum in low
 'resolution format
 Sample(1,DeltaT_C, FP2) 'Stores temp difference sample in low
 'resolution format
 Sample(1,HowMany, FP2) 'Stores how many data events in low
 'resolution format
EndTable

BeginProg

 'A second way of naming a station is to load the name into a string variable. The is
 'place here so it is executed only once, which saves a small amount of program
 'execution time.

 SiteName = "CR1000SiteName"

173

Section 7. Installation

 Scan(1,Sec,1,0)

 'Measurements

 'Battery Voltage
 Battery(Batt_Volt)

 'Wiring Panel Temperature
 PanelTemp(PTemp_C,_60Hz)

 'Type T Thermocouple measurements:
 TCDiff(AirTemp_C,1,mV2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1,0)
 TCDiff(AirTemp_F,1,mV2_5C,1,TypeT,PTemp_C,True,0,_60Hz,1.8,32)

 'Convert from degree C to degree F
 AirTemp2_F = AirTemp_C * 1.8 + 32

 'Count the number of times through the program. This demonstrates the use of a
 'Long integer variable in counters.
 Counter = Counter + 1

 'Calculate the difference between air and panel temps
 DeltaT_C = AirTemp_C - PTemp_C

 'Control the flag based on the difference in temperature. If DeltaT >= 3 then
 'set Flag 1 high, otherwise set it low
 If DeltaT_C >= 3 Then
 Flag(1) = high
 Else
 Flag(1) = low
 EndIf

 'Turn LED connected to Port 1 on when Flag 1 is high
 If Flag(1) = high Then
 PortSet(1,1) 'alternate syntax: PortSet(1,high)
 Else
 PortSet(1,0) 'alternate syntax: PortSet(1,low)
 EndIf

 'Count how many times the DataEvent “DeltaT_C>=3” has occurred. The
 'TableName.EventCount syntax is used to return the number of data storage events
 'that have occurred for an event driven table. This example looks in the data
 'table “Event”, which is declared above, and reports the event count. The (1,1)
 'after EventCount just needs to be included.
 HowMany = Event.EventCount(1,1)

 'Call Data Tables
 CallTable(OneMin)
 CallTable(Event)

 NextScan
EndProg

174

Section 7. Installation

7.9.1.5 PulseCountReset Instruction
PulseCountReset is used in rare instances to force the reset or zeroing of CR800
pulse accumulators (see Measurements — Overview (p. 62)).

PulseCountReset is needed in applications wherein two separate PulseCount()
instructions in separate scans measure the same pulse-input terminal. While the
compiler does not allow multiple PulseCount() instructions in the same scan to
measure the same terminal, multiple scans using the same terminal are allowed.
PulseCount() information is not maintained globally, but for each individual
instruction occurrence. So, if a program needs to alternate between fast and slow
scan times, two separate scans can be used with logic to jump between them. If a
PulseCount() is used in both scans, then a PulseCountReset is used prior to
entering each scan.

7.9.1.6 Scaling Array
CRBasic example Scaling Array (p. 175) demonstrates programming to create and
use a scaling array. Several multipliers and offsets are entered at the beginning of
the program and then used by several measurement instructions throughout the
program.

CRBasic Example 26. Scaling Array
'This program example demonstrates the use of a scaling array. An array of three
'temperatures are measured. The first is expressed as degrees Celsius, the second as
'Kelvin, and the third as degrees Fahrenheit.

'Declare viewable variables
Public PTemp_C
Public Temp_C(3)
Public Count

'Declare scaling arrays as non-viewable variables
Dim Mult(3)
Dim Offset(3)

'Declare Output Table
DataTable(Min_5,True,-1)
 DataInterval(0,5,Min,0)
 Average(1,PTemp_C,FP2,0)
 Maximum(1,PTemp_C,FP2,0,0)
 Minimum(1,PTemp_C,FP2,0,0)
 Average(3,Temp_C(),FP2,0)
 Minimum(3,Temp_C(1),FP2,0,0)
 Maximum(3,Temp_C(1),FP2,0,0)
EndTable

'Begin Program
BeginProg

 'Load scaling array
 Mult(1) = 1.0 : Offset(1) = 0 'Scales 1st thermocouple temperature to Celsius
 Mult(2) = 1.0 : Offset(2) = 273.15 'Scales 2nd thermocouple temperature to Kelvin
 Mult(3) = 1.8 : Offset(3) = 32 'Scales 3rd thermocouple temperature to Fahrenheit

175

Section 7. Installation

 Scan(5,Sec,1,0)

 'Measure reference temperature
 PanelTemp(PTemp_C,_60Hz)

 'Measure three thermocouples and scale each. Scaling factors from the scaling array
 'are applied to each measurement because the syntax uses an argument of 3 in the Reps
 'parameter of the TCDiff() instruction and scaling variable arrays as arguments in the
 'Multiplier and Offset parameters.
 TCDiff(Temp_C(), 3, mV2_5C,1,TypeT,PTemp_C,True,0,250,Mult(),Offset())

 CallTable(Min_5)

 NextScan
EndProg

7.9.1.7 Signatures: Example Programs
A program signature is a unique integer calculated from all characters in a given
set of code. When a character changes, the signature changes. Incorporating
signature data into a the CR800 data set allows system administrators to track
program changes and assure data quality. The following program signatures are
available.

• text signature
• binary-runtime signature
• executable-code signatures

7.9.1.7.1 Text Signature
The text signature is the most-widely used program signature. This signature is
calculated from all text in a program, including blank lines and comments. The
program text signature is found in the Status table as ProgSignature. See
CRBasic example Program Signatures (p. 176).

7.9.1.7.2 Binary Runtime Signature
The binary runtime signature is calculated only from program code. It does not
include comments or blank lines. See CRBasic example Program Signatures (p.
176).

7.9.1.7.3 Executable Code Signatures
Executable code signatures allow signatures to be calculated on discrete sections
of executable code. Executable code is code that resides between BeginProg and
EndProg instructions. See CRBasic example Program Signatures (p. 176).

CRBasic Example 27. Program Signatures
'This program example demonstrates how to request the program text signature (ProgSig =
Status.ProgSignature), and the
'binary run-time signature (RunSig = Status.RunSignature). It also calculates two
'executable code segment signatures (ExeSig(1), ExeSig(2))

'Define Public Variables
Public RunSig, ProgSig, ExeSig(2),x,y

176

Section 7. Installation

'Define Data Table
DataTable(Signatures,1,1000)
 DataInterval(0,1,Day,10)
 Sample(1,ProgSig,FP2)
 Sample(1,RunSig,FP2)
 Sample(2,ExeSig(),FP2)
EndTable

'Program
BeginProg
 ExeSig() = Signature 'initialize executable code signature
 'function
 Scan(1,Sec,0,0)
 ProgSig = Status.ProgSignature 'Set variable to Status table entry
 '"ProgSignature"
 RunSig = Status.RunSignature 'Set variable to Status table entry
 '"RunSignature"
 x = 24
 ExeSig(1) = Signature 'signature includes code since initial
 'Signature instruction
 y = 43
 ExeSig(2) = Signature 'Signature includes all code since
 'ExeSig(1) = Signature
 CallTable Signatures
NextScan

7.9.1.8 Use of Multiple Scans
CRBasic example Use of Multiple Scans (p. 177) demonstrates the use of multiple
scans. Some applications require measurements or processing to occur at an
interval different from that of the main program scan. Secondary, or slow
sequence, scans are prefaced with the SlowSequence instruction.

CRBasic Example 28. Use of Multiple Scans
'This program example demonstrates the use of multiple scans. Some applications require
'measurements or processing to occur at an interval different from that of the main
'program scan. Secondary scans are preceded with the SlowSequence instruction.

'Declare Public Variables
Public PTemp
Public Counter1

 'Declare Data Table 1
 DataTable(DataTable1,1,-1) 'DataTable1 is event driven.
 'The event is the scan.
 Sample(1,PTemp,FP2)
 Sample(1, Counter1, fp2)
 EndTable

'Main Program
BeginProg 'Begin executable section of program
 Scan(1,Sec,0,0) 'Begin main scan
 PanelTemp(PTemp,250)
 Counter1 = Counter1 + 1
 CallTable DataTable1 'Call DataTable1
 NextScan 'End main scan

177

Section 7. Installation

 SlowSequence 'Begin slow sequence
 'Declare Public Variables for Secondary Scan (can be declared at head of program)
 Public Batt_Volt
 Public Counter2

 'Declare Data Table
 DataTable(DataTable2,1,-1) 'DataTable2 is event driven.
 'The event is the scan.
 Sample(1,Batt_Volt,FP2)
 Sample(1,Counter2,FP2)
 EndTable

 Scan(5,Sec,0,0) 'Begin 1st secondary scan
 Counter2 = Counter2 + 1
 Battery(Batt_Volt)
 CallTable DataTable2 'Call DataTable2
 NextScan 'End slow sequence scan
EndProg 'End executable section of program

7.9.2 Compiling: Conditional Code
When a CRBasic user program is sent to the CR800, an exact copy of the program
is saved as a file on the CPU: drive (p. 352). A binary version of the program, the
"operating program", is created by the CR800 compiler and written to Operating
Memory (p. 353). This is the program version that runs the CR800.

CRBasic allows definition of conditional code, preceded by a hash character (#),
in the CRBasic program that is compiled into the operating program depending on
the conditional settings. In addition, all Campbell Scientific datalogger (except
the CR200) accept program files, or Include() instruction files, with .DLD
extensions. This feature circumvents system filters that look at file extensions for
specific loggers; it makes possible the writing of a single file of code to run on
multiple models of CRBasic dataloggers.

Note Do not confuse CRBasic files with .DLD extensions with files of .DLD
type used by legacy Campbell Scientific dataloggers.

As an example, pseudo code using this feature might be written as:
#Const Destination = LoggerType
#If Destination = 3000 Then
 <code specific to the CR3000>
#ElseIf Destination = 1000 Then
 <code specific to the CR1000>
#ElseIf Destination = 800 Then
 <code specific to the CR800>
#ElseIf Destination = 6 Then
 <code specific to the CR6>
#Else
 <code to include otherwise>
#EndIf

This logic allows a simple change of a constant to direct, for instance, which
measurement instructions to include.

CRBasic Editor now features a pre-compile option that enables the creation of a
CRBasic text file with only the desired conditional statements from a larger
master program. This option can also be used at the pre-compiler command line

178

Section 7. Installation

by using -p <outfile name>. This feature allows the smallest size program file
possible to be sent to the CR800, which may help keep costs down over very
expensive telecommunication links.

CRBasic example Conditional Code (p. 179) shows a sample program that
demonstrates use of conditional compilation features in CRBasic. Within the
program are examples showing the use of the predefined LoggerType constant
and associated predefined datalogger constants (6, 800, 1000, and 3000).

CRBasic Example 29. Conditional Code
'This program example demonstrates program compilation than is conditional on datalogger
'model and program speed. Key instructions include #If, #ElseIf, #Else and #EndIf.

'Set program options based on:
' LoggerType, which is a constant predefined in the CR800 operating system
' ProgramSpeed, which is defined in the following statement:
Const ProgramSpeed = 2

#If ProgramSpeed = 1
 Const ScanRate = 1 '1 second
 Const Speed = "1 Second"
#ElseIf ProgramSpeed = 2
 Const ScanRate = 10 '10 seconds
 Const Speed = "10 Second"

#ElseIf ProgramSpeed = 3
 Const ScanRate = 30 '30 seconds
 Const Speed = "30 Second"
#Else
 Const ScanRate = 5 '5 seconds
 Const Speed = "5 Second"
#EndIf
'Public Variables
Public ValueRead, SelectedSpeed As String * 50

'Main Program
BeginProg

 'Return the selected speed and logger type for display.
 #If LoggerType = 3000
 SelectedSpeed = "CR3000 running at " & Speed & " intervals."
 #ElseIf LoggerType = 1000
 SelectedSpeed = "CR1000 running at " & Speed & " intervals."
 #ElseIf LoggerType = 800
 SelectedSpeed = "CR800 running at " & Speed & " intervals."
 #ElseIf LoggerType = 6
 SelectedSpeed = "CR6 running at " & Speed & " intervals."
 #Else
 SelectedSpeed = "Unknown Logger " & Speed & " intervals."
 #EndIf

 'Open the serial port
 SerialOpen(ComC1,9600,10,0,10000)

 'Main Scan
 Scan(ScanRate,Sec,0,0)
 'Measure using different parameters and a different SE channel depending
 'on the datalogger type the program is running in.

179

Section 7. Installation

 #If LoggerType = 3000
 'This instruction is used if the datalogger is a CR3000
 VoltSe(ValueRead,1,mV1000,22,0,0,_50Hz,0.1,-30)
 #ElseIf LoggerType = 1000
 'This instruction is used if the datalogger is a CR1000
 VoltSe(ValueRead,1,mV2500,12,0,0,_50Hz,0.1,-30)
 #ElseIf LoggerType = 800
 'This instruction is used if the datalogger is a CR800 Series
 VoltSe(ValueRead,1,mV2500,3,0,0,_50Hz,0.1,-30)
 #ElseIf LoggerType = 6
 'This instruction is used if the datalogger is a CR6 Series
 VoltSe(ValueRead,1,mV1000,U3,0,0,50,0.1,-30)
 #Else
 ValueRead = NAN
 #EndIf
 NextScan

EndProg

7.9.3 Displaying Data: Custom Menus — Details
Related Topics:
 • Custom Menus — Overview (p. 83, p. 555)
 • Data Displays: Custom Menus — Details (p. 180)
 • Custom Menus — Instruction Set (p. 555)
 • Keyboard Display — Overview (p. 82)
 • CRBasic Editor Help for DisplayMenu()

Menus for the CR1000KD Keyboard Display can be customized to simplify
routine operations. Viewing data, toggling control functions, or entering notes are
common applications. Individual menu screens support up to eight lines of text
with up to seven variables.

Use the following CRBasic instructions. Refer to CRBasic Editor Help for
complete information.

DisplayMenu()

Marks the beginning and end of a custom menu. Only one allowed per
program.

Note Label must be at least six characters long to mask default display clock.

EndMenu

Marks the end of a custom menu. Only one allowed per program.

DisplayValue()

Defines a label and displays a value (variable or data table value) not to be
edited, such as a measurement.

MenuItem()

Defines a label and displays a variable to be edited by typing or from a pick
list defined by MenuPick ().

MenuPick()

Creates a pick list from which to edit a MenuItem() variable. Follows

180

Section 7. Installation

immediately after MenuItem(). If variable is declared As Boolean,
MenuPick() allows only True or False or declared equivalents. Otherwise,
many items are allowed in the pick list. Order of items in list is determined by
order of instruction; however, item displayed initially in MenuItem() is
determined by the value of the item.

SubMenu() / EndSubMenu

Defines the beginning and end of a second-level menu.

Note SubMenu() label must be at least six characters long to mask default
display clock.

CRBasic example Custom Menus (p. 183) lists CRBasic programming for a custom
menu that facilitates viewing data, entering notes, and controlling a device.
Following is a list of figures that show the organization of the custom menu that is
programmed using CRBasic example Custom Menus (p. 183).

Custom Menu Example — Home Screen (p. 181)
Custom Menu Example — View Data Window (p. 181)
Custom Menu Example — Make Notes Sub Menu (p. 182)
Custom Menu Example — Predefined Notes Pick List (p. 182)
Custom Menu Example — Free Entry Notes Window (p. 182)
Custom Menu Example — Accept / Clear Notes Window (p. 182)
Custom Menu Example — Control Sub Menu (p. 183)
Custom Menu Example — Control LED Pick List (p. 183)
Custom Menu Example — Control LED Boolean Pick List (p. 183)

Figure 43. Custom Menu Example — Home Screen

Figure 44. Custom Menu Example — View Data Window

181

Section 7. Installation

Figure 45. Custom Menu Example — Make Notes Sub Menu

Figure 46. Custom Menu Example — Predefined Notes Pick List

Figure 47. Custom Menu Example — Free Entry Notes Window

Figure 48. Custom Menu Example — Accept / Clear Notes Window

182

Section 7. Installation

Figure 49. Custom Menu Example — Control Sub Menu

Figure 50. Custom Menu Example — Control LED Pick List

Figure 51. Custom Menu Example — Control LED Boolean Pick List

Note See figures Custom Menu Example — Home Screen (p. 181) through Custom
Menu Example — Control LED Boolean Pick List (p. 183) in reference to the
following CRBasic example Custom Menus (p. 83, p. 555).

CRBasic Example 30. Custom Menus
'This program example demonstrates the building of a custom CR1000KD Keyboard Display menu.

'Declarations supporting View Data menu item
Public RefTemp 'Reference Temp Variable
Public TCTemp(2) 'Thermocouple Temp Array

'Delarations supporting blank line menu item
Const Escape = "Hit Esc" 'Word indicates action to exit dead end

183

Section 7. Installation

'Declarations supporting Enter Notes menu item
Public SelectNote As String * 20 'Hold predefined pick list note
Const Cal_Done = "Cal Done" 'Word stored when Cal_Don selected
Const Offst_Chgd = "Offset Changed" 'Word stored when Offst_Chgd selected
Const Blank = "" 'Word stored when blank selected
Public EnterNote As String * 30 'Variable to hold free entry note
Public CycleNotes As String * 20 'Variable to hold notes control word
Const Accept = "Accept" 'Notes control word
Const Clear = "Clear" 'Notes control word

'Declarations supporting Control menu item
Const On = true 'Assign "On" as Boolean True
Const Off = false 'Assign "Off" as Boolean False
Public StartFlag As Boolean 'LED Control Process Variable
Public CountDown As Long 'LED Count Down Variable
Public ToggleLED As Boolean 'LED Control Variable

'Define Note DataTable 'Set up Notes data table, written
DataTable(Notes,1,-1) 'to when a note is accepted
 Sample(1,SelectNote,String) 'Sample Pick List Note
 Sample(1,EnterNote,String) 'Sample Free Entry Note
EndTable

'Define temperature DataTable 'Set up temperature data table.
DataTable(TempC,1,-1) 'Written to every 60 seconds with:
 DataInterval(0,60,Sec,10)
 Sample(1,RefTemp,FP2) 'Sample of reference temperature
 Sample(1,TCTemp(1),FP2) 'Sample of thermocouple 1
 Sample(1,TCTemp(2),FP2) 'Sample of thermocouple 2
EndTable

'Custom Menu Declarations
DisplayMenu("**CUSTOM MENU DEMO**",-3) 'Create Menu; Upon power up, the custom menu
 'is displayed. The system menu is hidden
 'from the user.

 SubMenu("") 'Dummy Sub menu to write a blank line
 DisplayValue("",Escape) 'a blank line
 EndSubMenu 'End of dummy submenu

 SubMenu("View Data ") 'Create Submenu named PanelTemps
 DisplayValue("Ref Temp C",RefTemp) 'Item for Submenu from Public
 DisplayValue("TC 1 Temp C",TCTemp(1)) 'Item for Submenu - TCTemps(1)
 DisplayValue("TC 2 Temp C",TCTemp(2)) 'Item for Submenu - TCTemps(2)
 EndSubMenu 'End of Submenu

 SubMenu("Make Notes ") 'Create Submenu named PanelTemps
 MenuItem("Predefined",SelectNote) 'Choose predefined notes Menu Item
 MenuPick(Cal_Done,Offset_Changed) 'Create pick list of predefined notes
 MenuItem("Free Entry",EnterNote) 'User entered notes Menu Item
 MenuItem("Accept/Clear",CycleNotes)
 MenuPick(Accept,Clear)
 EndSubMenu

184

Section 7. Installation

 SubMenu("Control ") 'Create Submenu named PanelTemps
 MenuItem("Count to LED",CountDown) 'Create menu item CountDown
 MenuPick(15,30,45,60) 'Create a pick list for CountDown
 MenuItem("Manual LED",toggleLED) 'Manual LED control Menu Item
 MenuPick(On,Off)
 EndSubMenu
EndMenu 'End custom menu creation

'Main Program
BeginProg

 CycleNotes = "??????" 'Initialize Notes Sub Menu,
 'write ????? as a null
 Scan(1,Sec,3,0)

 'Measurements
 PanelTemp(RefTemp,250) 'Measure Reference Temperature
 'Measure Two Thermocouples
 TCDiff(TCTemp(),2,mV2_5C,1,TypeT,RefTemp,True,0,_60Hz,1.0,0)
 CallTable TempC 'Call data table

 'Menu Item "Make Notes" Support Code
 If CycleNotes = "Accept" Then
 CallTable Notes 'Write data to Notes data table
 CycleNotes = "Accepted" 'Write "Accepted" after written
 Delay(1,500,mSec) 'Pause so user can read "Accepted"
 SelectNote = "" 'Clear pick list note
 EnterNote = "" 'Clear free entry note
 CycleNotes = "??????" 'Write ????? as a null prompt
 EndIf
 If CycleNotes = "Clear" Then 'Clear notes when requested
 SelectNote = "" 'Clear pick list note
 EnterNote = "" 'Clear free entry note
 CycleNotes = "??????" 'Write ????? as a null prompt
 EndIf

 'Menu Item "Control" Menu Support Code
 CountDown = CountDown - 1 'Count down by 1
 If CountDown <= 0 'Stop count down from passing 0
 CountDown = 0
 EndIf
 If CountDown > 0 Then
 StartFlag = True 'Indicate countdown started
 EndIf
 If StartFlag = True AND CountDown = 0 Then'Interprocess count down
 'and manual LED
 ToggleLED = True
 StartFlag = False
 EndIf
 If StartFlag = True AND CountDown <> 0 Then'Interprocess count down and manual LED
 ToggleLED = False
 EndIf
 PortSet(4,ToggleLED) 'Set control port according
 'to result of processing
 NextScan
EndProg

185

Section 7. Installation

7.9.4 Data Input: Loading Large Data Sets
Large data sets, such as look up tables or tag numbers, can be loaded in the
CR800 for use by the CRBasic program. This is efficiently accomplished by
using the Data, DataLong, and Read instructions, as demonstrated in CRBasic
example Loading Large Data Sets (p. 186).

CRBasic Example 31. Loading Large Data Sets

'This program example demonstrates how to load a set of data into variables. Twenty values
'are loaded into two arrays: one declared As Float, one declared As Long. Individual Data
'lines can be many more values long than shown (limited only by maximum statement length),
'and many more lines can be written. Thousands of values can be loaded in this way.

'Declare Float and Long variables. Can also be declared as Dim.
Public DataSetFloat(10) As Float
Public DataSetLong(10) As Long
Dim x

'Write data set to CR800 memory
Data 1.1,2.2,3.3,4.4,5.5
Data -1.1,-2.2,-3.3,-4.4,-5.5
DataLong 1,2,3,4,5
DataLong -1,-2,-3,-4,-5

'Declare data table
DataTable (DataSet_,True,-1)
 Sample (10,DataSetFloat(),Float)
 Sample (10,DataSetLong(),Long)
EndTable

BeginProg

 'Assign Float data to variable array declared As Float
 For x = 1 To 10
 Read DataSetFloat(x)
 Next x

 'Assign Long data to variable array declared As Long
 For x = 1 To 10
 Read DataSetLong(x)
 Next x

 Scan(1,sec,0,1)

 'Write all data to final-data memory
 CallTable DataSet_

 NextScan

EndProg

186

Section 7. Installation

7.9.5 Data Input: Array-Assigned Expression
CRBasic provides for the following operations on one dimension of a multi-
dimensional array:

• Initialize
• Transpose
• Copy
• Mathematical
• Logical

Examples include:

• Process a variable array without use of For/Next
• Create boolean arrays based on comparisons with another array or a scalar

variable
• Copy a dimension to a new location
• Perform logical operations for each element in a dimension using scalar or

similarly located elements in different arrays and dimensions

Note Array-assigned expression notation is an alternative to For/Next
instructions, typically for use by more advanced programmers. It will probably
not reduce processing time significantly over the use of For/Next. To reduce
processing time, consider using the Move() instruction, which requires more
intensive programming.

Syntax rules:

• Definitions:

o Least-significant dimension — the last or right-most figure in an array
index. For example, in the array array(a,b), b is the least-significant
dimension index. In the array array(a,b,c), c is least significant.

o Negate — place a negative or minus sign (-) before the array index. For
example, when negating the least-significant dimension in array(a,b,c),
the notion is array(a,b,-c)

• An empty set of parentheses designates an array-assigned expression. For
example, reference array() or array(a,b,c)().

• Only one dimension of the array is operated on at a time.
• To select the dimension to be operated on, negate the dimension of index of

interest.
• Operations will not cross dimensions. An operation begins at the specified

starting point and continues to one of the following:

o End of the dimension
o Where the dimension is specified by a negative
o Where the dimension is the least significant (default)

• If indices are not specified, or none have been preceded with a minus sign,
the least significant dimension of the array is assumed.

• The offset into the dimension being accessed is given by (a,b,c).
• If the array is referenced as array(), the starting point is array(1,1,1) and the

least significant dimension is accessed. For example, if the array is declared
as test(a,b,c), and subsequently referenced as test(), then the starting point is
test(1,1,1) and dimension c is accessed.

187

Section 7. Installation

Table 24. CRBasic Example. Array Assigned Expression: Sum Columns and Rows
'This example sums three rows and two columns of a 3x2 array.

'Source array image:
'1.23,2.34
'3.45,4.56
'5.67,6.78

Public Array(3,2) = {1.23,2.34,3.45,4.56,5.67,6.78}'load values into source array
Public RowSum(3)
Public ColumnSum(2)

BeginProg
 Scan(1,Sec,0,0)
 'For each row, add up the two columns
 RowSum() = Array(-1,1)() + Array(-1,2)()
 'For each column, add up the three rows
 ColumnSum() = Array(1,-1)() + Array(2,-1)() + Array(3,-1)()
 NextScan
EndProg

Table 25. CRBasic Example. Array Assigned Expression: Transpose an Array
'This example transposes a 3x2 array to a 2x3 array
'Source array image:
'1,2
'3,4
'5,6

'Destination array image (transpose of source):
'1,3,5
'2,4,6

'Dimension and initialize source array
Public A(3,2) = {1,2,3,4,5,6}

'Dimension destination array
Public At(2,3)

'Delcare For/Next counter
Dim i

BeginProg
 Scan (1,Sec,0,0)
 For i = 1 To 2
 'For each column of the source array A(), copy the column into a row of the
 'destination array At()
 At(i,-1)() = A(-1,i)()
 Next i
 NextScan
EndProg

188

Section 7. Installation

Table 26. CRBasic Example. Array Assigned Expression: Comparison / Boolean Evaluation
'Example: Comparison / Boolean Evaluation

'Element-wise comparisons is performed through scalar expansion or by comparing each
'element in one array to a similarly located element in another array to generate a
'resultant boolean array to be used for decision making and control, such as
'an array input to a SDM-CD16AC.

Public TempC(3) = {15.1234,20.5678,25.9876}
Public TempC_Rounded(3)
Public TempDiff(3)
Public TempC_Alarm(3) As Boolean
Public TempF_Thresh(3) = {55,60,80}
Public TempF_Alarm(3) As Boolean

BeginProg
 Scan(1,Sec,0,0)

 'element-wise comparison of each temperature in the array to a scalar value
 'set corresponding alarm boolean value true if temperature exceeds 20 degC
 TempC_Alarm() = TempC() > 20

 'some, not all or most, instructions will accept this array notation to auto-index
 'through the array

 'round each temperature to the nearest tenth of a degree
 TempC_Rounded() = Round(TempC(),1)

 'element-wise subtraction
 'each element in TempC_Rounded is subtracted from the similarly located element inTempC
 'calculate the difference between each TempC value and the rounded counterpart
 TempDiff() = TempC() - TempC_Rounded()

 'element-wise operations can be mixed with scalar expansion operations
 'set corresponding alarm boolean value true if temperature, after being
 'converted to degF, exceeds it's corresponding alarm threshold value in degF
 TempF_Alarm() = (TempC() * 1.8 + 32) > TempF_Thresh()

 NextScan
EndProg

189

Section 7. Installation

Table 27. CRBasic Example. Array Assigned Expression: Fill Array Dimension
'Example: Fill Array Dimension

Public A(3)
Public B(3,2)
Public C(4,3,2)
Public Da(3,2) = {1,1,1,1,1,1}
Public Db(3,2)
Public DMultiplier(3) = {10,100,1000}
Public DOffset(3) = {1,2,3}

BeginProg
 Scan(1,Sec,0,0)

 A() = 1 'set all elements of 1D array or first dimension to 1

 B(1,1)() = 100 'set B(1,1) and B(1,2) to 100
 B(-2,1)() = 200 'set B(2,1) and B(3,1) to 200
 B(-2,2)() = 300 'set B(2,2) and B(3,2) to 300

 C(1,-1,1)() = A() 'copy A(1), A(2), and A(3) into C(1,1,1), C(1,2,1), and C(1,3,1),
 'respectively
 C(2,-1,1)() = A() * 1.8 + 32 'scale and then copy A(1), A(2), and A(3) into C(2,1,1),
 'C(2,2,1), and C(2,3,1), respectively

 'scale the first column of Da by corresponding multiplier and offset
 'copy the result into the first column of Db
 'then set second column of Db to NAN
 Db(-1,1)() = Da(-1,1)() * DMultiplier() + DOffset()
 Db(-1,2)() = NAN

 NextScan
EndProg

7.9.6 Data Output: Calculating Running Average
The AvgRun() instruction calculates a running average of a measurement or
calculated value. A running average (Dest) is the average of the last N values
where N is the number of values, as expressed in the running-average equation:

where XN is the most recent value of the source variable and XN-1 is the previous
value (X1 is the oldest value included in the average, i.e., N-1 values back from
the most recent). NANs are ignored in the processing of AvgRun() unless all
values in the population are NAN.

AvgRun() uses high-precision math, so a 32-bit extension of the mantissa is saved
and used internally resulting in 56 bits of precision.

Note This instruction should not normally be inserted within a For/Next
construct with the Source and Destination parameters indexed and Reps set to 1.
Doing so will perform a single running average, using the values of the different

190

Section 7. Installation

elements of the array, instead of performing an independent running average on
each element of the array. The results will be a running average of a spatial
average of the various source array elements.

A running average is a digital low-pass filter; its output is attenuated as a function
of frequency, and its output is delayed in time. Degree of attenuation and phase
shift (time delay) depend on the frequency of the input signal and the time length
(which is related to the number of points) of the running average.

The figure Running-Average Frequency Response (p. 192) is a graph of signal
attenuation plotted against signal frequency normalized to 1/(running average
duration). The signal is attenuated by a synchronizing filter with an order of 1
(simple averaging): Sin(πX) / (πX), where X is the ratio of the input signal
frequency to the running-average frequency (running-average frequency = 1 /
time length of the running average).

Example:

Scan period = 1 ms,

N value = 4 (number of points to average),

Running-average duration = 4 ms

Running-average frequency = 1 / (running-average duration = 250 Hz)

Input-signal frequency = 100 Hz

Input frequency to running average (normalized frequency) = 100 / 250 = 0.4

Sin(0.4π) / (0.4π) = 0.757 (or read from figure Running-Average Frequency
Response (p. 192), where the X axis is 0.4)

For a 100 Hz input signal with an amplitude of 10 V peak-to-peak, a running
average outputs a 100 Hz signal with an amplitude of 7.57 V peak-to-peak.

There is also a phase shift, or delay, in the AvgRun() output. The formula for
calculating the delay, in number of samples, is:

Delay in samples = (N–1) / 2

Note N = number of points in running average

To calculate the delay in time, multiply the result from the above equation by the
period at which the running average is executed (usually the scan period):

Delay in time = (scan period) • (N–1) / 2

For the example above, the delay is:

Delay in time = (1 ms) • (4 – 1) / 2 = 1.5 ms

Example:

An accelerometer was tested while mounted on a beam. The test had the
following characteristics:

o Accelerometer resonant frequency ≈ 36 Hz
o Measurement period = 2 ms
o Running average duration = 20 ms (frequency of 50 Hz)

191

Section 7. Installation

Normalized resonant frequency was calculated as follows:
36 Hz / 50 Hz = 0.72
SIN(0.72π) / (0.72π) = 0.34.

So, the recorded amplitude was about 1/3 of the input-signal amplitude. A
CRBasic program was written with variables Accel2 and Accel2RA. The
raw measurement was stored in Accel2. Accel2RA held the result of
performing a running average on the Accel2. Both values were stored at a
rate of 500 Hz. Figure Running-Average Signal Attenuation (p. 193) shows the
two variables plotted to illustrate the attenuation. The running-average value
has the lower amplitude.

The resultant delay, Dr, is calculated as follows:

Dr = (scan rate) • (N–1)/2 = 2 ms (10–1)/2
 = 9 ms

Dr is about 1/3 of the input-signal period.

Figure 52. Running-Average Frequency Response

192

Section 7. Installation

Figure 53. Running-Average Signal Attenuation

7.9.7 Data Output: Triggers and Omitting Samples
TrigVar is the third parameter in the DataTable() instruction. It controls whether
or not a data record is written to final memory. TrigVar control is subject to other
conditional instructions such as the DataInterval() and DataEvent() instructions.

DisableVar is the last parameter in most output processing instructions, such as
Average(), Maximum(), Minimum(), etc. It controls whether or not a particular
measurement or value is included in the affected output-processing function.

For individual measurements to affect summary data, output processing
instructions such as Average() must be executed whenever the data table is called
from the program — normally once each scan. For example, for an average to be
calculated for the hour, each measurement must be added to a total over the hour.
This accumulation of data is not affected by TrigVar. TrigVar controls only the
moment when the final calculation is performed and the processed data (the
average) are written to the data table. For this summary moment to occur,
TrigVar and all other conditions (such as DataInterval() and DataEvent()) must
be true. Expressed another way, when TrigVar is false, output processing
instructions (for example, Average()) perform intermediate processing but not the
final process, and a new record will not be created.

Note In many applications, output records are solely interval based and TrigVar
is always set to TRUE (-1). In such applications, DataInterval() is the sole
specifier of the output trigger condition.

Figure Data from TrigVar Program (p. 194) shows data produced by CRBasic
example Using TrigVar to Trigger Data Storage (p. 194), which uses TrigVar rather
than DataInterval() to trigger data storage.

193

Section 7. Installation

Figure 54. Data from TrigVar Program

CRBasic Example 32. Using TrigVar to Trigger Data Storage

'This program example demonstrates the use of the TrigVar parameter in the DataTable()
'instruction to trigger data storage. In this example, the variable Counter is
'incremented by 1 at each scan. The data table, which includes the Sample(), Average(), and
'Totalize() instructions, is called every scan. Data are stored when TrigVar is true, and
'TrigVar is True when Counter = 2 or Counter = 3. Data stored are the sample, average,
'and total of the variable Counter, which is equal to 0, 1, 2, 3, or 4 when the data table
'is called.

Public Counter

DataTable(Test,Counter=2 or Counter=3,100)
 Sample(1,Counter,FP2)
 Average(1,Counter,FP2,False)
 Totalize(1,Counter,FP2,False)
EndTable

BeginProg
 Scan(1,Sec,0,0)
 Counter = Counter + 1
 If Counter = 5 Then
 Counter = 0
 EndIf
 CallTable Test
 NextScan
EndProg

194

Section 7. Installation

7.9.8 Data Output: Two Intervals in One Data Table

CRBasic Example 33. Two Data-Output Intervals in One Data Table
'This program example demonstrates the use of two time intervals in a data table. One time
'interval in a data table is the norm, but some applications require two.
'
'A table with two time intervals should be allocated memory as is done with a conditional table:
'rather than auto-allocate, set a fixed number of records.

'Declare Public Variables
Public PTemp, batt_volt, airtempC, deltaT
Public int_fast As Boolean
Public int_slow As Boolean
Public counter(4) As Long

'Declare Data Table
'
'Table is output on one of two intervals, depending on condition.
'Note the parenthesis around the TriggerVariable AND statements.

DataTable(TwoInt,(int_fast AND TimeIntoInterval(0,5,Sec)) OR (int_slow AND _
 TimeIntoInterval(0,15,sec)),-1)
 Minimum(1,batt_volt,FP2,0,False)
 Sample(1,PTemp,FP2)
 Maximum(1,counter(1),Long,False,False)
 Minimum(1,counter(1),Long,False,False)
 Maximum(1,deltaT,FP2,False,False)
 Minimum(1,deltaT,FP2,False,False)
 Average(1,deltaT,IEEE4,false)
EndTable

'Main Program
BeginProg
 Scan(1,Sec,0,0)

 PanelTemp(PTemp,250)
 Battery(Batt_volt)
 counter(1) = counter(1) + 1

 'Measure thermocouple
 TCDiff(AirTempC,1,mV2_5C,1,TypeT,PTemp,True,0,250,1.0,0)
 'calculate the difference in air temperature and panel temperature
 deltaT = airtempC - PTemp

 'When the difference in air temperatures is >=3 turn LED on and trigger the faster of
 'the two data-table intervals.
 If deltaT >= 3 Then
 PortSet(4,true)
 int_fast = true
 int_slow = false
 Else
 PortSet(4,false)
 int_fast = false
 int_slow = true
 EndIf

195

Section 7. Installation

 'Call output tables
 CallTable TwoInt

 NextScan
EndProg

7.9.9 Data Output: Using Data Type Bool8
Variables used exclusively to store either True or False are usually declared As
BOOLEAN. When recorded in final-data memory, the state of Boolean variables
is typically stored in BOOLEAN data type. BOOLEAN data type uses a four-
byte integer format. To conserve final-data memory or telecommunication band,
you can use the BOOL8 data type. A BOOL8 is a one-byte value that holds eight
bits of information (eight states with one bit per state). To store the same
information using a 32 bit BOOLEAN data type, 256 bits are required (8 states *
32 bits per state).

When programming with BOOL8 data type, repetitions in the output processing
DataTable() instruction must be divisible by two, since an odd number of bytes
cannot be stored. Also note that when the CR800 converts a LONG or FLOAT
data type to BOOL8, only the least significant eight bits of the binary equivalent
are used, i.e., only the binary representation of the decimal integer modulo divide
(p. 494) 256 is used.

Example:
Given: LONG integer 5435
Find: BOOL8 representation of 5435
Solution:

5435 / 256 = 21.2304687
0.2304687 * 256 = 59
Binary representation of 59 = 00111011 (CR800 stores
these bits in reverse order)

When datalogger support software (p. 93) retrieves the BOOL8 value, it splits it
apart into eight fields of -1 or 0 when storing to an ASCII file. Consequently,
more memory is required for the ASCII file, but CR800 memory is conserved.
The compact BOOL8 data type also uses less telecommunication band width
when transmitted.

CRBasic example Programming with Bool8 and Bit-Shift Operators (p. 198)
programs the CR800 to monitor the state of 32 "alarms" as a tutorial exercise.
The alarms are toggled by manually entering zero or non-zero (e.g., 0 or 1) in
each public variable representing an alarm as shown in figure Alarms Toggled in
Bit-Shift Example (p. 197). Samples of the four public variables FlagsBool8(1),
FlagsBool8(2), FlagsBool8(3), and FlagsBool8(4) are stored in data table
Bool8Data as four one-byte values. However, as shown in figure Bool8 Data
from Bit-Shift Example (Numeric Monitor) (p. 197), when viewing the data table in a
numeric monitor (p. 495), data are conveniently translated into 32 values of True or
False. In addition, as shown in figure Bool8 Data from Bit-Shift Example (PC
Data File) (p. 198), when datalogger support software (p. 93) stores the data in an
ASCII file, it is stored as 32 columns of either -1 or 0, each column representing
the state of an alarm. You can use variable aliasing (p. 136) in the CRBasic
program to make the data more understandable.

196

Section 7. Installation

Figure 55. Alarms Toggled in Bit-Shift Example

Figure 56. Bool8 Data from Bit-Shift Example (Numeric Monitor)

197

Section 7. Installation

Figure 57. Bool8 Data from Bit-Shift Example (PC Data File)

CRBasic Example 34. Programming with Bool8 and a Bit-Shift Operator
'This program example demonstrates the use of the Bool8 data type and the ">>" bit-shift
'operator.

Public Alarm(32)
Public Flags As Long
Public FlagsBool8(4) As Long

DataTable(Bool8Data,True,-1)
 DataInterval(0,1,Sec,10)
 'store bits 1 through 16 in columns 1 through 16 of data file
 Sample(2,FlagsBool8(1),Bool8)
 'store bits 17 through 32 in columns 17 through 32 of data file
 Sample(2,FlagsBool8(3),Bool8)
EndTable

BeginProg
 Scan(1,Sec,3,0)

 'Reset all bits each pass before setting bits selectively
 Flags = &h0

 'Set bits selectively. Hex is used to save space.

 'Logical OR bitwise comparison

198

Section 7. Installation

 'If bit in OR bit in The result
 'Flags Is Bin/Hex Is Is
 '---------- ---------- ----------
 ' 0 0 0
 ' 0 1 1
 ' 1 0 1
 ' 1 1 1

 'Binary equivalent of Hex:
 If Alarm(1) Then Flags = Flags OR &h1 ' &b1
 If Alarm(2) Then Flags = Flags OR &h2 ' &b10
 If Alarm(3) Then Flags = Flags OR &h4 ' &b100
 If Alarm(4) Then Flags = Flags OR &h8 ' &b1000
 If Alarm(5) Then Flags = Flags OR &h10 ' &b10000
 If Alarm(6) Then Flags = Flags OR &h20 ' &b100000
 If Alarm(7) Then Flags = Flags OR &h40 ' &b1000000
 If Alarm(8) Then Flags = Flags OR &h80 ' &b10000000
 If Alarm(9) Then Flags = Flags OR &h100 ' &b100000000
 If Alarm(10) Then Flags = Flags OR &h200 ' &b1000000000
 If Alarm(11) Then Flags = Flags OR &h400 ' &b10000000000
 If Alarm(12) Then Flags = Flags OR &h800 ' &b100000000000
 If Alarm(13) Then Flags = Flags OR &h1000 ' &b1000000000000
 If Alarm(14) Then Flags = Flags OR &h2000 ' &b10000000000000
 If Alarm(15) Then Flags = Flags OR &h4000 ' &b100000000000000
 If Alarm(16) Then Flags = Flags OR &h8000 ' &b1000000000000000
 If Alarm(17) Then Flags = Flags OR &h10000 ' &b10000000000000000
 If Alarm(18) Then Flags = Flags OR &h20000 ' &b100000000000000000
 If Alarm(19) Then Flags = Flags OR &h40000 ' &b1000000000000000000
 If Alarm(20) Then Flags = Flags OR &h80000 ' &b10000000000000000000
 If Alarm(21) Then Flags = Flags OR &h100000 ' &b100000000000000000000
 If Alarm(22) Then Flags = Flags OR &h200000 ' &b1000000000000000000000
 If Alarm(23) Then Flags = Flags OR &h400000 ' &b10000000000000000000000
 If Alarm(24) Then Flags = Flags OR &h800000 ' &b100000000000000000000000
 If Alarm(25) Then Flags = Flags OR &h1000000 ' &b1000000000000000000000000
 If Alarm(26) Then Flags = Flags OR &h2000000 ' &b10000000000000000000000000
 If Alarm(27) Then Flags = Flags OR &h4000000 ' &b100000000000000000000000000
 If Alarm(28) Then Flags = Flags OR &h8000000 ' &b1000000000000000000000000000
 If Alarm(29) Then Flags = Flags OR &h10000000 ' &b10000000000000000000000000000
 If Alarm(30) Then Flags = Flags OR &h20000000 ' &b100000000000000000000000000000
 If Alarm(31) Then Flags = Flags OR &h40000000 ' &b1000000000000000000000000000000
 If Alarm(32) Then Flags = Flags OR &h80000000 '&b10000000000000000000000000000000

 'Note &HFF = &B11111111. By shifting at 8 bit increments along 32-bit 'Flags' (Long
 'data type), the first 8 bits in the four Longs FlagsBool8(4) are loaded with alarm
 'states. Only the first 8 bits of each Long 'FlagsBool8' are stored when converted
 'to Bool8.

 'Logical AND bitwise comparison

 'If bit in OR bit in The result
 'Flags Is Bin/Hex Is Is
 '---------- ---------- ----------
 ' 0 0 0
 ' 0 1 0
 ' 1 0 0
 ' 1 1 1

199

Section 7. Installation

 FlagsBool8(1) = Flags AND &HFF 'AND 1st 8 bits of "Flags" & 11111111
 FlagsBool8(2) = (Flags >> 8) AND &HFF 'AND 2nd 8 bits of "Flags" & 11111111
 FlagsBool8(3) = (Flags >> 16) AND &HFF 'AND 3rd 8 bits of "Flags" & 11111111
 FlagsBool8(4) = (Flags >> 24) AND &HFF 'AND 4th 8 bits of "Flags" & 11111111

 CallTable(Bool8Data)
 NextScan
EndProg

7.9.10 Data Output: Using Data Type NSEC
Data of NSEC type reside only in final-data memory. A datum of NSEC consists
of eight bytes — four bytes of seconds since 1990 and four bytes of nanoseconds
into the second. Nsec is declared in the Data Type parameter in final-data
memory output-processing instructions (p. 516). It is used in the following
applications:

• Placing a time stamp in a second position in a record.
• Accessing a time stamp from a data table and subsequently storing it as part

of a larger data table. Maximum(), Minimum(), and FileTime() instructions
produce a time stamp that may be accessed from the program after being
written to a data table. The time of other events, such as alarms, can be stored
using the RealTime() instruction.

• Accessing and storing a time stamp from another datalogger in a PakBus
network.

7.9.10.1 NSEC Options
NSEC is used in a CRBasic program one of the following ways. In all cases, the
time variable is only sampled with a Sample() instruction, Reps = 1.

1. Time variable is declared As Long. Sample() instruction assumes the time
variable holds seconds since 1990 and microseconds into the second is 0. The
value stored in final-data memory is a standard time stamp. See CRBasic
example NSEC — One Element Time Array (p. 200).

2. Time-variable array dimensioned to (2) and As Long — Sample() instruction
assumes the first time variable array element holds seconds since 1990 and the
second element holds microseconds into the second. See CRBasic example
NSEC — Two Element Time Array (p. 201).

3. Time-variable array dimensioned to (7) or (9) and As Long or As Float —
Sample() instruction assumes data are stored in the variable array in the
sequence year, month, day of year, hour, minutes, seconds, and milliseconds.
See CRBasic example NSEC — Seven and Nine Element Time Arrays (p. 202).

CRBasic example NSEC — Convert Time Stamp to Universal Time (p. 200) shows
one of several practical uses of the NSEC data type.

200

Section 7. Installation

CRBasic Example 35. NSEC — One Element Time Array
'This program example demonstrates the use of NSEC data type to determine seconds since
'00:00:00 1 January 1990. A time stamp is retrieved into variable TimeVar(1) as seconds
'since 00:00:00 1 January 1990. Because the variable is dimensioned to 1, NSEC assumes
'the value = seconds since 00:00:00 1 January 1990.

'Declarations
Public PTemp
Public TimeVar(1) As Long

DataTable(FirstTable,True,-1)
 DataInterval(0,1,Sec,10)
 Sample(1,PTemp,FP2)
EndTable

DataTable(SecondTable,True,-1)
 DataInterval(0,5,Sec,10)
 Sample(1,TimeVar,Nsec)
EndTable

'Program
BeginProg
 Scan(1,Sec,0,0)
 TimeVar = FirstTable.TimeStamp
 CallTable FirstTable
 CallTable SecondTable
 NextScan
EndProg

CRBasic Example 36. NSEC — Two Element Time Array
'This program example demonstrates how to determine seconds since 00:00:00 1 January 1990,
'and microseconds into the last second. This is done by retrieving variable TimeStamp into
'variables TimeOfMaxVar(1) and TimeOfMaxVar(2). Because the variable TimeOfMaxVar() is
'dimensioned to 2, NSEC assumes the following:
' 1) TimeOfMaxVar(1) = seconds since 00:00:00 1 January 1990, and
' 2) TimeOfMaxVar(2) = microseconds into a second.

'Declarations
Public PTempC
Public MaxVar
Public TimeOfMaxVar(2) As Long

DataTable(FirstTable,True,-1)
 DataInterval(0,1,Min,10)
 Maximum(1,PTempC,FP2,False,True)
EndTable

DataTable(SecondTable,True,-1)
 DataInterval(0,5,Min,10)
 Sample(1,MaxVar,FP2)
 Sample(1,TimeOfMaxVar,Nsec)
EndTable

201

Section 7. Installation

'Program
BeginProg
 Scan(1,Sec,0,0)

 PanelTemp(PTempC,250)
 MaxVar = FirstTable.PTempC_Max
 TimeOfMaxVar = FirstTable.PTempC_TMx
 CallTable FirstTable
 CallTable SecondTable

 NextScan
EndProg

CRBasic Example 37. NSEC — Seven and Nine Element Time Arrays
'This program example demonstrates the use of NSEC data type to sample a time stamp into
'final-data memory using an array dimensioned to 7 or 9.

'A time stamp is retrieved into variable rTime(1) through rTime(9) as year, month, day,
'hour, minutes, seconds, and microseconds using the RealTime() instruction. The first
'seven time values are copied to variable rTime2(1) through rTime2(7). Because the
'variables are dimensioned to 7 or greater, NSEC assumes the first seven time factors
'in the arrays are year, month, day, hour, minutes, seconds, and microseconds.

'Declarations
Public rTime(9) As Long '(or Float)
Public rTime2(7) As Long '(or Float)
Dim x

DataTable(SecondTable,True,-1)
 DataInterval(0,5,Sec,10)
 Sample(1,rTime,NSEC)
 Sample(1,rTime2,NSEC)
EndTable

'Program
BeginProg
 Scan(1,Sec,0,0)

 RealTime(rTime)
 For x = 1 To 7
 rTime2(x) = rTime(x)
 Next

 CallTable SecondTable

 NextScan
EndProg

202

Section 7. Installation

CRBasic Example 38. NSEC —Convert Timestamp to Universal Time
'This program example demonstrates the use of NSEC data type to convert a data time stamp
'to universal time.
'
'Application: the CR800 needs to display Universal Time (UT) in human readable
'string forms. The CR800 can calculate UT by adding the appropriate offset to a
'standard time stamp. Adding offsets requires the time stamp be converted to numeric
'form, the offset applied, then the new time be converted back to string forms.

'These are accomplished by:
' 1) reading Public.TimeStamp into a LONG numeric variable.
' 2) store it into a type NSEC datum in final-data memory.
' 3) sample it back into string form using the TableName.FieldName notation.

'Declarations
Public UTTime(3) As String * 30
Dim TimeLong As Long
Const UTC_Offset = -7 * 3600 '-7 hours offset (as seconds)

DataTable(TimeTable,true,1)
 Sample(1,TimeLong,Nsec)
EndTable

'Program
BeginProg
 Scan(1,Sec,0,0)

 '1) Read Public.TimeStamp into a LONG numeric variable. Note that TimeStamp is a
 ' system variable, so it is not declared.
 TimeLong = Public.TimeStamp(1,1) + UTC_Offset

 '2) Store it into a type NSEC datum in final-data memory.
 CallTable(TimeTable)

 '3) sample time to three string forms using the TableName.FieldName notation.
 'Form 1: "mm/dd/yyyy hr:mm:ss
 UTTime(1) = TimeTable.TimeLong(1,1)
 'Form 2: "dd/mm/yyyy hr:mm:ss
 UTTime(2) = TimeTable.TimeLong(3,1)
 'Form 3: "ccyy-mm-dd hr:mm:ss (ISO 8601 Int'l Date)
 UTTime(3) = TimeTable.TimeLong(4,1)

 NextScan
EndProg

7.9.11 Field Calibration — Details
Related Topics:
 • Field Calibration — Overview (p. 73)
 • Field Calibration — Details (p. 203)

Calibration increases accuracy of a sensor by adjusting or correcting its output to
match independently verified quantities. Adjusting a sensor output signal is
preferred, but not always possible or practical. By using the FieldCal() or
FieldCalStrain() instruction, a linear sensor output can be corrected in the CR800
after the measurement by adjusting the multiplier and offset.

203

Section 7. Installation

When included in the CRBasic program, FieldCal() and FieldCalStrain() can be
used through a datalogger support software calibration wizard (p. 483). Help for
using the wizard is available in the software.

A more arcane procedure that does not require a PC can be executed though the
CR1000KD Keyboard / Displayor. If you do not have a keyboard, the same
procedure can be done in a numeric monitor (p. 495). Numeric monitor screen
captures are used in the following procedures. Running through these procedures
will give you a foundation for how field calibration works, but use of the
calibration wizard for routine work is recommended.

Syntax of FieldCal() and FieldCalStrain() is summarized in the section
Calibration Functions (p. 572). More detail is available in CRBasic Editor Help.

7.9.11.1 Field Calibration CAL Files
Calibration data are stored automatically, usually on the CR800 CPU: drive, in
CAL (.cal) files. These data become the source for calibration factors when
requested by the LoadFieldCal() instruction. A file is created automatically on
the same CR800 memory drive and given the same name as the program that
creates and uses it. For example, the CRBasic program file CPU:MyProg.cr8
generates the CAL file CPU:MyProg.cal.

CAL files are created if a program using FieldCal() or FieldCalStrain() does not
find an existing, compatible CAL file. Files are updated with each successful
calibration with new calibration factors factors. A calibration history is recorded
only if the CRBasic program creates a data table (p. 485) with the
SampleFieldCal() instruction.

Note CAL files created by FieldCal() and FieldCalStrain() differ from files
created by the CalFile() instruction (File Management (p. 361)).

7.9.11.2 Field Calibration Programming
Field-calibration functionality is included in a CRBasic program through either of
the following instructions:

• FieldCal() — the principal instruction used for non-strain gage type sensors.
For introductory purposes, use one FieldCal() instruction and a unique set of
FieldCal() variables for each sensor. For more advanced applications, use
variable arrays.

• FieldCalStrain() — the principal instruction used for strain gages measuring
microstrain. Use one FieldCalStrain() instruction and a unique set of
FieldCalStrain() variables for each sensor. For more advanced applications,
use variable arrays.

FieldCal() and FieldCalStrain() use the following instructions:

• LoadFieldCal() — an optional instruction that evaluates the validity of, and
loads values from a CAL file.

• SampleFieldCal — an optional data-storage output instruction that writes the
latest calibration values to a data table (not to the CAL file).

FieldCal() and FieldCalStrain() use the following reserved Boolean variable:

• NewFieldCal — a reserved Boolean variable under CR800 control used to

204

Section 7. Installation

optionally trigger a data storage output table one time after a calibration has
succeeded.

See CRBasic Editor Help for operational details on CRBasic instructions.

7.9.11.3 Field Calibration Wizard Overview
The LoggerNet and RTDAQ field calibration wizards step you through the
procedure by performing the mode-variable changes and measurements
automatically. You set the sensor to known values and input those values into the
wizard.

When a program with FieldCal() or FieldCalStrain() is running, select
LoggerNet or RTDAQ | Datalogger | Calibration Wizard to start the wizard. A
list of measurements used is shown.

For more information on using the calibration wizard, consult LoggerNet or
RTDAQ Help.

7.9.11.4 Field Calibration Numeric Monitor Procedures
Manual field calibration through the numeric monitor (in lieu of a CR1000KD
Keyboard / Display is presented here to introduce the use and function of the
FieldCal() and FieldCalStrain() instructions. This section is not a
comprehensive treatment of field-calibration topics. The most comprehensive
resource to date covering use of FieldCal() and FieldCalStrain() is RTDAQ
software documentation available at www.campbellsci.com
http://www.campbellsci.com. Be aware of the following precautions:

• The CR800 does not check for out-of-bounds values in mode variables.
• Valid mode variable entries are 1 or 4.

Before, during, and after calibration, one of the following codes will be stored in
the CalMode variable:

Table 28. FieldCal() Codes
Value Returned State

-1 Error in the calibration setup

-2 Multiplier set to 0 or NAN; measurement = NAN

-3 Reps is set to a value other than 1 or the size of MeasureVar

0 No calibration

1 Ready to calculate (KnownVar holds the first of a two point
calibration)

2 Working

3 First point done (only applicable for two point calibrations)

4 Ready to calculate (KnownVar holds the second of a two-point
calibration)

5 Working (only applicable for two point calibrations)

6 Calibration complete

205

http://www.campbellsci.com/

Section 7. Installation

7.9.11.4.1 One-Point Calibrations (Zero or Offset)
Zero operation applies an offset of equal magnitude but opposite sign. For
example, when performing a zeroing operation on a measurement of 15.3, the
value –15.3 will be added to subsequent measurements.

Offset operation applies an offset of equal magnitude and same sign. For
example, when performing an offset operation on a measurement of 15.3, the
value 15.3 will be added to subsequent measurements.

See FieldCal() Zero or Tare (Opt 0) Example (p. 207) and FieldCal() Offset (Opt 1)
Example (p. 209) for demonstration programs:

1. Use a separate FieldCal() instruction and variables for each sensor to be
calibrated. In the CRBasic program , put the FieldCal() instruction
immediately below the associated measurement instruction.

2. Set mode variable = 0 or 6 before starting.

3. Place the sensor into zeroing or offset condition.

4. Set KnownVar variable to the offset or zero value.

5. Set mode variable = 1 to start calibration.

7.9.11.4.2 Two-Point Calibrations (gain and offset)
Use this two-point calibration procedure to adjust multipliers (slopes) and offsets
(y intercepts). See FieldCal() Slope and Offset (Opt 2) Example (p. 211) and
FieldCal() Slope (Opt 3) Example (p. 214) for demonstration programs:

1. Use a separate FieldCal() instruction and separate variables for each sensor to
be calibrated.

2. Ensure mode variable = 0 or 6 before starting.

 a. If Mode > 0 and ≠ 6, calibration is in progress.

 b. If Mode < 0, calibration encountered an error.

3. Place sensor into first known point condition.

4. Set KnownVar variable to first known point.

5. Set Mode variable = 1 to start first part of calibration.

 a. Mode = 2 (automatic) during the first point calibration.

 b. Mode = 3 (automatic) when the first point is completed.

6. Place sensor into second known point condition.

7. Set KnownVar variable to second known point.

8. Set Mode = 4 to start second part of calibration.

 a. Mode = 5 (automatic) during second point calibration.

 b. Mode = 6 (automatic) when calibration is complete.

206

Section 7. Installation

7.9.11.4.3 Zero Basis Point Calibration
Zero-basis calibration (FieldCal() instruction Option 4) is designed for use with

static vibrating-wire measurements. It loads values into zero-point variables
to track conditions at the time of the zero calibration. See FieldCal() Zero
Basis (Opt 4) Example (p. 216) for a demonstration program.

7.9.11.5 Field Calibration Examples
FieldCal() has the following calibration options:

• Zero
• Offset
• Two-point slope and offset
• Two-point slope only
• Zero basis (designed for use with static vibrating-wire measurements)

These demonstration programs are provided as an aid in becoming familiar with
the FieldCal() features at a test bench without actual sensors. For the purpose of
the demonstration, sensor signals are simulated by CR800 terminals configured
for excitation. To reset tests, use the support software File Control (p. 488) menu
commands to delete .cal files, and then send the demonstration program again to
the CR800. Term equivalents are as follows:

"offset" = "y- intercept" = "zero"
"multiplier" = "slope" = "gain"

7.9.11.5.1 FieldCal() Zero or Tare (Opt 0) Example
Most CRBasic measurement instructions have a multiplier and offset parameter.
FieldCal() Option 0 adjusts the offset argument such that the output of the sensor
being calibrated is set to the value of the FieldCal() KnownVar parameter, which
is set to 0. Subsequent measurements have the same offset subtracted. Option 0
does not affect the multiplier argument.

Example Case: A sensor measures the relative humidity (RH) of air. Multiplier is
known to be stable, but sensor offset drifts and requires regular zeroing in a
desiccated chamber. The following procedure zeros the RH sensor to obtain the
calibration report shown. To step through the example, use the CR1000KD
Keyboard Display or software numeric monitor (p. 495) to change variable values as
directed.

Table 29. Calibration Report for Relative Humidity Sensor

CRBasic Variable At Deployment At 30-Day Service

SimulatedRHSignal output 100 mV 105 mV

KnownRH (desiccated
chamber)

0 % 0 %

RHMultiplier 0.05 % / mV 0.05 % / mV

RHOffset -5 % -5.25 %

RH 0 % 0 %

1. Send CRBasic example FieldCal() Zero (p. 208) to the CR800. A terminal
configured for excitation has been programmed to simulate a sensor output.

207

Section 7. Installation

2. To place the simulated RH sensor in a simulated-calibration condition (in the
field it would be placed in a desiccated chamber), place a jumper wire between
terminals VX1 and SE1. The following variables are preset by the program:
SimulatedRHSignal = 100, KnownRH = 0.

3. To start the 'calibration', set variable CalMode = 1. When CalMode increments
to 6, zero calibration is complete. Calibrated RHOffset will equal -5% at this
stage of this example.

4. To continue this example and simulate a zero-drift condition, set variable
SimulatedRHSignal = 105.

5. To simulate conditions for a 30-day-service calibration, again with desiccated
chamber conditions, keep variable KnownRH = 0.0. Set variable CalMode =
1 to start calibration. When CalMode increments to 6, simulated 30-day-
service zero calibration is complete. Calibrated RHOffset will equal -5.2 %.

CRBasic Example 39. FieldCal() Zero
'This program example demonstrates the use of FieldCal() in calculating and applying a zero
'calibration. A zero calibration measures the signal magnitude of a sensor in a known zero
'condition and calculates the negative magnitude to use as an offset in subsequent
'measurements. It does not affect the multiplier.
'
'This program demonstrates the zero calibration with the following procedure:
' -- Simulate a signal from a relative-humidity sensor.
' -- Measure the 'sensor' signal.
' -- Calculate and apply a zero calibration.

'You can set up the simulation by loading this program into the CR800 and interconnecting
'the following terminals with a jumper wire to simulate the relative-humidity sensor signal
'as follows:
' Vx1 --- SE1

'For the simulation, the initial 'sensor' signal is set automatically. Start the zero routine
'by setting variable CalMode = 1. When CalMode = 6 (will occur automatically after 10
'measurements), the routine is complete. Note the new value in variable RHOffset. Now
'enter the following millivolt value as the simulated sensor signal and note how the new
'offset is added to the measurement:
' SimulatedRHSignal = 1000

'NOTE: This program places a .cal file on the CPU: drive of the CR800. The .cal file must
'be erased to reset the demonstration.

'DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MILLIVOLT SIGNAL MAGNITUDE
Public SimulatedRHSignal = 100

'DECLARE CALIBRATION STANDARD VARIABLE AND SET PERCENT RH MAGNITUDE
Public KnownRH = 0

'DECLARE MEASUREMENT RESULT VARIABLE.
Public RH

'DECLARE OFFSET RESULT VARIABLE
Public RHOffset

208

Section 7. Installation

'DECLARE VARIABLE FOR FieldCal() CONTROL
Public CalMode

'DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable(CalHist,NewFieldCal,200)
 SampleFieldCal
EndTable

BeginProg
 'LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
 'Effective after the zero calibration procedure (when variable CalMode = 6)
 LoadFieldCal(true)

 Scan(100,mSec,0,0)

 'SIMULATE SIGNAL THEN MAKE THE MEASUREMENT
 'Zero calibration is applied when variable CalMode = 6
 ExciteV(Vx1,SimulatedRHSignal,0)
 VoltSE(RH,1,mV2500,1,1,0,250,0.05,RHOffset)

 'PERFORM A ZERO CALIBRATION.
 'Start by setting variable CalMode = 1. Finished when variable CalMode = 6.
 'FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)
 FieldCal(0,RH,1,0,RHOffset,CalMode,KnownRH,1,30)

 'If there was a calibration, store calibration values into data table CalHist
 CallTable(CalHist)

 NextScan
EndProg

7.9.11.5.2 FieldCal() Offset (Opt 1) Example
Most CRBasic measurement instructions have a multiplier and offset parameter.
FieldCal() Option 1 adjusts the offset argument such that the output of the sensor
being calibrated is set to the magnitude of the FieldCal() KnownVar parameter.
Subsequent measurements have the same offset added. Option 0 does not affect
the multiplier argument. Option 0 does not affect the multiplier argument.

Example Case: A sensor measures the salinity of water. Multiplier is known to be
stable, but sensor offset drifts and requires regular offset correction using a
standard solution. The following procedure offsets the measurement to obtain the
calibration report shown.

Table 30. Calibration Report for Salinity Sensor
CRBasic Variable At Deployment At Seven-Day Service

SimulatedSalinitySignal output 1350 mV 1345 mV

KnownSalintiy (standard
solution)

30 mg/l 30 mg/l

SalinityMultiplier 0.05 mg/l/mV 0.05 mg/l/mV

SalinityOffset -37.50 mg/l -37.23 mg/l

Salinity reading 30 mg/l 30 mg/l

1. Send CRBasic example FieldCal() Offset (p. 210) to the CR800. A terminal
configured for excitation has been programmed to simulate a sensor output.

209

Section 7. Installation

2. To simulate the salinity sensor in a simulated-calibration condition, (in the field
it would be placed in a 30 mg/l standard solution), place a jumper wire
between terminals VX1 and SE1. The following variables are preset by the
program: SimulatedSalinitySignal = 1350, KnownSalinity = 30.

3. To start a simulated calibration, set variable CalMode = 1. When CalMode
increments to 6, offset calibration is complete. The calibrated offset will equal
-37.48 mg/l.

4. To continue this example and simulate an offset-drift condition, set variable
SimulatedSalinitySignal = 1345.

5. To simulate seven-day-service calibration conditions (30 mg/l standard
solution), the variable KnownSalinity remains at 30.0. Change the value in
variable CalMode to 1 to start the calibration. When CalMode increments to 6,
the seven-day-service offset calibration is complete. Calibrated offset will
equal -37.23 mg/l.

CRBasic Example 40. FieldCal() Offset
'This program example demonstrates the use of FieldCal() in calculating and applying an
'offset calibration. An offset calibration compares the signal magnitude of a sensor to a
'known standard and calculates an offset to adjust the sensor output to the known value.
'The offset is then used to adjust subsequent measurements.

'This program demonstrates the offset calibration with the following procedure:
' -- Simulate a signal from a salinity sensor.
' -- Measure the 'sensor' signal.
' -- Calculate and apply an offset.
'
'You can set up the simulation by loading this program into the CR800 and interconnecting the
'following terminals with a jumper wire to simulate the salinity sensor signal as follows:
' Vx1 --- SE1

'For the simulation, the value of the calibration standard and the initial 'sensor' signal
'are set automatically. Start the calibration routine by setting variable CalMode = 1. When
'CalMode = 6 (will occur automatically after 10 measurements), the routine is complete.
'Note the new value in variable SalinityOffset. Now enter the following millivolt value as
'the simulated sensor signal and note how the new offset is added to the measurement:
' SimulatedSalinitySignal = 1345

'NOTE: This program places a .cal file on the CPU: drive of the CR800. The .cal file must
'be erased to reset the demonstration.

'DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MAGNITUDE
Public SimulatedSalinitySignal = 1350 'mg/l

'DECLARE CALIBRATION STANDARD VARIABLE AND SET MAGNITUDE
Public KnownSalinity = 30 'mg/l

210

Section 7. Installation

'DECLARE MEASUREMENT RESULT VARIABLE.
Public Salinity

'DECLARE OFFSET RESULT VARIABLE
Public SalinityOffset

'DECLARE VARIABLE FOR FieldCal() CONTROL
Public CalMode

'DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable(CalHist,NewFieldCal,200)
 SampleFieldCal
EndTable

BeginProg
 'LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
 'Effective after the zero calibration procedure (when variable CalMode = 6)
 LoadFieldCal(true)

 Scan(100,mSec,0,0)

 'SIMULATE SIGNAL THEN MAKE THE MEASUREMENT
 'Zero calibration is applied when variable CalMode = 6
 ExciteV(Vx1,SimulatedSalinitySignal,0)
 VoltSE(Salinity,1,mV2500,1,1,0,250,0.05,SalinityOffset)

 'PERFORM AN OFFSET CALIBRATION.
 'Start by setting variable CalMode = 1. Finished when variable CalMode = 6.
 'FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)
 FieldCal(1,Salinity,1,0,SalinityOffset,CalMode,KnownSalinity,1,30)

 'If there was a calibration, store calibration values into data table CalHist
 CallTable(CalHist)

 NextScan
EndProg

7.9.11.5.3 FieldCal() Slope and Offset (Opt 2) Example
Most CRBasic measurement instructions have a multiplier and offset parameter.
FieldCal() Option 2 adjusts the multiplier and offset arguments such that the
output of the sensor being calibrated is set to a value consistent with the linear
relationship that intersects two known points sequentially entered in the
FieldCal() KnownVar parameter. Subsequent measurements are scaled with the
same multiplier and offset.

Example Case: A meter measures the volume of water flowing through a pipe.
Multiplier and offset are known to drift, so a two-point calibration is required
periodically at known flow rates. The following procedure adjusts multiplier and
offset to correct for meter drift as shown in the calibration report below. Note that
the flow meter outputs millivolts inversely proportional to flow.

211

Section 7. Installation

Table 31. Calibration Report for Flow Meter

CRBasic Variable At Deployment At Seven-Day Service

SimulatedFlowSignal 300 mV 285 mV

KnownFlow 30 L/s 30 L/s

SimulatedFlowSignal 550 mV 522 mV

KnownFlow 10 L/s 10 L/s

FlowMultiplier -0.0799 L/s/mV -0.0841 L/s/mV

FlowOffset 53.90 L 53.92 L

1. Send CRBasic example FieldCal() Two-Point Slope and Offset (p. 212) to the
CR800.

2. To place the simulated flow sensor in a simulated calibration condition (in the
field a real sensor would be placed in a condition of know flow), place a
jumper wire between terminals VX1 and SE1.

3. Perform the simulated deployment calibration as follows:

a. For the first point, set variable SimulatedFlowSignal = 300. Set variable
KnownFlow = 30.0.

b. Start the calibration by setting variable CalMode = 1.

c. When CalMode increments to 3, for the second point, set variable
SimulatedFlowSignal = 550. Set variable KnownFlow = 10.

d. Resume the deployment calibration by setting variable CalMode = 4

4. When variable CalMode increments to 6, the deployment calibration is
complete. Calibrated multiplier is -0.08; calibrated offset is 53.9.

5. To continue this example, suppose the simulated sensor multiplier and offset
drift. Simulate a seven-day service calibration to correct the drift as follows:

a. Set variable SimulatedFlowSignal = 285. Set variable KnownFlow =
30.0.

b. Start the seven-day service calibration by setting variable CalMode = 1.

c. When CalMode increments to 3, set variable SimulatedFlowSignal = 522.
Set variable KnownFlow = 10.

d. Resume the calibration by setting variable CalMode = 4

6. When variable CalMode increments to 6, the calibration is complete. The
corrected multiplier is -0.08; offset is 53.9.

CRBasic Example 41. FieldCal() Two-Point Slope and Offset
'This program example demonstrates the use of FieldCal() in calculating and applying a
'multiplier and offset calibration. A multiplier and offset calibration compares signal
'magnitudes of a sensor to known standards. The calculated multiplier and offset scale the
'reported magnitude of the sensor to a value consistent with the linear relationship that
'intersects known points sequentially entered in to the FieldCal() KnownVar parameter.
'Subsequent measurements are scaled by the new multiplier and offset.

212

Section 7. Installation

'This program demonstrates the multiplier and offset calibration with the following procedure:
' -- Simulate a signal from a flow sensor.
' -- Measure the 'sensor' signal.
' -- Calculate and apply a multiplier and offset.

'You can set up the simulation by loading this program into the CR800 and interconnecting
'the following terminals with a jumper wire to simulate a flow sensor signal as follows:
' Vx1 --- SE1

'For the simulation, the value of the calibration standard and the initial 'sensor' signal
'are set automatically. Start the multiplier-and-offset routine by setting variable
'CalMode = 1. The value in CalMode will increment automatically. When CalMode = 3, set
'variables SimulatedFlowSignal = 550 and KnownFlow = 10, then set CalMode = 4. CalMode
'will again increment automatically. When CalMode = 6 (occurs automatically after 10
'measurements), the routine is complete. Note the new values in variables FlowMultiplier and
'FlowOffest. Now enter a new value in the simulated sensor signal as follows and note
'how the new multiplier and offset scale the measurement:
' SimulatedFlowSignal = 1000

'NOTE: This program places a .cal file on the CPU: drive of the CR800. The .cal file must
'be erased to reset the demonstration.

'DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MAGNITUDE
Public SimulatedFlowSignal = 300 'Excitation mV, second setting is 550

'DECLARE CALIBRATION STANDARD VARIABLE AND SET MAGNITUDE
Public KnownFlow = 30 'Known flow, second setting is 10

'DECLARE MEASUREMENT RESULT VARIABLE.
Public Flow

'DECLARE MULTIPLIER AND OFFSET RESULT VARIABLES AND SET INITIAL MAGNITUDES
Public FlowMultiplier = 1
Public FlowOffset = 0

'DECLARE VARIABLE FOR FieldCal() CONTROL
Public CalMode

'DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable(CalHist,NewFieldCal,200)
 SampleFieldCal
EndTable

BeginProg
 'LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
 'Effective after the zero calibration procedure (when variable CalMode = 6)
 LoadFieldCal(true)

 Scan(100,mSec,0,0)
 'SIMULATE SIGNAL THEN MAKE THE MEASUREMENT
 'Multiplier calibration is applied when variable CalMode = 6
 ExciteV(Vx1,SimulatedFlowSignal,0)
 VoltSE(Flow,1,mV2500,1,1,0,250,FlowMultiplier,FlowOffset)

213

Section 7. Installation

 'PERFORM A MULTIPLIER CALIBRATION.
 'Start by setting variable CalMode = 1. Finished when variable CalMode = 6.
 'FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)
 FieldCal(2,Flow,1,FlowMultiplier,FlowOffset,CalMode,KnownFlow,1,30)

 'If there was a calibration, store it into a data table
 CallTable(CalHist)

 NextScan
EndProg

7.9.11.5.4 FieldCal() Slope (Opt 3) Example
Most CRBasic measurement instructions have a multiplier and offset parameter.
FieldCal() Option 3 adjusts the multiplier argument such that the output of the
sensor being calibrated is set to a value consistent with the linear relationship that
intersects two known points sequentially entered in the FieldCal() KnownVar
parameter. Subsequent measurements are scaled with the same multiplier.
FieldCal() Option 3 does not affect offset.

Some measurement applications do not require determination of offset.
Frequency analysis, for example, may only require relative data to characterize
change.

Example Case: A soil-water sensor is to be used to detect a pulse of water moving
through soil. A pulse of soil water can be detected with an offset, but sensitivity
to the pulse is important, so an accurate multiplier is essential. To adjust the
sensitivity of the sensor, two soil samples, with volumetric water contents of 10%
and 35%, will provide two known points.

Table 32. Calibration Report for Water Content Sensor

CRBasic Variable At Deployment

SimulatedWaterContentSignal 175 mV

KnownWC 10 %

SimulatedWaterContentSignal 700 mV

KnownWC 35 %

WCMultiplier 0.0476 %/mV

The following procedure sets the sensitivity of a simulated soil water-content
sensor.

1. Send CRBasic example FieldCal() Multiplier (p. 215) to the CR800.

2. To simulate the soil-water sensor signal, place a jumper wire between terminals
VX1 and SE1.

3. Simulate deployment-calibration conditions in two stages as follows:

a. Set variable SimulatedWaterContentSignal to 175. Set variable
KnownWC to 10.0.

b. Start the calibration by setting variable CalMode = 1.

214

Section 7. Installation

c. When CalMode increments to 3, set variable
SimulatedWaterContentSignal to 700. Set variable KnownWC to 35.

d. Resume the calibration by setting variable CalMode = 4

4. When variable CalMode increments to 6, the calibration is complete.
Calibrated multiplier is 0.0476.

CRBasic Example 42. FieldCal() Multiplier
'This program example demonstrates the use of FieldCal() in calculating and applying a
'multiplier only calibration. A multiplier calibration compares the signal magnitude of a
'sensor to known standards. The calculated multiplier scales the reported magnitude of the
'sensor to a value consistent with the linear relationship that intersects known points
'sequentially entered in to the FieldCal() KnownVar parameter. Subsequent measurements are
'scaled by the multiplier.

'This program demonstrates the multiplier calibration with the following procedure:
' -- Simulate a signal from a water content sensor.
' -- Measure the 'sensor' signal.
' -- Calculate and apply an offset.
'
'You can set up the simulation by loading this program into the CR800 and interconnecting
'the following terminals with a jumper wire to simulate a water content sensor signal as
'follows:
' Vx1 --- SE1

'For the simulation, the value of the calibration standard and the initial 'sensor' signal
'are set automatically. Start the multiplier routine by setting variable CalMode = 1. When
'CalMode = 6 (occurs automatically after 10 measurements), the routine is complete. Note the
'new value in variable WCMultiplier. Now enter a new value in the simulated sensor signal
'as follows and note how the new multiplier scales the measurement:
' SimulatedWaterContentSignal = 350

'NOTE: This program places a .cal file on the CPU: drive of the CR800. The .cal file must
'be erased to reset the demonstration.

'DECLARE SIMULATED SIGNAL VARIABLE AND SET INITIAL MAGNITUDE
Public SimulatedWaterContentSignal = 175 'mV, second setting is 700 mV

'DECLARE CALIBRATION STANDARD VARIABLE AND SET MAGNITUDE
Public KnownWC = 10 '% by Volume, second setting is 35%

'DECLARE MEASUREMENT RESULT VARIABLE.
Public WC

'DECLARE MULTIPLIER RESULT VARIABLE AND SET INITIAL MAGNITUDE
Public WCMultiplier = 1

'DECLARE VARIABLE FOR FieldCal() CONTROL
Public CalMode

'DECLARE DATA TABLE FOR RETRIEVABLE CALIBRATION RESULTS
DataTable(CalHist,NewFieldCal,200)
 SampleFieldCal
EndTable

215

Section 7. Installation

BeginProg
 'LOAD CALIBRATION CONSTANTS FROM FILE CPU:CALHIST.CAL
 'Effective after the zero calibration procedure (when variable CalMode = 6)
 LoadFieldCal(true)

 Scan(100,mSec,0,0)
 'SIMULATE SIGNAL THEN MAKE THE MEASUREMENT
 'Multiplier calibration is applied when variable CalMode = 6
 ExciteV(Vx1,SimulatedWaterContentSignal,0)
 VoltSE(WC,1,mV2500,1,1,0,250,WCMultiplier,0)

 'PERFORM A MULTIPLIER CALIBRATION.
 'Start by setting variable CalMode = 1. Finished when variable CalMode = 6.
 'FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar, Mode, KnownVar, Index, Avg)
 FieldCal(3,WC,1,WCMultiplier,0,CalMode,KnownWC,1,30)

 'If there was a calibration, store it into data table CalHist
 CallTable(CalHist)

 NextScan
EndProg

7.9.11.5.5 FieldCal() Zero Basis (Opt 4) Example -- 8 10 30
Zero-basis calibration (FieldCal() instruction Option 4) is designed for use in

static vibrating-wire measurements. For more information, refer to these
manuals available at www.campbellsci.com:

AVW200-Series Two-Channel Vspect Vibrating-Wire Measurement Device
CR6 Measurement and Control Datalogger Operators Manual

7.9.11.6 Field Calibration Strain Examples
Related Topics:
 • Strain Measurements — Overview (p. 68)
 • Strain Measurements — Details (p. 324)
 • FieldCalStrain() Examples (p. 216)

Strain-gage systems consist of one or more strain gages, a resistive bridge in
which the gage resides, and a measurement device such as the CR800 datalogger.
The FieldCalStrain() instruction facilitates shunt calibration of strain-gage
systems and is designed exclusively for strain applications wherein microstrain is
the unit of measure. The FieldCal() instruction (FieldCal() Examples (p. 207)) is
typically used in non-microstrain applications.

Shunt calibration of strain-gage systems is common practice. However, the
technique provides many opportunities for misapplication and misinterpretation.
This section is not intended to be a primer on shunt-calibration theory, but only to
introduce use of the technique with the CR800 datalogger. Campbell Scientific
strongly urges users to study shunt-calibration theory from other sources. A
thorough treatment of strain gages and shunt-calibration theory is available from
Vishay using search terms such as 'micro-measurements', 'stress analysis', 'strain
gages', 'calculator list', at:

http://www.vishaypg.com

216

Section 7. Installation

Campbell Scientific application engineers also have resources that may assist you
with strain-gage applications.

7.9.11.6.1 Field Calibration Strain Examples
1. Shunt calibration does not calibrate the strain gage itself.

2. Shunt calibration does compensate for long leads and non-linearity in the
resistive bridge. Long leads reduce sensitivity because of voltage drop.
FieldCalStrain() uses the known value of the shunt resistor to adjust the gain
(multiplier / span) to compensate. The gain adjustment (S) is incorporated by
FieldCalStrain() with the manufacturer's gage factor (GF), becoming the
adjusted gage factor (GFadj), which is then used as the gage factor in
StrainCalc(). GF is stored in the CAL file and continues to be used in
subsequent calibrations. Non-linearity of the bridge is compensated for by
selecting a shunt resistor with a value that best simulates a measurement near
the range of measurements to be made. Strain-gage manufacturers typically
specify and supply a range of resistors available for shunt calibration.

3. Shunt calibration verifies the function of the CR800.

4. The zero function of FieldCalStrain() allows a particular strain to be set as an
arbitrary zero, if desired. Zeroing is normally done after the shunt calibration.

Zero and shunt options can be combined ina single CRBasic program.

CRBasic example FieldCalStrain() Calibration (p. 218) is provided to demonstrate
use of FieldCalStrain() features. If a strain gage configured as shown in figure
Quarter-Bridge Strain-Gage with RC Resistor Shunt (p. 218) is not available, strain
signals can be simulated by building the simple circuit, substituting a 1000 Ω
potentiometer for the strain gage. To reset calibration tests, use the support
software File Control (p. 488) menu to delete .cal files, and then send the
demonstration program again to the CR800.

Example Case: A 1000 Ω strain gage is placed into a resistive bridge at position
R1. The resulting circuit is a quarter-bridge strain gage with alternate shunt-
resistor (Rc) positions shown. Gage specifications indicate that the gage factor is
2.0 and that with a 249 kΩ shunt, measurement should be about 2000 microstrain.

Send CRBasic example FieldCalStrain() Calibration (p. 218) as a program to a
CR800 datalogger.

7.9.11.6.2 Field Calibration Strain Examples
CRBasic example FieldCalStrain() Calibration (p. 218) is provided to demonstrate
use of FieldCalStrain() features. If a strain gage configured as shown in figure
Quarter-Bridge Strain-Gage with RC Resistor Shunt (p. 218) is not available, strain
signals can be simulated by building the simple circuit, substituting a 1000 Ω
potentiometer for the strain gage. To reset calibration tests, use the support
software File Control (p. 488) menu to delete .cal files, and then send the
demonstration program again to the CR800.

Case: A 1000 Ω strain gage is placed into a resistive bridge at position R1. The
resulting circuit is a quarter-bridge strain gage with alternate shunt-resistor (Rc)
positions shown. Gage specifications indicate that the gage factor is 2.0 and that
with a 249 kΩ shunt, measurement should be about 2000 microstrain.

217

Section 7. Installation

Send CRBasic example FieldCalStrain() Calibration (p. 218) as a program to a
CR800 datalogger.

Figure 58. Quarter-Bridge Strain-Gage with RC Resistor Shunt

CRBasic Example 43. FieldCalStrain() Calibration
'This program example demonstrates the use of the FieldCalStrain() instruction by measuring
'quarter-bridge strain-gage measurements.

Public Raw_mVperV
Public MicroStrain

'Variables that are arguments in the Zero Function
Public Zero_Mode
Public Zero_mVperV

'Variables that are arguments in the Shunt Function
Public Shunt_Mode
Public KnownRes
Public GF_Adj
Public GF_Raw

'----------------------------- Tables ----------------------------
DataTable(CalHist,NewFieldCal,50)
 SampleFieldCal
EndTable

'//////////////////////////// PROGRAM ////////////////////////////
BeginProg

 'Set Gage Factors
 GF_Raw = 2.1
 GF_Adj = GF_Raw 'The adj Gage factors are used in the calculation of uStrain

 'If a calibration has been done, the following will load the zero or
 'Adjusted GF from the Calibration file
 LoadFieldCal(True)

218

Section 7. Installation

 Scan(100,mSec,100,0)
 'Measure Bridge Resistance
 BrFull(Raw_mVperV,1,mV25,1,Vx1,1,2500,True ,True ,0,250,1.0,0)

 'Calculate Strain for 1/4 Bridge (1 Active Element)
 StrainCalc(microStrain,1,Raw_mVperV,Zero_mVperV,1,GF_Adj,0)

 'Steps (1) & (3): Zero Calibration
 'Balance bridge and set Zero_Mode = 1 in numeric monitor. Repeat after
 'shunt calibration.
 FieldCalStrain(10,Raw_mVperV,1,0,Zero_mVperV,Zero_Mode,0,1,10,0 ,microStrain)

 'Step (2) Shunt Calibration
 'After zero calibration, and with bridge balanced (zeroed), set
 'KnownRes = to gage resistance (resistance of gage at rest), then set
 'Shunt_Mode = 1. When Shunt_Mode increments to 3, position shunt resistor
 'and set KnownRes = shunt resistance, then set Shunt_Mode = 4.
 FieldCalStrain(13,MicroStrain,1,GF_Adj,0,Shunt_Mode,KnownRes,1,10,GF_Raw,0)

 CallTable CalHist
 NextScan
EndProg

7.9.11.6.3 FieldCalStrain() Quarter-Bridge Shunt Example
With CRBasic example FieldCalStrain() Calibration (p. 218) sent to the CR800, and
the strain gage stable, use the CR1000KD Keyboard Display or software numeric
monitor to change the value in variable KnownRes to the nominal resistance of
the gage, 1000 Ω, as shown in figure Strain-Gage Shunt Calibration Start (p. 219).
Set Shunt_Mode to 1 to start the two-point shunt calibration. When Shunt_Mode
increments to 3, the first step is complete.

To complete the calibration, shunt R1 with the 249 kΩ resistor. Set variable
KnownRes to 249000. As shown in figure Strain-Gage Shunt Calibration Finish
(p. 220), set Shunt_Mode to 4. When Shunt_Mode = 6, shunt calibration is
complete.

Figure 59. Strain-Gage Shunt Calibration Start

219

Section 7. Installation

Figure 60. Strain-Gage Shunt Calibration Finish

7.9.11.6.4 FieldCalStrain() Quarter-Bridge Zero
Continuing from FieldCalStrain() Quarter-Bridge Shunt Example (p. 219), keep the
249 kΩ resistor in place to simulate a strain. Using the CR1000KD Keyboard
Display or software numeric monitor, change the value in variable Zero_Mode to
1 to start the zero calibration as shown in figure Zero Procedure Start (p. 220).
When Zero_Mode increments to 6, zero calibration is complete as shown in
figure Zero Procedure Finish (p. 220).

Figure 61. Zero Procedure Start

Figure 62. Zero Procedure Finish

220

Section 7. Installation

7.9.12 Measurement: Excite, Delay, Measure
This example demonstrates how to make voltage measurements that require
excitation of controllable length prior to measurement. Overcoming the delay
caused by a very long cable length on a sensor is a common application for this
technique.

CRBasic Example 44. Measurement with Excitation and Delay

'This program example demonstrates how to perform an excite/delay/measure operation.
'In this example, the system requires 1 s of excitation to stabilize before the sensors
'are measured. A single-ended measurement is made, and a separate differential measurement
'is made. To see this program in action, connect the following terminal pairs to simulate
'sensor connections:

' Vx1 ------ SE1
' Vx2 ------ DIFF 2 H
' DIFF 2 L ------ Ground Symbol
'
'With these connections made, variables VoltageSE and VoltageDiff will equal 2500 mV.

'Declare variables.
Public VoltageSE As Float
Public VoltageDIFF As Float

'Declare data table
DataTable (Voltage,True,-1)
 Sample (1,VoltageSE,Float)
 Sample (1,VoltageDIFF,Float)
EndTable

BeginProg

 Scan(5,sec,0,0)

 'Excite - delay 1 second - single-ended measurement:
 ExciteV (Vx1,2500,0) '<<<<Note: Delay = 0
 Delay (0,1000,mSec)
 VoltSe (VoltageSE,1,mV5000,1,1,0,250,1.0,0)

 'Excite - delay 1 second - differential measurement:
 ExciteV (Vx2,2500,0) '<<<<Note: Delay = 0
 Delay (0,1000,mSec)
 VoltDiff (VoltageDIFF,1,mV5000,2,True,0,250,1.0,0)

 'Write data to final-data memory
 CallTable Voltage

 NextScan

EndProg

7.9.13 Measurement: Faster Analog Rates
Certain data acquisition applications require the CR800 to make analog
measurements at rates faster than once per second (> 1 Hz (p. 491)). The CR800
can make continuous measurements at rates up to 100 Hz, and bursts (p. 483) of

221

Section 7. Installation

measurements at rates up to 2000 Hz. Following is a discussion of fast
measurement programming techniques in association with VoltSE(), single-ended
analog voltage measurement instruction. Techniques discussed can also be used
with the following instructions:

VoltSE()
VoltDiff()
TCDiff()
TCSE()
BrFull()
BrFull6W()
BrHalf()
BrHalf3W()
BrHalf4W()

The table Summary of Analog Voltage Measurement Rates (p. 222), summarizes the
programming techniques used to make three classes of fast measurement: 100 Hz
maximum-rate, 600 Hz maximum-rate, and 2000 Hz maximum-rate. 100 Hz
measurements can have a 100% duty cycle (p. 487). That is, measurements are not
normally suspended to allow processing to catch up. Suspended measurements
equate to lost measurement opportunities and may not be desirable. 600 Hz and
2000 Hz measurements (measurements exceeding 100 Hz) have duty cycles less
than 100%.

Table 33. Summary of Analog Voltage Measurement Rates

Maximum
Rate 100 Hz 600 Hz 2000 Hz

Number of
Simultaneous Inputs Multiple inputs Fewer inputs One input

Maximum
Duty Cycle 100% < 100% < 100%

Maximum
Measaurements
Per Burst

N/A Variable 65535

Description

Near simultaneous
measurements on multiple
channels
Up to 8 sequential differential
or 16 single-ended channels.
Buffers are continuously
"recycled", so no skipped scans.

Near simultaneous
measurements on fewer
channels
Buffers maybe consumed and
only freed after a skipped scan.
Allocating more buffers usually
means more time will elapse
between skipped scans.

A single CRBasic measurement
instruction bursts on one channel.
Multiple channels are measured
using multiple instructions, but
the burst on one channel
completes before the burst on the
next channel begins.

Analog Terminal
Sequence

Differential: 1, 2, 3, 4, 5, 6, 7, 8,
then repeat.
Single-ended: 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16,
then repeat.

Differential and single-ended:
1, 2, 1, 2, and so forth.

1, 1, 1… to completion, then
2, 2, 2… to completion, then
3, 3, 3…, and so forth.

Excitation
for Bridge
Measurements

Provided in instruction. Provided in instruction.
Provided in instruction.
Measurements per excitation
must equal Repetitions

222

Section 7. Installation

CRBasic
Programming
Highlights

Suggest using Scan() /
NextScan with ten (10) ms scan
interval. Program for the use of
up to 10 buffers.
See CRBasic example
Measuring VoltSE() at 100 Hz

Use Scan() / NextScan with a
20 ms or greater scan interval.
Program for the use of up to
100 buffers. Also use
SubScan() / NextSubScan with
1600 µs sub-scan and 12
counts.
See CRBasic example
Measuring VoltSE() at 200 Hz

Use Scan() / NextScan with one
(1) second scan interval. Analog
input Channel argument is
preceded by a dash (-).
See CRBasic example Measuring
VoltSE() at 2000 Hz

7.9.13.1 Measurements from 1 to 100 Hz

Assuming a minimal CRBasic program, measurement rates between 1 and 100 Hz
are determined by the Interval and Units parameters in the Scan() / NextScan
instruction pair. The following program executes VoltSE() at 1 Hz with a 100%
duty cycle.

CRBasic Example 45. Measuring VoltSE() at 1 Hz
PipeLineMode'<<<<Pipeline mode ensures precise timing of measurements.

Public FastSE

DataTable(FastSETable,1,-1)
 Sample(1,FastSE(),FP2)
EndTable

BeginProg
 Scan(1,Sec,0,0)'<<<<Measurement rate is determined by Interval and Units
 VoltSe(FastSE(),1,mV2_5,1,False,100, 250,1.0,0)
 CallTable FastSETable
 NextScan
EndProg

By modifying the Interval, Units, and Buffers arguments, VoltSE() can be executed at 100 Hz at
100% duty cycle. The following program measures 16 analog-input terminals at 100 Hz.

CRBasic Example 46. Measuring VoltSE() at 100 Hz

PipeLineMode'<<<<Pipeline mode ensures precise timing of measurements.

Public FastSE(16)

DataTable(FastSETable,1,-1)
 Sample(16,FastSE(),FP2)
EndTable

BeginProg
 Scan(10,mSec,10,0)'<<<<Measurement rate is determined by Interval, Units, and Buffers
 VoltSe(FastSE(),1,mV2_5,1,False,100, 250,1.0,0)
 CallTable FastSETable
 NextScan
EndProg

223

Section 7. Installation

7.9.13.2 Measurement Rate: 101 to 600 Hz
To measure at rates between 100 and 600 Hz, the SubScan() / NextSubScan
instruction pair is added. Measurements over 100 Hz do not have 100% duty
cycle, but are accomplished through measurement bursts. Each burst lasts for
some fraction of the scan interval. During the remainder of the scan interval, the
CR800 processor catches up on overhead tasks and processes data stored in the
buffers. For example, the CR800 can be programmed to measure VoltSE() on
eight sequential inputs at 200 Hz with a 95% duty cycle as demonstrated in the
following example:

CRBasic Example 47. Measuring VoltSE() at 200 Hz
PipeLineMode'<<<<Pipeline mode ensures precise timing of measurements.

Public BurstSE(8)

DataTable(BurstSETable,1,-1)
 Sample(8,BurstSE(),FP2)
EndTable

BeginProg
 Scan(1,Sec,10,0)'<<<<Buffers added
 SubScan(5,mSec,190)'<<<<Interval, Units, and Count determine speed and number of measurements
 VoltSe(BurstSE(),8,mV2_5,1,False,100,250,1.0,0)
 CallTable BurstSETable
 NextSubScan
 NextScan
EndProg

Many variations of this basic code can be programmed to achieve other burst rates and duty
cycles.

The SubScan() / NextSubScan instruction pair introduce additional complexities.
The SubScan() / NextSubScan Details (p. 224), introduces some of these. Caution
dictates that a specific configuration be thoroughly tested before deployment.
Generally, faster rates require measurement of fewer inputs. When testing a
program, monitoring the SkippedScan (p. 603), BuffDepth (p. 586), and
MaxBuffDepth (p. 595) registers in the CR800 Status table may give insight into
the use of buffer resources. Bear in mind that when the number of Scan() /
NextScan buffers is exceeded, a skipped scan, and so a missed-data event, will
occur.

7.9.13.2.1 Measurements from 101 to 600 Hz 2
• The number of Counts (loops) of a sub-scan is limited to 65535
• Sub-scans exist only within the Scan() / NextScan structure with the Scan()

interval set large enough to allow a sub-scan to run to completion of its
counts.

• Sub-scan interval (i) multiplied by the number of sub-scans (n) equals a
measure time fraction (MT1), a part of "measure time", which measure time is
represented in the MeasureTime register in table Status Table Fields and
Descriptions (p. 577). The EndScan instruction occupies an additional 100 µs
of measure time, so the interval of the main scan has to be ≥ 100 µs plus
measure time outside the SubScan() / EndSubScan construct, plus the time
sub-scans consume.

224

Section 7. Installation

• Because the task sequencer controls sub-scans, it is not finished until all sub-
scans and any following tasks are complete. Therefore, processing does not
start until sub-scans are complete and the task sequencer has set the delay for
the start of the next main scan. So, one Scan() / NextScan buffer holds all
the raw measurements inside (and outside) the sub-scan; that is, all the
measurements made in a single main scan. For example, one execution of the
following code sequence stores 30000 measurements in one buffer:

Scan(40,Sec,3,0) 'Scan(interval, units, buffers, count)
 SubScan(2,mSec,10000)
 VoltSe(Measurement(),3,mV5000,1,False,150,250,1.0,0)
 CallTable All4
 NextSubScan
NextScan

Note Measure time in the previous code is 300 µs + 19 ms, so a Scan() interval
less than 20 ms will flag a compile error.

• Sub scans have the advantage of going at a rate faster than 100 Hz. But
measurements that can run at an integral 100 Hz have an advantage as
follows: since all sub-scans have to complete before the task sequencer can
set the delay for the main scan, processing is delayed until this point (20 ms
in the above example). So more memory is required for the raw buffer space
for the sub-scan mode to run at the same speed as the non-sub-scan mode,
and there will be more delay before all the processing is complete for the
burst. The pipeline (the raw buffer) has to fill further before processing can
start.

• One more way to view sub-scans is that they are a convenient (and only) way
to put a loop around a set of measurements. SubScan() / NextSubScan
specifies a timed loop for so many times around a set of measurements that
can be driven by the task sequencer.

7.9.13.3 Measurement Rate: 601 to 2000 Hz

To measure at rates greater than 600 Hz, VoltSE() is switched into burst mode by
placing a dash (-) before argument in SEChan parameter argument and placing
alternate arguments in other parameters. Alternate arguments are described in the
table Parameters for Analog Burst Mode (p. 226). In burst mode, VoltSE() dwells
on a single channel and measures it at rates up to 2000 Hz, as demonstrated in the
CRBasic example Measuring VoltSE() at 2000 Hz. The example program has an
86% duty cycle. That is, it makes measurements over only the leading 86% of the
scan. Note that burst mode places all measurements for a given burst in a single
variable array and stores the array in a single (but very long!) record in the data
table. The exact sampling interval is calculated as,

Tsample = 1.085069 * INT((SettleUSEC / 1.085069) + 0.5

where SettleUSEC is the sample interval (µs) entered in the SettlingTime
parameter of the analog input instruction.

225

Section 7. Installation

CRBasic Example 48. Measuring VoltSE() at 2000 Hz

PipeLineMode'<<<<Pipeline mode ensures precise timing of measurements.

Public BurstSE(1735)

DataTable(BurstSETable,1,-1)
 Sample(1735,BurstSE(),FP2)
EndTable

BeginProg
 Scan(1,Sec,10,0)
 'Measurement speed and count are set within VoltSE()
 VoltSe(BurstSE(),1735,mV2_5,-1,False,500,0,1.0,0)
 CallTable BurstSETable
 NextScan
EndProg

Many variations of the burst program are possible. Multiple inputs can be measured, but one
burst is completed before the next begins. Caution dictates that a specific configuration be
thoroughly tested before deployment.

200

Table 34. Parameters for Analog Burst Mode (601 to 2000 Hz)
CRBasic
Analog
Voltage

Input
Parameters

Description when in Burst Mode

Destination

A variable array dimensioned to store all measurements from one input. For
example, the command,
Dim FastTemp(500)

dimensions array FastTemp() to store 500 measurements (one second of data
at 500 Hz, one-half second of data at 1000 Hz, etc.)
The dimension can be any integer from 1 to 65535.

Repetitions
The number of measurements to make on one input. This number usually
equals the number of elements dimensioned in the Destination array.
Valid arguments range from 1 to 65535.

Voltage Range

The analog input voltage range to be used during measurements. No change
from standard measurement mode. Any valid voltage range can be used.
However, ranges appended with 'C' cause measurements to be slower than
other ranges.

Single-Ended
Channel

The single-ended analog input terminal number preceded by a dash (-). Valid
arguments range from -1 to -6.

Differential
Channel

The differential analog input terminal number preceded by a dash (-). Valid
arguments range from -1 to -3.

Measure Offset No change from standard measurement mode. False allows for faster
measurements.

Measurements
per Excitation

Must equal the value entered in Repetitions

Reverse Ex No change from standard measurement mode. For fastest rate, set to False.

Rev Diff No change from standard measurement mode. For fastest rate, set to False.

226

Section 7. Installation

Table 34. Parameters for Analog Burst Mode (601 to 2000 Hz)
CRBasic
Analog
Voltage

Input
Parameters

Description when in Burst Mode

Settling Time
Sample interval in µs. This argument determines the measurement rate.
 500 µs interval = 2000 Hz rate
 750 µs interval = 1333.33 Hz rate

Integ Ignored if set to an integer. _50Hz and _60Hz are valid for AC rejection but
are seldom used in burst applications.

Multiplier
No change from standard measurement mode. Enter the proper multiplier.
This is the slope of the linear equation that equates output voltage to the
measured phenomena. Any number greater or less than 0 is valid.

Offset
No change from standard measurement mode. Enter the proper offset. This is
the Y intercept of the linear equation that equates output voltage to the
measured phenomena.

7.9.14 Measurement: PRT
PRTs (platinum resistance thermometers) are high-accuracy resistive devices used
in measuring temperature.

7.9.14.1 Measuring PT100s (100 Ω PRTs)
PT100s (100 Ω PRTs) are readily available. The CR800 can measure PT100s in
several configurations, each with its own advantages.

7.9.14.1.1 Self-Heating and Resolution
PRT measurements present a dichotomy. Excitation voltage should be maximized
to maximize the measurement resolution. Conversely, excitation voltage should
be minimized to minimize self-heating of the PRT.

If the voltage drop across the PRT is ≤ 25 mV, self-heating should be less than
0.001°C in still air. To maximize measurement resolution, optimize the excitation
voltage (Vx) such that the voltage drop spans, but does not exceed, the voltage
input range.

7.9.14.1.2 PRT Calculation Standards
Two CRBasic instructions are available to facilitate PRT measurements.

PRT() — an obsolete instruction. It calculates temperature from RTD
resistance using DIN standard 43760. It is superseded in probably all cases
by PRTCalc().

PRTCalc() — calculates temperature from RTD resistance according to one
of several supported standards. PRTCalc() supersedes PRT() in probably all
cases.

For industrial grade RTDs, the relationship between temperature and resistance is
characterized by the Callendar-Van Dusen (CVD) equation. Coefficients for
different sensor types are given in published standards or by the manufacturers for

227

Section 7. Installation

non-standard types. Measured temperatures are compared against the ITS-90
scale, a temperature instrumentation-calibration standard.

PRTCalc() follows the principles and equations given in the US ASTM E1137-04
standard for conversion of resistance to temperature. For temperature range 0 to
650 °C, a direct solution to the CVD equation results in errors < ±0.0005 °C
(caused by rounding errors in CR800 math). For the range of –200 to 0 °C, a
fourth-order polynomial is used to convert resistance to temperature resulting in
errors of < ±0.003 °C.

These errors are only the errors in approximating the relationships between
temperature and resistance given in the relevant standards. The CVD equations
and the tables published from them are only an approximation to the true linearity
of an RTD, but are deemed adequate for industrial use. Errors in that
approximation can be several hundredths of a degree Celsius at different points in
the temperature range and vary from sensor to sensor. In addition, individual
sensors have errors relative to the standard, which can be up to ±0.3 °C at 0 °C
with increasing errors away from 0 °C, depending on the grade of sensor. Highest
accuracy is usually achieved by calibrating individual sensors over the range of
use and applying corrections to the RS/RO value input to the PRTCalc()
instruction (by using the calibrated value of RO) and the multiplier and offset
parameters.

Refer to CRBasic Editor Help for specific PRTCalc() parameter entries. The
following information is presented as detail beyond what is available in CRBasic
Editor Help.

The general form of the Callendar-Van Dusen (CVD) equation is shown in the
following equations.

When R/R0 < 1 (K = R/R0 – 1):
T = g * K^4 + h * K^3 + I * K^2 + j * K

When R/R0 >= 1:

T = (SQRT(d * (R/R0) + e) -a) / f

Depending on the code entered for parameter Type, which specifies the platinum-
resistance sensor type, coefficients are assigned values according to the following
tables.

Note Coefficients are rounded to the seventh significant digit to match the CR800
math resolution.

Alpha is defined as:

α = (R100 – R0) / (100 • R0)

α = (R100 / R0 – 1) / 100

where R100 and R0 are the resistances of the PRT at 100 °C and 0 °C, respectively.

228

Section 7. Installation

Table 35. PRTCalc() Type-Code-1 Sensor

IEC 60751:2008 (IEC 751), alpha = 0.00385. Now internationally adopted and written into
standards ASTM E1137-04, JIS 1604:1997, EN 60751 and others. This type code is also used
with probes compliant with older standards DIN43760, BS1904, and others. (Reference: IEC
60751. ASTM E1137)

Constant Coefficient

a 3.9083000E-03

d -2.3100000E-06

e 1.7584810E-05

f -1.1550000E-06

g 1.7909000E+00

h -2.9236300E+00

i 9.1455000E+00

j 2.5581900E+02

Table 36. PRTCalc() Type-Code-2 Sensor

US Industrial Standard, alpha = 0.00392 (Reference: Logan Enterprises)

Constant Coefficient

a 3.9786300E-03

d -2.3452400E-06

e 1.8174740E-05

f -1.1726200E-06

g 1.7043690E+00

h -2.7795010E+00

i 8.8078440E+00

j 2.5129740E+02

Table 37. PRTCalc() Type-Code-3 Sensor

US Industrial Standard, alpha = 0.00391 (Reference: OMIL R84 (2003))

Constant Coefficient

a 3.9690000E-03

d -2.3364000E-06

e 1.8089360E-05

f -1.1682000E-06

g 1.7010560E+00

h -2.6953500E+00

229

Section 7. Installation

Table 37. PRTCalc() Type-Code-3 Sensor

US Industrial Standard, alpha = 0.00391 (Reference: OMIL R84 (2003))

Constant Coefficient

i 8.8564290E+00

j 2.5190880E+02

Table 38. PRTCalc() Type-Code-4 Sensor

Old Japanese Standard, alpha = 0.003916 (Reference: JIS C 1604:1981, National Instruments)

Constant Coefficient

a 3.9739000E-03

d -2.3480000E-06

e 1.8139880E-05

f -1.1740000E-06

g 1.7297410E+00

h -2.8905090E+00

i 8.8326690E+00

j 2.5159480E+02

Table 39. PRTCalc() Type-Code-5 Sensor

Honeywell Industrial Sensors, alpha = 0.00375 (Reference: Honeywell)

Constant Coefficient

a 3.8100000E-03

d -2.4080000E-06

e 1.6924100E-05

f -1.2040000E-06

g 2.1790930E+00

h -5.4315860E+00

i 9.9196550E+00

j 2.6238290E+02

230

Section 7. Installation

Table 40. PRTCalc() Type-Code-6 Sensor

Standard ITS-90 SPRT, alpha = 0.003926 (Reference: Minco / Instrunet)

Constant Coefficient

a 3.9848000E-03

d -2.3480000E-06

e 1.8226630E-05

f -1.1740000E-06

g 1.6319630E+00

h -2.4709290E+00

i 8.8283240E+00

j 2.5091300E+02

7.9.14.2 PT100 in Four-Wire Half-Bridge
Example shows:

• How to measure a PRT in a four-wire half-bridge configuration
• How to compensate for long leads

Advantages:

• High accuracy with long leads

Example PRT specifications:

• Alpha = 0.00385 (PRT Type 1)

A four-wire half-bridge, measured with BrHalf4W(), is the best configuration for
accuracy in cases where the PRT is separated from bridge resistors by a lead
length having more than a few thousandths of an ohm resistance. In this example,
the measurement range is –10° to 40 °C. The length of the cable from the CR800
and the bridge resistors to the PRT is 500 feet.

Figure PT100 in Four-Wire Half-Bridge (p. 233) shows the circuit used to measure a
100 Ω PRT. The 10 kΩ resistor allows the use of a high excitation voltage and a
low input range. This ensures that noise in the excitation does not have an effect
on signal noise. Because the fixed resistor (Rf) and the PRT (RS) have
approximately the same resistance, the differential measurement of the voltage
drop across the PRT can be made on the same range as the differential
measurement of the voltage drop across Rf. The use of the same range eliminates
range translation errors that can arise from the 0.01% tolerance of the range
translation resistors internal to the CR800.

7.9.14.2.1 Calculating the Excitation Voltage
The voltage drop across the PRT is equal to VX multiplied by the ratio of RS to the
total resistance, and is greatest when RS is greatest (RS = 115.54 Ω at 40 °C). To
find the maximum excitation voltage that can be used on the ±25 mV input range,
assume V2 is equal to 25 mV and use Ohm's Law to solve for the resulting
current, I.

231

Section 7. Installation

I = 25 mV/RS = 25 mV/115. 54 ohms = 0.216 mA

Next solve for VX:

VX = I*(R1 + RS + Rf) = 2.21 V

If the actual resistances were the nominal values, the CR800 would not over range
with VX = 2.2 V. However, to allow for the tolerance in actual resistors, set VX
equal to 2.1 V (e.g., if the 10 kΩ resistor is 5% low, i.e., RS/(R1+RS+Rf)=115.54 /
9715.54, and VX must be 2.102 V to keep VS less than 25 mV).

7.9.14.2.2 Calculating the BrHalf4W() Multiplier
The result of BrHalf4W() is equivalent to RS/Rf.

X = RS/Rf

PRTCalc() computes the temperature (°C) for a DIN 43760 standard PRT from
the ratio of the PRT resistance to its resistance at 0 °C (RS/R0). Thus, a multiplier
of Rf/R0 is used in BrHalf4W() to obtain the desired intermediate, RS/R0 (=RS/Rf
• Rf/R0). If RS and R0 were each exactly 100 Ω, the multiplier would be 1.
However, neither resistance is likely to be exact. The correct multiplier is found
by connecting the PRT to the CR800 and entering BrHalf4W() with a multiplier
of 1. The PRT is then placed in an ice bath (0 °C), and the result of the bridge
measurement is read. The reading is RS/Rf, which is equal to R0/Rf since RS=R0
at 0 °C. The correct value of the multiplier, Rf/R0, is the reciprocal of this
reading. The initial reading assumed for this example was 0.9890. The correct
multiplier is: Rf/R0 = 1/0.9890 = 1.0111.

7.9.14.2.3 Choosing Rf
The fixed 100 Ω resistor must be thermally stable. Its precision is not important
because the exact resistance is incorporated, along with that of the PRT, into the
calibrated multiplier. The 10 ppm/°C temperature coefficient of the fixed resistor
will limit the error due to its change in resistance with temperature to less than
0.15 °C over the –10° to 40 °C temperature range. Because the measurement is
ratiometric (RS/Rf), the properties of the 10 kΩ resistor do not affect the result.

A terminal-input module (TIM) can be used to complete the circuit shown in
figure PT100 in Four-Wire Half-Bridge (p. 233). Refer to the appendix Signal
Conditioners (p. 623) for information concerning available TIM modules.

232

Section 7. Installation

Figure 63. PT100 in Four-Wire Half-Bridge

CRBasic Example 49. PT100 in Four-Wire Half-Bridge
'This program example demonstrates the measurement of a 100-ohm PRT using a four-wire half
'bridge. See FIGURE. PT100 in Four-Wire Half-Bridge (p. 233) for the wiring diagram

Public Rs_Ro
Public Deg_C

BeginProg
 Scan(1,Sec,0,0)

 'BrHalf4W(Dest,Reps,Range1,Range2,DiffChan1,ExChan,MPS,Ex_mV,RevEx,RevDiff,
 ' Settling, Integration,Mult,Offset)
 BrHalf4W(Rs_Ro,1,mV25,mV25,1,Vx1,1,2200,True,True,0,250,1.0111,0)

 'PRTCalc(Destination,Reps,Source,PRTType,Mult,Offset)
 PRTCalc(Deg_C,1,Rs_Ro,1,1.0,0) 'PRTType sets alpha

 NextScan
EndProg

7.9.14.3 PT100 in Three-Wire Half Bridge
Example shows:

• How to measure a PRT in a three-wire half-bridge configuration.

Advantages:

• Uses half as many terminals configured for analog input as four-wire half-
bridge.

Disadvantages:

• May not be as accurate as four-wire half-bridge.

Example PRT specifications:

• Alpha = 0.00385 (PRTType 1)

233

Section 7. Installation

The temperature measurement requirements in this example are the same as in
PT100 in Four-Wire Half-Bridge (p. 231). In this case, a three-wire half-bridge and
CRBasic instruction BRHalf3W() are used to measure the resistance of the PRT.
The diagram of the PRT circuit is shown in figure PT100 in Three-Wire Half-
Bridge (p. 235).

As in section PT100 in Four-Wire Half-Bridge (p. 231), the excitation voltage is
calculated to be the maximum possible, yet allows the measurement to be made
on the ±25 mV input range. The 10 kΩ resistor has a tolerance of ±1%; thus, the
lowest resistance to expect from it is 9.9 kΩ. Solve for VX (the maximum
excitation voltage) to keep the voltage drop across the PRT less than 25 mV:

0.025 V > (VX * 115.54)/(9900+115.54)

VX < 2.16 V

The excitation voltage used is 2.2 V.

The multiplier used in BRHalf3W() is determined in the same manner as in
PT100 in Four-Wire Half-Bridge (p. 231). In this example, the multiplier (Rf/R0) is
assumed to be 100.93.

The three-wire half-bridge compensates for lead wire resistance by assuming that
the resistance of wire A is the same as the resistance of wire B. The maximum
difference expected in wire resistance is 2%, but is more likely to be on the order
of 1%. The resistance of RS calculated with BRHalf3W() is actually RS plus the
difference in resistance of wires A and B. The average resistance of 22 AWG
wire is 16.5 ohms per 1000 feet, which would give each 500 foot lead wire a
nominal resistance of 8.3 ohms. Two percent of 8.3 ohms is 0.17 ohms.
Assuming that the greater resistance is in wire B, the resistance measured for the
PRT (R0 = 100 ohms) in the ice bath would be 100.17 ohms, and the resistance at
40°C would be 115.71. The measured ratio RS/R0 is 1.1551; the actual ratio is
115.54/100 = 1.1554. The temperature computed by PRTCalc() from the
measured ratio will be about 0.1°C lower than the actual temperature of the PRT.
This source of error does not exist in the example in PT100 in Four-Wire Half-
Bridge (p. 231) because a four-wire half-bridge is used to measure PRT resistance.

A terminal input module can be used to complete the circuit in figure PT100 in
Three-Wire Half-Bridge (p. 235). Refer to the appendix Signal Conditioners (p. 623)
for information concerning available TIM modules.

234

Section 7. Installation

Figure 64. PT100 in Three-Wire Half-Bridge

CRBasic Example 50. PT100 in Three-wire Half-bridge
'This program example demonstrates the measurement of a 100-ohm PRT using a three-wire half
'bridge. See FIGURE. PT100 in Three-Wire Half-Bridge (p. 235) for wiring diagram.

Public Rs_Ro
Public Deg_C

BeginProg
 Scan(1,Sec,0,0)

 'BrHalf3W(Dest,Reps,Range1,SEChan,ExChan,MPE,Ex_mV,True,0,250,100.93,0)
 BrHalf3W(Rs_Ro,1,mV25,1,Vx1,1,2200,True,0,250,100.93,0)

 'PRTCalc(Destination,Reps,Source,PRTType,Mult,Offset)
 PRTCalc(Deg_C,1,Rs_Ro,1,1.0,0)

 NextScan
EndProg

7.9.14.4 PT100 in Four-Wire Full-Bridge
Example shows:

• How to measure a PRT in a four-wire full-bridge

Advantages:

• Uses half as many terminals configured for analog input as four-wire half-
bridge.

Example PRT Specifications:

• α = 0.00392 (PRTType 2)

This example measures a 100 ohm PRT in a four-wire full-bridge, as shown in
figure PT100 in Four-Wire Full-Bridge (p. 237), using CRBasic instruction
BRFull(). In this example, the PRT is in a constant-temperature bath and the
measurement is to be used as the input for a control algorithm.

As described in table Resistive-Bridge Circuits with Voltage Excitation (p. 320), the
result of BRFull() is X,

X = 1000 VS/VX

235

Section 7. Installation

where,

VS = measured bridge-output voltage

VX = excitation voltage

or,

X = 1000 (RS/(RS+R1) – R3/(R2+R3)).

With reference to figure PT100 in Four-Wire Full-Bridge (p. 237), the resistance of
the PRT (RS) is calculated as:

RS = R1 • X' / (1-X')

where

X' = X / 1000 + R3/(R2+R3)

Thus, to obtain the value RS/R0, (R0 = RS @ 0 °C) for the temperature calculating
instruction PRTCalc(), the multiplier and offset used in BRFull() are 0.001 and
R3/(R2+R3), respectively. The multiplier (Rf) used in the bridge transform
algorithm (X = Rf (X/(X-1)) to obtain RS/R0 is R1/R0 or (5000/100 = 50).

The application requires control of the temperature bath at 50 °C with as little
variation as possible. High resolution is desired so the control algorithm will
respond to very small changes in temperature. The highest resolution is obtained
when the temperature range results in a signal (VS) range that fills the
measurement range selected in BRFull(). The full-bridge configuration allows
the bridge to be balanced (VS = 0 V) at or near the control temperature. Thus, the
output voltage can go both positive and negative as the bath temperature changes,
allowing the full use of the measurement range.

The resistance of the PRT is approximately 119.7 Ω at 50 °C. The 120 Ω fixed
resistor balances the bridge at approximately 51 °C. The output voltage is:

VS = VX • [RS/(RS+R1) – R3/(R2+R3)]

 = VX • [RS/(RS+5000) – 0.023438]

The temperature range to be covered is 50 °C ±10 °C. At 40 °C, RS is
approximately 115.8 Ω, or:

VS = –802.24E–6 VX.

Even with an excitation voltage (VX) equal to 2500 mV, VS can be measured on
the ±2_5 mV scale (40 °C / 115.8 Ω / –2.006 mV, 60 °C / 123.6 Ω / 1.714 mV).
There is a change of approximately 2 mV from the output at 40°C to the output at
51 °C, or 181 µV / °C. With a resolution of 0.33 µV on the ±2_5 mV range, this
means that the temperature resolution is 0.0009 °C.

The ±5 ppm per °C temperature coefficient of the fixed resistors was chosen
because the ±0.01% accuracy tolerance would hold over the desired temperature
range.

236

Section 7. Installation

Figure 65. PT100 in Four-Wire Full-Bridge

CRBasic Example 51. PT100 in Four-Wire Full-Bridge
'This program example demonstrates the measurement of a 100-ohm four-wire full bridge. See
'FIGURE. PT100 in Four-Wire Full-Bridge (p. 237) for wiring diagram.

Public BrFullOut
Public Rs_Ro
Public Deg_C

BeginProg
 Scan(1,Sec,0,0)

 'BrFull(Dst,Reps,Range,DfChan,Vx1,MPS,Ex,RevEx,RevDf,Settle,Integ,Mult,Offset)
 BrFull(BrFullOut,1,mV25,1,Vx1,1,2500,True,True,0,250,.001,.02344)

 'BrTrans = Rf*(X/(1-X))
 Rs_Ro = 50 * (BrFullOut/(1 - BrFullOut))

 'PRTCalc(Destination,Reps,Source,PRTType,Mult,Offset)
 PRTCalc(Deg_C,1,Rs_Ro,2,1.0,0)

 NextScan
EndProg

7.9.15 PLC Control — Details
Related Topics:
 • PLC Control — Overview (p. 74)
 • PLC Control — Details (p. 237)
 • PLC Control Modules — Overview (p. 349)
 • PLC Control Modules — Lists (p. 624)
 • PLC Control — Instructions (p. 536)
 • Switched Voltage Output — Specifications
 • Switched Voltage Output — Overview (p. 78)
 • Switched Voltage Output — Details (p. 101)

This section is slated for expansion. Below are a few tips.

• Short Cut programming wizard has provisions for simple on/off control.
• PID control can be done with the CR800. Ask a Campbell Scientific

application engineer for more information.

237

Section 7. Installation

• When controlling a PID algorithm, a delay between processing (algorithm
input) and the control (algorithm output) is not usually desirable. A delay
will not occur in either sequential mode (p. 501) or pipeline mode (p. 497),
assuming an appropriately fast scan interval is programmed, and the program
is not skipping scans. In sequential mode, if some task occurs that pushes
processing time outside the scan interval, skipped scans will occur and the
PID control may fail. In pipeline mode, with an appropriately sized scan
buffer, no skipped scans will occur. However, the PID control may fail as the
processing instructions work through the scan buffer.

• To avoid these potential problems, bracket the processing instructions in the
CRBasic program with ProcHiPri and EndProcHiPri. Processing
instructions between these instructions are given the same high priority as
measurement instructions and do not slip into the scan buffer if processing
time is increased. ProcHiPri and EndProcHiPri may not be selectable in
CRBasic Editor. You can type them in anyway, and the compiler will
recognize them.

7.9.16 Serial I/O: Capturing Serial Data
The CR800 communicates with smart sensors that deliver measurement data
through serial data protocols.

Read More See Telecommunications and Data Retrieval (p. 370) for background
on CR800 serial communications.

7.9.16.1 Introduction
Serial denotes transmission of bits (1s and 0s) sequentially, or "serially." A byte
is a packet of sequential bits. RS-232 and TTL standards use bytes containing
eight bits each. Consider an instrument that transmits the byte "11001010" to the
CR800. The instrument does this by translating "11001010" into a series of
higher and lower voltages, which it transmits to the CR800. The CR800 receives
and reconstructs these voltage levels as "11001010." Because an RS-232 or TTL
standard is adhered to by both the instrument and the CR800, the byte
successfully passes between them.

If the byte is displayed on a terminal as it was received, it will appear as an ASCII
/ ANSI character or control code. Table ASCII / ANSI Equivalents (p. 238) shows a
sample of ASCII / ANSI character and code equivalents.

Table 41. ASCII / ANSI Equivalents

Byte
Received

ASCII
Character
Displayed

Decimal
ASCII
Code

Hex
ASCII
Code

00110010 2 50 32

1100010 b 98 62

00101011 + 43 2b

00001101 cr 13 d

00000001 ☺ 1 1

238

Section 7. Installation

Read More See the appendix ASCII / ANSI Table (p. 613) for a complete list of
ASCII / ANSI codes and their binary and hex equivalents.

The face value of the byte, however, is not what is usually of interest. The
manufacturer of the instrument must specify what information in the byte is of
interest. For instance, two bytes may be received, one for character 2, the other for
character b. The pair of characters together, "2b", is the hexadecimal code for "+",
"+" being the information of interest. Or, perhaps, the leading bit, the MSB (Most
Significant Bit), on each of two bytes is dropped, the remaining bits combined,
and the resulting "super byte" translated from the remaining bits into a decimal
value. The variety of protocols is limited only by the number of instruments on
the market. For one in-depth example of how bits may be translated into usable
information, see the appendix FP2 Data Format (p. 617).

Note ASCII / ANSI control character ff-form feed (binary 00001100) causes a
terminal screen to clear. This can be frustrating for a developer who prefers to see
information on a screen, rather than a blank screen. Some third party terminal
emulator programs, such as Procomm, are useful tools in serial I/O development
since they handle this and other idiosyncrasies of serial communication.

When a standardized serial protocol is supported by the CR800, such as PakBus®
or Modbus, translation of bytes is relatively easy and transparent. However, when
bytes require specialized translation, specialized code is required in the CRBasic
program, and development time can extend into several hours or days.

7.9.16.2 I/O Ports
The CR800 supports two-way serial communication with other instruments
through ports listed in table CR800 Serial Ports (p. 239). A serial device will often
be supplied with a nine-pin D-type connector serial port. Check the manufacture's
pinout for specific information. In many cases, the standard nine-pin RS-232
scheme is used. If that is the case then,

Connect sensor RX (receive, pin 2) to a U or C terminal configured for Tx (C1,
C3).

• Connect sensor TX (transmit, pin 3) to a U or C terminal configured for Rx
(C2, C4)

• Connect sensor ground (pin 5) to datalogger ground (G terminal)

Note Rx and Tx lines on nine-pin connectors are sometimes switched by the
manufacturer.

Table 42. CR800 Serial Ports
Serial Port Voltage Level Logic

RS-232 (9 pin) RS-232 Full-duplex asynchronous RS-232

CS I/O (9 pin) TTL Full-duplex asynchronous RS-232

COM1 (C1 – C2) TTL Full-duplex asynchronous RS-232/TTL

COM2 (C3 – C4) TTL Full-duplex asynchronous RS-232/TTL

C1 5 VDC SDI-12

239

Section 7. Installation

Table 42. CR800 Serial Ports
Serial Port Voltage Level Logic

C3 5 VDC SDI-12

C1, C2, C3 5 VDC SDM (used with Campbell Scientific
peripherals only)

7.9.16.3 Protocols
PakBus is the protocol native to the CR800 and transparently handles routine
point-to-point and network communications among PCs and Campbell Scientific
dataloggers. Modbus and DNP3 are industry-standard networking SCADA
protocols that optionally operate in the CR800 with minimal user configuration.
PakBus®, Modbus, and DNP3 operate on the RS-232, CS I/O, and four COM
ports. SDI-12 is a protocol used by some smart sensors that requires minimal
configuration on the CR800.

Read More See SDI-12 Recording (p. 344), SDI-12 Sensor Support (p. 259), PakBus
Overview (p. 372), DNP3 (p. 387), and Modbus (p. 391).

Many instruments require non-standard protocols to communicate with the
CR800.

Note If an instrument or sensor optionally supports SDI-12, Modbus, or DNP3,
consider using these protocols before programming a custom protocol. These
higher-level protocols are standardized among many manufacturers and are easy
to use, relative to a custom protocol. SDI-12, Modbus, and DNP3 also support
addressing systems that allow multiplexing of several sensors on a single
communication port, which makes for more efficient use of resources.

7.9.16.4 Glossary of Serial I/O Terms
Term. asynchronous

The transmission of data between a transmitting and a receiving device
occurs as a series of zeros and ones. For the data to be "read" correctly, the
receiving device must begin reading at the proper point in the series. In
asynchronous communication, this coordination is accomplished by having
each character surrounded by one or more start and stop bits which designate
the beginning and ending points of the information (see synchronous (p. 504)).

Indicates the sending and receiving devices are not synchronized using a
clock signal.

Term. baud rate

The rate at which data are transmitted.

Term. big endian

"Big end first." Placing the most significant integer at the beginning of a
numeric word, reading left to right. The processor in the CR800 is MSB, or
puts the most significant integer first. See the appendix Endianness (p. 619).

240

Section 7. Installation

Term. cr

Carriage return

Term. data bits

Number of bits used to describe the data, and fit between the start and stop
bits. Sensors typically use 7 or 8 data bits.

Term. duplex

A serial communication protocol. Serial communications can be simplex,
half-duplex, or full-duplex.

Reading list: simplex (p. 501), duplex (p. 241), half-duplex (p. 490), and full-duplex
(p. 490).

Term. lf

Line feed. Often associated with carriage return (<cr>). <cr><lf>.

Term. little endian

"Little end first." Placing the most significant integer at the end of a numeric
word, reading left to right. The processor in the CR800 is MSB, or puts the
most significant integer first. See the appendix Endianness (p. 619).

Term. LSB

Least significant bit (the trailing bit). See the appendix Endianness (p. 619).

Term. marks and spaces

RS-232 signal levels are inverted logic compared to TTL. The different levels
are called marks and spaces. When referenced to signal ground, the valid RS-
232 voltage level for a mark is –3 to –25, and for a space is +3 to +25 with –3
to + 3 defined as the transition range that contains no information. A mark is
a logic 1 and negative voltage. A space is a logic 0 and positive voltage.

Term. MSB

Most significant bit (the leading bit). See the appendix Endianness (p. 619).

Term. RS-232C

Refers to the standard used to define the hardware signals and voltage levels.
The CR800 supports several options of serial logic and voltage levels
including RS-232 logic at TTL levels and TTL logic at TTL levels.

Term. RX

Receive

Term. SP

Space

241

Section 7. Installation

Term. start bit

Is the bit used to indicate the beginning of data.

Term. stop bit

Is the end of the data bits. The stop bit can be 1, 1.5 or 2.

Term. TX

Transmit

7.9.16.5 Serial I/O CRBasic Programming
To transmit or receive RS-232 or TTL signals, a serial port (see table CR800
Serial Ports (p. 239)) must be opened and configured through CRBasic with the
SerialOpen() instruction. The SerialClose() instruction can be used to close the
serial port. Below is practical advice regarding the use of SerialOpen() and
SerialClose(). Program CRBasic example Receiving an RS-232 String (p. 247)
shows the use of SerialOpen(). Consult CRBasic Editor Help for more
information.

SerialOpen(COMPort,BaudRate,Format,TXDelay,BufferSize)

• COMPort — Refer to CRBasic Editor Help for a complete list of COM ports
available for use by SerialOpen().

• BaudRate — Baud rate mismatch is frequently a problem when developing a
new application. Check for matching baud rates. Some developers prefer to
use a fixed baud rate during initial development. When set to -nnnn (where
nnnn is the baud rate) or 0, auto baud-rate detect is enabled. Autobaud is
useful when using the CS I/O and RS-232 ports since it allows ports to be
simultaneously used for sensor and PC telecommunications.

• Format — Determines data type and if PakBus® communications can occur
on the COM port. If the port is expected to read sensor data and support
normal PakBus® telemetry operations, use an auto-baud rate argument (0 or -
nnnn) and ensure this option supports PakBus® in the specific application.

• BufferSize — The buffer holds received data until it is removed. SerialIn(),
SerialInRecord(), and SerialInBlock() instructions are used to read data
from the buffer to variables. Once data are in variables, string manipulation
instructions are used to format and parse the data.

SerialClose() must be executed before SerialOpen() can be used again to
reconfigure the same serial port, or before the port can be used to communicate
with a PC.

7.9.16.5.1 Serial I/O Programming Basics
SerialOpen()1

• Closes PPP (if active)
• Returns TRUE or FALSE when set equal to a Boolean variable
• Be aware of buffer size (ring memory)

242

Section 7. Installation

SerialClose()

• Examples of when to close

o Reopen PPP
o Finished setting new settings in a Hayes modem
o Finished dialing a modem

• Returns TRUE or FALSE when set equal to a Boolean variable

SerialFlush()

• Puts the read and write pointers back to the beginning
• Returns TRUE or FALSE when set equal to a Boolean variable

SerialIn()1

• Can wait on the string until it comes in
• Timeout is renewed after each character is received
• SerialInRecord() tends to obsolete SerialIn().
• Buffer-size margin (one extra record + one byte)

SerialInBlock()1

• For binary data (perhaps integers, floats, data with NULL characters).
• Destination can be of any type.
• Buffer-size margin (one extra record + one byte).

SerialOutBlock()1,3

• Binary
• Can run in pipeline mode inside the digital measurement task (along with

SDM instructions) if the COMPort parameter is set to a constant such as
COM1 or COM2, and the number of bytes is also entered as a constant.

SerialOut()

• Use for ASCII commands and a known response, such as Hayes-modem
commands.

• If open, returns the number of bytes sent. If not open, returns 0.

SerialInRecord()2

• Can run in pipeline mode inside the digital measurement task (along with
SDM instructions) if the COMPort parameter is set to a constant argument
such as COM1 or COM2, and the number of bytes is also entered as a
constant.

• Simplifies synchronization with one way.
• Simplifies working with protocols that send a "record" of data with known

start and/or end characters, or a fixed number of records in response to a poll
command.

• If a start and end word is not present, then a time gap is the only remaining
separator of records. Using COM1 or COM2 coincidentally detects a time
gap of >100 bits if the records are less than 256 bytes.

• Buffer size margin (one extra record + one byte).
1 Processing instructions
2 Measurement instruction in the pipeline mode

243

Section 7. Installation

3 Measurement instruction if expression evaluates to a constant

7.9.16.5.2 Serial I/O Input Programming Basics
Applications with the purpose of receiving data from another device usually
include the following procedures. Other procedures may be required depending on
the application.

1. Know what the sensor supports and exactly what the data are. Most sensors
work well with TTL voltage levels and RS-232 logic. Some things to
consider:

o Become thoroughly familiar with the data to be captured.
o Can the sensor be polled?
o Does the sensor send data on its own schedule?
o Are there markers at the beginning or end of data? Markers are very

useful for identifying a variable length record.
o Does the record have a delimiter character such as a comma, space, or

tab? Delimiters are useful for parsing the received serial string into
usable numbers.

o Will the sensor be sending multiple data strings? Multiple strings usually
require filtering before parsing.

o How fast will data be sent to the CR800?
o Is power consumption critical?
o Does the sensor compute a checksum? Which type? A checksum is

useful to test for data corruption.

2. Open a serial port with SerialOpen().

o Example:
SerialOpen(Com1,9600,0,0,10000)

o Designate the correct port in CRBasic.
o Correctly wire the device to the CR800.
o Match the port baud rate to the baud rate of the device in CRBasic (use a

fixed baud rate — rather than autobaud — when possible).

3. Receive serial data as a string with SerialIn() or SerialInRecord().

̶ Example:
SerialInRecord(Com2,SerialInString,42,0,35,"",01)

o Declare the string variable large enough to accept the string.

̶ Example:
Public SerialInString As String * 25

o Observe the input string in the input string variable in a numeric monitor
(p. 495).

Note SerialIn() and SerialInRecord() both receive data. SerialInRecord() is
best for receiving streaming data. SerialIn() is best for receiving discrete
blocks.

4. Parse (split up) the serial string using SplitStr()

o Separates string into numeric and / or string variables.

244

Section 7. Installation

o Example:
SplitStr(InStringSplit,SerialInString,"",2,0)

o Declare an array to accept the parsed data.

̶ Example:
Public InStringSplit(2) As String

̶ Example:
Public SplitResult(2) As Float

7.9.16.5.3 Serial I/O Output Programming Basics
Applications with the purpose of transmitting data to another device usually
include the following procedures. Other procedures may be required depending on
the application.

1. Open a serial port with SerialOpen() to configure it for communications.

o Parameters are set according to the requirements of the communication
link and the serial device.

o Example:
SerialOpen(Com1,9600,0,0,10000)

o Designate the correct port in CRBasic.
o Correctly wire the device to the CR800.
o Match the port baud rate to the baud rate of the device in CRBasic.
o Use a fixed baud rate (rather than auto baud) when possible.

2. Build the output string.

o Example:
SerialOutString = "*" & "27.435" & "," & "56.789" & "#"

o Tip — concatenate (add) strings together using & instead of +.
o Tip — use CHR() instruction to insert ASCII / ANSI characters into a

string.

3. Output string via the serial port (SerialOut() or SerialOutBlock() command).

o Example:
SerialOut(Com1,SerialOutString,"",0,100)

o Declare the output string variable large enough to hold the entire
concatenation.

o Example:
Public SerialOutString As String * 100

• SerialOut() and SerialOutBlock() output the same data, except that
SerialOutBlock() transmits null values while SerialOut() strings are
terminated by a null value.

7.9.16.5.4 Serial I/O Translating Bytes
One or more of three principle data formats may end up in the SerialInString()
variable (see examples in Serial Input Programming Basics (p. 244)). Data may be
combinations or variations of these. The instrument manufacturer must provide
the rules for decoding the data

245

Section 7. Installation

• Alpha-numeric — Each digit represents an alpha-numeric value. For
example, R = the letter R, and 2 = decimal 2. This is the easiest protocol to
translate since the encode and translation are identical. Normally, the CR800
is programmed to parse (split) the string and place values in variables.

Example string from humidity, temperature, and pressure sensor:
SerialInString = "RH= 60.5 %RH T= 23.7 °C Tdf= 15.6 °C Td=
15.6 °C a= 13.0 g/m3 x= 11.1 g/kg Tw= 18.5 °C H2O=
17889 ppmV pw=17.81 hPa pws 29.43 hPa h= 52.3 kJ/kg dT=
8.1 °C"

• Hex Pairs — Bytes are translated to hex pairs, consisting of digits 0 to 9 and
letters a to f. Each pair describes a hexadecimal ASCII / ANSI code. Some
codes translate to alpha-numeric values, others to symbols or non-printable
control characters.

Example sting from temperature sensor:
SerialInString = "23 30 31 38 34 0D"

which translates to
#01 84 cr

• Binary — Bytes are processed on a bit-by-bit basis. Character 0 (Null,
&b00) is a valid part of binary data streams. However, the CR800 uses Null
terminated strings, so anytime a Null is received, a string is terminated. The
termination is usually premature when reading binary data. To remedy this
problem, use SerialInBlock() or SerialInRecord() when reading binary data.
The input string variable must be an array set As Long data type, for
example:

Dim SerialInString As Long

7.9.16.5.5 Serial I/O Memory Considerations
Several points regarding memory should be considered when receiving and
processing serial data.

• Serial buffer: The serial port buffer, which is declared in SerialOpen(), must
be large enough to hold all data a device will send. The buffer holds the data
for subsequent transfer to variables. Allocate extra memory to the buffer
when needed, but recognize that memory added to the buffer reduces final-
data memory (p. 489).

Note Concerning SerialInRecord() running in pipeline mode with NBytes
(number of bytes) parameter = 0:

For the digital measurement sequence to know how much room to allocate in
Scan() buffers (default of 3), SerialInRecord() allocates the buffer size specified
by SerialOpen() (default 10,000, an overkill), or default 3 • 10,000 = 30 kB of
buffer space. So, while making sure enough bytes are allocated in SerialOpen()
(the number of bytes per record • ((records/Scan)+1) + at least one extra byte),
there is reason not to make the buffer size too large. (Note that if the
NumberOfBytes parameter is non-zero, then SerialInRecord() allocates only this
many bytes instead of the number of bytes specified by SerialOpen()).

• Variable Declarations — Variables used to receive data from the serial
buffer can be declared as Public or Dim. Declaring variables as Dim has the

246

Section 7. Installation

effect of consuming less telecommunication bandwidth. When public
variables are viewed in software, the entire Public table is transferred at the
update interval. If the Public table is large, telecommunication bandwidth
can be taxed such that other data tables are not collected.

• String Declarations — String variables are memory intensive. Determine
how large strings are and declare variables just large enough to hold the
string. If the sensor sends multiple strings at once, consider declaring a single
string variable and read incoming strings one at a time.

The CR800 adjusts upward the declared size of strings. One byte is always
added to the declared length, which is then increased by up to another three
bytes to make the length divisible by four.

Declared string length, not number of characters, determines the memory
consumed when strings are written to memory. Consequently, large strings
not filled with characters waste significant memory.

7.9.16.5.6 Demonstration Program
CRBasic example Receiving an RS-232 String (p. 247) is provided as an exercise in
serial input / output programming. The example only requires the CR800 and a
single-wire jumper between COM1 Tx and COM2 Rx. The program simulates a
temperature and relative humidity sensor transmitting RS-232 (simulated data
comes out of COM1 as an alpha-numeric string).

CRBasic Example 52. Receiving an RS-232 String
'This program example demonstrates CR800 serial I/O features by:
' 1. Simulating a serial sensor
' 2. Transmitting a serial string via COM1 TX.

'The serial string is received at COM2 RX via jumper wire. Simulated
'air temperature = 27.435 F, relative humidity = 56.789 %.

'Wiring:
'COM1 TX (C1) ----- COM2 RX (C4)

'Serial Out Declarations
Public TempOut As Float
Public RhOut As Float

'Declare a string variable large enough to hold the output string.
Public SerialOutString As String * 25

'Serial In Declarations
'Declare a string variable large enough to hold the input string
Public SerialInString As String * 25

'Declare strings to accept parsed data. If parsed data are strictly numeric, this
'array can be declared as Float or Long
Public InStringSplit(2) As String
Alias InStringSplit(1) = TempIn
Alias InStringSplit(2) = RhIn

247

Section 7. Installation

'Main Program
BeginProg

 'Simulate temperature and RH sensor
 TempOut = 27.435 'Set simulated temperature to transmit
 RhOut = 56.789 'Set simulated relative humidity to transmit

 Scan(5,Sec, 3, 0)

 'Serial Out Code
 'Transmits string "*27.435,56.789#" out COM1
 SerialOpen(Com1,9600,0,0,10000) 'Open a serial port

 'Build the output string
 SerialOutString = "*" & TempOut & "," & RhOut & "#"

 'Output string via the serial port
 SerialOut(Com1,SerialOutString,"",0,100)

 'Serial In Code
 'Receives string "27.435,56.789" via COM2
 'Uses * and # character as filters
 SerialOpen(Com2,9600,0,0,10000) 'Open a serial port

 'Receive serial data as a string
 '42 is ASCII code for "*", 35 is code for "#"
 SerialInRecord(Com2,SerialInString,42,0,35,"",01)

 'Parse the serial string
 SplitStr(InStringSplit(),SerialInString,"",2,0)

 NextScan
EndProg

7.9.16.6 Serial I/O Application Testing
A common problem when developing a serial I/O application is the lack of an
immediately available serial device with which to develop and test programs.
Using HyperTerminal, a developer can simulate the output of a serial device or
capture serial input.

Note HyperTerminal is provided as a utility with Windows XP and earlier
versions of Windows. HyperTerminal is not provided with later versions of
Windows, but can be purchased separately from http://www.hilgraeve.com.
HyperTerminal automatically converts binary data to ASCII on the screen.
Binary data can be captured, saved to a file, and then viewed with a hexadecimal
editor. Other terminal emulators are available from third-party vendors that
facilitate capture of binary or hexadecimal data.

7.9.16.6.1 Configure HyperTerminal
Create a HyperTerminal instance file by clicking Start | All Programs |
Accessories | Communications | HyperTerminal. The windows in the figures
HyperTerminal Connection Description (p. 249) through HyperTerminal ASCII
Setup (p. 250) are presented. Enter an instance name and click OK.

248

Section 7. Installation

Figure 66. HyperTerminal New Connection Description

Figure 67. HyperTerminal Connect-To Settings

249

Section 7. Installation

Figure 68. HyperTerminal COM-Port Settings Tab

Click File | Properties | Settings | ASCII Setup... and set as shown.

Figure 69. HyperTerminal ASCII Setup

250

Section 7. Installation

7.9.16.6.2 Create Send-Text File
Create a file from which to send a serial string. The file shown in the figure
HyperTerminal Send Text-File Example (p. 251) will send the string
[2008:028:10:36:22]C to the CR800. Use Notepad® (Microsoft® Windows®
utility) or some other text editor that will not place hidden characters in the file.

Figure 70. HyperTerminal Send Text-File Example

To send the file, click Transfer | Send Text File | Browse for file, then click OK.

7.9.16.6.3 Create Text-Capture File
Figure HyperTerminal Text-Capture File Example (p. 251) shows a HyperTerminal
capture file with some data. The file is empty before use commences.

Figure 71. HyperTerminal Text-Capture File Example

Engage text capture by clicking on Transfer | Capture Text | Browse, select the
file, and then click OK.

7.9.16.6.4 Serial I/O Example II
CRBasic example Measure Sensors / Send RS-232 Data (p. 252) illustrates a use of
CR800 serial I/O features.

Example — An energy company has a large network of older CR510 dataloggers
into which new CR800 dataloggers are to be incorporated. The CR510
dataloggers are programmed to output data in the legacy Campbell Scientific
Printable ASCII format, which satisfies requirements of the customer's data-
acquisition network. The network administrator prefers to synchronize the CR510
clocks from a central computer using the legacy Campbell Scientific C command.
The CR510 datalogger is hard-coded to output printable ASCII and recognize the
C command. CR800 dataloggers, however, require custom programming to
output and accept these same ASCII strings. A similar program can be used to
emulate CR10X and CR23X dataloggers.

251

Section 7. Installation

Solution — CRBasic example Measure Sensors / Send RS-232 Data (p. 252) imports
and exports serial data with the CR800 RS-232 port. Imported data are expected
to have the form of the legacy Campbell Scientific time set C command. Exported
data has the form of the legacy Campbell Scientific Printable ASCII format.

Note The nine-pin RS-232 port can be used to download the CR800 program if
the SerialOpen() baud rate matches that of the datalogger support software (p. 630).
However, two-way PakBus® communications will cause the CR800 to
occasionally send unsolicited PakBus® packets out the RS-232 port for at least 40
seconds after the last PakBus® communication. This will produce some "noise" on
the intended data-output signal.

Monitor the CR800 RS-232 port with HyperTerminal as described in the section
Configure HyperTerminal (p. 248). Send C-command file to set the clock according
to the text in the file.

Note The HyperTerminal file will not update automatically with actual time. The
file only simulates a clock source for the purposes of this example.

CRBasic Example 53. Measure Sensors / Send RS-232 Data

'This program example demonstrates the import and export serial data via the CR800 RS-232
'port. Imported data are expected to have the form of the legacy Campbell Scientific
'time set C command:

' [YR:DAY:HR:MM:SS]C

'Exported data has the form of the legacy Campbell Scientific Printable ASCII format:

' 01+0115. 02+135 03+00270 04+7999 05+00138 06+07999 07+04771

'Declarations
'Visible Variables
Public StationID
Public KWH_In
Public KVarH_I
Public KWHHold
Public KVarHold
Public KWHH
Public KvarH
Public InString As String * 25
Public OutString As String * 100

'Hidden Variables
Dim i, rTime(9), OneMinData(6), OutFrag(6) As String
Dim InStringSize, InStringSplit(5) As String
Dim Date, Month, Year, DOY, Hour, Minute, Second, uSecond
Dim LeapMOD4, LeapMOD100, LeapMOD400
Dim Leap4 As Boolean, Leap100 As Boolean, Leap400 As Boolean
Dim LeapYear As Boolean
Dim ClkSet(7) As Float

252

Section 7. Installation

'One Minute Data Table
DataTable(OneMinTable,true,-1)
 OpenInterval 'sets interval same as found in CR510
 DataInterval(0,1,Min,10)
 Totalize(1, KWHH,FP2,0)
 Sample(1, KWHHold,FP2)
 Totalize(1, KvarH,FP2,0)
 Sample(1, KVarHold,FP2)
 Sample(1, StationID,FP2)
EndTable

'Clock Set Record Data Table
DataTable(ClockSetRecord,True,-1)
 Sample(7,ClkSet(),FP2)
EndTable

'Subroutine to convert date formats (day-of-year to month and date)
Sub DOY2MODAY

 'Store Year, DOY, Hour, Minute and Second to Input Locations.
 Year = InStringSplit(1)
 DOY = InStringSplit(2)
 Hour = InStringSplit(3)
 Minute = InStringSplit(4)
 Second = InStringSplit(5)
 uSecond = 0

 'Check if it is a leap year:
 'If Year Mod 4 = 0 and Year Mod 100 <> 0, then it is a leap year OR
 'If Year Mod 4 = 0, Year Mod 100 = 0, and Year Mod 400 = 0, then it
 'is a leap year

 LeapYear = 0 'Reset leap year status location

 LeapMOD4 = Year MOD 4
 LeapMOD100 = Year MOD 100
 LeapMOD400 = Year MOD 400
 If LeapMOD4 = 0 Then Leap4 = True Else Leap4 = False
 If LeapMOD100 = 0 Then Leap100 = True Else Leap100 = False
 If LeapMOD400 = 0 Then Leap400 = True Else Leap400 = False

 If Leap4 = True Then
 LeapYear = True
 If Leap100 = True Then
 If Leap400 = True Then
 LeapYear = True
 Else
 LeapYear = False
 EndIf
 EndIf
 Else
 LeapYear = False
 EndIf

253

Section 7. Installation

 'If it is a leap year, use this section.
 If (LeapYear = True) Then
 Select Case DOY
 Case Is < 32
 Month = 1
 Date = DOY
 Case Is < 61
 Month = 2
 Date = DOY + -31
 Case Is < 92
 Month = 3
 Date = DOY + -60
 Case Is < 122
 Month = 4
 Date = DOY + -91
 Case Is < 153
 Month = 5
 Date = DOY + -121
 Case Is < 183
 Month = 6
 Date = DOY + -152
 Case Is < 214
 Month = 7
 Date = DOY + -182
 Case Is < 245
 Month = 8
 Date = DOY + -213
 Case Is < 275
 Month = 9
 Date = DOY + -244
 Case Is < 306
 Month = 10
 Date = DOY + -274
 Case Is < 336
 Month = 11
 Date = DOY + -305
 Case Is < 367
 Month = 12
 Date = DOY + -335
 EndSelect

'If it is not a leap year, use this section.
 Else
 Select Case DOY
 Case Is < 32
 Month = 1
 Date = DOY
 Case Is < 60
 Month = 2
 Date = DOY + -31
 Case Is < 91
 Month = 3
 Date = DOY + -59

254

Section 7. Installation

 Case Is < 121
 Month = 4
 Date = DOY + -90
 Case Is < 152
 Month = 5
 Date = DOY + -120
 Case Is < 182
 Month = 6
 Date = DOY + -151
 Case Is < 213
 Month = 7
 Date = DOY + -181
 Case Is < 244
 Month = 8
 Date = DOY + -212
 Case Is < 274
 Month = 9
 Date = DOY + -243
 Case Is < 305
 Month = 10
 Date = DOY + -273
 Case Is < 336
 Month = 11
 Date = DOY + -304
 Case Is < 366
 Month = 12
 Date = DOY + -334
 EndSelect
 EndIf
EndSub

'//////////////////////////// PROGRAM ////////////////////////////
BeginProg
 StationID = 4771
 Scan(1,Sec, 3, 0)

 '/////////////////Measurement Section////////////////////////
 'PulseCount(KWH_In, 1, 1, 2, 0, 1, 0) 'Activate this line in working program
 KWH_In = 4.5 'Simulation -- delete this line from working program

 'PulseCount(KVarH_I, 1, 2, 2, 0, 1, 0) 'Activate this line in working program
 KVarH_I = 2.3 'Simulation -- delete this line from working program
 KWHH = KWH_In
 KvarH = KVarH_I
 KWHHold = KWHH + KWHHold
 KVarHold = KvarH + KVarHold

 CallTable OneMinTable

 '////////////////////Serial I/O Section/////////////////////
 SerialOpen(ComRS232,9600,0,0,10000)

255

Section 7. Installation

 '///////////////Serial Time Set Input Section///////////////
 'Accept old C command -- [2008:028:10:36:22]C -- parse, process, set
 'clock (Note: Chr(91) = "[", Chr(67) = "C")
 SerialInRecord(ComRS232,InString,91,0,67,InStringSize,01)

 If InStringSize <> 0 Then
 SplitStr(InStringSplit,InString,"",5,0)
 Call DOY2MODAY 'Call subroutine to convert day-of-year
 'to month & day
 ClkSet(1) = Year
 ClkSet(2) = Month
 ClkSet(3) = Date
 ClkSet(4) = Hour
 ClkSet(5) = Minute
 ClkSet(6) = Second
 ClkSet(7) = uSecond
 'Note: ClkSet array requires year, month, date, hour, min, sec, msec
 ClockSet(ClkSet())
 CallTable(ClockSetRecord)
 EndIf

 '/////////////////Serial Output Section/////////////////////
 'Construct old Campbell Scientific Printable ASCII data format and output to COM1

 'Read datalogger clock
 RealTime(rTime)
 If TimeIntoInterval(0,5,Sec) Then
 'Load OneMinData table data for processing into printable ASCII
 GetRecord(OneMinData(),OneMinTable,1)

 'Assign +/- Sign
 For i=1 To 6
 If OneMinData(i) < 0 Then
 'Note: chr45 is - sign
 OutFrag(i)=CHR(45) & FormatFloat(ABS(OneMinData(i)),"%05g")
 Else
 'Note: chr43 is + sign
 OutFrag(i)=CHR(43) & FormatFloat(ABS(OneMinData(i)),"%05g")
 EndIf
 Next i

 'Concatenate Printable ASCII string, then push string out RS-232
 '(first 2 fields are ID, hhmm):
 OutString = "01+0115." & " 02+" & FormatFloat(rTime(4),"%02.0f") & _
 FormatFloat(rTime(5),"%02.0f")
 OutString = OutString & " 03" & OutFrag(1) & " 04" & OutFrag(2) & _
 " 05" & OutFrag(3)
 OutString = OutString & " 06" & OutFrag(4) & " 07" & OutFrag(5) & _
 CHR(13) & CHR(10) & "" 'add CR LF null

 'Send printable ASCII string out RS-232 port
 SerialOut(ComRS232,OutString,"",0,220)
 EndIf

 NextScan
EndProg

256

Section 7. Installation

7.9.16.7 Serial I/O Q & A
Q: I am writing a CR800 program to transmit a serial command that contains a
null character. The string to transmit is:

CHR(02)+CHR(01)+"CWGT0"+CHR(03)+CHR(00)+CHR(13)+CHR(10)

How does the logger handle the null character?
Is there a way that we can get the logger to send this?

A: Strings created with CRBasic are NULL terminated. Adding strings together
means the second string will start at the first null it finds in the first string.

Use SerialOutBlock() instruction, which lets you send null characters, as shown
below.

SerialOutBlock(COMRS232, CHR(02) + CHR(01) + "CWGT0" +
CHR(03),8)
SerialOutBlock(COMRS232, CHR(0),1)
SerialOutBlock(COMRS232, CHR(13) + CHR(10),2)

Q: Please summarize when the CR800 powers the RS-232 port. I get that there is
an "always on" setting. How about when there are beacons? Does the
SerialOpen() instruction cause other power cycles?

A: The RS-232 port is left on under the following conditions:

• When the setting RS-232Power (p. 601) is set
• When a SerialOpen() with argument COMRS232 is used in the program

Both conditions power-up the interface and leave it on with no timeout. If
SerialClose() is used after SerialOpen(), the port is powered down and in a state
waiting for characters to come in.

Under normal operation, the port is powered down waiting for input. After
receiving input, there is a 40 second software timeout that must expire before
shutting down. The 40 second timeout is generally circumvented when
communicating with the datalogger support software (p. 93) because the software
sends information as part of the protocol that lets the CR800 know that it can shut
down the port.

When in the "dormant" state with the interface powered down, hardware is
configured to detect activity and wake up, but there is the penalty of losing the
first character of the incoming data stream. PakBus® takes this into consideration
in the "ring packets" that are preceded with extra sync bytes at the start of the
packet. For this reason SerialOpen() leaves the interface powered up so no
incoming bytes are lost.

When the CR800 has data to send with the RS-232 port, if the data are not a
response to a received packet, such as sending a beacon, it will power up the
interface, send the data, and return to the "dormant" state with no 40 second
timeout.

Q: How can I reference specific characters in a string?

A: The third 'dimension' of a string variable provides access to that part of the
string after the position specified. For example, if

TempData = "STOP"

257

Section 7. Installation

then,
TempData(1,1,2) = "TOP"
TempData(1,1,3) = "OP"
TempData(1,1,1) = "STOP"

To handle single-character manipulations, declare a string with a size of 1. This
single-character string is then used to search for specific characters. In the
following example, the first character of string LargerString is determined and
used to control program logic:

Public TempData As String * 1
 TempData = LargerString
 If TempData = "S" Then...

A single character can be retrieved from any position in a string. The following
example retrieves the fifth character of a string:

Public TempData As String * 1
TempData = LargerString(1,1,5)

Q: How can I get SerialIn(), SerialInBlock(), and SerialInRecord() to read
extended characters?

A: Open the port in binary mode (mode 3) instead of PakBus-enabled mode
(mode 0).

Q: Tests with an oscilloscope showed the sensor was responding quickly, but the
data were getting held up in the internals of the CR800 somewhere for 30 ms or
so. Characters at the start of a response from a sensor, which come out in 5 ms,
were apparently not accessible by the program for 30 ms or so; in fact, no data
were in the serial buffer for 30 ms or so.

A: As a result of internal buffering in the CR800 and / or external interfaces, data
may not appear in the serial port buffer for a period ranging up to 50 ms
(depending on the serial port being used). This should be kept in mind when
setting timeouts for the SerialIn() and SerialOut() instructions, or user-defined
timeouts in constructs using the SerialInChk() instruction.

Q: What are the termination conditions that will stop incoming data from being
stored?

A: Termination conditions:

• TerminationChar argument is received
• MaxNumChars argument is met
• TimeOut argument is exceeded

SerialIn() does NOT stop storing when a Null character (&h00) is received
(unless a NULL character is specified as the termination character). As a string
variable, a NULL character received will terminate the string, but nevertheless
characters after a NULL character will continue to be received into the variable
space until one of the termination conditions is met. These characters can later be
accessed with MoveBytes() if necessary.

Q: How can a variable populated by SerialIn() be used in more than one
sequence and still avoid using the variable in other sequences when it contains old
data?

258

Section 7. Installation

A: A simple caution is that the destination variable should not be used in more
than one sequence to avoid using the variable when it contains old data.
However, this is not always possible and the root problem can be handled more
elegantly.

When data arrives independent from execution of the CRBasic program, such as
occurs with streaming data, measures must be taken to ensure that the incoming
data are updated in time for subsequent processes using that data. When the task
of writing data is separate from the task of reading data, you should control the
flow of data with deliberate control features such as the use of flags or a time-
stamped weigh point as can be obtained from a data table.

There is nothing unique about SerialIn() with regard to understanding how to
correctly write to and read from global variables using multiple sequences.
SerialIn() is writing into an array of characters. Many other instructions write
into an array of values (characters, floats, or longs), such as Move(),
MoveBytes(), GetVariables(), SerialInRecord(), SerialInBlock(). In all cases,
when writing to an array of values, it is important to understand what you are
reading, if you are reading it asynchronously, in other words reading it from some
other task that is polling for the data at the same time as it is being written,
whether that other task is some other machine reading the data, like LoggerNet, or
a different sequence, or task, within the same machine. If the process is relatively
fast, like the Move() instruction, and an asynchronous process is reading the data,
this can be even worse because the “reading old data” will happen less often but is
more insidious because it is so rare.

7.9.17 Serial I/O: SDI-12 Sensor Support — Programming
Resource

Related Topics:
 • SDI-12 Sensor Support — Overview (p. 72)
 • SDI-12 Sensor Support — Details (p. 344)
 • Serial I/O: SDI-12 Sensor Support — Programming Resource (p. 259)
 • SDI-12 Sensor Support — Instructions (p. 529)

See the table CR800 Terminal Definitions (p. 76) for C terminal assignments for
SDI-12 input. Multiple SDI-12 sensors can be connected to each configured
terminal. If multiple sensors are wired to a single terminal, each sensor must have
a unique address. SDI-12 standard v 1.3 sensors accept addresses 0 through 9, a
through z, and A through Z. For a CRBasic programming example demonstrating
the changing of an SDI-12 address on the fly, see Campbell Scientific publication
PS200/CH200 12 V Charging Regulators, which is available at
www.campbellsci.com.

The CR800 supports SDI-12 communication through two modes — transparent
mode and programmed mode.

• Transparent mode facilitates sensor setup and troubleshooting. It allows
commands to be manually issued and the full sensor response viewed.
Transparent mode does not record data.

• Programmed mode automates much of the SDI-12 protocol and provides for
data recording.

259

Section 7. Installation

7.9.17.1 SDI-12 Transparent Mode
System operators can manually interrogate and enter settings in probes using
transparent mode. Transparent mode is useful in troubleshooting SDI-12 systems
because it allows direct communication with probes.

Transparent mode may need to wait for commands issued by the programmed
mode to finish before sending responses. While in transparent mode, CR800
programs may not execute. CR800 security may need to be unlocked before
transparent mode can be activated.

Transparent mode is entered while the PC is in telecommunications with the
CR800 through a terminal emulator program. It is easily accessed through a
terminal emulator. Campbell Scientific DevConfig program has a terminal utility,
as to other datalogger support software (p. 93). Keyboard displays cannot be used.

To enter the SDI-12 transparent mode, enter the datalogger support software
terminal emulator as shown in the figure Entering SDI-12 Transparent Mode (p.
261). Press Enter until the CR800 responds with the prompt CR800>. Type
SDI12 at the prompt and press Enter. In response, the query Enter Cx Port is
presented with a list of available ports. Enter the port number assigned to the
terminal to which the SDI-12 sensor is connected. For example, port 1 is entered
for terminal C1. An Entering SDI12 Terminal response indicates that SDI-12
transparent mode is active and ready to transmit SDI-12 commands and display
responses.

260

Section 7. Installation

Figure 72. Entering SDI-12 Transparent Mode

7.9.17.1.1 SDI-12 Transparent Mode Commands
Commands have three components:

• Sensor address (a) — a single character, and is the first character of the
command. Sensors are usually assigned a default address of zero by the
manufacturer. Wildcard address (?) is used in the Address Query command.
Some manufacturers may allow it to be used in other commands.

• Command body (for example, M1) — an upper case letter (the “command”)
followed by alphanumeric qualifiers.

• Command termination (!) — an exclamation mark.

An active sensor responds to each command. Responses have several standard
forms and terminate with <CR><LF> (carriage return–line feed).

SDI-12 commands and responses are defined by the SDI-12 Support Group
(www.sdi-12.org) and are summarized in the table Standard SDI-12 Command &
Response Set (p. 262). Sensor manufacturers determine which commands to
support. The most common commands are detailed in the table SDI-12
Commands for Transparent Mode (p. 262).

261

Section 7. Installation

Table 43. SDI-12 Commands for Transparent Mode

Command Name Command Syntax1
Response2

Notes

Break
Continuous

spacing for at least
12 milliseconds

None

Address Query ?! a<CR><LF>

Acknowledge Active a! a<CR><LF>

Change Address aAb! b<CR><LF> (support for this command is required only if the sensor
supports software changeable addresses)

Start Concurrent Measurement aC! atttnn<CR><LF>

Additional Concurrent
Measurements aC1! ... aC9! atttnn<CR><LF>

Additional Concurrent
Measurements and Request CRC aCC1! ... aCC9! atttnn<CR><LF>

Send Data aD0! ... aD9! a<values><CR><LF> or a<values><CRC><CR><LF>

Send Identification aI!

allccccccccmmmmmmvvvxxx...xx<CR><LF>. For example,
013CampbellCS1234003STD.03.01 means address = 0, SDI-12 protocol
version number = 1.3, manufacturer is Campbell Scientific, CS1234 is the
sensor model number (fictitious in this example), 003 is the sensor version
number, STD.03.01 indicates the sensor revision number is .01.

Start Measurement3 aM! atttn<CR><LF>

Start Measurement and Request CRC3 aMC! atttn<CR><LF>

Additional Measurements3 aM1! ... aM9! atttn<CR><LF>

Additional Measurements and
Request CRC3

aMC1! ... aMC9! atttn<CR><LF>

Continuous Measurements aR0! ... aR9! a<values><CR><LF> (formatted like the D commands)

Continuous Measurements and
Request CRC aRC0! ... aRC9! a<values><CRC><CR><LF> (formatted like the D commands)

Start Verification3 aV! atttn<CR><LF>

1If the terminator '!' is not present, the command will not be issued. The CRBasic SDI12Recorder() instruction, however, will still pick up data
resulting from a previously issued C! command.
2Complete response string can be obtained when using the SDI12Recorder() instruction by declaring the Destination variable as String.
3This command may result in a service request.

SDI-12 Address Commands
Address and identification commands request metadata about the sensor. Connect
only a single probe when using these commands.

?!

Requests the sensor address. Response is address, a.

262

Section 7. Installation

Syntax:
?!

aAb!

Changes the sensor address. a is the current address and b is the new address.
Response is the new address.

Syntax:
aAb!

aI!

Requests the sensor identification. Response is defined by the sensor
manufacturer, but usually includes the sensor address, SDI-12 version,
manufacturer's name, and sensor model information. Serial number or other
sensor specific information may also be included.

Syntax:
aI!

An example of a response from the aI! command is:
013NRSYSINC1000001.2101 <CR><LF>

where:

0 is the SDI-12 address.
13 is the SDI-12 version (1.3).
NRSYSINC indicates the manufacturer.
100000 indicates the sensor model.
1.2 is the sensor version.
101 is the sensor serial number.

SDI-12 Start Measurement Commands
Measurement commands elicite responses in the form:

atttnn

where:

a is the sensor address
ttt is the time (s) until measurement data are available
nn is the number of values to be returned when one or more subsequent D!

commands are issued.

aMv!

Starts a standard measurement. Qualifier v is a variable between 1 and 9. If
supported by the sensor manufacturer, v requests variant data. Variants may
include alternate units (e.g., °C or °F), additional values (e.g., level and
temperature), or a diagnostic of the sensor internal battery.

Syntax:
aMv!

263

Section 7. Installation

As an example, the response from the command 5M! is:
500410

where:

5 reports the sensor SDI-12 address.

004 indicates the data will be available in 4 seconds.

10 indicates that 10 values will be available.

The command 5M7! elicites a similar response, but the appendage 7 instructs the
sensor to return the voltage of the internal battery.

aC!

Start concurrent measurement. The CR800 requests a measurement, continues
program execution, and picks up the requested data on the next pass through the
program. A measurement request is then sent again so data are ready on the next
scan. The datalogger scan rate should be set such that the resulting skew between
time of measurement and time of data collection does not compromise data
integrity. This command is new with v. 1.2 of the SDI-12 specification.

Syntax:
aC!

Aborting an SDI-12 Measurement Command
A measurement command (M! or C!) is aborted when any other valid command is
sent to the sensor.

SDI-12 Send Data Command
Send data commands are normally issued automatically by the CR800 after the
aMv! or aCv! measurement commands. In transparent mode through CR800
terminal commands, you need to issue these commands in series. When in
automatic mode, if the expected number of data values are not returned in
response to a aD0! command, the datalogger issues aD1!, aD2!, etc., until all data
are received. In transparent mode, you must do likewise. The limiting constraint
is that the total number of characters that can be returned to a aDv! command is
35 (75 for aCv!). If the number of characters exceed the limit, the remainder of
the response are obtained with subsequent aDv! commands wherein v increments
with each iteration.

aDv!

Request data from the sensor.

Example Syntax:
aD0!

SDI-12 Continuous Measurement Command (aR0! to aR9!)
Sensors that are continuously monitoring, such as a shaft encoder, do not require
an M command. They can be read directly with the Continuous Measurement
Command (R0! to R9!). For example, if the sensor is operating in a continuous

264

Section 7. Installation

measurement mode, then aR0! will return the current reading of the sensor.
Responses to R commands are formatted like responses to send data (aDv!)
commands. The main difference is that R commands do not require a preceding
M command. The maximum number of characters returned in the <values> part
of the response is 75.

Each R command is an independent measurement. For example, aR5! need not
be preceded by aR0! through aR4!. If a sensor is unable to take a continuous
measurement, then it must return its address followed by <CR><LF> (carriage
return and line feed) in response to an R command. If a CRC was requested, then
the <CR><LF> must be preceded by the CRC.

aRv!

Request continuous data from the sensor.

Example Syntax:
aR5!

7.9.17.2 SDI-12 Recorder Mode
The CR800 can be programmed to act as an SDI-12 recording device or as an
SDI-12 sensor.

For troubleshooting purposes, responses to SDI-12 commands can be captured in
programmed mode by placing a variable declared As String in the variable
parameter. Variables not declared As String will capture only numeric data.

Another troubleshooting tool is the terminal-mode snoop utility, which allows
monitoring of SDI-12 traffic. Enter terminal mode as described in SDI-12
Transparent Mode (p. 260), issue CRLF (<Enter> key) until CR800> prompt
appears. Type W and then <Enter>. Type 9 in answer to Select:, 100 in answer
to Enter timeout (secs):, Y to ASCII (Y)?. SDI-12 communications are then
opened for viewing.

The SDI12Recorder() instruction automates the issuance of commands and
interpretation of sensor responses. Commands entered into the SDIRecorder()
instruction differ slightly in function from similar commands entered in
transparent mode. In transparent mode, for example, the operator manually enters
aM! and aD0! to initiate a measurement and get data, with the operator providing
the proper time delay between the request for measurement and the request for
data. In programmed mode, the CR800 provides command and timing services
within a single line of code. For example, when the SDI12Recorder() instruction
is programmed with the M! command (note that the SDI-12 address is a separate
instruction parameter), the CR800 issues the aM! and aD0! commands with
proper elapsed time between the two. The CR800 automatically issues retries and
performs other services that make the SDI-12 measurement work as trouble free
as possible. Table SDI-12Recorder() Commands (p. 266) summarizes CR800
actions triggered by some SDI12Recorder() commands.

If the SDI12Recorder() instruction is not successful, NAN will be loaded into the
first variable. See NAN and ±INF (p. 458) for more information.

265

Section 7. Installation

Command Name

SDIRecorder()
SDICommand

Argument

SDI-12 Command Sent
Sensor Response1
CR800 Response

Notes

Address Query ?!
CR800: issues a?! command. Only one sensor can be attached to the C
terminal configured for SDI-12 for this command to elicit a response.
Sensor must support this command.

Change Address Ab! CR800: issues aAb! command

Concurrent Measurement Cv!, CCv! CR800: issues aCv! command

 Sensor: responds with atttnn

 CR800: if ttt = 0, issues aDv! command(s). If nnn = 0 then NAN put in the
first element of the array.

 Sensor: responds with data

 CR800: else, if ttt > 0 then moves to next CRBasic program instruction

 CR800: at next time SDIRecorder() is executed, if elapsed time < ttt,
moves to next CRBasic instruction

 CR800: else, issues aDv! command(s)

 Sensor: responds with data

 CR800: issues aCv! command (to request data for next scan)

Alternate Concurrent Measurement
Cv

(note — no ! termination)2

CR800: tests to see if ttt expired. If ttt not expired, loads 1e9 into first variable and
then moves to next CRBasic instruction. If ttt expired, issues aDv! command(s).
See section Alternate Start Concurrent Measurement Command (Cv) (p. 266)

 Sensor: responds to aDv! command(s) with data, if any. If no data, loads
NAN into variable.

 CR800: moves to next CRBasic instruction (does not re-issue aCv!
command)

Send Identification I! CR800: issues aI! command

Start Measurement M!, Mv!, MCv! CR800: issues aMv! command

 Sensor: responds with atttnn

 CR800: If nnn = 0 then NAN put in the first element of the array.

CR800: waits until ttt3 seconds (unless a service request is received).
Issues aDv! command(s). If a service request is received, issues aDv!
immediately.

 Sensor: responds with data

Continuous Measurements Rv!, RCv! CR800: issues aRv! command

Start Verification V! CR800: issues aV! command

1See table SDI-12 Commands for Transparent Mode (p. 262) for complete sensor responses.
2Use variable replacement in program to use same instance of SDI12Recorder() as issued aCV! (see the CRBasic example Using Alternate
Concurrent Command (aC) (p. 270)).
3Note that ttt is local only to the SDIRecorder() instruction. If a second SDIRecorder() instruction is used, it will have its own ttt.

Note aCv and aCv! are different commands — aCv does not end with !.

266

Section 7. Installation

The SDIRecorder() aCv command facilitates using the SDI-12 standard Start
Concurrent command (aCv!) without the back-to-back measurement sequence
normal to the CR800 implementation of aCv!.

Consider an application wherein four SDI-12 temperature sensors need to be near-
simultaneously measured at a five minute interval within a program that scans
every five seconds. The sensors requires 95 seconds to respond with data after a
measurement request. Complicating the application is the need for minimum
power usage, so the sensors must power down after each measurement.

This application provides a focal point for considering several measurement
strategies. The simplest measurement is to issue a M! measurement command to
each sensor as shown in the following CRBasic example:

Public BatteryVolt
Public Temp1, Temp2, Temp3, Temp4

BeginProg
 Scan(5,Sec,0,0)

 'Non-SDI-12 measurements here

 SDI12Recorder(Temp1,1,0,"M!",1.0,0)
 SDI12Recorder(Temp2,1,1,"M!",1.0,0)
 SDI12Recorder(Temp3,1,2,"M!",1.0,0)
 SDI12Recorder(Temp4,1,3,"M!",1.0,0)

 NextScan
EndProg

However, the code sequence has three problems:

1. It does not allow measurement of non-SDI-12 sensors at the required frequency
because the SDI12Recorder() instruction takes too much time.

2. It does not achieve required five-minute sample rate because each
SDI12Recorder() instruction will take about 95 seconds to complete before
the next SDI12Recorder() instruction begins, resulting is a real scan rate of
about 6.5 minutes.

3. There is a 95 s time skew between each sensor measurement.

Problem 1 can be remedied by putting the SDI-12 measurements in a
SlowSequence scan. Doing so allows the SDI-12 routine to run its course
without affecting measurement of other sensors, as follows:

Public BatteryVolt
Public Temp(4)

BeginProg

 Scan(5,Sec,0,0)
 'Non-SDI-12 measurements here
 NextScan

 SlowSequence
 Scan(5,Min,0,0)
 SDI12Recorder(Temp(1),1,0,"M!",1.0,0)
 SDI12Recorder(Temp(2),1,1,"M!",1.0,0)
 SDI12Recorder(Temp(3),1,2,"M!",1.0,0)

267

Section 7. Installation

 SDI12Recorder(Temp(4),1,3,"M!",1.0,0)
 NextScan
 EndSequence

EndProg

However, problems 2 and 3 still are not resolved. These can be resolved by using
the concurrent measurement command, C!. All measurements will be made at
about the same time and execution time will be about 95 seconds, well within the
5 minute scan rate requirement, as follows:

Public BatteryVolt
Public Temp(4)

BeginProg

 Scan(5,Sec,0,0)
 'Non-SDI-12 measurements here
 NextScan

 SlowSequence
 Scan(5,Min,0,0)
 SDI12Recorder(Temp(1),1,0,"C!",1.0,0)
 SDI12Recorder(Temp(2),1,1,"C!",1.0,0)
 SDI12Recorder(Temp(3),1,2,"C!",1.0,0)
 SDI12Recorder(Temp(4),1,3,"C!",1.0,0)
 NextScan

EndProg

A new problem introduced by the C! command, however, is that it causes high
power usage by the CR800. This application has a very tight power budget.
Since the C! command reissues a measurement request immediately after
receiving data, the sensors will be in a high power state continuously. To remedy
this problem, measurements need to be started with C! command, but stopped
short of receiving the next measurement command (hard-coded part of the C!
routine) after their data are polled. The SDI12Recorder() instruction C command
(not C!) provides this functionality as shown in CRBasic example Using Alternate
Concurrent Command (aC) (p. 270). A modification of this program can also be
used to allow near-simultaneous measurement of SDI-12 sensors without
requesting additional measurements, such as may be needed in an event-driven
measurement.

Note When only one SDI-12 sensor is attached, that is, multiple sensor
measurements do not need to start concurrently, another reliable method for
making SDI-12 measurements without affecting the main scan is to use the
CRBasic SlowSequence instruction and the SDI-12 M! command. The main
scan will continue to run during the ttt time returned by the SDI-12 sensor. The
trick is to synchronize the returned SDI-12 values with the main scan.

aCv

Start alternate concurrent measurement.

Syntax:
aCv

268

Section 7. Installation

CRBasic Example 54. Using SDI12Sensor() to Test Cv Command

'This program example demonstrates how to use CRBasic to simulate four SDI-12 sensors. This
program can be used to
'produce measurements to test the CRBasic example Using Alternate Concurrent Command (aC) (p. 270).

Public Temp(4)

DataTable(Temp,True,0)
 DataInterval(0,5,Min,10)
 Sample(4,Temp(),FP2)
EndTable

BeginProg
 Scan(5,Sec,0,0)

 PanelTemp(Temp(1),250) 'Measure CR800 wiring panel temperature to use as base for
 'simulated temperatures Temp(2), Temp(3), and Temp(4).
 Temp(2) = Temp(1) + 5
 Temp(3) = Temp(1) + 10
 Temp(4) = Temp(1) + 15

 CallTable Temp

 NextScan

 SlowSequence
 Do
 'Note SDI12SensorSetup / SDI12SensorResponse must be renewed
 'after each successful SDI12Recorder() poll.
 SDI12SensorSetup(1,1,0,95)
 Delay(1,95,Sec)
 SDI12SensorResponse(Temp(1))
 Loop
 EndSequence

 SlowSequence
 Do
 SDI12SensorSetup(1,3,1,95)
 Delay(1,95,Sec)
 SDI12SensorResponse(Temp(2))
 Loop
 EndSequence

 SlowSequence
 Do
 SDI12SensorSetup(1,5,2,95)
 Delay(1,95,Sec)
 SDI12SensorResponse(Temp(3))
 Loop
 EndSequence

269

Section 7. Installation

 SlowSequence
 Do
 SDI12SensorSetup(1,7,3,95)
 Delay(1,95,Sec)
 SDI12SensorResponse(Temp(4))
 Loop
 EndSequence

EndProg

CRBasic Example 55. Using Alternate Concurrent Command (aC)

'This program example demonstrates the use of the special SDI-12 concurrent measurement
'command (aC) when back-to-back measurements are not desired, as can occur in an application
'that has a tight power budget. To make full use of the aC command, measurement control
'logic is used.

'Declare variables
Dim X
Public RunSDI12
Public Cmd(4)
Public Temp_Tmp(4)
Public Retry(4)
Public IndDone(4)
Public Temp_Meas(4)
Public GroupDone

'Main Program
BeginProg

'Preset first measurement command to C!
 For X = 1 To 4
 cmd(X) = "C!"
 Next X

 'Set five-second scan rate
 Scan(5,Sec,0,0)

 'Other measurements here

 'Set five-minute SDI-12 measurement rate
 If TimeIntoInterval(0,5,Min) Then RunSDI12 = True

 'Begin measurement sequence
 If RunSDI12 = True Then

 For X = 1 To 4
 Temp_Tmp(X) = 2e9 'when 2e9 changes, indicates a change
 Next X

270

Section 7. Installation

 'Measure SDI-12 sensors
 SDI12Recorder(Temp_Tmp(1),1,0,cmd(1),1.0,0)
 SDI12Recorder(Temp_Tmp(2),1,1,cmd(2),1.0,0)
 SDI12Recorder(Temp_Tmp(3),1,2,cmd(3),1.0,0)
 SDI12Recorder(Temp_Tmp(4),1,3,cmd(4),1.0,0)

 'Control Measurement Event
 For X = 1 To 4
 If cmd(X) = "C!" Then Retry(X) = Retry(X) + 1
 If Retry(X) > 2 Then IndDone(X) = -1

 'Test to see if ttt expired. If ttt not expired, load "1e9" into first variable
 'then move to next instruction. If ttt expired, issue aDv! command(s).
 If ((Temp_Tmp(X) = 2e9) OR (Temp_Tmp(X) = 1e9)) Then
 cmd(X) = "C" 'Start sending "C" command.

 ElseIf(Temp_Tmp(X) = NAN) Then 'Comms failed or sensor not attached
 cmd(X) = "C!" 'Start measurement over

 Else 'C!/C command sequence complete
 Move(Temp_Meas(X),1,Temp_Tmp(X),1) 'Copy measurements to SDI_Val(10)
 cmd(X) = "C!" 'Start next measurement with "C!"
 IndDone(X) = -1
 EndIf
 Next X

 'Summarize Measurement Event Success
 For X = 1 To 4
 GroupDone = GroupDone + IndDone(X)
 Next X

 'Stop current measurement event, reset controls
 If GroupDone = -4 Then
 RunSDI12 = False
 GroupDone = 0
 For X = 1 To 4
 IndDone(X) = 0
 Retry(X) = 0
 Next X
 Else
 GroupDone = 0
 EndIf
 EndIf 'End of measurement sequence

 NextScan

EndProg

SDI12Recorder() sends any string enclosed in quotation marks in the Command
parameter. If the command string is a non-standard SDI-12 command, any
response is captured into the variable assigned to the Destination parameter, so
long as that variable is declared As String. CRBasic example Use of an SDI-12
Extended Command (p. 272) shows appropriate code for sending an extended SDI-
12 command and receiving the response. The extended command feature has no
built-in provision for responding with follow-up commands. However, the
program can be coded to parse the response and issue subsequent SDI-12
commands based on a customized evaluation of the response. For more
information on parsing strings, see Input Programming Basics (p. 244).

271

Section 7. Installation

CRBasic Example 56. Using an SDI-12 Extended Command

'This program example demonstrates the use of SDI-12 extended commands. In this example,
'a temperature measurement, tt.tt, is sent to a CH200 Charging Regulator using the command
'XTtt.tt!'. The response from the CH200 should be '0OK', if 0 is the SDI-12 address.
'
'Declare Variables
Public PTemp As Float
Public SDI12command As String
Public SDI12result As String

'Main Program
BeginProg
 Scan(20,Sec,3,0)
 PanelTemp(PTemp,250)
 SDI12command = "XT" & FormatFloat(PTemp,"%4.2f") & "!"
 SDI12Recorder(SDI12result,1,0,SDI12command,1.0,0)
 NextScan
EndProg

7.9.17.3 SDI-12 Sensor Mode
The CR800 can be programmed to act as an SDI-12 recording device or as an
SDI-12 sensor.

For troubleshooting purposes, responses to SDI-12 commands can be captured in
programmed mode by placing a variable declared As String in the variable
parameter. Variables not declared As String will capture only numeric data.

Another troubleshooting tool is the terminal-mode snoop utility, which allows
monitoring of SDI-12 traffic. Enter terminal mode as described in SDI-12
Transparent Mode (p. 260), issue CRLF (<Enter> key) until CR800> prompt
appears. Type W and then <Enter>. Type 9 in answer to Select:, 100 in answer
to Enter timeout (secs):, Y to ASCII (Y)?. SDI-12 communications are then
opened for viewing.

The SDI12SensorSetup() / SDI12SensorResponse() instruction pair programs
the CR800 to behave as an SDI-12 sensor. A common use of this feature is the
transfer of data from the CR800 to other Campbell Scientific dataloggers over a
single-wire interface (terminal configured for SDI-12 to terminal configured for
SDI-12), or to transfer data to a third-party SDI-12 recorder.

Details of using the SDI12SensorSetup() / SDI12SensorResponse() instruction
pair can be found in the CRBasic Editor Help. Other helpful tips include:

Concerning the Reps parameter in the SDI12SensorSetup(), valid Reps when
expecting an aMx! command range from 0 to 9. Valid Reps when expecting an
aCx! command are 0 to 20. The Reps parameter is not range-checked for valid
entries at compile time. When the SDI-12 recorder receives the sensor response
of atttn to a aMx! command, or atttnn to a aCx! command, only the first digit n,
or the first two digits nn, are used. For example, if Reps is mis-programmed as
123, the SDI-12 recorder will accept only a response of n = 1 when issuing an
aMx! command, or a response of nn = 12 when issuing an aCx! command.

When programmed as an SDI-12 sensor, the CR800 will respond to SDI-12
commands M, MC, C, CC, R, RC, V, ?, and I. See table SDI-12 Commands for

272

Section 7. Installation

Transparent Mode (p. 262) for full command syntax. The following rules apply:

1. A CR800 can be assigned only one SDI-12 address per SDI-12 port. For
example, a CR800 will not respond to both 0M! AND 1M! on SDI-12 port
C1. However, different SDI-12 ports can have unique SDI-12 addresses. Use
a separate SlowSequence for each SDI-12 port configured as a sensor.

2. The CR800 will handle additional measurement (aMx!) commands. When an
SDI-12 recorder issues aMx! commands as shown in CRBasic example SDI-
12 Sensor Setup (p. 273), measurement results are returned as listed in table SDI-
12 Sensor Setup — Results (p. 274).

CRBasic Example 57. SDI-12 Sensor Setup
'This program example demonstrates the use of the SDI12SensorSetup()/SDI12SensorResponse()
'instruction pair to program the CR800 to emulate an SDI-12 sensor. A common use of this
'feature is the transfer of data from the CR800 to SDI-12 compatible instruments, including
'other Campbell Scientific dataloggers, over a single-wire interface (SDI-12 port to
'SDI-12 port). The recording datalogger simply requests the data using the aD0! command.

Public PanelTemp
Public Batt_volt
Public SDI_Source(10)

BeginProg
 Scan(5,Sec,0,0)

 PanelTemp(PanelTemp,250)
 Battery(batt_volt)

 SDI_Source(1) = PanelTemp 'temperature, degrees C
 SDI_Source(2) = batt_volt 'primary power, volts dc
 SDI_Source(3) = PanelTemp * 1.8 + 32 'temperature, degrees F
 SDI_Source(4) = batt_volt 'primary power, volts dc
 SDI_Source(5) = PanelTemp 'temperature, degrees C
 SDI_Source(6) = batt_volt * 1000 'primary power, millivolts dc
 SDI_Source(7) = PanelTemp * 1.8 + 32 'temperature in degrees F
 SDI_Source(8) = batt_volt * 1000 'primary power, millivolts dc
 SDI_Source(9) = Status.SerialNumber 'serial number
 SDI_Source(10) = Status.LithiumBattery 'data backup battery, V

NextScan

 SlowSequence

 Do
 SDI12SensorSetup(10,1,0,1)
 Delay(1,500,mSec)
 SDI12SensorResponse(SDI_Source)
 Loop

 EndSequence
EndProg

273

Section 7. Installation

Table 44. SDI-12 Sensor Setup CRBasic Example — Results

Measurement
Command from
SDI-12 Recorder

Source Variables
Accessed from the
CR800 acting as a

SDI-12 Sensor

Contents of
Source Variables

0M! Source(1), Source(2) temperature °C, battery voltage

0M0! Same as 0M!

0M1! Source(3), Source(4) temperature °F, battery voltage

0M2! Source(5), Source(6) temperature °C, battery mV

0M3! Source(7), Source(8) temperature °F, battery mV

0M4! Source(9), Source(10) serial number, lithium battery
voltage

7.9.17.4 SDI-12 Power Considerations
When a command is sent by the CR800 to an SDI-12 probe, all probes on the
same SDI-12 port will wake up. However, only the probe addressed by the
datalogger will respond. All other probes will remain active until the timeout
period expires.

Example:

Probe: Water Content

Power Usage:

• Quiescent: 0.25 mA
• Measurement: 120 mA
• Measurement time: 15 s
• Active: 66 mA
• Timeout: 15 s

Probes 1, 2, 3, and 4 are connected to SDI-12 / control port C1.

The time line in table Example Power Usage Profile for a Network of SDI-12
Probes (p. 274) shows a 35 second power-usage profile example.

For most applications, total power usage of 318 mA for 15 seconds is not
excessive, but if 16 probes were wired to the same SDI-12 port, the resulting
power draw would be excessive. Spreading sensors over several SDI-12 terminals
will help reduce power consumption.

Table 45. Example Power Usage Profile for a Network of SDI-12 Probes

Time (s) Command

All
Probes
Awake

Time
Out

Expires 1 mA 2 mA 3 mA 4 mA
Total
mA

1 1M! Yes 120 66 66 66 318

2 120 66 66 66 318

• • • • • •

• • • • • •

274

Section 7. Installation

Table 45. Example Power Usage Profile for a Network of SDI-12 Probes

Time (s) Command

All
Probes
Awake

Time
Out

Expires 1 mA 2 mA 3 mA 4 mA
Total
mA

• • • • • •

14 120 66 66 66 318

15 Yes 120 66 66 66 318

16 1D0! Yes 66 66 66 66 264

17 66 66 66 66 264

• • • • • •

• • • • • •

• • • • • •

29 66 66 66 66 264

30 Yes 66 66 66 66 264

31 0.25 0.25 0.25 0.25 1

• • • • • •

• • • • • •

• • • • • •

35 0.25 0.25 0.25 0.25 1

7.9.18 String Operations
String operations are performed using CRBasic string functions, as listed in String
Functions (p. 548).

7.9.18.1 String Operators
The table String Operators (p. 275) lists and describes available string operators.
String operators are case sensitive.

Table 46. String Operators

Operator Description

&

Concatenates strings. Forces numeric values to strings before
concatenation.
Example
1 & 2 & 3 & "a" & 5 & 6 & 7 = "123a567"

+

Adds numeric values until a string is encountered. When a string is
encountered, it is appended to the sum of the numeric values. Subsequent
numeric values are appended as strings.
Example:
1 + 2 + 3 + "a" + 5 + 6 + 7 = "6a567"

275

Section 7. Installation

Table 46. String Operators

Operator Description

-

"Subtracts" NULL ("") from the end of ASCII characters for conversion to
an ASCII code (LONG data type).
Example:
"a" - "" = 97

ASCII codes of the first characters in each string are compared. If the
difference between the codes is zero, codes for the next characters are
compared. When unequal codes or NULL are encountered (NULL
terminates all strings), the difference between the last compared ASCII
codes is returned.
Examples:
Note — ASCII code for a = 97, b = 98, c = 99, d = 100, e = 101, and all
strings end with NULL.
Difference between NULL and NULL
"abc" - "abc" = 0

Difference between e and c
"abe" - "abc" = 2

Difference between c and b
"ace" - "abe" = 1

Difference between d and NULL
"abcd" - "abc" = 100

<, >, <>, <=, >=, =

ASCII codes of the first characters in each string are compared. If the
difference between the codes is zero, codes for the next characters are
compared. When unequal codes or NULL are encountered (NULL
terminates all strings), the requested comparison is made. If the comparison
is true, -1 or True is returned. If false, 0 or False is returned.
Examples:

Expression Result

x = "abc" = "abc" x = -1 or True
x = "abe" = "abc" x = 0 or False
x = "ace" > "abe" x = -1 or True

7.9.18.2 String Concatenation
Concatenation is the building of strings from other strings ("abc123"), characters
("a" or chr()), numbers, or variables. The table String Concatenation Examples (p.
276) lists some expressions and expected results. CRBasic example Concatenation
of Numbers and Strings (p. 277) demonstrates several concatenation examples.

When non-string values are concatenated with strings, once a string is
encountered, all subsequent operands will first be converted to a string before the
+ operation is performed. When working with strings, exclusive use of the &
operator ensures that no string value will be converted to an integer.

276

Section 7. Installation

Table 47. String Concatenation Examples
Expression Comments Result

Str(1) = 5.4 + 3 + " Volts" Add floats, concatenate strings "8.4 Volts"

Str(2) = 5.4 & 3 & " Volts" Concatenate floats and strings "5.43 Volts"

Lng(1) = "123" Convert string to long 123

Lng(2) = 1+2+"3" Add floats to string / convert to long 33

Lng(3) = "1"+2+3 Concatenate string and floats 123

Lng(4) = 1&2&"3" Concatenate floats and string 123

CRBasic Example 58. Concatenation of Numbers and Strings

'This program example demonstrates the concatenation of numbers and strings to variables
'declared As Float and As String.
'
'Declare Variables
Public Num(12) As Float
Public Str(2) As String
Dim I

BeginProg
 Scan(1,Sec,0,0)

 I = 0 'Set I to zero

 'Data type of the following destination variables is Float
 'because Num() array is declared As Float.
 I += 1 'Increment I by 1 to clock through sequential elements of the Num() array

 'As shown in the following expression, if all parameter are numbers, the result
 'of using '+' is a sum of the numbers:
 Num(I) = 2 + 3 + 4 '= 9

 'Following are examples of using '+' and '*' when one or more parameters are strings.
 'Parameters are processed in the standard order of operations. In the order of
 'operation, once a string or an '&' is processed, all following parameters will
 'be processed (concatenated) as strings:
 I += 1
 Num(I) = "1" + 2 + 3 + 4 '= 1234
 I += 1
 Num(I) = 1 + "2" + 3 + 4 '= 1234
 I += 1
 Num(I) = 1 + 2 + "3" + 4 '= 334
 I += 1
 Num(I) = 1 + 2 + 3 + "4" '= 64

277

Section 7. Installation

 I += 1
 Num(I) = 1 + 2 + "3" + 4 + 5 + "6" '= 33456
 I += 1
 Num(I) = 1 + 2 + "3" + (4 + 5) + "6" '= 3396
 I += 1
 Num(I) = 1 + 2 + "3" + 4 * 5 + "6" '= 33206
 I += 1
 Num(I) = 1 & 2 + 3 + 4 '= 1234
 I += 1
 Num(I) = 1 + 2 + 3 & 4 '= 64

 'If a non-numeric string is attempted to be processed into a float destination,
 'operations are truncated at that point
 I += 1
 Num(I) = 1 + 2 + "hey" + 4 + 5 + "6" '= 3
 I += 1
 Num(I) = 1 + 2 + "hey" + (4 + 5) + "6" '= 3

 'The same rules apply when the destination is of data type String, except in the
 'case wherein a non-numeric string is encountered as follows. Data type of the
 'following destination variables is String because Str() array is declared As String.
 I = 0

 I += 1
 Str(I) = 1 + 2 + "hey" + 4 + 5 + "6" '= 3hey456
 I += 1
 Str(I) = 1 + 2 + "hey" + (4 + 5) + "6" '= 3hey96

 NextScan
EndProg

7.9.18.3 String NULL Character
All strings are automatically NULL terminated. NULL is the same as Chr(0) or
"", counts as one of the characters in the string. Assignment of just one character
is that character followed by a NULL, unless the character is a NULL.

Table 48. String NULL Character Examples
Expression Comments Result

LongVar(5) = "#"-"" Subtract NULL, ASCII code results 35

LongVar(6) = StrComp("#","") Also subtracts NULL 35

Example:

Objective:

Insert a NULL character into a string, and then reconstitute the string.

Given:
StringVar(3) = "123456789"

Execute:
StringVar(3,1,4) = "" "123<NULL>56789"

Results:
StringVar(4) = StringVar(3) "123"

278

Section 7. Installation

but,
StringVar(3) still = "123<NULL>56789",

so,
StringVar(5) = StringVar(3,1,4+1)
'"56789"
StringVar(6) = StringVar(3) + 4 + StringVar(3,1,4+1)
'"123456789"

Some smart sensors send strings containing NULL characters. To manipulate a
string that has NULL characters within it (in addition to being terminated with
another NULL), use MoveBytes() instruction.

7.9.18.4 Inserting String Characters
Example:

Objective:

Use MoveBytes() to change "123456789" to "123A56789"

Given:
StringVar(7) = "123456789" 'Result is
"123456789"

try (does not work):
StringVar(7,1,4) = "A" 'Result is
"123A<NULL>56789"

Instead, use:
StringVar(7) = MoveBytes(Strings(7,1,4),0,"A",0,1) 'Result is
"123A56789"

7.9.18.5 Extracting String Characters
A specific character in the string can be accessed by using the "dimensional"
syntax; that is, when the third dimension of a string is specified, the third
dimension is the character position.

Table 49. Extracting String Characters
Expression Comments Result

StringVar(3) = "Go Jazz" Loads string into variable StringVar(3) = "Go Jazz"

StringVar(4) = StringVar(3,1,4) Extracts single character StringVar(4) = "J"

7.9.18.6 String Use of ASCII / ANSII Codes

Table 50. Use of ASCII / ANSII Codes Examples
Expression Comments Result

LongVar (7) = ASCII("#") 35

LongVar (8) = ASCII("*") 42

279

Section 7. Installation

Table 50. Use of ASCII / ANSII Codes Examples
Expression Comments Result

LongVar (9) = "#"
Cannot be converted to Long with
NULL NAN

LongVar (1) = "#"-""
Can be converted to Long without
NULL 35

7.9.18.7 Formatting Strings

Table 51. Formatting Strings Examples
Expression Result

Str(1)=123e4
Str(2)=FormatFloat(123e4,"%12.2f")
Str(3)=FormatFloat(Values(2)," The battery is %.3g Volts ")
Str(4)=Strings(3,1,InStr(1,Strings(3),"The battery is ",4))
Str(5)=Strings(3,1,InStr(1,Strings(3),"is ",2) + 3)

1230000
1230000.00
“The battery is 12.4 Volts”
12.4 Volts
12.4 Volts

Str(6)=Replace("The battery is 12.4 Volts"," is "," = ")
Str(7)=LTrim("The battery is 12.4 Volts")
Str(8)=RTrim("The battery is 12.4 Volts")
Str(9)=Trim("The battery is 12.4 Volts")
Str(10)=UpperCase("The battery is 12.4 Volts")

The battery = 12.4 Volts
The battery is 12.4 Volts
The battery is 12.4 Volts
The battery is 12.4 Volts
THE BATTERY IS 12.4 VOLTS

Str(12)=Left("The battery is 12.4 Volts",5)
Str(13)=Right("The battery is 12.4 Volts",7)

The b
Volts

CRBasic Example 59. Formatting Strings
'This program example demonstrates the formatting of string variables. To run the
'demonstration, send this program to the CR800. String formatting will occur
'automatically.

'Objective:
'Extract "12.4 Volts" from the string "The battery is 12.4 Volts"

Public StringVar As String

BeginProg
 'Note line continuation character _
 StringVar() = Mid("The battery is 12.4 Volts", _
 InStr(1,"The battery is 12.4 Volts"," is ",2)+3,Len("The battery is 12.4 Volts"))
EndProg

7.9.18.8 Formatting String Hexadecimal Variables

Table 52. Formatting Hexadecimal Variables — Examples
Expression Comment Result

CRLFNumeric(1) = &H0d0a Add leading zero to hex step 1 3338

StringVar(20) = "0" & Hex(CRLFNumeric) Add leading zero to hex step 2 0D0A

CRLFNumeric(2) = HexToDec(Strings(20)) Convert Hex string to Float 3338.00

280

Section 7. Installation

7.9.19 Subroutines
A subroutine is a group of programming instructions that is called by, but runs
outside of, the main program. Subroutines are used for the following reasons:

• To reduce program length. Subroutine code can be executed multiple times
in a program scan.

• To ease integration of proven code segments into new programs.
• To compartmentalize programs to improve organization.

By executing the Call() instruction, the main program can call a subroutine from
anywhere in the program.

A subroutine has access to all global variables (p. 490). Variables local (p. 493) to a
subroutine are declared within the subroutine instruction. Local variables can be
aliased (as of 4/2013; OS 26) but are not displayed in the Public table. Global
and local variables can share the same name and not conflict. If global variables
are passed to local variables of different type, the same type conversion rules
apply as apply to conversions among variables declared as Public or Dim. See
Expressions with Numeric Data Types (p. 160) for conversion types.

Note To avoid programming conflicts, pass information into local variables and /
or define some global variables and use them exclusively by a subroutine.

CRBasic example Subroutine with Global and Local Variables (p. 281) shows the
use of global and local variables. Variables counter() and pi_product are global.
Variable i_sub is global but used exclusively by subroutine process. Variables j()
and OutVar are local since they are declared as parameters in the Sub()
instruction,

Sub process(j(4) AS Long,OutVar).

Variable j() is a four-element array and variable OutVar is a single-element
array. The call statement,

Call ProcessSub (counter(1),pi_product)

passes five values into the subroutine: pi_product and four elements of array
counter(). Array counter() is used to pass values into, and extract values from,
the subroutine. The variable pi_product is used to extract a value from the
subroutine.

Call() passes the values of all listed variables into the subroutine. Values are
passed back to the main scan at the end of the subroutine.

CRBasic Example 60. Subroutine with Global and Local Variables
'This program example demonstrates the use of global and local variables with subroutines.
'
'Global variables are those declared anywhere in the program as Public or Dim.
'Local variables are those declared in the Sub() instruction.

'Program Function: Passes two variables to a subroutine. The subroutine increments each
'variable once per second, multiplies each by pi, then passes results back to the main
'program for storage in a data table.

281

Section 7. Installation

'Global variables (Used only outside subroutine by choice)
'Declare Counter in the Main Scan.
Public counter(2) As Long

'Declare Product of PI * counter(2).
Public pi_product(2) As Float

'Global variable (Used only in subroutine by choice)
'For / Next incrementor used in the subroutine.
Public i_sub As Long

'Declare Data Table
DataTable(pi_results,True,-1)
 Sample(1,counter(),IEEE4)
EndTable

'Declare Subroutine
'Declares j(4) as local array (can only be used in subroutine)
Sub ProcessSub (j(2) As Long,OutVar(2) As Float)
 For i_sub = 1 To 2
 j(i_sub) = j(i_sub) + 1
 'Processing to show functionality
 OutVar(i_sub) = j(i_sub) * 4 * ATN(1) '(Tip: 4 * ATN(1) = pi to IEEE4 precision)
 Next i_sub
EndSub

BeginProg
 counter(1) = 1
 counter(2) = 2
 Scan(1,Sec,0,0)

 'Pass Counter() array to j() array, pi_pruduct() to OutVar()
 Call ProcessSub (counter(),pi_product())
 CallTable pi_results

 NextScan
EndProg

7.9.20 TCP/IP — Details
Related Topics:
 • TCP/IP — Overview (p. 90)
 • TCP/IP — Details (p. 402)
 • TCP/IP — Instructions (p. 567)
 • TCP/IP Links — List (p. 629)

The following TCP/IP protocols are supported by the CR800 when using network-
links (p. 629) that use the resident IP stack or when using a cell modem with the
PPP/IP key enabled. More information on some of these protocols is in the
following sections.

• DHCP
• DNS
• FTP
• HTML
• HTTP

282

Section 7. Installation

•
• Micro-serial server
• NTCIP
• NTP
• PakBus over TCP/IP
• Ping
• POP3
• SMTP
• SNMP
• Telnet
• Web API (p. 402)
• XML

The most up-to-date information on implementing these protocols is contained in
CRBasic Editor Help. For a list of CRBasic instructions, see the appendix
TCP/IP (p. 567).

Read More Specific information concerning the use of digital-cellular modems
for TCP/IP can be found in Campbell Scientific manuals for those modems. For
information on available TCP/IP/PPP devices, refer to the appendix Network
Links (p. 629) for model numbers. Detailed information on use of TCP/IP/PPP
devices is found in their respective manuals (available at www.campbellsci.com
http://www.campbellsci.com) and CRBasic Editor Help.

7.9.20.1 PakBus Over TCP/IP and Callback
Once the hardware has been configured, basic PakBus® communication over
TCP/IP is possible. These functions include the following:

• Sending programs
• Retrieving programs
• Setting the CR800 clock
• Collecting data
• Displaying the current record in a data table

Data callback and datalogger-to-datalogger communications are also possible over
TCP/IP. For details and example programs for callback and datalogger-to-
datalogger communications, see the network-link manual. A listing of network-
link model numbers is found in the appendix Network Links (p. 629).

7.9.20.2 Default HTTP Web Server
The CR800 has a default home page built into the operating system. The home
page can be accessed using the following URL:

http:\\ipaddress:80

Note Port 80 is implied if the port is not otherwise specified.

As shown in the figure, Preconfigured HTML Home Page (p. 284), this page
provides links to the newest record in all tables, including the Status table, Public
table, and data tables. Links are also provided for the last 24 records in each data
table. If fewer than 24 records have been stored in a data table, the link will
display all data in that table.

283

http://www.campbellsci.com/

Section 7. Installation

Newest-Record links refresh automatically every 10 seconds. Last 24-Records
link must be manually refreshed to see new data. Links will also be created
automatically for any HTML, XML, and JPEG files found on the CR800 drives.
To copy files to these drives, choose File Control from the datalogger support
software (p. 485) menu.

Figure 73. Preconfigured HTML Home Page

7.9.20.3 Custom HTTP Web Server
Although the default home page cannot be accessed for editing, it can be replaced
with the HTML code of a customized web page. To replace the default home
page, save the new home page under the name default.html and copy it to the
datalogger. It can be copied to a CR800 drive with File Control. Deleting
default.html will cause the CR800 to use the original, default home page.

The CR800 can be programmed to generate HTML or XML code that can be
viewed by a web browser. CRBasic example HTML (p. 286) shows how to use the
CRBasic instructions WebPageBegin() / WebPageEnd and HTTPOut() to
create HTML code. Note that for HTML code requiring the use of quotation
marks, CHR(34) is used, while regular quotation marks are used to define the
beginning and end of alphanumeric strings inside the parentheses of the
HTTPOut() instruction. For additional information, see the CRBasic Editor Help.

In this example program, the default home page is replaced by using
WebPageBegin to create a file called default.html. The new default home page
created by the program appears as shown in the figure Home Page Created using
WebPageBegin() Instruction (p. 285).

The Campbell Scientific logo in the web page comes from a file called
SHIELDWEB2.JPG that must be transferred from the PC to the CR800 CPU:
drive using File Control in the datalogger support software.

284

Section 7. Installation

A second web page, shown in figure Customized Numeric-Monitor Web Page (p.
285) called "monitor.html" was created by the example program that contains links
to the CR800 data tables.

Figure 74. Home Page Created Using WebPageBegin() Instruction

Figure 75. Customized Numeric-Monitor Web Page

285

Section 7. Installation

CRBasic Example 61. Custom Web Page HTML
'This program example demonstrates the creation of a custom web page that resides in the
'CR800. In this example program, the default home page is replaced by using WebPageBegin to
'create a file called default.html. The graphic in the web page (in this case, the Campbell
'Scientific logo) comes from a file called SHIELDWEB2.JPG. The graphic file must be copied to
'the CR800 CPU: drive using File Control in the datalogger support software. A second web
'page is created that contains links to the CR800 data tables.

'NOTE: The "_" character used at the end of some lines allows a code statement to be wrapped
'to the next line.

Dim Commands As String * 200
Public Time(9), RefTemp,
Public Minutes As String, Seconds As String, Temperature As String

DataTable(CRTemp,True,-1)
 DataInterval(0,1,Min,10)
 Sample(1,RefTemp,FP2)
 Average(1,RefTemp,FP2,False)
EndTable

'Default HTML Page
WebPageBegin("default.html",Commands)
 HTTPOut("<html>")
 HTTPOut("<style>body {background-color: oldlace}</style>")
 HTTPOut("<body><title>Campbell Scientific CR800 Datalogger</title>")
 HTTPOut("<h2>Welcome To the Campbell Scientific CR800 Web Site!</h2>")
 HTTPOut("<tr><td style=" + CHR(34) +"width: 290px" + CHR(34) + ">")
 HTTPOut("")
 HTTPOut("<img src="+ CHR(34) +"/CPU/SHIELDWEB2.jpg"+ CHR(34) + "width=" + _
 CHR(34) +"128"+CHR(34)+"height="+CHR(34)+"155"+ CHR(34) + "class=" + _
 CHR(34) +"style1"+ CHR(34) +"/></td>")
 HTTPOut("<p><h2> Current Data:</h2></p>")
 HTTPOut("<p>Time: " + time(4) + ":" + minutes + ":" + seconds + "</p>")
 HTTPOut("<p>Temperature: " + Temperature + "</p>")
 HTTPOut("<p><h2> Links:</h2></p>")
 HTTPOut("<p>Monitor</p>")
 HTTPOut("</body>")
 HTTPOut("</html>")
WebPageEnd

'Monitor Web Page
WebPageBegin("monitor.html",Commands)
 HTTPOut("<html>")
 HTTPOut("<style>body {background-color: oldlace}</style>")
 HTTPOut("<body>")
 HTTPOut("<title>Monitor CR800 Datalogger Tables</title>")
 HTTPOut("<p><h2>CR800 Data Table Links</h2></p>")
 HTTPOut("<p><a href="+ CHR(34) + "command=TableDisplay&table=CRTemp&records=10" + _
 CHR(34)+">Display Last 10 Records from DataTable CR1Temp</p>")
 HTTPOut("<p><a href="+ CHR(34) + "command=NewestRecord&table=CRTemp"+ CHR(34) + _
 ">Current Record from CRTemp Table</p>")
 HTTPOut("<p><a href="+ CHR(34) + "command=NewestRecord&table=Public"+ CHR(34) + _
 ">Current Record from Public Table</p>")

286

Section 7. Installation

 HTTPOut("<p><a href="+ CHR(34) + "command=NewestRecord&table=Status" + CHR(34) + _
 ">Current Record from Status Table</p>")
 HTTPOut("
<p>Back to the Home Page _
 </p>")
 HTTPOut("</body>")
 HTTPOut("</html>")
WebPageEnd

BeginProg
 Scan(1,Sec,3,0)
 PanelTemp(RefTemp,250)
 RealTime(Time())
 Minutes = FormatFloat(Time(5),"%02.0f")
 Seconds = FormatFloat(Time(6),"%02.0f")
 Temperature = FormatFloat(RefTemp, "%02.02f")
 CallTable(CRTemp)
 NextScan
EndProg

7.9.20.4 FTP Server
The CR800 automatically runs an FTP server. This allows Windows® Explorer® to
access the CR800 file system with FTP, with drives on the CR800 being mapped
into directories or folders. The root directory on the CR800 can be any drive, but
the USR: drive is usually preferred. USR: is a drive created by allocating memory
in the USR: Drive Size box on the Deployment | Advanced tab of the CR800
service in DevConfig. Files can be copied / pasted between drives. Files can be
deleted through FTP.

7.9.20.5 FTP Client
The CR800 can act as an FTP client to send a file or get a file from an FTP server,
such as another datalogger or web camera. This is done using the CRBasic
FTPClient() instruction. Refer to a manual for a Campbell Scientific network
link (see the appendix Network Links (p. 629)), available at www.campbellsci.com,
or CRBasic Editor Help for details and sample programs.

7.9.20.6 Telnet
Telnet is used to access the same commands that are available through the support
software terminal emulator (p. 504). Start a Telnet session by opening a DOS
command prompt and type in:

Telnet xxx.xxx.xxx.xxx <Enter>

where xxx.xxx.xxx.xxx is the IP address of the network device connected to the
CR800.

7.9.20.7 SNMP
Simple Network Management Protocol (SNMP) is a part of the IP suite used by
NTCIP and RWIS for monitoring road conditions. The CR800 supports SNMP
when a network device is attached.

287

Section 7. Installation

7.9.20.8 Ping (IP)
Ping can be used to verify that the IP address for the network device connected to
the CR800 is reachable. To use the Ping tool, open a command prompt on a
computer connected to the network and type in:

ping xxx.xxx.xxx.xxx <Enter>

where xxx.xxx.xxx.xxx is the IP address of the network device connected to the
CR800.

7.9.20.9 Micro-Serial Server
The CR800 can be configured to allow serial communication over a TCP/IP port.
This is useful when communicating with a serial sensor over Ethernet with micro-
serial server (third-party serial to Ethernet interface) to which the serial sensor is
connected. See the network-link manual and the CRBasic Editor Help for the
TCPOpen() instruction for more information. Information on available network
links is available in the appendix Network Links (p. 629).

7.9.20.10 Modbus TCP/IP
The CR800 can perform Modbus communication over TCP/IP using the Modbus
TCP/IP interface. To set up Modbus TCP/IP, specify port 502 as the ComPort in
the ModBusMaster() and ModBusSlave() instructions. See the CRBasic Editor
Help for more information. See Modbus (p. 391).

7.9.20.11 DHCP
When connected to a server with a list of IP addresses available for assignment,
the CR800 will automatically request and obtain an IP address through the
Dynamic Host Configuration Protocol (DHCP). Once the address is assigned, use
DevConfig, PakBusGraph, Connect, or the CR1000KD Keyboard Display to look
in the CR800 Status table to see the assigned IP address. This is shown under the
field name IPInfo.

7.9.20.12 DNS
The CR800 provides a Domain Name Server (DNS) client that can query a DNS
server to determine if an IP address has been mapped to a hostname. If it has, then
the hostname can be used interchangeably with the IP address in some datalogger
instructions.

7.9.20.13 SMTP
Simple Mail Transfer Protocol (SMTP) is the standard for e-mail transmissions.
The CR800 can be programmed to send e-mail messages on a regular schedule or
based on the occurrence of an event.

7.9.21 Wind Vector
The WindVector() instruction processes wind-speed and direction measurements
to calculate mean speed, mean vector magnitude, and mean vector direction over a
data-storage interval. Measurements from polar (wind speed and direction) or

288

Section 7. Installation

orthogonal (fixed East and North propellers) sensors are supported. Vector
direction and standard deviation of vector direction can be calculated weighted or
unweighted for wind speed.

7.9.21.1 OutputOpt Parameters
In the CR800 WindVector() instruction, the OutputOpt parameter defines the
processed data that are stored. All output options result in an array of values, the
elements of which have _WVc(n) as a suffix, where n is the element number. The
array uses the name of the Speed/East variable as its base. Table OutputOpt
Options (p. 289) lists and describes OutputOpt options.

Table 53. WindVector() OutputOpt Options
Option Description (WVc() is the Output Array)

0

WVc(1): Mean horizontal wind speed (S)
WVc(2): Unit vector mean wind direction (Θ1)
WVc(3): Standard deviation of wind direction σ(Θ1). Standard deviation is
calculated using the Yamartino algorithm. This option complies with EPA
guidelines for use with straight-line Gaussian dispersion models to model plume
transport.

1
WVc(1): Mean horizontal wind speed (S)
WVc(2): Unit vector mean wind direction (Θ1)

2

WVc(1): Mean horizontal wind speed (S)
WVc(2): Resultant mean horizontal wind speed (U)
WVc(3): Resultant mean wind direction (Θu)
WVc(4): Standard deviation of wind direction σ(Θu). This standard deviation is
calculated using Campbell Scientific's wind speed weighted algorithm. Use of the
resultant mean horizontal wind direction is not recommended for straight-line
Gaussian dispersion models, but may be used to model transport direction in a
variable-trajectory model.

3 WVc(1): Unit vector mean wind direction (Θ1)

4

WVc(1): Unit vector mean wind direction (Θ1)
WVc(2): Standard deviation of wind direction σ(Θu). This standard deviation is
calculated using Campbell Scientific's wind speed weighted algorithm. Use of the
resultant mean horizontal wind direction is not recommended for straight-line
Gaussian dispersion models, but may be used to model transport direction in a
variable-trajectory model.

7.9.21.2 Wind Vector Processing
WindVector() uses a zero-wind-speed measurement when processing scalar wind
speed only. Because vectors require magnitude and direction, measurements at
zero wind speed are not used in vector speed or direction calculations. This
means, for example, that manually-computed hourly vector directions from 15
minute vector directions will not agree with CR800-computed hourly vector
directions. Correct manual calculation of hourly vector direction from 15 minute
vector directions requires proper weighting of the 15 minute vector directions by
the number of valid (non-zero wind speed) wind direction samples.

Note Cup anemometers typically have a mechanical offset which is added to each
measurement. A numeric offset is usually encoded in the CRBasic program to
compensate for the mechanical offset. When this is done, a measurement will

289

Section 7. Installation

equal the offset only when wind speed is zero; consequently, additional code is
often included to zero the measurement when it equals the offset so that
WindVector() can reject measurements when wind speed is zero.

Standard deviation can be processed one of two ways: 1) using every sample
taken during the data storage interval (enter 0 for the Subinterval parameter), or
2) by averaging standard deviations processed from shorter sub-intervals of the
data-storage interval. Averaging sub-interval standard deviations minimizes the
effects of meander under light wind conditions, and it provides more complete
information for periods of transition (see EPA publication "On-site
Meteorological Program Guidance for Regulatory Modeling Applications").

Standard deviation of horizontal wind fluctuations from sub-intervals is calculated
as follows:

where: is the standard deviation over the data-storage interval, and

 are sub-interval standard deviations. A sub-interval is
specified as a number of scans. The number of scans for a sub-interval is given
by:

Desired sub-interval (secs) / scan rate (secs)

For example, if the scan rate is 1 second and the data-output interval is 60
minutes, the standard deviation is calculated from all 3600 scans when the sub-
interval is 0. With a sub-interval of 900 scans (15 minutes) the standard deviation
is the average of the four sub-interval standard deviations. The last sub-interval is
weighted if it does not contain the specified number of scans.

The EPA recommends hourly standard deviation of horizontal wind direction
(sigma theta) be computed from four fifteen-minute sub-intervals.

7.9.21.2.1 Measured Raw Data
• Si: horizontal wind speed
• Θi: horizontal wind direction
• Uei: east-west component of wind
• Uni: north-south component of wind
• N: number of samples

290

Section 7. Installation

7.9.21.2.2 Calculations
Input Sample Vectors

Figure 76. Input Sample Vectors

In figure Input Sample Vectors (p. 291), the short, head-to-tail vectors are the input
sample vectors described by si and Θi, the sample speed and direction, or by Uei
and Uni, the east and north components of the sample vector. At the end of data-
storage interval T, the sum of the sample vectors is described by a vector of
magnitude U and direction Θu. If the input sample interval is t, the number of
samples in data-storage interval T is N = T / t. The mean vector magnitude is Ū =
U / N.

Scalar mean horizontal wind speed, S:

where in the case of orthogonal sensors:

Unit vector mean wind direction,

where

or, in the case of orthogonal sensors

291

Section 7. Installation

where

Standard deviation of wind direction (Yamartino algorithm)

where,

and Ux and Uy are as defined above.

Mean Wind Vector
Resultant mean horizontal wind speed, Ū:

Figure 77. Mean Wind-Vector Graph

where for polar sensors:

or, in the case of orthogonal sensors:

Resultant mean wind direction, Θu:

292

Section 7. Installation

Standard deviation of wind direction, σ (Θu), using Campbell Scientific
algorithm:

The algorithm for σ (Θu) is developed by noting, as shown in the figure Standard
Deviation of Direction (p. 293), that

where

Standard Deviation of Direction

Figure 78. Standard Deviation of Direction

The Taylor Series for the Cosine function, truncated after 2 terms is:

For deviations less than 40 degrees, the error in this approximation is less than
1%. At deviations of 60 degrees, the error is 10%.

The speed sample can be expressed as the deviation about the mean speed,

Equating the two expressions for Cos (θ') and using the previous equation for si;

Solving for (Θi')2, one obtains;

Summing (Θi')2 over N samples and dividing by N yields the variance of Θu.

Note The sum of the last term equals 0.

The term,

is 0 if the deviations in speed are not correlated with the deviation in direction.
This assumption has been verified in tests on wind data by Campbell Scientific;

293

Section 7. Installation

the Air Resources Laboratory, NOAA, Idaho Falls, ID; and MERDI, Butte, MT.
In these tests, the maximum differences in

and

have never been greater than a few degrees.

The final form is arrived at by converting from radians to degrees (57.296
degrees/radian).

294

8. Operation
Related Topics
 • Quickstart (p. 41)
 • Specifications (p. 95)
 • Installation (p. 97)
 • Operation (p. 295)

8.1 Measurements — Details
Related Topics:
 • Sensors — Quickstart (p. 42)
 • Measurements — Overview (p. 62)
 • Measurements — Details (p. 295)
 • Sensors — Lists (p. 626)

Several features give the CR800 the flexibility to measure most sensor types.
Contact a Campbell Scientific application engineer if assistance is required in
assessing CR800 compatibility to a specific application or sensor type. Some
sensors require precision excitation or a source of power. See the section
Switched Voltage Output — Details (p. 101).

8.1.1 Time Keeping — Details
Related Topics:
 • Time Keeping — Overview (p. 75)
 • Time Keeping — Details (p. 295)

Measurement of time is an essential function of the CR800. Time measurement
with the on-board clock enables the CR800 to attach time stamps to data, measure
the interval between events, and time the initiation of control functions.

8.1.1.1 Time Stamps
A measurement without an accurate time reference has little meaning. Data on
the CR800 are stored with time stamps. How closely a time stamp corresponds to
the actual time a measurement is taken depends on several factors.

The time stamp in common CRBasic programs matches the time at the beginning
of the current scan as measured by the real-time clock in the CR800. If a scan
starts at 15:00:00, data output during that scan will have a time stamp of 15:00:00
regardless of the length of the scan or when in the scan a measurement is made.
The possibility exists that a scan will run for some time before a measurement is
made. For instance, a scan may start at 15:00:00, execute time-consuming code,
then make a measurement at 15:00:00.51. The time stamp attached to the
measurement, if the CallTable() instruction is called from within the Scan() /
NextScan construct, will be 15:00:00, resulting in a time-stamp skew of 510 ms.

Time-stamp skew is not a problem with most applications because,

• program execution times are usually short, so time stamp skew is only a few
milliseconds. Most measurement requirements allow for a few milliseconds
of skew.

295

Section 8. Operation

• data processed into averages, maxima, minima, and so forth are composites
of several measurements. Associated time stamps only reflect the time the
last measurement was made and processing calculations were completed, so
the significance of the exact time a specific sample was measured diminishes.

Applications measuring and storing sample data wherein exact time stamps are
required can be adversely affected by time-stamp skew. Skew can be avoided by

• Making measurements in the scan before time-consuming code.
• Programming the CR800 such that the time stamp reflects the system time

rather than the scan time. When CallTable() is executed from within the
Scan() / NextScan construct, as is normally done, the time stamp reflects
scan time. By executing the CallTable() instruction outside the Scan() /
NextScan construct, the time stamp will reflect system time instead of scan
time. CRBasic example Time Stamping with System Time (p. 296) shows the
basic code requirements. The DataTime() instruction is a more recent
introduction that facilitates time stamping with system time. See Data Table
Declarations (p. 514) and CRBasic Editor Help for more information.

CRBasic Example 62. Time Stamping with System Time
'This program example demonstrates the time stamping of data with system time instead of
'the default use of scan time (time at which a scan started).
'
'Declare Variables
Public value

'Declare data table
DataTable(Test,True,1000)
 Sample(1,Value,FP2)
EndTable

SequentialMode

BeginProg

 Scan(1,Sec,10,0)

 'Delay -- in an operational program, delay may be caused by other code
 Delay(1,500,mSec)

 'Measure Value -- can be any analog measurement
 PanelTemp(Value,0)

 'Immediately call SlowSequence to execute CallTable()
 TriggerSequence(1,0)

 NextScan

'Allow data to be stored 510 ms into the Scan with a s.51 time stamp
 SlowSequence
 Do
 WaitTriggerSequence
 CallTable(Test)
 Loop

EndProg

296

Section 8. Operation

Other time-processing CRBasic instructions are governed by these same rules.
Consult CRBasic Editor Help for more information on specific instructions.

8.1.2 Analog Measurements — Details
Related Topics:
 • Analog Measurements — Overview (p. 63)
 • Analog Measurements — Details (p. 297)

The CR800 measures the following sensor analog output types:

• Voltage

o Single-ended
o Differential

• Current (using a resistive shunt)
• Resistance
• Full-bridge
• Half-bridge

Sensor connection is to H/L] terminals configurable for differential (DIFF) or
single-ended (SE) inputs. For example, differential channel 1 is comprised of
terminals 1H and 1L, with 1H as high and 1L as low.

8.1.2.1 Voltage Measurements — Details
Related Topics:
 • Voltage Measurements — Specifications
 • Voltage Measurements — Overview (p. 63)
 • Voltage Measurements — Details (p. 297)

8.1.2.1.1 Voltage Measurement Mechanics
Measurement Sequence

An analog-voltage measurement, as illustrated in the figure Simplified Voltage
Measurement Sequence (p. 298), proceeds as follows:

1. Switch

2. Settle

3. Amplify

4. Integrate

5. A to D (successive approximation)

6. Measurement scaled with multiplier and offset

7. Scaled value placed in memory

297

Section 8. Operation

FIGURE. Simplified Voltage Measurement Sequence -- 8 10 30

Figure 79. Simplified voltage measurement sequence

Voltage measurements are made using a successive approximation A-to-D (p. 481)
converter to achieve a resolution of 14 bits. Prior to the A-to-D, a high
impedance programmable-gain instrumentation amplifier (PGIA) amplifies the
signal. See figure Programmable Gain Input Amplifier (PGIA) (p. 298). The
CRBasic program controls amplifier gain and configuration — either single-ended
input or differential input. Internal multiplexers route individual terminals to the
PGIA.

Timing of measurement tasks is precisely controlled. The measurement schedule
is determined at compile time and loaded into memory.

 Using two different voltage-measurement instructions with the same voltage
range takes about twice as long as using one instruction with two repetitions.

Parameters listed in table CRBasic Parameters Varying Measurement Sequence
and Timing (p. 299) vary sequence and timing of voltage measurement instructions.

Figure 80. Programmable Gain Input Amplifier (PGIA)

A voltage measurement proceeds as follows:

1. Set PGIA gain for the voltage range selected with the CRBasic measurement
instruction parameter Range.

2. Turn on excitation to the level selected with ExmV.

3. Multiplex selected terminals (InChan) to the PGIA and delay for the entered
settling time (SettlingTime).

4. Integrate the signal (see section Measurement Integration (p. 299)) and perform
the A-to-D conversion.

5. Repeat for excitation reversal and input reversal as determined by parameters
RevEx and RevDiff.

6. Apply multitplier (Mult) and offset (Offset) to measured result.

 The CR800 measures analog voltage by integrating the input signal for a fixed

298

Section 8. Operation

duration and then holding the integrated value during the successive
approximation analog-to-digital (A-to-D) conversion. The CR800 can make and
store measurements from up to three differential or six single-ended channels
configured from H/L terminals at the minimum scan interval of 10 ms (100 Hz)
using fast-measurement-programming techniques as discussed in Measurements:
Faster Analog Rates (p. 221). The maximum conversion rate is 2000 per second (2
kHz) for measurements made on a one single-ended channel.

Table 54. CRBasic Parameters Varying Measurement Sequence and
Timing

CRBasic Parameter Description

MeasOfs Correct ground offset on single-ended measurements.

SettlingTime Sensor input settling time.

Integ Duration of input signal integration.

RevDiff Reverse high and low differential inputs.

RevEx Reverse polarity of excitation voltage.

Measurement Integration

Integrating the signal removes noise that creates error in the measurement. Slow
integration removes more noise than fast integration. Integration time can be
modified to reject 50 Hz and 60 Hz mains-power line noise.

Fast integration may be preferred at times to,

• minimize time skew between successive measurements.
• maximize throughput rate.
• maximize life of the CR800 power supply.
• minimize polarization of polar sensors such as those for measuring

conductivity, soil moisture, or leaf wetness. Polarization may cause
measurement errors or sensor degradation.

improve accuracy of an LVDT measurement. The induced voltage in an LVDT
decays with time as current in the primary coil shifts from the inductor to the
series resistance; a long integration time may result in most of signal decaying
before the measurement is complete.

Single-Ended Measurements — Details

Related Topics:
 • Single-Ended Measurements — Overview (p. 65)
 • Single-Ended Measurements — Details (p. 299)

With reference to the figure Programmable Gain Input Amplifier (PGIA) (p. 298),
during a single-ended measurement, the high signal (H) is routed to V+. The low
signal (L) is automatically connected internally to signal ground with the low
signal tied to ground () at the wiring panel. V+ corresponds to odd or even
numbered SE terminals on the CR800 wiring panel. The single-ended
configuration is used with the following CRBasic instructions:

• VoltSE()
• BrHalf()

299

Section 8. Operation

• BrHalf3W()
• TCSE()
• Therm107()
• Therm108()
• Therm109()
• Thermistor()

Related Topics:
 • Differential Measurements — Overview (p. 66)
 • Differential Measurements — Details (p. 300)

Differential Measurements — Details
Using the figure Programmable Gain Input Amplifier (PGIA) (p. 298), for reference,
during a differential measurement, the high signal (H) is routed to V+ and the low
signal (L) is routed to V–.

 An H terminal of an H/L terminal pair differential corresponds to V+. The L
terminal corresponds to V–. The differential configuration is used with the
following CRBasic instructions:

• VoltDiff()
• BrFull()
• BrFull6W()
• BrHalf4W()
• TCDiff()

8.1.2.1.2 Voltage Measurement Limitations

Caution Sustained voltages in excess of ±8.6 V applied to terminals configured
for analog input can temporarily corrupt all analog measurements.

Warning Sustained voltages in excess of ±16 V applied to terminals configured
for analog input will damage CR800 circuitry.

Voltage Ranges

Related Topics:
 • Voltage Measurements — Specifications
 • Voltage Measurements — Overview (p. 63)
 • Voltage Measurements — Details (p. 297)

In general, use the smallest fixed-input range that accommodates the full-scale
output of the sensor. This results in the best measurement accuracy and resolution.
The CR6 has fixed input ranges for voltage measurements and an auto-range to
automatically determine the appropriate input voltage range for a given
measurement. The table Analog Voltage Input Ranges and Options (p. 301) lists
these input ranges and codes.

An approximate 9% range overhead exists on fixed input voltage ranges. In other
words, over-range on the ±2500 mV input range occurs at approximately 2725
mV and –2725 mV. The CR800 indicates a measurement over-range by returning
a NAN (not a number) for the measurement.

300

Section 8. Operation

Automatic Range Finding

For signals that do not fluctuate too rapidly, range argument AutoRange allows
the CR800 to automatically choose the voltage range. AutoRange makes two
measurements. The first measurement determines the range to use. It is made
with a 250 µs integration on the ±5000 mV range. The second measurement is
made using the range determined from the first. Both measurements use the
settling time entered in the SettlingTime parameter. Auto-ranging optimizes
resolution but takes longer than a measurement on a fixed range because of the
two-measurement sequences.

An auto-ranged measurement will return NAN ("not a number") if the voltage
exceeds the range picked by the first measurement. To avoid problems with a
signal on the edge of a range, AutoRange selects the next larger range when the
signal exceeds 90% of a range.

Use auto-ranging for a signal that occasionally exceeds a particular range, for
example, a type-J thermocouple measuring a temperature usually less than 476 °C
(±25 mV range) but occasionally as high as 500 °C (±250 mV range).
AutoRange should not be used for rapidly fluctuating signals, particularly signals
traversing multiple voltage ranges rapidly. The possibility exists that the signal
can change ranges between the internal range check and the actual measurement.

Table 55. Analog Voltage Input Ranges and Options
Range Code Description

mV5000 measures voltages between ±5000 mV

mV25001 measures voltages between ±2500 mV

mV2502 measures voltages between ±250 mV

mV252 measures voltages between ±25 mV

mV7_52 measures voltages between ±7.5 mV

mV2_52 measures voltages between ±2.5 mV

AutoRange3 datalogger determines the most suitable range

1 Append with C to enable common-mode null / open-input detect and set excitation to full-scale
(~2700 mV) (Example: mV2500)
2 Append with C to enable common-mode null / open-input detect (Example: mV25C)
3 Append with C to enable common-mode null / open-input detect on ranges ≤ ±250 mV, or just
common-mode null on ranges > ±250 mV (Example: AutoRangeC)

Input Limits / Common-Mode Range

Related Topics:
 • Voltage Measurements — Specifications
 • Voltage Measurements — Overview (p. 63)
 • Voltage Measurements — Details (p. 297)

Note This section contains advanced information not required for normal
operation of the CR800.

301

Section 8. Operation

Summary

• Voltage input limits for measurement are ±5 Vdc. Input Limits is the
specification listed in the section Specifications (p. 95).

• Common-mode range is not a fixed number. It varies with respect to the
magnitude of the input voltage.

• The CR800 has features that help mitigate some of the effects of signals that
exceed the Input Limits specification or the common-mode range.

With reference to the figure PGIA with Input-Signal Decomposition (p. 302), the
PGIA processes the voltage difference between V+ and V–. It ignores the
common-mode voltage, or voltages that are common to both inputs. The figure
shows the applied input voltage decomposed into a common-mode voltage (Vcm)
and the differential-mode component (Vdm) of a voltage signal. Vcm is the
average of the voltages on the V+ and V– inputs. So, Vcm = (V+ + V–)/2 or the
voltage remaining on the inputs when Vdm = 0. The total voltage on the V+ and
V– inputs is given as V+ = Vcm + Vdm/2, and V– = Vcm – Vdm/2, respectively.

The PGIA ignores or rejects common-mode voltages as long as voltages at V+
and V– are within the Input Limits specification, which for the CR6 is ±5 Vdc
relative to ground. Input voltages wherein V+ or V–, or both, are beyond the ±5
Vdc limit may suffer from undetected measurement errors. The Common-Mode
Range defines the range of common-mode voltages that are not expected to
induce undetected measurement errors. Common-Mode Range is different than
Input Limits when the differential mode voltage in non-negligible. The following
relationship is derived from the PGIA figure as:

Common-Mode Range = ±5 Vdc – |Vdm/2|.

The conclusion follows that the common-mode range is not a fixed number, but
instead decreases with increasing differential voltage. For differential voltages
that are small compared to the input limits, common-mode range is essentially
equivalent to Input Limits. Yet for a 5000 mV differential signal, the common-
mode range is reduced to ±2.5 Vdc, whereas Input Limits are always ±5 Vdc.
Consequently, the term Input Limits is used to specify the valid voltage range of
the V+ and V– inputs into the PGIA.

Figure 81. PGIA with Input-Signal Decomposition

–

302

Section 8. Operation

8.1.2.1.3 Voltage Measurement Quality
Read More Consult the following technical papers at www.campbellsci.com/app-
notes (http://www.campbellsci.com/app-notes) for in-depth treatments of several
topics addressing voltage measurement quality:
 • Preventing and Attacking Measurement Noise Problems
 • Benefits of Input Reversal and Excitation Reversal for Voltage Measurements
 • Voltage Measurement Accuracy, Self- Calibration, and Ratiometric
Measurements
 • Estimating Measurement Accuracy for Ratiometric Measurement Instructions.

The following topics discuss methods of generally improving voltage
measurements. Related information for special case voltage measurements
(thermocouples (p. 319), current loops (p. 319), resistance (p. 319), and strain (p. 324)) is
located in sections for those measurements.

Single-Ended or Differential?
Deciding whether a differential or single-ended measurement is appropriate is
usually, by far, the most important consideration when addressing voltage
measurement quality. The decision requires trade-offs of accuracy and precision,
noise cancelation, measurement speed, available measurement hardware, and
fiscal constraints.

In broad terms, analog voltage is best measured differentially because these
measurements include noise reduction features, listed below, that are not included
in single-ended measurements.

• Passive Noise Rejection

o No voltage reference offset
o Common-mode noise rejection, which filters capacitively coupled noise

• Active Noise Rejection

o Input reversal

̶ Review Input and Excitation Reversal (p. 317) for details
̶ Increases by twice the input reversal signal integration time

Reasons for using single-ended measurements, however, include:

• Not enough differential terminals available. Differential measurements use
twice as many H/L] terminals as do single-ended measurements.

• Rapid sampling is required. Single-ended measurement time is about half
that of differential measurement time.

• Sensor is not designed for differential measurements. Many Campbell
Scientific sensors are not designed for differential measurement, but the draw
backs of a single-ended measurement are usually mitigated by large
programmed excitation and/or sensor output voltages.

Sensors with a high signal-to-noise ratio, such as a relative-humidity sensor with a
full-scale output of 0 to 1000 mV, can normally be measured as single-ended
without a significant reduction in accuracy or precision.

Sensors with a low signal-to-noise ratio, such as thermocouples, should normally
be measured differentially. However, if the measurement to be made does not
require high accuracy or precision, such as thermocouples measuring brush-fire

303

http://www.campbellsci.com/app-notes

Section 8. Operation

temperatures, which can exceed 2500 °C, a single-ended measurement may be
appropriate. If sensors require differential measurement, but adequate input
terminals are not available, an analog multiplexer should be acquired to expand
differential input capacity. Refer to the appendix Analog Multiplexers (p. 622) for
information concerning available multiplexers.

Because a single-ended measurement is referenced to CR800 ground, any
difference in ground potential between the sensor and the CR800 will result in an
error in the measurement. For example, if the measuring junction of a copper-
constantan thermocouple being used to measure soil temperature is not insulated,
and the potential of earth ground is 1 mV greater at the sensor than at the point
where the CR800 is grounded, the measured voltage will be 1 mV greater than the
true thermocouple output, or report a temperature that is approximately 25 °C too
high. A common problem with ground-potential difference occurs in applications
wherein external, signal-conditioning circuitry is powered by the same source as
the CR800, such as an ac mains power receptacle. Despite being tied to the same
ground, differences in current drain and lead resistance may result in a different
ground potential between the two instruments. So, as a precaution, a differential
measurement should be made on the analog output from an external signal
conditioner; differential measurements MUST be used when the low input is
known to be different from ground.

Electronic Noise
Electronic "noise" can cause significant error in a voltage measurement,
especially when measuring voltages less than 200 mV. So long as input
limitations are observed, the PGIA ignores voltages, including noise, that are
common to each side of a differential-input pair. This is the common-mode
voltage. Ignoring (rejecting or canceling) the common-mode voltage is an
essential feature of the differential input configuration that improves voltage
measurements.

Figure PGIA with Input-Signal Decomposition (p. 302), illustrates the common-
mode component (Vcm) and the differential-mode component (Vdm) of a voltage
signal. Vcm is the average of the voltages on the V+ and V– inputs. So, Vcm =
(V+ + V–)/2 or the voltage remaining on the inputs when Vdm = 0. The total
voltage on the V+ and V– inputs is given as V+ = Vcm + Vdm/2, and VL = Vcm –
Vdm/2, respectively.

Measurement Accuracy

Read More For an in-depth treatment of accuracy estimates, see the technical
paper Measurement Error Analysis available at www.campbellsci.com/app-notes
(http://www.campbellsci.com/app-notes).

Accuracy describes the difference between a measurement and the true value.
Many factors affect accuracy. This section discusses the affect percent-or-
reading, offset, and resolution have on the accuracy of the measurement of an
analog-voltage sensor signal. Accuracy is defined as follows:

accuracy = percent-of-reading + offset

304

http://www.campbellsci.com/app-notes

Section 8. Operation

where percents-of-reading are tabulated in the table Analog-Voltage Measurement
Accuracy (p. 305), and offsets are tabulated in the table Analog-Voltage
Measurement Offsets (p. 305).

Note Error discussed in this section and error-related specifications of the CR800
do not include error introduced by the sensor or by the transmission of the sensor
signal to the CR800.

Table 56. Analog-Voltage Measurement Accuracy1
0 to 40 °C –25 to 50 °C –55 to 85 °C2

±(0.06% of reading + offset) ±(0.12% of reading + offset) ±(0.18% of reading + offset)

1 Assumes the CR800 is within factory specifications
2 Available only with purchased extended temperature option (-XT)

Table 57. Analog-Voltage Measurement Offsets
Differential Measurement

With Input Reversal
Differential Measurement
Without Input Reversal Single-Ended

1.5 • Basic Resolution + 1.0
µV

3 • Basic Resolution + 2.0 µV 3 • Basic Resolution + 3.0 µV

Note — the value for Basic Resolution is found in the table Analog-Voltage Measurement
Resolution (p. 305).

Table 58. Analog-Voltage Measurement Resolution

Input
Voltage Range

(mV)

Differential
Measurement

With Input Reversal
(µV)

Basic Resolution
(µV)

±5000 667 1333

±2500 333 667

±250 33.3 66.7

25 3.33 6.7

7.5 1.0 2.0

2.5 0.33 0.67

Note — see Specifications (p. 95) for a complete tabulation of measurement resolution

As an example, figure Voltage Measurement Accuracy Band Example (p. 306)
shows changes in accuracy as input voltage changes on the ±2500 input range.
Percent-of-reading is the principle component, so accuracy improves as input
voltage decreases. Offset is small, but could be significant in applications
wherein the sensor-signal voltage is very small, such as is encountered with
thermocouples.

Offset depends on measurement type and voltage-input range. Offsets equations
are tabulated in table Analog Voltage Measurement Offsets (p. 305). For example,
for a differential measurement with input reversal on the ±5000 mV input range,
the offset voltage is calculated as follows:

offset = 1.5 • Basic Resolution + 1.0 µV

305

Section 8. Operation

= (1.5 • 667 µV) + 1.0 µV

= 1001.5 µV

where Basic Resolution is the published resolution is taken from the table Analog-
Voltage Measurement Resolution (p. 305).

Figure 82. Example voltage measurement accuracy band, including the
effects of percent of reading and offset, for a differential measurement
with input reversal at a temperature between 0 to 40 °C.

Measurement Accuracy Example

The following example illustrates the effect percent-of-reading and offset have on
measurement accuracy. The effect of offset is usually negligible on large signals:

Example:

• Sensor-signal voltage: ≈2500 mV
• CRBasic measurement instruction: VoltDiff()
• Programmed input-voltage range (Range): mV2500 (±2500 mV)
• Input measurement reversal (RevDiff): True
• CR800 circuitry temperature: 10 °C

Accuracy of the measurement is calculated as follows:

accuracy = percent-of-reading + offset

306

Section 8. Operation

where

percent-of-reading = 2500 mV • ±0.06%

= ±1.5 mV

and

offset = (1.5 • 667 µV) + 1 µV

= 1.00 mV

Therefore,

accuracy = ±1.5 mV + 1.00 mV

= ±2.5 mV

Integration
The CR800 incorporates circuitry to perform an analog integration on voltages to
be measured prior to the A-to-D (p. 481) conversion. Integrating the the analog
signal removes noise that creates error in the measurement. Slow integration
removes more noise than fast integration. When the duration of the integration
matches the duration of one cycle of ac power mains noise, that noise is filtered
out. The table Analog Measurement Integration (p. 307) lists valid integration
duration arguments.

Faster integration may be preferred to achieve the following objectives:

• Minimize time skew between successive measurements
• Maximize throughput rate
• Maximize life of the CR800 power supply
• Minimize polarization of polar sensors such as those for measuring

conductivity, soil moisture, or leaf wetness. Polarization may cause
measurement errors or sensor degradation.

• Improve accuracy of an LVDT measurement. The induced voltage in an
LVDT decays with time as current in the primary coil shifts from the inductor
to the series resistance; a long integration may result in most of signal
decaying before the measurement is complete.

Read More See White Paper "Preventing and Attacking Measurement Noise
Problems" at www.campbellsci.com.

The magnitude of the frequency response of an analog integrator is a SIN(x)/x
shape, which has notches (transmission zeros) occurring at 1/(integer multiples) of
the integration duration. Consequently, noise at 1/(integer multiples) of the
integration duration is effectively rejected by an analog integrator. If reversing
the differential inputs or reversing the excitation is specified, there are two
separate integrations per measurement; if both reversals are specified, there are
four separate integrations.

307

Section 8. Operation

Table 59. Analog Measurement Integration

Integration Time (ms)
Integration Parameter

Argument

Comments

0 to 16000 µs 0 to 16000 250 µs is considered fast and
normally the minimum

16.667 ms _60Hz Filters 60 Hz noise

20 ms _50Hz Filters 50 Hz noise

Ac Power-Line Noise Rejection

Grid or mains power (50 or 60 Hz, 230 or 120 Vac) can induce electrical noise at
integer multiples of 50 or 60 Hz. Small analog voltage signals, such as
thermocouples and pyranometers, are particularly susceptible. CR800 voltage
measurements can be programmed to reject (filter) 50 Hz or 60 Hz related noise.
Noise is rejected by using a signal integration time that is relative to the length of
the ac noise cycle, as illustrated in the figure Ac Power-Line Noise Rejection
Techniques (p. 308).

FIGURE. Ac power line noise rejection techniques -- 8 10 30

Figure 83. Ac-Power Noise-Rejection Techniques

The CR800 rejects ac power line noise on all voltage ranges except mV5000 and
mV2500 by integrating the measurement over exactly one full ac cycle before A-
to-D (p. 481) conversion as listed in table ac Noise Rejection on Small Signals (p. 308).

308

Section 8. Operation

Table 60. Ac Noise Rejection on Small Signals1

Ac Power Line
Frequency

Measurement Integration
Duration CRBasic Integration Code

60 Hz 16.667 ms _60Hz

50 Hz 20 ms _50Hz

1 Applies to all analog input voltage ranges except mV2500 and mV5000.

If rejecting ac-line noise when measuring with the 2500 mV (mV2500) and 5000
mV (mV5000) ranges, the CR800 makes two fast measurements separated in time
by one-half line cycle. A 60 Hz half cycle is 8333 µs, so the second measurement
must start 8333 µs after the first measurement integration began. The A-to-D
conversion time is approximately 170 µs, leaving a maximum input-settling time
of approximately 8160 µs (8333 µs – 170 µs). If the maximum input-settling time
is exceeded, 60 Hz line-noise rejection will not occur. For 50 Hz rejection, the
maximum input settling time is approximately 9830 µs (10,000 µs – 170 µs). The
CR800 does not prevent or warn against setting the settling time beyond the half-
cycle limit. Table ac Noise Rejection on Large Signals (p. 309) lists details of the
half-cycle ac-power line-noise rejection technique.

Table 61. Ac Noise Rejection on Large Signals1

Ac-Power Line
Frequency

Measurement
Integration

Time

CRBasic
Integration

Code

Default
Settling

Time

Maximum
Recommended
Settling Time2

60 Hz 250 μs • 2 _60Hz 3000 μs 8330 μs

50 Hz 250 μs • 2 _50Hz 3000 μs 10000 μs

1 Applies to analog input voltage ranges mV2500 and mV5000.
2 Excitation time and settling time are equal in measurements requiring excitation. The CR800 cannot excite VX excitation
terminals during A-to-D conversion. The one-half-cycle technique with excitation limits the length of recommended excitation and
settling time for the first measurement to one-half-cycle. The CR800 does not prevent or warn against setting a settling time
beyond the one-half-cycle limit. For example, a settling time of up to 50000 µs can be programmed, but the CR800 will execute the
measurement as follows:
 1. CR800 turns excitation on, waits 50000 µs, and then makes the first measurement.
 2. During A-to-D, CR800 turns off excitation for ≈170 µs.
 3. Excitation is switched on again for one-half cycle, then the second measurement is made.
Restated, when the CR800 is programmed to use the half-cycle 50 Hz or 60 Hz rejection techniques, a sensor does not see a
continuous excitation of the length entered as the settling time before the second measurement — if the settling time entered is
greater than one-half cycle. This causes a truncated second excitation. Depending on the sensor used, a truncated second excitation
may cause measurement errors.

Signal-Settling Time
Settling time allows an analog voltage signal to settle closer to the true magnitude
prior to measurement. To minimize measurement error, signal settling is needed
when a signal has been affected by one or more of the following:

• A small transient originating from the internal multiplexing that connects a
CR800 terminal with measurement circuitry

• A relatively large transient induced by an adjacent excitation conductor on
the signal conductor, if present,because of capacitive coupling during a
bridge measurement

309

Section 8. Operation

• Dielectric absorption. 50 Hz or 60 Hz integrations require a relatively long
reset time of the internal integration capacitor before the next measurement.

The rate at which the signal settles is determined by the input settling-time
constant, which is a function of both the source resistance and fixed-input
capacitance (3.3 nfd) of the CR800.

Rise and decay waveforms are exponential. Figure Input Voltage Rise and
Transient Decay (p. 310) shows rising and decaying waveforms settling closer to the
true signal magnitude, Vso. The SettlingTime parameter of an analog
measurement instruction allows tailoring of measurement instruction settling
times with 100 µs resolution up to 50000 µs.

 Programmed settling time is a function of arguments placed in the SettlingTime
and Integ parameters of a measurement instruction. Argument combinations and
resulting settling times are listed in table CRBasic Measurement Settling Times (p.
310). Default settling times (those resulting when SettlingTime = 0) provide
sufficient settling in most cases. Additional settling time is often programmed
when measuring high-resistance (high-impedance) sensors or when sensors
connect to the input terminals by long leads.

Measurement time of a given instruction increases with increasing settling time.
For example, a 1 ms increase in settling time for a bridge instruction with input
reversal and excitation reversal results in a 4 ms increase in time for the CR800 to
perform the instruction.

Figure 84. Input-voltage rise and transient decay

Table 62. CRBasic Measurement Settling Times

SettlingTime
Argument

Integ
Argument

Resultant
Settling Time1

0 250 450 µs

0 _50Hz 3 ms

0 _60Hz 3 ms

integer ≥ 100 integer μs entered in SettlingTime
argument

1 450 µs is the minimum settling time required to meet CR800 resolution specifications.

310

Section 8. Operation

Settling Errors

When sensors require long lead lengths, use the following general practices to
minimize settling errors:

• Do not use wire with PVC-insulated conductors. PVC has a high dielectric
constant, which extends input settling time.

• Where possible, run excitation leads and signal leads in separate shields to
minimize transients.

• When measurement speed is not a prime consideration, additional time can be
used to ensure ample settling time. The settling time required can be
measured with the CR800.

• In difficult cases, settling error can be measured as described in section
Measuring Settling Time (p. 311).

Measuring Settling Time

Settling time for a particular sensor and cable can be measured with the CR800.
Programming a series of measurements with increasing settling times will yield
data that indicate at what settling time a further increase results in negligible
change in the measured voltage. The programmed settling time at this point
indicates the settling time needed for the sensor / cable combination.

CRBasic example Measuring Settling Time (p. 311) presents CRBasic code to help
determine settling time for a pressure transducer using a high-capacitance
semiconductor. The code consists of a series of full-bridge measurements
(BrFull()) with increasing settling times. The pressure transducer is placed in
steady-state conditions so changes in measured voltage are attributable to settling
time rather than changes in pressure. Reviewing the section Programming (p. 120)
may help in understanding the CRBasic code in the example.

The first six measurements are shown in table First Six Values of Settling-Time
Data (p. 313). Each trace in figure Settling Time for Pressure Transducer (p. 313)
contains all twenty PT() mV/V values (left axis) for a given record number, along
with an average value showing the measurements as percent of final reading (right
axis). The reading has settled to 99.5% of the final value by the fourteenth
measurement, which is contained in variable PT(14). This is suitable accuracy for
the application, so a settling time of 1400 µs is determined to be adequate.

311

Section 8. Operation

CRBasic Example 63. Measuring Settling Time
'This program example demonstrates the measurement of settling time using a single
'measurement instruction multiple times in succession. In this case, the program measures
'the temperature of the CR800 wiring panel.

Public RefTemp 'Declare variable to receive instruction

BeginProg
 Scan(1,Sec,3,0)
 PanelTemp(RefTemp, 250) 'Instruction to make measurement
 NextScan
EndProg measures the settling time of a sensor measured with a differential
'voltage measurement

Public PT(20) 'Variable to hold the measurements

DataTable(Settle,True,100)
 Sample(20,PT(),IEEE4)
EndTable

BeginProg
 Scan(1,Sec,3,0)

 BrFull(PT(1),1,mV7.5,1,Vx1,2500,True,True,100, 250,1.0,0)
 BrFull(PT(2),1,mV7.5,1,Vx1,2500,True,True,200, 250,1.0,0)
 BrFull(PT(3),1,mV7.5,1,Vx1,2500,True,True,300, 250,1.0,0)
 BrFull(PT(4),1,mV7.5,1,Vx1,2500,True,True,400, 250,1.0,0)
 BrFull(PT(5),1,mV7.5,1,Vx1,2500,True,True,500, 250,1.0,0)
 BrFull(PT(6),1,mV7.5,1,Vx1,2500,True,True,600, 250,1.0,0)
 BrFull(PT(7),1,mV7.5,1,Vx1,2500,True,True,700, 250,1.0,0)
 BrFull(PT(8),1,mV7.5,1,Vx1,2500,True,True,800, 250,1.0,0)
 BrFull(PT(9),1,mV7.5,1,Vx1,2500,True,True,900, 250,1.0,0)
 BrFull(PT(10),1,mV7.5,1,Vx1,2500,True,True,1000, 250,1.0,0)
 BrFull(PT(11),1,mV7.5,1,Vx1,2500,True,True,1100, 250,1.0,0)
 BrFull(PT(12),1,mV7.5,1,Vx1,2500,True,True,1200, 250,1.0,0)
 BrFull(PT(13),1,mV7.5,1,Vx1,2500,True,True,1300, 250,1.0,0)
 BrFull(PT(14),1,mV7.5,1,Vx1,2500,True,True,1400, 250,1.0,0)
 BrFull(PT(15),1,mV7.5,1,Vx1,2500,True,True,1500, 250,1.0,0)
 BrFull(PT(16),1,mV7.5,1,Vx1,2500,True,True,1600, 250,1.0,0)
 BrFull(PT(17),1,mV7.5,1,Vx1,2500,True,True,1700, 250,1.0,0)
 BrFull(PT(18),1,mV7.5,1,Vx1,2500,True,True,1800, 250,1.0,0)
 BrFull(PT(19),1,mV7.5,1,Vx1,2500,True,True,1900, 250,1.0,0)
 BrFull(PT(20),1,mV7.5,1,Vx1,2500,True,True,2000, 250,1.0,0)

 CallTable Settle

 NextScan
EndProg

312

Section 8. Operation

Figure 85. Settling Time for Pressure Transducer

Table 63. First Six Values of Settling-Time Data
TIMESTAMP REC PT(1) PT(2) PT(3) PT(4) PT(5) PT(6)

 Smp Smp Smp Smp Smp Smp

1/3/2000 23:34 0 0.03638599 0.03901386 0.04022673 0.04042887 0.04103531 0.04123745

1/3/2000 23:34 1 0.03658813 0.03921601 0.04002459 0.04042887 0.04103531 0.0414396

1/3/2000 23:34 2 0.03638599 0.03941815 0.04002459 0.04063102 0.04042887 0.04123745

1/3/2000 23:34 3 0.03658813 0.03941815 0.03982244 0.04042887 0.04103531 0.04103531

1/3/2000 23:34 4 0.03679027 0.03921601 0.04022673 0.04063102 0.04063102 0.04083316

Open-Input Detect

Note Much of the information in the following section is highly technical and is
not necessary for the routine operation of the CR800. The information is included
to foster a deeper understanding of the open-input detection feature of the CR800.

Summary
 • An option to detect an open-input, such as a broken sensor or loose connection,
is available in the CR800.
 • The option is selected by appending a C to the Range code.
 • Using this option, the result of a measurement on an open connection will be
NAN (not a number).

A useful option available to single-ended and differential measurements is the
detection of open inputs due to a broken or disconnected sensor wire. This
prevents otherwise undetectable measurement errors. Range codes appended with
C enable open-input detect for all input ranges except the ±5000 mV input range
(see table Analog Voltage Input Ranges with CMN / OID (p. 301)).

313

Section 8. Operation

Appending the Range code with a C results in a 50 µs internal connection of the
V+ input of the PGIA to a large over-voltage. The V– input is connected to
ground. Upon disconnecting the inputs, the true input signal is allowed to settle
and the measurement is made normally. If the associated sensor is connected, the
signal voltage is measured. If the input is open (floating), the measurement will
over-range since the injected over-voltage will still be present on the input, with
NAN as the result.

Range codes and applicable over-voltage magnitudes are found in the table
Range-Code Option C Over-Voltages (p. 314).

The C option may not work, or may not work well, in the following applications:

• If the input is not a truly open circuit, such as might occur on a wet cut cable
end, the open circuit may not be detected because the input capacitor
discharges through external leakage to ground to a normal voltage within the
settling time of the measurement. This problem is worse when a long settling
time is selected, as more time is given for the input capacitors to discharge to
a "normal" level.

• If the open circuit is at the end of a very long cable, the test pulse (300 mV)
may not charge the cable (with its high capacitance) up to a voltage that
generates NAN or a distinct error voltage. The cable may even act as an aerial
and inject noise which also might not read as an error voltage.

• The sensor may "object" to the test pulse being connected to its output, even
for 100 µs. There is little or no risk of damage, but the sensor output may be
caused to temporarily oscillate. Programming a longer settling time in the
CRBasic measurement instruction to allow oscillations to decay before the A-
to-D conversion may mitigate the problem.

Table 64. Range-Code Option C Over-Voltages
Input Range Over-Voltage

±2.5 mV
±7.5 mV
±25 mV
±250 mV

300 mV

±2500 mV C option with caveat1

±5000 mV C option not available

1C results in the H terminal being briefly connected to a voltage greater than 2500 mV, while the
L terminal is connected to ground. The resulting common-mode voltage is 1250 mV, which is not
adequate to null residual common-mode voltage, but is adequate to facilitate a type of open-input
detect. This requires inclusion of an If / Then / Else statement in the CRBasic program to test the
results of the measurement. For example:
•The result of a VoltDiff() measurement using mV2500C as the Range code can be tested for a
result >2500 mV, which would indicate an open input.
•The result of the BrHalf() measurement, X, using the mV2500C range code can be tested for
values >1. A result of X > 1 indicates an open input for the primary measurement, V1, where X =
V1/Vx and Vx is the excitation voltage. A similar strategy can be used with other bridge
measurements.

314

Section 8. Operation

Offset Voltage Compensation

Related Topics
 • Auto Calibration — Overview (p. 91)
 • Auto Calibration — Details (p. 326)
 • Auto-Calibration — Errors (p. 466)
 • Offset Voltage Compensation (p. 315)
 • Factory Calibration (p. 92)
 • Factory Calibration or Repair Procedure (p. 452)

Summary
Measurement offset voltages are unavoidable, but can be minimized.

Offset voltages originate with:
 • Ground currents
 • Seebeck effect
 • Residual voltage from a previous measurement

Remedies include:
 • Connect power grounds to power ground terminals (G)
 • Use input reveral (RevDiff = True) with differential measurements
 • Automatic offset compensation for differential measurements when RevDiff =
False
 • Automatic offset compensation for single-ended measurements when MeasOff
= False
 • Better offset compensation when MeasOff = True
 • Excitation reversal (RevEx = True)
 • Longer settling times

Voltage offset can be the source of significant error. For example, an offset of 3
μV on a 2500 mV signal causes an error of only 0.00012%, but the same offset on
a 0.25 mV signal causes an error of 1.2%. The primary sources of offset voltage
are ground currents and the Seebeck effect.

Single-ended measurements are susceptible to voltage drop at the ground terminal
caused by return currents from another device that is powered from the CR800
wiring panel, such as another manufacturer's telecommunication modem, or a
sensor that requires a lot of power. Currents >5 mA are usually undesirable. The
error can be avoided by routing power grounds from these other devices to a
power ground G terminal on the CR800 wiring panel, rather than using a signal
ground () terminal. Ground currents can be caused by the excitation of
resistive-bridge sensors, but these do not usually cause offset error. These
currents typically only flow when a voltage excitation is applied. Return currents
associated with voltage excitation cannot influence other single-ended
measurements because the excitation is usually turned off before the CR800
moves to the next measurement. However, if the CRBasic program is written in
such a way that an excitation terminal is enabled during an unrelated measurement
of a small voltage, an offset error may occur.

The Seebeck effect results in small thermally induced voltages across junctions of
dissimilar metals as are common in electronic devices. Differential measurements
are more immune to these than are single-ended measurements because of passive
voltage cancelation occurring between matched high and low pairs such as
1H/1L. So use differential measurements when measuring critical low-level

315

Section 8. Operation

voltages, especially those below 200 mV, such as are output from pyranometers
and thermocouples. Differential measurements also have the advantage of an
input reversal option, RevDiff. When RevDiff is True, two differential
measurements are made, the first with a positive polarity and the second reversed.
Subtraction of opposite polarity measurements cancels some offset voltages
associated with the measurement.

Single-ended and differential measurements without input reversal use an offset
voltage measurement with the PGIA inputs grounded. For differential
measurements without input reversal, this offset voltage measurement is
performed as part of the routine auto-calibration of the CR800. Single-ended
measurement instructions VoltSE() and TCSe() MeasOff parameter determines
whether the offset voltage measured is done at the beginning of measurement
instruction, or as part of self-calibration. This option provides you with the
opportunity to weigh measurement speed against measurement accuracy. When
MeasOff = True, a measurement of the single-ended offset voltage is made at the
beginning of the VoltSE() instruction. When MeasOff = False, an offset voltage
measurement is made during self-calibration. For slowly fluctuating offset
voltages, choosing MeasOff = True for the VoltSE() instruction results in better
offset voltage performance.

Ratiometric measurements use an excitation voltage or current to excite the sensor
during the measurement process. Reversing excitation polarity also reduces offset
voltage error. Setting the RevEx parameter to True programs the measurement
for excitation reversal. Excitation reversal results in a polarity change of the
measured voltage so that two measurements with opposite polarity can be
subtracted and divided by 2 for offset reduction similar to input reversal for
differential measurements. Ratiometric differential measurement instructions
allow both RevDiff and RevEx to be set True. This results in four measurement
sequences:

• positive excitation polarity with positive differential input polarity
• negative excitation polarity with positive differential input polarity
• positive excitation polarity with negative differential input polarity
• positive excitation polarity then negative excitation differential input polarity

For ratiometric single-ended measurements, such as a BrHalf(), setting RevEx =
True results in two measurements of opposite excitation polarity that are
subtracted and divided by 2 for offset voltage reduction. For RevEx = False for
ratiometric single-ended measurements, an offset-voltage measurement is made
during the self-calibration.

When analog voltage signals are measured in series by a single measurement
instruction, such as occurs when VoltSE() is programmed with Reps = 2 or more,
measurements on subsequent terminals may be affected by an offset, the
magnitude of which is a function of the voltage from the previous measurement.
While this offset is usually small and negligible when measuring large signals,
significant error, or NAN, can occur when measuring very small signals. This
effect is caused by dielectric absorption of the integrator capacitor and cannot be
overcome by circuit design. Remedies include the following:

• Program longer settling times
• Use an individual instruction for each input terminal, the effect of which is to

reset the integrator circuit prior to integration.

316

Section 8. Operation

• Avoid preceding a very small voltage input with a very large voltage input in
a measurement sequence if a single measurement instruction must be used.

The table Offset-Voltage Compensation Options (p. 317) lists some of the tools
available to minimize the effects of offset voltages.

Table 65. Offset Voltage Compensation Options

CRBasic
Measurement

Instruction
Input Reversal
(RevDiff =True)

Excitation
Reversal

(RevEx = True)

Measure
Offset During
Measurement

(MeasOff = True)

Measure Offset
During Background

Calibration
(RevDiff = False)
(RevEx = False)

(MeasOff = False)

VoltDiff()  

VoltSe()  

TCDiff()  

TCSe()  

BrHalf()  

BrHalf3W()  

Therm107()  

Therm108()  

Therm109()  

BrHalf4W()   

BrFull()   

BrFull6W()   

AM25T()   

Input and Excitation Reversal

Reversing inputs (differential measurements) or reversing polarity of excitation
voltage (bridge measurements) cancels stray voltage offsets. For example, if 3
µV offset exists in the measurement circuitry, a 5 mV signal is measured as 5.003
mV. When the input or excitation is reversed, the second sub-measurement is –
4.997 mV. Subtracting the second sub-measurement from the first and then
dividing by 2 cancels the offset:

5.003 mV – (–4.997 mV) = 10.000 mV
10.000 mV / 2 = 5.000 mV

When the CR800 reverses differential inputs or excitation polarity, it delays the
same settling time after the reversal as it does before the first sub-measurement.
So, there are two delays per measurement when either RevDiff or RevEx is used.
If both RevDiff and RevEx are True, four sub-measurements are performed;
positive and negative excitations with the inputs one way and positive and
negative excitations with the inputs reversed. The automatic procedure then is as
follows,

317

Section 8. Operation

1. Switches to the measurement terminals

2. Sets the excitation, and then settle, and then measure

3. Reverse the excitation, and then settles, and then measure

4. Reverse the excitation, reverse the input terminals, settle, measure

5. Reverse the excitation, settle, measure

There are four delays per measure. The CR800 processes the four sub-
measurements into the reported measurement. In cases of excitation reversal,
excitation time for each polarity is exactly the same to ensure that ionic sensors do
not polarize with repetitive measurements.

Read More A white paper entitled "The Benefits of Input Reversal and
Excitation Reversal for Voltage Measurements" is available at
www.campbellsci.com.

Ground Reference Offset Voltage

When MeasOff is enabled (= True), the CR800 measures the offset voltage of the
ground reference prior to each VoltSe() or TCSe() measurement. This offset
voltage is subtracted from the subsequent measurement.

From Background Calibration

If RevDiff, RevEx, or MeasOff is disabled (= False), offset voltage compensation
is continues to be automatically performed, albeit less effectively, by using
measurements from the automatic background calibration. Disabling RevDiff,
RevEx, or MeasOff speeds up measurement time; however, the increase in speed
comes at the cost of accuracy because of the following:

1 RevDiff, RevEx, and MeasOff are more effective.

2 Background calibrations are performed only periodically, so more time skew
occurs between the background calibration offsets and the measurements to
which they are applied.

Note When measurement duration must be minimal to maximize measurement
frequency, consider disabling RevDiff, RevEx, and MeasOff when CR800
module temperatures and return currents are slow to change.

Time Skew Between Measurements
Time skew between consecutive voltage measurements is a function of settling
and integration times, A-to-D conversion, and the number entered into the Reps
parameter of the VoltDiff() or VoltSE() instruction. A close approximation is:

time skew = settling time + integration time + A-to-D conversion time1 +
reps2

1 A-to-D conversion time, which equals 15 µs.
2 If Reps > 1 (multiple measurements by a single instruction), no additional time
is required. If Reps = 1 in consecutive voltage instructions, add 15 µs per
instruction.

318

Section 8. Operation

8.1.2.2 Thermocouple Measurements —- Details
Related Topics:
 • Thermocouple Measurements — Details
 • Thermocouple Measurements — Instructions

Thermocouple measurements are special case voltage measurements.

Note Thermocouples are inexpensive and easy to use. However, despite the use
of a thermocouple in the Quickstart Tutorial (p. 41), the CR800 is not designed for
accurate thermocouple measurement when thermocouples are attached directly to
the wiring panel.

CR800 design features that cause thermocouple measurement inaccuracy include:

• lack of an insulating wiring-terminal cover.
• no high-thermal mass element incorporated in the wiring panel.
• position of the on-board reference thermistor in the wiring panel is not

optimal.

The absence of these design features causes significant error in the reference
junction temperature measurement.

If the CR800 must be used for thermocouple measurements, and those
measurements must be better than roughly 5 degrees in accuracy, an external
reference junction, such as a multiplexer (p. 622), should be used. In addition, you
should carefully evaluate relevant parts of the Thermocouple Measurements
section of the CR1000 Datalogger Operator's Manual, which is available at
www.campbellsci.com/manuals (http://www.campbellsci.com/manuals).

8.1.2.3 Current Measurements — Details
Related Topics:
 • Current Measurements — Overview (p. 66)
 • Current Measurements — Details (p. 319)

For a complete treatment of current-loop sensors (4 to 20 mA, for example),
please consult the following publications available at www.campbellsci.com/app-
notes (http://www.campbellsci.com/app-notes):

• Current Output Transducers Measured with Campbell Scientific Dataloggers
(2MI-B)

• CURS100 100 Ohm Current Shunt Terminal Input Module

8.1.2.4 Resistance Measurements — Details
Related Topics:
 • Resistance Measurements — Specifications
 • Resistance Measurements — Overview (p. 66)
 • Resistance Measurements — Details (p. 319)
 • Resistance Measurements — Instructions (p. 525)

By supplying a precise and known voltage to a resistive-bridge circuit and
measuring the returning voltage, resistance can be calculated.

319

http://www.campbellsci.com/manuals
http://www.campbellsci.com/app-notes

Section 8. Operation

CRBasic instructions for measuring resistance include:

BrHalf() — half-bridge
BrHalf3W() — three-wire half-bridge
BrHalf4W() — four-wire half-bridge
BrFull() — four-wire full-bridge
BrFull6W() — six-wire full-bridge

Read More Available resistive-bridge completion modules are listed in the
appendix Signal Conditioners (p. 623).

The CR800 has five CRBasic bridge-measurement instructions. Table Resistive-
Bridge Circuits with Voltage Excitation (p. 320) shows ideal circuits and related
equations. In the diagrams, resistors labeled Rs are normally the sensors and those
labeled Rf are normally precision fixed (static) resistors. CRBasic example Four-
Wire Full-Bridge Measurement (p. 322) lists CRBasic code that measures and
processes four-wire full-bridge circuits.

Offset voltages compensation applies to bridge measurements. In addition to
RevDiff and MeasOff parameters discussed in the section Offset Voltage
Compensation (p. 315), CRBasic bridge measurement instructions include the
RevEx parameter that provides the option to program a second set of
measurements with the excitation polarity reversed. Much of the offset error
inherent in bridge measurements is canceled out by setting RevDiff, MeasOff, and
RevEx to True.

Measurement speed can be slowed when using RevDiff, MeasOff, and RevEx.
When more than one measurement per sensor are necessary, such as occur with
the BrHalf3W(), BrHalf4W(), and BrFull6W instructions, input and excitation
reversal are applied separately to each measurement. For example, in the four-
wire half-bridge (BrHalf4W()), when excitation is reversed, the differential
measurement of the voltage drop across the sensor is made with excitation at both
polarities and then excitation is again applied and reversed for the measurement of
the voltage drop across the fixed resistor. Further, the results of measurement
instructions (X) must be processed further to obtain the resistance value. This
processing requires additional program execution time.

320

Section 8. Operation

Table 66. Resistive-Bridge Circuits with Voltage Excitation

Resistive-Bridge Type and
Circuit Diagram

CRBasic Instruction and
Fundamental Relationship

Other
Relationships

Half-Bridge1

CRBasic Instruction: BrHalf()

Fundamental Relationship2:

Three-Wire Half-Bridge1,3

CRBasic Instruction: BrHalf3W()

Fundamental Relationship2:

Four-Wire Half-Bridge1,3

CRBasic Instruction: BrHalf4W()

Fundamental Relationship2:

321

Section 8. Operation

Table 66. Resistive-Bridge Circuits with Voltage Excitation

Resistive-Bridge Type and
Circuit Diagram

CRBasic Instruction and
Fundamental Relationship

Other
Relationships

Full-Bridge1,3

CRBasic Instruction: BrFull()

Fundamental Relationship2:

These relationships apply to BrFull() and
BrFull6W().

Six-Wire Full-Bridge1

CRBasic Instruction: BrFull6W()

Fundamental Relationship2:

1Key: Vx = excitation voltage; V1, V2 = sensor return voltages; Rf = "fixed", "bridge" or "completion" resistor; Rs = "variable" or "sensing" resistor.
2Where X = result of the CRBasic bridge measurement instruction with a multiplier of 1 and an offset of 0.
3See the appendix Resistive Bridge Modules (p. 623) for a list of available terminal input modules to facilitate this measurement.

322

Section 8. Operation

CRBasic Example 64. Four-Wire Full-Bridge Measurement and Processing
'This program example demonstrates the measurement and processing of a four-wire resistive
'full bridge. In this example, the default measurement stored in variable X is
'deconstructed to determine the resistance of the R1 resistor, which is the variable
'resistor in most sensors that have a four-wire full-bridge as the active element.

'Declare Variables
Public X
Public X1
Public R1
Public R2 = 1000 'Resistance of fixed resistor R2
Public R3 = 1000 'Resistance of fixed resistor R2
Public R4 = 1000 'Resistance of fixed resistor R4

'Main Program
BeginProg
 Scan(500,mSec,1,0)

 'Full Bridge Measurement:
 BrFull(X,1,mV2500,1,Vx1,1,2500,True,True,0,_60Hz,1.0,0.0)
 X1 = ((-1 * X) / 1000) + (R3 / (R3 + R4))
 R1 = (R2 * (1 - X1)) / X1

 NextScan
EndProg

8.1.2.4.1 Ac Excitation
Some resistive sensors require ac excitation. Ac excitation is defined as excitation
with equal positive (+) and negative (–) duration and magnitude. These include
electrolytic tilt sensors, soil moisture blocks, water-conductivity sensors, and
wetness-sensing grids. The use of single polarity dc excitation with these sensors
can result in polarization of sensor materials and the substance measured.
Polarization may cause erroneous measurement, calibration changes, or rapid
sensor decay.

Other sensors, for example, LVDTs (linear variable differential transformers),
require ac excitation because they require inductive coupling to provide a signal.
Dc excitation in an LVDT will result in no measurement.

CRBasic bridge-measurement instructions have the option to reverse polarity to
provide ac excitation by setting the RevEx parameter to True.

Note Take precautions against ground loops when measuring sensors that require
ac excitation. See Ground Looping in Ionic Measurements (p. 107).

8.1.2.4.2 Resistance Measurements — Accuracy
Read More Consult the following technical papers at www.campbellsci.com/app-
notes (http://www.campbellsci.com/app-notes) for in-depth treatments of several
topics addressing voltage measurement quality:
 • Preventing and Attacking Measurement Noise Problems
 • Benefits of Input Reversal and Excitation Reversal for Voltage Measurements
 • Voltage Measurement Accuracy, Self- Calibration, and Ratiometric
Measurements
 • Estimating Measurement Accuracy for Ratiometric Measurement Instructions.

323

http://www.campbellsci.com/app-notes

Section 8. Operation

Note Error discussed in this section and error-related specifications of the CR800
do not include error introduced by the sensor or by the transmission of the sensor
signal to the CR800.

The accuracy specifications for ratiometric-resistance measurements are
summarized in the tables Ratiometric-Resistance Measurement Accuracy (p. 324).

Table 67. Ratiometric-Resistance Measurement Accuracy
–25 to 50 °C

±(0.04% of voltage measurement + offset)1

1Voltage measurement is variable V1 or V2 in the table Resistive-Bridge Circuits with Voltage
Excitation (p. 320). Offset is the same as that for simple analog-voltage measurements. See the
table Analog-Voltage Measurement Offsets (p. 305).

Assumptions that support the ratiometric-accuracy specification include:

• CR800 is within factory calibration specification.
• Excitation voltages less than 1000 mV are reversed during the excitation

phase of the measurement.
• Effects due to the following are not included in the specification:

o Bridge-resistor errors
o Sensor noise
o Measurement noise

For a tighter treatment of the accuracy of ratiometric measurements, consult the
technical paper Estimating Measurement Accuracy for Ratiometric Measurement
Instructions., which should be available at www.campbellsci.com/app-notes
(http://www.campbellsci.com/app-notes) in June of 2015.

8.1.2.5 Strain Measurements — Details
Related Topics:
 • Strain Measurements — Overview (p. 68)
 • Strain Measurements — Details (p. 324)
 • FieldCalStrain() Examples (p. 216)

A principal use of the four-wire full bridge is the measurement of strain gages in
structural stress analysis. StrainCalc() calculates microstrain (µε) from the
formula for the particular strain bridge configuration used. All strain gages
supported by StrainCalc() use the full-bridge schematic. In strain-gage parlance,
'quarter-bridge', 'half-bridge' and 'full-bridge' refer to the number of active
elements in the full-bridge schematic. In other words, a quarter-bridge strain gage
has one active element, a half-bridge has two, and a full-bridge has four.

StrainCalc() requires a bridge-configuration code. The table StrainCalc()
Instruction Equations (p. 325) shows the equation used by each configuration code.
Each code can be preceded by a dash (-). Use a code without the dash when the
bridge is configured so the output decreases with increasing strain. Use a dashed
code when the bridge is configured so the output increases with increasing strain.
In the equations in table StrainCalc() Instruction Equations (p. 325), a dashed code

324

http://www.campbellsci.com/app-notes

Section 8. Operation

sets the polarity of Vr to negative.

Table 68. StrainCalc() Instruction Equations
StrainCalc()

BrConfig Code

Configuration

1

Quarter-bridge strain gage:

2

Half-bridge strain gage. One gage parallel to strain, the other at 90° to
strain.

3

Half-bridge strain gage. One gage parallel to + , the other parallel to -
:

4

Full-bridge strain gage. Two gages parallel to + , the other two parallel
to - :

5

Full-bridge strain gage. Half the bridge has two gages parallel to + and
- , and the other half to + and - :

6

Full-bridge strain gage. Half the bridge has two gages parallel to + and
- , and the other half to - and + :

where:

• : Poisson's Ratio (0 if not applicable)
• GF: Gage Factor
• Vr: 0.001 (Source-Zero) if BRConfig code is positive (+)
• Vr: –0.001 (Source-Zero) if BRConfig code is negative (–)

and where:

• "source": the result of the full-bridge measurement (X = 1000 • V1 / Vx) when
multiplier = 1 and offset = 0.

• "zero": gage offset to establish an arbitrary zero (see FieldCalStrain() in
FieldCal() Examples (p. 207)).

325

Section 8. Operation

StrainCalc Example: See FieldCalStrain() Examples (p. 216)

8.1.2.6 Auto-Calibration — Details

Related Topics
 • Auto Calibration — Overview (p. 91)
 • Auto Calibration — Details (p. 326)
 • Auto-Calibration — Errors (p. 466)
 • Offset Voltage Compensation (p. 315)
 • Factory Calibration (p. 92)
 • Factory Calibration or Repair Procedure (p. 452)

The CR800 auto-calibrates to compensate for changes caused by changing
operating temperatures and aging. With auto-calibration disabled, measurement
accuracy over the operational temperature range is specified as less accurate by a
factor of 10. That is, over the extended temperature range of –40 °C to 85 °C, the
accuracy specification of ±0.12% of reading can degrade to ±1% of reading with
auto-calibration disabled. If the temperature of the CR800 remains the same,
there is little calibration drift if auto-calibration is disabled. Auto-calibration can
become disabled when the scan rate is too small. It can be disabled by the
CRBasic program when using the Calibrate() instruction.

Note The CR800 is equipped with an internal voltage reference used for
calibration. The voltage reference should be periodically checked and re-
calibrated by Campbell Scientific for applications with critical analog voltage
measurement requirements. A minimum two-year recalibration cycle is
recommended.

Unless a Calibrate() instruction is present, the CR800 automatically auto-
calibrates during spare time in the background as an automatic slow sequence (p.
155) with a segment of the calibration occurring every four seconds. If there is
insufficient time to do the background calibration because of a scan-consuming
user program, the CR800 will display the following warning at compile time:
Warning: Background calibration is disabled.

8.1.2.6.1 Auto Calibration Process
The composite transfer function of the PGIA (p. 298) and A-to-D (p. 481) converter of
the CR800 is described by the following equation:

COUNTS = G • Vin + B

where COUNTS is the result from an A-to-D conversion, G is the voltage gain for
a given input range, Vin is the input voltage connected to V+ and V–, and B is the
internally measured offset voltage.

Automatic self-calibration calibrates only the G and B values necessary to run a
given CRBasic program, resulting in a program dependent number of self-
calibration segments ranging from a minimum of 6 to a maximum of 91. A
typical number of segments required in self-calibration is 20 for analog ranges and
one segment for the wiring-panel temperature measurement, totaling 21 segments.
So, (21 segments) • (4 s / segment) = 84 s per complete self-calibration. The

326

Section 8. Operation

worst-case is (91 segments) • (4 s / segment) = 364 s per complete self-calibration.

During instrument power-up, the CR800 computes calibration coefficients by
averaging ten complete sets of self-calibration measurements. After power up,
newly determined G and B values are low-pass filtered as follows:

Next_Value = (1/5) • (new value) + (4/5) • (old value)

This results in the following settling percentages:

• 20% for 1 new value,
• 49% for 3 new values
• 67% for 5 new values
• 89% for 10 new values
• 96% for 14 new values

If this rate of update is too slow, the Calibrate() instruction can be used. The
Calibrate() instruction computes the necessary G and B values every scan
without any low-pass filtering.

For a VoltSe() instruction, B is determined as part of self-calibration only if the
parameter MeasOff = 0. An exception is B for VoltSe() on the ±2500 input range
with a 250 µs integration, which is always determined in self-calibration for use
internally. For a VoltDiff() instruction, B is determined as part of self-calibration
only if the parameter RevDiff = 0.

VoltSe() and VoltDiff() instructions, on a given input range with the same
integration durations, use the same G values but different B values. The six input-
voltage ranges (±5000 mV, ±2500 mV, ±250 mV, and ±25 mV), in combination
with the three most common integration durations (250 µs, 50 Hz half-cycle, and
60 Hz half-cycle) result in a maximum of 18 different gains (G), and 18 offsets for
VoltSe() measurements (B), and 18 offsets for VoltDiff() measurements (B) to be
determined during CR800 self-calibration (maximum of 54 values). These values
can be viewed in the Status table, with entries identified as listed in table Status
Table Calibration Entries (p. 328).

Automatic self-calibration can be overridden with the Calibrate() instruction,
which forces a calibration for each execution, and does not employ low-pass
filtering on the newly determined G and B values. The Calibrate() instruction
has two parameters: CalRange and Dest. CalRange determines whether to
calibrate only the necessary input ranges for a given CRBasic program (CalRange
= 0) or to calibrate all input ranges (CalRange ≠ 0). The Dest parameter should
be of sufficient dimension for all returned G and B values, which is a minimum of
two for the automatic self-calibration of VoltSE() including B (offset) for the
±2500 mV input range with first 250 µs integration, and a maximum of 54 for all
input-voltage ranges used and possible integration durations.

An example use of the Calibrate() instruction programmed to calibrate all input
ranges is given in the following CRBasic code snip:

'Calibrate(Dest,Range)
Calibrate(cal(1),true)

where Dest is an array of 54 variables, and Range ≠ 0 to calibrate all input ranges.
Results of this command are listed in the table Calibrate() Instruction Results (p.
329).

327

Section 8. Operation

Table 69. Auto Calibration Gains and Offsets

Status Table
Element

Descriptions of Status Table Elements

Differential (Diff)
Single-Ended (SE) Offset or Gain ±mV Input

Range Integration

CalGain(1) Gain 5000 250 ms

CalGain(2) Gain 2500 250 ms

CalGain(3) Gain 250 250 ms

CalGain(4) Gain 25 250 ms

CalGain(5) Gain 7.5 250 ms

CalGain(6) Gain 2.5 250 ms

CalGain(7) Gain 5000 60 Hz Rejection

CalGain(8) Gain 2500 60 Hz Rejection

CalGain(9) Gain 250 60 Hz Rejection

CalGain(10) Gain 25 60 Hz Rejection

CalGain(11) Gain 7.5 60 Hz Rejection

CalGain(12) Gain 2.5 60 Hz Rejection

CalGain(13) Gain 5000 50 Hz Rejection

CalGain(14) Gain 2500 50 Hz Rejection

CalGain(15) Gain 250 50 Hz Rejection

CalGain(16) Gain 25 50 Hz Rejection

CalGain(17) Gain 7.5 50 Hz Rejection

CalGain(18) Gain 2.5 50 Hz Rejection

CalSeOffset(1) SE Offset 5000 250 ms

CalSeOffset(2) SE Offset 2500 250 ms

CalSeOffset(3) SE Offset 250 250 ms

CalSeOffset(4) SE Offset 25 250 ms

CalSeOffset(5) SE Offset 7.5 250 ms

CalSeOffset(6) SE Offset 2.5 250 ms

CalSeOffset(7) SE Offset 5000 60 Hz Rejection

CalSeOffset(8) SE Offset 2500 60 Hz Rejection

CalSeOffset(9) SE Offset 250 60 Hz Rejection

CalSeOffset(10) SE Offset 25 60 Hz Rejection

CalSeOffset(11) SE Offset 7.5 60 Hz Rejection

CalSeOffset(12) SE Offset 2.5 60 Hz Rejection

CalSeOffset(13) SE Offset 5000 50 Hz Rejection

CalSeOffset(14) SE Offset 2500 50 Hz Rejection

CalSeOffset(15) SE Offset 250 50 Hz Rejection

328

Section 8. Operation

Table 69. Auto Calibration Gains and Offsets

Status Table
Element

Descriptions of Status Table Elements

Differential (Diff)
Single-Ended (SE) Offset or Gain ±mV Input

Range Integration

CalSeOffset(16) SE Offset 25 50 Hz Rejection

CalSeOffset(17) SE Offset 7.5 50 Hz Rejection

CalSeOffset(18) SE Offset 2.5 50 Hz Rejection

CalDiffOffset(1) Diff Offset 5000 250 ms

CalDiffOffset(2) Diff Offset 2500 250 ms

CalDiffOffset(3) Diff Offset 250 250 ms

CalDiffOffset(4) Diff Offset 25 250 ms

CalDiffOffset(5) Diff Offset 7.5 250 ms

CalDiffOffset(6) Diff Offset 2.5 250 ms

CalDiffOffset(7) Diff Offset 5000 60 Hz Rejection

CalDiffOffset(8) Diff Offset 2500 60 Hz Rejection

CalDiffOffset(9) Diff Offset 250 60 Hz Rejection

CalDiffOffset(10) Diff Offset 25 60 Hz Rejection

CalDiffOffset(11) Diff Offset 7.5 60 Hz Rejection

CalDiffOffset(12) Diff Offset 2.5 60 Hz Rejection

CalDiffOffset(13) Diff Offset 5000 50 Hz Rejection

CalDiffOffset(14) Diff Offset 2500 50 Hz Rejection

CalDiffOffset(15) Diff Offset 250 50 Hz Rejection

CalDiffOffset(16) Diff Offset 25 50 Hz Rejection

CalDiffOffset(17) Diff Offset 7.5 50 Hz Rejection

CalDiffOffset(18) Diff Offset 2.5 50 Hz Rejection

Table 70. Calibrate() Instruction Results

Array
Cal()

Element

Descriptions of Array Elements
Typical Value Differential (Diff)

Single-Ended (SE) Offset or Gain ±mV Input
Range Integration

1 SE Offset 5000 250 ms ±5 LSB

2 Diff Offset 5000 250 ms ±5 LSB

3 Gain 5000 250 ms –1.34 mV/LSB

4 SE Offset 2500 250 ms ±5 LSB

5 Diff Offset 2500 250 ms ±5 LSB

6 Gain 2500 250 ms –0.67 mV/LSB

7 SE Offset 250 250 ms ±5 LSB

8 Diff Offset 250 250 ms ±5 LSB

9 Gain 250 250 ms –0.067 mV/LSB

329

Section 8. Operation

Table 70. Calibrate() Instruction Results

Array
Cal()

Element

Descriptions of Array Elements
Typical Value Differential (Diff)

Single-Ended (SE) Offset or Gain ±mV Input
Range Integration

10 SE Offset 25 250 ms ±5 LSB

11 Diff Offset 25 250 ms ±5 LSB

12 Gain 25 250 ms –0.0067 mV/LSB

13 SE Offset 7.5 250 ms ±10 LSB

14 Diff Offset 7.5 250 ms ±10 LSB

15 Gain 7.5 250 ms –0.002 mV/LSB

16 SE Offset 2.5 250 ms ±20 LSB

17 Diff Offset 2.5 250 ms ±20 LSB

18 Gain 2.5 250 ms –0.00067 mV/LSB

19 SE Offset 5000 60 Hz Rejection ±5 LSB

20 Diff Offset 5000 60 Hz Rejection ±5 LSB

21 Gain 5000 60 Hz Rejection –0.67 mV/LSB

22 SE Offset 2500 60 Hz Rejection ±5 LSB

23 Diff Offset 2500 60 Hz Rejection ±5 LSB

24 Gain 2500 60 Hz Rejection –0.34 mV/LSB

25 SE Offset 250 60 Hz Rejection ±5 LSB

26 Diff Offset 250 60 Hz Rejection ±5 LSB

27 Gain 250 60 Hz Rejection –0.067 mV/LSB

28 SE Offset 25 60 Hz Rejection ±5 LSB

29 Diff Offset 25 60 Hz Rejection ±5 LSB

30 Gain 25 60 Hz Rejection –0.0067 mV/LSB

31 SE Offset 7.5 60 Hz Rejection ±10 LSB

32 Diff Offset 7.5 60 Hz Rejection ±10 LSB

33 Gain 7.5 60 Hz Rejection –0.002 mV/LSB

34 SE Offset 2.5 60 Hz Rejection ±20 LSB

35 Diff Offset 2.5 60 Hz Rejection ±20 LSB

36 Gain 2.5 60 Hz Rejection –0.00067 mV/LSB

37 SE Offset 5000 50 Hz Rejection ±5 LSB

38 Diff Offset 5000 50 Hz Rejection ±5 LSB

39 Gain 5000 50 Hz Rejection –0.67 mV/LSB

40 SE Offset 2500 50 Hz Rejection ±5 LSB

41 Diff Offset 2500 50 Hz Rejection ±5 LSB

42 Gain 2500 50 Hz Rejection –0.34 mV/LSB

43 SE Offset 250 50 Hz Rejection ±5 LSB

330

Section 8. Operation

Table 70. Calibrate() Instruction Results

Array
Cal()

Element

Descriptions of Array Elements
Typical Value Differential (Diff)

Single-Ended (SE) Offset or Gain ±mV Input
Range Integration

44 Diff Offset 250 50 Hz Rejection ±5 LSB

45 Gain 250 50 Hz Rejection –0.067 mV/LSB

46 SE Offset 25 50 Hz Rejection ±5 LSB

47 Diff Offset 25 50 Hz Rejection ±5 LSB

48 Gain 25 50 Hz Rejection –0.0067 mV/LSB

49 SE Offset 7.5 50 Hz Rejection ±10 LSB

50 Diff Offset 7.5 50 Hz Rejection ±10 LSB

51 Gain 7.5 50 Hz Rejection –0.002 mV/LSB

52 SE Offset 2.5 50 Hz Rejection ±20 LSB

53 Diff Offset 2.5 50 Hz Rejection ±20 LSB

54 Gain 2.5 50 Hz Rejection –0.00067 mV/LSB

8.1.3 Pulse Measurements — Details
Related Topics:
 • Pulse Measurements — Specifications
 • Pulse Measurements — Overview (p. 68)
 • Pulse Measurements — Details (p. 331)
 • Pulse Measurements — Instructions (p. 527)

Read More Review the PULSE COUNTERS (p. 331) and Pulse on C Terminals
sections in CR800 Specifications (p. 95). Review pulse measurement programming
in CRBasic Editor Help for the PulseCount() and TimerIO() instructions.

Note Peripheral devices are available from Campbell Scientific to expand the
number of pulse-input channels measured by the CR800. Refer to the appendix
Measurement and Control Peripherals Lists (p. 348) for more information.

The figure Pulse-Sensor Output-Signal Types (p. 69) illustrates pulse signal types
measurable by the CR800:

• low-level ac
• high-frequency
• switch-closure

The figure Switch-Closure Schematic (p. 332) illustrates the basic internal circuit
and the external connections of a switch-closure pulse sensor. The table Pulse
Measurements: Terminals and Programming (p. 332) summarizes available
measurements, terminals available for those measurements, and the CRBasic
instructions used. The number of terminals configurable for pulse input is
determined from the table CR800 Terminal Definitions (p. 76).

331

Section 8. Operation

Figure 86. Pulse-Sensor Output-Signal Types

Figure 87. Switch-Closure Pulse Sensor

Figure 88. Terminals Configurable for Pulse Input

332

Section 8. Operation

Table 71. Pulse Measurements:, Terminals and Programming

Measurement
P

Terminals
C

Terminals
CRBasic

Instruction

Low-level ac, counts 

Pu
ls

eC
ou

nt
()

Low-level ac, Hz 

Low-level ac, running average 

High frequency, counts  

High frequency, Hz  

High frequency, running average  

Switch closure, counts  

Switch closure, Hz  

Switch closure, running average  

Calculated period 

T
im

er
IO

()

Calculated frequency 

Time from edge on previous port 

Time from edge on port 1 

Count of edges 

Pulse count, period 

Pulse count, frequency 

8.1.3.1 Pulse Measurement Terminals
P Terminals

• Input voltage range = –20 to 20 V

If pulse input voltages exceed ±20 V, third-party external-signal conditioners
should be employed. Contact a Campbell Scientific application engineer if
assistance is needed. Under no circumstances should voltages greater than 50 V
be measured.

C Terminals

• Input voltage range = –8 to 16 Vdc

C terminals configured for pulse input have a small 25 ns input RC-filter time
constant between the terminal block and the CMOS input buffer, which allows for
high-frequency pulse measurements up to 250 kHz and edge counting up to 400
kHz. The CMOS input buffer recognizes inputs ≥3.8 V as being high and inputs
≤1.2 V as being low.

Open-collector (bipolar transistors) or open-drain (MOSFET) sensors are
typically measured as frequency sensors. C terminals can be conditioned for open
collector or open drain with an external pull-up resistor as shown in figure Using
a Pull-up Resistor on C terminals. The pull-up resistor counteracts an internal 100

333

Section 8. Operation

kΩ pull-down resistor, allowing inputs to be pulled to >3.8 V for reliable
measurements.

8.1.3.2 Low-Level Ac Measurements — Details
Related Topics:
 • Low-Level Ac Input Modules — Overview (p. 348)
 • Low-Level Ac Measurements — Details (p. 334)
 • Pulse Input Modules — Lists (p. 622)

Low-level ac (sine-wave) signals can be measured on P terminals. Sensors that
commonly output low-level ac include:

• Ac generator anemometers

Measurements include the following:

• Counts
• Frequency (Hz)
• Running average

Rotating magnetic-pickup sensors commonly generate ac voltage ranging from
thousandths of volts at low-rotational speeds to several volts at high-rotational
speeds. Terminals configured for low-level ac input have in-line signal
conditioning for measuring signals ranging from 20 mV RMS (±28 mV peak-to-
peak) to 14 V RMS (±20 V peak-to-peak).

P Terminals

• Maximum input frequency is dependent on input voltage:

o 1.0 to 20 Hz at 20 mV RMS
o 0.5 to 200 Hz at 200 mV RMS
o 0.3 to 10 kHz at 2000 mV RMS
o 0.3 to 20 kHz at 5000 mV RMS

• CRBasic instruction: PulseCount()

Internal ac coupling is used to eliminate dc-offset voltages of up to ±0.5 Vdc.

C Terminals
Low-level ac signals cannot be measured directly by C terminals. Refer to the
appendix Pulse Input Modules List (p. 622) for information on peripheral terminal
expansion modules available for converting low-level ac signals to square-wave
signals.

8.1.3.3 High-Frequency Measurements
High-frequency (square-wave) signals can be measured on P or C terminals.
Common sensors that output high-frequency include:

• Photo-chopper anemometers
• Flow meters

Measurements include counts, frequency in hertz, and running average. Refer to
the section Frequency Resolution (p. 335) for information about how the resolution

334

Section 8. Operation

of a frequency measurement can be different depending on whether the
measurement is made with the PulseCount() or TimerIO() instruction.

P Terminals

• Maximum input frequency = 250 kHz
• CRBasic instructions: PulseCount()

High-frequency pulse inputs are routed to an inverting CMOS input buffer with
input hysteresis. The CMOS input buffer is at output 0 level with inputs ≥ 2.2 V
and at output 1 level with inputs ≤ 0.9 V. An internal 100 kΩ resistor is
automatically connected to the terminal to pull it up to 5 Vdc. This pull-up
resistor accommodates open-collector (open-drain) output devices.

C Terminals

• Maximum input frequency = <1 kHz
• CRBasic instructions: PulseCount(), TimerIO()

8.1.3.3.1 Frequency Resolution
Resolution of a frequency measurement made with the PulseCount() instruction
is calculated as

where

FR = resolution of the frequency measurement (Hz)
S = scan interval of CRBasic program

Resolution of a frequency measurement made with the TimerIO() instruction is

where

FR = frequency resolution of the measurement (Hz)
R = timing resolution of the TimerIO() measurement = 540 ns
P = period of input signal (seconds). For example, P = 1 / 1000 Hz = 0.001 s
E = Number of rising edges per scan or 1, whichever is greater.

Table 72. Example. E for a 10 Hz input signal
Scan Rising Edge / Scan E

5.0 50 50

0.5 5 5

0.05 0.5 1

TimerIO() instruction measures frequencies of ≤ 1 kHz with higher frequency
resolution over short (sub-second) intervals. In contrast, sub-second frequency
measurement with PulseCount() produce measurements of lower resolution.
Consider a 1 kHz input. Table Frequency Resolution Comparison (p. 336) lists
frequency resolution to be expected for a 1 kHz signal measured by TimerIO()
and PulseCount() at 0.5 s and 5.0 s scan intervals.

335

Section 8. Operation

Increasing a measurement interval from 1 s to 10 s, either by increasing the scan
interval (when using PulseCount()) or by averaging (when using PulseCount()
or TimerIO()), improves the resulting frequency resolution from 1 Hz to 0.1 Hz.
Averaging can be accomplished by the Average(), AvgRun(), and AvgSpa()
instructions. Also, PulseCount() has the option of entering a number greater than
1 in the POption parameter. Doing so enters an averaging interval in milliseconds
for a direct running-average computation. However, use caution when averaging.
Averaging of any measurement reduces the certainty that the result truly
represents a real aspect of the phenomenon being measured.

Table 73. Frequency Resolution Comparison
 0.5 s Scan 5.0 s Scan

PulseCount(), POption=1 FR = 2 Hz FR = 0.2 Hz

TimerIO(), Function=2 FR = 0.0011 Hz FR = 0.00011 Hz

8.1.3.3.2 Frequency Measurement Q & A
Q: When more than one pulse is in a scan interval, what does TimerIO() return
when configured for a frequency measurement? Does it average the measured
periods and compute the frequency from that (f = 1/T)? For example,

Scan(50,mSec,10,0)
 TimerIO(WindSpd(),11111111,00022000,60,Sec)

A: In the background, a 32-bit-timer counter is saved each time the signal
transitions as programmed (rising or falling). This counter is running at a fixed
high frequency. A count is also incremented for each transition. When the
TimerIO() instruction executes, it uses the difference of time between the edge
prior to the last execution and the edge prior to this execution as the time
difference. The number of transitions that occur between these two times divided
by the time difference gives the calculated frequency. For multiple edges
occurring between execution intervals, this calculation does assume that the
frequency is not varying over the execution interval. The calculation returns the
average regardless of how the signal is changing.

8.1.3.4 Switch-Closure and Open-Collector Measurements
Switch-closure and open-collector signals can be measured on P or C terminals.
Mechanical-switch closures have a tendency to bounce before solidly closing.
Unless filtered, bounces can cause multiple counts per event. The CR800
automatically filters bounce. Because of the filtering, the maximum switch-
closure frequency is less than the maximum high-frequency measurement
frequency. Sensors that commonly output a switch-closure or open-collector
signal include:

• Tipping-bucket rain gages
• Switch-closure anemometers
• Flow meters

Data output options include counts, frequency (Hz), and running average.

336

Section 8. Operation

P Terminals

An internal 100 kΩ pull-up resistor pulls an input to 5 Vdc with the switch open,
whereas a switch closure to ground pulls the input to 0 V. An internal hardware
debounce filter has a 3.3 ms time-constant. Connection configurations are
illustrated in table Switch Closures and Open Collectors on P Terminals (p. 338).

• Maximum input frequency = 90 Hz
• CRBasic instruction: PulseCount()

C Terminals
Switch-closure mode is a special case edge-count function that measures dry-
contact-switch closures or open collectors. The operating system filters bounces.
Connection configurations are illustrated in table Switch Closures and Open
Collectors on C Terminals (p. 338).

• Maximum input frequency = 150 Hz
• CRBasic instruction: PulseCount()

8.1.3.5 Edge Timing

Edge time and period can be measured on P or C terminals. Applications for edge
timing include:

• Measurements for feedback control using pulse-width or pulse-duration
modulation (PWM/PDM).

Measurements include time between edges expressed as frequency (Hz) or period
(µs).

C Terminals

• Maximum input frequency <1 kHz
• CRBasic instruction: TimerIO()
• Rising or falling edges of a square-wave signal are detected:

o Rising edge — transition from <1.5 Vdc to >3.5 Vdc.
o Falling edge — transition from >3.5 Vdc to <1.5 Vdc.

• Edge-timing resolution is approximately 540 ns.

8.1.3.6 Edge Counting
Edge counts can be measured on C terminals.

C Terminals

• Maximum input frequency 400 kHz
• CRBasic instruction: TimerIO()
• Rising or falling edges of a square-wave signal are detected:

o Rising edge — transition from <1.5 Vdc to >3.5 Vdc.
o Falling edge — transition from >3.5 Vdc to <1.5 Vdc.

337

Section 8. Operation

8.1.3.7 Pulse Measurement Tips
Basic connection of pulse-output sensors is illustrated in table Switch Closures
and Open Collectors (p. 338, p. 338)

The PulseCount() instruction, whether measuring pulse inputs on P or C
terminals, uses dedicated 24-bit counters to accumulate all counts over the
programmed scan interval. The resolution of pulse counters is one count or 1 Hz.
Counters are read at the beginning of each scan and then cleared. Counters will
overflow if accumulated counts exceed 16,777,216, resulting in erroneous
measurements.

• Counts are the preferred PulseCount() output option when measuring the
number of tips from a tipping-bucket rain gage or the number of times a door
opens. Many pulse-output sensors, such as anemometers and flow meters,
are calibrated in terms of frequency (Hz (p. 491)) so are usually measured using
the PulseCount() frequency-output option.

• Accuracy of PulseCount() is limited by a small scan-interval error of ±(3
ppm of scan interval + 10 µs), plus the measurement resolution error of ±1 /
(scan interval). The sum is essentially ±1 / (scan interval).

• Use the LLAC4 (p. 622) module to convert non-TTL-level signals, including
low-level ac signals, to TTL levels for input into C terminals.

• As shown in the table Switch Closures and Open Collectors on C Terminals
(p. 338), C terminals, with regard to the 6.2 V Zener diode, have an input
resistance of 100 kΩ with input voltages < 6.2 Vdc. For input voltages ≥ 6.2
Vdc, C terminals have an input resistance of only 220 Ω.

Table 74. Switch Closures and Open Collectors on P Terminals

Switch Closure on P Terminal

Open Collector on on P Terminal

Table 75. Switch Closures and Open Collectors on C Terminals

Switch Closure on C Terminal:
No Pull-Up

338

Section 8. Operation

Switch Closure on C Terminal:
5 Vdc Pull-Up

Open Collector on C Terminal:
5 Vdc Pull-Up

Switch Closure on C Terminal:
12 Vdc Pull-Up

Open Collector on C Terminal:
12 Vdc pull-up

Internal CR800 circuitry that supports open-collector
and switch-closure measurements (FYI)

• Pay attention to specifications. Take time to understand the signal to be
measured and compatible input terminals and CRBasic instructions. The
table Three Differing Specifications Between P and C Terminals (p. 340)
compares specifications for pulse-input terminals to emphasize the need for
matching the proper device to the application.

339

Section 8. Operation

Table 76. Three Specifications Differing Between P and C Terminals
 P Terminal C Terminal

High-Frequency
Maximum 250 kHz 400 kHz

Input Voltage
Maximum 20 Vdc 16 Vdc

State Transition
Thresholds

Count upon transition from
<0.9 Vdc to >2.2 Vdc

Count upon transition from
<1.2 Vdc to >3.8 Vdc

8.1.3.7.1 TimerIO() NAN Conditions
• NAN will be the result of a TimerIO() measurement if one of two conditions

occurs:

o Timeout expires
o The signal frequency is too fast (> 3 KHz). When a C terminal

experiences a too fast frequency, the CR800 operating system disables
the interrupt that is capturing the precise time until the next scan is
serviced. This is done so that the CR800 processor does not get occupied
by excessive interrupts. A small RC filter retrofitted to the sensor switch
should fix the problem.

8.1.3.7.2 Input Filters and Signal Attenuation
 P and C terminals are equipped with pulse-input filters to reduce electronic noise
that can cause false counts. The higher the time constant (τ) of the filter, the
tighter the filter. The table Time Constants (p. 340) lists τ values. So, while a C
terminal measured with the TimerIO() frequency measurement may be superior
for clean signals, a P terminal filter (much higher τ) may be required to get a
measurement on an electronically noisy signal.

Input filters attenuate the amplitude (voltage) of the signal. The amount of
attenuation is a function of the frequency passing through the filter. Higher-
frequency signals are attenuated more. If a signal is attenuated enough, it may not
pass the state transition thresholds required by the detection device as listed in
table Pulse-Input Terminals and Measurements (p. 69)). To avoid over attenuation,
sensor-output voltage must be increased at higher frequencies. For example, table
Low-Level Ac Filter Attenuation (p. 341) shows that increasing voltage is required
for low-level ac inputs to overcome filter attenuation on P terminals configured
for low-level ac: 8.5 ms time constant filter (19 Hz 3 dB frequency) for low-
amplitude signals; 1 ms time constant (159 Hz 3 dB frequency) for larger (> 0.7
V) amplitude signals.

For P terminals, an RC input filter with an approximate 1 µs time constant
precedes the inverting CMOS input buffer. The resulting amplitude reduction is
illustrated in figure Amplitude Reduction of Pulse-Count Waveform (p. 341). For a 0
to 5 Vdc square wave input to a pulse terminal, the maximum frequency that can
be counted in high-frequency mode is approximately 250 kHz.

340

Section 8. Operation

Table 77. Time Constants (τ)
Measurement τ

P terminal low-level ac mode See footnote of the table Filter Attenuation of
Frequency Signals (p. 341)

P terminal high-frequency mode 1.2

P terminal switch-closure mode 3300

C terminal high-frequency mode 0.025

C terminal switch-closure mode 0.025

Table 78. Low-Level Ac Amplitude and Maximum Measured
Frequency

Ac mV (RMS) Maximum Frequency

 20
200

2000
5000

 20
200

10,000
20,000

Figure 89. Amplitude reduction of pulse-count waveform (before and after
1 µs µs time-constant filter)

8.1.4 Period Averaging — Details
Related Topics:
 • Period Averaging — Specifications
 • Period Averaging — Overview (p. 70)
 • Period Averaging — Details (p. 341)

341

Section 8. Operation

The CR800 can measure the period of a signal on a SE terminal. The specified
number of cycles is timed with a resolution of 136 ns, making the resolution of
the period measurement 136 ns ns divided by the number of cycles chosen.

Low-level signals are amplified prior to a voltage comparator. The internal
voltage comparator is referenced to the programmed threshold. The threshold
parameter allows referencing the internal voltage comparator to voltages other
than 0 V. For example, a threshold of 2500 mV allows a 0 to 5 Vdc digital signal
to be sensed by the internal comparator without the need of any additional input
conditioning circuitry. The threshold allows direct connection of standard digital
signals, but it is not recommended for small amplitude sensor signals. For sensor
amplitudes less than 20 mV peak-to-peak, a dc blocking capacitor is
recommended to center the signal at CR800 ground (threshold = 0) because of
offset voltage drift along with limited accuracy (±10 mV) and resolution (1.2 mV)
of a threshold other than zero. Figure Input Conditioning Circuit for Period
Averaging (p. 342) shows an example circuit.

The minimum pulse-width requirements increase (maximum frequency decreases)
with increasing gain. Signals larger than the specified maximum for a range will
saturate the gain stages and prevent operation up to the maximum specified
frequency. As shown, back-to-back diodes are recommended to limit large
amplitude signals to within the input signal ranges.

Caution Noisy signals with slow transitions through the voltage threshold have
the potential for extra counts around the comparator switch point. A voltage
comparator with 20 mV of hysteresis follows the voltage gain stages. The
effective input-referred hysteresis equals 20 mV divided by the selected voltage
gain. The effective input referred hysteresis on the ± 25 mV range is 2 mV;
consequently, 2 mV of noise on the input signal could cause extraneous counts.
For best results, select the largest input range (smallest gain) that meets the
minimum input signal requirements.

Figure 90. Input Conditioning Circuit for Period Averaging

342

Section 8. Operation

8.1.5 Vibrating-Wire Measurements — Details
Related Topics:
 • Vibrating-Wire Measurements — Specifications
 • Vibrating-Wire Measurements — Overview (p. 71)
 • Vibrating-Wire Measurements — Details (p. 343)

The CR800 can measure vibrating-wire or vibrating-strip sensors, including strain
gages, pressure transducers, piezometers, tilt meters, crack meters, and load cells.
These sensors are used in structural, hydrological, and geotechnical applications
because of their stability, accuracy, and durability. The CR800 can measure
vibrating-wire sensors through specialized interface modules. More sensors can
be measured by using multiplexers (see Analog Multiplexers (p. 622)).

The figure Vibrating-Wire Sensor (p. 343) illustrates basic construction of a sensor.
To make a measurement, plucking and pickup coils are excited with a swept
frequency (p. 504). The ideal behavior then is that all non-resonant frequencies
quickly decay, and the resonant frequency continues. As the resonant frequency
cuts the lines of flux in the pickup coil, the same frequency is induced on the
signal wires in the cable connecting the sensor to the CR800 or interface.

Measuring the resonant frequency by means of period averaging is the classic
technique, but Campbell Scientific has developed static and dynamic spectral-
analysis techniques (Vspect (p. 506)tm) that produce superior noise rejection, higher
resolution, diagnostic data, and, in the case of dynamic Vspect, measurements up
to 333.3 Hz.

A resistive-thermometer device (thermistor or RTD), which is included in most
vibrating-wire sensor housings, can be measured to compensate for temperature
errors in the measurement.

Figure 91. Vibrating-Wire Sensor

8.1.5.1 Time-Domain Measurement
Although obsolete in many applications, time-domain period-averaging vibrating-
wire measurements can be made on H L terminals. The VibratingWire()
instruction makes the measurement. Measurements can be made directly on these
terminals, but usually are made through a vibrating-wire interface that amplifies
and conditions the vibrating-wire signal and provides inputs for embedded
thermistors or RTDs. Interfaces of this type are no longer available from
Campbell Scientific.

For most applications, the advanced techniques of static and dynamic VSPECTTM
measurements are preferred.

343

Section 8. Operation

8.1.6 Reading Smart Sensors — Details
Related Topics:
 • Reading Smart Sensors — Overview (p. 72)
 • Reading Smart Sensors — Details (p. 344)

8.1.6.1 RS-232 and TTL
Read More Serial Input / Output Instructions (p. 556) and Serial I/O (p. 238).

The CR800 can receive and record most TTL (0 to 5 Vdc) and true RS-232 data
from devices such as smart sensors. See the table CR800 Terminal Definitions (p.
76) for those terminals and serial ports configurable for either TTL or true RS-232
communications. Use of the CS I/O port for true RS-232 communications
requires use of an interface device. See the appendix CS I/O Serial Interfaces (p.
628). If additional serial inputs are required, serial input expansion modules can be
connected. See the appendix Serial I/O Modules List (p. 622). Serial data are
usually captured as text strings, which are then parsed (split up) as defined in the
CRBasic program.

Note C terminals configured as Tx transmit only 0 to 5 Vdc logic. However, C
terminals configured as Rx read most true RS-232 signals. When connecting
serial sensors to a C terminal configured as Rx, the sensor power consumption
may increase by a few milliamps due to voltage clamps in the CR800. An
external resistor may need to be added in series to the Rx line to limit the current
drain, although this is not advisable at very high baud rates. Figure Circuit to
Limit C Terminal RS-232 Input to 5 Volts (p. 344) shows a circuit that limits voltage
to 5 Vdc.

Figure 92. Circuit to Limit C Terminal Input to 5 Vdc

8.1.6.2 SDI-12 Sensor Support — Details
Related Topics:
 • SDI-12 Sensor Support — Overview (p. 72)
 • SDI-12 Sensor Support — Details (p. 344)
 • Serial I/O: SDI-12 Sensor Support — Programming Resource (p. 259)
 • SDI-12 Sensor Support — Instructions (p. 529)

SDI-12 is a communication protocol developed to transmit digital data from smart
sensors to data-acquisition units. It is a simple protocol, requiring only a single

344

Section 8. Operation

communication wire. Typically, the data-acquisition unit also supplies power (12
Vdc and ground) to the SDI-12 sensor. SDI12Recorder() instruction
communicates with SDI-12 sensors on terminals configured for SDI-12 input.
See the table CR800 Terminal Definitions (p. 76) to determine those terminals
configurable for SDI-12 communications.

8.1.7 Field Calibration — Overview
Related Topics:
 • Field Calibration — Overview (p. 73)
 • Field Calibration — Details (p. 203)

Calibration increases accuracy of a measurement device by adjusting its output, or
the measurement of its output, to match independently verified quantities.
Adjusting sensor output directly is preferred, but not always possible or practical.
By adding FieldCal() or FieldCalStrain() instructions to the CR800 CRBasic
program, measurements of a linear sensor can be adjusted by modifying the
programmed multiplier and offset applied to the measurement.

8.1.8 Cabling Effects
Related Topics:
 • Cabling Effects — Overview (p. 73)
 • Cabling Effects — Details (p. 345)

Sensor cabling can have significant effects on sensor response and accuracy. This
is usually only a concern with sensors acquired from manufacturers other than
Campbell Scientific. Campbell Scientific sensors are engineered for optimal
performance with factory-installed cables.

8.1.8.1 Analog-Sensor Cables
Cable length in analog sensors is most likely to affect the signal settling time. For
more information, see the section Signal Settling Time (p. 309).

8.1.8.2 Pulse Sensors
Because of the long interval between switch closures in tipping-bucket rain gages,
appreciable capacitance can build up between wires in long cables. A built-up
charge can cause arcing when the switch closes and so shorten switch life. As
shown in figure Current Limiting Resistor in a Rain Gage Circuit (p. 346), a 100 Ω
resistor is connected in series at the switch to prevent arcing. This resistor is
installed on all rain gages currently sold by Campbell Scientific.

345

Section 8. Operation

Figure 93. Current-Limiting Resistor in a Rain Gage Circuit

8.1.8.3 RS-232 Sensors
RS-232 sensor cable lengths should be limited to 50 feet.

8.1.8.4 SDI-12 Sensors
The SDI-12 standard allows cable lengths of up to 200 feet. Campbell Scientific
does not recommend SDI-12 sensor lead lengths greater than 200 feet; however,
longer lead lengths can sometimes be accommodated by increasing the wire gage
or powering the sensor with a second 12 Vdc power supply placed near the
sensor.

8.1.9 Synchronizing Measurements
Related Topics:
 • Synchronizing Measurements — Overview (p. 74)
 • Synchronizing Measurements — Details (p. 346)

Timing of a measurement is usually controlled relative to the CR800 clock.
When sensors in a sensor network are measured by a single CR800, measurement
times are synchronized, often within a few milliseconds, depending on sensor
number and measurement type. Large numbers of sensors, cable length
restrictions, or long distances between measurement sites may require use of
multiple CR800s. Techniques outlined below enable network administrators to
synchronize CR800 clocks and measurements in a CR800 network.

Care should be taken when a clock-change operation is planned. Any time the
CR800 clock is changed, the deviation of the new time from the old time may be
sufficient to cause a skipped record in data tables. Any command used to
synchronize clocks should be executed after any CallTable() instructions and
timed so as to execute well clear of data-output intervals.

Techniques to synchronize measurements across a network include:

1. LoggerNet (p. 93) – when reliable telecommunications are common to all CR800s
in a network, the LoggerNet automated clock check provides a simple time
synchronization function. Accuracy is limited by the system clock on the PC
running the LoggerNet server. Precision is limited by network transmission
latencies. LoggerNet compensates for latencies in many telecommunication
systems and can achieve synchronies of <100 ms deviation. Errors of 2 to 3
second may be seen on very busy RF connections or long distance internet

346

Section 8. Operation

connections.

Note Common PC clocks are notoriously inaccurate. Information available at
http://www.nist.gov/pml/div688/grp40/its.cfm gives some good pointers on
keeping PC clocks accurate.

2. Digital trigger — a digital trigger, rather than a clock, can provide the
synchronization signal. When cabling can be run from CR800 to CR800, each
CR800 can catch the rising edge of a digital pulse from the master CR800 and
synchronize measurements or other functions, using the WaitDigTrig()
instructions, independent of CR800 clocks or data time stamps. When
programs are running in pipeline mode, measurements can be synchronized to
within a few microseconds (see WaitDigTrig Scans (p. 155)).

3. PakBus (p. 88) commands — the CR800 is a PakBus device, so it is capable of
being a node in a PakBus network. Node clocks in a PakBus network are
synchronized using the SendGetVariable(), ClockReport(), or
PakBusClock() commands. The CR800 clock has a resolution of 10 ms,
which is the resolution used by PakBus clock-sync functions. In networks
without routers, repeaters, or retries, the communication time will cause an
additional error (typically a few 10s of milliseconds). PakBus clock
commands set the time at the end of a scan to minimize the chance of skipping
a record to a data table. This is not the same clock check process used by
LoggerNet as it does not use average round trip calculations to try to account
for network connection latency.

4. Radios — A PakBus enabled radio network has an advantage over Ethernet in
that ClockReport() can be broadcast to all dataloggers in the network
simultaneously. Each will set its clock with a single PakBus broadcast from
the master. Each datalogger in the network must be programmed with a
PakBusClock() instruction.

Note Use of PakBus clock functions re-synchronizes the Scan() instruction. Use
should not exceed once per minute. CR800 clocks drift at a slow enough rate that
a ClockReport() once per minute should be sufficient to keep clocks within 30
ms of each other.

With any synchronization method, care should be taken as to when and how
things are executed. Nudging the clock can cause skipped scans or skipped
records if the change is made at the wrong time or changed by too much.

5. GPS — clocks in CR800s can be synchronized to within about 10 ms of each
other using the GPS() instruction. CR800s built since October of 2008 (serial
numbers ≥ [7920]) can be synchronized within a few microseconds of each
other and within ≈200 µs of UTC. While a GPS signal is available, the CR800
essentially uses the GPS as its continuous clock source, so the chances of
jumps in system time and skipped records are minimized.

6. Ethernet — any CR800 with a network connection (internet, GPRS, private
network) can synchronize its clock relative to Coordinated Universal Time
(UTC) using the NetworkTimeProtocol() instruction. Precisions are usually
maintained to within 10 ms. The NTP server could be another logger or any
NTP server (such as an email server or nist.gov). Try to use a local server —
something where communication latency is low, or, at least, consistent. Also,
try not to execute the NetworkTimeProtocol() at the top of a scan; try to ask
for the server time between even seconds.

347

Section 8. Operation

8.2 Measurement and Control Peripherals — Details
Related Topics:
 • Measurement and Control Peripherals — Overview (p. 84)
 • Measurement and Control Peripherals — Details (p. 348)
 • Measurement and Control Peripherals — Lists (p. 622)

Peripheral devices expand the CR800 input and output capacities. Some
peripherals are designed as SDM (synchronous devices for measurement) or
CDM (CPI devices for measurement). SDM and CDM devices are intelligent
peripherals that receive instruction from, and send data to, the CR800 using
proprietary communication protocols through SDM terminals and CPI interfaces.
The following sections discuss peripherals according to measurement types.

8.2.1 Analog-Input Modules
Read More For more information see appendix Analog-Input Modules List (p. 622).

Mechanical and solid-state multiplexers are available to expand the number of
analog sensor inputs. Multiplexers are designed for single-ended, differential,
bridge-resistance, or thermocouple inputs.

8.2.2 Pulse-Input Modules
Read More For more information see appendix Pulse-Input Modules List (p. 622).

Pulse-input expansion modules are available for switch-closure, state, pulse-count
and frequency measurements, and interval timing.

8.2.2.1 Low-Level Ac Input Modules — Overview
Related Topics:
 • Low-Level Ac Input Modules — Overview (p. 348)
 • Low-Level Ac Measurements — Details (p. 334)
 • Pulse Input Modules — Lists (p. 622)

Low-level ac input modules increase the number of low-level ac signals a CR800
can monitor by converting low-level ac to high-frequency pulse.

8.2.3 Serial I/O Modules — Details
Read More For more information see appendix Serial I/O Modules List (p. 622).

Capturing input from intelligent serial-output devices can be challenging. Several
Campbell Scientific serial I/O modules are designed to facilitate reading and
parsing serial data. Campbell Scientific recommends consulting with an
application engineer when deciding which serial-input module is suited to a
particular application.

348

Section 8. Operation

8.2.4 Terminal-Input Modules
Read More For more information see appendix Passive Signal Conditioners List
(p. 623).

Terminal Input Modules (TIMs) are devices that provide simple measurement-
support circuits in a convenient package. TIMs include voltage dividers for
cutting the output voltage of sensors to voltage levels compatible with the CR800,
modules for completion of resistive bridges, and shunt modules for measurement
of analog-current sensors.

8.2.5 Vibrating-Wire Modules
Read More For complete information see appendix Vibrating-Wire Modules List
(p. 623).

 Vibrating-wire modules interface vibrating-wire transducers to the CR800.

8.2.6 Analog-Output Modules
Read More For more information see appendix Continuous-Analog-Output
(CAO) Modules List (p. 625).

The CR800 can scale measured or processed values and transfer these values in
digital form to an analog output device. The analog output device performs a
digital-to-analog conversion to output an analog voltage or current. The output
level is maintained until updated by the CR800.

8.2.7 PLC Control Modules — Overview
Related Topics:
 • PLC Control — Overview (p. 74)
 • PLC Control — Details (p. 237)
 • PLC Control Modules — Overview (p. 349)
 • PLC Control Modules — Lists (p. 624)
 • PLC Control — Instructions (p. 536)
 • Switched Voltage Output — Specifications
 • Switched Voltage Output — Overview (p. 78)
 • Switched Voltage Output — Details (p. 101)

Controlling power to an external device is a common function of the CR800. On-
board control terminals and peripheral devices are available for binary (on / off)
or analog (variable) control. A switched, 12 Vdc terminal (SW12V) is also
available. See the section Switched Unregulated (Nominal 12 Volt) (p. 103).

8.2.7.1 Terminals Configured for Control
 C terminals can be configured as output ports so set low (0 Vdc) or high (5 Vdc)
using the PortSet() or WriteIO() instructions. Port C4 can be configured for
pulse width modulation with a maximum period of 36.4 s. A terminal configured
for digital I/O is normally used to operate an external relay-driver circuit because
the port itself has limited drive capacity. Drive capacity is determined by the 5
Vdc supply and a 330 Ω output resistance. It is expressed as:

349

Section 8. Operation

Vo = 4.9 V – (330 Ω) • Io

Where Vo is the drive limit, and Io is the current required by the external device.
Figure Control Port Current Sourcing (p. 350) plots the relationship.

Figure 94. Current sourcing from C terminals configured for control

8.2.7.2 Relays and Relay Drivers
Read More For more information see appendix Relay Drivers Modules List (p.
625).

Several relay drivers are manufactured by Campbell Scientific. Compatible,
inexpensive, and reliable single-channel relay drivers for a wide range of loads are
also available from electronic vendors such as Crydom, Newark, and Mouser (p.
508).

8.2.7.3 Component-Built Relays
Figure Relay Driver Circuit with Relay (p. 351) shows a typical relay driver circuit
in conjunction with a coil driven relay, which may be used to switch external
power to a device. In this example, when the terminal configured for control is set
high, 12 Vdc from the datalogger passes through the relay coil, closing the relay
which completes the power circuit and turns on the fan.

In other applications, it may be desirable to simply switch power to a device
without going through a relay. Figure Power Switching without Relay (p. 351)
illustrates this. If the device to be powered draws in excess of 75 mA at room
temperature (limit of the 2N2907A medium power transistor), the use of a relay is
required.

350

Section 8. Operation

Figure 95. Relay Driver Circuit with Relay

Figure 96. Power Switching without Relay

8.3 Memory
Related Topics:
 • Memory — Overview (p. 86)
 • Memory — Details (p. 351)
 • Data Storage Devices — List (p. 629)

8.3.1 Storage Media
CR800 memory consists of four non-volatile storage media:

• Internal battery-backed SRAM
• Internal flash
• Internal serial flash
• External flash (optional flash USB: drive)

351

Section 8. Operation

Table CR800 Memory Allocation (p. 352) and table CR800 SRAM Memory (p. 353)
illustrate the structure of CR800 memory around these media. The CR800 uses
and maintains most memory features automatically. However, users should
periodically review areas of memory wherein data files, CRBasic program files,
and image files reside. See section File Management in CR800 Memory (p. 361) for
more information.

By default, final-data memory (memory for stored data) is organized as ring
memory. When the ring is full, oldest data are overwritten by newest data. The
DataTable() instruction, however, has an option to set a data table to Fill and
Stop.

Table 79. CR800 Memory Allocation

 Memory
Sector

Comments

 Main

Battery-Backed SRAM1
4 MB*

 • OS variables

• CRBASIC compiled program binary structure

• CRBASIC variables

• Final-data memory

• Communication memory

• USR: FAT32 RAM drive

• 'Keep' memory

• Dynamic runtime memory allocation

• See table CR800 SRAM Memory (p. 353) for detail.

 Operating System

Flash Memory2
2 MB

 • Operating system

• Serial number

• Board revision

• Boot code

• Erased when loading new OS. Boot code erased only if changed.

352

Section 8. Operation

Table 79. CR800 Memory Allocation

 Internal

Serial Flash3
512 kB

 • Device settings (12 kB) — PakBus address and settings, station name. Rebuilt
when a setting changes.

• CPU:drive (500 kB) — program files, field calibration files, other files not
frequently overwritten. When a program is compiled and run, it is copied here
automatically for loading on subsequent power-ups. Files accumulate until deleted
with File Control or the FilesManage() instruction. Use USR: drive to store other
file types. Available CPU: memory is reported in Status table field
CPUDriveFree.

• FAT32 file system

• Limited write cycles (100,000)

• Slow serial access

 External Flash
(Optional)

2 GB: USB: drive

 USB: drive (p. 629) — Holds program files. Holds a copy of requested final-memory
table data as files when TableFile() instruction is used. USB: data can be retrieved
from the storage device with Windows Explorer. USB: drive can facilitate the use of
Powerup.ini.

 1 SRAM

∙CR800 series changed from 2 to 4 MB SRAM in Sept 2007. SNs ≥ 3605 are 4 MB.

2 Flash is rated for > 1 million overwrites.
3 Serial flash is rated for 100,000 overwrites (50,000 overwrites on 128 kB units). Care should be taken in programs that
overwrite memory to use the CRD: or USR: drives so as not to wear-out the CPU: drive.

∙The CR800 series changed from 128 to 512 kB serial flash in May 2007. SNs ≥ 2787 are 512 kB.

353

Section 8. Operation

Table 80. CR800 Main Memory

 Use Comments

 Static Memory Operational memory used by the operating system. Rebuilt at power-up,
program re-compile, and watchdog events.

 ————————————
Operating Settings and Properties

"Keep" (p. 492) memory. Stores settings such as PakBus address, station name,
beacon intervals, neighbor lists, etc. Also stores dynamic properties such as the
routing table, communication timeouts, etc.

 ————————————
CRBasic Program
Operating Memory

Stores the currently compiled and running user program. This sector is rebuilt on
power-up, recompile, and watchdog events.

 ————————————
Variables & Constants

Stores variables used by the CRBasic program. These values may persist
through power-up, recompile, and watchdog events if the PreserveVariables
instruction is in the running program.

 ————————————
Final-Data Memory

Stores data. Fills memory remaining after all other demands are satisfied.
Configurable as ring or fill-and-stop memory. Compile error occurs if
insufficient memory is available for user-allocated data tables. Given lowest
priority in SRAM memory allocation.

 ————————————
Communication Memory 1

Construction and temporary storage of PakBus packets.

 ————————————
Communication Memory 2

Constructed Routing Table: list of known nodes and routes to nodes. Routers use
more space than leaf nodes because routes to neighbors must be remembered.
Increasing the PakBusNodes field in the Status table will increase this allocation.

 ————————————
USR: drive
<= 3.6 MB (4 MB Mem)
<= 1.5 MB (2 MB Mem)
Less on older units with more
limited memory.

Optionally allocated. Holds image files. Holds a copy of final-data memory
when TableFile() instruction used. Provides memory for FileRead() and
FileWrite() operations. Managed in File Control. Status reported in Status
table fields "USRDriveSize" and "USRDriveFree."

354

Section 8. Operation

Table 81. Memory Drives
Drive Recommended File Types

CPU:1 cr8, .CAL

USR:2 cr8, .CAL

USB: .DAT

1The CPU: drive uses a FAT16 file system, so it is limited to 128 file. If the file names are longer
than 8.3 characters (e.g. 12345678.123), you can store less.
2The USR: drive uses a FAT32 file system, so there is no limit, beyond practicality and available
memory, to the number of files that can be stored. While a FAT file system is subject to
fragmentation, performance degradation is not likely to be noticed since the drive has very fast
access because it has a relatively small amount of solid state RAM.
3The CRD: drive is a CompactFlash card attached to the CR800 by use of a CF card storage
module (p. 629). Cards should be formatted as FAT32 for optimal performance. The card format
feature in the CR800 will format the card with the same format previously used on the card.

8.3.1.1 Memory Drives — On-Board
Data-storage drives are listed in table CR800 Memory Drives (p. 354). Data-table
SRAM and the CPU: drive are automatically partitioned for use in the CR800.
The USR: drive can be partitioned as needed. The USB: drive is automatically
partitioned when a Campbell Scientific mass-storage device (p. 629) is connected.

8.3.1.1.1 Data Table SRAM
Primary storage for measurement data are those areas in SRAM allocated to data
tables as detailed in table CR800 SRAM Memory (p. 353). Measurement data can be
also be stored as discrete files on USR: or USB: by using TableFile() instruction.

The CR800 can be programmed to store each measurement or, more commonly,
to store processed values such as averages, maxima, minima, histograms, FFTs,
etc. Data are stored periodically or conditionally in data tables in SRAM as
directed by the CRBasic program (see Structure (p. 121)). The DataTable()
instruction allows the size of a data table to be programmed. Discrete data files
are normally created only on a PC when data are retrieved using datalogger
support software (p. 93).

Data are usually erased from this area when a program is sent to the CR800.
However, when using support software File Control menu Send (p. 488) command
or CRBasic Editor Compile, Save and Send (p. 485) command, options are
available to preserve data when downloading programs.

8.3.1.1.2 CPU: Drive
CPU: is the default drive on which programs and calibration files are stored. It is
formatted as FAT16, so it has a limit of 128 files. Do not store data on CPU: or
premature failure of memory will likely result.

8.3.1.1.3 USR: Drive
SRAM can be partitioned to create a FAT32 USR: drive, analogous to partitioning
a second drive on a PC hard disk. Certain types of files are stored to USR: to

355

Section 8. Operation

reserve limited CPU: memory for datalogger programs and calibration files.
Partitioning also helps prevent interference from data table SRAM. USR: is
configured using DevConfig settings or SetStatus() instruction in a CRBasic
program. Partition USR: drive to at least 11264 bytes in 512-byte increments. If
the value entered is not a multiple of 512 bytes, the size is rounded up. Maximum
size of USR: is the total RAM size less 400 kB; i.e., for a CR800 with 4 MB
memory, the maximum size of USR: is about 2.99 MB.

USR: is not affected by program recompilation or formatting of other drives. It
will only be reset if the USR: drive is formatted, a new operating system is
loaded, or the size of USR: is changed. USR: size is changed manually by
accessing it in the Status table or by loading a CRBasic program with a different
USR: drive size entered in a SetStatus() or SetSetting() instruction. See section
Configuration with CRBasic Program (p. 113).

Measurement data can be stored on USR: as discrete files by using the
TableFile() instruction. Table TableFile()-Instruction Data-File Formats (p. 357)
describes available data-file formats.

Note Placing an optional USR: size setting in the CRBasic program over-rides
manual changes to USR: size. When USR: size is changed manually, the
CRBasic program restarts and the programmed size for USR: takes immediate
effect.

The USR: drive holds any file type within the constraints of the size of the drive
and the limitations on filenames. Files typically stored include image files from
cameras (see the appendix Cameras), certain configuration files, files written for
FTP retrieval, HTML files for viewing with web access, and files created with the
TableFile() instruction. Files on USR: can be collected using datalogger support
software (p. 93) Retrieve (p. 488) command, or automatically using the datalogger
support software Setup File Retrieval tab functions.

Monitor use of available USR: memory to ensure adequate space to store new
files. FileManage() command can be used in the CRBasic program to remove
files. Files also can be removed using datalogger support software Delete (p. 488)
command.

Two Status table registers monitor use and size of the USR: drive. Bytes
remaining are indicated in register USRDriveFree. Total size is indicated in
register USRDriveSize. Memory allocated to USR: drive, less overhead for
directory use, is shown in datalogger support software File Control (p. 488)
window.

8.3.1.1.4 USB: Drive
USB: drive uses Flash (p. 489) memory on a Campbell Scientific mass storage
device (see the appendix Mass Storage Devices (p. 629)). Its primary purpose is the
storage of ASCII data files. Measurement data can be stored on USB: as discrete
files by using the TableFile() instruction. Table TableFile()-Instruction Data-File Formats (p.
357)Term. Flash (p. 489)describes available data-file formats.

Caution When removing mass-storage devices, do so when the LED is not
flashing or lit.

356

Section 8. Operation

Consider the following when using Campbell Scientific mass-storage devices:

• format as FAT32
• connect to the CR800 CS I/O port
• remove only when inactive or data corruption may result

8.3.2 Data-File Formats
Data-file format options are available with the TableFile() instruction. Time-
series data have an option to include header, time stamp and record number. See
the table TableFile() Instruction Data-File Formats (p. 357). For a format to be
compatible with datalogger support software (p. 93) graphing and reporting tools,
header, time stamps, and record numbers are usually required. Fully compatible
formats are indicated with an asterisk. A more detailed discussion of data-file
formats is available in the Campbell Scientific publication LoggerNet Instruction
Manual, which is available at www.campbellsci.com.

Table 82. TableFile() Instruction Data-File Formats

TableFile()
Format
Option

Base
File

Format

Elements Included

Header

Information

Time

Stamp

Record
Number

01 TOB1   

1 TOB1  

2 TOB1  

3 TOB1 

4 TOB1  

5 TOB1 

6 TOB1 

7 TOB1

81 TOA5   

9 TOA5  

10 TOA5  

11 TOA5 

12 TOA5  

13 TOA5 

14 TOA5 

15 TOA5

161 CSIXML   

17 CSIXML  

18 CSIXML  

19 CSIXML 

321 CSIJSON   

357

Section 8. Operation

Table 82. TableFile() Instruction Data-File Formats

TableFile()
Format
Option

Base
File

Format

Elements Included

Header

Information

Time

Stamp

Record
Number

33 CSIJSON  

34 CSIJSON  

35 CSIJSON 

642 TOB3

1Formats compatible with datalogger support software (p. 93) data-viewing and graphing utilities
2See Writing High-Frequency Data to Memory Cards for more information on using option 64.

Data-File Format Examples
TOB1

TOB1 files may contain an ASCII header and binary data. The last line in the
example contains cryptic text which represents binary data.

Example:

"TOB1","11467","CR1000","11467","CR1000.Std.20","CPU:file format.CR1","61449","Test"
"SECONDS","NANOSECONDS","RECORD","battfivoltfiMin","PTemp"
"SECONDS","NANOSECONDS","RN","",""
"","","","Min","Smp"
"ULONG","ULONG","ULONG","FP2","FP2"
}Ÿp' E1HŒŸp' E1H›Ÿp' E1HªŸp' E1H¹Ÿp' E1H

TOA5

TOA5 files contain ASCII (p. 481) header and comma-separated data.

Example:

"TOA5","11467","CR1000","11467","CR1000.Std.20","CPU:file format.CR1","26243","Test"
"TIMESTAMP","RECORD","battfivoltfiMin","PTemp"
"TS","RN","",""
"","","Min","Smp"
"2010-12-20 11:31:30",7,13.29,20.77
"2010-12-20 11:31:45",8,13.26,20.77
"2010-12-20 11:32:00",9,13.29,20.8

CSIXML

CSIXML files contain header information and data in an XML (p. 507) format.

358

Section 8. Operation

Example:

<?xml version="1.0" standalone="yes"?>
<csixml version="1.0">
<head>
 <environment>
 <station-name>11467</station-name>
 <table-name>Test</table-name>
 <model>CR1000</model>
 <serial-no>11467</serial-no>
 <os-version>CR1000.Std.20</os-version>
 <dld-name>CPU:file format.CR1</dld-name>
 </environment>
 <fields>
 <field name="battfivoltfiMin" type="xsd:float" process="Min"/>
 <field name="PTemp" type="xsd:float" process="Smp"/>
 </fields>
</head>
 <data>
 <r time="2010-12-20T11:37:45" no="10"><v1>13.29</v1><v2>21.04</v2></r>
 <r time="2010-12-20T11:38:00" no="11"><v1>13.29</v1><v2>21.04</v2></r>
 <r time="2010-12-20T11:38:15" no="12"><v1>13.29</v1><v2>21.04</v2></r>
 </data>
</csixml>

CSIJSON

CSIJSON files contain header information and data in a JSON (p. 492) format.

Example:

"signature": 38611,"environment": {"stationfiname": "11467","tablefiname":
"Test","model": "CR1000","serialfino": "11467",
"osfiversion": "CR1000.Std.21.03","progfiname": "CPU:file format.CR1"},"fields":
[{"name": "battfivoltfiMin","type": "xsd:float",
"process": "Min"},{"name": "PTemp","type": "xsd:float","process": "Smp"}]},
"data": [{"time": "2011-01-06T15:04:15","no": 0,"vals": [13.28,21.29]},
{"time": "2011-01-06T15:04:30","no": 1,"vals": [13.28,21.29]},
{"time": "2011-01-06T15:04:45","no": 2,"vals": [13.28,21.29]},
{"time": "2011-01-06T15:05:00","no": 3,"vals": [13.28,21.29]}]}

Data File-Format Elements
Header

File headers provide metadata that describe the data in the file. A TOA5
header contains the metadata described below. Other data formats contain
similar information unless a non-header format option is selected in the
TableFile() instruction in the CR800 CRBasic program.

Line 1 – Data Origins

Includes the following metadata series: file type, station name, CR800 model
name, CR800 serial number, OS version, CRBasic program name, program
signature, data-table name.

Line 2 – Data-Field Names

Lists the name of individual data fields. If the field is an element of an array,
the name will be followed by a comma-separated list of subscripts within

359

Section 8. Operation

parentheses that identifies the array index. For example, a variable named
“values” that is declared as a two-by-two array, i.e.,

Public Values(2,2)

will be represented by four field names: “values(1,1)”, “values(1,2)”,
“values(2,1)”, and “values(2,2)”. Scalar (non-array) variables will not have
subscripts.

Line 3 – Data Units

Includes the units associated with each field in the record. If no units are
programmed in the CR800 CRBasic program, an empty string is entered for
that field.

Line 4 – Data-Processing Descriptors

Entries describe what type of processing was performed in the CR800 to
produce corresponding data, e.g., Smp indicates samples, Min indicates
minima. If there is no recognized processing for a field, it is assigned an
empty string. There will be one descriptor for each field name given on
Header Line 2.

Record Element 1 – Timestamp

Data without timestamps are usually meaningless. Nevertheless, the
TableFile() instruction optionally includes timestamps in some formats.

Record Element 2 – Record Number

Record numbers are optionally provided in some formats as a means to
ensure data integrity and provide an up-count data field for graphing
operations. The maximum record number is &hffffffff (a 32-bit number),
then the record number sequence restarts at zero. The CR800 reports back to
the datalogger support software 31 bits, or a maximum of &h7fffffff, then it
restarts at 0. For example, if the record number increments once a second,
restart at zero will occur about once every 68 years (yes, years).

8.3.3 Resetting the CR800
A reset is referred to as a "memory reset." Be sure to backup the current CR800
configuration before a reset in case you need to revert to the old settings.

The following features are available for complete or selective reset of CR800
memory:

• Full memory reset
• Program send reset
• Manual data-table reset
• Formatting memory drives

8.3.3.1 Full Memory Reset
Full memory reset occurs when an operating system is sent to the CR800 using
DevConfig or when entering 98765 in the Status table field FullMemReset. A
full memory reset does the following:

• Clears and formats CPU: drive (all program files erased)
• Clears SRAM data tables

360

Section 8. Operation

• Clears Status-table elements
• Restores settings to default
• Initializes system variables
• Clears communication memory
• Recompiles current program

Operating systems can also be sent using the program Send feature in datalogger
support software (p. 93). A full reset does not occur in this case. Beginning with
CR800 operating system v.16, settings and registers in the Status table are
preserved when sending a subsequent operating system by this method; data
tables are erased. Rely on this feature only with an abundance of caution when
sending an OS to CR800s in remote, expensive to get to, or difficult-to-access
locations.

8.3.3.2 Program Send Reset
Final-memory (p. 489) data are erased when user programs are uploaded, unless
preserve / erase data options are used. Preserve / erase data options are presented
when sending programs using File Control Send (p. 488) command and CRBasic
Editor Compile, Save and Send (p. 485). See Preserving Data at Program Send (p.
125) for a more-detailed discussion of preserve / erase data at program send.

8.3.3.3 Manual Data-Table Reset
Data-table memory is selectively reset from

• Support software Station Status (p. 503) command
• CR1000KD Keyboard Display: Data | Reset Data Tables

8.3.3.4 Formatting Drives
CPU:, USR:, andUSB: drives can be formatted individually. Formatting a drive
erases all files on that drive. If the currently running user program is found on the
drive to be formatted, the program will cease running and any SRAM data
associated with the program are erased. Drive formatting is performed through
datalogger support software (p. 631) Format (p. 488) command.

8.3.4 File Management
As summarized in table File Control Functions (p. 361), files in CR800 memory
(program, data, CAL, image) can be managed or controlled with datalogger
support software (p. 93), CR800 Web API (p. 402), or CoraScript (p. 484). Use of
CoraScript is described in the LoggerNet software manual, which is available at
www.campbellsci.com. More information on file attributes that enhance
datalogger security, see the Security (p. 90) section.

361

Section 8. Operation

Table 83. File-Control Functions
File-Control Functions Accessed Through

Sending programs to the CR800
Program Send1, File Control Send2, DevConfig3, keyboard or
powerup.ini with a Campbell Scientific mass storage device4,5,
web API (p. 402) HTTPPut (Sending a File to a Datalogger)

Setting program file attributes. See File Attributes (p. 363)
File Control2;power-up with Campbell Scientific mass storage
device5, FileManage() instruction6, web API FileControl

Sending an OS to the CR800. Reset CR800 settings. DevConfig3 Send OS tab; DevConfig3 File Control tab;
Campbell Scientific mass storage device5

Sending an OS to the CR800. Preserve CR800 settings.
Send1; DevConfig3 File Control tab; power-up with Campbell
Scientific mass storage device with default.cr8 file5, web API
HTTPPut (Sending a File to a Datalogger)

Formatting CR800 memory drives File Control2, power-up with Campbell Scientific mass storage
device5, web API FileControl

Retrieving programs from the CR800 Retrieve7, File Control2, keyboard with Campbell Scientific
mass storage device4, web API NewestFile

Prescribes the disposition (preserve or delete) of old data files
on Campbell Scientific mass storage device

File Control2, power-up with Campbell Scientific mass storage
device5, web API (p. 402) FileControl

Deleting files from memory drives File Control2, power-up with Campbell Scientific mass storage
device5, web API FileControl

Stopping program execution File Control2, web API FileControl

Renaming a file FileRename()6

Time-stamping a file FileTime()6

List files File Control2, FileList()6, web API ListFiles

Create a data file from a data table TableFile()6

JPEG files manager CR1000KD Keyboard Display , LoggerNet | PakBusGraph, web
API NewestFile

Hiding files Web API FileControl

Encrypting files Web API FileControl

Abort program on power-up Hold DEL down on datalogger keypad

1Datalogger support software (p. 93) Program Send (p. 498) command
2Datalogger support software File Control (p. 488) utility
3Device Configuration Utility (DevConfig) (p. 109) software
4Manual with Campbell Scientific mass storage device. See Data Storage (p. 355)
5Automatic with Campbell Scientific mass storage device and Powerup.ini. See Power-up (p. 365)
6CRBasic instructions (commands). See Data-Table Declarations (p. 514) and File Management (p. 361) and CRBasic Editor Help
7Datalogger support software Retrieve (p. 488) command

362

Section 8. Operation

8.3.4.1 File Attributes
A feature of program files is the file attribute. Table CR800 File Attributes (p. 363)
lists available file attributes, their functions, and when attributes are typically
used. For example, a program file sent with the support software Program Send
(p. 498) command, runs a) immediately ("run now"), and b) when power is cycled
on the CR800 ("run on power-up'). This functionality is invoked because
Program Send (p. 498) sets two CR800 file attributes on the program file, i.e., Run
Now and Run on Power-up. When together, Run Now and Run on Power-up
are tagged as Run Always.

Note Activation of the run-on-power-up file can be prevented by holding down
the Del key on the CR1000KD Keyboard Display while the CR800 is powering
up.

Table 84. CR800 File Attributes
Attribute Function Attribute for Programs Sent to CR800 with:

Run Always
(run on power-up +
run now)

Runs now and on
power-up.

a) Send (p. 488) 1
b) File Control2 with Run Now & Run on Power-up
selected.
c) Campbell Scientific mass storage device power-
up3 using commands 1 & 13 (see table Powerup.ini
Commands (p. 366)).

Run on Power-up Runs only on
power-up

a) File Control2 with Run on Power-up checked.
b) Campbell Scientific mass storage device power-
up3 using command 2 (see table Powerup.ini
Commands (p. 366)).

Run Now Runs only when
file sent to CR800

a) File Control2 with Run Now checked.
b) Campbell Scientific mass storage device power-
up3 using commands 6 & 14 (see the table
Powerup.ini Commands (p. 366)). However, if the
external storage device remains connected, the
program loads again from the external storage
device.

1Support software program Send (p. 488) command. See software Help.
2Support software File Control (p. 488). See software Help & Preserving Data at Program Send
(p. 125).
3Automatic on power-up of CR800 with Campbell Scientific mass storage device and
Powerup.ini. See Power-up (p. 365).

8.3.4.2 Files Manager
FilesManager := { "(" pakbus-address "," name-prefix "," number-
files ")" }.
pakbus-address := number. ; 0 < number < 4095
name-prefix := string.
number_files := number. ; 0 <= number < 10000000

This setting specifies the numbers of files of a designated type that are saved
when received from a specified node. There can be up to four such settings. The
files are renamed by using the specified file name optionally altered by a serial
number inserted before the file type. This serial number is used by the datalogger

363

Section 8. Operation

to know which file to delete after the serial number exceeds the specified number
of files to retain. If the number of files is 0, the serial number is not inserted. A
special node PakBus address of 3210 can be used if the files are sent with FTP
protocol, or 3211 if the files are written with CRBasic.

Note This setting will operate only on a file whose name is not a null string.

Example:
(129,CPU:NorthWest.JPG,2)
(130,CRD:SouthEast.JPG,20)
(130,CPU:Message.TXT,0)

In the example above, *.JPG files from node 129 are named
CPU:NorthWestnnn.JPG and two files are retained . The nnn serial number starts
at 1 and will advance beyond nine digits. In this example, all *.TXT files from
node 130 are stored with the name CPU:Message.Txt, with no serial number
inserted.

A second instance of a setting can be configured using the same node PakBus
address and same file type, in which case two files will be written according to
each of the two settings. For example,

(55,USR:photo.JPG,100)
(55:USR:NewestPhoto.JPG,0)

will store two files each time a JPG file is received from node 55. They will be
named USR:photonnn.JPG and USR:NewestPhoto.JPG. This feature is used
when a number of files are to be retained, but a copy of one file whose name
never changes is also needed. The second instance of the file can also be
serialized and used when a number of files are to be saved to different drives.

Entering 3212 as the PakBus address activates storing IP trace information to a
file. The "number of files" parameter specifies the size of the file. The file is a
ring file, so the newest tracing is kept. The boundary between newest and oldest
is found by looking at the time stamps of the tracing. Logged information may be
out of sequence.

Example:
(3212, USR:IPTrace.txt, 5000)

This syntax will create a file on the USR: drive called IPTrace.txt that will grow
to approximately 5 KB in size, and then new data will begin overwriting old data.

8.3.4.3 Data Preservation
Associated with file attributes is the option to preserve data in CR800 memory
when a program is sent. This option applies to data table SRAM and datalogger
support software (p. 485) cache data (p. 485). Depending on the application, retention
of data files when a program is downloaded may be desirable. When sending a
program to the CR800 with datalogger support software Send command, data are
always deleted before the program runs. When the program is sent using support
software File Control Send (p. 488) command or CRBasic Editor Compile, Save
and Send (p. 485) command, options to preserve (not erase) or not preserve (erase)
data are presented. The logic in the table Data-Preserve Options (p. 365)
summarizes the disposition of CR800 data depending on the data preservation

364

Section 8. Operation

option selected.

Table 85. Data-Preserve Options
if "Preserve data if no table changed"

 if current program = overwritten program
 keep CPU data
 keep cache data
 else
 erase CPU data
 erase cache data
 end if
end if

if "erase data"

 erase CPU data
 erase cache data
end if

8.3.4.4 Powerup.ini File — Details
Uploading a CR800 OS (p. 495) file or user-program file in the field can be
challenging, particularly during weather extremes. Heat, cold, snow, rain,
altitude, blowing sand, and distance to hike influence how easily programming
with a laptop or palm PC may be. An alternative is to carry the file to the field on
a light-weight, external-memory device such as a USB: (p. 629) drive. Steps to
download the new OS or CRBasic program from an external-memory drive are:

1. Place a text file named powerup.ini, with appropriate commands entered in the
file, on the external-memory device along with the new OS or CRBasic
program file.

2. Connect the external device to the CR800 and then cycle power to the
datalogger.

This simple process results in the file uploading to the CR800 with optional run
attributes, such as Run Now, Run on Power Up, or Run Always set for
individual files. Simply copying a file to a specified drive with no run attributes,
or to format a memory drive, is also possible. Command options for powerup.ini
options also allow final-data memory management on CF cards comparable to the
datalogger support software (p. 93) File Control feature.

Options for powerup.ini also allow final-data memory management comparable
File Control (p. 488).

Caution Test the powerup.ini file and procedures in the lab before going to the
field. Always carry a laptop or mobile device (with datalogger support software)
into difficult- or expensive-to-access places as backup.

Powerup.ini commands include the following functions:

• Sending programs to the CR800.
• Optionally setting run attributes of CR800 program files.
• Sending an OS to the CR800.

365

Section 8. Operation

• Formatting memory drives.
• Deleting data files associated with the previously running program.

When power is connected to the CR800, it searches for powerup.ini and executes
the command(s) prior to compiling a program. Powerup.ini performs three
operations:

1. Copies the program file to a memory drive

2. Optionally sets a file run attribute (Run Now, Run on Power Up, or Run
Always) for the program file.

3. Optionally deletes data files stored from the overwritten (just previous)
program.

4. Formats a specified drive.

Execution of powerup.ini takes precedence during CR800 power-up. Although
powerup.ini sets file attributes for the uploaded programs, its presence on a drive
does not allow those file attributes to control the power-up process. To avoid
confusion, either remove the external drive on which powerup.ini resides or
delete the file after the power-up operation is complete.

8.3.4.4.1 Creating and Editing Powerup.ini
Powerup.ini is created with a text editor on a PC, then saved on a memory drive
of the CR800. The file is saved to the memory drive, along with the operating
system or user program file, using the datalogger support software (p. 631) File
Control | Send (p. 488) command.

Note Some text editors (such as MicroSoft® WordPad®) will attach header
information to the powerup.ini file causing it to abort. Check the text of a
powerup.ini file in the CR800 with the CR1000KD Keyboard Display to see what
the CR800 actually sees.

Comments can be added to the file by preceding them with a single-quote
character ('). All text after the comment mark on the same line is ignored.

Syntax
Syntax for powerup.ini is:

Command,File,Device

where,

• Command is one of the numeric commands in table Powerup.ini Commands
(p. 366).

• File is the accompanying operating system or user program file. File name
can be up to 22 characters long.

• Device is the CR800 memory drive to which the accompanying operating
system or user program file is copied (usually CPU:). If left blank or with an
invalid option, default device will be CPU:. Use the same drive designation
as the transporting external device if the preference is to not copy the file.

366

Section 8. Operation

Table 86. Powerup.ini Commands and Applications
Command Description Applications

11 Run always, preserve data
Copies the specified program to the
designated drive and sets the run attribute
of the program to Run Always.

2 Run on power-up

Copies the specified program to the
designated drive. The program specified
in command 2 will be set to Run Always
unless command 6 or 14 is used to set a
separate Run Now program.

5 Format Formats the designated drive.

61 Run now, preserve data
Copies the specified program to the
designated drive and sets the run attribute
of the program to Run Now.

7

Copy file to specified drive with no run
attributes. Use to copy Include (p. 491) or
program support files to the CPU: drive
before copying the program file to run.

Copies the specified file to the designated
drive with no run attributes.

9 Load OS (File = .obj)

13 Run always, erase data
Copies the specified program to the
designated drive and sets the run attribute
of the program to Run Always.

14 Run now, erase files
Copies the specified program to the
designated drive and sets the run attribute
to Run Now.

1By using PreserveVariables() instruction in the CRBasic program, with commands 1 and 6, data and variables can be preserved.

Example Power-up.ini Files

Table 87. Powerup.ini Example. Code Format and Syntax
'Code format and syntax

'Command = numeric power-up command
'File = file associated with the action
'Device = device to which File is copied. Defaults to CPU:

'Command,File,Device
13,Write2CRD_2.cr1,cpu:

Table 88. Powerup.ini Example. Run Program on Power-up
'Copy program file pwrup.cr1 from the external drive to CPU:
'File will run only when CR800 powered-up later.
2,pwrup.cr1,cpu:

Table 89. Powerup.ini Example. Format the USR: Drive
'Format the USR: drive
5,,usr:

367

Section 8. Operation

Table 90. Powerup.ini Example. Send OS on Power-up
'Load an operating system (.obj) file into FLASH as the new OS.
9,CR800.Std.28.obj

Table 91. Powerup.ini Example. Run Program from USB: Drive
'A program file is carried on an external USB: drive.
'Do not copy program file from USB:
'Run program always, erase data.
13,toobigforcpu.cr1,usb:

Table 92. Powerup.ini Example. Run Program Always, Erase Data
'Run a program file always, erase data.
13,pwrup_1.cr1,cpu:

Table 93. Powerup.ini Example. Run Program Now, Erase Data
'Run a program file now, erase data now.
14,run.cr1,cpu:

Power-up.ini Execution
After powerup.ini is processed, the following rules determine what CR800
program to run:

• If the run-now program is changed, then it is the program that runs.
• If no change is made to run-now program, but run-on-power-up program is

changed, the new run-on-power-up program runs.
• If neither run-on-power-up nor run-now programs are changed, the previous

run-on-power-up program runs.

8.3.4.5 File Management Q & A
Q: How do I hide a program file on the CR800 without using the CRBasic
FileManage() instruction?

A: Use the CoraScript (p. 484) File-Control command, or the web API (p. 402)
FileControl command.

8.3.5 File Names
The maximum size of the file name that can be stored, run as a program, or FTP
transferred in the CR800 is 59 characters. If the name is longer than 59 characters,
an Invalid Filename error is displayed. If several files are stored, each with a
long filename, memory allocated to the root directory can be exceeded before the
actual memory of storing files is exceeded. When this occurs, an "insufficient
resources or memory full" error is displayed.

8.3.6 File-System Errors
Table File System Error Codes (p. 369) lists error codes associated with the CR800
file system. Errors can occur when attempting to access files on any of the
available drives.

368

Section 8. Operation

Table 94. File System Error Codes
Error Code Description

1 Invalid format

2 Device capabilities error

3 Unable to allocate memory for file operation

4 Max number of available files exceeded

5 No file entry exists in directory

6 Disk change occurred

7 Part of the path (subdirectory) was not found

8 File at EOF

9 Bad cluster encountered

10 No file buffer available

11 Filename too long or has bad chars

12 File in path is not a directory

13 Access permission, opening DIR or LABEL as file, or trying to open file as
DIR or mkdir existing file

14 Opening read-only file for write

15 Disk full (can't allocate new cluster)

16 Root directory is full

17 Bad file ptr (pointer) or device not initialized

18 Device does not support this operation

19 Bad function argument supplied

20 Seek out-of-file bounds

21 Trying to mkdir an existing dir

22 Bad partition sector signature

23 Unexpected system ID byte in partition entry

24 Path already open

25 Access to uninitialized ram drive

26 Attempted rename across devices

27 Subdirectory is not empty

31 Attempted write to Write Protected disk

32 No response from drive (Door possibly open)

33 Address mark or sector not found

34 Bad sector encountered

35 DMA memory boundary crossing error

36 Miscellaneous I/O error

37 Pipe size of 0 requested

38 Memory-release error (relmem)

369

Section 8. Operation

Table 94. File System Error Codes
Error Code Description

39 FAT sectors unreadable (all copies)

40 Bad BPB sector

41 Time-out waiting for filesystem available

42 Controller failure error

43 Pathname exceeds _MAX_PATHNAME

8.4 Data Retrieval and Telecommunications — Details
Related Topics:
 • Data Retrieval and Telecommunications — Quickstart (p. 45)
 • Data Retrieval and Telecommunications — Overview (p. 87)
 • Data Retrieval and Telecommunications — Details (p. 370)
 • Data Retrieval and Telecommunication Peripherals — Lists (p. 627)

Telecommunications, in the context of CR800 operation, is the movement of
information between the CR800 and another computing device, usually a PC.
The information can be data, program, files, or control commands.

Telecommunication systems require three principal components: hardware, carrier
signal, and protocol. For example, a common way to communicate with the
CR800 is with PC200W software by way of a PC COM port. In this example,
hardware are the PC COM port, CR800 RS-232 port, and a serial cable. The
carrier signal is RS-232, and the protocol is PakBus®. Of these three, you will
most often be required to choose only the hardware, since carrier signal and
protocol are transparent in most applications.

Systems usually require a single type of hardware and carrier signal. Some
applications, however, require hybrid systems of two or more hardware and signal
carriers.

Contact a Campbell Scientific application engineer for assistance in configuring a
telecommunication system.

Synopses of software to support telecommunication devices and protocols are
found in the appendix Support Software (p. 630). Of special note is Network
Planner, a LoggerNet client designed to simplify the configuration of PakBus
telecommunication networks.

8.4.1 Protocols
The CR800 communicates with datalogger support software (p. 93) and other
Campbell Scientific dataloggers (p. 621) using the PakBus (p. 496) protocol. See the
section Alternate Telecommunications — Details (p. 386) for information on other
supported protocols, such as TCP/IP, Modbus, etc.

8.4.2 Conserving Bandwidth
Some telecommunication services, such as satellite networks, can be expensive to
send and receive information. Best practices for reducing expense include:

370

Section 8. Operation

• Declare Public only those variables that need to be public.
• Be conservative with use of string variables and string variable sizes. Make

string variables as big as they need to be and no more; remember the
minimum is actually 24 bytes. Declare string variables Public and sample
string variables into data tables only as needed.

• When using GetVariables() / SendVariables() to send values between
dataloggers, put the data in an array and use one command to get the multiple
values. Using one command to get 10 values from an array and swath of 10
is much more efficient (requires only 1 transaction) than using 10 commands
to get 10 single values (requires 10 transactions).

• Set the CR800 to be a PakBus router only as needed. When the CR800 is a
router, and it connects to another router like LoggerNet, it exchanges routing
information with that router and, possibly (depending on your settings), with
other routers in the network.

• Set PakBus beacons and verify intervals properly. For example, there is no
need to verify routes every five minutes if communications are expected only
every 6 hours.

8.4.3 Initiating Telecommunications (Callback)
Telecommunication sessions are usually initiated by a PC. Once
telecommunication is established, the PC issues commands to send programs, set
clocks, collect data, etc. Because data retrieval is managed by the PC, several PCs
can have access to a CR800 without disrupting the continuity of data. PakBus®
allows multiple PCs to communicate with the CR800 simultaneously when proper
telecommunication networks are installed.

Typically, the PC initiates telecommunications with the CR800 with datalogger
support software (p. 631). However, some applications require the CR800 to call
back the PC (initiate telecommunications). This feature is called 'Callback'.
Special LoggerNet (p. 631) features enable the PC to receive calls from the CR800.

For example, if a fruit grower wants a frost alarm, the CR800 can contact him by
calling a PC, sending an email, text message, or page, or calling him with
synthesized-voice over telephone. Callback has been used in applications
including Ethernet, land-line telephone, digital cellular, and direct connection.
Callback with telephone is well documented in CRBasic Editor Help (search term
"callback"). For more information on other available Callback features, manuals
for various telecommunication hardware may discuss Callback options. Contact a
Campbell Scientific application engineer for the latest information in Callback
applications.

Caution When using the ComME communication port with non-PakBus
protocols, incoming characters can be corrupted by concurrent use of the CS I/O
for SDC communications. PakBus communications use a low-level protocol
(pause / finish / ready sequence) to stop incoming data while SDC occurs.

Non-PakBus communications include TCP/IP protocols, ModBus, DNP3, and
generic, CRBasic-driven use of CS I/O.

Though usually unnoticed, a short burst of SDC communications occurs at power-
up and other times when the datalogger is reset, such as when compiling a
program or changing settings that require recompiling. This activity is the
datalogger querying to see if the CR1000KD Keyboard Display is available.

371

Section 8. Operation

When DevConfig and PakBus Graph retrieve settings, the CR800 queries to
determine what SDC devices are connected. Results of the query can be seen in
the DevConfig and PakBusGraph settings tables. SDC queries occur whether or
not an SDC device is attached.

8.5 PakBus® Communications — Details
Related Topics:
 • PakBus® Communications — Overview (p. 88)

 • PakBus® Communications — Details (p. 372)

 • PakBus® Communications — Instructions (p. 558)

 • PakBus Networking Guide (available at www.campbellsci.com/manuals
(http://www.campbellsci.com/manuals))

The CR800 communicates with computers or other Campbell Scientific
dataloggers with PakBus. PakBus is a proprietary telecommunication protocol
similar in concept to IP (Internet protocol). PakBus allows compatible Campbell
Scientific dataloggers and telecommunication peripherals to seamlessly join a
PakBus network.

Read More This section is provided as a primer to PakBus communications.
More information is available in the appendicies Peer-to-Peer PakBus
Communications (p. 558) and Status/Settings/DTI: PakBus Information and the
PakBus Networking Guide, available at www.campbellsci.com.

8.5.1 PakBus Addresses
CR800s are assigned PakBus® address 1 as a factory default. Networks with more
than a few stations should be organized with an addressing scheme that
guarantees unique addresses for all nodes. One approach, demonstrated in figure
PakBus Network Addressing (p. 373) , is to assign single-digit addresses to the first
tier of nodes, double-digit to the second tier, triple-digit to the third, etc. Note that
each node on a branch starts with the same digit. Devices, such as PCs, with
addresses greater than 4000 are given special administrative access to the network

PakBus addresses are set using DevConfig, PakBusGraph, CR800 Status table, or
with an CR1000KD Keyboard Display. DevConfig (Device Configuration Utility)
is the primary settings editor. It requires a hardwire serial connection to a PC and
allows backup of settings on the PC hard drive. PakBusGraph is used over a
telecommunication link to change settings, but has no provision for backup.

Caution Care should be taken when changing PakBus® addresses with
PakBusGraph or in the Status table. If an address is changed to an unknown
value, a field visit with a laptop and DevConfig may be required to discover the
unknown address.

8.5.2 Nodes: Leaf Nodes and Routers
• A PakBus® network consists of two to 4093 linked nodes.
• One or more leaf nodes and routers can exist in a network.

372

http://www.campbellsci.com/manuals

Section 8. Operation

• Leaf nodes are measurement devices at the end of a branch of the PakBus
network.

o Leaf nodes can be linked to any router.
o A leaf node cannot route packets but can originate or receive them.

• Routers are measurement or telecommunication devices that route packets to
other linked routers or leaf nodes.

o Routers can be branch routers. Branch routers only know as neighbors
central routers, routers in route to central routers, and routers one level
outward in the network.

o Routers can be central routers. Central routers know the entire network.
A PC running LoggerNet is typically a central router.

o Routers can be router-capable dataloggers or communication devices.

The CR800 is a leaf node by factory default. It can be configured as a router by
setting IsRouter in its Status table to 1 or True. The network shown in figure
PakBus Network Addressing (p. 373) contains six routers and eight leaf nodes.

8.5.2.1 Router and Leaf-Node Configuration
Consult the appendix Router and Leaf-Node Hardware for a table of available
PakBus® leaf-node and router devices. LoggerNet is configured by default as a
router and can route datalogger- to-datalogger communications.

Figure 97. PakBus Network Addressing

Table 95. PakBus Leaf-Node and Router Device Configuration
Network
Device Description PakBus

Leaf Node
PakBus
Router

PakBus
Aware Transparent

CR200X Datalogger •

CR6 CS I/O
Port Datalogger • •

CR800 Datalogger • •

CR1000 Datalogger • •

CR3000 Datalogger • •

373

Section 8. Operation

Table 95. PakBus Leaf-Node and Router Device Configuration
Network
Device Description PakBus

Leaf Node
PakBus
Router

PakBus
Aware Transparent

CR5000 Datalogger • •

LoggerNet Software •

CR6 Ethernet
Port Network link

NL100 Serial port
network link • •

NL115
Peripheral port
network link1

 •

NL120
Peripheral port
network link1

 •

NL200 Serial port
network link

NL240 Wireless
network link

MD485 Multidrop • •

RF401,
RF430,
RF450

Radio • • •

CC640 Camera •

SC105 Serial interface •

SC32B Serial interface •

SC932A Serial interface •

COM220 Telephone
modem •

COM310 Telephone
modem •

SRM-5A Short-haul
modem •

1This network link is not compatible with CR800 datalogger.

8.5.3 Linking PakBus Nodes: Neighbor Discovery
New terms (see Nodes: Leaf Nodes and Routers (p. 372)):

• node
• link
• neighbor
• neighbor-filters
• hello
• hello-exchange
• hello-message
• hello-request

374

Section 8. Operation

• CVI
• beacon

To form a network, nodes must establish links with neighbors (neighbors are
adjacent nodes). Links are established through a process called discovery.
Discovery occurs when nodes exchange hellos. A hello-exchange occurs during a
hello-message between two nodes.

8.5.3.1 Hello-Message
A hello-message is a two-way exchange between nodes to negotiate a neighbor
link. A hello-message is sent out in response to one or both of either a beacon or
a hello-request.

8.5.3.2 Beacon
A beacon is a one-way broadcast sent by a node at a specified interval telling all
nodes within hearing that a hello-message can be sent. If a node wishes to
establish itself as a neighbor to the beaconing node, it will then send a hello-
message to the beaconing node. Nodes already established as neighbors will not
respond to a beacon.

8.5.3.3 Hello-Request
A hello-request is a one-way broadcast. All nodes hearing a hello-request
(existing and potential neighbors) will issue a hello-message to negotiate or re-
negotiate a neighbor relationship with the broadcasting node.

8.5.3.4 Neighbor Lists
PakBus devices in a network can be configured with a neighbor list. The CR800
sends out a hello-message to each node in the list whose CVI (p. 485) has expired at
a random interval1. If a node responds, a hello-message is exchanged and the node
becomes a neighbor.

Neighbor filters dictate which nodes are neighbors and force packets to take
routes specified by the network administrator. LoggerNet, which is a PakBus
node, derives its neighbor filter from link information in the LoggerNet Setup
device map.
1Interval is a random number of seconds between the interval and two times the interval, where the
interval is the CVI (if non-zero) or 300 seconds if the CVI setting is set to zero.

8.5.3.5 Adjusting Links
PakBusGraph, a client of LoggerNet, is particularly useful when testing and
adjusting PakBus routes. Paths established by way of beaconing may be
redundant and vary in reliability. Redundant paths can provide backup links in the
event the primary path fails. Redundant and unreliable paths can be eliminated by
activating neighbor-filters in the various nodes and by disabling some beacons.

375

Section 8. Operation

8.5.3.6 Maintaining Links
Links are maintained by means of the CVI (p. 485). The CVI can be specified in
each node with the Verify Interval setting in DevConfig (ComPorts Settings).
The following rules apply:

Note During the hello-message, a CVI must be negotiated between two
neighbors. The negotiated CVI is the lesser of the first node's CVI and 6/5ths of
the neighbor's CVI.

• If Verify Interval = 0, then CVI = 2.5 x Beacon Interval
• If Verify Interval = 60, then CVI = 60 seconds
• If Beacon Interval = 0 and Verify Interval = 0, then CVI = 300 seconds
• If the router or master does not hear from a neighbor for one CVI, it begins

again to send a hello-message to that node at the random interval.

Users should base the Verify Interval setting on the timing of normal
communications such as scheduled LoggerNet-data collections or datalogger-to-
datalogger communications. The idea is to not allow the CVI to expire before
normal communications. If the CVI expires, the devices will initiate hello-
exchanges in an attempt to regain neighbor status, which will increase traffic on
the network.

8.5.4 PakBus Troubleshooting
Various tools and methods have been developed to assist in troubleshooting
PakBus networks.

8.5.4.1 Link Integrity
With beaconing or neighbor-filter discovery, links are established and verified
using relatively small data packets (hello-messages). When links are used for
regular telecommunications, however, longer messages are used. Consequently, a
link may be reliable enough for discovery using hello-messages but unreliable
with the longer messages or packets. This condition is most common in radio
networks, particularly when maximum packet size is >200.

PakBus communications over marginal links can often be improved by reducing
the size of the PakBus packets with the Max Packet Size setting in DevConfig
Advanced tab. Best results are obtained when the maximum packet sizes in both
nodes are reduced.

8.5.4.1.1 Automatic Packet-Size Adjustment
The BMP5 file-receive transaction allows the BMP5 client (LoggerNet) to specify
the size of the next fragment of the file that the CR800 sends.

Note PakBus uses the file-receive transaction to get table definitions from the
datalogger.

Because LoggerNet must specify a size for the next fragment of the file, it uses
whatever size restrictions that apply to the link.

376

Section 8. Operation

Hence, the size of the responses to the file-receive commands that the CR800
sends is governed by the Max Packet Size setting for the datalogger as well as
that of any of its parents in the LoggerNet network map. Note that this calculation
also takes into account the error rate for devices in the link.

BMP5 data-collection transaction does not provide any way for the client to
specify a cap on the size of the response message. This is the main reason why the
Max Packet Size setting exists. The CR800 can look at this setting at the point
where it is forming a response message and cut short the amount of data that it
would normally send if the setting limits the message size.

8.5.4.2 Ping (PakBus)
Link integrity can be verified with the following procedure by using
PakBusGraph Ping Node. Nodes can be pinged with packets of 50, 100, 200, or
500 bytes.

Note Do not use packet sizes greater than 90 when pinging with 100 mW radio
modems and radio enabled dataloggers. See the appendix Data Retrieval and
Telecommunication Peripherals — Lists (p. 627).

Pinging with ten repetitions of each packet size will characterize the link. Before
pinging, all other network traffic (scheduled data collections, clock checks, etc.)
should be temporarily disabled. Begin by pinging the first layer of links
(neighbors) from the PC / LoggerNet router, then proceed to nodes that are more
than one hop away. Table PakBus Link-Performance Gage (p. 377) provides a link-
performance gage.

Table 96. PakBus Link-Performance Gage
500 byte

Pings Sent

Successes

Link Status

10 10 excellent

10 9 good

10 7-8 adequate

10 <7 marginal

8.5.4.3 Traffic Flow
Keep beacon intervals as long as possible with higher traffic (large numbers of
nodes and / or frequent data collection). Long beacon intervals minimize
collisions with other packets and resulting retries. The minimum recommended
Beacon Interval setting is 60 seconds. If communication traffic is high, consider
setting beacon intervals of several minutes. If data throughput needs are great,
maximize data bandwidth by creating some branch routers, or by eliminating
beacons altogether and setting up neighbor filters.

8.5.5 LoggerNet Network-Map Configuration
As shown in figure Flat Map (p. 378) and figure Tree Map (p. 378), the essential
element of a PakBus network device map in LoggerNet is the PakBusPort. After
adding the root port (COM, IP, etc), add a PakBusPort and the dataloggers.

377

Section 8. Operation

Figure 98. Flat Map

Figure 99. Tree Map

The difference between the two configurations is that the flat map configures the
router with static routes that report that all of the dataloggers are neighbours to the
server. The tree map configures static routes wherein "CR800" is configured as a
neighbour and "CR800_2", "CR800_3", and "CR800_4" are configured to use
"CR800" as the router. Deeper nesting, while allowed, is meaningless in terms of
PakBus because PakBus does not allow dictation of the entire communication
path. You can specify the router address for only the first hop.

Within the server, dynamically discovered routes take precedence over static
routes, so once the network is learned, communications will work smoothly.
However, having the correct static route to begin is often crucial because an
attempt to ring a false neighbor can time out before routing can be discovered
from the real neighbor.

Stated another way, use the tree configuration when communication requires
routers. The shape of the map serves to disallow a direct LoggerNet connection to
CR800_2 and CR800_3, and it implies constrained routes that will probably be
established by user-installed neighbor filters in the routers. This assumes that
LoggerNet beacons are turned off. Otherwise, with a default address of 4094,
LoggerNet beacons will penetrate the neighbor filter of any in-range node.

378

Section 8. Operation

8.5.6 PakBus LAN Example
To demonstrate PakBus networking, a small LAN (Local Area Network) of
CR800s can be configured as shown in figure Configuration and Wiring of
PakBus LAN (p. 379). A PC running LoggerNet uses the RS-232 port of the first
CR800 to communicate with all CR800s. All LoggerNet functions, such as send
programs, monitor measurements, and collect data, are available to each CR800.
CR800s can also be programmed to exchange data with each other (the data
exchange feature is not demonstrated in this example).

8.5.6.1 LAN Wiring
Use three-conductor cable to connect CR800s as shown in figure Configuration
and Wiring of CR800 LAN (p. 379). Cable length between any two CR800s must be
less than 25 feet (7.6 m). COM1 Tx (transmit) and Rx (receive) are CR800
terminals C1 and C2, respectively; COM2 Tx and Rx are terminals C3 and C4,
respectively. Tx from a CR800 is connected to Rx of an adjacent CR800.

Figure 100. Configuration and Wiring of PakBus LAN

379

Section 8. Operation

8.5.6.2 LAN Setup
Configure CR800s before connecting them to the LAN:

1. Start Device Configuration Utility (DevConfig). Click on Device Type: select
CR800. Follow on-screen instructions to power CR800s and connect them to
the PC. Close other programs that may be using the PC COM port, such as
LoggerNet, PC400, PC200W, HotSync, etc.

2. Click on the Connect button at the lower left.

3. Set settings using DevConfig as outlined in table PakBus-LAN Example
Datalogger-Communication Settings (p. 381). Leave unspecified settings at
default values. Example DevConfig screen captures are shown in figure
DevConfig Deployment | Datalogger Tab (p. 380) through figure DevConfig
Deployment | Advanced Tab (p. 381). If the CR800s are not new, upgrading the
operating system or setting factory defaults before working this example is
advised.

Figure 101. DevConfig Deployment Tab

380

Section 8. Operation

Figure 102. DevConfig Deployment | ComPorts Settings Tab

Figure 103. DevConfig Deployment | Advanced Tab

381

Section 8. Operation

Table 97. PakBus-LAN Example Datalogger-Communication Settings

Software→ Device Configuration Utility (DevConfig)

Tab→ Deployment

Sub-Tab→ Datalogger ComPort Settings Advanced

Setting→ PakBus Adr COM1 COM2 Is Router

Sub-Setting→ Baud Rate Neighbors1 Baud Rate Neighbors1

Datalogger ↓ Begin: End: Begin: End:

CR800_1 1 115.2K Fixed 2 2 115.2K Fixed 3 4 Yes

CR800_2 2 115.2K Fixed 1 1 Disabled No

CR800_3 3 115.2K Fixed 1 1 115.2K Fixed 4 4 Yes

CR800_4 4 115.2K Fixed 3 3 Disabled No

1Setup can be simplified by setting all neighbor lists to Begin: 1 End: 4.

8.5.6.3 LoggerNet Setup
Figure 104. LoggerNet Network-Map Setup: COM port

In LoggerNet Setup, click Add Root and add a ComPort. Then Add a
PakBusPort, and (4) CR800 dataloggers to the device map as shown in figure
LoggerNet Device-Map Setup (p. 382).

382

Section 8. Operation

Figure 105. LoggerNet Network-Map Setup: PakBusPort

As shown in figure LoggerNet Device Map Setup: PakBusPort (p. 383), set the
PakBusPort maximum baud rate to 115200. Leave other settings at the defaults.

Figure 106. LoggerNet Network-Map Setup: Dataloggers

As shown in figure LoggerNet Device-Map Setup: Dataloggers (p. 383), set the
PakBus® address for each CR800 as listed in table PakBus-LAN Example
Datalogger-Communication Settings (p. 381).

383

Section 8. Operation

8.5.7 Route Filters
The Route Filters setting restricts routing or processing of some PakBus message
types so that a "state changing" message can only be processed or forwarded by
this CR800 if the source address of that message is in one of the source ranges
and the destination address of that message is in the corresponding destination
range. If no ranges are specified (the default), the CR800 will not apply any
routing restrictions. "State changing" message types include set variable, table
reset, file control send file, set settings, and revert settings.

For example, if this setting was set to a value of (4094, 4094, 1, 10), the CR800
would only process or forward "state changing" messages that originated from
address 4094 and were destined to an address in the range between one and ten.

This is displayed and parsed using the following formal syntax:
route-filters := { "(" source-begin "," source-end ","
dest-begin "," dest-end ")" }.
source-begin := uint2. ; 1 < source-begin <= 4094
source-end := uint2. ; source-begin <= source-end <= 4094
dest-begin := uint2. ; 1 < dest-begin <= 4094
dest-end := uint2. ; dest-begin <= dest-end <= 4094

8.5.8 PakBusRoutes
PakBusRoutes() lists the routes (in the case of a router), or the router neighbors
(in the case of a leaf node), that were known to the CR800 at the time the setting
was read. Each route is represented by four components separated by commas
and enclosed in parentheses:

PakBusRoutes(port, via neighbor adr, pakbus adr, response time)

Descriptions of PakBusRoutes() parameters:

port

Specifies a numeric code for the port the router will use:

Table 98. Router Port Numbers

Port Description Numeric Code

ComRS232 1

ComME 2

ComSDC6 (Com310) 3

ComSDC7 4

ComSDC8 5

ComSDC9 (Com320) 6

ComSDC10 7

ComSDC11 8

Com1 (C1,C2) 9

Com2 (C3,C4) 10

IP1 101,102,…

384

Section 8. Operation

1 If the value of the port number is ≥ 101, the connection is made through PakBus/TCP, either by
the CR800 executing a TCPOpen() instruction or by having a connection made to the PakBus/TCP
CR800 service.

via neighbor adr

Specifies address of neighbor / router to be used to send messages for this
route. If the route is for a neighbor, this value is the same as the address.

pakbus adr

For a router, specifies the address the route reaches. If a leaf node, this is 0.

response time

For a router, specifies time in milliseconds that is allowed for the route. If a
leaf node, this is 0.

8.5.9 Neighbors
Settings Editor name: Neighbors Allowed xxx

Array of integers indicating PakBus neighbors for comumunication ports:

RS-232, ME, SDC7, SDC8, SDC10, SDC11
Com1 (C1,C2)
Com2 (C3,C4)

This setting specifies, for a given port, the explicit list of PakBus node addresses
that the CR800 will accept as neighbors. If the list is empty (the default
condition), any node is accepted as a neighbor. This setting will not affect the
acceptance of a neighbor if that neighbor address is greater than 3999. The formal
syntax for this setting follows:

neighbor := { "(" range-begin "," range-end ")" }.
range-begin := pakbus-address. ;
range-end := pakbus-address.
pakbus-address := number. ; 0 < number < 4000

If more than 10 neighbors are in the allowed list and the beacon interval is 0, the
beacon interval is changed to 60 seconds and beaconing is used for neighbor
discovery instead of directed hello requests that consume communication
memory.

8.5.10 PakBus Encryption
Two PakBus devices can exchange encrypted commands and data. Encryption
uses the AES-128 algorithm. Routers and other leaf nodes do not need to be set
for encryption. The CR800 has a setting accessed through DevConfig (p. 109) that
sets it to send and receive only encrypted commands and data. LoggerNet (p. 631),
likewise, has a setting attached to the specific station that enables it to send and
receive only encrypted commands and data. Header level information needed for
routing is not encrypted. An encrypted CR800 can also communicate with an
unencrypted datalogger. Use an EncryptExempt() instruction in the CRBasic
program to define one or more PakBus addresses to which encrypted messages
will not be sent.

385

Section 8. Operation

Campbell Scientific products supporting PakBus encryption include the
following:

• LoggerNet 4.2
• CR1000 datalogger (OS26 and later)
• CR3000 datalogger (OS26 and later)
• CR800 series dataloggers (OS26 and later)
• CR800 series dataloggers (OS1 and later)

Device Configuration Utility (DevConfig) v. 2.04 and later

• Network Planner v. 1.6 and later.

Portions of the protocol to which PakBus encryption is applied include:

• All BMP5 messages
• All settings related messages

Note Basic PakBus messages such as Hello, Hello Request, Send Neighbors,
Get Neighbors, and Echo are NOT encrypted.

The PakBus encryption key can be set in the CR800 datalogger through:

• DevConfig Deployment tab
• DevConfig Settings Editor tab
• PakBusGraph settings editor dialog
• Keyboard display

Be careful to record the encryption key in a secure location. If the encryption key
is lost, it needs to be reset. Reset the key on the keyboard display by deleting the
bullet characters that appear in the field, then enter the new key.

Note Encryption key cannot be set through the CRBasic program.

Setting the encryption key in datalogger support software (p. 485) (LoggerNet 4.2
and higher):

• Applies to CR1000, CR3000, CR800 series, and CR800 dataloggers, and
PakBus routers, and PakBus port device types.

• Can be set through the LoggerNet Set Up screen, Network Planner, or
CoraScript (only CoraScript can set the setting for a PakBus port).

Note Setting the encryption key for a PakBus port device will force all messages
it sends to use encryption.

8.6 Alternate Telecommunications — Details
Related Topics:
 • Alternate Telecommunications — Overview (p. 89)
 • Alternate Telecommunications — Details (p. 386)

The CR800 communicates with datalogger support software (p. 93) and other
Campbell Scientific dataloggers (p. 621) using the PakBus (p. 496) protocol. Modbus,
DNP3, TCP/IP, and several industry-specific protocols are also supported. CAN
bus is supported when using the Campbell Scientific SDM-CAN (p. 627)

386

Section 8. Operation

communication module.

8.6.1 DNP3 — Details
Related Topics:
 • DNP3 — Overview (p. 90)
 • DNP3 — Details (p. 387)

This section is slated for a major update in 2015.

8.6.1.1 DNP3 Introduction
The CR800 is DNP3 SCADA compatible. DNP3 is a SCADA protocol primarily
used by utilities, power-generation and distribution networks, and the water- and
wastewater-treatment industry.

Distributed Network Protocol (DNP) is an open protocol used in applications to
ensure data integrity using minimal bandwidth. DNP implementation in the
CR800 is DNP3 Level-2 Slave Compliant with some of the operations found in a
Level-3 implementation. A standard CR800 program with DNP instructions will
take arrays of real time or processed data and map them to DNP arrays in integer
or binary format. The CR800 responds to any DNP master with the requested data
or sends unsolicited responses to a specific DNP master. DNP communications
are supported in the CR800 through the RS-232 port, COM1 or COM2 or over
TCP, taking advantage of multiple communication options compatible with the
CR800, e.g., RF, cellular phone, satellite. DNP3 state and history are preserved
through power and other resets in non-volatile memory.

DNP SCADA software enables CR800 data to move directly into a database or
display screens. Applications include monitoring weather near power transmission
lines to enhance operational decisions, monitoring and controlling irrigation from
a wastewater-treatment plant, controlling remote pumps, measuring river flow,
and monitoring air movement and quality at a power plant.

8.6.1.2 Programming for DNP3
CRBasic example Implementation of DNP3 (p. 389) lists CRBasic code to take
Iarray() analog data and Barray() binary data (status of control port 5) and map
them to DNP arrays. The CR800 responds to a DNP master with the specified
data or sends unsolicited responses to DNP Master 3.

8.6.1.2.1 Declarations (DNP3 Programming)
Table DNP3 Implementation — Data Types Required to Store Data in Public
Tables for Object Groups (p. 387) shows object groups supported by the CR800
DNP implementation, and the required data types. A complete list of groups and
variations is available in CRBasic Editor Help for DNPVariable().

387

Section 8. Operation

Table 99. DNP3 Implementation — Data Types Required to Store
Data in Public Tables for Object Groups

Data Type Group Description

Boolean 1 Binary input

 2 Binary input change

 10 Binary output

 12 Control block

Long 30 Analog input

 32 Analog change event

 40 Analog output status

 41 Analog output block

 50 Time and date

 51 Time and date CTO

8.6.1.2.2 CRBasic Instructions (DNP3)
Complete descriptions and options of commands are available in CRBasic Editor
Help.

DNP()

Sets the CR800 as a DNP slave (outstation/server) with an address and DNP3-
dedicated COM port. Normally resides between BeginProg and Scan(), so it is
executed only once. Example at CRBasic example Implementation of DNP3 (p.
389), line 20.

Syntax
DNP(ComPort, BaudRate, DNPSlaveAddr)

DNPVariable()

Associates a particular variable array with a DNP object group. When the master
polls the CR800, it returns all the variables specified along with their specific
groups. Also used to set up event data, which is sent to the master whenever the
value in the variable changes. Example at CRBasic example Implementation of
DNP3 (p. 389), line 24.

Syntax
DNPVariable(Source, Swath, DNPObject, DNPVariation, DNPClass,

DNPFlag, DNPEvent, DNPNumEvents)

DNPUpdate()

Determines when DNP slave (outstation/server) will update its arrays of DNP
elements. Specifies the address of the DNP master to which are sent unsolicited
responses (event data). Must be included once within a Scan() / NextScan for the
DNP slave to update its arrays. Typically placed in a program after the elements
in the array are updated. The CR800 will respond to any DNP master regardless
of its address.

388

Section 8. Operation

Syntax
DNPUpdate (DNPSlaveAddr,DNPMasterAddr)

8.6.1.2.3 Programming for DNP3 Data Acquisition
As shown in CRBasic example Implementation of DNP3 (p. 389), program the
CR800 to return data when polled by the DNP3 master using the following three
actions:

1. Place DNP() at the beginning of the program between BeginProg and Scan().
Set COM port, baud rate, and DNP3 address.

2. Setup the variables to be sent to the master using DNPVariable(). Dual
instructions cover static (current values) and event (previous ten records) data.

o For analog measurements:
DNPVariable(Variable_Name,Swath,30,2,0,&B00000000,0,0)
DNPVariable(Variable_Name,Swath,32,2,3,&B00000000,0,10)

o For digital measurements (control ports):
DNPVariable(Variable_Name,Swath,1,2,0,&B00000000,0,0)
DNPVariable(Variable_Name,Swath,32,2,3,&B00000000,0,10)

3. Place DNPUpdate() after Scan(), inside the main scan. The DNP3 master is
notified of any change in data each time DNPUpdate() runs; e.g., for a 10
second scan, the master is notified every 10 seconds.

CRBasic Example 65. Implementation of DNP3
'This program example demonstrates a basic implementation of DNP3 in the CR800. The CR800
'is programmed to return data over IP when polled by the DNP3 master. Essential elements
'of the program are as follows:

' 1. DNP() instruction is placed at the beginning of the program between BeginProg
' and Scan(). COM port, baud rate, and DNP3 address are set.
' 2. Variables are set up to be sent to the master using DNPVariable(). Dual instructions
' cover static data (current values) and event data (previous ten records). Following
' are the sets of dual instructions for analog and digital measurements:

' 'For analog measurements:
' 'DNPVariable(Variable_Name,Swath,30,2,0,&B00000000,0,0)
' 'DNPVariable(Variable_Name,Swath,32,2,3,&B00000000,0,10)

' 'For digital measurements (control ports):
' 'DNPVariable(Variable_Name,Swath,1,2,0,&B00000000,0,0)
' 'DNPVariable(Variable_Name,Swath,32,2,3,&B00000000,0,10)

' 3. DNPUpdate() is placed after Scan(), inside the main scan. The DNP3 master is
' notified of any change in data each time DNPUpdate() runs. For example, for a 10
' second scan, the master is notified every 10 seconds.

389

Section 8. Operation

Public IArray(4) As Long
Public BArray(2) As Boolean

Public WindSpd
Public WindDir
Public Batt_Volt
Public PTemp_C

Units WindSpd=meter/Sec
Units WindDir=Degrees
Units Batt_Volt=Volts
Units PTemp_C=Deg C

'Main Program
BeginProg

 'DNP communication over IP at 115.2kbps. CR800 DNP address is 1.
 DNP(20000,115200,1)

 'DNPVariable(Source,Swath,DNPObject,DNPVariation,DNPClass,DNPFlag,DNPEvent,DNPNumEvents)
 DNPVariable(IArray,4,30,2,0,&B00000000,0,0)

 'Object group 30, variation 2 is used to return analog data when the CR800
 'is polled. Flag is set to an empty 8 bit number(all zeros), DNPEvent is a
 'reserved parameter and is currently always set to zero. Number of events is
 'only used for event data.
 DNPVariable(IArray,4,32,2,3,&B00000000,0,10)
 DNPVariable(BArray,2,1,1,0,&B00000000,0,0)
 DNPVariable(BArray,2,2,1,1,&B00000000,0,1)

 Scan(1,Sec,1,0)
 'Wind Speed & Direction Sensor measurements WS_ms and WindDir:
 PulseCount(WindSpd,1,1,1,3000,2,0)
 IArray(1) = WindSpd * 100
 BrHalf(WindDir,1,mV2500,1,Vx1,1,2500,True,0,_60Hz,355,0)
 If WindDir>=360 Then WindDir=0
 IArray(2) = WindDir * 100

 'Default Datalogger Battery Voltage measurement Batt_Volt:
 Battery(Batt_Volt)
 IArray(3) = Batt_Volt * 100

 'Wiring Panel Temperature measurement PTemp_C:
 PanelTemp(PTemp_C,_60Hz)
 IArray(1) =PTemp_C
 PortGet(Barray(1),5)

 'Update DNP arrays and send unsolicited requests to DNP Master address 3
 DNPUpdate(2,3)
 NextScan
EndProg

390

Section 8. Operation

8.6.2 Modbus — Details

Related Topics:
 • Modbus — Overview (p. 89)
 • Modbus — Details (p. 391)

The CR800 supports Modbus master and Modbus slave communications for
inclusion in Modbus SCADA networks. Modbus is a widely used SCADA
communication protocol that facilitates exchange of information and data between
computers / HMI software, instruments (RTUs) and Modbus-compatible sensors.
The CR800 communicates with Modbus over RS-232, RS-485 (with a RS-232 to
RS-485 adapter), and TCP.

Modbus systems consist of a master (PC), RTU / PLC slaves, field instruments
(sensors), and the communication-network hardware. The communication port,
baud rate, data bits, stop bits, and parity are set in the Modbus driver of the master
and / or the slaves. The Modbus standard has two communication modes, RTU
and ASCII. However, CR800s communicate in RTU mode exclusively.

Field instruments can be queried by the CR800. Because Modbus has a set
command structure, programming the CR800 to get data from field instruments is
much simpler than from serial sensors. Because Modbus uses a common bus and
addresses each node, field instruments are effectively multiplexed to a CR800
without additional hardware.

A CR800 goes into sleep mode after 40 seconds of communication inactivity.
Once asleep, two packets are required before the CR800 will respond. The first
packet awakens the CR800; the second packet is received as data. CR800s,
through DevConfig or the Status table (see the appendix Status Table and Settings
(p. 577)) can be set to keep communication ports open and awake, but at higher
power usage.

8.6.2.1 Modbus Terminology
Table Modbus to Campbell Scientific Equivalents (p. 391) lists terminology
equivalents to aid in understanding how CR800s fit into a SCADA system.

Table 100. Modbus to Campbell Scientific Equivalents
Modbus Domain Data Form Campbell Scientific

Domain

Coils Single bit Ports, flags, boolean variables

Digital registers 16 bit word Floating point variables

Input registers 16 bit word Floating point variables

Holding registers 16 bit word Floating point variables

RTU / PLC CR800

Master Usually a computer

Slave Usually a CR800

Field instrument Sensor

391

Section 8. Operation

8.6.2.1.1 Glossary of Modbus Terms
Term. coils (00001 to 09999)

Originally, "coils" referred to relay coils. In CR800s, coils are exclusively
terminals configured for control, software flags, or a Boolean-variable array.
Terminal configured for control are inferred if parameter 5 of the
ModbusSlave() instruction is set to 0. Coils are assigned to Modbus
registers 00001 to 09999.

Term. digital registers 10001 to 19999

Hold values resulting from a digital measurement. Digital registers in the
Modbus domain are read-only. In the Campbell Scientific domain, the
leading digit in Modbus registers is ignored, and so are assigned together to a
single Dim- or Public-variable array (read / write).

Term. input registers 30001 to 39999

Hold values resulting from an analog measurement. Input registers in the
Modbus domain are read-only. In the Campbell Scientific domain, the
leading digit in Modbus registers is ignored, and so are assigned together to a
single Dim- or Public- variable array (read / write).

Term. holding registers 40001 to 49999

Hold values resulting from a programming action. Holding registers in the
Modbus domain are read / write. In the Campbell Scientific domain, the
leading digit in Modbus registers is ignored, and so are assigned together to a
single Dim or Public variable array (read / write).

Term. RTU / PLC

Remote Telemetry Units (RTUs) and Programmable Logic Controllers
(PLCs) were at one time used in exclusive applications. As technology
increases, however, the distinction between RTUs and PLCs becomes more
blurred. A CR800 fits both RTU and PLC definitions.

8.6.2.2 Programming for Modbus
8.6.2.2.1 Declarations (Modbus Programming)

Table CRBasic Ports, Flags, Variables, and Modbus Registers (p. 392) shows the
linkage between terminals configured for control, flags and Boolean variables and
Modbus registers. Modbus does not distinguish between terminals configured for
control, flags, or Boolean variables. By declaring only terminals configured for
control, or flags, or Boolean variables, the declared feature is addressed by
default. A typical CRBasic program for a Modbus application will declare
variables and ports, or variables and flags, or variables and Boolean variables.

392

Section 8. Operation

Table 101. CRBasic Ports, Flags, Variables, and, Modbus Registers

CR800 Feature
Example CRBasic

Declaration
Equivalent Example

Modbus Register

Terminal configured for
control Public Port(4) 00001 to 00005

Flag Public Flag(17) 00001 to 00018

Boolean variable Public ArrayB(56) as
Boolean

00001 to 00057

Variable Public ArrayV(20)1
40001 to 400411 or
30001 to 300411

1 Because of byte-number differences, each CR800 domain variable translates to two Modbus
domain input / holding registers.

8.6.2.2.2 CRBasic Instructions (Modbus)
Complete descriptions and options of commands are available in CRBasic Editor
Help.

ModbusMaster()

Sets up a CR800 as a Modbus master to send or retrieve data from a Modbus
slave.

Syntax
ModbusMaster(ResultCode, ComPort, BaudRate, ModbusAddr,

Function, Variable, Start, Length, Tries, TimeOut)

ModbusSlave()

Sets up a CR800 as a Modbus slave device.

Syntax
ModbusSlave(ComPort, BaudRate, ModbusAddr, DataVariable,

BooleanVariable)

MoveBytes()

Moves binary bytes of data into a different memory location when translating big-
endian to little-endian data. See the appendix Endianness (p. 619).

Syntax
MoveBytes(Dest, DestOffset, Source, SourceOffset, NumBytes)

8.6.2.2.3 Addressing (ModbusAddr)
Modbus devices have a unique address in each network. Addresses range from 1
to 247. Address 0 is reserved for universal broadcasts. When using the NL240,
use the same number as the Modbus and PakBus address.

8.6.2.2.4 Supported Modbus Function Codes
Modbus protocol has many function codes. CR800 commands support the
following.

393

Section 8. Operation

Table 102. Supported Modbus Function Codes
Code Name Description

01 Read coil/port status Reads the on/off status of discrete output(s) in the
ModBusSlave

02 Read input status Reads the on/off status of discrete input(s) in the
ModBusSlave

03 Read holding registers Reads the binary contents of holding register(s) in
the ModBusSlave

04 Read input registers Reads the binary contents of input register(s) in
the ModBusSlave

05 Force single coil/port Forces a single coil/port in the ModBusSlave to
either on or off

06 Write single register Writes a value into a holding register in the
ModBusSlave

15 Force multiple coils/ports Forces multiple coils/ports in the ModBusSlave to
either on or off

16 Write multiple registers Writes values into a series of holding registers in
the ModBusSlave

8.6.2.2.5 Reading Inverse-Format Modbus Registers
Some Modbus devices require reverse byte order words (CDAB vs. ABCD). This
can be true for either floating point, or integer formats. Since a slave CR800 uses
the ABCD format, either the master has to make an adjustment, which is
sometimes possible, or the CR800 needs to output reverse-byte order words. To
reverse the byte order in the CR800, use the MoveBytes() instruction as shown in
the sample code below.

for i = 1 to k
 MoveBytes(InverseFloat(i),2,Float(i),0,2)
 MoveBytes(InverseFloat(i),0,Float(i),2,2)
next

In the example above, InverseFloat(i) is the array holding the inverse-byte
ordered word (CDAB). Array Float(i) holds the obverse-byte ordered word
(ABCD).

See the appendix Endianness (p. 619).

8.6.2.3 Troubleshooting (Modbus)
Test Modbus functions on the CR800 with third party Modbus software. Further
information is available at the following links:

• www.simplyModbus.ca/FAQ.htm
• www.Modbus.org/tech.php
• www.lammertbies.nl/comm/info/modbus.html

8.6.2.4 Modbus over IP
Modbus over IP functionality is an option with the CR800. Contact Campbell
Scientific for details.

394

Section 8. Operation

8.6.2.5 Modbus Q and A
Q: Can Modbus be used over an RS-232 link, 7 data bits, even parity, one stop
bit?

A: Yes. Precede ModBusMaster() / ModBusSlave() with SerialOpen() and set
the numeric format of the COM port with any of the available formats, including
the option of 7 data bits, even parity. SerialOpen() and ModBusMaster() can be
used once and placed before Scan().

Concatenating two Modbus long 16-bit variables to one Modbus long 32 bit
number.

8.6.2.6 Converting Modbus 16-Bit to 32-Bit Longs
Concatenation of two Modbus long 16-bit variables to one Modbus long 32
bit number is shown in the following example.

CRBasic Example 66. Concatenating Modbus Long Variables
'This program example demonstrates concatenation (splicing) of Long data type variables
'for Modbus operations. Program is compatible with the following or later operating systems:
' CR800 OS v.3
' CR1000 OS v.12
' CR3000 OS v.5
'
'NOTE: The CR800 uses big-endian word order.

'Declarations
Public Combo As Long 'Variable to hold the combined 32-bit
Public Register(2) As Long 'Array holds two 16-bit ModBus long
 'variables
 'Register(1) = Least Significant Word
 'Register(2) = Most Significant Word
Public Result 'Holds the result of the ModBus master
 'query

'Aliases used for clarification
Alias Register(1) = Register_LSW 'Least significant word.
Alias Register(2) = Register_MSW 'Most significant word.

BeginProg
 'If you use the numbers below (un-comment them first)
 'Combo is read as 131073 decimal
 'Register_LSW=&h0001 'Least significant word.
 'Register_MSW=&h0002 ' Most significant word.

 Scan(1,Sec,0,0)
 'In the case of the CR800 being the ModBus master then the
 'ModbusMaster instruction would be used (instead of fixing
 'the variables as shown between the BeginProg and SCAN instructions).
 ModbusMaster(Result,COMRS232,-115200,5,3,Register(),-1,2,3,100)

395

Section 8. Operation

 'MoveBytes(DestVariable,DestOffset,SourceVariable,SourceOffSet,
 'NumberOfBytes)
 MoveBytes(Combo,2, Register_LSW,2,2)
 MoveBytes(Combo,0, Register_MSW,2,2)
 NextScan
EndProg

8.6.3 TCP/IP — Details
Related Topics:
 • TCP/IP — Overview (p. 90)
 • TCP/IP — Details (p. 402)
 • TCP/IP — Instructions (p. 567)
 • TCP/IP Links — List (p. 629)

The following TCP/IP protocols are supported by the CR800 when using network-
links (p. 629) that use the resident IP stack or when using a cell modem with the
PPP/IP key enabled. More information on some of these protocols is in the
following sections.

• DHCP
• DNS
• FTP
• HTML
• HTTP
• Micro-serial server
• NTCIP
• NTP
• PakBus over TCP/IP
• Ping
• POP3
• SMTP
• SNMP
• Telnet
• Web API (p. 402)
• XML

The most up-to-date information on implementing these protocols is contained in
CRBasic Editor Help. For a list of CRBasic instructions, see the appendix
TCP/IP (p. 567).

Read More Specific information concerning the use of digital-cellular modems
for TCP/IP can be found in Campbell Scientific manuals for those modems. For
information on available TCP/IP/PPP devices, refer to the appendix Network
Links (p. 629) for model numbers. Detailed information on use of TCP/IP/PPP
devices is found in their respective manuals (available at www.campbellsci.com
http://www.campbellsci.com) and CRBasic Editor Help.

8.6.3.1 PakBus Over TCP/IP and Callback
Once the hardware has been configured, basic PakBus® communication over
TCP/IP is possible. These functions include the following:

396

http://www.campbellsci.com/

Section 8. Operation

• Sending programs
• Retrieving programs
• Setting the CR800 clock
• Collecting data
• Displaying the current record in a data table

Data callback and datalogger-to-datalogger communications are also possible over
TCP/IP. For details and example programs for callback and datalogger-to-
datalogger communications, see the network-link manual. A listing of network-
link model numbers is found in the appendix Network Links (p. 629).

8.6.3.2 Default HTTP Web Server
The CR800 has a default home page built into the operating system. The home
page can be accessed using the following URL:

http:\\ipaddress:80

Note Port 80 is implied if the port is not otherwise specified.

As shown in the figure, Preconfigured HTML Home Page (p. 284), this page
provides links to the newest record in all tables, including the Status table, Public
table, and data tables. Links are also provided for the last 24 records in each data
table. If fewer than 24 records have been stored in a data table, the link will
display all data in that table.

Newest-Record links refresh automatically every 10 seconds. Last 24-Records
link must be manually refreshed to see new data. Links will also be created
automatically for any HTML, XML, and JPEG files found on the CR800 drives.
To copy files to these drives, choose File Control from the datalogger support
software (p. 485) menu.

Figure 107. Preconfigured HTML Home Page

397

Section 8. Operation

8.6.3.3 Custom HTTP Web Server
Although the default home page cannot be accessed for editing, it can be replaced
with the HTML code of a customized web page. To replace the default home
page, save the new home page under the name default.html and copy it to the
datalogger. It can be copied to a CR800 drive with File Control. Deleting
default.html will cause the CR800 to use the original, default home page.

The CR800 can be programmed to generate HTML or XML code that can be
viewed by a web browser. CRBasic example HTML (p. 286) shows how to use the
CRBasic instructions WebPageBegin() / WebPageEnd and HTTPOut() to
create HTML code. Note that for HTML code requiring the use of quotation
marks, CHR(34) is used, while regular quotation marks are used to define the
beginning and end of alphanumeric strings inside the parentheses of the
HTTPOut() instruction. For additional information, see the CRBasic Editor Help.

In this example program, the default home page is replaced by using
WebPageBegin to create a file called default.html. The new default home page
created by the program appears as shown in the figure Home Page Created using
WebPageBegin() Instruction (p. 285).

The Campbell Scientific logo in the web page comes from a file called
SHIELDWEB2.JPG that must be transferred from the PC to the CR800 CPU:
drive using File Control in the datalogger support software.

A second web page, shown in figure Customized Numeric-Monitor Web Page (p.
285) called "monitor.html" was created by the example program that contains links
to the CR800 data tables.

Figure 108. Home Page Created Using WebPageBegin() Instruction

398

Section 8. Operation

Figure 109. Customized Numeric-Monitor Web Page

CRBasic Example 67. Custom Web Page HTML
'This program example demonstrates the creation of a custom web page that resides in the
'CR800. In this example program, the default home page is replaced by using WebPageBegin to
'create a file called default.html. The graphic in the web page (in this case, the Campbell
'Scientific logo) comes from a file called SHIELDWEB2.JPG. The graphic file must be copied to
'the CR800 CPU: drive using File Control in the datalogger support software. A second web
'page is created that contains links to the CR800 data tables.

'NOTE: The "_" character used at the end of some lines allows a code statement to be wrapped
'to the next line.

Dim Commands As String * 200
Public Time(9), RefTemp,
Public Minutes As String, Seconds As String, Temperature As String

DataTable(CRTemp,True,-1)
 DataInterval(0,1,Min,10)
 Sample(1,RefTemp,FP2)
 Average(1,RefTemp,FP2,False)
EndTable

'Default HTML Page
WebPageBegin("default.html",Commands)
 HTTPOut("<html>")
 HTTPOut("<style>body {background-color: oldlace}</style>")
 HTTPOut("<body><title>Campbell Scientific CR800 Datalogger</title>")
 HTTPOut("<h2>Welcome To the Campbell Scientific CR800 Web Site!</h2>")
 HTTPOut("<tr><td style=" + CHR(34) +"width: 290px" + CHR(34) + ">")
 HTTPOut("")
 HTTPOut("<img src="+ CHR(34) +"/CPU/SHIELDWEB2.jpg"+ CHR(34) + "width=" + _
 CHR(34) +"128"+CHR(34)+"height="+CHR(34)+"155"+ CHR(34) + "class=" + _
 CHR(34) +"style1"+ CHR(34) +"/></td>")
 HTTPOut("<p><h2> Current Data:</h2></p>")
 HTTPOut("<p>Time: " + time(4) + ":" + minutes + ":" + seconds + "</p>")

399

Section 8. Operation

 HTTPOut("<p>Temperature: " + Temperature + "</p>")
 HTTPOut("<p><h2> Links:</h2></p>")
 HTTPOut("<p>Monitor</p>")
 HTTPOut("</body>")
 HTTPOut("</html>")
WebPageEnd

'Monitor Web Page
WebPageBegin("monitor.html",Commands)
 HTTPOut("<html>")
 HTTPOut("<style>body {background-color: oldlace}</style>")
 HTTPOut("<body>")
 HTTPOut("<title>Monitor CR800 Datalogger Tables</title>")
 HTTPOut("<p><h2>CR800 Data Table Links</h2></p>")
 HTTPOut("<p><a href="+ CHR(34) + "command=TableDisplay&table=CRTemp&records=10" + _
 CHR(34)+">Display Last 10 Records from DataTable CR1Temp</p>")
 HTTPOut("<p><a href="+ CHR(34) + "command=NewestRecord&table=CRTemp"+ CHR(34) + _
 ">Current Record from CRTemp Table</p>")
 HTTPOut("<p><a href="+ CHR(34) + "command=NewestRecord&table=Public"+ CHR(34) + _
 ">Current Record from Public Table</p>")
 HTTPOut("<p><a href="+ CHR(34) + "command=NewestRecord&table=Status" + CHR(34) + _
 ">Current Record from Status Table</p>")
 HTTPOut("
<p>Back to the Home Page _
 </p>")
 HTTPOut("</body>")
 HTTPOut("</html>")
WebPageEnd

BeginProg
 Scan(1,Sec,3,0)
 PanelTemp(RefTemp,250)
 RealTime(Time())
 Minutes = FormatFloat(Time(5),"%02.0f")
 Seconds = FormatFloat(Time(6),"%02.0f")
 Temperature = FormatFloat(RefTemp, "%02.02f")
 CallTable(CRTemp)
 NextScan
EndProg

8.6.3.4 FTP Server
The CR800 automatically runs an FTP server. This allows Windows® Explorer® to
access the CR800 file system with FTP, with drives on the CR800 being mapped
into directories or folders. The root directory on the CR800 can be any drive, but
the USR: drive is usually preferred. USR: is a drive created by allocating memory
in the USR: Drive Size box on the Deployment | Advanced tab of the CR800
service in DevConfig. Files can be copied / pasted between drives. Files can be
deleted through FTP.

8.6.3.5 FTP Client
The CR800 can act as an FTP client to send a file or get a file from an FTP server,
such as another datalogger or web camera. This is done using the CRBasic
FTPClient() instruction. Refer to a manual for a Campbell Scientific network
link (see the appendix Network Links (p. 629)), available at www.campbellsci.com,
or CRBasic Editor Help for details and sample programs.

400

Section 8. Operation

8.6.3.6 Telnet
Telnet is used to access the same commands that are available through the support
software terminal emulator (p. 504). Start a Telnet session by opening a DOS
command prompt and type in:

Telnet xxx.xxx.xxx.xxx <Enter>

where xxx.xxx.xxx.xxx is the IP address of the network device connected to the
CR800.

8.6.3.7 SNMP
Simple Network Management Protocol (SNMP) is a part of the IP suite used by
NTCIP and RWIS for monitoring road conditions. The CR800 supports SNMP
when a network device is attached.

8.6.3.8 Ping (IP)
Ping can be used to verify that the IP address for the network device connected to
the CR800 is reachable. To use the Ping tool, open a command prompt on a
computer connected to the network and type in:

ping xxx.xxx.xxx.xxx <Enter>

where xxx.xxx.xxx.xxx is the IP address of the network device connected to the
CR800.

8.6.3.9 Micro-Serial Server
The CR800 can be configured to allow serial communication over a TCP/IP port.
This is useful when communicating with a serial sensor over Ethernet with micro-
serial server (third-party serial to Ethernet interface) to which the serial sensor is
connected. See the network-link manual and the CRBasic Editor Help for the
TCPOpen() instruction for more information. Information on available network
links is available in the appendix Network Links (p. 629).

8.6.3.10 Modbus TCP/IP
The CR800 can perform Modbus communication over TCP/IP using the Modbus
TCP/IP interface. To set up Modbus TCP/IP, specify port 502 as the ComPort in
the ModBusMaster() and ModBusSlave() instructions. See the CRBasic Editor
Help for more information. See Modbus (p. 391).

8.6.3.11 DHCP
When connected to a server with a list of IP addresses available for assignment,
the CR800 will automatically request and obtain an IP address through the
Dynamic Host Configuration Protocol (DHCP). Once the address is assigned, use
DevConfig, PakBusGraph, Connect, or the CR1000KD Keyboard Display to look
in the CR800 Status table to see the assigned IP address. This is shown under the
field name IPInfo.

401

Section 8. Operation

8.6.3.12 DNS
The CR800 provides a Domain Name Server (DNS) client that can query a DNS
server to determine if an IP address has been mapped to a hostname. If it has, then
the hostname can be used interchangeably with the IP address in some datalogger
instructions.

8.6.3.13 SMTP
Simple Mail Transfer Protocol (SMTP) is the standard for e-mail transmissions.
The CR800 can be programmed to send e-mail messages on a regular schedule or
based on the occurrence of an event.

8.6.3.14 Web API
The CR800 web API (Application Programming Interface) is a series of URL (p.
506) commands that manage CR800 resources. The API facilitates the following
functions:

• Data Management

̶ Collect data

• Control — CRBasic program language logic can allow remote access to
many control functions by means of changing the value of a variable.

̶ Set variables / flags / ports

• Clock Functions — Clock functions allow a web client to monitor and set the
host CR800 real time clock. Read the Time Syntax section for more
information.

̶ Set CR800 clock

• File Management — Web API commands allow a web client to manage files
on host CR800 memory drives. Camera image files are examples of
collections often needing frequent management.

̶ Send programs
̶ Send files
̶ Collect files

API commands are also used with Campbell Scientific’s RTMC web server
datalogger support software (p. 93). The following documentation focuses on API
use with the CR800. A full discussion of use of the API commands with RTMC
is available in CRBasic Editor Help, which is one of several programs available
for PC to CR800 support (p. 93).

8.6.3.14.1 Authentication
The CR800 passcode security scheme described in the Security (p. 90) section is not
considered sufficiently robust for API use because of the following:

1. the security code is plainly visible in the URI, so it can be compromised by
eavesdropping or viewing the monitor.

402

Section 8. Operation

2. the range of valid security codes is 1 to 65534, so the security code can be
compromised by brute force attacks.

Instead, Basic Access Authentication, which is implemented in the API, should be
used with the CR800. Basic Access Authentication uses an encrypted user
account file, .csipasswd, which is placed on the CPU: drive of the CR800.

Four levels of access are available through Basic Access Authentication:

• all access denied (Level 0)
• all access allowed (Level 1)
• set variables allowed (Level 2)
• read-only access (Level 3)

Multiple user accounts and security levels can be defined. A file named
.csipasswd is created on the CR800 CPU: drive and edited in the Device
Configuration Utility (DevConfig) (p. 109) software Net Services tab, Edit
.csipasswd File button. When in Datalogger .csipasswd File Editor dialog box,
pressing Apply after entering user names and passwords encrypts .csipasswd and
saves it to the CR800 CPU: drive. A check box is available to set the file as
hidden. If hidden when saved, the file cannot be accessed for editing.

If access to the CR800 web server is attempted without correct security
credentials, the CR800 returns the error 401 Authorization Required. This error
prompts the web browser or client to display a user name and password request
dialog box. If .csipasswd is blank or does not exist, the user name defaults to
anonymous with no password, and the security level defaults to read-only
(default security level can be changed in DevConfig). If an invalid user name or
password is entered in .csipasswd, the CR800 web server will default to the level
of access assigned to anonymous.

The security level associated with the user name anonymous, affects only API
commands. For example, the API command SetValueEx will not function when
the API security level is set to read-only, but the CRBasic parameter SetValue in
the WebPageBegin() instruction will function. However, if .csipasswd sets a
user name other than anonymous and sets a password, security will be active on
API and CRBasic commands. For example, if a numeric pass code is set in the
CR800 Status table (see Security (p. 90) section), and .csipasswd does not exist,
then the pass code must be entered to use the CRBasic parameter SetValue. If
.csipasswd does exist, a correct user name and password will override the pass
code.

8.6.3.14.2 Command Syntax
API commands follow the syntax,

ip_adr?command=CommandName¶meters/arguments

where,

ip_adr = the IP address of the CR800.
CommandName = the the API command.
parameters / arguments = the API command parameters and associated

arguments.
& is used when appending parameters and arguments to the command string.

Some commands have optional parameters wherein omitting a parameter results
in the use of a default argument. Some commands return a response code

403

Section 8. Operation

indicating the result of the command. The following table lists API parameters
and arguments and the commands wherein they are used. Parameters and
arguments for specific commands are listed in the following sections.

Table 103. API Commands, Parameters, and Arguments

Parameter
Commands in which the

parameter is used Function of parameter Argument(s)

uri • BrowseSymbols

• DataQuery

• ClockSet

• ClockCheck

• ListFiles

Specifies the data source. • source: dl (datalogger
is data source): default,
applies to all
commands listed in
column 2.

• tablename.fieldname:
applies only to
BrowseSymbols, and
DataQuery

format • BrowseSymbols

• DataQuery

• ClockSet

• ClockCheck

• FileControl

• ListFiles

Specifies response format. • html, xml, json: apply
to all commands listed
in column 2.

• toa5 and tob1 apply
only to DataQuery

mode DataQuery Specifies range of data with
which to respond. • most-recent

• since-time

• since-record

• data-range

• backfill

p1 DataQuery • maximum number of
records (when using
most-recent argument).

• beginning date and/or
time (when using since-
time ,or date-range
arguments).

• beginning record number
(when using since-record
argument).

• interval in seconds (when
using backfill argument).

• integer number of
records (when using
most-recent argument)

• time in defined format
(when using since-time
,or date-range
arguments, see Time
Syntax (p. 405) section)

• integer record
number(when using
since-record
argument).

• integer number of
seconds (when using
backfill argument).

p2 DataQuery Specifies ending date and/or
time when using date-range
argument.

time expressed in defined
format (see Time Syntax (p.
405) section)

404

Section 8. Operation

Table 103. API Commands, Parameters, and Arguments

Parameter
Commands in which the

parameter is used Function of parameter Argument(s)

value SetValueEx Specifies the new value. numeric or string

time ClockSet Specifies set time. time in defined format

action FileControl Specifies FileControl action. 1 through 20

file FileControl Specifies first argument of
FileControl action.

file name with drive

file2 FileControl Specifies second argument
parameter of FileControl
action.

file name with drive

expr NewestFile Specifies path and wildcard
expression for the desired set of
files to collect.

path and wildcard expression

8.6.3.14.3 Time Syntax
API commands may have a time stamp parameter. Consult the Clock Functions (p.
552) section for more information. The format for the parameter is:

YYYY-MM-DDTHH:MM:SS.MS

where,

YYYY = four-digit year
MM = months into the year, one or two digits (1 to 12)
DD = days into the month, one or two digits (1 to 31)
HH = hours into the day, one or two digits (1 to 23)
MM = minutes into the hour, one or two digits (1 to 59)
SS = seconds into the minute, one or two digits (1 to 59)
MS = sub-second, optional when specifying time, up to nine digits (1 to

<1E9)

The time parameters 2010-07-27T12:00:00.00 and 2010-07-27T14:00:00 are
used in the following URL example:

http://192.168.4.14/?command=dataquery&uri=dl:WSN30sec.CWS900_Ts
&format=html&mode=date-range&p1=2010-07-27T12:00:00&p2=2010-07-
27T14:00:00

8.6.3.14.4 Data Management — BrowseSymbols Command
BrowseSymbols allows a web client to poll the host CR800 for its data memory
structure. Memory structure is made up of table name(s), field name(s), and array
sub-scripts. These together constitute "symbols." BrowseSymbols takes the
form:

http://ip_address/?command=BrowseSymbols&uri=source:tablename.fi
eldname&format=html

BrowseSymbols requires a minimum .csipasswd access level of 3 (read-only).

405

Section 8. Operation

Table 104. BrowseSymbols API Command Parameters

uri

Optional. Specifies the URI (p. 506) for the data source. When
querying a CR800, uri source, tablename and fieldname are
optional. If source is not specified, dl (CR800) is assumed. A
field name is always specified in association with a table name.
If the field name is not specified, all fields are output. If
fieldname refers to an array without a subscript, all fields
associated with that array will be output. Table name is
optional. If table name is not used, the entire URI syntax is not
needed.

format
Optional. Specifies the format of the response. The values
html, json, and xml are valid. If this parameter is omitted, or if
the value is html, empty, or invalid, the response is HTML.

Examples:

Command for a response wherein symbols for all tables are returned as
HTML

http://192.168.24.106/?command=BrowseSymbols&uri=dl:public&fo
rmat=html

Command for a response wherein symbols for all fields in a single table
(MainData) are returned as HTML

http://192.168.24.106/?command=BrowseSymbols&uri=dl:MainData&
format=html

Command for a response wherein symbols for a single field (Cond41) are
returned as HTML

http://192.168.24.106/?command=BrowseSymbols&uri=dl:MainData.
Cond41&format=html

BrowseSymbols Response
The BrowseSymbols format parameter determines the format of the response. If
a format is not specified, the format defaults to HTML. For more detail
concerning data response formats, see the Data File Formats (p. 357) section.

The response consists of a set of child symbol descriptions. Each of these
descriptions include the following fields:

Table 105. BrowseSymbols API Command Response

name
Specifies the name of the symbol. This could be a data source
name, a station name, a table name, or a column name.

uri Specifies the uri of the child symbol.

type

Specifies a code for the type of this symbol. The symbol types
include the following:
6 — Table
7 — Array
8 — Scalar

is_enabled
Boolean value that is set to true if the symbol is enabled for
scheduled collection. This applies mostly to LoggerNet data
sources.

406

Section 8. Operation

is_read_only

Boolean value that is set to true if the symbol is considered to
be read-only. A value of false would indicate an expectation
that the symbol value can be changed using the SetValueEx
command.

can_expand
Boolean value that is set to true if the symbol has child values
that can be listed using the BrowseSymbols command.

If the client specifies the URI for a symbol that does not exist, the server will
respond with an empty symbols set.

HTML Response

When html is entered in the BrowseSymbols format parameter, the response will
be HTML. Following are example responses.

HTML tabular response:

HTML page source:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html> <head>
<title>BrowseSymbols Response</title>
</head>

<body>
<h1>BrowseSymbols Response</h1>

<table border="1">
 <tr>

<th>name</th><th>uri</th><th>type</th><th>is_enabled</th><th>is_
read_only</th><th>can_expand</th></tr><tr>

<td>Status</td><td>dl:Status</td><td>6</td><td>true</td><td>fals
e</td><td>true</td></tr><tr>

<td>MainData</td><td>dl:MainData</td><td>6</td><td>true</td><td>
false</td><td>true</td></tr><tr>

<td>BallastTank1</td><td>dl:BallastTank1</td><td>6</td><td>true<
/td><td>false</td><td>true</td></tr><tr>

<td>BallastTank2</td><td>dl:BallastTank2</td><td>6</td><td>true<
/td><td>false</td><td>true</td></tr><tr>

<td>BallastTank3</td><td>dl:BallastTank3</td><td>6</td><td>true<
/td><td>false</td><td>true</td></tr><tr>

<td>BallastTank4</td><td>dl:BallastTank4</td><td>6</td><td>true<
/td><td>false</td><td>true</td></tr><tr>

407

Section 8. Operation

<td>BallastLine</td><td>dl:BallastLine</td><td>6</td><td>true</t
d><td>false</td><td>true</td></tr><tr>

<td>Public</td><td>dl:Public</td><td>6</td><td>true</td><td>fals
e</td><td>true</td></tr>
</table>

</body> </html>

XML Response

When xml is entered in the BrowseSymbols format parameter, the response will
be formated as CSIXML (p. 89) with a BrowseSymbolsResponse root element
name. Following is an example response.

Example page source output:
<BrowseSymbolsResponse>
..<symbol
 name="Status"
 uri="dl:Status"
 type="6"
 is_enabled="true"
 is_read_only="false"
 can_expand="true"/><symbol
 name="MainData"
 uri="dl:MainData"
 type="6"
 is_enabled="true"
 is_read_only="false"
 can_expand="true"/><symbol
 name="BallastTank1"
 uri="dl:BallastTank1"
 type="6"
 is_enabled="true"
 is_read_only="false"
 can_expand="true"/><symbol
 name="BallastTank2"
 uri="dl:BallastTank2"
 type="6"
 is_enabled="true"
 is_read_only="false"
 can_expand="true"/><symbol
 name="BallastTank3"
 uri="dl:BallastTank3"
 type="6"
 is_enabled="true"
 is_read_only="false"
 can_expand="true"/><symbol
 name="BallastTank4"
 uri="dl:BallastTank4"
 type="6"
 is_enabled="true"
 is_read_only="false"
 can_expand="true"/><symbol
 name="BallastLine"
 uri="dl:BallastLine"
 type="6"

408

Section 8. Operation

 is_enabled="true"
 is_read_only="false"
 can_expand="true"/><symbol
 name="Public"
 uri="dl:Public"
 type="6"
 is_enabled="true"
 is_read_only="false"
 can_expand="true"/>
</BrowseSymbolsResponse>

JSON Response

When json is entered in the BrowseSymbols format parameter, the response will
be formated as CSIJSON (p. 89). Following is an example response.

{
 "symbols": [
 {"name": "Status","uri": "dl:Status","type": 6,"is_enabled":
true,"is_read_only": false,"can_expand": true},
 {"name": "MainData","uri": "dl:MainData","type":
6,"is_enabled": true,"is_read_only": false,"can_expand": true},
 {"name": "BallastTank1","uri": "dl:BallastTank1","type":
6,"is_enabled": true,"is_read_only": false,"can_expand": true},
 {"name": "BallastTank2","uri": "dl:BallastTank2","type":
6,"is_enabled": true,"is_read_only": false,"can_expand": true},
 {"name": "BallastTank3","uri": "dl:BallastTank3","type":
6,"is_enabled": true,"is_read_only": false,"can_expand": true},
 {"name": "BallastTank4","uri": "dl:BallastTank4","type":
6,"is_enabled": true,"is_read_only": false,"can_expand": true},
 {"name": "BallastLine","uri": "dl:BallastLine","type":
6,"is_enabled": true,"is_read_only": false,"can_expand": true},
 {"name": "Public","uri": "dl:Public","type": 6,"is_enabled":
true,"is_read_only": false,"can_expand": true}
]
}

8.6.3.14.5 Data Management — DataQuery Command
DataQuery allows a web client to poll the CR800 for data. DataQuery typically
takes the form:

http://ip_address/?command=DataQuery&uri=dl:tablename.fieldname&
format=_&mode=_&p1=_&p2=_

DataQuery requires a minimum .csipasswd access level of 3 (read-only).

409

Section 8. Operation

Table 106. DataQuery API Command Parameters

uri

Optional. Specifies the URI (p. 506) for data to be queried. Syntax: dl:tablename.fieldname.
Field name is optional. Field name is always specified in association with a table name. If field
name is not specified, all fields are collected. If fieldname refers to an array without a subscript,
all values associated with that array will be output. Table name is optional. If table name is not
used, the entire URI syntax is not needed as dl (CR800) is the default data source.

mode

Required. Modes for temporal-range of collected-data:
most-recent returns data from the most recent number of records. p1 specifies maximum number
of records.
since-time returns most recent data since a certain time. p1 specifies the beginning time stamp
(see Time Syntax (p. 405) section).
since-record returns records (p. 498) since a certain record number. The record number is specified
by p1. If the record number is not present in the table, the CR800 will return all data starting with
the oldest record.
date-range returns data in a certain date range. The date range is specified using p1 and p2. Data
returned include data from date specified by p1 but not by p2 (half-open interval).
backfill returns data stored since a certain time interval (for instance, all the data since 1 hour
ago). The interval, in seconds, is specified using p1.

p1

Optional. Specifies:

• maximum number of records (most-recent)

• beginning date and/or time (since-time, date-range). See Time Syntax (p. 405) for format.

• beginning record number (since-record)

• interval in seconds (backfill)

p2
Optional. Specifies:

• ending date and/or time (date-range). See Time Syntax (p. 405) for format.

format

Optional. Specifies the format of the output. If this parameter is omitted, or if the value is html,
empty, or invalid, the output is HTML.

format Option Data Output Format
Content-Type Field of

HTTP Response Header

html HTML text/html

xml CSIXML text/xml

json CSIJSON application/json

toa5 TOA5 text/csv

tob1 TOB1 binary/octet-stream

Note: When json is used, and the web server has a large data set to send, the web server may
choose to break the data into multiple requests by specifying a value of true for the more flag in
the CSIJSON output. The more flag is not shown if a complete data set is first returned.

Examples:

Command:
http://192.168.24.106/?command=DataQuery&uri=dl:MainData&mode=da
te-range&p1=2012-09-14T8:00:00&p2=2012-09-14T9:00:00

Response: collect all data from table MainData within the range of p1 to
p2

410

Section 8. Operation

Command:
http://192.168.24.106/?command=DataQuery&uri=dl:MainData.Cond41&
format=html&mode=most-recent&p1=70

Response: collect the five most recent records from table MainData

Command:
http://192.168.24.106/?command=DataQuery&uri=dl:MainData.Cond41&
format=html&mode=since-time&p1=2012-09-14T8:00:00

Response: collect all records of field Cond41 since the specified date and
time

Command:
http://192.168.24.106/?command=DataQuery&uri=dl:MainData.Cond41&
format=html&mode=since-record&p1=4700

Response: collect all records since the specified record

Command:
http://192.168.24.106/?command=DataQuery&uri=dl:MainData.Cond41&
format=html&mode=backfill&p1=7200

Response: backfill all records since 3600 seconds ago

DataQuery Response
The DataQuery format parameter determines the format of the response. For
more detail concerning data response formats, see the Data File Formats (p. 357)
section.

When html is entered in the DataQuery format parameter, the response will be
HTML. Following are example responses.

HTML Response

HTML tabular response:

HTML page source:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<HTML><HEAD><TITLE>Table Display</TITLE><meta http-
equiv="Pragma" content="no-cache"><meta http-equiv="expires"
content="0">
</HEAD><BODY>
<h1>Table Name: BallastLine</h1>
<table border="1" cellpadding="2" cellspacing="0">
<tr valign="middle" align="center">

411

Section 8. Operation

<th nowrap>TimeStamp</th>
<th nowrap>Record</th>
<th nowrap>Induced_Water</th>
</tr>
<tr valign="middle" align="center">
<td nowrap>2012-08-21 22:41:50.0</td>
<td nowrap>104</td>
<td nowrap>66</td>
</tr>
<tr valign="middle" align="center">
<td nowrap>2012-08-21 22:42:00.0</td>
<td nowrap>105</td>
<td nowrap>66</td>
</tr>
<tr valign="middle" align="center">
<td nowrap>2012-08-21 22:42:10.0</td>
<td nowrap>106</td>
<td nowrap>66</td>
</tr>
<tr valign="middle" align="center">
<td nowrap>2012-08-21 22:42:20.0</td>
<td nowrap>107</td>
<td nowrap>66</td>
</tr>
<tr valign="middle" align="center">
<td nowrap>2012-08-21 22:42:30.0</td>
<td nowrap>108</td>
<td nowrap>66</td>
</tr>
</table>
</BODY></HTML>

XML Response

When xml is entered in the DataQuery format parameter, the response will be
formatted as CSIXML. Following is an example response.

<?xml version="1.0" standalone="yes"?>
<csixml version="1.0">
<head>
<environment>
<station-name>Q2</station-name>
<table-name>BallastLine</table-name>
<model>CR1000</model>
<serial-no>18583</serial-no>
<os-version>CR1000.Std.25</os-version>
<dld-name>CPU:IndianaHarbor_081712.CR1</dld-name>
<dld-sig>33322</dld-sig>
</environment>
<fields>
<field name="Induced_Water" type="xsd:float" process="Smp"/>
</fields>
</head>
<data>
<r time="2012-08-21T22:41:50" no="104">
<v1>66</v1></r><r time="2012-08-21T22:42:00" no="105">
<v1>66</v1></r><r time="2012-08-21T22:42:10" no="106">
<v1>66</v1></r><r time="2012-08-21T22:42:20" no="107">
<v1>66</v1></r><r time="2012-08-21T22:42:30" no="108">

412

Section 8. Operation

<v1>66</v1></r></data>
</csixml>

JSON Response

When json is entered in the DataQuery format parameter, the response will be
formatted as CSIJSON. Following is an example response:

{
.."head": {
...."transaction": 0,
...."signature": 26426,
...."environment": {
......"station_name": "Q2",
......"table_name": "BallastLine",
......"model": "CR1000",
......"serial_no": "18583",
......"os_version": "CR1000.Std.25",
......"prog_name": "CPU:IndianaHarbor_081712.CR1"
....},
...."fields": [{
......"name": "Induced_Water",
......"type": "xsd:float",
......"process": "Smp",
......"settable": false}]
 },
......"data": [{
......"time": "2012-08-21T22:41:50",
......"no": 104,
......"vals": [66]
 },{
......"time": "2012-08-21T22:42:00",
......"no": 105,
......"vals": [66]
 },{
......"time": "2012-08-21T22:42:10",
......"no": 106,
......"vals": [66]
 },{
......"time": "2012-08-21T22:42:20",
......"no": 107,
......"vals": [66]
 },{
......"time": "2012-08-21T22:42:30",
......"no": 108,
......"vals": [66]
}]}

TOA5 Response

When toa5 is entered in the DataQuery format parameter, the response will be
formated as Campbell Scientific TOA5. Following is an example response:

"TOA5","TXSoil","CR1000","No_SN","CR1000.Std.25","TexasRun_1b.CR
2","12645","_1Hr"
"TIMESTAMP","RECORD","ID","_6_inch","One","Two","Three","Temp_F_
Avg","Rain_in_Tot"
"TS","RN","","","","","","",""
"","","Smp","Smp","Smp","Smp","Smp","Avg","Tot"
"2012-05-03 17:00:00",0,0,-0.8949984,-0.95232,-0.8949984,-
0.8637322,2.144136,0.09999999

413

Section 8. Operation

"2012-05-03 18:00:00",1,0,-0.9106316,-0.9731642,-0.9210536,-
0.8845763,72.56885,0
"2012-05-03 19:00:00",2,0,-0.9210536,-0.9679532,-0.9106316,-
0.8637322,72.297,0
"2012-05-03 20:00:00",3,0,-0.8624293,-0.9145398,-0.8624293,-
0.8311631,72.68445,0
"2012-05-03 21:00:00",4,0,-0.8949984,-0.9471089,-0.9002095,-
0.8585211,72.79237,0
"2012-05-03 22:00:00",5,0,-0.9262648,-0.9731642,-0.9158427,-
0.8793653,72.75194,0
"2012-05-03 23:00:00",6,0,-0.8103188,-0.8624293,-0.8103188,-
0.7686304,72.72644,0
"2012-05-04 00:00:00",7,0,-0.9158427,-0.9627421,-0.9158427,-
0.8689431,72.67271,0
"2012-05-04 01:00:00",8,0,-0.8598238,-0.9015122,-0.8598238,-
0.8129244,72.64571,0
"2012-05-04 02:00:00",9,0,-0.9158427,-0.9575311,-0.9054205,-
0.8689431,72.5931,0
"2012-05-04 03:00:00",10,0,-0.8754569,-0.9275675,-0.8910902,-
0.8546127,72.53336,0
"2012-05-04 04:00:00",11,0,-0.8949984,-0.9575311,-0.9106316,-
0.8793653,72.47779,0
"2012-05-04 05:00:00",12,0,-0.9236593,-0.9705587,-0.908026,-
0.8715487,72.4006,0
"2012-05-04 06:00:00",13,0,-0.9184482,-0.9601365,-0.902815,-
0.8819707,72.23279,0
"2012-05-05 11:00:00",0,5,-0.9106316,-0.941898,-0.8897874,-
0.8637322,4.740396,0
"2012-05-05 12:00:00",1,5,-0.9067233,-0.9640449,-0.9015122,-
0.8702459,71.16611,0
"2012-05-05 13:00:00",2,5,-0.8897874,-0.9366869,-0.8793653,-
0.8428879,70.93591,0
"2012-05-05 14:00:00",3,5,-0.9041178,-0.9510173,-0.8884846,-
0.8676404,70.78558,0
"2012-05-05 15:00:00",4,5,-0.9002095,-0.9627421,-0.9002095,-
0.8689431,70.66192,0
"2012-05-05 16:00:00",5,5,-0.9054205,-0.95232,-0.9054205,-
0.8741542,70.53237,0
"2012-05-05 17:00:00",6,5,-0.9158427,-0.9731642,-0.9002095,-
0.8637322,70.4076,0
"2012-05-05 18:00:00",7,5,-0.9223565,-0.969256,-0.9015122,-
0.8910902,70.33669,0
"2012-05-05 19:00:00",8,5,-0.8923929,-0.9445034,-0.8923929,-
0.8507045,70.25033,0
"2012-05-05 20:00:00",9,5,-0.9119344,-0.9640449,-0.9171454,-
0.8754569,70.1702,0
"2012-05-05 21:00:00",10,5,-0.930173,-0.9822836,-0.9197509,-
0.8832736,70.1116,0
"2012-05-05 22:00:00",11,5,-0.9132372,-0.9653476,-0.908026,-
0.8611265,70.0032,0
"2012-05-05 23:00:00",12,5,-0.9353842,-0.9822836,-0.930173,-
0.8936957,69.83805,0

TOB1 Response

When tob1 is entered in the DataQuery format parameter, the response will be
formated as Campbell Scientific TOB1. Following is an example response.

Example:
"TOB1","11467","CR1000","11467","CR1000.Std.20","CPU
:file format.CR1","61449","Test"

414

Section 8. Operation

"SECONDS","NANOSECONDS","RECORD","battfivoltfiMin","
PTemp"
"SECONDS","NANOSECONDS","RN","",""
"","","","Min","Smp"
"ULONG","ULONG","ULONG","FP2","FP2"
376
}Ÿp' E1HŒŸp' E1H›Ÿp' E1HªŸp' E1H¹Ÿp'
E1H

8.6.3.14.6 Control — SetValueEx Command
SetValueEx allows a web client to set a value in a host CR800 CRBasic variable.

http://ip_address/?command=SetValueEx&uri=dl:table.variable&valu
e=x.xx

SetValueEx requires a minimum .csipasswd access level of 2 (set variables
allowed).

Table 107. SetValueEx API Command Parameters

uri
Specifies the variable that should be set in the following format:
dl:tablename.fieldname

value Specifies the value to set

format

The following table lists optional output formats for SetValueEx result codes. If not specified,
result codes output as HTML.

Result Code Output
Option

Result Code Output
Format

Content-Type Field of
HTTP Response Header

html HTML text/html

json CSIJSON application/json

xml CSIXML text/xml

Example: &format=html
Specifies the format of the response. The values html, json, and xml are valid. If this parameter is
omitted, or if the value is html, empty, or invalid, the response is HTML.

Examples:
http://192.168.24.106/?command=SetValueEx&uri=dl:public.NaOH_Set
pt_Bal2&value=3.14

Response: the public variable settable_float is set to 3.14.
http://192.168.24.106/?command=SetValueEx&uri=dl:public.flag&val
ue=-1&format=html

Response: the public Boolean variable Flag(1) in is set to True (-1).

SetValueEx Response
The SetValueEx format parameter determines the format of the response. If a
format is not specified, the format defaults to HTML For more detail concerning
data response formats, see the Data File Formats (p. 357) section.

Responses contain two fields. In the XML output, the fields are attributes.

415

Section 8. Operation

Table 108. SetValue API Command Response

outcome

0 — An unrecognized failure occurred
1 — Success
5 — Read only
6 — Invalid table name
7 — Invalid fieldname
8 — Invalid fieldname subscript
9 — Invalid field data type
10 — Datalogger communication failed
12 — Blocked by datalogger security
15 — Invalid web client authorization

description A text description of the outcome code.

HTML Response

When html is entered in the SetValueEx format parameter, the response will be
HTML Following are example responses.

HTML tabular response:

HTML page source:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html> <head>
<title>SetValueExResponse</title>
</head>

<body>
<h1>SetValueExResponse</h1>

<table border="1">
 <tr>
 <td>outcome</td>
 <td>outcome-code</td>
 </tr>
 <tr>
 <td>description</td>
 <td>description-text</td>
 </tr>
</table>

</body> </html>

XML Response

When xml is entered in the SetValueEx format parameter, the response will be
CSIXML with a SetValueExResponse root element name. Following is an
example response:

416

Section 8. Operation

<SetValueExResponse outcome="outcome-code"
description="description-text"/>

JSON Response

When json is entered in the SetValueEx format parameter, the response will be
CSIJSON. Following is an example response:

{
 "outcome": outcome-code,
 "description": description
}

8.6.3.14.7 Clock Functions — ClockSet Command
ClockSet allows a web client to set the CR800 real time clock. ClockSet takes the
form:

http://ip_address/?command=ClockSet&format=html&time=YYYY-MM-
DDTHH:MM:SS.MS

ClockSet requires a minimum .csipasswd access level of 1 (all access allowed).

Table 109. ClockSet API Command Parameters

uri

If this parameter is excluded, or if it is set to "datalogger"
(uri=dl) or an empty string (uri=), the command is sent to the
CR800 web server.1

format
Specifies the format of the response. The values html, json, and
xml are valid. If this parameter is omitted, or if the value is
html, empty, or invalid, the response is HTML.

time
Specifies the time to which the CR800 real-time clock is set.
This value must conform to the format described for input time
stamps in the Time Syntax (p. 405) section.

1 optionally specifies the URI for the LoggerNet source station to be set

Example:
http://192.168.24.106/?command=ClockSet&format=html&time=2012-9-
14T15:30:00.000

Response: sets the host CR800 real time clock to 3:30 PM 14 September
2012.

ClockSet Response
The ClockSet format parameter determines the format of the response. If a
format is not specified, the format defaults to HTML. For more detail concerning
data response formats, see the Data File Formats (p. 357) section.

Responses contain three fields as described in the following table:

417

Section 8. Operation

Table 110. ClockSet API Command Response

outcome

1 — The clock was set
5 — Communication with the CR800 failed
6 — Communication with the CR800 is disabled
8 — An invalid URI was specified.

time Specifies the value of the CR800 clock before it was changed.

description A string that describes the outcome code.

HTML Response

When html is entered in the ClockSet format parameter, the response will be
HTML. Following are example responses.

HTML tabular response:

HTML page source:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN"><html>
<head><title>ClockSet Response</title></head>
<body>
<h1>ClockSet Response</h1>
<table border="1">
<tr><td>outcome</td><td>1</td>
</tr><td>time</td>
<td>2011-12-01 11:42:02.75</td>
</tr><tr><td>description</td><td>The clock was set</td></tr>
</table> </body> </html>

XML Response

When xml is entered in the ClockSet format parameter, the response will be
formated as CSIXML (p. 89) with a ClockSetResponse root element name.
Following is an example response.

<ClockSetResponse outcome="1" time="2011-12-01T11:41:21.17"
description="The clock was set"/>

JSON Response

When json is entered in the ClockSet format parameter, the response will be
formated as CSIJSON (p. 89). Following is an example response.

{"outcome": 1,"time": "2011-12-01T11:40:32.61","description": "
The clock was set"}

418

Section 8. Operation

8.6.3.14.8 Clock Functions — ClockCheck Command
ClockCheck allows a web client to read the real-time clock from the host CR800.
DataQuery takes the form:

http://ip_address/?command=ClockCheck&format=html

ClockCheck requires a minimum .csipasswd access level of 3 (read-only).

Table 111. ClockCheck API Command Parameters

uri

If this parameter is excluded, or if it is set to "datalogger"
(uri=dl) or an empty string (uri=), the host CR800 real-time
clock is returned.1

format
Specifies the format of the response. The values html, json, and
xml are recognized. If this parmeter is omitted, or if the value is
html, empty, or invalid, the response is HTML.

1 optionally specifies the URI for a LoggerNet source station to be checked

Example:
http://192.168.24.106/?command=ClockCheck&format=html

Response: checks the host CR800 real time clock and requests the
response be an HTML table.

ClockCheck Response
The ClockCheck format parameter determines the format of the response. If a
format is not specified, the format defaults to HTML. For more detail concerning
data response formats, see the Data File Formats (p. 357) section.

Responses contain three fields as described in the following table:

Table 112. ClockCheck API Command Response

outcome

Codes that specifies the outcome of the ClockCheck command.
Codes in grey text are not valid inputs for the CR800:
1 — The clock was checked

2 — The clock was set1
3 — The LoggerNet session failed
4 — Invalid LoggerNet logon
5 — Blocked by LoggerNet security
6 — Communication with the specified station failed
7 — Communication with the specified station is disabled
8 — Blocked by datalogger security
9 — Invalid LoggerNet station name
10 — The LoggerNet device is busy
11 — The URI specified does not reference a LoggerNet station.

time

Specifies the current value of the CR800 real-time clock2. This
value will only be valid if the value of outcome is set to 1. This
value will be formatted in the same way that record time stamps
are formatted for the DataQuery response.

description A text string that describes the outcome.

419

Section 8. Operation

1 LoggerNet may combine a new clock check transaction with pending LoggerNet clock set
transactions
2 or LoggerNet server

HTML Response

When html is entered in the ClockCheck format parameter, the response will be
HTML. Following are example responses.

HTML tabular response:

HTML page source:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN"><html>
<head><title>ClockCheck Response</title></head>
<body>
<h1>ClockCheck Response</h1>
<table border="1">
<tr><td>outcome</td><td>1</td>
</tr><td>time</td>
<td>2012-08-24 15:44:43.59</td>
</tr><tr><td>description</td><td>The clock was checked</td></tr>
</table> </body> </html>

XML Response

When xml is entered in the ClockCheck format parameter, the response will be
formated as CSIXML (p. 89) with a ClockCheckResponse root element name.
Following is an example response.

<ClockCheckResponse outcome="1" time="2012-08-24T15:50:50.59"
description="The clock was checked"/>

JSON Response

When json is entered in the ClockCheck format parameter, the response will be
formated as CSIJSON (p. 89). Following is an example response.

Example:
{
 "outcome": 1,
 "time": "2012-08-24T15:52:26.22",
 "description": " The clock was checked"
}

8.6.3.14.9 File Management — Sending a File to a Datalogger
A file can be sent to the CR800 using an HTTPPut request. Sending a file
requires a minimum .csipasswd access level of 1 (all access allowed). Unlike
other web API commands, originating a PUT request from a browser address bar

420

Section 8. Operation

is not possible. Instead, use JavaScript within a web page or use the program
Curl.exe. Curl.exe is available in the LoggerNet RTMC program files folder or at
http://curl.haxx.se. The Curl.exe command line takes the following form
(command line parameters are described in the accompanying table):

curl -XPUT -v -S -T "filename.ext" --user username:password
http://IPAdr/drive/

Table 113. Curl HTTPPut Request Parameters
Parameter Description

-XPUT Instructs Curl.exe to use the HTTPPut command

-v Instructs Curl.exe to print all output to the screen

-S Instructs Curl.exe to show errors

-T "filename.ext" name of file to send to CR800 (enclose in quotes)

username user name in the .csipasswrd file

password password in the .csipasswrd file

IPAdr IP address of the CR800

drive memory drive of the CR800

Examples:

To load an operating system to the CR800, open a command prompt window
("DOS window") and execute the following command, as a continuous line:

curl -XPUT -v -S -T
"c:\campbellsci\lib\OperatingSystems\CR1000.Std.25.obj" --user
harrisonford:lostark1 http://192.168.24.106/cpu/

Response:
* About to connect() to 192.168.7.126 port 80 (#0)
* Trying 192.168.7.126... connected
* Connected to 192.168.7.126 (192.168.7.126) port 80 (#0)
* Server auth using Basic with user 'fredtest'
>PUT /cpu/myron%22Ecr1 HTTP/1.1
>Authorization: Basic ZGF2ZW1lZWs6d29vZnk5NTU1
>User-Agent: curl/7.21.1 (i386-pc-win32) libcurl/7.21.1
OpenSSL/0.9.8o zlib/1.2.5 libidn/1.18 libssh2/1.2.6
>Host: 192.168.7.126
>Accept:*/*
>Content-Length: 301
>Expect: 100-continue
>
*Done waiting for 100-continue
<HTTP/1.1 200 OK
<Date: Fri, 2 Dec 2011 05:31:50
<Server: CR1000.Std.25
<Content-Length: 0
<
* Connection #0 to host 192.168.7.126 left intact
* Closing connection #0

When a file with extension .OBJ is uploaded to the CR800 CPU: drive, the
CR800 sees the file as a new operating system (OS) and does not actually upload
it to CPU:. Rather, it captures it. When capture is complete, the CR800 reboots

421

Section 8. Operation

and compiles the new OS in the same manner as if it was sent via a datalogger
support software (p. 93) Connect screen.

Other files sent to a CR800 drive work just as they would in datalogger support
software (p. 93) File Control. The exception is that CRBasic program run settings
cannot be set. To get a program file to run, use the web API FileControl
command. Curl.exe can be used to perform both operations, as the following
demonstrates:

Upload the program to the CR800 CPU: drive (must have /cpu/ on end of the
URL):

curl -XPUT -v -S -T "program.CR1" --user username:password
"http://192.168.24.106/cpu/"

Compile and run the program and mark it as the program to be run on power up. -
XGET is not needed as it is the default command for Curl.exe.

curl -v -S --user username:password
"http://192.168.24.106/?command=FileControl&file=CPU:program.CR1
&action=1"

Both operations can be combined in a batch file.

8.6.3.14.10 File Management — FileControl Command
FileControl allows a web client to perform file system operations on a host
CR800. FileControl takes the form:

http://ip_address/?command=FileControl&file=drive:filename.dat&a
ction=x

FileControl requires a minimum .csipasswd access level of 1 (all access
allowed).

422

Section 8. Operation

Table 114. FileControl API Command Parameters

action

1 — Compile and run the file specified by file and mark it as the program to be run on power up.
2 — Mark the file specified by file as the program to be run on power up.
3 — Mark the file specified by file as hidden.
4 — Delete the file specified by file.
5 — Format the device specified by file.
6 — Compile and run the file specified by file without deleting existing data tables.
7 — Stop the currently running program.
8 — Stop the currently running program and delete associated data tables.
9 — Perform a full memory reset.
10 — Compile and run the program specified by file but do not change the program currently
marked to run on power up.
11 — Pause execution of the currently running program.
12 — Resume execution of the currently paused program.
13 — Stop the currently running program, delete its associated data tables, run the program
specified by file, and mark the same file as the program to be run on power up.
14 — Stop the currently running program, delete its associated data tables, and run the program
specified by file without affecting the program to be run on power up.
15 — Move the file specified by file2 to the name specified by file.
16 — Move the file specified by file2 to the name specified by file, stop the currently running
program, delete its associated data tables, and run the program specified by file2 while marking it
to run on power up.
17 — Move the file specified by file2 to the name specified by file, stop the currently running
program, delete its associated data tables, and run the program specified by file2 without affecting
the program that will run on power up.
18 — Copy the file specified by file2 to the name specified by file.
19 — Copy the file specified by file2 to the name specified by file, stop the currently running
program, delete its associated data tables, and run the program specified by file2 while marking it
to run on power up.
20 — Copy the file specified by file2 to the name specified by file, stop the currently running
program, delete its associated data tables, and run the program specified by file2 without affecting
the program that will run on power up.

file
Specifies the first parameter for the file control operation. This parameter must be specified for
action values 1, 2, 3, 4, 5, 6, 10, 13, 14, 15, 16, 17, 18, 19, and 20.

file2
Specifies the second parameter for the file control operation. This parameter must be specified for
action values 15, 16, 17, 18, 19, and 20.

format
Specifies the format of the response. The values html, json, and xml are recognized. If this
parameter is omitted, or if the value is html, empty, or invalid, the response is HTML.

Example:
http://192.168.24.106/?command=FileControl&file=USR:APITest.dat&
action=4

Response: APITest.dat is deleted from the CR800 USR: drive.
http://192.168.24.106/?command=FileControl&file=CPU:IndianaJones
_090712_2.CR1&action=1

Response: Set program file to Run Now.
http://192.168.24.106/?command=FileControl&file=USR:FileCopy.dat
&file2=USR:FileName.dat&action=18

Response: Copy from file2 to file.

423

Section 8. Operation

FileControl Response
All output formats contain the following parameters. Any action (for example, 9)
that performs a reset, the response is returned before the effects of the command
are complete.

Table 115. FileControl API Command Response

outcome A response of zero indicates success. Non-zero indicates failure.

holdoff

Specifies the number of seconds that the web client should wait
before attempting more communication with the station. A value
of zero will indicate that communication can resume
immediately. This parameter is needed because many of the
commands will cause the CR800 to perform a reset. In the case
of sending an operating system, it can take tens of seconds for
the datalogger to copy the image from memory into flash and to
perform the checking required for loading a new operating
system. While this reset is under way, the CR800 will be
unresponsive.

description Detail concerning the outcome code.

Example:
192.168.24.106/?command=FileControl&action=4&file=cpu:davetest.c
r1

Response: delete the file davetest.cr1 from the host CR800 CPU: drive.

When html is entered in the FileControl format parameter, the response will be
HTML. Following is an example response.

8.6.3.14.11 File Management — ListFiles Command
ListFiles allows a web client to obtain a listing of directories and files in the host
CR800. ListFiles takes the form:

http://ip_address/drive/?command=ListFiles

ListFiles requires a minimum .csipasswd access level of 3 (read only).

Table 116. ListFiles API Command Parameters

format
Specifies the format of the response. The values html, json, and
xml are valid. If this parameter is omitted, or if the value is
html, empty, or invalid, the response is HTML.

uri

If this parameter is excluded, or if it is set to "datalogger"
(uri=dl) or an empty string (uri=), the file system will be sent
from the host CR800.1

1 Optionally specifies the URI to a LoggerNet datalogger station from which the file list will be
retrieved.

424

Section 8. Operation

Examples:
http://192.168.24.106/?command=ListFiles

Response: returns the drive structure of the host CR800 (CPU:, USR:,
CRD:, and USB:).

http://192.168.24.106/CPU/?command=ListFiles

Response: lists the files on the host CR800 CPU: drive.

ListFiles Response
The format of the response depends on the value of the format parameter in the
command request. The response provides information for each of the files or
directories that can be reached through the CR800 web server. The information
for each file includes the following:

Table 117. ListFiles API Command Response

path Specifies the path to the file relative to the URL path.

is_dir
A boolean value that will identify that the object is a directory if
set to true.

size
An integer that gives the size of for a file in bytes (the value of
is_dir is false) or the bytes free for a directory.

last_write
A string associated only with files that specifies the date and
time that the file was last written.

run_now
A boolean attribute applied by the CR800 for program files that
are marked as currently executing.

run_on_power_up
A boolean attribute applied by the CR800 for program files that
are marked to run when the CR800 powers up or resets.

read_only
A boolean attribute applied by the CR800 for a file that is
marked as read-only.

paused
A boolean attribute applied by the CR800 that is marked to run
but the program is now paused.

HTML Response

When html is entered in the ListFiles format parameter, the response will be
HTML. Following are example responses.

HTML tabular response:

HTML page source:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

425

Section 8. Operation

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN"><html>
<head><title>ListFiles Response</title></head>
<body><h1>ListFiles Response</h1><table border="1">
<tr><td>Path</td>
<td>Is Directory</td>
<td>Size</td>
<td>Last Write</td>
<td>Run Now</td>
<td>Run On Power Up</td>
<td>Read Only</td>
<td>Paused</td></tr><tr>
<td>CPU/</td>
<td>true</td>
<td>443904</td>
<td>2012-06-22T00:00:00</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td></tr><tr>
<td>CPU/ModbusMasterTCPExample.CR1</td>
<td>false</td>
<td>967</td>
<td>2012-07-10T18:21:44</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td></tr><tr>
<td>CPU/CS475-Test.CR1</td>
<td>false</td>
<td>828</td><td>2012-07-16T14:16:50</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td></tr><tr>
<td>CPU/DoubleModbusSlaveTCP.CR1</td>
<td>false</td>
<td>1174</td>
<td>2012-07-31T17:18:00</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td></tr><tr>
<td>CPU/untitled.CR1</td>
<td>false</td>
<td>1097</td>
<td>2012-08-07T10:48:20</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td></tr><tr>
</table>

Page source template:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html> <head>
<title>ListFiles Response</title>
</head>
<body>

426

Section 8. Operation

<h1>ListFiles Response</h1>
<table border="1">
 <tr>
 <td>Path</td>
 <td>Is Directory</td>
 <td>Size</td>
 <td>Last Write</td>
 <td>Run Now</td>
 <td>Run On Power Up</td>
 <td>Read Only</td>
 <td>Paused</td>
 </tr>
 <tr>
 <td>CPU:</td>
 <td>true</td>
 <td>50000</td>
 <td>YYYY-mm-dd hh:mm:ss.xxx</td>
 <td>false</td>
 <td>false</td>
 <td>false</td>
 <td>false</td>
 </tr>
 <tr>
 <td>CPU:lights-web.cr1</td>
 <td>false</td>
 <td>16994</td>
 <td>YYYY-mm-dd hh:mm:ss.xxx</td>
 <td>true</td>
 <td>true</td>
 <td>false</td>
 <td>false</td>
 </tr>
</table>

XML Response

When xml is entered in the ListFiles format parameter, the response will be
formated as CSIXML (p. 89) with a ListFilesResponse root element name.
Following is an example response.

<ListFilesResponse>
 <file
 is_dir="true"
 path="CPU:"
 size="50000"
 last_write="yyyy-mm-ddThh:mm:ss.xxx"
 run_now="false"
 run_on_power_up="false"
 read_only="false"
 paused="false" />
 <file
 is_dir="false"
 path="CPU:lights-web.cr1"
 last_write="yyyy-mm-ddThh:mm:ss.xxx"
 size="16994"
 run_now="true"
 run_on_power_up="true"
 read_only="false"
 paused="false"/>
</ListFilesResponse>

427

Section 8. Operation

JSON Response

When json is entered in the ListFiles format parameter, the response will be
formated as CSIJSON (p. 89). Following is an example response.

{
 "files": [
 {
 "path": "CPU:",
 "is_dir": true,
 "size": 50000,
 "last_write": "yyyy-mm-ddThh:mm:ss.xxx",
 "run_now": false,
 "run_on_power_up": false,
 "read_only": false,
 "paused": false
 },
 {
 "path": "CPU:lights-web.cr1",
 "is_dir": false,
 "size": 16994,
 "last_write": "yyyy-mm-ddThh:mm:ss.xxx",
 "run_now": true,
 "run_on_power_up": true,
 "read_only": false,
 "paused": false
 },
]
}

8.6.3.14.12 File Management — NewestFile Command
NewestFile allows a web client to request a file, such as a program or image, from
the host CR800. If a wildcard (*) is included in the expression, the most recent in
a set of files whose names match the expression is returned. For instance, a web
page may be designed to show the newest image taken by a camera attached to the
CR800. NewestFile takes the form:

http://192.168.13.154/?command=NewestFile&expr=drive:filename.ex
t

Where filename can be a wildcard (*).

NewestFile requires a minimum .csipasswd access level of 3 (read only) for all
files except program files. Program files require access level 1 (all access
allowed).

Table 118. NewestFile API Command Parameters

expr

Specifies the complete path and wildcard expression for the
desired set of files1. expr=USR:*.jpg selects the newest of the
collection of files on the USR: drive that have a .jpg extension.

1 The PC based web server will restrict the paths on the host computer to those that are allowed in
the applicable site configuration file (.sources.xml). This is done to prevent web access to all file
systems accessible to the host computer.

Example:
http://192.168.24.106/?command=NewestFile&expr=USR:*.jpg

428

Section 8. Operation

Response: the web server collects the newest JPG file on the USR: drive
of the host CR800

Note to retrieve any file, regardless of age, the url is
http://ip_address/drive/filename.ext. The name of the desired file is determined
using the ListFiles command.

NewestFile Response
The web server will transmit the contents of the newest file that matches the
expression given in expr. If there are no matching files, the server responds with a
404 Not Found HTTP response code.

8.7 Datalogger Support Software — Details
Reading List:
 • Datalogger Support Software — Quickstart (p. 46)
 • Datalogger Support Software — Overview (p. 93)
 • Datalogger Support Software — Details (p. 429)
 • Datalogger Support Software — Lists (p. 630)

Datalogger support software facilitates program generation, editing, data retrieval,
and real-time data monitoring.

• PC200W Starter Software is available at no charge at
www.campbellsci.com/downloads (http://www.campbellsci.com/downloads).
It supports a transparent RS-232 connection between PC and CR800, and
includes Short Cut for creating CR800 programs. Tools for setting the
datalogger clock, sending programs, monitoring sensors, and on-site viewing
and collection of data are also included.

• LoggerLink Mobile Apps are simple yet powerful tools that allow an iOS or
Android device to communicate with IP-enabled CR800s. The apps support
field maintenance tasks such as viewing and collecting data, setting the clock,
and downloading programs.

• PC400 Datalogger Support Software supports a variety of telecommunication
options, manual data collection, and data monitoring displays. Short Cut and
CRBasic Editor are included for creating CR800 programs. PC400 does not
support complex communication options, such as phone-to-RF, PakBus®
routing, or scheduled data collection.

• LoggerNet Datalogger Support Software supports combined
telecommunication options, customized data-monitoring displays, and
scheduled data collection. It includes Short Cut and CRBasic Editor for
creating CR800 programs. It also includes tools for configuring, trouble-
shooting, and managing datalogger networks. LoggerNet Admin and
LoggerNet Remote are available for more demanding applications.

• LNLINUX Linux-based LoggerNet Server with LoggerNet Remote provides a
solution for those who want to run the LoggerNet server in a Linux
environment. The package includes a Linux version of the LoggerNet server
and a Windows version of LoggerNet Remote. The Windows-based client
applications in LoggerNet Remote are run on a separate computer, and are
used to manage the LoggerNet Linux server.

• VISUALWEATHER Weather Station Software supports Campbell Scientific
weather stations. Version 3.0 or higher supports custom weather stations or

429

http://www.campbellsci.com/downloads

Section 8. Operation

the ET107, ET106, and MetData1 pre-configured weather stations. The
software allows you to initialize the setup, interrogate the station, display
data, and generate reports from one or more weather stations.

Note More information about software available from Campbell Scientific can be
found at www.campbellsci.com http://www.campbellsci.com. Please consult with
a Campbell Scientific application engineer for a software recommendation to fit a
specific application.

8.8 Keyboard Display — Details
Related Topics:
 • Keyboard Display — Overview (p. 82)
 • Keyboard Display — Details (p. 430)
 • Keyboard Display — List (p. 627)
 • Custom Menus — Overview (p. 83, p. 555)

Read More See Custom Menus (p. 180).

A keyboard is available for use with the CR800. See the appendix Keyboard
Displays (p. 627) for information on available keyboard displays. The CR850 has an
integrated keyboard display. This section illustrates the use of the keyboard
display using default menus. Some keys have special functions as outlined below.

Note Although the keyboard display is not required to operate the CR800, it is a
useful diagnostic and debugging tool.

Table 119. Special Keyboard-Display Key Functions
Key Special Function

[2] and [8] Navigate up and down through the menu list one line at a time

[Enter] Selects the line or toggles the option of the line the cursor is on

[Esc] Back up one level in the menu

[Home] Move cursor to top of the list

[End] Move cursor to bottom of the list

[Pg Up] Move cursor up one screen

[Pg Dn] Move cursor down one screen

[BkSpc] Delete character to the left

[Shift] Change alpha character selected

[Num Lock] Change to numeric entry

[Del] Delete

[Ins] Insert/change graph setup

[Graph] Graph

430

http://www.campbellsci.com/

Section 8. Operation

Figure 110. Using the Keyboard / Display

431

Section 8. Operation

8.8.1 Data Display
Figure 111. Displaying Data with the Keyboard / Display

432

Section 8. Operation

8.8.1.1 Real-Time Tables and Graphs
Figure 112. Real-Time Tables and Graphs

8.8.1.2 Real-Time Custom
The CR1000KD Keyboard Display can be configured with a customized real-time
display. The CR800 will keep the setup as long as the defining program is
running.

Read More Custom menus can also be programmed. See Custom Menus (p. 180)
for more information.

433

Section 8. Operation

Figure 113. Real-Time Custom

434

Section 8. Operation

8.8.1.3 Final-Memory Tables
Figure 114. Final-Memory Tables

435

Section 8. Operation

8.8.2 Run/Stop Program
Figure 115. Run/Stop Program

436

Section 8. Operation

8.8.3 File Display
Figure 116. File Display

8.8.3.1 File: Edit
The CRBasic Editor is recommended for writing and editing datalogger programs.
When making minor changes with the CR1000KD Keyboard Display, restart the
program to activate the changes, but be aware that, unless programmed for
otherwise, all variables, etc. will be reset. Remember that the only copy of
changes is in the CR800 until the program is retrieved using datalogger support
software or removable memory.

437

Section 8. Operation

Figure 117. File: Edit

8.8.4 Ports and Status
Read More See the appendix Status, Settings, and Data Table Information
(Status/Settings/DTI) (p. 577).

438

Section 8. Operation

Figure 118. C Terminals (Ports) Status

8.8.5 Settings
Figure 119. Settings

8.8.5.1 Set Time / Date
Move the cursor to time element and press Enter to change it. Then move the
cursor to Set and press Enter to apply the change.

439

Section 8. Operation

8.8.5.2 PakBus Settings
In the Settings menu, move the cursor to the PakBus® element and press Enter
to change it. After modifying, press Enter to apply the change.

8.8.6 Configure Display
Figure 120. Configure Display

8.9 Program and OS File Compression Q and A
Q: What is Gzip?

A: Gzip is the GNU zip archive file format. This file format and the algorithms
used to create it are open source and free to use for any purpose. Files with the .gz
extension have been passed through these data compression algorithms to make
them smaller. For more information, go to www.gnu.org.

Q: Is there a difference between Gzip and zip?

A: While similar, Gzip and zip use different file compression formats and
algorithms. Only program files and OSs compressed with Gzip are compatible
with the CR800.

Q: Why compress a program or operating system before sending it to a CR800
datalogger?

A: Compressing a file has the potential of significantly reducing its size. Actual
reduction depends primarily on the number and proximity of redundant blocks of
information in the file. A reduction in file size means fewer bytes are transferred
when sending a file to a datalogger. Compression can reduce transfer times

440

Section 8. Operation

significantly over slow or high-latency links, and can reduce line charges when
using pay-by-the-byte data plans. Compression is of particular benefit when
transmitting programs or OSs over low-baud rate terrestrial radio, satellite, or
restricted cellular-data plans.

Q: Does my CR800 support Gzip?

A: Version 25 of the standard CR800 operating system supports receipt of Gzip
compressed program files and OSs.

Q: How do I Gzip a program or operating system?

A: Many utilities are available for the creation of a Gzip file. This document
specifically addresses the use of 7-Zip File Manager. 7-Zip is a free, open source,
software utility compatible with Windows®. Download and installation
instructions are available at http://www.7-zip.org/. Once 7-Zip is installed,
creating a Gzip file is as four-step process:

a) Open 7-Zip.

b) Drag and drop the program or operating system you wish to compress onto the
open window.

c) When prompted, set the archive format to “Gzip”.

441

Section 8. Operation

c) When prompted, set the archive format to “Gzip”.

d) Select OK.

The resultant file names will be of the type “myProgram.cr8.gz” and
“CR800.Std.25.obj.gz”. Note that the file names end with “.gz”. The ".gz”
extension must be preceded with the original file extension (.cr8, .obj) as shown.

Q: How do I send a compressed file to the CR800?

A: A Gzip compressed file can be sent to a CR800 datalogger by clicking the
Send Program command in the datalogger support software (p. 93). Compressed
programs can also be sent using HTTP PUT to the CR800 web server. The
CR800 will not automatically decompress and use compressed files sent with File
Control, FTP, or a low-level OS download; however, these files can be manually
decompressed by marking as Run Now using File Control, FileManage(), and
HTTP.

Note Compression has little effect on an encrypted program (see FileEncrypt()
in the CRBasic Editor Help), since the encryption process does not produce a
large number of repeatable byte patterns. Gzip has little effect on files that
already employ compression such as JPEG or MPEG-4.

Table 120. Typical Gzip File Compression Results
File Original Size Bytes Compressed Size Bytes

CR800 operating system 1,753,976 671,626

Small program 2,600 1,113

Large program 32,157 7,085

442

Section 8. Operation

8.10 Security — Details
Related Topics:
 • Security — Overview (p. 90)
 • Security — Details (p. 443)

The CR800 is supplied void of active security measures. By default, RS-232,
Telnet, FTP and HTTP services, all of which give high level access to CR800 data
and CRBasic programs, are enabled without password protection.

You may wish to secure your CR800 from mistakes or tampering. The following
may be reasons to concern yourself with datalogger security:

• Collection of sensitive data
• Operation of critical systems
• Networks accessible by many individuals

If you are concerned about security, especially TCP/IP threats, you should send
the latest operating system (p. 85) to the CR800, disable un-used services, and
secure those that are used. Security actions to take may include the following:

• Set passcode lockouts
• Set PakBus/TCP password
• Set FTP username and password
• Set AES-128 PakBus encryption key
• Set .csipasswd file for securing HTTP and web API
• Track signatures
• Encrypt program files if they contain sensitive information
• Hide program files for extra protection
• Secure the physical CR800 and power supply under lock and key

Note All security features can be subverted through physical access to the
CR800. If absolute security is a requirement, the physical CR800 must be kept in
a secure location.

8.10.1 Vulnerabilities
While "security through obscurity" may have provided sufficient protection in the
past, Campbell Scientific dataloggers increasingly are deployed in sensitive
applications. Devising measures to counter malicious attacks, or innocent
tinkering, requires an understanding of where systems can be compromised and
how to counter the potential threat.

Note Older CR800 operating systems are more vulnerable to attack than recent
updates. Updates can be obtained free of charge at www.campbellsci.com.

The following bullet points outline vulnerabilities:

• CR1000KD Keyboard Display

o Pressing and holding the Del key while powering up a CR800 will cause
it to abort loading a program and provides a 120 second window to begin
changing or disabling security codes in the settings editor (not Status
table) with the keyboard display.

o Keyboard display security bypass does not allow telecommunication
access without first correcting the security code.

443

Section 8. Operation

o Note These features are not operable in CR1000KDs with serial
numbers less than 1263. Contact Campbell Scientific for information on
upgrading the CR1000KD operating system.

• LoggerNet

o All datalogger functions and data are easily accessed via RS-232 and
Ethernet using Campbell Scientific datalogger support software.

o Cora command find-logger-security-code

• Telnet

o Watch IP traffic in detail. IP traffic can reveal potentially sensitive
information such as FTP login usernames and passwords, and server
connection details including IP addresses and port numbers.

o Watch serial traffic with other dataloggers and devices. A Modbus
capable power meter is an example.

o View data in the Public and Status tables.
o View the datalogger program, which may contain sensitive intellectual

property, security codes, usernames, passwords, connection information,
and detailed or revealing code comments.

• FTP

o Send and change datalogger programs.
o Send data that have been written to a file.

• HTTP

o Send datalogger programs.
o View table data.
o Get historical records or other files present on the datalogger drive

spaces.
o More access is given when a .csipasswd is in place, so ensure that users

with administrative rights have strong log-in credentials.

8.10.2 Pass-Code Lockout
Pass-code lockouts (historically known in Campbell Scientific dataloggers simply
as "security codes") are the oldest method of securing a datalogger. Pass-code
lockouts can effectively lock out innocent tinkering and discourage wannabe
hackers on non-IP based telecommunication links. However, any serious hacker
with physical access to the datalogger or to the telecommunication hardware can,
with only minimal trouble, overcome the five-digit pass-codes. Systems
adequately secured with pass-code lockouts are probably limited to,

• private, non-IP radio networks
• direct links (hardwire RS-232, short-haul, multidrop, fiber optic)
• non-IP satellite
• land-line, non-IP based telephone, where the telephone number is not

published
• cellular phone wherein IP has been disabled, providing a strictly serial

connection

Up to three levels of lockout can be set. Valid pass codes are 1 through 65535 (0
confers no security).

444

Section 8. Operation

Note Although a pass code can be set to a negative value, a positive code must be
entered to unlock the CR800. That positive code will equal 65536 + (negative
security code). For example, a security code of -1111 must be entered as 64425 to
unlock the CR800.

Methods of enabling pass-code lockout security include the following:

• Status table – Security(1), Security(2) and Security(3) registers are writable
variables in the Status table wherein the pass codes for security levels 1
through 3 are written, respectively.

• CR1000KD Keyboard Display settings
• Device Configuration Utility (DevConfig) – Security passwords 1 through 3

are set on the Deployment tab.
• SetSecurity() instruction – SetSecurity() is only executed at program

compile time. It may be placed between the BeginProg and Scan()
instructions.

Note Deleting SetSecurity() from a CRBasic program is not equivalent to
SetSecurity(0,0,0). Settings persist when a new program is downloaded that has
no SetSecurity() instruction.

Level 1 must be set before Level 2. Level 2 must be set before Level 3. If a level
is set to 0, any level greater than it will be set to 0. For example, if level 2 is 0
then level 3 is automatically set to 0. Levels are unlocked in reverse order: level 3
before level 2, level 2 before level 1. When a level is unlocked, any level greater
than it will also be unlocked, so unlocking level 1 (entering the Level 1 security
code) also unlocks levels 2 and 3.

Functions affected by each level of security are:

• Level 1 — Collecting data, setting the clock, and setting variables in the
Public table are unrestricted, requiring no security code. If Security1 code is
entered, read/write values in the Status table can be changed, and the
datalogger program can be changed or retrieved.

• Level 2 — Data collection is unrestricted, requiring no security code. If the
user enters the Security2 code, the datalogger clock can be changed and
variables in the Public table can be changed.

• Level 3 — When this level is set, all communication with the datalogger is
prohibited if no security code is entered. If Security3 code is entered, data
can be viewed and collected from the datalogger (except data suppressed by
the TableHide() instruction in the CRBasic program). If Security2 code is
entered, data can be collected, public variables can be set, and the clock can
be set. If Security1 code is entered, all functions are unrestricted.

8.10.2.1 Pass-Code Lockout By-Pass
Pass-code lockouts can be bypassed at the datalogger using a CR1000KD
Keyboard Displaykeyboard display. Pressing and holding the Del key while
powering up a CR800 will cause it to abort loading a program and provide a 120
second window to begin changing or disabling security codes in the settings editor
(not Status table) with the keyboard display.

Keyboard display security bypass does not allow telecommunication access
without first correcting the security code.

445

Section 8. Operation

Note These features are not operable in CR1000KDs with serial numbers less
than 1263. Contact Campbell Scientific for information on upgrading the
CR1000KD operating system.

8.10.3 Passwords
Passwords are used to secure IP based communications. They are set in various
telecommunication schemes with the .csipasswd file, CRBasic PakBus
instructions, CRBasic TCP/IP instructions, and in CR800 settings.

8.10.3.1 .csipasswd
The .csipasswd file is a file created and edited through DevConfig (p. 109), and
which resides on the CPU: drive of the CR800. It contains credentials (usernames
and passwords) required to access datalogger functions over IP
telecommunications. See Web Service API (p. 402) for details concerning the
.csipasswd file.

8.10.3.2 PakBus Instructions
The following CRBasic PakBus instructions have provisions for password
protection:

• ModemCallBack()
• SendVariable()
• SendGetVariables()
• SendFile()
• GetVariables()
• GetFile()
• GetDataRecord()

8.10.3.3 TCP/IP Instructions
The following CRBasic instructions that service CR800 IP capabilities have
provisions for password protection:

• EMailRecv()
• EMailSend()
• FTPClient()

8.10.3.4 Settings — Passwords
Settings, which are accessible with DevConfig (p. 109), enable the entry of the
following passwords:

• PPP Password
• PakBus/TCP Password
• FTP Password
• TLS Password (Transport Layer Security (TLS) Enabled)
• TLS Private Key Password
• AES-128 Encrypted PakBus Communication Encryption (p. 447) Key

See the section Status, Settings, and DTI (Registers (p. 112)) for more information.

446

Section 8. Operation

8.10.4 File Encryption
Encryption is available for CRBasic program files and provides a means of
securing proprietary code or making a program tamper resistant. .CR<X> files, or
files specified by the Include() instruction, can be encrypted. The CR800
decrypts program files on the fly. While other file types can be encrypted, no tool
is provided for decryption.

The CRBasic Editor encryption facility (Menus | File | Save and Encrypt)
creates an encrypted copy of the original file in PC memory. The encrypted file is
named after the original, but the name is appended with "_enc". The original file
remains intact. The FileEncrypt() instruction encrypts files already in CR800
memory. The encrypted file overwrites and takes the name of the original. The
Encryption() instruction encrypts and decrypts the contents of a file.

One use of file encryption may be to secure proprietary code but make it available
for copying.

8.10.5 Communication Encryption
PakBus is the CR800 root communication protocol. By encrypting certain
portions of PakBus communications, a high level of security is achieved. See
PakBus Encryption (p. 385) for more information.

8.10.6 Hiding Files
The option to hide CRBasic program files provides a means, apart from or in
conjunction with file encryption, of securing proprietary code, prevent it from
being copied, or making it tamper resistant. .CR<X> files, or files specified by
the Include() instruction, can be hidden using the FileHide() instruction. The
CR800 can locate and use hidden files on the fly, but a listing of the file or the file
name are not available for viewing. See File Management (p. 361) for more
information.

8.10.7 Signatures
Recording and monitoring system and program signatures are important
components of a security scheme. Read more about use of signatures in
Programming to Use Signatures (p. 167) and Signatures: Example Programs (p. 176).

447

9. Maintenance — Details
Related Topics:
 • Maintenance — Overview (p. 92)
 • Maintenance — Details (p. 449)

• Protect the CR800 from humidity and moisture.
• Replace the internal lithium battery periodically.
• Send to Campbell Scientific for factory calibration every three years.

9.1 Protection from Moisture — Details
Protection from Moisture — Overview (p. 92)
Protection from Moisture — Details (p. 97)
Protection from Moisture — Products (p. 636)

When humidity levels reach the dew point, condensation occurs and damage to
CR800 electronics can result. Effective humidity control is the responsibility of
the user.

The CR800 module is protected by a packet of silica gel desiccant, which is
installed at the factory. This packet is replaced whenever the CR800 is repaired at
Campbell Scientific. The module should not normally be opened except to
replace the internal lithium battery.

Adequate desiccant should be placed in the instrumentation enclosure to provide
added protection.

9.2 Replacing the Internal Battery
CAUTION Fire, explosion, and severe-burn hazard. Misuse or improper
installation of the internal lithium battery can cause severe injury. Do not
recharge, disassemble, heat above 100 °C (212 °F), solder directly to the cell,
incinerate, or expose contents to water. Dispose of spent lithium batteries
properly.

The CR800 contains a lithium battery that operates the clock and SRAM when the
CR800 is not powered. The CR800 does not draw power from the lithium battery
while it is fully powered by a power supply (p. 85). In a CR800 stored at room
temperature, the lithium battery should last approximately three years (less at
temperature extremes). In installations where the CR800 remains powered, the
lithium cell should last much longer.

While powered from an external source, the CR800 measures the voltage of the
lithium battery ever 24 hours. This voltage is displayed in the Status table (see the
appendix Status Table and Settings (p. 577)) in the Lithium Battery field. A new
battery supplies approximately 3.6 Vdc. Replace the battery when voltage is
approximately 2.7 Vdc.

• When the lithium battery is removed (or is allowed to become depleted below
2.7 Vdc and CR800 primary power is removed), the CRBasic program and
most settings are maintained, but the following are lost:

449

Section 9. Maintenance — Details

o Run-now and run-on power-up settings.
o Routing and communication logs (relearned without user intervention).
o Time. Clock will need resetting when the battery is replaced.
o Final-memory data tables.

A replacement lithium battery can be purchased from Campbell Scientific or
another supplier. Table Internal Lithium-Battery Specifications (p. 450) lists battery
part numbers and key specifications.

Table 121. Internal Lithium-Battery Specifications
Manufacturer Tadiran

Tadiran Model Number TL-5902/S

Campbell Scientific, Inc. pn 13519

Voltage 3.6 V

Capacity 1.2 Ah

Self-discharge rate 1%/year @ 20 °C

Operating temperature range –55 to 85 °C

When reassembling the module to the wiring panel, check that the module is fully
seated or connected to the wiring panel by firmly pressing them together by hand.

Figure 121. Remove Retention Nuts

Fully loosen (only loosen) the two knurled thumbscrews. They will remain
attached to the module.

450

Section 9. Maintenance — Details

Figure 122. Pull Edge Away from Panel

Pull one edge of the canister away from the wiring panel to loosen it from three
internal connector seatings.

Figure 123. Remove Nuts to Disassemble Canister

Remove six nuts, then open the clam shell.

451

Section 9. Maintenance — Details

Figure 124. Remove and Replace Battery

Remove the lithium battery by gently prying it out with a small flat point
screwdriver. Reverse the disassembly procedure to reassemble the CR800. Take
particular care to ensure the canister is reseated tightly into the three connectors.

9.3 Factory Calibration or Repair Procedure
Related Topics
 • Auto Calibration — Overview (p. 91)
 • Auto Calibration — Details (p. 326)
 • Auto-Calibration — Errors (p. 466)
 • Offset Voltage Compensation (p. 315)
 • Factory Calibration (p. 92)
 • Factory Calibration or Repair Procedure (p. 452)

If sending the CR800 to Campbell Scientific for calibration or repair, consult first
with a Campbell Scientific application engineer. If the CR800 is malfunctioning,
be prepared to perform some troubleshooting procedures while on the phone with
the application engineer. Many problems can be resolved with a telephone
conversation. If calibration or repair is needed, the following procedures should
be followed when sending the product:

Products may not be returned without prior authorization. The following contact
information is for US and International customers residing in countries served by
Campbell Scientific, Inc. directly. Affiliate companies handle repairs for
customers within their territories. Please visit www.campbellsci.com to determine
which Campbell Scientific company serves your country.

To obtain a Returned Materials Authorization (RMA), contact CAMPBELL
SCIENTIFIC, INC., phone (435) 227-2342. After an application engineer
determines the nature of the problem, an RMA number will be issued. Please
write this number clearly on the outside of the shipping container. Campbell
Scientific's shipping address is:

452

Section 9. Maintenance — Details

CAMPBELL SCIENTIFIC, INC.
RMA#_____

815 West 1800 North
Logan, Utah 84321-1784

For all returns, the customer must fill out a "Statement of Product Cleanliness and
Decontamination" form and comply with the requirements specified in it. The
form is available from our web site at www.campbellsci.com/repair. A completed
form must be either emailed to repair@campbellsci.com or faxed to 435-227-
9579. Campbell Scientific is unable to process any returns until we receive this
form. If the form is not received within three days of product receipt or is
incomplete, the product will be returned to the customer at the customer's
expense. Campbell Scientific reserves the right to refuse service on products that
were exposed to contaminants that may cause health or safety concerns for our
employees.

453

10. Troubleshooting
If a system is not operating properly, please contact a Campbell Scientific
application engineer for assistance. When using sensors, peripheral devices, or
telecommunication hardware, look to the manuals for those products for
additional help.

Note If a Campbell Scientific product needs to be returned for repair or
recalibration, a Return Materials Authorization (p. 3) number is first required.
Please contact a Campbell Scientific application engineer.

10.1 Troubleshooting — Essential Tools
• Multimeter (combination volt meter and resistance meter). Inexpensive

($20.00) meters are useful. The more expensive meters have additional
modes of operation that are useful in some situations.

• Cell or satellite phone with contact information for Campbell Scientific
application engineers. Establish a current contact at Campbell Scientific
before going to the field. An application engineer may be able to provide you
with information that will better prepare you for the field visit.

• Product documentation in a reliable format and easily readable at the
installation site. Sun glare, dust, and moisture often make electronic media
difficult to use and unreliable.

10.2 Troubleshooting — Basic Procedure
1. Check the voltage of the primary power source at the POWER IN terminals on

the face of the CR800.

2. Check wires and cables for the following:

o Loose connection points
o Faulty connectors
o Cut wires
o Damaged insulation, which allows water to migrate into the cable.

Water, whether or not it comes in contact with wire, can cause system
failure. Water may increase the dielectric constant of the cable
sufficiently to imped sensor signals, or it may migrate into the sensor,
which will damage sensor electronics.

3. Check the CRBasic program. If the program was written solely with Short Cut,
the program is probably not the source of the problem. If the program was
written or edited with CRBasic Editor, logic and syntax errors could easily
have crept into the code. To troubleshoot, create a stripped down version of
the program, or break it up into multiple smaller units to test individually. For
example, if a sensor signal-to-data conversion is faulty, create a program that
only measures that sensor and stores the data, absent from all other inputs and
data. Write these mini-programs before going to the field, if possible.

10.3 Troubleshooting — Error Sources
Data acquisition systems are complex, the possible configurations endless, and
permutations mind boggling. Nevertheless, by using a systematic approach using

455

Section 10. Troubleshooting

the principle of independent verification, the root cause of most errors can be
determined and remedies put into effect.

Errors are indicated by multiple means, a few of which actually communicate
using the word Error. Things that indicate that a closer look should be taken
include:

• Error
• NAN
• INF
• Rapidly changing measurements
• Incorrect measurements

These occur in different forms and in different places.

A key concept in troubleshooting is the concept of independent verification,
which is use of outside references to verify the function of dis-function of a
component of the system. For example, a multimeter is an independent
measurement device that can be used to check sensor signal, sensor resistance,
power supplies, cable continuity, excitation and control outputs, and so forth.

A very good place to start looking for trouble is in the data produced by the
system. At the root, you must be able to look at the data and determine if it falls
within a reasonable range. For example, consider an application measuring
photosynthetic photon flux (PPF). PPF ranges from 0 (dark) to about 2000
µmoles m-–2 s-–1. If the measured value is less than 0 or greater than 2000, an
error is probably being introduced somewhere in the system. If the measured
value is 1000 at noon under a clear summer sky, an error is probably being
introduced somewhere in the system.

Error sources usually fall into one or more of the following categories:

• CRBasic program

o if the program was written completely by Short Cut, errors are very rare.
o if the program was written or edited by a person, errors are much more

common.
o Channel assignments, input-range codes, and measurement mode

arguments are common sources of error.

• Hardware

o Mis-wired sensors or power sources are common.
o Damaged hardware
o Water, humidity, lightning, voltage transients, EMF
o Visible symptoms
o Self-diagnostics
o Watchdog errors

• Firmware

o Operating system bugs are rare, but possible.

• Datalogger support software

o Bugs are uncommon, but do occur.

• Externally caused errors

456

Section 10. Troubleshooting

10.4 Troubleshooting — Status Table
Information in the Status table lends insight into many problems. The appendix
Status Table and Settings (p. 577) documents Status table registers and provides
some insights as to how to use the information in troubleshooting.

Review the section Status Table as Debug Resource (p. 461). Many of these errors
match up with like-sounding errors in the Station Status utility in datalogger
support software.

10.5 Programming
Analyze data soon after deployment to ensure the CR800 is measuring and storing
data as intended. Most measurement and data-storage problems are a result of one
or more CRBasic program bugs.

10.5.1 Program Does Not Compile
Although the CRBasic Editor compiler states that a program compiles OK, the
program may not run or even compile in the CR800. This is rare, but reasons may
include:

• The CR800 has a different (usually older) operating system that is not fully
compatible with the PC compiler. Check the two versions if in doubt. The
PC compiler version is shown on the first line of the compile results.

• The program has large memory requirements for data tables or variables and
the CR800 does not have adequate memory. This normally is flagged at
compile time, in the compile results. If this type of error occurs, check the
following:

o Copies of old programs on the CPU: drive. The CR800 keeps copies of
all program files unless they are deleted, the drive is formatted, or a new
operating system is loaded with DevConfig (p. 109).

o That the USR: drive, if created, is not too large. The USR: drive may be
using memory needed for the program.

o that a program written for a 4 MB CR800 is being loaded into a 2 MB
CR800.

10.5.2 Program Compiles / Does Not Run Correctly
If the program compiles but does not run correctly, timing discrepancies are often
the cause. Neither CRBasic Editor nor the CR800 compiler attempt to check
whether the CR800 is fast enough to do all that the program specifies in the time
allocated. If a program is tight on time, look further at the execution times. Check
the measurement and processing times in the Status table (MeasureTime,
ProcessTime, MaxProcTime) for all scans, then try experimenting with the
InstructionTimes() instruction in the program. Analyzing InstructionTimes()
results can be difficult due to the multitasking nature of the logger, but it can be a
useful tool for fine tuning a program.

457

Section 10. Troubleshooting

10.5.3 NAN and ±INF
NAN (not-a-number) and ±INF (infinite) are data words indicating an exceptional
occurrence in datalogger function or processing. NAN is a constant that can be
used in expressions as shown in the following code snip that sets a CRBasic
control feature (a flag) if the wind direction is NAN:

If WindDir = NAN Then
 WDFlag = False
Else
 WDFlag = True
EndIf

NAN can also be used in conjunction with the disable variable (DisableVar) in
output processing (data storage) instructions as shown in CRBasic example Using
NAN to Filter Data (p. 460).

10.5.3.1 Measurements and NAN
A NAN indicates an invalid measurement.

10.5.3.1.1 Voltage Measurements
The CR800 has the following user-selectable voltage ranges: ±5000 mV, ±2500
mV, ±250 mV, and ±25 mV. Input signals that exceed these ranges result in an
over-range indicated by a NAN for the measured result. With auto range to
automatically select the best input range, a NAN indicates that either one or both
of the two measurements in the auto-range sequence over ranged. See the section
Calibration Errors (p. 466).

A voltage input not connected to a sensor is floating and the resulting measured
voltage often remains near the voltage of the previous measurement. Floating
measurements tend to wander in time, and can mimic a valid measurement. The
C (open input detect/common-mode null) range-code option is used to force a
NAN result for open (floating) inputs.

10.5.3.1.2 SDI-12 Measurements
NAN is loaded into the first SDI12Recorder() variable under the following
conditions:

• CR800 is busy with terminal commands
• When the command is an invalid command.
• When the sensor aborts with CR LF and there is no data.
• When 0 is returned for the number of values in response to the M! or C!

command.

10.5.3.2 Floating-Point Math, NAN, and ±INF
Table Math Expressions and CRBasic Results (p. 459) lists math expressions, their
CRBasic form, and IEEE floating point-math result loaded into variables declared
as FLOAT or STRING.

458

Section 10. Troubleshooting

10.5.3.3 Data Types, NAN, and ±INF
NAN and ±INF are presented differently depending on the declared-variable data
type. Further, they are recorded differently depending on the final-memory data
type chosen compounded with the declared-variable data type used as the source
(table Variable and FS Data Types with NAN and ±INF (p. 459)). For example,
INF, in a variable declared As LONG, is represented by the integer –
2147483648. When that variable is used as the source, the final-memory word
when sampled as UINT2 is stored as 0.

Table 122. Math Expressions and CRBasic Results
Expression CRBasic Expression Result

0 / 0 0 / 0 NAN

∞ – ∞ (1 / 0) - (1 / 0) NAN

(–1) ∞ -1 ^ (1 / 0) NAN

0 • –∞ 0 • (-1 • (1 / 0)) NAN

±∞ / ±∞ (1 / 0) / (1 / 0) NAN

1∞ 1 ^ (1 / 0) NAN

0 • ∞ 0 • (1 / 0) NAN

x / 0 1 / 0 INF

x / –0 1 / -0 INF

-x / 0 -1 / 0 -INF

-x / –0 -1 / -0 -INF

∞0 (1 / 0) ^ 0 INF

0∞ 0 ^ (1 / 0) 0

00 0 ^ 0 1

459

Section 10. Troubleshooting

Table 123. Variable and Final-Memory Data Types with NAN and ±INF
 Final-Memory Data Type & Associated Stored Values

Variable
Type

Test
Expression

Public /
Dim

Variables
FP2 IEEE4 UINT2 UNIT4 STRING BOOL BOOL8 LONG

As FLOAT 1 / 0 INF INF1 INF1 655352 4294967295 +INF TRUE TRUE 2,147,483,647

 0 / 0 NAN NAN NAN 0 2147483648 NAN TRUE TRUE -2,147,483,648

As LONG 1 / 0 2,147,483,64
7 7999 2.147484E09 65535 2147483647 2147483647 TRUE TRUE 2,147,483,647

 0 / 0
-

2,147,483,64
8

-7999 -
2.147484E09 0 2147483648 -2147483648 TRUE TRUE -2,147,483,648

As Boolean 1 / 0 TRUE -1 -1 65535 4294967295 -1 TRUE TRUE -1

 0 / 0 TRUE -1 -1 65535 4294967295 -1 TRUE TRUE -1

As
STRING 1 / 0 +INF INF INF 65535 2147483647 +INF TRUE TRUE 2147483647

 0 / 0 NAN NAN NAN 03 2147483648 NAN TRUE TRUE -2147483648

1 Except Average() outputs NAN
2 Except Average() outputs 0
3 65535 in operating systems prior to v. 28

10.5.3.4 Output Processing and NAN
When a measurement or process results in NAN, any output process with
DisableVar = FALSE that includes an NAN measurement. For example,

Average(1,TC_TempC,FP2,False)

will result in NAN being stored as final-storage data for that interval.

However, if DisableVar is set to TRUE each time a measurement results in NAN,
only non-NAN measurements will be included in the output process. CRBasic
example Using NAN to Filter Data (p. 460) demonstrates the use of conditional
statements to set DisableVar to TRUE as needed to filter NAN from output
processes.

Note If all measurements result in NAN, NAN will be stored as final-storage data
regardless of the use of DisableVar.

460

Section 10. Troubleshooting

CRBasic Example 68. Using NAN to Filter Data

'This program example demonstrates the use of NAN to filter what data are used in output processing
functions such as
'averages, maxima, and minima.

'Declare Variables and Units
Public TC_RefC
Public TC_TempC
Public DisVar As Boolean

'Define Data Tables
DataTable(TempC_Data,True,-1)
 DataInterval(0,30,Sec,10)
 Average(1,TC_TempC,FP2,DisVar) 'Output process
EndTable

'Main Program
BeginProg
 Scan(1,Sec,1,0)

 'Measure Thermocouple Reference Temperature
 PanelTemp(TC_RefC,250)

 'Measure Thermocouple Temperature
 TCDiff(TC_TempC,1,mV2_5,1,TypeT,TC_RefC,True,0,250,1.0,0)

 'DisVar Filter
 If TC_TempC = NAN Then
 DisVar = True
 Else
 DisVar = False
 EndIf

 'Call Data Tables and Store Data
 CallTable(TempC_Data)

 NextScan
EndProg

10.5.4 Status Table as Debug Resource
Related Topics:
 • Status, Settings, and Data Table Information (Status/Settings/DTI) (p. 577)
 • Common Uses of the Status Table (p. 578)
 • Status Table as Debug Resource (p. 461)

Consult the CR800 Status table when developing a program or when a problem
with a program is suspected. Critical Status table registers to review include
CompileResults, SkippedScan, SkippedSlowScan, SkippedRecord,
ProgErrors, MemoryFree, VarOutOfBounds, WatchdogErrors and
Calibration.

10.5.4.1 CompileResults
CompileResults reports messages generated by the CR800 at program upload and
compile-time. Messages may also added as the program runs. Error messages

461

Section 10. Troubleshooting

may not be obvious because the display is limited. Much of this information is
more easily accessed through the datalogger support software (p. 93) station status
report. The message reports the following:

• program compiled OK
• warnings about possible problems
• run-time errors
• variables that caused out-of-bounds conditions
• watchdog information
• memory errors

Warning messages are posted by the CRBasic compiler to advise that some
expected feature may not work. Warnings are different from error messages in
that the program will still operate when a warning condition is identified.

A rare error is indicated by mem3 fail type messages. These messages can be
caused by random internal memory corruption. When seen on a regular basis with
a given program, an operating system error is indicated. Mem3 fail messages are
not caused by user error, and only rarely by a hardware fault. Report any
occurrence of this error to a Campbell Scientific application engineer, especially if
the problem is reproducible. Any program generating these errors is unlikely to be
running correctly.

Examples of some of the more common warning messages are listed in table
Warning Message Examples (p. 462).

Table 124. Warning Message Examples
Message Meaning

CPU:DEFAULT.CR1 -- Compiled in
PipelineMode.
Error(s) in CPU:NewProg.CR1:
line 13: Undeclared variable Battvolt.

A new program sent to the datalogger failed to
compile, and the datalogger reverted to running
DEFAULT.cr8.

Warning: Cannot open include file CPU:
Filename.cr8

The filename in the Include instruction does not
match any file found on the specified drive.
Since it was not found, the portion of code
referenced by Include will not be executed.

Warning: Cannot open voice.txt
voice.txt, a file required for use with a COM310
voice phone modem, was not found on the CPU:
drive.

Warning: COM310 word list cannot be a
variable.

The Phrases parameter of the VoicePhrases()
instruction was assigned a variable name instead
of the required string of comma-separated words
from the Voice.TXT file.

Warning: EndIf never reached at runtime.

Program will never execute the EndIf
instruction. In this case, the cause is a Scan()
with a Count parameter of 0, which creates an
infinite loop within the program logic.

462

Section 10. Troubleshooting

Table 124. Warning Message Examples
Message Meaning

Warning: Internal Data Storage Memory
was re-initialized.

Sending a new program has caused final-
memory to be re-allocated. Previous data are no
longer accessible.

Warning: Machine self-calibration failed.

Indicates a problem with the analog
measurement hardware during the self
calibration. An invalid external sensor signal
applying a voltage beyond the internal ±8 Vdc
supplies on a voltage input can induce this error.
Removing the offending signal and powering up
the logger will initiate a new self-calibration. If
the error does not occur on power-up, the
problem is corrected. If no invalid external
signals are present and / or self-calibration fails
again on power-up, the CR800 should be
repaired by a qualified technician.

Warning: Slow Seq 1, Scan 1, will skip
scans if running with Scan 1

SlowSequence scan rate is <= main scan rate.
This will cause skipped scans on the
SlowSequence.

Warning: Table [tablename] is declared
but never called.

No data will be stored in [tablename] because
there is no CallTable() instruction in the
program that references that table.

Warning: Units:
a_units_name_that_is_more_than_38_char
a... too long will be truncated to 38 chars.

The label assigned with the Units argument is
too long and will be truncated to the maximum
allowed length.

Warning: Voice word TEH is not in
Voice.TXT file

The misspelled word TEH in the VoiceSpeak()
instruction is not found in Voice.TXT file and
will not be spoken by the voice modem.

10.5.4.2 SkippedScan
Skipped scans are caused by long programs with short scan intervals, multiple
Scan() / NextScan instructions outside a SubScan() or SlowSequence, or by
other operations that occupy the processor at scan start time. Occasional skipped
scans may be acceptable but should be avoided. Skipped scans may compromise
frequency measurements made on terminals configured for pulse input. The error
occurs because counts from a scan and subsequent skipped scans are regarded by
the CR800 as having occurred during a single scan. The measured frequency can
be much higher than actual. Be careful that scans that store data are not skipped.
If any scan skips repeatedly, optimization of the datalogger program or reduction
of on-line processing may be necessary.

Skipped scans in Pipeline Mode indicate an increase in the maximum buffer depth
is needed. Try increasing the number of scan buffers (third parameter of the
Scan() instruction) to a value greater than that shown in the MaxBuffDepth
register in the Status table.

10.5.4.3 SkippedSlowScan
The CR800 automatically runs a slow sequence to update the calibration table.
When the calibration slow sequence skips, the CR800 will try to repeat that step
of the calibration process next time around. This simply extends calibration time.

463

Section 10. Troubleshooting

10.5.4.4 SkippedRecord
SkippedRecord is normally incremented when a write-to-data-table event is
skipped, which usually occurs because a scan is skipped. SkippedRecord is not
incremented by all events that leave gaps in data, including cycling power to the
CR800.

10.5.4.5 ProgErrors
Should be 0. If not, investigate.

10.5.4.6 MemoryFree
A number less than 4 kB is too small and may lead to memory-buffer related
errors.

10.5.4.7 VarOutOfBounds
Related Topics:
 • Declaring Arrays (p. 133)
 • Arrays of Multipliers and Offsets
 • VarOutOfBounds (p. 464)

When programming with variable arrays, care must be taken to match the array
size to the demands of the program. For example, if an operation attempts to
write to 16 elements in array ExArray(), but ExArray() was declared with 15
elements (for example, Public ExArray(15)), the VarOutOfBound runtime error
counter is incremented in the Status table each time the absence of a sixteenth
element is encountered.

The CR800 attempts to catch VarOutOfBound errors at compile time (not to be
confused with the CRBasic Editor pre-compiler, which does not). When a
VarOutOfBound error is detected at compile time, the CR800 attempts to
document which variable is out of bounds at the end of the CompileResults
message in the Status table. For example, the CR800 may detect that ExArray()
is not large enough and write Warning:Variable ExArray out of bounds to the
CompileErrors register.

The CR800 does not catch all out-of-bounds errors, so take care that all arrays are
sized as needed.

10.5.4.8 Watchdog Errors
Watchdog errors indicate the CR800 has crashed and reset itself. A few
watchdogs indicate the CR800 is working as designed and are not a concern.

Following are possible root causes sorted in order of most to least probable:

• Transient voltage
• Running the CRBasic program very fast
• Many PortSet() instructions back-to-back with no delay
• High-speed serial data on multiple ports with very large data packets or bursts

of data

464

Section 10. Troubleshooting

If any of the previous are not the apparent cause, contact a Campbell Scientific
application engineer for assistance. Causes that require assistance include the
following:

• Memory corruption. Check for memory failures with M command in
terminal mode (p. 475).

• Operating-system problem
• Hardware problem

Watchdog errors may cause telecommunication disruptions, which can make
diagnosis and remediation difficult. The CR1000KD Keyboard Display will often
work as a user interface when telecommunications fail. Information on CR800
crashes may be found in three places.

• WatchdogErrors field in the Status table (p. 577)
• Watchdog.txt file on the CPU: drive (p. 355). Some time may elapse between

when the error occurred and the Watchdog.txt file is created. Not all errors
cause a file to be created. Any time a watchdog.txt file is created, please
consult with a Campbell Scientific application engineer.

• Crash information may be posted at the end of the CompileResults register
in the Status (p. 577) table.

10.5.4.8.1 Status Table WatchdogErrors
Non-zero indicates the CR800 has crashed, which can be caused by power or
transient-voltage problems, or an operating-system or hardware problem. If
power or transient problems are ruled out, the CR800 probably needs an
operating-system update or repair (p. 3) by Campbell Scientific.

10.5.4.8.2 Watchdoginfo.txt File
A WatchdogInfo.txt file is created on the CPU: drive when the CR800
experiences a software reset (as opposed to a hardware reset that increment the
WatchdogError register in the Status table). Postings of WatchdogInfo.txt
files are rare. Please consult with a Campbell Scientific application engineer at
any occurrence.

Debugging beyond identifying the source of the watchdog is quite involved.
Please contact a Campbell Scientific application engineer for assistance. Key
things to look for include the following:

• Are multiple tasks waiting for the same resource? This is always caused by a
software bug.

• In newer operating systmes, there is information about the memory regions. If
anything like ColorX: fail is seen, this means that the memory is corrupted.

• The comms memory information can also be a clue for PakBus and TCP
triggered watchdogs. For example, if COM1 is the source of the watchdog,
knowing exactly what is connected to the port and at what baud rate and
frequency (how often) the port is communicating are valuable pieces of
information.

465

Section 10. Troubleshooting

10.6 Troubleshooting — Operating Systems
Updating the CR800 operating system will sometimes fix a problem. Operating
systems are available, free of charge, at www.campbellsci.com/downloads
(http://www.campbellsci.com/downloads).

Operating systems undergo extensive testing prior to release by a professional
team of product testers. However, the function of any new component to a data-
acquisition system should be thoroughly examined and tested by the integrator
and end user.

10.7 Troubleshooting — Auto-Calibration Errors
Related Topics
 • Auto Calibration — Overview (p. 91)
 • Auto Calibration — Details (p. 326)
 • Auto-Calibration — Errors (p. 466)
 • Offset Voltage Compensation (p. 315)
 • Factory Calibration (p. 92)
 • Factory Calibration or Repair Procedure (p. 452)

Auto-calibration errors are rare. When they do occur, the cause is usually an
analog input that exceeds the input limits (p. 301) of the CR800.

• Check all analog inputs to make sure they are not greater than ±5 Vdc by
measuring the voltage between the input and a G terminal. Do this with a
multimeter (p. 494).

• Check for condensation, which can sometimes cause leakage from a 12 Vdc
source terminal into other places.

• Check for a lose ground wire on a sensor powered from a 12V or SW12
terminal.

• If a multimeter is not available, disconnect sensors, one at a time, that require
power from 9 to 16 Vdc. If measurements return to normal, you have found
the cause.

10.8 Communications
10.8.1 RS-232

Baud rate mis-match between the CR800 and datalogger support software (p. 93) is
often the cause of communication problems. By default, CR800 baud rate auto-
adjusts to match that of the software. However, settings changed in the CR800 to
accommodate a specific RS-232 device, such as a smart sensor, display or
modem, may confine the RS-232 port to a single baud rate. If the baud rate can
be guessed at and entered into support software parameters, communications may
be established. Once communications are established, CR800 baud rate settings
can be changed. Clues as to what the baud rate may be set at can be found by
analyzing current and previous CR800 programs for the SerialOpen() instruction,
since SerialOpen() specifies a baud rate. Documentation provided by the
manufacturer of the previous RS-232 device may also hint at the baud rate.

466

http://www.campbellsci.com/downloads

Section 10. Troubleshooting

10.8.2 Communicating with Multiple PCs
The CR800 can communicate with multiple PCs simultaneously. For example,
the CR800 may be a node of an internet PakBus network communicating with a
distant instance of LoggerNet. An onsite technician can communicate with the
CR800 using PC200W with a serial connection, so long as the PakBus addresses
of the host PCs are different. All Campbell Scientific datalogger support software
include an option to change PC PakBus addressing.

10.8.3 Comms Memory Errors
CommsMemFree() is an array of three registers in the Status table (p. 577) that
report communication memory errors. In summary, if any CommsMemFree()
register is at or near zero, assistance may be required from Campbell Scientific to
diagnose and correct a potentially serious communication problem. Sections
CommsMemFree(1) (p. 467), CommsMemFree(2) (p. 468), and CommsMemFree(3) (p.
469) explain the possible communication memory errors in detail.

10.8.3.1 CommsMemFree(1)
CommsMemFree(1): Number of buffers used in all communication, except with
the CR1000KD Keyboard Display. Two digits per each buffer size category.
Most significant digits specify the number of larger buffers. Least significant
digits specify the number of smaller buffers. When TLS (p. 505) is not active, there
are four-buffer categories: tiny, little, medium, and large. When TLS is active,
there is a fifth category, huge, and more buffers are allocated for each category.

When a buffer of a certain size is required, the smallest, suitably-sized pool that
still has at least one buffer free will allocate a buffer and decrement the number in
reserve. When the communication is complete, the buffer is returned to the pool
and the number for that size of buffer will increment.

When TLS is active, the number of buffers allocated for tiny can only be
displayed as the number of tiny buffers modulo divided by 100.

CommsMemFree(1) is encoded using the following expression:
CommsMemFree(1) = tiny + lil*100 + mid*10000 + med*1000000 +
lrg*100000000

where,

tiny = number of 16-byte packets available

lil = number of little (≈100 bytes) packets

mid = number of medium size (≈530 bytes) packets

med = number of big (≈3 kB) packets

lrg = number of large (≈18 kB) packets available, primarily for TLS.

The following expressions are used to pick the individual values from
CommsMemFree(1):

tiny = CommsMemFree(1) % 100
lil = (CommsMemFree(1) / 100) % 100
mid = (CommsMemFree(1) / 10000) % 100

467

Section 10. Troubleshooting

med = (CommsMemFree(1) / 1000000) % 100
lrg = (CommsMemFree(1) / 100000000) % 100

Table 125. CommsMemFree(1) Defaults and Use Example, TLS Not
Active

Buffer
Catagory

Condition:

reset, TLS not active.
Buffer count:

CommsMemFree(1) =
15251505.

Use Example

Condition:
in use, TLS not active.

Buffer count:
CommsMemFree(1) =

13241504.

Numbers of

buffers in use
(reset count –
in-use count)

tiny 05 04 1

little 15 15 0

medium 25 24 1

large 15 13 2

huge

Table 126. CommsMemFree(1) Defaults and Use Example, TLS
Active

Buffer
Category

Condition:
reset, TLS active.

Buffer count:
CommsMemFree(1) =

230999960.

Use Example

Condition:
TLS enabled, no

active
TLS connections.

Connected to
LoggerNet on

TCP/IP.
Buffer Count:

CommsMemFree(1) =
228968437.

Numbers of buffers
in use (reset count –

in-use count)

tiny 160 137 23

little 99 84 15

medium 99 96 3

large 30 28 2

huge1 2 2 0

1 If email clients using TLS are active, huge will be decremented along with some of the others.

10.8.3.2 CommsMemFree(2)
CommsMemFree(2) displays the number of memory "chunks" in "keep" memory
(p. 492) used by communications. It includes memory used for PakBus routing and
neighbor lists, communication timeout structures, and TCP/IP connection
structures. The PakBusNodes setting, which defaults to 50, is included in
CommsMemFree(2). Doubling PakBusNodes to 100 doubles
CommsMemFree(2) from ≈300 to ≈600 (assuming a large PakBus network has
not been just discovered). The larger the discovered PakBus network, and the
larger the number of simultaneous TCP connections, the smaller
CommsMemFree(2) number will be. A PakBusNodes setting of 50 is normally

468

Section 10. Troubleshooting

enough, and can probably be reduced in small networks to free memory, if
needed. Reducing PakBusNodes by one frees 224 bytes. If
CommsMemFree(2) drops and stays down for no apparent reason (a very rare
occurrence), please contact a Campbell Scientific application engineer since the
CR800 operating system may need adjustment.

10.8.3.3 CommsMemFree(3)
CommsMemFree(3) Specifies three two-digit fields, from right (least
significant) to left (most significant):

• lilfreeq = "little" IP packets available
• bigfreeq = "big" IP packets available
• rcvdq = IP packets in the received queue (not yet processed)

At start up, with no TCP/IP communication occurring, this field will read 1530,
which is interpreted as 30 lilfreeq and 15 bigfreeq available, with no packets in
rcvdq. The Ethernet and/or the PPP interface feed rcvdq. If
CommsMemFree(3) has a reading of 21428, then two packets are in the received
queue, 14 bigfreeq packets are free (one in use), and 28 lilfreeq are free (two in
use). These three pieces of information are also reported in the IP trace (p. 492)
information every 30 seconds as lilfreeq, bigfreeq, and recvdq. If lilfreeq or
bigfreeq free packets drop and stay near zero, or if the number in rcvdq climbs
and stays high (all are rare occurrences), please contact a Campbell Scientific
application engineer as the operating system may need adjustment.

CommsMemFree(3) is encoded as follows:
CommsMemFree(3) = lilfreeq + bigfreeq*100 + rcvdq*10000 +
sendq*1000000

where,

lilfreeq = number of small TCP packets available

bigfreeq = number of large TCP packets

rcvdq = number of input packets currently waiting to be serviced

sendq = number of output packets waiting to be sent

The following expressions can be used to pick the values out of the
CommsMemFree(3) variable:

lilfreeq = CommsMemFree(3) % 100
bigfreeq = (CommsMemFree(3) / 100) % 100
rcvdq = (CommsMemFree(3) / 10000) % 100
sendq = (CommsmemFree(3) / 1000000) % 100

10.9 Troubleshooting — Power Supplies
Related Topics:
 • Power Supplies — Specifications
 • Power Supplies — Quickstart (p. 44)
 • Power Supplies — Overview (p. 85)
 • Power Supplies — Details (p. 98)
 • Power Supplies — Products (p. 633)
 • Power Sources (p. 99)
 • Troubleshooting — Power Supplies (p. 469)

469

Section 10. Troubleshooting

10.9.1 Troubleshooting Power Supplies — Overview
Power-supply systems may include batteries, charging regulators, and a primary
power source such as solar panels or ac/ac or ac/dc transformers attached to mains
power. All components may need to be checked if the power supply is not
functioning properly.

The section Diagnosis and Fix Procedures (p. 470) includes the following
flowcharts for diagnosing or adjusting power equipment supplied by Campbell
Scientific:

• Battery-voltage test
• Charging-circuit test (when using an unregulated solar panel)
• Charging-circuit test (when using a transformer)
• Adjusting charging circuit

If power supply components are working properly and the system has peripherals
with high current drain, such as a satellite transmitter, verify that the power supply
is designed to provide adequate power. Information on power supplies available
from Campbell Scientific can be obtained at www.campbellsci.com. Basic
information is available in the appendix Power Supplies (p. 633).

10.9.2 Troubleshooting Power Supplies — Examples -- 8 10 30
Symptom:

o CRBasic program does not execute.
o Low12VCount of the Status table displays a large number.

Possible affected equipment:

o Batteries
o Charger/regulators
o Solar panels
o Transformers

Likely causes:

o Batteries may need to be replaced or recharged.
o Charger/regulators may need to be fixed or re-calibrated.
o Solar panels or transformers may need to be fixed or replaced.

10.9.3 Troubleshooting Power Supplies — Procedures
Required Equipment:

o Voltmeter
o 5 kΩ resistor
o 50 Ω, 1 watt resistor for the charging circuit tests and to adjust the

charging circuit voltage.

10.9.3.1 Battery Test
The procedure outlined in this flow chart tests sealed-rechargeable or alkaline
batteries in the PS100 charging regulator, or a sealed-rechargeable battery
attached to a CH100 charging regulator. If a need for repair is indicated after

470

Section 10. Troubleshooting

following the procedure, see Warranty and Assistance (p. 3) for information on
sending items to Campbell Scientific.

Battery Test
If using a rechargeable power supply,
disconnect the charging source (i.e., solar panel
or ac transformer) from the battery pack. Wait
20 minutes before proceeding with this test.

Test Voltage at Charging Regulator
Set a voltmeter to read dc voltage as high as 15
V. Measure the voltage between a 12V and G
terminal on the charging regulator.
Is the voltage > 11.0 Vdc?

No

 Yes

Test the Battery Under Load
Program the CR800 to measure battery voltage
using a 0.01-second scan rate. Use the
voltmeter to measure the voltage between a
12V and G terminal on the charging regulator.
Is the voltage > 10.8 Vdc?

 Is the battery a sealed, rechargeable
battery?

No No

 Yes

 Is the voltage ≥ 10.5 Vdc? Replace battery / batteries*

 No

 Yes Yes

 Recharge battery*

Is the battery voltage > 12 Vdc? Battery voltage is adequate for CR800 operation. However, if the CR800 is to function
for a long period, Campbell Scientific recommends replacing, or, if using a sealed,
rechargeable battery, recharging the battery so the voltage is > 12 Vdc. No

 Yes

The battery is good.

*When using a sealed, rechargeable battery that is recharged with primary power provided by solar panel or ac/ac - ac/dc transformer, testing the
charging regulator is recommended. See Charging Regulator with Solar Panel Test (p. 471) or Charging Regulator with Transformer Test (p. 473).

10.9.3.2 Charging Regulator with Solar-Panel Test
The procedure outlined in this flow chart tests PS100 and CH100 charging
regulators that use solar panels as the power source. If a need for repair is
indicated after following the procedure, see Warranty and Assistance (p. 3) for
information on sending items to Campbell Scientific.

471

Section 10. Troubleshooting

Charging Regulator with Solar-Panel Test
Disconnect any wires attached to the 12V and G (ground) terminals on the PS100 or CH100 charging regulator. Unplug any batteries. Connect the solar panel to the two CHG
terminals. Polarity of inputs does not matter. Only the solar panel should be connected. Set the charging-regulator power switch to OFF.
NOTE This test assumes the solar panel has an unregulated output.

Solar Panel Test
Set a voltmeter to measure dc voltage. Measure solar panel output
across the two solar-panel leads by placing a voltmeter lead on one
CHG terminal, and the other lead on the other CHG terminal. Is the
output 17 to 22 Vdc?

Remove the solar-panel leads from the
charging circuit. Measure solar-panel
output across the two leads. Is the output
> 0 Vdc?

The solar panel is damaged
and should be repaired or
replaced.

No No

Yes

Yes

Is the voltage ≥ 17 Vdc?

There may not be enough
sunlight to perform the test,
or the solar panel is damaged.

No

Yes

Reconnect the power source (transformer /
solar panel) to the CHG terminals on the
charging regulator. Measure the voltage
between the two CHG terminals. Is the
voltage ≥ 17 Vdc / Vac?

Yes No

5 kΩ Load Test
1) Place a 5 kΩ resistor between a 12V terminal and a G (ground)
terminal on the charging regulator.
2) Switch the power switch to ON.
3) Measure the dc voltage across the resistor.
Is the measured voltage 13.3 to 14.1 V?

Measure the voltage between the two pins
in a battery-connection receptacle. Is the
voltage 10.0 to 15.5 Vdc?

No No

Yes

Yes

50 Ω Load Test
1) Switch the power switch to OFF.
2) Disconnect the power source (transformer / solar panel).
3) Remove the 5 kΩ resistor
4) Place a 50 Ω, 1 W resistor between a 12V terminal and a G
(ground) terminal on the charging regulator.
5) Reconnect the power source and then switch the power switch to
ON.
7) Measure the voltage across the ends of the resistor.
Is the voltage 13.0 to 14.0 Vdc (13.3 if circuit just adjusted)?
8) Switch the power switch to OFF.
NOTE The resistor will get HOT in just a few seconds. After
measuring the voltage, switch the power switch to OFF and allow the
resistor to cool before removing it.

See Adjusting Charging Voltage (p. 474)
to calibrate the charging regulator, or
return the charging regulator to Campbell
Scientific for calibration.

With the charging regulator still under
load, measure the voltage between the two
CHG terminals. Is the voltage > 15.5
Vdc?

Get Repair Authorization

The charging regulator is
damaged and should be
repaired or replaced.

 No Yes

Yes

No

Test Completed

The charger is functioning
properly. Remove the 50 Ω
resistor.

There may not be enough sunlight to
perform the test.

472

Section 10. Troubleshooting

10.9.3.3 Charging Regulator with Transformer Test
The procedure outlined in this flow chart tests PS100 and CH100 charging
regulators that use ac/ac or ac/dc transformers as power source. If a need for
repair is indicated after following the procedure, see Warranty and Assistance (p. 3)
for information on sending items to Campbell Scientific.

Charging Regulator with ac or dc Transformer Test
Disconnect any wires attached to the 12V and G (ground) terminals on the PS100 or CH100 charging regulator. Unplug any batteries. Connect the power input ac or dc transformer to the
two CHG terminals. Polarity of the inputs does not matter. Only the transformer should be connected. Set the charging-regulator power switch to OFF. Connect the transformer to mains
power.

Transformer Test
Determine whether the transformer output is ac or dc voltage (labeling on the
transformer usually identifies the output voltage type). Set a voltmeter to read that
type of voltage. Measure transformer output across the two transformer leads by
placing a voltmeter lead on one CHG terminal, and the other lead on the other
CHG terminal. Is the output 17 to 22 volts?

 Taking care not to short the
transformer leads, remove the leads
from the charging regulator.
Measure transformer output across
the two leads. Is the output 17 to 22
Vac / Vdc?

 The transformer is damaged and
should be replaced.

No No

 Yes Yes

Reconnect the power source
(transformer / solar panel) to the
CHG terminals on the charging
regulator. Measure the voltage
between the two CHG terminals. Is
the voltage ≥ 17 Vdc / Vac?

No

Yes

5 kΩ Load Test
1) Place a 5 kΩ resistor between a 12V terminal and a G (ground) terminal on the
charging regulator.
2) Switch the power switch to ON.
3) Measure the dc voltage across the resistor.
Is the measured voltage 13.3 to 14.1 V?

Measure the voltage between the two
pins in a battery-connection
receptacle. Is the voltage 10.0 to
15.5 Vdc?

No No

Yes

Yes

50 Ω Load Test

1) Switch the power switch to OFF.
2) Disconnect the power source (transformer / solar panel).
3) Remove the 5 kΩ resistor
4) Place a 50 Ω, 1 W resistor between a 12V terminal and a G (ground) terminal on
the charging regulator.
5) Reconnect the power source and then switch the power switch to ON.
7) Measure the voltage across the ends of the resistor.
Is the voltage 13.0 to 14.0 Vdc (13.3 if circuit just adjusted)?
8) Switch the power switch to OFF.
NOTE The resistor will get HOT in just a few seconds. After measuring the
voltage, switch the power switch to OFF and allow the resistor to cool before
removing it.

See Adjusting Charging Voltage (p.
474) to calibrate the charging
regulator, or return the charging
regulator to Campbell Scientific for
calibration.

Get Repair Authorization

The charging regulator is damaged
and should be repaired or replaced.

No

Yes

Test Completed

The charger is functioning properly. Remove the 50 Ω resistor.

473

Section 10. Troubleshooting

10.9.3.4 Adjusting Charging Voltage
Note Campbell Scientific recommends that a qualified electronic technician
perform the following procedure.

The procedure outlined in this flow chart tests and adjusts PS100 and CH100
charging regulators. If a need for repair or calibration is indicated after following
the procedure, see Warranty and Assistance (p. 3) for information on sending items
to Campbell Scientific.

Adjusting Charging Circuit
1) Place a 5 kΩ resistor between a 12V terminal and a G (ground) ground terminal on
the charging regulator. Use a voltmeter to measure the voltage across the 5 kΩ resistor.
2) Connect a power source that supplies a voltage >17 V to the input CHG terminals
of the charging regulator.
3) Adjust pot R3 (see FIGURE. Potentiometer R3 on PS100 and CH100 Charging
Regulators (p. 475)) so that voltage across the 5 kΩ resistor is 13.3 Vdc.
Can the output voltage be set to 13.3 V?

No

 Yes

50 Ω Load Test
1) Switch the power switch to OFF.
2) Disconnect the power source (transformer / solar panel).
3) Remove the 5 kΩ resistor
4) Place a 50 Ω, 1 W resistor between a 12V terminal and a G (ground) terminal on
the charging regulator.
5) Reconnect the power source and then switch the power switch to ON.
7) Measure the voltage across the ends of the resistor.
Is the voltage 13.0 to 14.0 Vdc (13.3 if circuit just adjusted)?
8) Switch the power switch to OFF.
NOTE The resistor will get HOT in just a few seconds. After measuring the voltage,
switch the power switch to OFF and allow the resistor to cool before removing it.

 Get Repair Authorization
The charging regulator is damaged and
should be repaired or replaced.

No

 Yes

Test Completed
The charger is functioning properly. Remove the 50 Ω resistor.

474

Section 10. Troubleshooting

Figure 125. Potentiometer R3 on PS100 and CH100 Charger /
Regulator

10.10 Terminal Mode
Table CR800 Terminal Commands (p. 476) lists terminal mode options. With
exception of perhaps the C command, terminal options are not necessary to
routine CR800 operations.

To enter terminal mode, connect a PC to the CR800 with the same hard-wire
serial connection used in the What You Will Need (p. 46) section. Open a terminal
emulator program. Terminal emulator programs are available in:

• Campbell Scientific datalogger support software (p. 93) Terminal Emulator (p.
504) window

• DevConfig (Campbell Scientific Device Configuration Utility Software)
Terminal tab

• HyperTerminal. Beginning with Windows Vista, HyperTerminal (or another
terminal emulator utility) must be acquired and installed separately.

As shown in figure DevConfig Terminal Tab (p. 477), after entering a terminal
emulator, press Enter a few times until the prompt CR800> is returned. Terminal
commands consist of a single character and Enter. Sending an H and Enter will
return the terminal emulator menu.

ESC or a 40 second timeout will terminate on-going commands. Concurrent
terminal sessions are not allowed and will result in dropped communications.

475

Section 10. Troubleshooting

Table 127. CR800 Terminal Commands
Option Description Use

0 Scan processing time; real time in seconds Lists technical data concerning program scans.

1 Serial FLASH data dump Campbell Scientific engineering tool

2 Read clock chip Lists binary data concerning the CR800 clock chip.

3 Status Lists the CR800 Status table.

4 Card status and compile errors Lists technical data concerning an installed CF card.

5 Scan information Technical data regarding the CR800 scan.

6 Raw A-to-D values Technical data regarding analog-to-digital conversions.

7 VARS Lists Public table variables.

8 Suspend / start data output Outputs all table data. This is not recommended as a
means to collect data, especially over
telecommunications. Data are dumped as non-error
checked ASCII.

9 Read inloc binary Lists binary form of Public table.

A Operating system copyright Lists copyright notice and version of operating system.

B Task sequencer op codes Technical data regarding the task sequencer.

C Modify constant table Edit constants defined with ConstTable /
EndConstTable. Only active when ConstTable /
EndConstTable in the active program.

D MTdbg() task monitor Campbell Scientific engineering tool

E Compile errors Lists compile errors for the current program download
attempt.

F VARS without names Campbell Scientific engineering tool

G CPU serial flash dump Campbell Scientific engineering tool

H Terminal emulator menu Lists main menu.

I Calibration data Lists gains and offsets resulting from internal calibration
of analog measurement circuitry.

J Download file dump Sends text of current program including comments.

K Unused

L Peripheral bus read Campbell Scientific engineering tool

M Memory check Lists memory-test results

N File system information Lists files in CR800 memory.

O Data table sizes Lists technical data concerning data-table sizes.

P Serial talk through Issue commands from keyboard that are passed through
the logger serial port to the connected device. Similar in
concept to SDI12 Talk Through.

REBOOT Program recompile Typing “REBOOT” rapidly will recompile the CR800
program immediately after the last letter, "T", is entered.
Table memory is retained. NOTE When typing
REBOOT, characters are not echoed (printed on
terminal screen).

476

Section 10. Troubleshooting

Table 127. CR800 Terminal Commands
Option Description Use

SDI12 SDI12 talk through Issue commands from keyboard that are passed through
the CR800 SDI-12 port to the connected device. Similar
in concept to Serial Talk Through.

T Unused

U Data recovery Provides the means by which data lost when a new
program is loaded may be recovered. See section
Troubleshooting — Data Recovery (p. 478) for details.

V Low level memory dump Campbell Scientific engineering tool

W Comms Watch Enables monitoring of CR800 communication traffic.

X Peripheral bus module identify Campbell Scientific engineering tool

Figure 126. DevConfig Terminal Tab

10.10.1 Serial Talk Through and Comms Watch
In the P: Serial Talk Through and W: Comms Watch modes, the timeout can
be changed from the default of 40 seconds to any value ranging from 1 to 86400
seconds (86400 seconds = 1 day).

When using options P or W in a terminal session, consider the following:

• Concurrent terminal sessions are not allowed by the CR800.
• Opening a new terminal session will close the current terminal session.
• The CR800 will attempt to enter a terminal session when it receives non-

PakBus characters on the nine-pin RS-232 port or CS I/O port, unless the
port is first opened with the SerialOpen() command.

If the CR800 attempts to enter a terminal session on the nine-pin RS-232 port or
CS I/O port because of an incoming non-PakBus character, and that port was not
opened using the SerialOpen() command, any currently running terminal

477

Section 10. Troubleshooting

function, including the comms watch, will immediately stop. So, in programs that
frequently open and close a serial port, the probability is higher that a non-PakBus
character will arrive at the closed serial port, thus closing an existing talk-through
or comms watch session. If this occurs, the FileManager() setting to send comms
watch or sniffer to a file is immune to this problem.

10.11 Logs
Logs are meta data, usually about datalogger or software function. Logs, when
enabled, are available at the locations listed in the following table.

Table 128. Log Locations
Software Package Usual Location of Logs

LoggerNet C:\Campbellsci\LoggerNet\Logs

PC400 C:\Campbellsci\PC400\Logs

DevConfig C:\Campbellsci\DevConfig\sys\cora\Logs

10.12 Troubleshooting — Data Recovery
In rare circumstances, exceptional efforts may be required to recover data that are
otherwise lost to conventional data-collection methods. Circumstances may
include the following:

• Program control error

o A CRBasic program was sent to the CR800 without specifying that it run
on power-up. This is most likely to occur only while using the Compile,
Save and Send feature of older versions of CRBasic Editor.

o A new program (even the same program) was inadvertently sent to the
CR800 through the Connect client or Set Up client in LoggerNet.

o The program was stopped through datalogger support software File
Control or LoggerLink software.

• The CPU: drive was inadvertently formated.
• A network peripheral (NL115, NL120, NL200, or NL240) was added to the

CR800 when there was previously no network peripheral, and so forced the
CR800 to reallocate memory.

• A hardware failure, such as memory corruption, occurred.
• Inserting or removing memory cards will generally do nothing to cause the

CR800 to miss data. These events affect table definitions because they can
affect table size allocations, but they will not create a situation where data
recovery is necessary.

Data can usually be recovered using the Datalogger Data Recovery wizard
available in DevConfig (p. 109). Recovery is possible because data in memory is not
usually destroyed, only lost track of. So, the wizard recovers "data" from the
entire memory, whether or not that memory has been written to, or written to
recently.

Once you have run through the recovery procedure, consider the following:

If a CRD: drive (memory card) or a USB: drive (Campbell Scientific mass storage
device) has been removed since the data was originally stored, then the
Datalogger Data Recovery is run, the memory pointer will likely be in the wrong

478

Section 10. Troubleshooting

location, so the recovered data will be corrupted. If this is the case, put the CRD:
or USB: drive back in place and re-run the Datalogger Data Recovery wizard
before restarting the CRBasic program.

In any case, even when the recovery runs properly, the result will be that good
data is recovered mixed with sections of empty or old junk. With the entire data
dump in one file, you can sort through the good and the bad.

479

11. Glossary
11.1 Terms

Term. ac

See Vac (p. 506).

Term. accuracy

A measure of the correctness of a measurement. See also the appendix
Accuracy, Precision, and Resolution (p. 507).

Term. A-to-D

Analog-to-digital conversion. The process that translates analog voltage
levels to digital values.

Term. amperes (A)

Base unit for electric current. Used to quantify the capacity of a power source
or the requirements of a power-consuming device.

Term. analog

Data presented as continuously variable electrical signals.

Term. argument

Parameter (p. 496): part of a procedure (or command) definition.

Argument (p. 481): part of a procedure call (or command execution). An
argument is placed in a parameter. For example, in the CRBasic command
Battery(dest), dest is a parameter that defines what argument is to be put in
its place in a CRBasic program. If a variable named BattV is to hold the
result of the battery measurement made by Battery(), BattV is the argument
placed in dest. In the statement

Battery(BattV)

BattV is the argument.

Term. ASCII / ANSI

Reading List:
 • Term. ASCII / ANSI (p. 481)
 • ASCII / ANSI table (p. 613)

Abbreviation for American Standard Code for Information Interchange /
American National Standards Institute. An encoding scheme in which
numbers from 0-127 (ASCII) or 0-255 (ANSI) are used to represent pre-
defined alphanumeric characters. Each number is usually stored and
transmitted as 8 binary digits (8 bits), resulting in 1 byte of storage per
character of text.

481

Section 11. Glossary

Term. asynchronous

The transmission of data between a transmitting and a receiving device
occurs as a series of zeros and ones. For the data to be "read" correctly, the
receiving device must begin reading at the proper point in the series. In
asynchronous communication, this coordination is accomplished by having
each character surrounded by one or more start and stop bits which designate
the beginning and ending points of the information (see synchronous (p. 504)).

Indicates the sending and receiving devices are not synchronized using a
clock signal.

Term. AWG

AWG ("gauge") is the accepted unit when identifying wire diameters. Larger
AWG values indicate smaller cross-sectional diameter wires. Smaller AWG
values indicate large-diameter wires. For example, a 14 AWG wire is often
used for grounding because it can carry large currents. 22 AWG wire is often
used as sensor leads since only small currents are carried when measurements
are made.

Term. baud rate

The rate at which data are transmitted.

Term. beacon

A signal broadcasted to other devices in a PakBus® network to identify
"neighbor" devices. A beacon in a PakBus network ensures that all devices in
the network are aware of other devices that are viable. If configured to do so,
a clock-set command may be transmitted with the beacon. This function can
be used to synchronize the clocks of devices within the PakBus network. See
also PakBus (p. 496) and neighbor device (p. 494).

Term. binary

Describes data represented by a series of zeros and ones. Also describes the
state of a switch, either being on or off.

Term. BOOL8

A one-byte data type that holds eight bits (0 or 1) of information. BOOL8
uses less space than the 32 bit BOOLEAN data type.

Term. boolean

Name given a function, the result of which is either true or false.

Term. boolean data type

Typically used for flags and to represent conditions or hardware that have
only two states (true or false) such as flags and control ports.

482

Section 11. Glossary

Term. burst

Refers to a burst of measurements. Analogous to a burst of light, a burst of
measurements is intense, such that it features a series of measurements in
rapid succession, and is not continuous.

Term. calibration wizard

The calibration wizard facilitates the use of the CRBasic field calibration
instructions FieldCal() and FieldCalStrain(). It is found in LoggerNet (4.0
or higher) or RTDAQ.

Term. Callback

A name given to the process by which the CR800 initiates telecommunication
with a PC running appropriate Campbell Scientific datalogger support
software (p. 631). Also known as "Initiate Telecommunications."

Term. CD100

An optional enclosure mounted keyboard display for use with CR800
dataloggers. See the appendix Keyboard Display — List (p. 627).

Term. CDM/CPI

CPI is a proprietary interface for communications between Campbell
Scientific dataloggers and Campbell Scientific CDM peripheral devices. It
consists of a physical layer definition and a data protocol. CDM devices are
similar to Campbell Scientific SDM devices in concept, but the use of the
CPI bus enables higher data-throughput rates and use of longer cables. CDM
devices require more power to operate in general than do SDM devices.

Term. code

A CRBasic program, or a portion of a program.

Term. Collect / Collect Now button

Button or command in datalogger support software that facilitates collection-
on-demand of final-data memory. This feature is found in PC200W, PC400,
LoggerNet, and RTDAQ. software.

Term. COM port

COM is a generic name given to physical and virtual serial communication
ports.

Term. input/output instructions

Usually refers to a CRBasic command.

Term. command line

One line in a CRBasic program. Maximum length, even with the line
continuation characters <space> <underscore> (_), is 512 characters. A

483

Section 11. Glossary

command line usually consists of one program statement, but it may consist
of mulitple program statements separated by a <colon> (:).

Term. compile

The software process of converting human-readable program code to binary
machine code. CR800 user programs are compiled internally by the CR800
operating system.

Term. conditioned output

The output of a sensor after scaling factors are applied. See unconditioned
output (p. 505).

Term. connector

A connector is a device that allows one or more electron conduits (wires,
traces, leads, etc) to be connected or disconnected as a group. A connector
consists of two parts — male and female. For example, a common household
ac power receptacle is the female portion of a connector. The plug at the end
of a lamp power cord is the male portion of the connector. See terminal (p. 504).

Term. constant

A packet of CR800 memory given an alpha-numeric name and assigned a
fixed number.

Term. control I/O

C terminals configured for controlling or monitoring a device.

Term. CoraScript

CoraScript is a command-line interpreter associated with LoggerNet
datalogger support software. Refer to the LoggerNet manual, available at
www.campbellsci.com, for more information.

Term. CPU

Central processing unit. The brains of the CR800. Also refers to two the
following two memory areas:

o CPU: memory drive
o Memory used by the CPU to store table data.

Term. CR1000KD

An optional hand-held keyboard display for use with the CR800 datalogger.
See the appendix Keyboard Display -- List (p. 627).

Term. cr

Carriage return

484

Section 11. Glossary

Term. CRBasic Editor Compile, Save and Send

CRBasic Editor menu command that compiles, saves, and sends the program
to the datalogger.

Term. CS I/O

Campbell Scientific proprietary input / output port. Also, the proprietary
serial communication protocol that occurs over the CS I/O port.

Term. CVI

Communication verification interval. The interval at which a PakBus®
device verifies the accessibility of neighbors in its neighbor list. If a neighbor
does not communicate for a period of time equal to 2.5 times the CVI, the
device will send up to four Hellos. If no response is received, the neighbor is
removed from the neighbor list. See the section PakBus — Overview (p. 88) for
more information.

Term. data cache

The data cache is a set of binary files kept on the hard disk of the computer
running the datalogger support software (p. 485). A binary file is created for
each table in each datalogger. These files mimic the storage areas in
datalogger memory, and by default are two times the size of the datalogger
storage area. When the software collects data from a CR800, the data are
stored in the binary file for that CR800. Various software functions retrieve
data from the data cache instead of the CR800 directly. This allows the
simultaneous sharing of data among software functions.

Similar in function to a CR800 final-memory data tables, the binary files for
the data cache are set up by default as ring memory (p. 499).

Term. datalogger support software

Campbell Scientific software that includes at least the following functions:

o Datalogger telecommunications
o Downloading programs
o Clock setting
o Retrieval of measurement data

See Datalogger Support Software — Overview (p. 93) and the appendix
Datalogger Support Software — List (p. 631) for more information.

Term. data point

A data value which is sent to final-data memory (p. 489) as the result of a data-
output processing instruction (p. 486). Strings of data points output at the same
time make up a record in a data table.

Term. data table

A concept that describes how data are organized in CR800 memory, or in
files that result from collecting data in CR800 memory. The fundamental
data table is created by the CRBasic program as a result of the DataTable()

485

Section 11. Glossary

instruction and resides in binary form in main-memory SRAM. See the table
CR800 Memory Allocation (p. 352). The data table structure also resides in the
data cache (p. 485), in discrete data files on the CPU:, USR:, CRD:, and USB:
memory drives, and in binary or ASCII files that result from collecting final-
data memory with datalogger support software (p. 485).

Term. data-output interval

Alias: output interval

The interval between each write of a record (p. 498) to a final-data memory data
table.

Term. data-output-processing instructions

CRBasic instructions that process data values for eventual output to final-data
memory. Examples of output-processing instructions include Totalize(),
Maximize(), Minimize(), and Average(). Data sources for these instructions
are values or strings in variable memory. The results of intermediate
calculations are stored in data-output-processing memory (p. 486) to await the
output trigger. The ultimate destination of data generated by data-output-
processing instructions is usually final-data memory, but it may be diverted to
variable memory by the CRBasic program for further processing. The
transfer of processed summaries to final-data memory takes place when the
Trigger argument in the DataTable() instruction is set to True.

Term. data-output-processing memory

SRAM memory automatically allocated for intermediate calculations
performed by CRBasic data-output-processing instructions. Data-output-
processing memory cannot be monitored. See section Processing for Output
to Final-Data Memory (p. 516) for a list of instructions that use Data-output-
processing memory.

Term. dc

See Vdc (p. 506).

Term. DCE

Data Communication Equipment. While the term has much wider meaning,
in the limited context of practical use with the CR800, it denotes the pin
configuration, gender, and function of an RS-232 port. The RS-232 port on
the CR800 is DCE. Interfacing a DCE device to a DCE device requires a
null-modem cable. See Term. DTE (p. 487).

Term. desiccant

A hygroscopic material that absorbs water vapor from the surrounding air.
When placed in a sealed enclosure, such as a datalogger enclosure, it prevents
condensation.

486

Section 11. Glossary

Term. DevConfig software

Device Configuration Utility (p. 109), available with LoggerNet, RTDAQ,
PC400, or at www.campbellsci.com/downloads
(http://www.campbellsci.com/downloads).

Term. DHCP

Dynamic Host Configuration Protocol. A TCP/IP application protocol.

Term. differential

A sensor or measurement terminal wherein the analog voltage signal is
carried on two leads. The phenomenon measured is proportional to the
difference in voltage between the two leads.

Term. Dim

A CRBasic command for declaring and dimensioning variables. Variables
declared with Dim remain hidden during datalogger operations.

Term. dimension

Verb. To code a CRBasic program for a variable array as shown in the
following examples:

o DIM example(3) creates the three variables example(1), example(2), and
example(3).

o DIM example(3,3) creates nine variables.
o DIM example(3,3,3) creates 27 variables.

Term. DNS

Domain name system. A TCP/IP application protocol.

Term. DTE

Data Terminal Equipment. While the term has much wider meaning, in the
limited context of practical use with the CR800, it denotes the pin
configuration, gender, and function of an RS-232 port. The RS-232 port on
the CR800 is DCE. Attachment of a null-modem cable to a DCE device
effectively converts it to a DTE device. See Term. DCE (p. 486).

Term. duplex

A serial communication protocol. Serial communications can be simplex,
half-duplex, or full-duplex.

Reading list: simplex (p. 501), duplex (p. 241), half-duplex (p. 490), and full-duplex
(p. 490).

Term. duty cycle

The percentage of available time a feature is in an active state. For example,
if the CR800 is programmed with 1 second scan interval, but the program
completes after only 100 millisecond, the program can be said to have a 10%
duty cycle.

487

http://www.campbellsci.com/downloads

Section 11. Glossary

Term. earth ground

A grounding rod or other suitable device that electrically ties a system or
device to the earth. Earth ground is a sink for electrical transients and
possibly damaging potentials, such as those produced by a nearby lightning
strike. Earth ground is the preferred reference potential for analog voltage
measurements. Note that most objects have a "an electrical potential" and the
potential at different places on the earth — even a few meters away — may
be different.

Term. engineering units

Units that explicitly describe phenomena, as opposed to, for example, the
CR800 base analog-measurement unit of milliVolts.

Term. ESD

Electrostatic discharge

Term. ESS

Environmental Sensor Station

Term. excitation

Application of a precise voltage, usually to a resistive bridge circuit.

Term. execution interval

See scan interval (p. 500).

Term. execution time

Time required to execute an instruction or group of instructions. If the
execution time of a program exceeds the Scan() Interval, the program is
executed less frequently than programmed and the Status table SkippedScan
(p. 463) register will increment.

Term. expression

A series of words, operators, or numbers that produce a value or result.

Term. FFT

Fast Fourier Transform. A technique for analyzing frequency-spectrum data.

Term. File Control

File Control is a feature of LoggerNet, PC400 and RTDAQ (p. 93)
datalogger support software. It provides a view of the CR800 file
system and a menu of file management commands:

Delete facilitates deletion of a specified file
Send facilitates transfer of a file (typically a CRBasic program file) from

PC memory to CR800 memory.

488

Section 11. Glossary

Retrieve facilitates collection of files viewed in File Control. If
collecting a data file from a CF card with Retrieve, first stop the
CR800 program or data corruption may result.

Format formats the selected CR800 memory device. All files, including
data, on the device will be erased.

Term. File Retrieval tab

A feature of LoggerNet Setup Screen. In the Setup Screen network map
(Entire Network), click on a CR800 datalogger node. The File Retieval tab
should be one of several tabs presented at the right of the screen.

Term. fill and stop memory

A memory configuration for data tables forcing a data table to stop accepting
data when full.

Term. final-data memory

The portion of CR800 SRAM memory allocated for storing data tables with
output arrays. Once data are written to final-data memory, they cannot be
changed but only overwritten when they become the oldest data. Final-data
memory is configured as ring memory (p. 499) by default, with new data
overwriting the oldest data.

Term. final-memory data

Data that resides in final-data memory.

Term. Flash

A type of memory media that does not require battery backup. Flash
memory, however, has a lifetime based on the number of writes to it. The
more frequently data are written, the shorter the life expectancy.

Term. FLOAT

Four-byte floating-point data type. Default CR800 data type for Public or
Dim variables. Same format as IEEE4.

Term. fN1

fN1 or Fnotch. First notch frequency. A notch, when referring to digital signal
processing (DSP), is a region in the frequency response at which frequencies
input into the filter are highly attenuated or 'notched out.' Signals input into
the filter at fN1 are completely eliminated, whereas frequencies near the
notch are greatly attenuated but not completely filtered out. A more technical
term is transmission zero,or zero signal transmission through the filter at the
given frequency.

Term. FP2

Two-byte floating-point data type. Default CR800 data type for stored data.
While IEEE four-byte floating point is used for variables and internal
calculations, FP2 is adequate for most stored data. FP2 provides three or four
significant digits of resolution, and requires half the memory as IEEE4.

489

Section 11. Glossary

Term. FTP

File Transfer Protocol. A TCP/IP application protocol.

Term. full-duplex

A serial communication protocol. Simultaneous bi-directional
communications. Communications between a CR800 serial port and a PC is
typically full duplex.

Reading list: simplex (p. 501), duplex (p. 241), half-duplex (p. 490), and full-duplex
(p. 490).

Term. frequency domain

Frequency domain describes data graphed on an X-Y plot with frequency as
the X axis. Vspect (p. 506) vibrating-wire data are in the frequency domain.

Term. frequency response

Sample rate is how often an instrument reports a result at its output;
frequency response is how well an instrument responds to fast fluctuations on
its input. By way of example, sampling a large gage thermocouple at 1 kHz
will give a high sample rate but does not ensure the measurement has a high
frequency response. A fine-wire thermocouple, which changes output
quickly with changes in temperature, is more likely to have a high frequency
response.

Term. garbage

The refuse of the data communication world. When data are sent or received
incorrectly (there are numerous reasons why this happens), a string of invalid,
meaningless characters (garbage) often results. Two common causes are: 1) a
baud-rate mismatch and 2) synchronous data being sent to an asynchronous
device and vice versa.

Term. global variable

A variable available for use throughout a CRBasic program. The term is
usually used in connection with subroutines, differentiating global variables
(those declared using Public or Dim) from local variables, which are
declared in the Sub() and Function() instructions.

Term. ground

Being or related to an electrical potential of 0 volts.

Term. half-duplex

A serial communication protocol. Bi-directional, but not simultaneous,
communications. SDI-12 is a half-duplex protocol.

Reading list: simplex (p. 501), duplex (p. 241), half-duplex (p. 490), and full-duplex
(p. 490).

490

Section 11. Glossary

Term. handshake, handshaking

The exchange of predetermined information between two devices to assure
each that it is connected to the other. When not used as a clock line, the
CLK/HS (pin 7) line in the datalogger CS I/O port is primarily used to detect
the presence or absence of peripherals.

Term. hello exchange

The process of verifying a node as a neighbor. See section PakBus —
Overview (p. 88).

Term. hertz (Hz)

SI unit of frequency. Cycles or pulses per second.

Term. HTML

Hypertext Markup Language. Programming language used for the creation
of web pages.

Term. HTTP

Hypertext Transfer Protocol. A TCP/IP application protocol.

Term. IEEE4

Four-byte, floating-point data type. IEEE Standard 754. Same format as
Float.

Term. Include file

a file containing CRBasic code to be included at the end of the current
CRBasic program, or it can be run as the default program. See Include File
Name setting (p. 577).

Term. INF

A data word indicating the result of a function is infinite or undefined.

Term. initiate telecommunication

A name given to a processes by which the CR800 initiates
telecommunications with a PC running LoggerNet. Also known as Callback
(p. 483).

Term. input/output instructions

Used to initiate measurements and store the results in input storage or to set
or read control/logic ports.

Term. input/output instructions

Usually refers to a CRBasic command.

491

Section 11. Glossary

Term. integer

A number written without a fractional or decimal component. 15 and 7956
are integers; 1.5 and 79.56 are not.

Term. intermediate memory

See data-output-processing memory (p. 486).

Term. IP

Internet Protocol. A TCP/IP internet protocol.

Term. IP address

A unique address for a device on the internet.

Term. IP trace

Function associated with IP data transmissions. IP trace information was
originally accessed through the CRBasic instruction IPTrace() (p. 282) and
stored in a string variable. Files Manager setting (p. 577) is now modified to
allow for creation of a file on a CR800 memory drive, such as USR:, to store
information in ring memory.

Term. isolation

Hardwire telecommunication devices and cables can serve as alternate paths
to earth ground and entry points into the CR800 for electromagnetic noise.
Alternate paths to ground and electromagnetic noise can cause measurement
errors. Using opto-couplers in a connecting device allows telecommunication
signals to pass, but breaks alternate ground paths and may filter some
electromagnetic noise. Campbell Scientific offers optically isolated RS-232
to CS I/O interfaces as a CR800 accessory for use on the CS I/O port. See
the appendix Serial I/O Modules List (p. 622).

Term. JSON

Java Script Object Notation. A data file format available through the CR800
or LoggerNet.

Term. KEEP memory

Non-volatile memory that preserves some registers (p. 577) through a CR800
reset that occurs due to power-up and program start-up. Examples include
PakBus address, station name, beacon intervals, neighbor lists, routing table,
and communication timeouts.

Term. keyboard display

The CR850 (a version of the CR800) has an integrated keyboard display. See
appendix Keyboard Display — List (p. 627) for other compatible keyboard
displays.

492

Section 11. Glossary

Term. leaf node

A PakBus node at the end of a branch. When in this mode, the CR800 is not
able to forward packets from one of its communication ports to another. It
will not maintain a list of neighbors, but it still communicates with other
PakBus dataloggers and wireless sensors. It cannot be used as a means of
reaching (routing to) other dataloggers.

Term. lf

Line feed. Often associated with carriage return (<cr>). <cr><lf>.

Term. local variable

A variable available for use only by the subroutine in which it is declared.
The term differentiates local variables, which are declared in the Sub() and
Function() instructions, from global variables, which are declared using
Public or Dim.

Term. LONG

Data type used when declaring integers.

Term. loop

A series of instructions in a CRBasic program that are repeated a the
programmed number of times. The loop ends with an end instruction.

Term. loop counter

Increments by one with each pass through a loop.

Term. mains power

the national power grid

Term. manually initiated

Initiated by the user, usually with a CR1000KD Keyboard Display (p. 627), as
opposed to occurring under program control.

Term. mass storage device

USB: "thumb" drive. See appendix Data Storage Devices (p. 629).

Term. MD5 digest

16 byte checksum of the TCP/IP VTP configuration.

Term. milli

The SI prefix denoting 1/1000 of a base SI unit.

Term. Modbus

Communication protocol published by Modicon in 1979 for use in
programmable logic controllers (PLCs). See section Modbus (p. 89).

493

Section 11. Glossary

Term. modem/terminal

Any device that has the following:

o Ability to raise the CR800 ring line or be used with an optically isolated
interface (see the appendix CS I/O Serial Interfaces (p. 628)) to raise the
ring line and put the CR800 in the telecommunication command state.

o Asynchronous serial communication port that can be configured to
communicate with the CR800.

Term. modulo divide

A math operation. Result equals the remainder after a division.

Term. MSB

Most significant bit (the leading bit). See the appendix Endianness (p. 619).

Term. multi-meter

An inexpensive and readily available device useful in troubleshooting data-
acquisition system faults.

Term. multiplier

A term, often a parameter in a CRBasic measurement instruction, that
designates the slope (aka, scaling factor or gain) in a linear function. For
example, when converting °C to °F, the equation is °F = °C*1.8 + 32. The
factor 1.8 is the multiplier. See Term. offset (p. 495).

Term. mV

The SI abbreviation for millivolts.

Term. NAN

Not a number. A data word indicating a measurement or processing error.
Voltage over-range, SDI-12 sensor error, and undefined mathematical results
can produce NAN. See the section NAN and ±INF (p. 458).

Term. neighbor device

Device in a PakBus network that communicate directly with a device without
being routed through an intermediate device. See PakBus (p. 496).

Term. NIST

National Institute of Standards and Technology

Term. node

Devices in a network — usually a PakBus network. The communication
server dials through, or communicates with, a node. Nodes are organized as a
hierarchy with all nodes accessed by the same device (parent node) entered as
child nodes. A node can be both a parent and a child. See PakBus —

494

Section 11. Glossary

Overview (p. 88).

Term. NSEC

Eight-byte data type divided up as four bytes of seconds since 1990 and four
bytes of nanoseconds into the second. See Data Type (p. 129, p. 128) tables.

Term. null-modem

A device, usually a multi-conductor cable, which converts an RS-232 port
from DCE to DTE or from DTE to DCE.

Term. Numeric Monitor

A digital monitor in datalogger support software (p. 631) or in a keyboard
display.

Term. offset

A term, often a parameter in a CRBasic measurement instruction, that
designates the y-intercept (aka, shifting factor or zeroing factor) in a linear
function. For example, when converting °C to °F, the equation is °F =
°C*1.8 + 32. The factor 32 is the offset. See Term. multiplier (p. 494).

Term. ohm

The unit of resistance. Symbol is the Greek letter Omega (Ω). 1.0 Ω equals
the ratio of 1.0 volt divided by 1.0 ampere.

Term. Ohm's Law

Describes the relationship of current and resistance to voltage. Voltage equals
the product of current and resistance (V = I • R).

Term. on-line data transfer

Routine transfer of data to a peripheral left on-site. Transfer is controlled by
the program entered in the datalogger.

Term. operating system

The operating system (also known as "firmware") is a set of instructions that
controls the basic functions of the CR800 and enables the use of user written
CRBasic programs. The operating system is preloaded into the CR800 at the
factory but can be re-loaded or upgraded by you using Device Configuration
Utility (p. 109) software. The most recent CR800 operating system .obj file is
available at www.campbellsci.com/downloads
(http://www.campbellsci.com/downloads).

Term. output

A loosely applied term. Denotes a) the information carrier generated by an
electronic sensor, b) the transfer of data from variable memory to final-data
memory, or c) the transfer of electric power from the CR800 or a peripheral
to another device.

495

http://www.campbellsci.com/downloads

Section 11. Glossary

Term. output array

A string of data values output to final-data memory. Output occurs when the
data table output trigger is True.

Term. output interval

See data-output-interval (p. 486).

Term. output-processing instructions

See data-output-processing instructions (p. 486).

Term. output-processing memory

See data-output-processing memory (p. 486).

Term. PakBus

A proprietary telecommunication protocol similar to IP (p. 492) protocol
developed by Campbell Scientific to facilitate communications between
Campbell Scientific instrumentation. See PakBus — Overview (p. 88) for more
information.

Term. PakBusGraph software

Shows the relationship of various nodes in a PakBus network and allows for
monitoring and adjustment of some registers (p. 498) in each node. A PakBus
node is typically a Campbell Scientific datalogger, a PC, or a
telecommunication device. See section Datalogger Support Software (p. 429).

Term. parameter

Parameter (p. 496): part of a procedure (or command) definition.

Argument (p. 481): part of a procedure call (or command execution). An
argument is placed in a parameter. For example, in the CRBasic command
Battery(dest), dest is a parameter that defines what argument is to be put in
its place in a CRBasic program. If a variable named BattV is to hold the
result of the battery measurement made by Battery(), BattV is the argument
placed in dest. In the statement

Battery(BattV)

BattV is the argument.

Term. period average

A measurement technique using a high-frequency digital clock to measure
time differences between signal transitions. Sensors commonly measured
with period average include water-content reflectometers.

Term. peripheral

Any device designed for use with the CR800 (or another Campbell Scientific
datalogger). A peripheral requires the CR800 to operate. Peripherals include
measurement, control (p. 84), and data-retrieval and telecommunication (p. 627)

496

Section 11. Glossary

modules.

Term. ping

A software utility that attempts to contact another device in a network. See
section PakBus — Overview (p. 88) and sections Ping (PakBus) (p. 377) and Ping
(IP) (p. 288).

Term. ping

A CRBasic program execution mode wherein instructions are evaluated in
groups of like instructions, with a set group prioritization. More information
is available in section Pipeline Mode (p. 150). See Term. sequential mode (p.
501).

Term. Poisson ratio

A ratio used in strain measurements. Equal to transverse strain divided by
extension strain as follows:

v = -(εtrans / εaxial).

Term. precision

A measure of the repeatability of a measurement. Also see the appendix
Accuracy, Precision, and Resolution (p. 507).

Term. PreserveVariables

CRBasic instruction that protects Public variables from being erased when a
program is recompiled.

Term. print device

Any device capable of receiving output over pin 6 (the PE line) in a receive-
only mode. Printers, "dumb" terminals, and computers in a terminal mode fall
in this category.

Term. print peripheral

See print device (p. 497).

Term. processing instructions

CRBasic instructions used to further process input-data values and return the
result to a variable where it can be accessed for output processing.
Arithmetic and transcendental functions are included. See appendix
Processing and Math Instructions (p. 537).

Term. program control instructions

Modify the execution sequence of CRBasic instructions. Also used to set or
clear flags. See section PLC Control — Overview (p. 74).

497

Section 11. Glossary

Term. program statement

A complete program command construct confined to one command line or to
multiple command lines merged with the line continuation characters
<space><underscore> (_). A command line, even with line continuation,
cannot exceed 512 characters.

Term. Program Send command

Program Send is a feature of datalogger support software (p. 93). Command
wording varies among software according to the following table:

Table 129. Program Send Command
Software Command Command Location

LoggerNet Send New... Connect screen

PC400 Send Program Clock/Program tab

RTDAQ Send Program Clock/Program tab

PC200W Send Program Clock/Program tab

Term. Public

A CRBasic command for declaring and dimensioning variables. Variables
declared with Public can be monitored during datalogger operation. See
Term. Dim (p. 487).

Term. pulse

An electrical signal characterized by a rapid increase in voltage follow by a
short plateau and a rapid voltage decrease.

Term. record

A record is a complete line of data in a data table or data file. All data in a
record share a common time stamp.

Term. regulator

A setting, a Status table element, or a DataTableInformation table element.

Term. regulator

A device for conditioning an electrical power source. Campbell Scientific
regulators typically condition ac or dc voltages greater than 16 Vdc to about
14 Vdc.

Term. Reset Tables command

Reset Tables command resets data tables configured for fill and stop.
Location of the command varies among datalogger support software
according to the following:

LoggerNet — Connect Screen | Station Status tab | Table Fill Times tab
| Reset Tables

498

Section 11. Glossary

PC400 — command sequence: Datalogger | Station Status | Table Fill
Times | Reset Tables

RTDAQ — command sequence: Datalogger | Station Status | Table Fill
Times | Reset Tables

PC200W — command sequence: Datalogger | Station Status | Table
Fill Times | Reset Tables

Term. resistance

A feature of an electronic circuit that impedes or redirects the flow of
electrons through the circuit.

Term. resistor

A device that provides a known quantity of resistance.

Term. resolution

A measure of the fineness of a measurement. See also Accuracy, Precision,
and Resolution (p. 507).

Term. ring line

Ring line is pulled high by an external device to notify the CR800 to
commence RS-232 communications. Ring line is pin 3 of a DCE (p. 486) RS-
232 port.

Term. ring memory

A memory configuration that allows the oldest data to be overwritten with the
newest data. This is the default setting for final-memory data tables.

Term. ringing

Oscillation of sensor output (voltage or current) that occurs when sensor
excitation causes parasitic capacitances and inductances to resonate.

Term. RMS

Root-mean square, or quadratic mean. A measure of the magnitude of wave
or other varying quantities around zero.

Term. router

Device configured as a router is able to forward PakBus packets from one
port to another. To perform its routing duties, a CR800 configured as a router
maintains its own list of neighbors and sends this list to other routers in the
PakBus network. It also obtains and receives neighbor lists from other
routers.

Term. RS-232

Recommended Standard 232. A loose standard defining how two computing
devices can communicate with each other. The implementation of RS-232 in
Campbell Scientific dataloggers to PC communications is quite rigid, but

499

Section 11. Glossary

transparent to most users. Features in the CR800 that implement RS-232
communication with smart sensors are flexible.

Term. sample rate

The rate at which measurements are made by the CR800. The measurement
sample rate is of interest when considering the effect of time skew, or how
close in time are a series of measurements, or how close a time stamp on a
measurement is to the true time the phenomenon being measured occurred. A
'maximum sample rate' is the rate at which a measurement can repeatedly be
made by a single CRBasic instruction.

Sample rate is how often an instrument reports a result at its output;
frequency response is how well an instrument responds to fast fluctuations on
its input. By way of example, sampling a large gage thermocouple at 1 kHz
will give a high sample rate but does not ensure the measurement has a high
frequency response. A fine-wire thermocouple, which changes output
quickly with changes in temperature, is more likely to have a high frequency
response.

Term. scan interval

The time interval between initiating each execution of a given Scan() of a
CRBasic program. If the Scan() Interval is evenly divisible into 24 hours
(86,400 seconds), it is synchronized with the 24 hour clock, so that the
program is executed at midnight and every Scan() Interval thereafter. The
program is executed for the first time at the first occurrence of the Scan()
Interval after compilation. If the Scan() Interval does not divide evenly into
24 hours, execution will start on the first even second after compilation.

Term. scan time

When time functions are run inside the Scan() / NextScan construct, time
stamps are based on when the scan was started according to the CR800 clock.
Resolution of scan time is equal to the length of the scan. See system time (p.
504).

Term. SDI-12

Serial Data Interface at 1200 baud. Communication protocol for transferring
data between the CR800 and SDI-12 compatible smart sensors.

Term. SDM

Synchronous Device for Measurement. A processor-based peripheral device
or sensor that communicates with the CR800 via hardwire over a short
distance using a protocol proprietary to Campbell Scientific.

Term. Seebeck effect

Induces microvolt level thermal electromotive forces (EMF) across junctions
of dissimilar metals in the presence of temperature gradients. This is the
principle behind thermocouple temperature measurement. It also causes
small, correctable voltage offsets in CR800 measurement circuitry.

500

Section 11. Glossary

Term. ping

A CRBasic program execution mode wherein each statement is evaluated in
the order it is listed in the program. More information is available in section
Sequential Mode (p. 151). See Term. pipeline mode (p. 497).

Term. semaphore (measurement semaphore)

In sequential mode, when the main scan executes, it locks the resources
associated with measurements. In other words, it acquires the measurement
semaphore. This is at the scan level, so all subscans within the scan (whether
they make measurements or not), will lock out measurements from slow
sequences (including the system background calibration). Locking
measurement resources at the scan level gives non-interrupted measurement
execution of the main scan.

Term. send

Send button in datalogger support software (p. 93). Sends a CRBasic program
or operating system to a CR800.

Term. serial

A loose term denoting output of a series of alphanumeric characters in
electronic form.

Term. Short Cut software

A CRBasic program wizard suitable for many CR800 applications.
Knowledge of CRBasic is not required to use Short Cut. It is available at no
charge at www.campbellsci.com.

Term. SI (Système Internationale)

The uniform international system of metric units. Specifies accepted units of
measure.

Term. signature

A number which is a function of the data and the sequence of data in
memory. It is derived using an algorithm that assures a 99.998% probability
that if either the data or the data sequence changes, the signature changes.
See sections Security — Overview (p. 90) and Signatures (p. 447).

Term. single-ended

A serial communication protocol. One-direction data only. Serial
communications between a serial sensor and the CR800 may be simplex.

Reading list: simplex (p. 501), duplex (p. 241), half-duplex (p. 490), and full-duplex
(p. 490).

Term. single-ended

Denotes a sensor or measurement terminal wherein the analog-voltage signal
is carried on a single lead and measured with respect to ground (0 V).

501

Section 11. Glossary

Term. skipped scans

Occur when the CRBasic program is too long for the scan interval. Skipped
scans can cause errors in pulse measurements.

Term. slow sequence

A usually slower secondary scan in the CRBasic program. The main scan has
priority over a slow sequence.

Term. SMTP

Simple Mail Transfer Protocol. A TCP/IP application protocol.

Term. SNP

Snapshot file

Term. SP

Space

Term. state

Whether a device is on or off.

502

Section 11. Glossary

Term. Station Status command

A command available in most datalogger support software (p. 93). The
following figure is a sample of station status output.

Term. string

A datum or variable consisting of alphanumeric characters.

Term. support software

See Term. datalogger support software (p. 485).

503

Section 11. Glossary

Term. swept frequency

A succession of frequencies from lowest to highest used as the method of
wire excitation with Vspect (p. 506) measurements.

Term. synchronous

The transmission of data between a transmitting and a receiving device
occurs as a series of zeros and ones. For the data to be "read" correctly, the
receiving device must begin reading at the proper point in the series. In
synchronous communication, this coordination is accomplished by
synchronizing the transmitting and receiving devices to a common clock
signal (see Asynchronous (p. 240)).

Term. system time

When time functions are run outside the Scan() / NextScan construct, the
time registered by the instruction will be based on the system clock, which
has a 10 ms resolution. See scan time (p. 500).

Term. task

Two definitions:

o Grouping of CRBasic program instructions automatically by the CR800
compiler. Tasks include measurement, SDM or digital, and processing.
Tasks are prioritized when the CRBasic program runs in pipeline mode.

o A user-customized function defined through LoggerNet Task Master.

Term. TCP/IP

Transmission Control Protocol / Internet Protocol.

Term. Telnet

A software utility that attempts to contact and interrogate another specific
device in a network. Telnet is resident in Windows OSs.

Term. terminal

Point at which a wire (or wires) connects to a wiring panel or connector.
Wires are usually secured in terminals by screw- or lever-and-spring actuated
gates. with small screw- or spring-loaded clamps. See connector (p. 484).

Term. terminal emulator

A command-line shell that facilitates the issuance of low-level commands to
a datalogger or some other compatible device. A terminal emulator is
available in most datalogger support software (p. 93) available from Campbell
Scientific.

Term. thermistor

A thermistor is a temperature measurement device with a resistive element
that changes in resistance with temperature. The change is wide, stable, and
well characterized. The output of a thermistor is usually non-linear, so

504

Section 11. Glossary

measurement requires linearization by means of a Steinhart-Hart or
polynomial equation. CRBasic instructions Therm107(), Therm108(), and
Therm109() use Steinhart-Hart equations.

Term. time domain

Time domain describes data graphed on an X-Y plot with time on the X axis.
Time-series data are in the time domain.

Term. throughput rate

Rate that a measurement can be taken, scaled to engineering units, and the
stored in a final-memory data table. The CR800 has the ability to scan
sensors at a rate exceeding the throughput rate. The primary factor
determining throughput rate is the processing programmed into the CRBasic
program. In sequential-mode operation, all processing called for by an
instruction must be completed before moving on to the next instruction.

Term. TTL

Transistor-to-Transistor Logic. A serial protocol using 0 Vdc and 5 Vdc as
logic signal levels.

Term. TLS

Transport Layer Security. An Internet communication security protocol.

Term. toggle

To reverse the current power state.

Term. UINT2

Data type used for efficient storage of totalized pulse counts, port status
(status of 16 ports stored in one variable, for example) or integer values that
store binary flags.

Term. unconditioned output

The fundamental output of a sensor, or the output of a sensor before scaling
factors are applied. See conditioned output (p. 484).

Term. UPS

Uninterruptible Power Supply. A UPS can be constructed for most
datalogger applications using ac line power, an ac/ac or ac/dc wall adapter, a
charge controller, and a rechargeable battery. The CR800 needs and external
charge controller.

Term. user program

The CRBasic program written by you in Short Cut program wizard.

Term. USR: drive

A portion of CR800 memory dedicated to the storage of image or other files.

505

Section 11. Glossary

Term. URI

uniform resource identifier

Term. URL

uniform resource locater

Term. variable

A packet of SRAM given an alphanumeric name. Variables reside in variable
memory.

Term. variable memory

That portion of SRAM reserved for storing variables. Variable memory can
be, and regularly is, overwritten with new values or strings as directed by the
CRBasic program. When variables are declared As Public, the memory can
be visually monitored.

Term. Vac

Volts alternating current. Also VAC. Two definitions:

o Mains or grid power is high-level Vac, usually 110 Vac or 220 Vac at a
fixed frequency of 50 Hz or 60 Hz. High-level Vac can be the primary
power source for Campbell Scientific power supplies. Do not connect
high-level Vac directly to the CR800.

o The CR800 measures varying frequencies of low-level Vac in the range
of ±20 Vac. For example, some anemometers output a low-level Vac
signal.

Term. Vdc

Volts direct current. Also VDC. Two definitions:

o The CR800 operates with a nominal 12 Vdc. The CR800 can supply
nominal 12 Vdc, regulated 5 Vdc, regulated 3.3 Vdc, and variable
excitation in the ±2.5 Vdc range.

o The CR800 measures analog voltage in the ±5.0 Vdc range and pulse
voltage in the ±20 Vdc range.

Term. volt meter

See Term. multi-meter (p. 494).

Term. volts

SI unit for electrical potential.

Term. Vspect

trademark for Campbell Scientific's proprietary spectral-analysis, frequency-
domain, vibrating-wire measurement technique.

506

Section 11. Glossary

Term. watchdog timer

An error-checking system that examines the processor state, software timers,
and program-related counters when the CRBasic program is running. See
section Watchdog Errors (p. 464). The following will cause watchdog timer
resets, which reset the processor and CRBasic program execution.

o Processor bombed
o Processor neglecting standard system updates
o Counters are outside the limits
o Voltage surges
o Voltage transients

When a reset occurs, a counter is incremented in the WatchdogTimer entry
of the Status table (p. 577). A low number (1 to 10) of watchdog timer resets is
of concern, but normally indicates that the situation should just be monitored.

A large number of errors (>10) accumulating over a short period indicates a
hardware or software problem. Consult with a Campbell Scientific
application engineer.

Term. weather-tight

Describes an instrumentation enclosure impenetrable by common
environmental conditions. During extraordinary weather events, however,
seals on the enclosure may be breached.

Term. web API

Application Programming Interface (see the section Web Service API (p. 402),
for more information).

Term. wild card

a character or expression that substitutes for any other character or
expression.

Term. XML

Extensible markup language.

Term. user program

The CRBasic program written by you in Short Cut program wizard or
CRBasic Editor.

11.2 Concepts
11.2.1 Accuracy, Precision, and Resolution

Three terms often confused are accuracy, precision, and resolution. Accuracy is a
measure of the correctness of a single measurement, or the group of
measurements in the aggregate. Precision is a measure of the repeatability of a
group of measurements. Resolution is a measure of the fineness of a
measurement. Together, the three define how well a data-acquisition system
performs. To understand how the three relate to each other, consider "target

507

Section 11. Glossary

practice" as an analogy. Table Accuracy, Precision, and Resolution (p. 507) shows
four targets. The bull's eye on each target represents the absolute correct
measurement. Each shot represents an attempt to make the measurement. The
diameter of the projectile represents resolution. The objective of a data-
acquisition system should be high accuracy, high precision, and to produce data
with resolution as high as appropriate for a given application.

Figure 127. Relationships of Accuracy, Precision, and Resolution

508

12. Attributions
Use of the following trademarks in the CR800 Operator's Manual does not imply
endorsement by their respective owners of Campbell Scientific:

• Crydom
• Newark
• Mouser
• MicroSoft
• WordPad
• HyperTerminal
• LI-COR

509

Appendix A. CRBasic Programming
Instructions

Related Topics:
 • CRBasic Programming — Overview (p. 86)
 • CRBasic Programming — Details (p. 120)
 • CRBasic Programming — Instructions (p. 511)
 • Programming Resource Library (p. 167)
 • CRBasic Editor Help

All CR800 CRBasic instructions (p. 491) are listed in this appendix.

• An alphabetical listing is in the index under Instruction.
• Code examples are throughout this manual and can be located with help from

the Table of Contents CRBasic Examples listing.
• Parameter listings, application information, and code examples are available

in CRBasic Editor (p. 123) Help.

A.1 Program Declarations
Instructions used in program declarations are usually placed in a program prior to
the BeginProg() instruction.

AngleDegrees

Sets math functions to use degrees instead of radians.

Syntax
AngleDegrees

EncryptExempt

Defines one or more PakBus addresses to which the datalogger will not send
encrypted PakBus messages, even though PakBus encryption is enabled.

Syntax
EncryptExempt(BeginPakBusAddr, EndPakBusAddr)

PipelineMode

Configures the CR800 to perform measurement tasks separate from, but
concurrent with, processing tasks.

Syntax
PipelineMode

SequentialMode

Configures datalogger to perform tasks sequentially.

Syntax
SequentialMode

511

Appendix A. CRBasic Programming Instructions

SetSecurity

Sets numeric password for datalogger security levels 1, 2, and 3. Executes at
compile time.

Syntax
SetSecurity(security[1], security[2], security[3])

StationName

Sets the station name internal to the CR800. Does not affect data files created by
datalogger support software. See sections Miscellaneous Features (p. 172) and
Conditional Output (p. 168).

Syntax
StationName(name of station)

Sub / ExitSub / EndSub

Declares the name, variables, and code that form a subroutine. Argument list is
optional. Exit Sub is optional.

Syntax
Sub subname (argument list)
 [statement block]
Exit Sub
 [statement block]
End Sub

WebPageBegin / WebPageEnd

See TCP/IP — Details (p. 282).

A.1.1 Variable Declarations & Modifiers
Alias

Assigns a second name to a variable.

Syntax
Alias [variable] = [alias name]; Alias [array(4)] = [alias

name], [alias name(2)], [alias name]

As

Sets data type for Dim or Public variables.

Syntax
Dim [variable] AS [data type]

Dim

Declares and dimensions private variables. Dimensions are optional. Dim
variables cannot be viewed in numeric monitors (p. 495).

512

Appendix A. CRBasic Programming Instructions

Syntax
Dim [variable name (x,y,z)]

ESSVariables

Automatically declares variables required by an Environmental Sensor Station
application. Used in conjunction with ESSInitialize.

Syntax
ESSVariables

NewFieldNames

Assigns a new name to a generic variable or array. Designed for use with
Campbell Scientific wireless sensor networks.

Syntax
NewFieldNames(GenericName, NewNames)

PreserveVariables

Retains values in Dim or Public variables when the CRBasic program restarts
after a power failure, manual stop, or other operations that cause the program to
recompile.

Syntax
PreserveVariables

Public

Declares and dimensions public variables. Dimensions are optional.

Syntax
Public [variable name (x,y,z)]

ReadOnly

Flags a comma separated list of variables (Public or Alias name) as read-only.

Syntax
ReadOnly [variable1, variable2, ...]

Units

Assigns a unit name to a field associated with a variable.

Syntax
Units [variable] = [unit name]

A.1.2 Constant Declarations
Const

Declares symbolic constants for use in place of numeric entries.

513

Appendix A. CRBasic Programming Instructions

Syntax
Const [constant name] = [value or expression]

ConstTable / EndConstTable

Declares constants, the value of which can be changed using the CR1000KD
Keyboard Display or terminal C option. The program is recompiled with the new
values when values change. See Constants (p. 135).

Syntax
ConstTable
 [constant a] = [value]
 [constant b] = [value]
 [constant c] = [value]
EndConstTable

A.2 Data-Table Declarations
DataTable / EndTable

Mark the beginning and end of a data table.

Syntax
DataTable(Name, TrigVar, Size)
 [data table modifiers]
 [on-line storage destinations]
 [output processing instructions]
EndTable

DataTime

Declaration within a data table that allows time stamping with system time.

Syntax
DataTime(Option)

A.2.1 Data-Table Modifiers
DataEvent

Sets triggers to start and stop storing records within a table. One application is
with WorstCase().

Syntax
DataEvent(RecsBefore, StartTrig, StopTrig, RecsAfter)

DataInterval

Sets the time interval for an output table.

Syntax
DataInterval(TintoInt, Interval, Units, Lapses)

514

Appendix A. CRBasic Programming Instructions

FillStop

Sets a data table to fill and stop. By default, data tables are ring memory (p. 499).

Syntax
FillStop

Note To reset a table after it fills and stops, use ResetTable() instruction in the
CRBasic program or the datalogger support software Reset Tables (p. 498)
command.

OpenInterval

Sets time-series processing to include all measurements since the last time data
storage occurred.

Syntax
OpenInterval

TableHide

Suppresses the display and data collection of a data table in CR800 memory.

Syntax
TableHide

A.2.2 Data Destinations
Note TableFile() with Option 64 is the preferred instruction to write data to a
Campbell Scientific mass storage device in most applications. See TableFile()
with Option 64 for more information.

CardFlush

Immediately writes any buffered data from CR800 internal memory and file
system to a Campbell Scientific mass storage device. TableFile() with Option 64
is often a preferred alternative to this instruction.

Syntax
CardFlush

DSP4

Send data to the DSP4 display. Manufacturing of the DSP4 Head-Up Display is
discontinued.

Syntax
DSP4(FlagVar, Rate)

TableFile

Writes a file from a data table to a CR800 memory drive.

515

Appendix A. CRBasic Programming Instructions

Syntax
TableFile("FileName", Options, MaxFiles, NumRecs /

TimeIntoInterval, Interval, Units, OutStat, LastFileName)

A.2.3 Processing for Output to Final-Data Memory
Read More See Data Output-Processing Instructions (p. 143).

FieldNames

Immediately follows an output processing instruction to change default field
names.

Syntax
FieldNames("Fieldname1 : Description1, Fieldname2 :

Description2…")

A.2.3.1 Single-Source
Average

Stores the average value over the data-output interval for the source variable or
each element of the array specified.

Syntax
Average(Reps, Source, DataType, DisableVar)

Covariance

Calculates the covariance of values in an array over time.

Syntax
Covariance(NumVals, Source, DataType, DisableVar, NumCov)

FFT

Performs a Fast Fourier Transform on a time series of measurements stored in an
array.

Syntax
FFT(Source, DataType, N, Tau, Units, Option)

Maximum

Stores the maximum value over the data-output interval.

Syntax
Maximum(Reps, Source, DataType, DisableVar, Time)

Median

Stores the median of a dependant variable over the data-output interval.

516

Appendix A. CRBasic Programming Instructions

Syntax
Median(Reps, Source, MaxN, DataType, DisableVar)

Minimum

Stores the minimum value over the data-output interval.

Syntax
Minimum(Reps, Source, DataType, DisableVar, Time)

Moment

Stores the mathematical moment of a value over the data-output interval.

Syntax
Moment(Reps, Source, Order, DataType, DisableVar)

PeakValley

Detects maxima and minima in a signal.

Syntax
PeakValley(DestPV, DestChange, Reps, Source, Hysteresis)

Sample

Stores the current value at the time of output.

Syntax
Sample(Reps, Source, DataType)

SampleFieldCal

Writes field calibration data to a table. See Calibration Functions (p. 572).

SampleMaxMin

Samples a variable when another variable reaches its maximum or minimum for
the defined output period.

Syntax
SampleMaxMin(Reps, Source, DataType, DisableVar)

StdDev

Calculates the standard deviation over the data-output interval.

Syntax
StdDev(Reps, Source, DataType, DisableVar)

Totalize

Sums the total over the data-output interval.

Syntax
Totalize(Reps, Source, DataType, DisableVar)

517

Appendix A. CRBasic Programming Instructions

A.2.3.2 Multiple-Source
ETsz

Stores evapotranspiration (ETsz) and solar radiation (RSo).

Syntax
ETsz(Temp, RH, uZ, Rs, Longitude, Latitude, Altitude, Zw, Sz,

DataType, DisableVar)

RainFlowSample

Stores a sample of the CDM_VW300RainFlow into a data table.

Syntax
RainFlowSampe(Source, DataType)

WindVector

Processes wind speed and direction from either polar or orthogonal sensors. To
save processing time, only calculations resulting in the requested data are
performed.

Syntax
WindVector(Repetitions, Speed/East, Direction/North,

DataType, DisableVar, Subinterval, SensorType, OutputOpt)

Read More See Wind Vector (p. 288).

A.3 Single Execution at Compile
The following instructions reside between the BeginProg and Scan() instructions.

ESSInitialize

Initialize ESS variables at compile time. Used in conjunction with
ESSVariables.

Syntax
ESSInitialize

MovePrecise

Used in conjunction with AddPrecise. Moves a high precision variable into
another variable.

Syntax
MovePrecise(PrecisionVariable, X)

PulseCountReset

Resets the pulse counters and the running averages used in the pulse count
instruction. A mostly obsolete instruction. Used only in very specialized code.

518

Appendix A. CRBasic Programming Instructions

Syntax
PulseCountReset

A.4 Program Control Instructions
A.4.1 Common Program Controls

BeginProg / EndProg

Marks the beginning and end of a program.

Syntax
BeginProg
 [program code]
EndProg

Call

Transfers program control from the main program to a subroutine.

Syntax
Call subname (list of variables)

CallTable

Calls a data table, typically for output processing.

Syntax
CallTable(TableName)

Delay

Delays the program.

Syntax
Delay(Option, Delay, Units)

Do / While / Until / Exit Do / Loop

Repeats a block of statements while a condition is true or until a condition
becomes true.

Syntax
Do [{While | Until} condition]
 [statementblock]
[ExitDo]
 [statementblock]
Loop

-or-

519

Appendix A. CRBasic Programming Instructions

Do
 [statementblock]
[ExitDo]
 [statementblock]
Loop [{While | Until} condition]

EndSequence

Ends a sequence that starts at BeginProg or SlowSequence. An optional
instruction in many applications.

Syntax
EndSequence

Exit

Exits program.

Syntax
Exit

For / To / Step / ExitFor / Next

Repeats a group of instructions for a specified number of times.

Syntax
For counter = start To end [Step increment]
 [statement block]
[ExitFor]
 [statement block]
Next [counter [, counter][, ...]]

If / Then / Else / ElseIf / EndIf

Programs into or around a segment of code conditional on the evaluation of an
expression. Else is optional. ElseIf is optional. Note that EndSelect and EndIf
call the same function.

Syntax
If [condition] Then [thenstatements] Else [elsestatements]

-or-

If [condition 1] Then
 [then statements]
ElseIf [condition 2] Then
 [elseif then statements]
Else
 [else statements]
EndIf

Scan / ExitScan / ContinueScan / NextScan

Establishes the program scan rate. ExitScan and ContinueScan are optional. See
Measurement: Faster Analog Rates (p. 221) for information on use of Scan() /
NextScan in burst measurements.

520

Appendix A. CRBasic Programming Instructions

Syntax
Scan(Interval, Units, Option, Count)
 [statement block]
ExitScan
 [statement block]
ContinueScan
 [statement block]
NextScan

Select Case / Case / Case Is / Case Else / EndSelect

Executes one of several statement blocks depending on the value of an expression.
CaseElse is optional. Note that EndSelect and EndIf call the same function.

Syntax
Select Case testexpression
Case [expression 1]
 [statement block 1]
Case [expression 2]
 [statement block 2]
Case Is [expression fragment]
Case Else
 [statement block 3]
EndSelect

SlowSequence

Marks the beginning of a section of code that will run concurrently with the main
program.

Syntax
SlowSequence

SubScan / NextSubScan

Controls a multiplexer or measures some analog inputs at a faster rate than the
program scan. See Measurement: Faster Analog Rates (p. 221) for information on
use of SubScan / NextSubScan.

Syntax
SubScan(SubInterval, Units, Count)
 [measurements and processing]
NextSubScan

TriggerSequence

Used with WaitTriggerSequence to control the execution of code within a slow
sequence.

Syntax
TriggerSequence(SequenceNum, Timeout)

521

Appendix A. CRBasic Programming Instructions

WaitTriggerSequence

Used with TriggerSequence to control the execution of code within a slow
sequence.

Syntax
WaitTriggerSequence

WaitDigTrig

Triggers a measurement scan from an external digital trigger.

Syntax
WaitDigTrig(ControlPort, Option)

While / Wend

Execute a series of statements in a loop as long as a given condition is true.

Syntax
While [condition]
 [StatementBlock]
Wend

A.4.2 Advanced Program Controls
Data / Read / Restore

Defines a list of FLOAT constants to be read (using Read) into a variable array
later in the program.

Syntax
Data [list of constants]
 Read [VarExpr]
Restore

DataLong / Read / Restore

Defines a list of LONG constants to be read (using Read) into a variable array
later in the program.

Syntax
DataLong [list of constants]
 Read [Variable Expression]
Restore

IfTime

Returns a number indicating True (-1) or False (0) based on the CR800 real-time
clock.

Syntax
If (IfTime(TintoInt, Interval, Units)) Then

-or-

522

Appendix A. CRBasic Programming Instructions

Variable = IfTime(TintoInt, Interval, Units)

Read

Reads constants from the list defined by Data or DataLong into a variable array.

Syntax
Read [Variable Expression]

Restore

Resets the location of the Read pointer back to the first value in the list defined
by Data or DataLong.

Syntax
Restore

SemaphoreGet

Acquires semaphore (p. 501) 1 to 3 to avoid resource conflicts.

Syntax
SemaphoreGet()

SemaphoreRelease

Releases semaphore (p. 501) previously acquired with SemaphoreGet().

Syntax
SemaphoreRelease()

ShutDownBegin

Begins code to be run in the event of a normal shutdown such as when sending a
new program.

Syntax
ShutDownBegin

ShutDownEnd

Ends code to be run in the event of a normal shutdown such as when sending a
new program.

Syntax
ShutDownEnd

TimeIntoInterval

Returns a number indicating True (-1) or False (0) based on the datalogger real-
time clock.

Syntax
Variable = TimeIntoInterval(TintoInt, Interval, Units)

-or-

523

Appendix A. CRBasic Programming Instructions

If TimeIntoInterval(TintoInt, Interval, Units)

TimeIsBetween

Determines if the CR800 real-time clock falls within a range of time.

Syntax
TimeIsBetween(BeginTime, EndTime, Interval, Units)

A.5 Measurement Instructions
Read More For information on recording data from RS-232 and TTL output
sensors, see the section Serial Input / Output (p. 556) and Serial I/O (p. 238).

A.5.1 Diagnostics
Battery

Measures input voltage.

Syntax
Battery(Dest)

ComPortIsActive

Returns a Boolean value based on whether or not activity is detected on a COM
port.

Syntax
variable = ComPortIsActive(ComPort)

InstructionTimes

Returns the execution time of each instruction in the program.

Syntax
InstructionTimes(Dest)

PanelTemp

Measures the panel temperature in °C.

Syntax
PanelTemp(Dest, Integ)

Signature

Returns the signature for program code in a datalogger program.

Syntax
variable = Signature

524

Appendix A. CRBasic Programming Instructions

A.5.2 Voltage
VoltDiff

Measures the voltage difference between high and low inputs of a differential
analog-input channel.

Syntax
VoltDiff(Dest, Reps, Range, DiffChan, RevDiff, SettlingTime,

Integ, Mult, Offset)

VoltSe

Measures the voltage at a single-ended input with respect to ground.

Syntax
VoltSe(Dest, Reps, Range, SEChan, MeasOfs, SettlingTime,

Integ, Mult, Offset)

A.5.3 Thermocouples
Related Topics:
 • Thermocouple Measurements — Details
 • Thermocouple Measurements — Instructions

TCDiff

Measures a differential thermocouple.

Syntax
TCDiff(Dest, Reps, Range, DiffChan, TCType, TRef, RevDiff,

SettlingTime, Integ, Mult, Offset)

TCSe

Measures a single-ended thermocouple.

Syntax
TCSe(Dest, Reps, Range, SEChan, TCType, TRef, MeasOfs,

SettlingTime, Integ, Mult, Offset)

A.5.4 Resistive-Bridge Measurements
Related Topics:
 • Resistance Measurements — Specifications
 • Resistance Measurements — Overview (p. 66)
 • Resistance Measurements — Details (p. 319)
 • Resistance Measurements — Instructions (p. 525)

BrFull

Measures ratio of Vdiff / Vx of a four-wire full-bridge. Reports 1000 • (Vdiff / Vx).

525

Appendix A. CRBasic Programming Instructions

Syntax
BrFull(Dest, Reps, Range, DiffChan, Vx/ExChan, MeasPEx, ExmV,

RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)

BrFull6W

Measures ratio of Vdiff2 / Vdiff1 of a six-wire full-bridge. Reports 1000 • (Vdiff2 /
Vdiff1).

Syntax
BrFull6W(Dest, Reps, Range1, Range2, DiffChan, Vx/ExChan,

MeasPEx, ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult,
Offset)

BrHalf

Measures single-ended voltage of a three-wire half-bridge. Delay is optional.

Syntax
BrHalf(Dest, Reps, Range, SEChan, Vx/ExChan, MeasPEx, ExmV,

RevEx, SettlingTime, Integ, Mult, Offset)

BrHalf3W

Measures ratio of Rs / Rf of a three-wire half-bridge.

Syntax
BrHalf3W(Dest, Reps, Range, SEChan, Vx/ExChan, MeasPEx, ExmV,

RevEx, SettlingTime, Integ, Mult, Offset)

BrHalf4W

Measures ratio of Rs / Rf of a four-wire half-bridge.

Syntax
BrHalf4W(Dest, Reps, Range1, Range2, DiffChan, Vx/ExChan,

MeasPEx, ExmV, RevEx, RevDiff, SettlingTime, Integ, Mult,
Offset)

A.5.5 Excitation

ExciteV

This instruction sets the specified switched-voltage excitation channel to the
voltage specified.

Syntax
ExciteV(Vx/ExChan, ExmV, XDelay)

SW12

Sets a SW12 switched 12 Vdc terminal high or low.

526

Appendix A. CRBasic Programming Instructions

Syntax
SW12(Port)

A.5.6 Pulse and Frequency
Related Topics:
 • Pulse Measurements — Specifications
 • Pulse Measurements — Overview (p. 68)
 • Pulse Measurements — Details (p. 331)
 • Pulse Measurements — Instructions (p. 527)

Note Pull-up or pull-down resistors may be required for pulse measurements on
C terminals. See the section Pulse Measurement Terminals (p. 333).

PeriodAvg

Measures the period of a signal on H/L] terminals configured for single-ended
voltage input.

Syntax
PeriodAvg(Dest, Reps, Range, Terminal, Threshold, PAOption,

Cycles, Timeout, Mult, Offset)

PulseCount

Measures number or frequency of voltages pulses on a P or C terminal configured
for pulse input.

Syntax
PulseCount(Dest, Reps, Terminal, PConfig, POption, Mult,

Offset)

VibratingWire

Measure a vibrating-wire sensor. This instruction is obsolete. It has been
replaced by the AVW200 module and the AVW200() instruction.

Syntax

VibratingWire(Dest, Reps, Range, SEChan, Vx/ExChan,
StartFreq, EndFreq, TSweep, Steps, DelMeas, NumCycles,
DelReps, Multiplier, Offset)

A.5.7 Digital I/O
CheckPort

Returns the status of a C terminal configured for control.

527

Appendix A. CRBasic Programming Instructions

Syntax
X = CheckPort(Port)

PortGet

Reads the status of a C terminal configured for control.

Syntax
PortGet(Dest, Port)

PortsConfig

Configures C terminals for input or output.

Syntax
PortsConfig(Mask, Function)

ReadIO

Reads the status of C terminals.

Syntax
ReadIO(Dest, Mask)

TimerIO

Measures the time between edges (state transitions) or frequency on C terminals.

Syntax
TimerIO(Dest, Edges, Function, Timeout, Units)

A.5.7.1 Control
PortSet

Sets the specified C terminal high or low.

Syntax
PortSet(Terminal, State)

PulsePort

Toggles the state of a C terminal, delays, toggles the terminal, and delays a
second time.

Syntax
PulsePort(Terminal, Delay)

WriteIO

Set the status of C terminals.

Syntax
WriteIO(Mask, Source)

528

Appendix A. CRBasic Programming Instructions

A.5.7.2 Measurement
PWM

Performs pulse-width modulation on a C terminal.

Syntax
PWM(Source, Terminal, Period, Units)

TimerIO

Measures interval or frequency on a C terminal.

Syntax
TimerIO(Dest, Edges, Function, Timeout, Units)

A.5.8 SDI-12 Sensor Suppport — Instructions
Related Topics:
 • SDI-12 Sensor Support — Overview (p. 72)
 • SDI-12 Sensor Support — Details (p. 344)
 • Serial I/O: SDI-12 Sensor Support — Programming Resource (p. 259)
 • SDI-12 Sensor Support — Instructions (p. 529)

SDI12Recorder

Issues commands to, and retrieves results from, an SDI-12 sensor.

Syntax
SDI12Recorder(Dest, Terminal, SDIAddress, SDICommand,

Multiplier, Offset)

SDI12SensorSetup

Sets up the CR800 to act as an SDI-12 sensor.
SDI12SensorSetup(Repetitions, SDIPort, SDIAddress,

ResponseTime)

SDI12SensorResponse

Manages data being held by the CR800 for transfer to an SDI-12 recorder.

Syntax
SDI12SensorResponse(SDI12Source)

A.5.9 Specific Sensors
ACPower

Measures ac mains power and power-quality parameters for single-, split-, and
three-phase 'Y' configurations. DO NOT CONNECT AC MAINS POWER
DIRECTLY TO THE CR800.

529

Appendix A. CRBasic Programming Instructions

Syntax
ACPower(DestAC, ConfigAC, LineFrq, ChanV, VMult, MaxVrms,

ChanI, IMult, MaxIrms, Reps)

DANGER Ac mains power can kill. You are responsible for ensuring
connections to ac mains power conforms to applicable electrical codes. Contact a
Campbell Scientific application engineer for information on available isolation
transformers.

CS616

Enables and measures a CS616 water content reflectometer.

Syntax
CS616(Dest, Reps, SEChan, Port, MeasPerPort, Mult, Offset)

CS7500

Communicates with the CS7500 open-path CO2 and H2O sensor. The CS7500 is
the same product as the LI-COR LI-7500.

Syntax
CS7500(Dest, Reps, SDMAddress, Command)

CSAT3

Communicates with the CSAT3 three-dimensional sonic anemometer.

Syntax
CSAT3(Dest, Reps, SDMAddress, CSAT3Cmd, CSAT3Opt)

EC100

Communicates with the EC150 Open Path and EC155 Closed Path IR Gas
Analyzers via SDM.

Syntax
EC100(Dest, SDMAddress, EC100Cmd)

EC100Configure

Configures the EC150 Open Path and EC155 Closed Path IR Gas Analyzers.

Syntax
EC100Configure(Result, SDMAddress, ConfigCmd, DestSource)

GPS

Used with a GPS device to keep the CR800 clock correct or provide other
information from the GPS such as location and speed. Proper operation of this
instruction may require a factory upgrade of on-board memory.

530

Appendix A. CRBasic Programming Instructions

Syntax
GPS(GPS_Array, ComPort, TimeOffsetSec, MaxErrorMsec,

NMEA_Sentences)

Note To change from the GPS default baud rate of 38400, specify the new baud
rate in the SerialOpen() instruction.

HydraProbe

Reads the Stevens Vitel SDI-12 Hydra Probe sensor.

Syntax
HydraProbe(Dest, SourceVolts, ProbeType, SoilType)

LI7200

Communicates with the LI-COR LI-7200 open path CO2 and H2O sensor.

Syntax
LI7200(Dest, Reps, SDMAddress, Command)

LI7700

Communicates with the LI-COR LI-7700 open path CO2 and H2O sensor.

Syntax
LI7200(Dest, Reps, SDMAddress, Command)

TGA

Measures a TGA100A trace-gas analyzer system.

Syntax
TGA(Dest, SDMAddress, DataList, ScanMode)

Therm107

Measures a Campbell Scientific model 107 thermistor.

Syntax
Therm107(Dest, Reps, SEChan, Vx/ExChan, SettlingTime, Integ,

Mult, Offset)

Therm108

Measures a Campbell Scientific model 108 thermistor.

Syntax
Therm108(Dest, Reps, SEChan, Vx/ExChan, SettlingTime, Integ,

Mult, Offset)

Therm109

Measures a Campbell Scientific model 109 thermistor.

531

Appendix A. CRBasic Programming Instructions

Syntax
Therm109(Dest, Reps, SEChan, Vx/ExChan, SettlingTime, Integ,

Mult, Offset)

A.5.9.1 Wireless Sensor Network
ArrayIndex

Returns the index of a named element in an array.

Syntax
ArrayIndex(Name)

CWB100

Sets up the CR800 to request and accept measurements from the CWB100
wireless sensor base.

Syntax
CWB100(ComPort, CWSDest, CWSConfig)

CWB100Diagnostics

Sets up the CR800 to request and accept measurements from the CWB100
wireless sensor base.

Syntax
CWB100(ComPort, CWSDest, CWSConfig)

CWB100Routes

Returns diagnostic information from a wireless network.

Syntax
CWB100Diagnostics(CWBPort, CWSDiag)

CWB100RSSI

Polls wireless sensors in a wireless-sensor network for radio signal strength.

Syntax
CWB100RSSI(CWBPort)

A.5.10 Peripheral Device Support
Multiple SDM instructions can be used within a program.

AM25T

Controls the AM25T analog-voltage input multiplexer.

532

Appendix A. CRBasic Programming Instructions

Syntax
AM25T(Dest, Reps, Range, AM25TChan, DiffChan, TCType, Tref,

ClkPort, ResPort, VxChan, RevDiff, SettlingTime, Integ,
Mult, Offset)

AVW200

Controls and collects Vspect (p. 506) data from an AVW200 vibrating-wire
measurement device.

Syntax
AVW200(Result, ComPort, NeighborAddr, PakBusAddr, Dest,

AVWChan, MuxChan, Reps, BeginFreq, EndFreq, ExVolt,
Therm50_60Hz, Multiplier, Offset)

CDM_VW300Config

Configures the CDM-VW300 dynamic vibrating-wire spectrum analyzer.

Syntax
CDM_VW300Config(DeviceType, CPIAddress, SysOptions,

ChanEnable, ResonAmp, LowFreq, HighFreq, ChanOptions,
Mult, Offset, SteinA, SteinB, SteinC, RF_MeanBins,
RF_AmpBins, RF_LowLim, RF_HighLim, RF_Hyst, RF_Form)

CDM_VW300Dynamic

Captures dynamic Vspect (p. 506) measurements from the CDM-VW300 dynamic
vibrating-wire spectrum analyzer.

Syntax
CDM_VW300Dynamic(CPIAddress, DestFreq, DestDiag)

CDM_VW300Rainflow

Retrieves rainflow histogram data from the CDM-VW300 vibrating-wire
measurement peripheral.

Syntax
CDM_VW300Rainflow(CPIAddress, RF1, RF2, RF3, RF4, RF5, RF6,

RF7, RF8)

CDM_VW300Static

Retrieves static Vspect (p. 506) measurements from the CDM-VW300 vibrating-
wire measurement device.

Syntax
CDM_VW300Static(CPIAddress, DestFreq, DestTherm, DestStdDev)

CPISpeed

Controls the speed of the CPI bus.

Syntax
CPISpeed(BitRate))

533

Appendix A. CRBasic Programming Instructions

MuxSelect

Selects the specified channel on a multiplexer.

Syntax
MuxSelect(ClkPort, ResPort, ClkPulseWidth, MuxChan, Mode)

SDMAO4

Sets output voltage levels in an SDM-AO4 continuous-analog-output device.

Syntax
SDMAO4(Source, Reps, SDMAdress)

SDMAO4A

Sets output voltage levels in an SDM-AO4A continuous-analog-output device.

Syntax
SDMAO4A(Source, Reps, SDMAdress)

SDMCAN

Reads and controls an SDM-CAN interface.

Syntax
SDMCAN(Dest, SDMAddress, TimeQuanta, TSEG1, TSEG2, ID,

DataType,

SDMCD16AC

Controls an SDM-CD16AC, SDM-CD16, or SDM-CD16D control device.

Syntax
SDMCD16AC(Source, Reps, SDMAddress)

SDMCD16Mask

Controls an SDM-CD16AC, SDM-CD16, or SDM-CD16D control device.
Unlike the SDMCD16AC, it allows the CR800 to select the ports to activate via a
mask. Commonly used with TimedControl().

Syntax
SDMCD16Mask(Source, Mask, SDMAddress)

SDMCVO4

Control the SDM-CVO4 four-channel, current/voltage output device.

Syntax
SDMCVO4(CVO4Source, CVO4Reps, SDMAddress, CVO4Mode)

SDMGeneric

Sends commands to an SDM device that is otherwise unsupported in the operating
system. See the appendix Endianness (p. 619).

534

Appendix A. CRBasic Programming Instructions

Syntax
SDMGeneric(Dest, SDMAddress, CmdByte, NumvaluesOut, Source,

NumValuesIn, BytesPerValue, BigEndian, DelayByte)

SDMINT8

Controls and reads an SDM-INT8 interval timer.

Syntax
SDMINT8(Dest, Address, Config8_5, Config4_1, Funct8_5,

Funct4_1, OutputOpt, CaptureTrig, Mult, Offset)

SDMIO16

Sets up and measures an SDM-IO16 I/O expansion module.

Syntax
SDMIO16(Dest, Status, Address, Command, Mode Ports 16 to 13,

Mode Ports 12 to 9, Mode Ports 8 to 5, Mode Ports 4 to 1,
Mult, Offset)

SDMSIO4

Controls, transmits, and receives data from an SDM-SIO4 I/O expansion module.

Syntax
SDMSIO4(Dest, Reps, SDMAddress, Mode, Command, Param1,

Param2, ValuesPerRep, Multiplier, Offset)

SDMSpeed

Changes the rate the CR800 uses to clock SDM device data.

Syntax
SDMSpeed(BitPeriod)

SDMSW8A

Controls and reads an SDM-SW8A switch-closure expansion module.

Syntax
SDMSW8A(Dest, Reps, SDMAddress, FunctOp, SW8AStartChan, Mult,

Offset)

SDMTrigger

Synchronize when SDM measurements on all SDM devices are made.

Syntax
SDMTrigger

SDMX50

Controls the SDM-X50 coaxial multiplexer independent of the TDR100()
instruction.

535

Appendix A. CRBasic Programming Instructions

Syntax
SDMX50(SDMAddress, Channel)

TDR100

Measures TDR probes connected to the TDR100 time-domain reflectometer
directly or through a SDMX50 coaxial multiplexer.

Syntax
TDR100(Dest, SDMAddress, Option, Mux/ProbeSelect, WaveAvg,

Vp, Points, CableLength, WindowLength, ProbeLength,
ProbeOffset, Mult, Offset)

TimedControl

Allows a sequence of fixed values and durations to be controlled by the SDM task
sequencer. This enables SDM-CD16x control events to occur at a precise time.
See the appendix Relay Drivers — List (p. 625).

Syntax.
TimedControl(Size, SyncInterval, IntervalUnits, DefaultValue,

CurrentIndex, Source, ClockOption

A.6 PLC Control — Instructions
Related Topics:
 • PLC Control — Overview (p. 74)
 • PLC Control — Details (p. 237)
 • PLC Control Modules — Overview (p. 349)
 • PLC Control Modules — Lists (p. 624)
 • PLC Control — Instructions (p. 536)
 • Switched Voltage Output — Specifications
 • Switched Voltage Output — Overview (p. 78)
 • Switched Voltage Output — Details (p. 101)

See descriptions of the following instructions elsewhere in this appendix.

PortGet()
PortSet()
PulsePort()
ReadIO()
SDMAO4()
SDMAO4A()
SDMCD16AC()
SDMCD16Mask()
SDMCV04()
SDMIO16()
TimedControl()
ProcHiPri/EndProcHiPri
DNP()
DNPUpdate()
DNPVariable()
ModbusMaster()

536

Appendix A. CRBasic Programming Instructions

ModbusSlave()

A.7 Processing and Math Instructions
A.7.1 Mathematical Operators

Note Program declaration AngleDegrees() (see Program Declarations (p. 511))
sets math functions to use degrees instead of radians.

A.7.2 Arithmetic Operators

Table 130. Arithmetic Operators
Symbol Name Notes

^ Raise to power

Result is always promoted to a FLOAT (p. 159) data
type to avoid problems that may occur when raising
an integer to a negative power. However, loss of
precision occurs if result is > 24 bits.
For example,

(46340 ^ 2) will yield 2,147,395,584 (not
precisely correct),

whereas
(46340 * 46340) will yield 2,147,395,600
(precisely correct)

Simply use repeated multiplications instead of ^
operators when full 32-bit precision is required.
Same functionality as PWR() (p. 542) instruction.

* Multiply

/ Divide Use INTDV() (p. 542) to retain 32-bit precision

+ Add

- Subtract

= Equal to

<> Not equal to

> Greater than

< Less than

>= Greater than or
equal to

<= Less than or equal
to

A.7.3 Bitwise Operations
Bitwise shift operators (<< and >>) allow CRBasic to manipulate the position of
bits within a variable declared As Long (integer). Following are example
expressions and expected results:

• &B00000001 << 1 produces &B00000010 (decimal 2)

537

Appendix A. CRBasic Programming Instructions

• &B00000010 << 1 produces &B00000100 (decimal 4)
• &B11000011 << 1 produces &B10000110 (decimal 134)
• &B00000011 << 2 produces &B00001100 (decimal 12)
• &B00001100 >> 2 produces &B00000011 (decimal 3)

The result of these operators is the value of the left-hand operand with all of its
bits moved by the specified number of positions. The resulting "holes" are filled
with zeros.

Smart sensors, or a communication protocol, may output data that are compressed
into integers that are composites of "packed" fields. This type of data
compression is a tactic to conserve memory and communication bandwidth.
Following is an example of data compressed into an eight-byte integer:

A packed integer that is stored in variable input_val will be unpacked into
three integers individually stored in value_1, value_2, and value_3. In the
packed integer, the information that is unpacked into value_1 is stored in bits
7 and 6, value_2 is unpacked from bits 5 and 4, and value_3 from bits 3, 2, 1,
and 0. The CRBasic code to do this unpacking routine is shown in CRBasic
example Using Bit-Shift Operators (p. 538).

With unsigned integers, shifting left is equivalent to multiplying by two. Shifting
right is equivalent to dividing by two.

The operators follow:

<<

Bitwise left shift

Syntax
Variable = Numeric Expression << Amount

>>

Bitwise right shift

Syntax
Variable = Numeric Expression >> Amount

&

Bitwise AND assignment — performs a bitwise AND of a variable with an
expression and assigns the result back to the variable.

CRBasic Example 69. Using Bit-Shift Operators
'This program example demonstrates the unpacking of a packed integer. The binary value in
'variable input_val is unpacked resulting in three integers individually stored in variables
'value(1), value(2), and value(3). The information that is unpacked into value(1) is stored
'in 'bits 7 to 6 of input_val, value(2) is unpacked from bits 5 to 4, and value(3) from bits
'3 to 0, zero being the LSB or least-significant bit.

Public input_val As Long = &B01100011
Public value(3) As Long

538

Appendix A. CRBasic Programming Instructions

BeginProg

 'Unpack the input_val variable by masking all but the bit group of interest by using the
 'AND function then shift the bit group to the right until the right-most bit is in the
 'LSB position. The result is the unpacked value in decimal.
 value(1) = (input_val AND &B11000000) >> 6
 value(2) = (input_val AND &B00110000) >> 4
 value(3) = (input_val AND &B00001111) 'Shifting not needed since right-most bit is already
 'in the LSB position.

EndProg

A.7.4 Compound-Assignment Operators

Table 131. Compound-Assignment Operators
Symbol Name Function

^= Exponent
assignment

Raises the value of a variable to the power of an
expression and assigns the result back to the variable.

*= Multiplication
assignment

Multiplies the value of a variable by the value of an
expression and assigns the result to the variable.

+= Addition
assignment

Adds the value of an expression to the value of a
variable and assigns the result to the variable. Also
concatenates a string expression to a variable
declared as STRING data type. Assigns the result to
the variable. See CRBasic example Concatenation
of Numbers and Strings (p. 277).

-= Subtraction
assignment

Subtracts the value of an expression from the value
of a variable and assigns the result to the variable.

/= Division
assignment

Divides the value of a variable by the value of an
expression and assigns the result to the variable.

\= Division integer
assignment

Divides the value of a variable by the value of an
expression and assigns the integer result to the
variable.

A.7.5 Logical Operators
AND

Performs a logical conjunction on two expressions.

Syntax
result = expr1 AND expr2

EQV

Performs a logical equivalence on two expressions.

Syntax
result = expr1 EQV expr2

NOT

Performs a logical negation on an expression.

539

Appendix A. CRBasic Programming Instructions

Syntax
result = NOT expression

OR

Performs a logical disjunction on two expressions.

Syntax
result = expr1 OR expr2

XOR

Performs a logical exclusion on two expressions.

Syntax
result = expr1 XOR expr2

IIF

Evaluates a variable or expression and returns one of two results based on the
outcome of that evaluation.

Syntax
Result = IIF (Expression, TrueValue, FalseValue)

IMP

Performs a logical implication on two expressions.

Syntax
result = expression1 IMP expression2

A.7.6 Trigonometric Functions
A.7.6.1 Intrinsic Trigonometric Functions

ACOS

Returns the arccosine of a number.

Syntax
x = ACOS(source)

ASIN

Returns the arcsin of a number.

Syntax
x = ASIN(source)

ATN

Returns the arctangent of a number.

540

Appendix A. CRBasic Programming Instructions

Syntax
x = ATN(source)

ATN2

Returns the arctangent of y / x.

Syntax
x = ATN(y , x)

COS

Returns the cosine of an angle specified in radians.

Syntax
x = COS(source)

COSH

Returns the hyperbolic cosine of an expression or value.

Syntax
x = COSH(source)

SIN

Returns the sine of an angle.

Syntax
x = SIN(source)

SINH

Returns the hyperbolic sine of an expression or value.

Syntax
x = SINH(Expr)

TAN

Returns the tangent of an angle.

Syntax
x = TAN(source)

TANH

Returns the hyperbolic tangent of an expression or value.

Syntax
x = TANH(Source)

A.7.6.2 Derived Trigonometric Functions
Table Derived Trigonometric Functions (p. 542) lists trigonometric functions that
can be derived from intrinsic trigonometric functions.

541

Appendix A. CRBasic Programming Instructions

Table 132. Derived Trigonometric Functions
Function CRBasic Equivalent

Secant Sec = 1 / Cos(X)

Cosecant Cosec = 1 / Sin(X)

Cotangent Cotan = 1 / Tan(X)

Inverse Secant Arcsec = Atn(X / Sqr(X * X - 1)) + Sgn(Sgn(X) - 1) * 1.5708

Inverse Cosecant Arccosec = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * 1.5708

Inverse Cotangent Arccotan = Atn(X) + 1.5708

Hyperbolic Secant HSec = 2 / (Exp(X) + Exp(-X))

Hyperbolic Cosecant HCosec = 2 / (Exp(X) - Exp(-X))

Hyperbolic Cotangent HCotan = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))

Inverse Hyperbolic Sine HArcsin = Log(X + Sqr(X * X + 1))

Inverse Hyperbolic Cosine HArccos = Log(X + Sqr(X * X - 1))

Inverse Hyperbolic Tangent HArctan = Log((1 + X) / (1 - X)) / 2

Inverse Hyperbolic Secant HArcsec = Log((Sqr(-X * X + 1) + 1) / X)

Inverse Hyperbolic Cosecant HArccosec = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)

Inverse Hyperbolic Cotangent HArccotan = Log((X + 1) / (X - 1)) / 2

A.7.7 Arithmetic Functions
ABS

Returns the absolute value of a number. Returns a value of data type Long when
the expression is type Long.

Syntax
x = ABS(source)

Ceiling

Rounds a value to a higher integer.

Syntax
variable = Ceiling(Number)

EXP

Returns e (the base of natural logarithms) raised to a power.

Syntax
x = EXP(source)

Floor

Rounds a value to a lower integer.

542

Appendix A. CRBasic Programming Instructions

Syntax
variable = Floor(Number)

FRAC

Returns the fractional part of a number.

Syntax
x = FRAC(source)

INT or FIX

Return the integer portion of a number.

Syntax
x = INT(source)
x = Fix(source)

INTDV

Performs an integer division of two numbers.

Syntax
X INTDV Y

LN or LOG

Returns the natural logarithm of a number. Ln and Log perform the same
function.

Syntax
x = LOG(source)
x = LN(source)

Note LOGN = LOG(X) / LOG(N)

LOG10

The LOG10 function returns the base-ten logarithm of a number.

Syntax
x = LOG10 (number)

MOD

Modulo divide. Divides one number into another and returns only the remainder.

Syntax
result = operand1 MOD operand2

PWR

Performs an exponentiation on a variable. Same functionality as ^ operator. See
section Arithmetic Operators (p. 537).

543

Appendix A. CRBasic Programming Instructions

Syntax
PWR(X, Y)

RectPolar

Converts from rectangular to polar coordinates.

Syntax
RectPolar(Dest, Source)

Round

Rounds a value to a higher or lower number.

Syntax
variable = Round (Number, Decimal)

SGN

Finds the sign value of a number.

Syntax
x = SGN(source)

Sqr

Returns the square root of a number.

Syntax
x = SQR(number)

A.7.8 Integrated Processing
DewPoint

Calculates dew-point temperature (°C) from dry bulb temperature and relative
humidity.

Syntax
DewPoint(Dest, Temp, RH)

PRT

Calculates temperature (°C) from the resistance of an RTD. This instruction has
been superseded by PRTCalc() in most applications.

Syntax
PRT(Dest, Reps, Source, Mult)

PRTCalc

Calculates temperature from the resistance of an RTD according to a range of
alternative standards, including IEC. Supercedes PRT() in most applications.

544

Appendix A. CRBasic Programming Instructions

Syntax
PRTCalc(Dest, Reps, Source, PRTType, Mult, Offset)

SolarPosition

Calculates solar position.

Syntax
SolarPosition(Dest, Time, UTC_OFFSET, Lat_c, Lon_c, Alt_c,

Pressure, AirTemp)

SatVP

Calculates saturation-vapor pressure (kPa) from temperature.

Syntax
SatVP(Dest, Temp)

StrainCalc

Converts the output of a bridge-measurement instruction to microstrain.

Syntax
StrainCalc(Dest, Reps, Source, BrZero, BrConfig, GF, v)

VaporPressure

Calculates vapor pressure from temperature and relative humidity.

Syntax
VaporPressure(Dest, Temp, RH)

WetDryBulb

Calculates vapor pressure (kPa) from wet- and dry-bulb temperatures and
barometric pressure.

Syntax
WetDryBulb(Dest, DryTemp, WetTemp, Pressure)

A.7.9 Spatial Processing
AvgSpa

Computes the spatial average of the values in the source array.

Syntax
AvgSpa(Dest, Swath, Source)

CovSpa

Computes the spatial covariance of sets of data.

Syntax
CovSpa(Dest, NumOfCov, SizeOfSets, CoreArray, DatArray)

545

Appendix A. CRBasic Programming Instructions

FFTSpa

Performs a Fast Fourier Transform on a time series of measurements.

Syntax
FFTSpa(Dest, N, Source, Tau, Units, Option)

MaxSpa

Finds the maximum value in an array.

Syntax
MaxSpa(Dest, Swath, Source)

MinSpa

Finds the minimum value in an array.

Syntax
MinSpa(Dest, Swath, Source)

RMSSpa

Computes the RMS (root mean square) value of an array.

Syntax
RMSSpa(Dest, Swath, Source)

SortSpa

Sorts the elements of an array in ascending order.

Syntax
SortSpa(Dest, Swath, Source)

StdDevSpa

Finds the standard deviation of an array.

Syntax
StdDevSpa(Dest, Swath, Source)

A.7.10 Other Functions
AddPrecise

Enables high-precision totalizing of variables or manipulation of high-precision
variables in conjunction with MovePrecise.

Syntax
AddPrecise(PrecisionVariable, X)

AvgRun

Stores a running average of a measurement.

546

Appendix A. CRBasic Programming Instructions

Syntax
AvgRun(Dest, Reps, Source, Number)

Note AvgRun() should not be inserted within a For / Next construct with the
Source and Dest parameters indexed and Reps set to 1. In essence, doing so will
perform a single running average, using the values of the different elements of the
array, instead of performing an independent running average on each element of
the array. The results will be a running average of a spatial average on the various
source array elements.

Randomize

Initializes the random-number generator.

Syntax
Randomize(source)

RND

Generates a random number.

Syntax
RND(source)

TotalRun

Outputs a running total of a measurement.

Syntax
TotalRun(Dest, Reps, Source, Number, RunReset)

A.7.10.1 Histograms
Histogram

Processes input data as either a standard histogram (frequency distribution) or a
weighted-value histogram.

Syntax
Histogram(BinSelect, DataType, DisableVar, Bins, Form, WtVal,

LoLim, UpLim)

Histogram4D

Processes input data as either a standard histogram (frequency distribution) or a
weighted-value histogram of up to four dimensions.

Syntax
Histogram4D(BinSelect, Source, DataType, DisableVar, Bins1,

Bins2, Bins3, Bins4, Form, WtVal, LoLim1, UpLim1, LoLim2,
UpLim2, LoLim3, UpLim3, LoLim4, UpLim4)

LevelCrossing

Processes data into a one- or two-dimensional histogram using a level-crossing
counting algorithm.

547

Appendix A. CRBasic Programming Instructions

Syntax
LevelCrossing(Source, DataType, DisableVar, NumLevels,

2ndDim, CrossingArray, 2ndArray, Hysteresis, Option)

RainFlow

Processes data with the Rainflow counting algorithm, essential to estimating
cumulative damage fatigue to components undergoing stress / strain cycles. See
Downing S. D., Socie D. F. (1982) Simple Rainflow Counting Algorithms.
International Journal of Fatigue Volume 4, Issue 1.

Syntax
RainFlow(Source, DataType, DisableVar, MeanBins, AmpBins,

Lowlimit, Highlimit, MinAmp, Form)

A.8 String Functions
Related Topics
 • String Operations (p. 275)

& Concatenates string variables.
+ Concatenates string and numeric variables.
- Compares two strings, returns zero if identical.

A.8.1 String Operations

Table 133. String Operations
Operation Notes

String constants Constant strings can be used in expressions
using quotation marks. For example:
FirstName = "Mike"

String addition Strings can be concatenated using the '+'
operator. For example:
FullName = FirstName + " " +

MiddleName + " " + LastName

String subtraction String1-String2 results in an integer in the
range of –255 to +255.

String conversion to/from Numerics Conversion of strings to numerics and numerics
to strings is done automatically when an
assignment is made from a string to a numeric
or a numeric to a string, if possible.

String comparison operators The comparison operators =, >,<,<>, >= and
<= operate on strings.

String final-data output processing The Sample() instruction will convert data
types if the source data type is different than
the Sample() data type. Strings are disallowed
in all output processing instructions except
Sample().

548

Appendix A. CRBasic Programming Instructions

A.8.2 String Commands
ArrayLength

Returns the length of a variable array.

Syntax
ArrayLength(Variable)

ASCII

Returns the ASCII / ANSI code of a character in a string.

Syntax
Variable = ASCII(ASCIIString(1,1,X))

CheckSum

Returns a checksum signature for the characters in a string.

Syntax
Variable = CheckSum(ChkSumString, ChkSumType, ChkSumSize)

CHR

Inserts an ANSI character into a string.

Syntax
CHR(Code)

Erase

Clears all bytes in a variable or variable array.

Syntax
Erase(EraseVar)

FormatFloat

Converts a floating-point value into a string. Replaced by SPrintF().

Syntax
String = FormatFloat(Float, FormatString)

FormatLong

Converts a LONG value into a string. Replaced by SPrintF().

Syntax
String = FormatLong(Long, FormatString)

FormatLongLong

Converts a 64-bit LONG integer into a decimal value in the format of a string
variable.

549

Appendix A. CRBasic Programming Instructions

Syntax
FormatLongLong(LongLongVar(1))

HEX

Returns a hexadecimal string representation of an expression.

Syntax
Variable = HEX(Expression)

HexToDec

Converts a hexadecimal string to a float or integer.

Syntax
Variable = HexToDec(Expression)

InStr

Finds the location of a string within a string.

Syntax
Variable = InStr(Start, SearchString, FilterString,

SearchOption)

LTrim

Returns a copy of a string with no leading spaces.

Syntax
variable = LTrim(TrimString)

Left

Returns a substring that is a defined number of characters from the left side of the
original string.

Syntax
variable = Left(SearchString, NumChars)

Len

Returns the number of bytes in a string.

Syntax
Variable = Len(StringVar)

LowerCase

Converts a string to all lowercase characters.

Syntax
String = LowerCase(SourceString)

550

Appendix A. CRBasic Programming Instructions

Mid

Returns a substring that is within a string.

Syntax
String = Mid(SearchString, Start, Length)

Replace

Searches a string for a substring and replaces that substring with a different string.

Syntax
variable = Replace(SearchString, SubString, ReplaceString)

Right

Returns a substring that is a defined number of characters from the right side of
the original string.

Syntax
variable = Right(SearchString, NumChars)

RTrim

Returns a copy of a string with no trailing spaces.

Syntax
variable = RTrim(TrimString)

StrComp

Compares two strings by subtracting the characters in one string from the
characters in another

Syntax
Variable = StrComp(String1, String2)

SplitStr

Splits out one or more strings or numeric variables from an existing string.

Syntax
SplitStr(SplitResult, SearchString, FilterString, NumSplit,

SplitOption)

SPrintF

Converts data to formatted strings. Returns length of formatted string. Replaces
FormatFloat() and FormatLong().

Syntax
length = SPrintF(Destination, format,...)

Trim

Returns a copy of a string with no leading or trailing spaces.

551

Appendix A. CRBasic Programming Instructions

Syntax
variable = Trim(TrimString)

UpperCase

Converts a string to all uppercase characters

Syntax
String = UpperCase(SourceString)

A.9 Time Keeping — Instructions
Related Topics:
 • Time Keeping — Overview (p. 75)
 • Time Keeping — Instructions (p. 552)

Within the CR800, time is stored as integer seconds and nanoseconds into the
second since midnight, January 1, 1990.

ClockChange

Returns milliseconds of clock change due to any setting of the clock that occurred
since the last execution of ClockChange.

Syntax
variable = ClockChange

ClockReport

Sends the CR800 clock value to a remote datalogger in the PakBus network.

Syntax
ClockReport(ComPort, RouterAddr, PakBusAddr)

ClockSet

Sets the CR800 clock from the values in an array.

Syntax
ClockSet(Source)

DaylightSaving

Defines daylight saving time. Determines if daylight saving time has begun or
ended. Optionally advances or turns back the CR800 clock one hour.

Syntax
variable = DaylightSaving(DSTSet, DSTnStart, DSTDayStart,

DSTMonthStart, DSTnEnd, DSTDayEnd, DSTMonthEnd, DSTHour)

DaylightSavingUS

Determine if US daylight saving time has begun or ended. Optionally advance or
turn back the CR800 clock one hour.

552

Appendix A. CRBasic Programming Instructions

Syntax
variable = DaylightSavingUS(DSTSet)

IfTime

Returns a number indicating True (-1) or False (0) based on the CR800 real-time
clock.

Syntax
If (IfTime(TintoInt, Interval, Units)) Then

-or-

Variable = IfTime(TintoInt, Interval, Units)

PakBusClock

Sets the CR800clock to the clock of the specified PakBus device.

Syntax
PakBusClock(PakBusAddr)

RealTime

Parses year, month, day, hour, minute, second, micro-second, day of week, and/or
day of year from the CR800 clock.

Syntax
RealTime(Dest)

SecsSince1990

Returns seconds elapsed since 1990. Data type is LONG. Used with
GetRecord().

Syntax
SecsSince1990(date, option)

TimeIntoInterval

Returns a number indicating True (-1) or False (0) based on the datalogger real-
time clock.

Syntax
Variable = TimeIntoInterval(TintoInt, Interval, Units)

-or-

If TimeIntoInterval(TintoInt, Interval, Units)

TimeIsBetween

Determines if the CR800 real-time clock falls within a range of time.

Syntax
TimeIsBetween(BeginTime, EndTime, Interval, Units)

553

Appendix A. CRBasic Programming Instructions

Timer

Returns the value of a timer.

Syntax
variable = Timer(TimNo, Units, TimOpt)

A.10 Voice-Modem Instructions
Note Refer to Campbell Scientific voice-modem manuals available at
www.campbellsci.com/manuals (http://www.campbellsci.com/manuals).

DialVoice

Defines the dialing string for a COM310 voice modem.

Syntax
DialVoice(DialString)

VoiceBeg / EndVoice

Marks the beginning and ending of voice code that is executed when the CR800
detects a ring from a voice modem.

Syntax
VoiceBeg
 [voice code to be executed]
EndVoice

VoiceHangup

Hangs up the voice modem.

Syntax
VoiceHangup

VoiceKey

Recognizes the return of characters 1 to 9, *, or #. Often used to add a delay,
which provides time for the message to be spoken, in a VoiceBegin/EndVoice
sequence.

Syntax
VoiceKey(TimeOut*IDH_Popup_VoiceKey_Timeout)

VoiceNumber

Returns one or more numbers (1 to 9) terminated by the # or * key.

Syntax
VoiceNumber(TimeOut*IDH_POPUP_VoiceKey_Timeout)

VoicePhrases

Provides a list of phrases for VoiceSpeak().

554

http://www.campbellsci.com/manuals

Appendix A. CRBasic Programming Instructions

Syntax
VoicePhrases(PhraseArray, Phrases)

VoiceSetup

Controls the hang-up of the COM310 voice modem.

Syntax
VoiceSetup(HangUpKey, ExitSubKey, ContinueKey, SecsOnLine,

UseTimeout, CallOut)

VoiceSpeak

Defines the voice string that should be spoken by the voice modem.

Syntax
VoiceSpeak("String" + Variable + "String"…, Precision)

A.11 Custom Menus — Instructions
Related Topics:
 • Custom Menus — Overview (p. 83, p. 555)
 • Data Displays: Custom Menus — Details (p. 180)
 • Custom Menus — Instruction Set (p. 555)
 • Keyboard Display — Overview (p. 82)
 • CRBasic Editor Help for DisplayMenu()

Custom menus are constructed with the following syntax before the BeginProg
instruction.

DisplayMenu("MenuName", AddToSystem)
 MenuItem("MenuItemName", Variable)
 MenuPick(Item1, Item2, Item3...)
 DisplayValue("MenuItemName", tablename.fieldname)
 SubMenu(MenuName)
 MenuItem("MenuItemName", Variable)
 EndSubMenu
EndMenu

BeginProg
 [program body]
EndProg

DisplayLine

Displays a full line of read-only text in a custom menu.

Syntax:
DisplayLine(Value)

DisplayMenu / EndMenu

Marks the beginning and ending of a custom menu.

555

Appendix A. CRBasic Programming Instructions

Syntax:
DisplayMenu("MenuName", AddToSystem)
 [menu definition]
EndMenu

DisplayValue

Defines the name and associated data-table value or variable for an item in a
custom menu.

Syntax:
DisplayValue("MenuItemName", Expression)

MenuItem

Defines the name and associated measurement value for an item in a custom
menu.

Syntax:
MenuItem("MenuItemName", Variable)

MenuPick

Creates a list of selectable options that can be used when editing a MenuItem()
value.

Syntax:
MenuPick(Item1, Item2, Item3...)

MenuRecompile

Creates a custom menu item for recompiling a program after making changes to
one or more ConstTable() values.

Syntax
MenuRecompile("CompileString", CompileVar)

SubMenu / EndSubMenu

Define the beginning and ending of a second-level menu for a custom menu.

Syntax:
DisplayMenu("MenuName", 100)
 SubMenu("MenuName")
 [menu definition]
 EndSubMenu
EndMenu

A.12 Serial Input / Output
Read More See Serial I/O (p. 238).

MoveBytes

Moves binary bytes of data into a different memory location when translating big-
endian to little-endian data. See the appendix Endianness (p. 619).

556

Appendix A. CRBasic Programming Instructions

Syntax
MoveBytes(Destination, DestOffset, Source, SourceOffset,

NumBytes)

SerialBrk

Sends a break signal with a specified duration to a CR800 serial port.

Syntax
SerialBrk(Port, Duration)

SerialClose

Closes a communication port that was previously opened by SerialOpen().

Syntax
SerialClose(ComPort)

SerialFlush

Clears any characters in the serial input buffer.

Syntax
SerialFlush(ComPort)

SerialIn

Sets up a communication port for receiving incoming serial data.

Syntax
SerialIn(Dest, ComPort, TimeOut, TerminationChar,

MaxNumChars)

SerialInBlock

Stores incoming serial data. This function returns the number of bytes received.

Syntax
SerialInBlock(ComPort, Dest, MaxNumberBytes)

SerialInChk

Returns the number of characters available in the datalogger serial buffer.

Syntax
SerialInChk(ComPort)

SerialInRecord

Reads incoming serial data on a COM port and stores the data in a destination
variable.

Syntax
SerialInRecord(COMPort, Dest, BeginWord, NBytes, EndWord,

NBytesReturned, LoadNAN)

557

Appendix A. CRBasic Programming Instructions

SerialOpen

Sets up a datalogger port for communication with a non-PakBus device.

Syntax
SerialOpen(ComPort, BaudRate, Format, TXDelay, BufferSize)

SerialOut

Transmits a string over a datalogger communication port.

Syntax
SerialOut(ComPort, OutString, WaitString, NumberTries,

TimeOut)

SerialOutBlock

Send binary data out a communication port. Supports transparent serial talk-
through.

Syntax
SerialOutBlock(ComPort, Expression, NumberBytes)

A.13 Peer-to-Peer PakBus® Communications
Related Topics:
 • PakBus® Communications — Overview (p. 88)

 • PakBus® Communications — Details (p. 372)

 • PakBus® Communications — Instructions (p. 558)

 • PakBus Networking Guide (available at www.campbellsci.com/manuals
(http://www.campbellsci.com/manuals))

PakBus is a proprietary networking communication protocol designed to optimize
communications between Campbell Scientific dataloggers and peripherals.
PakBus features auto-discovery and self-healing. Following is a list of CRBasic
instructions that control PakBus processes. Some PakBus instructions specify a
PakBus address (PakBusAddr) or a COM port (ComPort). PakBusAddr can be a
CRBasic variable. ComPort is a constant. ComPort arguments are as follows:

• ComRS232
• ComME
• Com310
• ComSDC7
• ComSDC8
• ComSDC10
• ComSDC11
• Com1 (C1,C2)
• Com2 (C3,C4)
• Com32 – Com46 (available when using a one-channel I/O expansion

module. See the appendix Serial I/O Modules List (p. 622))

Baud rate on asynchronous ports (ComRS232, ComME, Com1, Com2, and
Com32 to Com46) default to 9600 unless set otherwise in the SerialOpen()

558

http://www.campbellsci.com/manuals

Appendix A. CRBasic Programming Instructions

instruction, or if the port is opened by an incoming PakBus packet at some other
baud rate. See table Asynchronous Port Baud Rates (p. 562).

In general, PakBus instructions write a result code to a variable indicating success
or failure. Success sets the result code to 0. Otherwise, the result code
increments. If communication succeeds, but an error is detected, a negative result
code is set. See CRBasic Editor Help for an explanation of error codes. For
instructions returning a result code, retries can be coded with CRBasic logic as
shown in the following code snip:

For I = 1 to 3
 GetVariables(ResultCode,….)
 If ResultCode = 0 Exit For
Next

The Timeout argument is entered in units of hundredths (0.01) of seconds. If 0 is
entered, then the default timeout, defined by the time of the best route, is used.
Use PakBusGraph (p. 630) Hop Metrics to calculate this time. Because these
communication instructions wait for a response or timeout before the program
moves on to the next instruction, they should be used in a slow sequence (p. 155). A
slow sequence will not interfere execution of the main scan or other slow
sequences. Optionally, the ComPort parameter can be entered preceded by a
dash, for example, -ComME, which will cause the instruction not to wait for a
response or timeout. This will make the instruction execute faster; however, any
data that it retrieves, and the result code, will be posted only after the
communication is complete.

AcceptDataRecords

Sets up a CR800 to accept and store records from a remote PakBus datalogger.

Syntax
AcceptDataRecords(PakBusAddr, TableNo, DestTableName)

Broadcast

Sends a broadcast message to a PakBus network.

Syntax
Broadcast(ComPort, Message)

ClockReport

Sends the datalogger clock value to a remote datalogger in the PakBus network.

Syntax
ClockReport(ComPort, RouterAddr, PakBusAddr)

DataGram

Initializes a SerialServer / DataGram / PakBus application in the datalogger when
a program is compiled.

Syntax
DataGram(ComPort, BaudRate, PakBusAddr, DestAppID, SrcAppID)

559

Appendix A. CRBasic Programming Instructions

DialSequence / EndDialSequence

Defines the code necessary to route packets to a PakBus device.

Syntax
DialSequence(PakBusAddr)
 DialSuccess = DialModem(ComPort, DialString, ResponseString)
EndDialSequence(DialSuccess)

EncryptExempt

Defines one or more PakBus addresses to which the datalogger will not send
encrypted PakBus messages, even though PakBus encryption is enabled.

Syntax
EncryptExempt(BeginPakBusAddr, EndPakBusAddr)

GetDataRecord

Retrieves the most recent record from a data table in a remote PakBus datalogger
and stores the record in the CR800.

Syntax
GetDataRecord(ResultCode, ComPort, NeighborAddr, PakBusAddr,

Security, Timeout, Tries, TableNo, DestTableName)

Note CR200, CR510PB, CR10XPB, and CR23XPB dataloggers do not respond
to a GetDataRecord request from other PakBus dataloggers.

GetFile

Gets a file from another PakBus datalogger.

Syntax
GetFile(ResultCode, ComPort, NeighborAddr, PakBusAddr,

Security, TimeOut, "LocalFile", "RemoteFile")

GetVariables

Retrieves values from a variable or variable array in a data table of a PakBus
datalogger.

Syntax
GetVariables(ResultCode, ComPort, NeighborAddr, PakBusAddr,

Security, TimeOut, "TableName", "FieldName", Variable,
Swath)

Network

In conjunction with SendGetVariables, configures destination dataloggers in a
PakBus network to send and receive data from the host.

Syntax
Network(ResultCode, Reps, BeginAddr, TimeIntoInterval,

Interval, Gap, GetSwath, GetVariable, SendSwath,
SendVariable)

560

Appendix A. CRBasic Programming Instructions

PakBusClock

Sets the datalogger clock to the clock of the specified PakBus device.

Syntax
PakBusClock(PakBusAddr)

Route

Returns the neighbor address of (or the route to) a PakBus datalogger.

Syntax
variable = Route(PakBusAddr)

RoutersNeighbors

Returns a list of all PakBus routers and their neighbors known to the CR800.

Syntax
RoutersNeighbors(DestArray(MaxRouters, MaxNeighbors+1))

Routes

Returns a list of known dynamic routes for a PakBus datalogger that has been
configured as a router in a PakBus network.

Syntax
Routes(Dest)

SendData

Sends the most recent record from a data table to a remote PakBus device.

Syntax
SendData(ComPort, RouterAddr, PakBusAddr, DataTable)

SendFile

Sends a file to another PakBus datalogger.

Syntax
SendFile(ResultCode, ComPort, NeighborAddr, PakBusAddr,

Security, TimeOut, "LocalFile", "RemoteFile")

SendGetVariables

Sends an array of values to the host PakBus datalogger, and retrieves an array of
data from the host datalogger.

Syntax
SendGetVariables(ResultCode, ComPort, RouterAddr, PakBusAddr,

Security, TimeOut, SendVariable, SendSwath, GetVariable,
GetSwath)

SendTableDef

Sends the table definitions from a data table to a remote PakBus device.

561

Appendix A. CRBasic Programming Instructions

Syntax
SendTableDef(ComPort, RouterAddr, PakBusAddr, DataTable)

SendVariables

Sends value(s) from a variable or variable array to a data table in a remote
datalogger.

Syntax
SendVariables(ResultCode, ComPort, RouterAddr, PakBusAddr,

Security, TimeOut, "TableName", "FieldName", Variable,
Swath)

StaticRoute

Defines a static route to a PakBus datalogger.

Syntax
StaticRoute(ComPort, NeighborAddr, PakBusAddr)

TimeUntilTransmit

Returns the time remaining, in seconds, before communication with the host
datalogger.

Syntax
variable = TimeUntilTransmit

Table 134. Asynchronous-Port Baud Rates
Rate Notes

-nnnn (autobaud1 starting at nnnn) autobaud1 starting at nnnn

0 autobaud starting at 9600

300
1200
4800

9600 default

19200
38400
57600

115200

1 Autobaud: measurements are made on the communication signal and the baud rate is determined
by the CR800.

A.14 Variable Management
ArrayIndex

Returns the index of a named element in an array.

562

Appendix A. CRBasic Programming Instructions

Syntax
variable = ArrayIndex(Name)

ArrayLength

Returns the length of a variable array. In the case of variables of data type
STRING, the total number of characters that the array of strings can hold is
returned.

Syntax
ArrayLength(Variable)

Erase

Clears all bytes in a variable or variable array.

Syntax
Erase(EraseVar)

FindSpa

Searches a source array for a value and returns the position of the value in the
array.

Syntax
FindSpa(SoughtLow, SoughtHigh, Step, Source)

Move

Moves the values in a range of variables into different variables or fills a range of
variables with a constant.

Syntax
Move(Dest, DestReps, Source, SourceReps)

A.15 File Management
Commands to access and manage files stored in CR800 memory.

CalFile

Stores variable data, such as sensor calibration data, from a program into a non-
volatile CR800 memory file. CalFile() pre-dates and is not used with the
FieldCal() function.

Syntax
CalFile(Source/Dest, NumVals, "Device:filename", Option)

FileCopy

Copies a file from one drive to another.

Syntax
FileCopy(FromFileName, ToFileName)

563

Appendix A. CRBasic Programming Instructions

FileClose

Closes a file handle created by FileOpen().

Syntax
FileClose(FileHandle)

FileEncrypt

Performs an encrypting algorithm on the file. Allows distribution of CRBasic files
without exposing source code.

Syntax
Boolean Variable = FileEncrypt(FileName)

FileList

Returns a list of files that exist on the specified drive.

Syntax
FileList(Drive,DestinationArray)

FileManage

Manages program files from within a running datalogger program.

Syntax
FileManage("Device: FileName", Attribute)

FileOpen

Opens an ASCII text file or a binary file for writing or reading.

Syntax
FileHandle = FileOpen("FileName", "Mode", SeekPoint)

FileRead

Reads a file referenced by FileHandle and stores the results in a variable or
variable array.

Syntax
FileRead(FileHandle, Destination, Length)

FileReadLine

Reads a line in a file referenced by FileHandle and stores the result in a variable
or variable array.

Syntax
FileReadLine(FileHandle, Destination, Length)

FileRename

Changes the name of file on a CR800 drive.

564

Appendix A. CRBasic Programming Instructions

Syntax
FileRename(drive:OldFileName, drive:NewFileName)

FileSize

Returns the size of a file stored in CR800 memory.

Syntax
FileSize(FileHandle)

FileTime

Returns the time the file specified by the FileHandle was created.

Syntax
Variable = FileTime(FileHandle)

FileWrite

Writes ASCII or binary data to a file referenced in the program by FileHandle.

Syntax
FileWrite(FileHandle, Source, Length)

Include

Inserts code from a file (Filename) at the position of the Include() instruction at
compile time. Include() cannot be nested.

Syntax
Include("Device:Filename")

NewFile

Determines if a file stored on the CR800 has been updated since the instruction
was last run. Typically used with image files.

Syntax
NewFile(NewFileVar, "FileName")

RunProgram

Calls a secondary CRBasic program file from the current active program.

Syntax
RunProgram("Device:FileName", Attrib)

A.16 Data-Table Access and Management
Commands to access and manage data stored in data tables, including Public and
Status tables.

FileMark

Inserts a filemark into a data table.

565

Appendix A. CRBasic Programming Instructions

Syntax
FileMark(TableName)

GetRecord

Retrieves one record from a data table and stores the results in an array. May be
used with SecsSince1990().

Syntax
GetRecord(Dest, TableName, RecsBack)

ResetTable

Used to reset a data table under program control.

Syntax
ResetTable(TableName)

SetSetting

Changes the value for a setting or a Status table field.

Syntax
SetSetting("FieldName", Value)

SetStatus

Changes the value for a setting or a Status table field.

Syntax
SetStatus("FieldName", Value)

TableName.EventCount

Returns the number of data storage events that have occurred for an event-driven
data table.

Syntax
TableName.EventCount(1,1)

TableName.FieldName

Accesses a specific field from a record in a table

Syntax
TableName.FieldName(FieldNameIndex, RecordsBack)

TableName.Output

Determine if data was written to a specific data table the last time the data table
was called.

Syntax
TableName.Output(1,1)

566

Appendix A. CRBasic Programming Instructions

TableName.Record

Determines the record number of a specific data table record.

Syntax
TableName.Record(1,n)

TableName.TableFull

Indicates whether a fill-and-stop table is full or whether a ring-mode table has
begun overwriting its oldest data.

Syntax
TableName.TableFull(1,1)

TableName.TableSize

Returns the number of records allocated for a data table.

Syntax
TableName.TableSize(1,1)

TableName.TimeStamp

Returns the time into an interval or a time stamp for a record in a specific data
table.

Syntax
TableName.TimeStamp(m,n)

WorstCase

Saves one or more worst-case data-storage events into separate tables. Used in
conjunction with DataEvent().

Syntax
WorstCase(TableName, NumCases, MaxMin, Change, RankVar)

A.17 TCP/IP — Instructions
Related Topics:
 • TCP/IP — Overview (p. 90)
 • TCP/IP — Details (p. 402)
 • TCP/IP — Instructions (p. 567)
 • TCP/IP Links — List (p. 629)

These instructions address use of email, SMS, web pages, and other IP services.
These services are available only when the CR800 is used with a network link-
device that has the PPP/IP key enabled, such as when the CR800 IP stack is used.

DHCPRenew

Restarts DHCP on the ethernet interface.

Syntax
DHCPRenew

567

Appendix A. CRBasic Programming Instructions

EMailRecv

Polls an SMTP server for email messages and stores the message portion of the
email in a string variable.

Syntax
variable = EMailRecv("ServerAddr", "ToAddr", "FromAddr",

"Subject", Message, "Authen", "UserName", "PassWord",
Result)

EMailSend

Sends an email message to one or more email addresses via an SMTP server.

Syntax
variable = EMailSend("ServerAddr", "ToAddr", "FromAddr",

"Subject", "Message", "Attach", "UserName", "PassWord",
Result)

EthernetPower

Controls power state of all Ethernet devices.

Syntax
EthernetPower(state)

FTPClient

Sends or retrieves a file via FTP.

Syntax
Variable = FTPClient("IPAddress", "User", "Password",

"LocalFileName", "RemoteFileName", PutGetOption)

HTTPGET

Sends a request to an HTTP server using the Get method.

Syntax
HTTPGET(URI, Response, Header)

HTTPOut

Defines a line of HTML code to be used in a datalogger-generated HTML file.

Syntax
WebPageBegin("WebPageName", WebPageCmd)
 HTTPOut("<p>html string to output " + variable + " additional
string to output</p>")
 HTTPOut("<p>html string to output " + variable + " additional
string to output</p>")
WebPageEnd

HTTPPOST

Sends files or text strings to a URL.

568

Appendix A. CRBasic Programming Instructions

Syntax
HTTPPOST(URI, Contents, Response, Header)

HTTPPUT

Sends a request to the HTTP server to store the enclosed file/data under the
supplied URI.

Syntax
HTTPPUT(URI, Contents, Response, Header, NumRecs, FileOption)

IPInfo

Returns the IP address of the specified datalogger interface into a string.

Syntax
Variable = IPInfo(Interface, Option)

IPNetPower

Controls power state of individual Ethernet devices.

Syntax
IPNetPower(IPInterface, State)

IPRoute

Sets the interface to be used (Ethernet or PPP) when the CR800 sends an outgoing
packet and both interfaces are active.

Syntax
IPRoute(IPAddr, IPInterface)

IPTrace

Writes IP debug messages to a string variable.

Syntax
IPTrace(Dest)

NetworkTimeProtocol

Synchronizes the datalogger clock with an Internet time server.

Syntax
variable = NetworkTimeProtocol(NTPServer, NTPOffset,

NTPMaxMSec)

PingIP

Pings IP address.

Syntax
variable = PingIP(IPAddress, Timeout)

569

Appendix A. CRBasic Programming Instructions

PPPOpen

Establishes a PPP connection with a server.

Syntax
variable = PPPOpen

PPPClose

Closes an opened PPP connection with a server.

Syntax
variable = PPPClose

SNMPVariable

Defines a custom MIB (Management Information Base) hierarchy for SNMP.

Syntax
SNMPVariable(Name, OID, Type, Access, Valid)

TCPClose

Closes a TCP/IP socket that has been set up for communication.

Syntax
TCPClose(TCPSocket)

TCPOpen

Sets up a TCP/IP socket for communication.

Syntax
TCPOpen(IPAddr, TCPPort, TCPBuffer)

UDPDataGram

Sends packets of information via the UDP communication protocol.

Syntax
UDPDataGram(IPAddr, UDPPort, SendVariable, SendLength,

RcvVariable, Timeout)

UDPOpen

Opens a port for transferring UDP packets.

Syntax
UDPOpen(IPAddr, UDPPort, UDPBuffsize)

WebPageBegin / WebPageEnd

Declares a web page that is displayed when a request for the defined HTML page
comes from an external source.

570

Appendix A. CRBasic Programming Instructions

Syntax
WebPageBegin("WebPageName", WebPageCmd)
 HTTPOut("<p>html string to output " + variable + " additional
string to output</p>")
 HTTPOut("<p>html string to output " + variable + " additional
string to output</p>")
WebPageEnd

XMLParse()

Reads and parses an XML file in the datalogger.

Syntax
XMLParse(XMLContent, XMLValue, AttrName, AttrNameSpace,

ElemName, ElemNameSpace, MaxDepth, MaxNameSpaces)

A.18 Modem Control
Read More For help on datalogger-initiated telecommunication, see Initiating
Telecomms (Callback) (p. 371).

DialModem

Sends a modem-dial string out a datalogger communication port.

Syntax
DialModem(ComPort, BaudRate, DialString, ResponseString)

ModemCallback

Initiates a call to a computer via a phone modem.

Syntax
ModemCallback(Result, COMPort, BaudRate, Security,

DialString, ConnectString, Timeout, RetryInterval,
AbortExp)

ModemHangup / EndModemHangup

Encloses code that should be run when a COM port hangs up communication.

Syntax
ModemHangup(ComPort)
 [instructions to be run upon hang-up]
EndModemHangup

A.19 SCADA
Read More See sections DNP3 (p. 387) and Modbus (p. 391).

Modbus and DNP3 instructions run as process tasks.

DNP

Sets up a CR800 as a DNP slave (outstation/server) device. Third parameter is
optional.

571

Appendix A. CRBasic Programming Instructions

Syntax
DNP(ComPort, BaudRate, DisableLinkVerify)

DNPUpdate

Determines when the DNP slave will update arrays of DNP elements. Specifies
the address of the DNP master to send unsolicited responses.

Syntax
DNPUpdate(DNPAddr)

DNPVariable

Sets up the DNP implementation in a DNP slave Campbell Scientific datalogger.

Syntax
DNPVariable(Array, Swath, Object, Variation, Class, Flag,

Event Expression, Number of Events)

ModBusMaster

Sets up a datalogger as a ModBus master to send or retrieve data from a ModBus
slave.

Syntax
ModBusMaster(ResultCode, ComPort, BaudRate, ModBusAddr,

Function, Variable, Start, Length, Tries, TimeOut)

ModBusSlave

Sets up a CR800 as a ModBus slave device.

Syntax
ModBusSlave(ComPort, BaudRate, ModBusAddr, DataVariable,

BooleanVariable)

A.20 Calibration Functions
Calibrate

Forces calibration of the analog measurement circuitry.

Syntax
Calibrate(Dest, Range) (parameters are optional)

FieldCal

Sets up the datalogger to perform a calibration on one or more variables in an
array.

Syntax
FieldCal(Function, MeasureVar, Reps, MultVar, OffsetVar,

Mode, KnownVar, Index, Avg)

572

Appendix A. CRBasic Programming Instructions

FieldCalStrain

Sets up the datalogger to perform a zero or shunt calibration for a strain
measurement.

Syntax
FieldCalStrain(Function, MeasureVar, Reps, GFAdj, ZeromV/V,

Mode, KnownRS, Index, Avg, GFRaw, uStrainDest)

LoadFieldCal

Loads values from the .cal file into variables in the CR800.

Syntax
LoadFieldCal(CheckSig)

NewFieldCal

Triggers storage of calibration values when a new .cal file has been written.

Syntax
DataTable(TableName, NewFieldCal, Size)
 SampleFieldCal
EndTable

SampleFieldCal

Stores the values in the .cal file to a data table.

Syntax
DataTable(TableName, NewFieldCal, Size)
 SampleFieldCal
EndTable

A.21 Satellite Systems
Instructions for ARGOS, GOES, OMNISAT, and INMARSAT-C. Refer to
satellite transmitter manuals available at www.campbellsci.com/manuals
(http://www.campbellsci.com/manuals).

A.21.1 Argos
ArgosData

Specifies the data to be transmitted to the ARGOS satellite.

Syntax
ArgosData(ResultCode, ST20Buffer, DataTable, NumRecords,

DataFormat)

ArgosDataRepeat

Sets the repeat rate for the ArgosData() instruction.

Syntax
ArgosDataRepeat(ResultCode, RepeatRate, RepeatCount,

BufferArray)

573

http://www.campbellsci.com/manuals

Appendix A. CRBasic Programming Instructions

ArgosError

Sends a Get and Clear Error Message command to the ARGOS transmitter.

Syntax
ArgosError(ResultCode, ErrorCodes)

ArgosSetup

Sets up the datalogger for transmitting data via an ARGOS satellite.

Syntax
ArgosSetup(ResultCode, ST20Buffer, DecimalID, HexadecimalID,

Frequency)

ArgosTransmit

Initiates a single transmission to an ARGOS satellite when the instruction is
executed.

Syntax
ArgosTransmit(ResultCode, ST20Buffer)

A.21.2 GOES
GOESData

Sends data to a Campbell Scientific GOES satellite data transmitter.

Syntax
GOESData(Dest, Table, TableOption, BufferControl, DataFormat)

GOESGPS

Stores GPS data from the GOES satellite into two variable arrays.

Syntax
GOESGPS(GoesArray1(6), GoesArray2(7))

GOESSetup

Programs a GOES transmitter for communications with the satellite.

Syntax
GOESSetup(ResultCode, PlatformID, MsgWindow, STChannel,

STBaud, RChannel, RBaud, STInterval, STOffset, RInterval)

GOESStatus

Requests status and diagnostic information from a Campbell Scientific GOES
satellite transmitter.

Syntax
GOESStatus(Dest, StatusCommand)

574

Appendix A. CRBasic Programming Instructions

A.21.3 OMNISAT
OmniSatData

Sends a table of data to the OMNISAT transmitter for transmission via the GOES
or METEOSAT satellite.

Syntax
OmniSatData(OmniDataResult, TableName, TableOption,

OmniBufferCtrl, DataFormat)

OmniSatRandomSetup

Sets up the OMNISAT transmitter to send data over the GOES or METEOSAT
satellite at a random transmission rate.

Syntax
OmniSatRandomSetup(ResultCodeR, OmniPlatformID, OmniChannel,

OmniBaud, RInterval, RCount)

OmniSatStatus

Queries the OMNISAT transmitter for status information.

Syntax
OmniSatStatus(OmniStatusResult)

OmniSatSTSetup

Sets up the OMNISAT transmitter to send data over the GOES or METEOSAT
satellite at a self-timed transmission rate.

Syntax
OmniSatSTSetup(ResultCodeST, ResultCodeTX, OmniPlatformID,

OmniMsgWindow, OmniChannel, OmniBaud, STInterval,
STOffset)

A.21.4 INMARSAT-C
INSATData

Sends a table of data to the OMNISAT-I transmitter for transmission via the
INSAT-1 satellite.

Syntax
INSATData(ResultCode, TableName, TX_Window, TX_Channel)

INSATSetup

Configures the OMNISAT-I transmitter for sending data over the INSAT-1
satellite.

Syntax
INSATSetup(ResultCode, PlatformID, RFPower)

575

Appendix A. CRBasic Programming Instructions

INSATStatus

Queries the transmitter for status information.

Syntax
INSATStatus(ResultCode)

A.22 User-Defined Functions
Function / Return / Exit Function / EndFunction

Creates a user-defined CRBasic instruction

Syntax
Function [optional parameters] As [optional data type]
 Return [optional expression]
 ExitFunction [optional]
EndFunction

Optional

Defines a list of optional parameters that can be passed into a subroutine or
function.

Syntax
Function (FunctionName) Param1, Param2, Optional Param3,

Param4

576

Appendix B. Status, Settings, and Data
Table Information (Status/Settings/DTI)

Related Topics:
 • Status, Settings, and Data Table Information (Status/Settings/DTI) (p. 577)
 • Common Uses of the Status Table (p. 578)
 • Status Table as Debug Resource (p. 461)

The Status table, CR800 settings, and the DataTableInfo table (collectively,
Status/Settings/DTI) contain registers, settings, and information essential to
setup, programming, and debugging of many advanced CR800 systems.
Status/Settings/DTI are numerous. Note the following:

• All Status/Settings/DTI, except a handful, are accessible through a keyword.
This discussion is organized around these keywords. Keywords and
descriptions are listed alphabetically in sub-appendix Status/Settings/DTI
Descriptions (Alphabetical) (p. 585).

• Status fields are read only (mostly). Some are resettable.
• Settings are read/write (mostly).
• DTI are read only.
• Directories in sub-appendix Status/Settings/DTI Directories (p. 578) list several

groupings of keywords. Each keyword listed in these groups is linked to the
relevant description.

• Some Status/Settings/DTI have multiple names depending on the interface
used to access them.

• No single interface accesses all Status/Settings/DTI. Interfaces used for
access include the following:

Table 135. Status/Setting/DTI: Access Points
Access Point Locate in...

Settings Editor
Device Configuration Utility, LoggerNet Connect screen,
PakBus Graph. See Datalogger Support Software — Details (p.
429).

Status View as a data table in a numeric monitor (p. 495).

DataTableInfo View as a data table in a numeric monitor (p. 495).

Station Status Menu item in datalogger support software (p. 631).

Edit Settings Menu item in PakBusGraph software.

Settings Menu item in CR1000KD Keyboard Display Configure,
Settings

status.keyword/settings.keyword Syntax in CRBasic program

1 Information presented in Station Status is not updated automatically. Click the Refresh button to update.

Note Communication and processor bandwidth are consumed when generating
the Status and DataTableInfo tables. If the CR800 is very tight on processing
time, as may occur in very long or complex operations, retrieving the Status table
repeatedly may cause skipped scans (p. 463).

577

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

B.1 Status/Settings/DTI Directories
Links in the following tables will help you navigate through the
Status/Settings/DTI system:

Table 136. Status/Settings/DTI: Directories
Frequently Used (p. 578)
Alphabetical Listing of Keywords (p. 579)
Status Table Entries (p. 580)
Settings (General) (p. 581)
Settings (comport) (p. 582)
Settings (TCP/IP) (p. 581)
Settings Only in Settings Editor (p. 582)
Data Table Information Table (DTI) (p.
582)
Auto-Calibration (p. 582)

Communications, CPI
Communications, General
Communications, PakBus (p. 582)
Communications, TCP/IP I (p. 582)
Communications, TCP/IP II (p. 583)
Communications, TCP/IP III (p. 583)
Communications, WiFi
CRBasic Program I (p. 583)
CRBasic Program II (p. 583)

Data (p. 583)
Memory (p. 583)
Miscellaneous (p. 584)
Obsolete (p. 584)
OS and Hardware Versioning (p. 584)
Power Monitors (p. 584)
Security (p. 584)
Signatures (p. 584)

Table 137. Status/Settings/DTI: Frequently Used
Action Status/Setting/DTI Table Where Located

Find the PakBus address of the CR800 PakBusAddress (p. 597) Communications, PakBus

See messages pertaining to compilation of
the CRBasic program running in the
CR800

CompileResults (p. 588) CRBasic Program I

Programming errors ProgErrors (p. 600) CRBasic Program II

 ProgSignature (p. 600)

 SkippedScan (p. 603)

 StartUpCode (p. 603)

Data tables DataFillDays() (p. 589) Data

 SkippedRecord() (p. 603)

Memory FullMemReset (p. 590) Memory

 MemoryFree (p. 596)

 MemorySize (p. 596)

Datalogger auto-resets WatchdogErrors (p. 607) Miscellaneous

Operating system OSDate (p. 597) OS and Hardware Versioning

 OSSignature (p. 597)

 OSVersion (p. 597)

Power Battery (p. 585) Power Monitors

 LithiumBattery (p. 594)

 Low12VCount (p. 594)

578

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Table 138. Status/Settings/DTI: Alphabetical Listing of Keywords
B
Battery (p. 585)
Baudrate() (p. 585)
Beacon() (p. 586)
BuffDepth (p. 586)

E
ErrorCalib (p. 589)
EthernetEnable (p. 589)
EthernetPower (p. 590)

M
MaxBuffDepth (p. 595)
MaxPacketSize (p. 595)
MaxProcTime (p. 595)
MaxSlowProcTime() (p. 595)
MaxSystemProcTime (p. 595)

pppIPAddr (p. 599)
pppIPMask (p. 599)
pppPassword (p. 600)
pppUsername (p. 600)
ProcessTime (p. 600)
ProgErrors (p. 600)

T
TCPClientConnections (p. 604)

TCPPort (p. 604)
TelnetEnabled (p. 604)
TimeStamp (p. 604)

C
CalDiffOffset() (p. 586)
CalGain() (p. 587)
 CalSeOffset() (p. 587)

F
FilesManager (p. 590)
FTPEnabled (p. 590)
FTPPassword (p. 590)
FTPPort (p. 590)

FTPUserName (p. 590)
FullMemReset (p. 590)

MeasureOps (p. 595)
MeasureTime (p. 595)
MemoryFree (p. 596)
MemorySize (p. 596)
Messages (p. 596)

ProgName (p. 600)
ProgSignature (p. 600)

TLS Certificate (p. 604)
TLS Enabled (p. 605)
TLS Private Key (p. 605)

CentralRouters() (p. 587)

H
HTTPEnabled (p. 591)
HTTPPort (p. 591)

N
Neighbors() (p. 596)

R
RecNum (p. 601)
RevBoard (p. 601)
RouteFilters (p. 601)
RS232Handshaking (p. 601)
RS232Power (p. 601)

U
UDPBroadcastFilter (p. 605)

USRDriveFree (p. 605)
USRDriveSize (p. 605)
UTCOffset (p. 606)

CommActive() (p. 587)
CommConfig() (p. 587)
CommsMemAlloc (p. 587)

CommsMemFree(1) (p. 588)
CommsMemFree(2) (p. 588)

I
IncludeFile (p. 591)
IPAddressCSIO() (p. 591)
IPAddressEth (p. 591)

IPGateway (p. 591)

O
OSDate (p. 597)
OSSignature (p. 597)
OSVersion (p. 597)

RS232Timeout (p. 601)
RunSignature (p. 602)

V
VarOutOfBound (p. 606)
Verify() (p. 606)

CommsMemFree(3) (p. 588)
CompileResults (p. 588)

IPGatewayCSIO() (p. 592)

IPInfo (p. 592)
IPMaskCSIO() (p. 592)
IPMaskEth (p. 592)

P
PakBusAddress (p. 597)
PakBusEncryptionKey (p. 597)
PakBusPort (p. 597)
PakBusRoutes (p. 598)

S
SecsPerRecord() (p. 602)
Security(1) (p. 602)
Security(2) (p. 602)
Security(3) (p. 602)
SerialNumber (p. 602)

W
WatchdogErrors (p. 607)

CPUDriveFree (p. 588)
CSIO1netEnable
CSIO2netEnable

IPTrace (p. 592)
IPTraceCode (p. 592)
IPTraceComport (p. 592)
IsRouter (p. 593)

PakBusTCPClients (p. 598)
PakBusTCPEnabled (p. 598)
PakBusTCPPassword (p. 598)

PanelTemp (p. 598)
PingEnabled (p. 598)

ServicesEnabled() (p. 603)
SkippedRecord() (p. 603)
SkippedScan (p. 603)
SkippedSlowScan() (p. 603)

579

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Table 138. Status/Settings/DTI: Alphabetical Listing of Keywords
D
DataFillDays() (p. 589)
DataRecordSize() (p. 589)
DataTableName() (p. 589)

DNS() (p. 589)

L
LastSlowScan() (p. 594)
LastSystemScan (p. 594)
LithiumBattery (p. 594)
Low12VCount (p. 594)
Low5VCount (p. 594)

PortConfig() (p. 598)
PortStatus() (p. 599)

pppDial (p. 599)
pppDialResponse (p. 599)
pppInterface (p. 599)

SkippedSystemScan (p. 603)
SlowProcTime() (p. 603)
StartTime (p. 603)
StartUpCode (p. 603)
StationName (p. 604)
SW12Volts() (p. 604)
SystemProcTime (p. 604)

Table 139. Status/Settings/DTI: Status Table Entries on CR1000KD Keyboard Display
RecNum (p. 601)
TimeStamp (p. 604)
OSVersion (p. 597)
OSDate (p. 597)
OSSignature (p. 597)

VarOutOfBound (p. 606)
SkippedScan (p. 603)
SkippedSystemScan (p. 603)
SkippedSlowScan() (p. 603)
ErrorCalib (p. 589)

PortConfig() (p. 598)
SW12Volts() (p. 604)
PakBusRoutes (p. 598)
Messages (p. 596)

SerialNumber (p. 602)
RevBoard (p. 601)
StationName (p. 604)
ProgName (p. 600)

MemorySize (p. 596)
MemoryFree (p. 596)

CommsMemFree(1) (p. 588)
CommsMemFree(2) (p. 588)
CommsMemFree(3) (p. 588)

StartTime (p. 603)
RunSignature (p. 602)
ProgSignature (p. 600)
WatchdogErrors (p. 607)
PanelTemp (p. 598)

FullMemReset (p. 590)

MeasureOps (p. 595)
MeasureTime (p. 595)
ProcessTime (p. 600)

CalGain() (p. 587)

CalSeOffset() (p. 587)
CalDiffOffset() (p. 586)

Battery (p. 585)
LithiumBattery (p. 594)

MaxProcTime (p. 595)
BuffDepth (p. 586)
MaxBuffDepth (p. 595)
LastSystemScan (p. 594)
LastSlowScan() (p. 594)

Low12VCount (p. 594)
Low5VCount (p. 594)
CompileResults (p. 588)
StartUpCode (p. 603)
ProgErrors (p. 600)

SystemProcTime (p. 604)
SlowProcTime() (p. 603)
MaxSystemProcTime (p. 595)
MaxSlowProcTime() (p. 595)
PortStatus() (p. 599)

580

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Table 140. Status/Settings/DTI: Settings (General) on CR1000KD Keyboard Display
StationName (p. 604)
Security(1) (p. 602)
Security(2) (p. 602)
Security(3) (p. 602)
PakBusAddress (p. 597)

FilesManager (p. 590)
RouteFilters (p. 601)
CentralRouters() (p. 587)
IncludeFile (p. 591)
UTCOffset (p. 606)

RS232Handshaking (p. 601)
RS232Timeout (p. 601)

IsRouter (p. 593)
CommsMemAlloc (p. 587)
MaxPacketSize (p. 595)
PakBusEncryptionKey (p. 597)
PakBusTCPPassword (p. 598)

CPUDriveFree (p. 588)
USRDriveFree (p. 605)

USRDriveSize (p. 605)
RS232Power (p. 601)

Table 141. Status/Settings/DTI: Settings (comport) on CR1000KD Keyboard Display
Baudrate() (p. 585)
Beacon() (p. 586)

Neighbors() (p. 596)
Verify() (p. 606)

Table 142. Status/Settings/DTI: Settings (TCP/IP) on CR1000KD Keyboard Display
IPInfo (p. 592)
EthernetEnable (p. 589)
CSIO1netEnable

pppIPAddr (p. 599)
pppIPMask (p. 599)
pppUsername (p. 600)
pppPassword (p. 600)
pppDial (p. 599)

CSIO2netEnable

EthernetPower (p. 590)
IPAddressEth (p. 591)
IPMaskEth (p. 592)

pppDialResponse (p. 599)
IPTraceComport (p. 592)
IPTraceCode (p. 592)
DNS() (p. 589)
PakBusTCPClients (p. 598)

IPGateway (p. 591)

IPAddressCSIO() (p. 591)

UDPBroadcastFilter (p. 605)
HTTPEnabled (p. 591)
FTPEnabled (p. 590)
TelnetEnabled (p. 604)
PingEnabled (p. 598)

IPMaskCSIO() (p. 592)
IPGatewayCSIO() (p. 592)
PakBusPort (p. 597)
FTPPort (p. 590)
HTTPPort (p. 591)

PakBusTCPEnabled (p. 598)

FTPUserName (p. 590)
FTPPassword (p. 590)
pppInterface (p. 599)

581

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Table 143. Status/Settings/DTI: Settings Only in Settings Editor
TLS Certificate (p. 604) TLS Private Key (p. 605)

Table 144. Status/Settings/DTI: Data Table Information Table (DTI) Keywords
DataFillDays() (p. 589)
DataRecordSize() (p. 589)

DataTableName() (p. 589)
SecsPerRecord() (p. 602)

SkippedRecord() (p. 603)

Table 145. Status/Settings/DTI: Auto-Calibration
CalDiffOffset() (p. 586)
CalGain() (p. 587)

CalSeOffset() (p. 587)

ErrorCalib (p. 589)
LastSystemScan (p. 594)
MaxSystemProcTime (p. 595)

SkippedSystemScan (p. 603)
SystemProcTime (p. 604)

Table 146. Status/Settings/DTI: Communications, General
Baudrate() (p. 585)
CommsMemAlloc (p. 587)

CommsMemFree(1) (p. 588)

CommsMemFree(2) (p. 588)
CommsMemFree(3) (p. 588)

RS232Handshaking (p. 601)
RS232Power (p. 601)
RS232Timeout (p. 601)

Table 147. Status/Settings/DTI: Communications, PakBus
Beacon() (p. 586)
CentralRouters() (p. 587)
IsRouter (p. 593)
MaxPacketSize (p. 595)
Neighbors() (p. 596)

PakBusAddress (p. 597)
PakBusEncryptionKey (p. 597)
PakBusPort (p. 597)
PakBusRoutes (p. 598)
PakBusTCPClients (p. 598)

PakBusTCPEnabled (p. 598)
PakBusTCPPassword (p. 598)
RouteFilters (p. 601)
Verify() (p. 606)

Table 148. Status/Settings/DTI: Communications, TCP_IP I
CSIO1netEnable
CSIO2netEnable
DNS() (p. 589)
EthernetEnable (p. 589)

IPGateway (p. 591)
IPGatewayCSIO() (p. 592)

IPInfo (p. 592)

IPTrace (p. 592)
IPTraceCode (p. 592)
IPTraceComport (p. 592)

EthernetPower (p. 590)
IPAddressCSIO() (p. 591)
IPAddressEth (p. 591)

IPMaskCSIO() (p. 592)
IPMaskEth (p. 592)

PingEnabled (p. 598)
TelnetEnabled (p. 604)

582

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Table 149. Status/Settings/DTI: Communications, TCP_IP II
FTPEnabled (p. 590)
FTPPassword (p. 590)
FTPPort (p. 590)
FTPUserName (p. 590)
HTTPEnabled (p. 591)
HTTPPort (p. 591)

TLS Certificate (p. 604)

TLS Private Key (p. 605)

UDPBroadcastFilter (p. 605)

Table 150. Status/Settings/DTI: Communications, TCP_IP III
pppDial (p. 599)
pppDialResponse (p. 599)
pppInterface (p. 599)

pppIPAddr (p. 599)
pppIPMask (p. 599)
pppPassword (p. 600)

pppUsername (p. 600)

Table 151. Status/Settings/DTI: CRBasic Program I
BuffDepth (p. 586)
CompileResults (p. 588)
IncludeFile (p. 591)
LastSlowScan() (p. 594)

MaxBuffDepth (p. 595)
MaxProcTime (p. 595)
MaxSlowProcTime() (p. 595)
MeasureOps (p. 595)

MeasureTime (p. 595)
Messages (p. 596)

Table 152. Status/Settings/DTI: CRBasic Program II
ProcessTime (p. 600)
ProgErrors (p. 600)
ProgName (p. 600)

SkippedScan (p. 603)
SkippedSlowScan() (p. 603)
SlowProcTime() (p. 603)

StartTime (p. 603)
StartUpCode (p. 603)
VarOutOfBound (p. 606)

Table 153. Status/Settings/DTI: Data
DataFillDays() (p. 589)
DataRecordSize() (p. 589)

DataTableName() (p. 589)
SecsPerRecord() (p. 602)

SkippedRecord() (p. 603)

Table 154. Status/Settings/DTI: Memory

CPUDriveFree (p. 588)

FilesManager (p. 590)
FullMemReset (p. 590)
MemoryFree (p. 596)
MemorySize (p. 596)

USRDriveFree (p. 605)
USRDriveSize (p. 605)

583

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Table 155. Status/Settings/DTI: Miscellaneous

PanelTemp (p. 598)
PortConfig() (p. 598)

PortStatus() (p. 599)
RecNum (p. 601)
StationName (p. 604)
SW12Volts() (p. 604)

TimeStamp (p. 604)
UTCOffset (p. 606)
WatchdogErrors (p. 607)

Table 156. Status/Settings/DTI: Obsolete
IPTrace (p. 592)

PakBusNodes (p. 597)
ServicesEnabled() (p. 603)

TCPClientConnections (p. 604)
TCPPort (p. 604)

TLS Enabled (p. 605)

Table 157. Status/Settings/DTI: OS and Hardware Versioning
OSDate (p. 597)
OSSignature (p. 597)

OSVersion (p. 597)
RevBoard (p. 601)

SerialNumber (p. 602)

Table 158. Status/Settings/DTI: Power Monitors
Battery (p. 585)

LithiumBattery (p. 594)
Low12VCount (p. 594)

Low5VCount (p. 594)

Table 159. Status/Settings/DTI: Security
PakBusTCPPassword (p. 598)
Security(1) (p. 602)
Security(2) (p. 602)

Security(3) (p. 602)
TLS Certificate (p. 604)
TLS Private Key (p. 605)

Table 160. Status/Settings/DTI: Signatures
OSSignature (p. 597) ProgSignature (p. 600) RunSignature (p. 602)

584

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

B.2 Status/Settings/DTI Descriptions
(Alphabetical)

Table 161. Status/Settings/DTI: B

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

Battery

Station Status: Battery Voltage
Keyboard: Status Table ≈ line 1
CRBasic: variable = status.keyword
Voltage of the battery connected to the POWER IN
12V and G terminals. Measurement is made during
auto (background) calibration. This is the same
measurement made by the CRBasic Battery()
instruction.

read only
IEEE4
Volts

voltage of
primary
power supply

9.6 to 16

Baudrate()

Settings Editor: Baud Rate
Alias: Communication Ports Baud Rates
Keyboard: Settings (comports) ≈ line 16
CRBasic: variable = status.keyword; SetSetting(),
SerialOut()
Array of integers setting baud rates for com ports
RS-232, CS I/O, and C terminals.

Table 162. Baudrate()
Array, Keywords, and
Default Settings

Array
Element
Number

Port
Keyword

Default
Baud
Rate

(1)
(2)
(3)
(4)
(5)
(6)

ComRS232
ComME
ComSDC7
ComSDC8
ComSDC10
ComSDC11

-115200
-115200
115200
115200
115200
115200

(7)
(8)

Com1
Com2

0
0

ComRS232 and ComME (CS I/O) support auto
baud. Auto baud is selected by a value of 0 or a
valid entry preceded by a dash (e.g., -115200) with
the beginning rate the entered value. Auto baud
samples the incoming baud rate and sets the port to
that rate.
If baud rate is changed on any port created with C
terminals, the CRBasic program will recompile if the
change is to 0 (disabled) or from 0 to baud rate
(enabled).
See table Baudrate(), Beacon(), and Verify() Details

read/write
LONG array

See table at
left.

0 (auto baud
or disabled)
1200
2400
4800
9600
19200
38400
57600
76800
115200

585

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Beacon()

Settings Editor: Beacon Interval
Alias: Communication Ports Beacon Intervals
Keyboard: Settings (comports)
CRBasic: variable = settings.keyword;
SetSettings()
Governs the rate at which the CR800 broadcasts
PakBus messages on the associated port to discover
new neighboring nodes. It also governs the default
verification interval if the value of Verify() (p. 606)
for the associated port is 0.

Table 163. Beacon() Array,
Keywords, and Default
Settings

Array
Element
Number

Port
Keyword

(1)
(2)
(3)
(4)
(5)
(6)

ComRS232
ComME
ComSDC7
ComSDC8
ComSDC10
ComSDC11

(7)
(8)

Com1
Com2

See table Baudrate(), Beacon(), and Verify() Details

read/write
LONG array
seconds

0 0 to
2147483648

BuffDepth

Keyboard: Status Table ≈ line 42
CRBasic: variable = status.keyword
Shows the current Pipeline Mode (p. 150) processing
buffer depth, which indicates how far the processing
task is currently behind the measurement task.

read only
LONG 0

Table 164. Status/Settings/DTI: C

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

CalDiffOffset()2

Keyboard: Status Table ≈ line 63
CRBasic: variable = status.keyword
Array of 18 integers reporting differential offsets for
each integration / range combination. Updated by
background calibration when required.

read only
INTLONG
mV

 near 0

586

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

CalGain()2

Keyboard: Status Table ≈ line 61
CRBasic: variable = status.keyword
Array of 18 floating-point values reporting
calibration gain for each integration / range
combination. Updated by background calibration.

read-only
IEEE4
mV

CalSeOffSet()2

Keyboard: Status Table ≈ line 62
CRBasic: variable = status.keyword
Array of 18 integers reporting single-ended offsets
for each integration / range combination. Updated
by the auto (background) calibration when required.

read only
LONG
mV

 near 0

CentralRouters()

Settings Editor: Central Routers
Keyboard: Settings (General) ≈ line 13
CRBasic: variable = settings.keyword;
SetSettings()
Array of eight PakBus addresses for routers that can
act as central routers. By specifying a non-empty list
for this setting, the CR800 is configured as a branch
router meaning that it will not be required to keep
track of neighbors of any routers except those in its
own branch. So configured, the CR800 ignores any
neighbor lists received from addresses in the central
routers setting and forwards messages that it receives
to the nearest default router if it does not have the
destination address for those messages in its routing
table. Each entry must be formatted with a comma
separating individual values.

read/write
LONG 0

CommActive()3

CRBasic: variable = status.keyword
"Hidden" array indicating if communications are
currently active on the corresponding ports. Order of
array elements is ComRS232, ComME, ComSDC7,
ComSDC8, ComSDC10, ComSDC11, Com1, Com2,

read only
BOOLEAN

False (except
for the active
communicati
on port)

True or False

CommConfig()

CRBasic: variable = status.keyword; SerialOpen()
"Hidden" array indicating configuration of
corresponding ports. When SerialOpen() is used,
values indicate format parameters for that
instruction. PakBus communications can occur
concurrently on the same port if the port was
previously opened (in the case of the CP UARTS)
for PakBus, or if the port is always open (CS I/O and
RS-232) for PakBus, the code is 4.
Order of array elements is RS-232, CS I/O ME,
COM310, CS I/O SDC7, CS I/O SDC8, CS I/O
SDC10, CS I/O SDC11, Com1, Com2,

read/write
LONG

RS-232 is
always
hardware
enabled
RS-232
through
SDC8 = 4
(enabled)
COM1 or
COM2 = 0
(disabled)

0 = Program
disabled
4 = Program
enabled

CommsMemAlloc

Settings Editor: Communication Allocation
AKA: PakBusNodes, PakBus Nodes Allocation,
PakBus Network Node Number
Keyboard: Settings (General) ≈ line 7
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the amount of memory that the CR800
allocates for maintaining PakBus routing
information. Represents roughly the maximum
number of PakBus nodes that the CR800 is able to
track in its routing tables (see section
CommsMemFree(2) (p. 468)).

read/write
LONG

At start up,
with no
TCP/IP
comms: 1530
Signifies IP
packets:
• 15 big
• 30 little
• nothing in
 receive
 queue

587

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

CommsMemFree(1)

Keyboard: Status Table ≈ line 33
CRBasic: variable = status.keyword
Array indicating numbers of buffers used in
communications except with an external keyboard
display. Two digits per each buffer-size category.
Least significant digit specifies the number of the
smallest buffers. Most significant digit specifies the
number of the largest buffers. When TLS is not
active, there are four categories, "tiny", "little",
"medium", and "large". When TLS is active, there is
an additional fifth category, "huge", and there are
more buffers allocated for each category. See
section CommsMemFree(1) (p. 467).

read only
LONG ?

TLS Not
Active:
tiny — 05
little — 15
medium —
25
large — 15
huge — 0
TLS Active:
tiny — 160
little — 99
medium —
99
large — 30
huge — 02

CommsMemFree(2)

Keyboard: Status Table ≈ line 34
CRBasic: variable = status.keyword
Array indicating numbers of buffers remaining for
PakBus routing and neighbor lists. Each route or
neighbor requires one buffer. See section
CommsMemFree(2) (p. 468).

read only
LONG ? ?

CommsMemFree(3)

Keyboard: Status Table ≈ line 35
CRBasic: variable = status.keyword
Array indicating three two-digit fields, from right
(least significant) to left (most significant): "little"
IP packets available, "big" IP packets, and received
IP packets in a receive queue that have not yet been
processed. See the section CommsMemFree(3) (p.
469).

read only
LONG

At start up,
with no
TCP/IP
comms: 1530
— 30 little,
15 big IP
packets
available with
nothing in the
receive
queue.

CompileResults

Station Status: Results for Last Program Compiled
Keyboard: Status Table ≈ line 23
CRBasic: variable = status.keyword
Contains error messages generated at compilation or
during runtime.

read-only
STRING 0

CPUDriveFree

Keyboard: Settings (General) ≈ line 16
CRBasic: variable = settings.keyword;
SetSettings()
Bytes remaining on the CPU: drive. This drive
resides in the serial FLASH and is always present.
CRBasic programs are normally stored here.

read-only
integer

2 Order and definitions of auto-calibration array elements:

(1) 5000 mV range 250 ms integration
(2) 2500 mV range 250 ms integration
(3) 250 mV range 250 ms integration
(4) 25 mV range 250 ms integration
(5) 7.5 mV range 250 ms integration
(6) 2.5 mV range 250 ms integration

(7) 5000 mV range 60 Hz integration
(8) 2500 mV range 60 Hz integration
(9) 250 mV range 60 Hz integration
(10) 25 mV range 60 Hz integration
(11) 7.5 mV range 60 Hz integration
(12) 2.5 mV range 60 Hz integration

(13) 5000 mV range 50 Hz integration
(14) 2500 mV range 50 Hz integration
(15) 250 mV range 50 Hz integration
(16) 25 mV range 50 Hz integration
(17) 7.5 mV range 50 Hz integration
(18) 2.5 mV range 50 Hz integration

588

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

3 In general, CommActive is set to TRUE when receiving incoming characters, independent of the protocol. It is set to FALSE
after a 40 second timeout during which no incoming characters are processed, or when the protocol is PakBus and the serial packet
protocol on the COM port specifies off line. Note, therefore, that for protocols other than PakBus that are serviced by the
SerialIO() instruction (ModBus, DNP3, generic protocols), CommActive will remain TRUE as long as characters are received at a
rate faster than every 40 seconds. In addition, PPP will activate its COM port with a 31 minute timeout. When PPP closes, it will
cancel the timeout and set CommActive as FALSE. Further, if there is a dialing process going on, CommActive is set to TRUE.
One other event that causes ComME to be active is the GOES instruction. In conclusion, the name CommActive can be
misleading. For example, if there are no incoming characters to activate the 40-second timeout during which time CommActive is
set to TRUE and only outputs data, then CommActive is not set to TRUE. For protocols other than PakBus,the active TRUE
lingers for 40 seconds after the last incoming characters are processed. For PPP, the COM port is always TRUE so long as PPP is
open.

Table 165. Status/Settings/DTI: D

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

DataFillDays()

Keyboard: DataTableInfo ≈ line 5
CRBasic: variable = status.keyword
Reports the time required to fill a data table. Each
table has its own entry.

read only
LONG array
days

DataRecordSize()
Keyboard: DataTableInfo: ≈3
CRBasic: variable = status.keyword
Reports the number of records in a data table.

read only
LONG array

DataTableName()

Keyboard: DataTableInfo ≈ line 1
CRBasic: variable = status.keyword
Reports the names of data tables. Array elements are
in the order the data tables are declared in the
CRBasic program.

read only
STRING
array

DNS()

Settings Editor name: Name Servers
Keyboard: Settings (TCP/IP) ≈ line 32
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the addresses of up to two domain name
servers that the CR800 can use to resolve domain
names to IP addresses. Note that if DHCP is used to
resolve IP information, the addresses obtained via
DHCP are appended to this list.

read/write
STRING 0.0.0.0

0–255.0–
255.0–255.0-
255

Table 166. Status/Settings/DTI: E

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

ErrorCalib

Keyboard: Status Table ≈ line 30
CRBasic: variable = status.keyword
Number of erroneous calibration values measured.
Erroneous values are discarded. Auto-calibration
runs in a hidden slow-sequence scan. See section
CR800 Auto Calibration — Overview (p. 91).

read-only
LONG
Count

0 0

EthernetEnable Keyboard: Settings (TCP/IP) ≈ line 2
Settings Editor: Ethernet Interface Enabled

read/write
BOOLEAN True True or False

589

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

CRBasic: variable = settings.keyword;
SetSettings()

EthernetPower

Keyboard: Settings (TCP/IP) ≈ line 6
Settings Editor: Ethernet Power
CRBasic: variable = settings.keyword;
SetSettings()

read/write
UINT2
minute

 0 to 4, 4 =
always off

Table 167. Status/Settings/DTI: F

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

FilesManager

Settings Editor: Files Manager
Keyboard: Settings (General) ≈ line 11
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the numbers of files of a designated type
that are saved when received from a specified node.
See section Files Manager (p. 363).

read/write
STRING (0, , 0) 0 to 351

characters

FTPEnabled

Keyboard: Settings (TCP/IP) ≈ line 36
Settings Editor: FTP Enabled
CRBasic: variable = settings.keyword;
SetSettings()
Set to 1 if the FTP service should be enabled. This
service is disabled by default. Aliased to now
obsolete ServicesEnabled()

read/write
BOOLEAN False True of False

FTPPassword

Settings Editor: FTP Password
Keyboard: Settings (TCP/IP) ≈ line 22
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the password that is used to log in to the
FTP server.

read/write
STRING 0 to 63

characters

FTPPort

Settings Editor: FTP Service Port
Keyboard: Settings (TCP/IP) ≈ line 17
CRBasic: variable = settings.keyword;
SetSettings()
Configures the TCP port on which the FTP service is
offered. Generally, the default value is sufficient
unless a different value needs to be specified in order
to accommodate port mapping rules in a network
address translation firewall.

read/write
UINT2 21 0 to 65535

FTPUserName

Keyboard: Settings (TCP/IP) ≈ line 21
Settings Editor: FTP User Name
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the user name that is used to log in to the
FTP server. An empty string or "anonymous" (the
default) inactivates the FTP server.

read/write
STRING "anonymous" 0 to 63

characters

FullMemReset

Keyboard: Status Table ≈ line 36
CRBasic: variable = settings.keyword;
SetSettings()
Enter 98765 to start a full-memory reset. See section
Full Memory Reset (p. 360).

read/write
LONG 0 to reset, enter

98765

590

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Table 168. Status/Settings/DTI: H

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

HTTPEnabled

Settings Editor: HTTP Enabled
Aliased from: ServicesEnabled()
Keyboard: Settings (TCP/IP) ≈ line 35
CRBasic: variable = settings.keyword;
SetSettings()
Replaces old ServicesEnabled(). Enables (True) or
disables (False) the HTTP service.

read/write
BOOLEAN True True of False

HTTPPort

Settings Editor: HTTP Service Port
Keyboard: Settings (TCP/IP) ≈ line 18
CRBasic: variable = settings.keyword;
SetSettings()
Configures the TCP port on which the HTTP (web
server) service is offered. Generally, the default
value is sufficient unless a different value needs to be
specified in order to accommodate port-mapping
rules in a network-address translation firewall.

read/write
LONG 80 0 to 65535

Table 169. Status/Settings/DTI: I

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

IncludeFile

Keyboard: Settings (General) ≈ line 14
AKA: Include File Name
Settings Editor: Include File Name
CRBasic: variable = settings.keyword;
SetSettings()
Name of a file to be included at the end of the current
CRBasic program, or that can be run as the default
program. See section 'Include File' (p. 145). Specify
{drive}:{filename}, where drive: = CPU:, USR:,
USB: . Program file extensions must be valid for the
CRBasic program (.dld, cr8).

read/write
STRING no entry 0 to 63

characters

IPAddressCSIO()

Settings Editor: CS I/O IP Address
Keyboard: Settings (TCP/IP) ≈ line 13
CRBasic: variable = settings.keyword;
SetSettings()

read/write
STRING
array

0.0.0.0
0–255.0–
255.0–255.0–
255

IPAddressEth

Settings Editor: Ethernet IP Address
Keyboard: Settings (TCP/IP) ≈ line 7
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the IP address for the Ethernet interface. If
zero, the address, net mask, and gateway are
configured automatically using DHCP. Made
available only if an Ethernet link is connected. A
change will cause the CRBasic program to
recompile.

read/write
4B STRING 0.0.0.0

0–255.0–
255.0–255.0–
255

IPGateway Settings Editor: Ethernet Default Gateway
AKA: Default Gateway read/write 0.0.0.0 0–255.0–

255.0–255.0–

591

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Keyboard: Settings (TCP/IP) ≈ line 9
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the address of the IP router to which the
CR800 will forward all non-local IP packets for
which it has no route. A change will cause the
CRBasic program to recompile.

4B STRING 255

IPGatewayCSIO()

Settings Editor: CS I/O Default Gateway
Keyboard: Settings (TCP/IP) ≈ line 15
CRBasic: variable = settings.keyword;
SetSettings()

read/write
STRING
array

0.0.0.0
0–255.0–
255.0–255.0–
255

IPInfo1

Settings Editor: TCP/IP Info
Keyboard: Settings (TCP/IP) ≈ line 1
CRBasic: see footnote 1
Indicates current parameters for IP connection.

read only
STRING n/a

IPMaskCSIO()

Settings Editor: CS I/O Subnet Mask
Keyboard: Settings (TCP/IP) ≈ line 14
CRBasic: variable = settings.keyword;
SetSettings()

read/write
STRING
array

255.255.255.
0

0–255.0–
255.0–255.0–
255

IPMaskEth

Settings Editor: Ethernet Subnet Mask
Keyboard: Settings (TCP/IP) ≈ line 8
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the subnet mask for the Ethernet interface.
This setting is made available when an Ethernet link
is connected. A change will cause the CRBasic
program to recompile.

read/write
STRING

255.255.255.
0

0–255.0–
255.0–255.0–
255

IPTrace Obsolete. Aliased to IPTraceComport

IPTraceCode

Settings Editor: IP Trace Code
Keyboard: Settings (TCP/IP) ≈ line 31
CRBasic: variable = settings.keyword;
SetSettings()
This setting controls what type of information is sent
on the port specified by IPTracePort and via Telnet.
Useful values are:

0 Trace is inactive
1 Startup and watchdog only
2 Verbose PPP
4 Print general informational messages
16 Display net-interface error messages
256 Transport protocol (UDP/TCP/RVD) trace
8192 FTP trace
65535 Trace everything

read/write
UINT2 0

0 to 65535,
see
description at
left.

IPTraceComport

Settings Editor: IP Trace COM Port
Aliased from: IPTrace
Keyboard: Settings (TCP/IP) ≈ line 30
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the port (if any) on which TCP/IP trace
information is sent. Information type is controlled
by IPTraceCode.

read/write
LONG 0 (inactive) 0 to 65535

592

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

IsRouter

Settings Editor: Is Router
Keyboard: Settings (General) ≈ line 6
CRBasic: variable = settings.keyword;
SetSettings()
Controls configuration of CR800 as a router or leaf
node.

read/write
BOOLEAN False

True = router
False=leaf
node

1 IPInfo was moved from Status to Settings in OS1 OS28 to optimize use of telecommunication bandwidth.
IPInfo requires about 1.5 KB when all IP interfaces are active. This 1.5 KB is transfered each time it is requested regardless of
how many IP interfaces are actually used. Settings are retrieved and displayed in a much more controlled one-shot-poll fashion so
bandwidth is preserved. Follow are methods for viewing IPInfo:
a) Settings Editor in DevConfig, LoggerNet | Connect, LoggerNet | PakBusGraph, and LoggerLink software.
b) CR1000KD Keyboard Display Settings (TCP/IP)
c) CRBasic programming as shown in the following code snips
Example 1
'IPInfo for one IP interface
Public IPStatus As String * 400
BeginProg
 Scan(1,Sec,0,0)
 IPStatus = Settings.IPInfo
 NextScan
EndProg

Example 2
'Get just the IP address
Public EthIPAddr As String * 16
BeginProg
 Scan(1,Sec,0,0)
 EthIPAddr = IPInfo(0,0)
 NextScan
EndProg

Example 3
'PPP status
Public PPPMsg As String * 100

SetSetting("BaudRate(Com1)",9600)
SetSetting("IPTraceCode",2)
SetSetting("pppInterface",Com1)
SetSetting("pppDial","PPP")

BeginProg
 Scan(1,Sec,0,0)
 NextScan

 SlowSequence
 Do
 Delay(1,2,Sec)
 IPTrace(PPPMsg)
 Loop
 EndSequence
EndProg

593

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Table 170. Status/Settings/DTI: L

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

LastSlowScan()

Keyboard: Status Table ≈ line 45
CRBasic: variable = status.keyword
Reports the las time a SlowSequence scan in the
CRBasic program was executed. See
MaxSlowProcTime (p. 595), SkippedSlowScan (p. 603),
SlowProcTime (p. 603).

read only
NSEC array
date/time

n/a recent past

LastSystemScan

Keyboard: Status Table ≈ line 44
CRBasic: variable = status.keyword
Reports the time of the of the last auto (background)
calibration, which runs in a hidden slow-sequence
type scan. See MaxSystemProcTime (p. 595),
SkippedSystemScan (p. 603), SystemProcTime (p.
604), and section CR800 Auto Calibration —
Overview (p. 91).

read-only
NSEC
date/time

n/a
within the
past few
minutes

LithiumBattery

Station Status: Lithium Battery
Keyboard: Status Table ≈ line 17
CRBasic: variable = status.keyword
Voltage of the internal lithium battery. Updated in
auto (background) calibration. Replace lithium
battery if <2.7 Vdc. See Replacing the Internal
Battery (p. 449).

read-only
FLOAT
volts

n/a 2.7 to 3.6

Low12VCount

Station Status: Number of times voltage has
dropped below 12V
Keyboard: Status Table ≈ line 21
CRBasic: variable = status.keyword
Increments by 1 each time the primary CR800 supply
voltage drops below ≈9.0. Updated with each Status
table update. The following applies to the CR800
and CR1000 dataloggers. A variation may apply to
the C6 and CR3000: The 12 Vdc-low comparator
triggers at about 9.0 Vdc. The minimum-specified
input voltage of 9.6 Vdc will not cause a 12 Vdc low
condition, but a 12 Vdc low condition will stop
program execution before measurements are
compromised.

reset only
LONG
count

0 0 to 99
0 = reset

Low5VCount

Station Status: Number of times voltage has
dropped below 5V
Keyboard: Status Table ≈ line 22
CRBasic: variable = status.keyword
Number of occurrences of the 5 Vdc supply dropping
below a functional threshold.

reset only
LONG
count

0 0 to 99
0 = reset

594

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Table 171. Status/Settings/DTI: M

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

MaxBuffDepth

Keyboard: Status Table ≈ line 43
CRBasic: variable = status.keyword
Maximum number of buffers the CR800 will use to
process lagged measurements.

read/write
LONG
no units

0 ?

MaxPacketSize

Settings Editor: Max Packet Size
Keyboard: Settings (General) ≈ line 8
CRBasic: variable = settings.keyword;
SetSettings()
Maximum number of bytes per data collection
packet.

read/write
LONG
bytes

1000 ?

MaxProcTime

Keyboard: Status Table ≈ line 41
CRBasic: variable = status.keyword
Maximum time required to run through processing
for the current scan. Value is reset when the scan
exits. Calculated on-the-fly. See MeasureTime (p.
595), ProcessTime (p. 600), SkippedScan (p. 603),
MaxProcTime (p. 595).

read/write
LONG
μs

n/a 0 = reset

MaxSlowProcTime()

Keyboard: Status Table ≈ line 49
CRBasic: variable = status.keyword
Maximum time required to process a SlowSequence
scan in the CRBasic program. 0 until a scan runs.
See LastSlowScan (p. 594), SkippedSlowScan (p. 603),
SlowProcTime (p. 603).

read/write
LONG array
μs

0 until scan 0 = rest

MaxSystemProcTime

Keyboard: Status Table ≈ line 48
CRBasic: variable = status.keyword
Maximum time required to process the auto
(background) calibration, which runs in a hidden
slow-sequence type scan. Displays 0 until an auto-
calibration runs. See LastSystemScan (p. 594),
SkippedSystemScan (p. 603), SystemProcTime (p.
604), and section CR800 Auto Calibration —
Overview (p. 91).

read-only
LONG
μs

0 until scan 0 = reset

MeasureOps

Keyboard: Status Table ≈ line 38
CRBasic: variable = status.keyword
Reports the number of task-sequencer opcodes
required to do all measurements. Calculated at
compile time. Includes opcodes for calibration
(compile time), auto (background) calibration
(system), and slow sequences. Assumes all
measurement instructions run each scan.

read only
LONG
no units

n/a n/a

MeasureTime

Keyboard: Status Table ≈ line 39
CRBasic: variable = status.keyword
Reports the time needed to make measurements in
the current scan. Calculated at compile time.
Includes integration and settling time. In pipeline
mode, processing occurs concurrent with this time so
the sum of MeasureTime and ProcessTime is not
equal to the required scan time. Assumes all
measurement instructions will run each scan. See
ProcessTime and MaxProcTime.

read only
LONG
μs

n/a n/a

595

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

MemoryFree

Station Status: Memory Free
Keyboard: Status Table ≈ line 32
CRBasic: variable = status.keyword
Unallocated SRAM memory on the CPU. All free
memory may not be available for data tables. As
memory is allocated and freed, holes of unallocated
memory, which are unusable for final-data memory,
may be created.

read only
LONG
bytes

3794224 ≥ 4096

MemorySize

Station Status: Memory
Keyboard: Status Table ≈ line 31
CRBasic: variable = status.keyword
Total SRAM in the CR800. See the table CR800
Memory Allocation (p. 352).

read only
LONG
bytes

4194304 4194304

Messages
Keyboard: Status Table ≈ line 54
CRBasic: variable = status.keyword
Contains a string of manually entered messages.

read/write
STRING n/a n/a

Table 172. Status/Settings/DTI: N

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

Neighbors()

Settings Editor: Neighbors Allowed
Keyboard: Settings (comports)
CRBasic: variable = settings.keyword;
SetSettings()
Array of integers indicating PakBus neighbors for
communication ports.

Array
Element
Number

Port
Keyword

(1)
(2)
(3)
(4)
(5)
(6)

ComRS232
ComME
ComSDC7
ComSDC8
ComSDC10
ComSDC11

(7)
(8)

Com1
Com2

See section Neighbors (p. 385).

read/write
STRING 0, 0 n/a

596

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Table 173. Status/Settings/DTI: O

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

OSDate

Station Status: OS Date
Keyboard: Status Table ≈ line 4
CRBasic: variable = status.keyword
Release date of the operating system in the format
yymmdd

read only
STRING n/a n/a

OSSignature

Station Status: OS Signature
Keyboard: Status Table ≈ line 5
CRBasic: variable = status.keyword
Signature of the operating system.

read only
LONG n/a n/a

OSVersion

Station Status: OS Version
Settings Editor: OS Version
Keyboard: Status Table ≈ line 3
CRBasic: variable = status.keyword
Version of the operating system in the CR800.

read only
STRING n/a n/a

Table 174. Status/Settings/DTI: P

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

PakBusAddress

Settings Editor: PakBus Address
Keyboard: Settings (General) ≈ line 5
CRBasic: variable = settings.keyword;
SetSettings()
PakBus address for this CR800. Assign a unique
address if this CR800 is to be placed in a PakBus
network. Addresses 1 to 4094 are valid, but those ≥
4000 are usually reserved for datalogger support
software (p. 93). Many Campbell Scientific devices,
including dataloggers, default to address 1.

read/write
LONG 1 1 to 3999

PakBusEncryptionKey

Settings Editor: PakBus Encryption Key
Keyboard: Settings (General) ≈ line 9
CRBasic: variable = settings.keyword;
SetSettings()

read/write
STRING none 0 to 63

characters

PakBusNodes Obsolete. Replaced by/aliased to CommsMemAlloc

PakBusPort

Settings Editor: PakBus/TCP Service Port
Keyboard: Settings (TCP/IP) ≈ line 16
CRBasic: variable = settings.keyword;
SetSettings()
Replaces old TCPPort setting. Effective only if the
PPP service is enabled using a PPP-compatible
network link (p. 629). Specifies the TCP service port
for PakBus communications with the CR800. Unless
firewall issues exist, this setting probably does not
need to be changed from its default value.

read only
LONG 6785 0 to 65535

597

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

PakBusRoutes

Settings Editor: Routes
Keyboard: Status Table ≈ line 53
CRBasic: variable = status.keyword
Lists routes or router neighbors known to the CR800
at the time the setting was read. Each route is
represented by four components separated by
commas and enclosed in parentheses:

(port, via neighbor adr, pakbus adr,
response time)

See section PakBusRoutes (p. 384).

read only
STRING

(1, 4089,
4089, 1000) ?

PakBusTCPClients

Settings Editor: PakBus/TCP Clients
Alias: PakBus/TCP Client Connections
Keyboard: Settings (TCP/IP) ≈ line 33
CRBasic: variable = settings.keyword;
SetSettings()
Up to four addresses specifying outgoing
PakBus/TCP connections that the datalogger is to
maintain. Formal syntax of the setting:

TCP Connections := 4{ address_pair }.
address_pair := "(" address "," tcp-port ")".
address := domain-name | ip-address.

Example of two connections:
(192.168.4.203, 6785)
(JOHN_DOE.server.com, 6785)

read/write
STRING (, 0) n/a

PakBusTCPEnabled

Settings Editor: ???
Keyboard: Settings (TCP/IP) ≈ line 39
Aliased from: ServicesEnabled()
CRBasic: variable = settings.keyword;
SetSettings()
Enables (True) or disables (False) the PakBus TCP
service.

read/write
BOOLEAN True True or False

PakBusTCPPassword

Settings Editor: PakBus/TCP Password
Keyboard: Settings (General) ≈ line 10
CRBasic: variable = settings.keyword;
SetSettings()
When active (not blank), a log-in process using an
MD5 digest of a random number and this password
must take place successfully before PakBus
communications can proceed over an IP socket.

read/write
STRING

none
(inactive)

0 to 63
characters

PanelTemp

Station Status: Panel Temperature
Keyboard: Status Table ≈ line 15
CRBasic: variable = status.keyword
Current wiring-panel temperature. Measurement is
made in background calibration.

read only
FLOAT
°C

n/a -40 to 85

PingEnabled

Settings Editor: Ping Enabled
Keyboard: Settings (TCP/IP) ≈ line 38
CRBasic: variable = settings.keyword;
SetSettings()
Enables (True) or disables (False) the ICMP ping
service. Replaces old ServicesEnabled().

read/write
BOOLEAN True True or False

PortConfig()

Keyboard: Status Table ≈ line 51
CRBasic: variable = status.keyword
Configuration of C terminals. Array elements in
numeric order of C terminals.

read only
STRING
array

Input

Input,
Output,
SDM, SDI-
12, Tx, Rx

598

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

PortStatus()

Keyboard: Status Table ≈ line 50
CRBasic: variable = status.keyword
States of C terminals configured for control.
On/high (True) or off/low (False). Array elements
in numeric order of C terminals. Updated every 500
ms.

read/write
BOOLEAN
array

False True or False

pppDial

Settings Editor: PPP Dial
Keyboard: Settings (TCP/IP) ≈ line 28
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the dial string that follows ATD (e.g., #777
for Redwing CDMA) or a list of AT commands
separated by ';' (e.g., ATV1;
AT+CGATT=0;ATD*99***1#), that are used to
initialize and dial through a modem before a PPP
connection is attempted. A blank string means that
dialing is not necessary before a PPP connection is
established. CRBasic program will recompile if
changed from NULL to not NULL, or from not
NULL to NULL.

read/write
STRING none n/a

pppDialResponse

Settings Editor: PPP Dial Response
Keyboard: Settings (TCP/IP) ≈ line 29
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the response expected after dialing a
modem before a PPP connection can be established.
CRBasic program will recompile if changed from
NULL to not NULL, or from not NULL to NULL.

read/write
STRING CONNECT n/a

pppInterface

Settings Editor: PPP Interface
Keyboard: Settings (TCP/IP) ≈ line 23
CRBasic: variable = settings.keyword;
SetSettings()
Controls which CR800 communication port PPP
service is configured for. Warning: if this value is
set to CS I/O ME, do not attach any other devices to
the CS I/O port. A change will cause the CRBasic
program to recompile.

read/write
LONG 0 (inactive) ???

pppIPAddr

Keyboard: Settings (TCP/IP) ≈ line 24
Settings Editor: PPP IP Address
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the IP address that is used for the PPP
interface if that interface is active (the PPP Port /
PPP Interface setting needs to be set to something
other than Inactive). Syntax is nnn.nnn.nnn.nnn.
A value of 0.0.0.0 or an empty string will indicate
that DHCP must be used to resolve this address as
well as the subnet mask.

read/write
STRING 0.0.0.0

0–255.0–
255.0–255.0–
255

pppIPMask

Settings Editor: ???
Keyboard: Status Table ≈ line 25
CRBasic: variable = settings.keyword;
SetSettings()

read/write
STRING none

0–255.0–
255.0–255.0–
255

599

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

pppPassword

Settings Editor: PPP tab: Password
Keyboard: Status Table ≈ line 27
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the password that is used to log in to the
PPP server when the PPP interface setting is set to
one of the client selections. Also specifies the
password that must be provided by the PPP client
when the PPP interface setting is set to one of the
server selections.

read/write
STRING none 0 to 63

characters

pppUsername

Settings Editor: PPP User Name
Keyboard: Settings (TCP/IP) ≈ line 26
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the user name that is used to log in to the
PPP server.

read/write
STRING none 0 to 63

characters

ProcessTime

Keyboard: Status Table ≈ line 40
CRBasic: variable = status.keyword
Processing time of the last scan. Time is measured
from the end of the EndScan instruction (after the
measurement event is set) to the beginning of the
EndScan (before the wait for the measurement event
begins) for the subsequent scan. Calculated on-the-
fly. See MeasureTime (p. 595), MaxProcTime (p.
595), SkippedScan (p. 603), MaxProcTime (p. 595).

read only
LONG
μs

0 n/a

ProgErrors

Keyboard: Status Table ≈ line 25
CRBasic: variable = status.keyword
Number of compile or runtime errors for the running
program.

read-only
LONG
counts

0 ≥ 0

ProgName

Station Status: Current Program
Keyboard: Status Table ≈ line 10
CRBasic: variable = status.keyword
Name of current (running) program

read only
STRING n/a n/a

ProgSignature

Station Status: Program Signature
Keyboard: Status Table ≈ line 13
CRBasic: variable = status.keyword
Signature of the text of the running program file
(includes comments). Does not change with
operating-system changes. See RunSignature (p.
602). The CRBasic pre-compiler gets this signature
with command line parameter –s. The output will
add a line of the following form:

“Progname.CReX – Compiled in
PipelineMode.
ProgSignature = XXXX.”

read only
LONG n/a n/a

600

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Table 175. Status/Settings/DTI: R

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

Record

Keyboard: Status Table, DTI Table ≈ header left
CRBasic: variable = Public.Record(1,1)
Record number increments only when the record is
requested by support software. If record number is
needed for a CRBasic program operation, use
Record in the Public table. When using
Public.Record(1,1), the NextScan that occurs in the
MAIN sequence (not in any of the slow sequences)
increments the record number.

read only
LONG n/a 0 to 232

RevBoard

Keyboard: Status Table ≈ line 8
CRBasic: variable = status.keyword
Electronics board revision in the form xxx.yyy,
where xxx = hardware revision number; yyy = clock
chip software revision. Stored in flash memory.

read only
STRING n/a n/a

RouteFilters

Settings Editor: Route Filters
Keyboard: Settings (General) ≈ line 12
CRBasic: variable = settings.keyword;
SetSettings()
Restricts routing or processing of some PakBus
message types. See section Route Filters (p. 384)

read/write
STRING (0, 0, 0, 0) 0 to 351

characters

RS232Handshaking

Settings Editor: RS232 Hardware Handshaking
Buffer Size
Keyboard: Settings (General) ≈ line 21
CRBasic: variable = settings.keyword;
SetSettings()
If non-zero, hardware handshaking is active on the
RS-232 port. This setting specifies the maximum
packet size sent between checking for CTS.

read/write
LONG 0 0 to 65535

RS232Power

Settings Editor: RS232 Always On
Keyboard: Settings (General) ≈ line 20
CRBasic: variable = settings.keyword;
SetSettings()
Controls whether the RS-232 port will remain active
even when communication is not taking place. If
RS-232 handshaking is enabled
(RS232Handshaking is non-zero), this setting must
be set to True.

read/write
BOOLEAN False True or False

RS232Timeout

Settings Editor: RS232 Hardware Handshaking
Timeout
Keyboard: Settings (General) ≈ line 22
CRBasic: variable = settings.keyword;
SetSettings()
RS-232 hardware-handshaking timeout. Specifies
the time that the datalogger will wait between
packets if CTS is not asserted.

read/write
IEEE4
tens of ms

0 ???

601

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

RunSignature

Station Status: Run Signature
Keyboard: Status Table ≈ line 12
CRBasic: variable = settings.keyword;
SetSettings()
Signature of the binary (compiled) structure of the
running program. Value is independent of comments
or non-functional changes. Often changes with
operating-system changes. See ProgSignature (p.
600). The pre-compiler can get the program text, but
generating the binary signature is not feasible due to
endian, data size, and compiler structure layout
differences between the PC and the CR800.

read only
LONG n/a n/a

Table 176. Status/Settings/DTI: S

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

SecsPerRecord()

AKA: Data-table interval
Keyboard: DataTableInfo ≈ line 4
CRBasic: variable = status.keyword
Reports the data-output interval for a data table.

read only
LONG array
seconds

n/a n/a

Security(1)

Settings Editor: Security Level 1
AKA: Security Code 1
Keyboard: Settings (General) ≈ line 4
CRBasic: variable = settings.keyword;
SetSettings()
First level in an array of three security codes. Not
shown if security is enabled. 0 disables all security.
See Security — Overview (p. 90).

read/write
LONG 0 0 to 65535 (0

= deactivated)

Security(2)

Settings Editor: Security Level 2
AKA: Security Code 2
Keyboard: Settings (General) ≈ line 4
CRBasic: variable = settings.keyword;
SetSettings()
Second level in an array of three security codes. Not
shown if security is enabled. 0 disables levels 2 and
3. See Security(1) (p. 602) and section Security —
Overview (p. 90).

read/write
LONG 0 0 to 65535 (0

= deactivated)

Security(3)

Settings Editor: Security Level 3
AKA: Security Code 3
Keyboard: Settings (General) ≈ line 4
CRBasic: variable = settings.keyword;
SetSettings()
Third level in an array of three security codes. Not
shown if security is enabled. 0 disables level 3. See
Security(1) (p. 602) and section Security — Overview
(p. 90).

read/write
LONG 0 0 to 65535 (0

= deactivated)

SerialNumber

Settings Editor: Serial Number
Keyboard: Status Table ≈ line 7
CRBasic: variable = status.keyword
CR800 serial number assigned by the factory. Stored
in flash memory.

read only
LONG n/a n/a

602

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

ServicesEnabled()
Obsolete. Replaced by/aliased to HTTPEnabled,
PakBusTCPEnabled, PingEnabled,
TelnetEnabled, TLSEnabled

SkippedRecord()

Station Status: Skipped Records in XXXX
Keyboard/display: DataTableInfo ≈ line 2
CRBasic: variable = status.keyword
Reports how many records have been skipped in a
data table. Array elements are in the order that data
tables are declared in the CRBasic program.

read only
LONG array
counts

0 ≥ 0
0 = reset

SkippedScan

Station Status: Skipped Scans
Keyboard: Status Table ≈ line 27
CRBasic: variable = status.keyword
Number of skipped program scans (p. 463) that have
occurred while running the current program instance.
Does not include scans intentionally skipped as may
occur with the use of ExitScan and Do / Loop
instructions. Includes the number of CPI frame
errors. See MeasureTime (p. 595), MaxProcTime (p.
595), ProcessTime (p. 600), MaxProcTime (p. 595).

read/write
LONG
counts

0 ≥ 0
0 = reset

SkippedSlowScan()

Station Status: Skipped Slow Scans
Keyboard: Status Table ≈ line 29
CRBasic: variable = status.keyword
Integer for each SlowSequence scan in the CRBasic
program. Number of skipped scan. See
LastSlowScan (p. 594), MaxSlowProcTime (p. 595),
SlowProcTime (p. 603).

read/write
LONG
counts

0 ≥ 0
0 = reset

SkippedSystemScan()

Station Status: Skipped System Scans
Keyboard: Status Table ≈ line 28
CRBasic: variable = status.keyword
Number of scans skipped in the auto (background)
calibration. Auto-calibration runs in a hidden slow-
sequence type scan. Enter 0 to reset. See
LastSystemScan (p. 594), MaxSystemProcTime (p.
595), SystemProcTime (p. 604), and section CR800
Auto Calibration — Overview (p. 91).

read/write
LONG
count

0 ≥ 0
0 = reset

SlowProcTime()

Keyboard: Status Table ≈ line 47
CRBasic: variable = status.keyword
Integer for each SlowSequence scan in the CRBasic
program. Indicates time required to process the scan.
See LastSlowScan (p. 594), MaxSlowProcTime (p.
595), SkippedSlowScan (p. 603).

LONG
μs

large number
until
SlowSequenc
e runs.

StartTime

Station Status: Start Time
Keyboard: Status Table ≈ line 11
CRBasic: variable = status.keyword
Time the program began running.

read-only
NSEC
date and time

StartUpCode

Keyboard: Status Table ≈ line 24
CRBasic: variable = status.keyword
Indicates why the running program was compiled.
True indicates that the program was compiled due to
the logger starting from a power-down condition.
False indicates that the compile was caused by either
a Program Send, a File Control transaction, or a
watchdog reset.

read-only
BOOLEAN False True or False

603

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

StationName

Station Status: Reported Station Name
Settings Editor: Station Name
Keyboard: Status Table ≈ line 9;
Keyboard: Settings (General) ≈ line 1
CRBasic: variable = settings.keyword;
SetSettings(); StationName()
Stores a station name in flash memory. This is not
automatically the same station name as that entered
in datalogger support software. See the discussion of
station names in the datalogger support software
manuals. The datalogger support software station
name is what appears in the header of files of data
retrieved to a PC. This station name can be sampled
into a data table using data table access syntax (p.
165).

read/write
STRING

SW12Volts
Keyboard: Status Table ≈ line 52
CRBasic: variable = status.keyword
Status of switched, 12 Vdc terminal

read/write
BOOLEAN False True or False

SystemProcTime

AKA: Background Calibration Processing Time
Keyboard: Status Table ≈ line 46
CRBasic: variable = status.keyword
Time required to process auto (background)
calibration. See LastSystemScan (p. 594),
MaxSystemProcTime (p. 595), SystemProcTime (p.
604), and section CR800 Auto Calibration —
Overview (p. 91).

read-only
FLOAT
μs

large number
until auto
calibration
runs

Table 177. Status/Settings/DTI: T

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

TCPClientConnections Obsolete. Aliased to/replaced by PakBusTCPClients
(p. 598).

TCPPort Obsolete. Aliased to/replaced by PakBusPort (p.
597).

TelnetEnabled

Settings Editor: Telnet Enabled
Aliased from: ServicesEnabled()
Keyboard: Settings (TCP/IP) ≈ line 37
CRBasic: variable = settings.keyword;
SetSettings()
Enables (True) or disables (False) the Telnet
service.

read/write
BOOLEAN True True or False

TimeStamp

Keyboard: Status Table header right
Keyboard: DTI Table header right
CRBasic: variable = status.keyword
Scan-time that a record was generated. See Time
Stamps (p. 295).

read-only
NSEC
time

n/a n/a

TLS Certificate

Settings Editor: TLS | Set Certificate
AKA: TLS Certificate File Name
Specifies the file name for the x509 certificate in
PEM format.

STRING n/a n/a

604

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

TLS Enabled
AKA: Transport Layer Security (TLS) Enabled
Obsolete. Replaced by/aliased to TLSPassword (p.
605).

TLS Private Key

Settings Editor: TLS | Set Private Key
Alias: TLS Private Key File Name
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the file name for the private key in RSA
format.

STRING n/a n/a

TLSConnections

Settings Editor: Max TLS Server Connections
Keyboard: Settings (TCP/IP) ≈ line 41
CRBasic: variable = settings.keyword;
SetSettings()
Relates to the CR800 being a server and the
maximum number of concurrent TLS clients that can
be connected.

read/write
LONG 0 0 to 255

TLSPassword

Settings Editor: TLS Private Key Password
Keyboard: Settings (TCP/IP) ≈ line 42
CRBasic: variable = settings.keyword;
SetSettings()
Specifies the password that is used to decrypt the
private key file.

read/write
STRING none n/a

TLSstatus

Settings Editor: TLS Status
AKA: Transport Layer Security (TLS) Status
Keyboard: Settings (TCP/IP) ≈ line 20
CRBasic: variable = settings.keyword;
SetSettings()

read only
STRING none ?

Table 178. Status/Settings/DTI: U

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

UDPBroadcastFilter Settings Editor: IP Broadcast Filtered
Keyboard: Settings (TCP/IP) ≈ line 34

read/write
UINT2 0 0 to 65535

USRDriveFree

Keyboard: Settings (General) ≈ line 17
CRBasic: variable = settings.keyword;
SetSettings()
Bytes remaining on the USR: drive. USR: drive is
user-created and normally used to store .jpg and
other files.

read only
LONG
bytes

0 ?

USRDriveSize

Settings Editor: USR: Drive Size
Keyboard: Status Table ≈ line 19
CRBasic: variable = settings.keyword;
SetSettings()
Configures the USR: drive. If 0, the drive is
removed. If non-zero, the drive is created. A change
will cause the CRBasic program to recompile.

read/write
LONG
bytes

0 8192
minimum

605

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

UTCOffset

Settings Editor: UTC Offset
Keyboard/display: Settings (General) ≈ line 15
CRBasic: variable = settings.keyword;
SetSettings()
Difference between local time (CR800 clock) and
UTC. Used in email and HTML headers (these
protocols require the time stamp to be UTC), and by
GPS(), NetworkTimeProtocol(), and
DaylightSavingTime() instructions.

read/write
LONG
seconds

-1 (disabled)
-43200 to
43200
(-1=disable)

Table 179. Status/Settings/DTI: V

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

VarOutOfBound

Station Status: VarOutOfBound
Keyboard/display: Status Table ≈ line 26
CRBasic: variable = status.keyword
Number of attempts to write to an array outside of
the declared size. The write does not occur.
Indicates a CRBasic program error. If an array is
used in a loop or expression, the pre-compiler and
compiler do not check to see if an array is accessed
out-of-bounds (i.e., accessing an array with a
variable index such as arr(index) = arr(index–1),
where index is a variable).

read only
LONG
counts

0 ≥ 0
0 = reset

Verify()

Settings Editor: Verify Interval
AKA: Communication Ports Verification
Intervals
Keyboard: Settings (comports)
CRBasic: variable = settings.keyword;
SetSettings()
Array of integers indicating the interval that is
reported as the link verification interval in the
PakBus hello transaction messages. Indirectly
governs the rate at which the CR800 attempts to start
a hello transaction with a neighbor if no other
communication has taken place within the interval.

Array
Element
Number

Port
Keyword

(1)
(2)
(3)
(4)
(5)
(6)

ComRS232
ComME
ComSDC7
ComSDC8
ComSDC10
ComSDC11

(7)
(8)

Com1
Com2

See table Baudrate(), Beacon(), and Verify() Details.

read/write
LONG
seconds

0 0 to
2147483648

606

Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)

Table 180. Status/Settings/DTI: W

Keyword

Alias,
Access,

Description

Read/Write,
Data Type,

Units
Default
Value

Normal
Range

WatchdogErrors

Keyboard: Status Table ≈ line 14
Station Status: Watchdog Errors
CRBasic: variable = status.keyword
Number of watchdog errors that have occurred while
running this program. Resets automatically when a
new program is compiled.

read only
LONG
counts

0 ≥ 0
0 = reset

607

Appendix C. Serial Port Pinouts
C.1 CS I/O Communication Port

Pin configuration for the CR800 CS I/O port is listed in table CS I/O Pin
Description (p. 609).

Table 181. CS I/O Pin Description
ABR: Abbreviation for the function name.
PIN: Pin number.
O: Signal Out of the CR800 to a peripheral.
I: Signal Into the CR800 from a peripheral.

PIN ABR I/O Description

1 5 Vdc O 5V: Sources 5 Vdc, used to power peripherals.

2 SG Signal Ground: Provides a power return for pin 1 (5V),
and is used as a reference for voltage levels.

3 RING I Ring: Raised by a peripheral to put the CR800 in the
telecommunication mode.

4 RXD I Receive Data: Serial data transmitted by a peripheral are
received on pin 4.

5 ME O Modem Enable: Raised when the CR800 determines that a
modem raised the ring line.

6 SDE O
Synchronous Device Enable: Used to address Synchronous
Devices (SDs), and can be used as an enable line for
printers.

7 CLK/HS I/O

Clock/Handshake: Used with the SDE and TXD lines to
address and transfer data to SDs. When not used as a
clock, pin 7 can be used as a handshake line (during
printer output, high enables, low disables).

8 +12 Vdc

9 TXD O

Transmit Data: Serial data are transmitted from the CR800
to peripherals on pin 9; logic-low marking (0V), logic-high
spacing (5V), standard-asynchronous ASCII, 8 data bits,
no parity, 1 start bit, 1 stop bit, 300, 1200, 2400, 4800,
9600, 19,200, 38,400, 115,200 baud (user selectable).

C.2 RS-232 Communication Port
C.2.1 Pin-Out

Pin configuration for the CR800 RS-232 nine-pin port is listed in table CR800 RS-
232 Pin-Out (p. 610). Information for using a null modem with RS-232 is given in
table Standard Null-Modem Cable or Adapter-Pin Connections (p. 611).

The CR800 RS-232 port functions as either a DCE (data communication
equipment) or DTE (data terminal equipment) device. For RS-232 to function as a
DTE device, a null modem cable is required. The most common use of RS-232 is
as a connection to a computer DTE device. A standard DB9-to-DB9 cable can

609

Appendix C. Serial Port Pinouts

connect the computer DTE device to the CR800 DCE device. The following table
describes RS-232 pin function with standard DCE-naming notation.

Note Pins 1, 4, 6, and 9 function differently than a standard DCE device. This is
to accommodate a connection to a modem or other DCE device via a null modem.

Table 182. CR800 RS-232 Pin-Out
PIN: pin number
O: signal out of the CR800 to a RS-232 device.
I: signal into the CR800 from a RS-232 device.
X: signal has no connection (floating).

PIN DCE Function Logger Function I/O Description

1 DCD DTR (tied to pin 6) O1 Data terminal ready

2 TXD TXD O Asynchronous data
transmit

3 RXD RXD I Asynchronous data
receive

4 DTR N/A X1 Not connected

5 GND GND GND Ground

6 DSR DTR O1 Data terminal ready

7 CTS CTS I Clear to send

8 RTS RTS O Request to send

9 RI RI I1 Ring

1 Different pin function compared to a standard DCE device. These pins will accommodate a
connection to modem or other DCE devices via a null-modem cable.

C.2.2 Power States
The RS-232 port is powered under the following conditions: 1) when the setting
RS232Power is set or 2) when the SerialOpen() for COMRS232 is used in the
program. These conditions leave RS-232 on with no timeout. If SerialClose() is
used after SerialOpen(), the port is powered down and left in a sleep mode
waiting for characters to come in.

Under normal operation, the port is powered down waiting for input. Upon
receiving input there is a 40 second software timeout before shutting down. The
40 second timeout is generally circumvented when communicating with
datalogger support software (p. 93) because it sends information as part of the
protocol that lets the CR800 know it can shut down the port.

When in sleep mode, hardware is configured to detect activity and wake up. Sleep
mode has the penalty of losing the first character of the incoming data stream.
PakBus takes this into consideration in the "ring packets" that are preceded with
extra sync bytes at the start of the packet. SerialOpen() leaves the interface
powered-up, so no incoming bytes are lost.

610

Appendix C. Serial Port Pinouts

When the logger has data to send via RS-232, if the data are not a response to a
received packet, such as sending a beacon, then it will power up the interface,
send the data, and return to sleep mode with no 40 second timeout.

Table 183. Standard Null-Modem Cable or Adapter-Pin
Connections

DB9 Socket # DB9 Socket #

1 & 6 ——————————— 4

2 ——————————— 3

3 ——————————— 2

4 ——————————— 1 & 6

5 ——————————— 5

7 ——————————— 8

8 ——————————— 7

9
most null modems have no

connection1
9

1 If the null-modem cable does not connect pin nine to pin nine, the modem will need to be
configured to output a RING (or other characters previous to the DTR being asserted) on the
modem TX line to wake the datalogger and activate the DTR line or enable the modem.

611

Appendix D. ASCII / ANSI Table
Reading List:
 • Term. ASCII / ANSI (p. 481)
 • ASCII / ANSI table (p. 613)

American Standard Code for Information Interchange (ASCII) / American
National Standards Institute (ANSI)

Table 184. Decimal and hexadecimal Codes and Characters Used with CR800 Tools

Dec Hex
Keyboard
Display LoggerNet

Hyper
Terminal Dec Hex

Keyboard
Display LoggerNet

Hyper
Terminal

0 0 NULL NULL 128 80 € Ç

1 1 � ☺ 129 81 � ü

2 2 � ☻ 130 82 ‚ é

3 3 � ♥ 131 83 ƒ â

4 4 � ♦ 132 84 „ ä

5 5 � ♣ 133 85 … à

6 6 � ♠ 134 86 † å

7 7 � • 135 87 ‡ ç

8 8 � ◘ 136 88 ˆ ê

9 9 ht 137 89 ‰ ë

10 a lf lf 138 8a Š è

11 b � vt 139 8b ‹ ï

12 c � ff 140 8c Œ î

13 d cr cr 141 8d � ì

14 e � ♫ 142 8e Ž Ä

15 f � ☼ 143 8f � Å

16 10 � ► 144 90 � É

17 11 � ◄ 145 91 ' æ

18 12 � ↕ 146 92 ' Æ

19 13 � ‼ 147 93 " ô

20 14 � ¶ 148 94 " ö

21 15 � § 149 95 • ò

22 16 � ▬ 150 96 - û

23 17 � ↨ 151 97 - ù

24 18 � ↑ 152 98 ˜ ÿ

25 19 � ↓ 153 99 ™ Ö

26 1a � → 154 9a š Ü

27 1b � 155 9b › ¢

613

Appendix D. ASCII / ANSI Table

Table 184. Decimal and hexadecimal Codes and Characters Used with CR800 Tools

Dec Hex
Keyboard
Display LoggerNet

Hyper
Terminal Dec Hex

Keyboard
Display LoggerNet

Hyper
Terminal

28 1c � ∟ 156 9c œ £

29 1d � ↔ 157 9d � ¥

30 1e � ▲ 158 9e ž Pt

31 1f � ▼ 159 9f Ÿ ƒ

32 20 SP SP SP 160 a0 á

33 21 ! ! ! 161 a1 ¡ í

34 22 " " " 162 a2 ¢ ó

35 23 # # # 163 a3 £ ú

36 24 $ $ $ 164 a4 ¤ ñ

37 25 % % % 165 a5 ¥ Ñ

38 26 & & & 166 a6 ¦ ª

39 27 ' ' ' 167 a7 § º

40 28 (((168 a8 ¨ ¿

41 29))) 169 a9 © ⌐

42 2a * * * 170 aa ª ¬

43 2b + + + 171 ab « ½

44 2c , , , 172 ac ¬ ¼

45 2d - - - 173 ad ¡

46 2e . . . 174 ae ® «

47 2f / / / 175 af ¯ »

48 30 0 0 0 176 b0 ° ░

49 31 1 1 1 177 b1 ± ▒

50 32 2 2 2 178 b2 ² ▓

51 33 3 3 3 179 b3 ³ │

52 34 4 4 4 180 b4 ´ ┤

53 35 5 5 5 181 b5 µ ╡

54 36 6 6 6 182 b6 ¶ ╢

55 37 7 7 7 183 b7 · ╖

56 38 8 8 8 184 b8 ¸ ╕

57 39 9 9 9 185 b9 ¹ ╣

58 3a : : : 186 ba º ║

59 3b ; ; ; 187 bb » ╗

60 3c < < < 188 bc ¼ ╝

61 3d = = = 189 bd ½ ╜

62 3e > > > 190 be ¾ ╛

614

Appendix D. ASCII / ANSI Table

Table 184. Decimal and hexadecimal Codes and Characters Used with CR800 Tools

Dec Hex
Keyboard
Display LoggerNet

Hyper
Terminal Dec Hex

Keyboard
Display LoggerNet

Hyper
Terminal

63 3f ? ? ? 191 bf ¿ ┐

64 40 @ @ @ 192 c0 À └

65 41 A A A 193 c1 Á ┴

66 42 B B B 194 c2 Â ┬

67 43 C C C 195 c3 Ã ├

68 44 D D D 196 c4 Ä ─

69 45 E E E 197 c5 Å ┼

70 46 F F F 198 c6 Æ ╞

71 47 G G G 199 c7 Ç ╟

72 48 H H H 200 c8 È ╚

73 49 I I I 201 c9 É ╔

74 4a J J J 202 ca Ê ╩

75 4b K K K 203 cb Ë ╦

76 4c L L L 204 cc Ì ╠

77 4d M M M 205 cd Í ═

78 4e N N N 206 ce Î ╬

79 4f O O O 207 cf Ï ╧

80 50 P P P 208 d0 Ð ╨

81 51 Q Q Q 209 d1 Ñ ╤

82 52 R R R 210 d2 Ò ╥

83 53 S S S 211 d3 Ó ╙

84 54 T T T 212 d4 Ô ╘

85 55 U U U 213 d5 Õ ╒

86 56 V V V 214 d6 Ö ╓

87 57 W W W 215 d7 × ╫

88 58 X X X 216 d8 Ø ╪

89 59 Y Y Y 217 d9 Ù ┘

90 5a Z Z Z 218 da Ú ┌

91 5b [[[219 db Û █

92 5c \ \ \ 220 dc Ü ▄

93 5d]]] 221 dd Ý ▌

94 5e ^ ^ ^ 222 de Þ ▐

95 5f _ _ _ 223 df ß ▀

96 60 ` ` ` 224 e0 à α

97 61 a a a 225 e1 á ß

98 62 b b b 226 e2 â Γ

615

Appendix D. ASCII / ANSI Table

Table 184. Decimal and hexadecimal Codes and Characters Used with CR800 Tools

Dec Hex
Keyboard
Display LoggerNet

Hyper
Terminal Dec Hex

Keyboard
Display LoggerNet

Hyper
Terminal

99 63 c c c 227 e3 ã π

100 64 d d d 228 e4 ä Σ

101 65 e e e 229 e5 å σ

102 66 f f f 230 e6 æ µ

103 67 g g g 231 e7 ç τ

104 68 h h h 232 e8 è Φ

105 69 i i i 233 e9 é Θ

106 6a j j j 234 ea ê Ω

107 6b k k k 235 eb ë δ

108 6c l l l 236 ec ì ∞

109 6d m m m 237 ed í φ

110 6e n n n 238 ee î ε

111 6f o o o 239 ef ï ∩

112 70 p p p 240 f0 ð ≡

113 71 q q q 241 f1 ñ ±

114 72 r r r 242 f2 ò ≥

115 73 s s s 243 f3 ó ≤

116 74 t t t 244 f4 ô ⌠

117 75 u u u 245 f5 õ ⌡

118 76 v v v 246 f6 ö ÷

119 77 w w w 247 f7 ÷ ≈

120 78 x x x 248 f8 ø °

121 79 y y y 249 f9 ù ∙

122 7a z z z 250 fa ú ·

123 7b { { { 251 fb û √

124 7c | | | 252 fc ü ⁿ

125 7d } } } 253 fd ý ²

126 7e ~ ~ ~ 254 fe þ ■

127 7f � ⌂ 255 ff ÿ

616

Appendix E. FP2 Data Format
FP2 data are two-byte big-endian values. See the appendix Endianness (p. 619).
Representing bits in each byte pair as ABCDEFGH IJKLMNOP, bits are
described in table FP2 Data-Format Bit Descriptions (p. 617).

Table 185. FP2 Data-Format Bit Descriptions
Bit Description

A Polarity, 0 = +, 1 = –

B, C Decimal locaters as defined in the table FP2 Decimal Locater Bits.

D - P 13-bit binary value, D being the MSB (p. 241). Largest 13-bit magnitude is 8191, but
Campbell Scientific defines the largest-allowable magnitude as 7999

Decimal locaters can be viewed as a negative base-10 exponent with decimal
locations as shown in table FP2 Decimal-Locater Bits (p. 617).

Table 186. FP2 Decimal-
Locater Bits

B C Decimal Location

0 0 XXXX.

0 1 XXX.X

1 0 XX.XX

1 1 X.XXX

617

Appendix F. Endianness
Synonyms:

• "Byte order" and "endianness"
• "Little endian" and "least-significant byte first"
• "Big endian" and "most-significant byte first"

Endianness lies at the root of an instrument processor. It is determined by the
processor manufacturer. A good discussion of endianness can be found at
Wikipedia.com. Issues surrounding endianness in an instrument such as the
CR800 datalogger are usually hidden by the operating system. However, the
following CR800 functions bring endianness to the surface and may require some
programming to accommodate differences:

• Serial input / output programming (Serial I/O: Capturing Serial Data (p. 238))
• Modbus programming (Modbus (p. 391))
• MoveBytes() instruction (see CRBasic Editor Help)
• SDMGeneric() instruction (see CRBasic Editor Help)
• Some PakBus instructions, like GetDataRecord (see CRBasic Editor Help)

For example, when the CR1000 datalogger receives data from a CR9000
datalogger, the byte order of a four byte IEEE4 or integer data value has to be
reversed before the value shows properly in the CR1000.

Table 187. Endianness in Campbell Scientific Instruments

Little Endian Instruments Big Endian Instruments

CR6 datalogger
CR9000X datalogger
CRVW Series dataloggers
CRS451 recording sensor

CR200(X) Series dataloggers
CR800 Series dataloggers
CR1000 datalogger
CR3000 datalogger
CR5000 datalogger

Use of endianness is discussed in the following sections:

• Section Reading Inverse-Format Modbus Registers (p. 394)
• Appendix FP2 Data Format (p. 617)

619

Appendix G. Supporting Products Lists
Supporting products power and expand the measurement and control capability of
the CR800. Products listed are manufactured by a Campbell Scientific group
company unless otherwise noted. Consult product literature at
www.campbellsci.com or a Campbell Scientific application engineer to determine
what products are most suited to particular applications. The following listings
are not exhaustive, but are current as of the manual publication date.

G.1 Dataloggers — List
Related Topics:
 • Datalogger — Quickstart (p. 43)
 • Datalogger — Overview (p. 75)
 • Dataloggers — List (p. 621)

Other Campbell Scientific datalogging devices can be used in networks with the
CR800. Data and control signals can pass from device to device with the CR800
acting as a master, peer, or slave. Dataloggers communicate in a network via
PakBus®, Modbus, DNP3, RS-232, SDI-12, or CANbus using the SDM-CAN
module.

Table 188. Dataloggers
Model Description

CR200X Series
Dataloggers

Limited input, not expandable. Suited for a
network of stations with a small numbers of
specific inputs. Some models have built-in
radio transceivers for spread-spectrum
communication and various frequency bands.

CR800-Series
Dataloggers

Limited input, but expandable. Suited for a
network of stations with small numbers of
specific inputs. The CR850 has a built-in
keyboard and display.

CR6
Measurement and Control Datalogger

12 universal input terminals accept analog or
pulse inputs. 4 I/O terminals are configurable
for control or multiple communication
protocols. This instrument is very versatile,
expandable, and networkable.

CR1000
Measurement and Control System

16 analog input terminals, two pulse input
terminals, eight control / I/O terminals.
Expandable.

CR3000
Micrologger

28 analog input terminals, four pulse input
terminals, eight control / I/O terminals. Faster
than CR1000. Expandable.

CR9000X-Series
Measurement, Control, and I/O Modules High speed, configurable, modular, expandable

621

Appendix G. Supporting Products Lists

G.2 Measurement and Control Peripherals — Lists
Related Topics:
 • Measurement and Control Peripherals — Overview (p. 84)
 • Measurement and Control Peripherals — Details (p. 348)
 • Measurement and Control Peripherals — Lists (p. 622)

G.3 Sensor-Input Modules Lists
Input peripherals expand sensor input capacity of the CR800, condition sensor
signals, or distribute the measurement load.

G.3.1 Analog-Input Modules List
Analog-input modules increase CR800capacity. Some multiplexers allow
multiplexing of excitation (analog output) terminals.

Table 189. Analog-Input Modules
Model Description

AM16/32B 64 channels — configurable for many sensor types.
Muliplex analog inputs and excitation.

AM25T 25 channels — multiplexes analog inputs. Designed for
thermocouples and differential inputs

G.3.2 Pulse-Input Modules List
Related Topics:
 • Low-Level Ac Input Modules — Overview (p. 348)
 • Low-Level Ac Measurements — Details (p. 334)
 • Pulse Input Modules — Lists (p. 622)

These modules expand and enhance pulse- and frequency-input capacity.

Table 190. Pulse-Input Modules
Model Description

SDM-INT8 Eight-channel interval timer

SDM-SW8A Eight-channel, switch-closure module

LLAC4 Four-channel, low-level ac module

G.3.3 Serial I/O Modules List
Serial I/O peripherals expand and enhance input capability and condition serial
signals.

622

Appendix G. Supporting Products Lists

Table 191. Serial I/O Modules List
Model Description

SDM-SIO1 One-channel I/O expansion module

SDM-SIO4 Four-channel I/O expansion module

SDM-IO16 16-channel I/O expansion module

G.3.4 Vibrating-Wire Input Modules List
Vibrating-wire input modules improve the measurement of vibrating wire sensors.

Table 192. Vibrating-Wire Input Modules
Model Description

CDM-VW300 Two-channel dynamic Vspect vibrating-wire measurement
device

CDM-VW305 Eight-channel dynamic Vspect vibrating-wire measurement
device

AVW200 Series Two-channel static Vspect vibrating-wire measurement
device

G.3.5 Passive Signal Conditioners Lists
Signal conditioners modify the output of a sensor to be compatible with the
CR800.

G.3.5.1 Resistive-Bridge TIM Modules List

Table 193. Resistive Bridge TIM1 Modules
Model Description

4WFBS120 120 Ω, four-wire, full-bridge TIM module

4WFBS350 350 Ω, four-wire, full-bridge TIM module

4WFBS1K 1 kΩ, four-wire, full-bridge TIM module

3WHB10K 10 kΩ, three-wire, half-bridge TIM module

4WHB10K 10 kΩ, four-wire, half-bridge TIM module

4WPB100 100 Ω, four-wire, PRT-bridge TIM module

4WPB1K 1 kΩ, four-wire, PRT-bridge TIM module

1 Teriminal Input Module

G.3.5.2 Voltage-Divider Modules List

Table 194. Voltage Divider Modules
Model Description

VDIV10:1 10:1 voltage divider

VDIV2:1 2:1 voltage divider

CVD20 Six-channel 20:1 voltage divider

623

Appendix G. Supporting Products Lists

G.3.5.3 Current-Shunt Modules List

Table 195. Current-Shunt Modules
Model Description

CURS100 100 ohm current-shunt module

G.3.5.4 Transient-Voltage Suppressors List

Table 196. Transient Voltage Suppressors
Model Description

16980 Surge-suppressor kit for UHF/VHF radios

14462 Surge-suppressor kit for RF401 radio & CR206 datalogger

16982 Surge-suppressor kit for RF416 radio & CR216 datalogger

16981 Surge-suppressor kit for GOES transmitters

6536 4-wire surge protector for SRM-5A

4330 2-wire surge protector for land-line telephone modems

SVP48 General purpose, multi-line surge protector

G.3.6 Terminal-Strip Covers List
Terminal strips cover and insulate input terminals to improve thermocouple
measurements.

Table 197. Terminal-Strip Covers

Datalogger Terminal-Strip Cover Part Number

CR6 No cover available

CR800 No cover available

CR1000 17324

CR3000 18359

G.4 PLC Control Modules — Lists
Related Topics:
 • PLC Control — Overview (p. 74)
 • PLC Control — Details (p. 237)
 • PLC Control Modules — Overview (p. 349)
 • PLC Control Modules — Lists (p. 624)
 • PLC Control — Instructions (p. 536)
 • Switched Voltage Output — Specifications
 • Switched Voltage Output — Overview (p. 78)
 • Switched Voltage Output — Details (p. 101)

624

Appendix G. Supporting Products Lists

G.4.1 Digital-I/O Modules List
Digital I/O expansion modules expand the number of channels for reading or
outputting or 5 Vdc logic signals.

Table 198. Digital I/O Modules
Model Description

SDM-IO16 16-channel I/O expansion module

G.4.2 Continuous-Analog-Output (CAO) Modules List
CAO modules enable the CR800 to output continuous, adjustable voltages that
may be required for strip charts and variable-control applications.

Table 199. Continuous-Analog-Output (CAO) Modules

Model Description

SDM-AO4A Four-channel, continuous analog voltage output

SDM-CVO4 Four-channel, continuous voltage and current analog
output

G.4.3 Relay-Drivers — List
Relay drivers enable the CR800 to control large voltages.

Table 200. Relay-Drivers — Products
Model Description

A21REL-12 Four relays driven by four control ports

A6REL-12 Six relays driven by six control ports / manual override

LR4 Four-channel latching relay

SDM-CD8S Eight-channel dc relay controller

SDM-CD16AC 16-channel ac relay controller

SDM-CD16S 16-channel dc relay controller

SDM-CD16D 16-channel 0 or 5 Vdc output module

SW12V One-channel 12 Vdc control circuit

G.4.4 Current-Excitation Modules List
Current excitation modules are usually used with the 229-L soil matric potential
blocks.

Table 201. Current-Excitation Modules
Model Description

CE4 Four-channel current excitation module

CE8 Eight-channel current excitation module

625

Appendix G. Supporting Products Lists

G.5 Sensors — Lists
Related Topics:
 • Sensors — Quickstart (p. 42)
 • Measurements — Overview (p. 62)
 • Measurements — Details (p. 295)
 • Sensors — Lists (p. 626)

Most electronic sensors, regardless of manufacturer, will interface with the
CR800. Some sensors require external signal conditioning. The performance of
some sensors is enhanced with specialized input modules.

G.5.1 Wired-Sensor Types List
The following wired-sensor types are available from Campbell Scientific for
integration into CR800 systems. Contact a Campbell Scientific application
engineer for specific model numbers and integration guidance.

Table 202. Wired Sensor Types

Air temperature
Pressure

Roadbed water content

Relative humidity Snow depth

Barometric pressure Snow water equivalent

Conductivity Soil heat flux

Digital camera Soil temperature

Dissolved oxygen Soil volumetric water content

Distance Soil volumetric water content profile

 Soil water potential

Electrical current Solar radiation

Electric field (Lightning) Strain

Evaporation Surface temperature

Freezing rain and ice Turbidity

Fuel moisture and temperature Visibility

Geographic position (GPS) Water level and stage

Heat, vapor, and CO2 flux Water flow

Leaf wetness
Net radiation

Water quality

ORP / pH Water sampler

Precipitation Water temperature

Present weather Wind speed / wind direction

626

Appendix G. Supporting Products Lists

G.5.2 Wireless-Network Sensors List
Wireless sensors use the Campbell wireless sensor (CWS) spread-spectrum radio
technology. The following wireless sensor devices are available.

Table 203. Wireless Sensor Modules
Model Description

CWB100 Series Radio-base module for datalogger.

CWS220 Series Infrared radiometer

CWS655 Series Near-surface volumetric soil water-content sensor

CWS900 Series Configurable, remote sensor-input module

Table 204. Sensors Types Available for Connection to CWS900
Air temperature Relative humidity

Dissolved oxygen Soil heat flux

Infrared surface temperature Soil temperature

Leaf wetness Solar radiation

Pressure Surface temperature

Quantum sensor Wind speed / wind direction

Rain

G.6 Data Retrieval and Telecommunication
Peripherals — Lists

Related Topics:
 • Data Retrieval and Telecommunications — Quickstart (p. 45)
 • Data Retrieval and Telecommunications — Overview (p. 87)
 • Data Retrieval and Telecommunications — Details (p. 370)
 • Data Retrieval and Telecommunication Peripherals — Lists (p. 627)

Many telecommunication devices are available for use with the CR800
datalogger.

G.6.1 Keyboard Display — List
Related Topics:
 • Keyboard Display — Overview (p. 82)
 • Keyboard Display — Details (p. 430)
 • Keyboard Display — List (p. 627)
 • Custom Menus — Overview (p. 83, p. 555)

627

Appendix G. Supporting Products Lists

Table 205. Datalogger / Keyboard Display Availability and
Compatibility1

Datalogger Model Compatible Keyboard Displays

CR6 CR1000KD2 (p. 484), CD100 (p. 483), CD295

CR800 CR1000KD2, CD100, CD295

CR850 Integrated keyboard display, CR1000KD2,
CD100, CD295

CR1000 CR1000KD2, CD100, CD295

CR3000
Integrated keyboard display, CR1000KD2

(requires special OS), CD100 (requires special
OS),CD295

1 Keyboard displays are either integrated into the datalogger or communicate through the CS I/O
port.
2 The CR1000KD can be mounted to a surface by way of the two #4-40 x 0.187 screw holes at the
back.

G.6.2 Hardwire, Single-Connection Comms Devices List

Table 206. Hardwire, Single-Connection Comms Devices
Model Description

SC32B Optically isolated CS I/O to PC RS-232 interface (requires
PC RS-232 cable)

SC929 CS I/O to PC RS-232 interface cable

SC-USB Optically isolated RS-232 to PC USB cable

17394 RS-232 to PC USB cable (not optically isolated)

10873 RS-232 to RS-232 cable, nine-pin female to nine-pin male

SRM-5A with SC932A CS I/O to RS-232 short-haul telephone modems

SDM-CAN Datalogger-to-CANbus Interface

FC100 Fiber optic modem. Two required in most installations.

G.6.3 Hardwire, Networking Devices List

Table 207. Hardwire, Networking Devices
Model Description

MD485 RS-485 multidrop interface

628

Appendix G. Supporting Products Lists

G.6.4 TCP/IP Links — List

Table 208. TCP/IP Links
Model Description

RavenX Series Wireless, cellular, connects to RS-232 port, PPP/IP key
must be enabled to use CR800 IP stack.

NL240 Wireless network link interface, connects to CS I/O port.

NL201 Network link interface, connects to CS I/O port.

G.6.5 Telephone Modems List
m

Table 209. Telephone Modems
Model Description

COM220 9600 baud

COM320 9600 baud, synthesized voice

RAVENX Series Cellular network link

G.6.6 Private-Network Radios List
m

Table 210. Private-Network Radios
Model Description

RF401 Series Spread-spectrum, 100 mW, CS I/O connection to remote
CR800 datalogger. Compatible with RF430.

RF430 Series Spread-spectrum, 100 mW, USB connection to base PC.
Compatible with RF400.

RF450 Spread-spectrum, 1 W

RF300 Series VHF / UHF, 5 W, licensed, single-frequency

G.6.7 Satellite Transceivers List
m

Table 211. Satellite Transceivers
Model Description

ST-21 Argos transmitter

TX320 HDR GOES transmitter

DCP200 GOES data collection platform

G.7 Data-Storage Devices — List
Related Topics:
 • Memory — Overview (p. 86)
 • Memory — Details (p. 351)
 • Data Storage Devices — List (p. 629)

629

Appendix G. Supporting Products Lists

Data-storage devices allow you to collect data on-site with a small device and
carry it back to the PC ("sneaker net").

Campbell Scientific mass-storage devices attach to the CR800 CS I/O port.

Table 212. Mass-Storage Devices

Model Description

SC115 2 GB flash memory drive (thumb drive)

G.8 Datalogger Support Software — Lists
Reading List:
 • Datalogger Support Software — Quickstart (p. 46)
 • Datalogger Support Software — Overview (p. 93)
 • Datalogger Support Software — Details (p. 429)
 • Datalogger Support Software — Lists (p. 630)

Software products are available from Campbell Scientific to facilitate CR800
programming, maintenance, data retrieval, and data presentation. Starter software
(table Starter Software (p. 630)) are those products designed for novice integrators.
Datalogger support software products (table Datalogger Support Software (p. 630))
integrate CR800 programming, telecommunications, and data retrieval into a
single package. LoggerNet clients (table LoggerNet Clients (p. 631)) are available
for extended applications of LoggerNet. Software-development kits (table
Software-Development Kits (p. 633)) are available to address applications not
directly satisfied by standard software products. Limited support software for
iOS, Android, and Linux applications are also available.

Note More information about software available from Campbell Scientific can be
found at www.campbellsci.com http://www.campbellsci.com. Please consult with
a Campbell Scientific application engineer for a software recommendation to fit a
specific application.

G.8.1 Starter Software List
Short Cut, PC200W, and VisualWeather are designed for novice integrators but
still have features useful in advanced applications.

Table 213. Starter Software
Model Description

Short Cut Easy-to-use CRBasic-programming wizard, graphical user
interface; PC, Windows® compatible.

PC200W Starter Software
Easy-to-use, basic datalogger support software (p. 485) for
direct telecommunication connections, PC, Windows®
compatible.

VisualWeather
Easy-to use datalogger support software specialized for
weather and agricultural applications, PC, Windows®
compatible.

630

http://www.campbellsci.com/

Appendix G. Supporting Products Lists

G.8.2 Datalogger Support Software — List
PC200W, PC400, RTDAQ, and LoggerNet provide increasing levels of power
required for integration, programming, data retrieval and telecommunication
applications. Datalogger support software (p. 93) for iOS, Android, and Linux
applications are also available.

Table 214. Datalogger Support Software
Software Compatibility Description

PC200W Starter Software PC, Windows Basic datalogger support
software for direct connect.

PC400 PC, Windows

Mid-level datalogger support
software. Supports single
dataloggers over most
telecommunication options.

LoggerNet PC, Windows
Top-level datalogger support
software. Supports datalogger
networks.

LoggerNet Admin PC, Windows Advanced LoggerNet for large
datalogger networks.

LoggerNet Linux Linux

Includes LoggerNet Server for
use in a Linux environments
and LoggerNet Remote for
managing the server from a
Windows environment.

RTDAQ PC, Windows
Datalogger support software
for industrial and real time
applications.

VisualWeather PC, Windows
Datalogger support software
specialized for weather and
agricultural applications.

LoggerLink iOS and Android

Datalogger support software
for iOS and Android devices.
IP connection to datalogger
only.

G.8.2.1 LoggerNet Suite List
The LoggerNet suite features a client-server architecture that facilitates a wide
range of applications and enables tailoring software acquisition to specific
requirements.

Table 215. LoggerNet Suite1,2

Software Description

LoggerNetAdmin Admin datalogger support software

LNLinux Linux based LoggerNet server

LoggerNetRem Enables administering to LoggerNetAdmin via
TCP/IP from a remote PC.

LNDB LoggerNet database software

631

Appendix G. Supporting Products Lists

Table 215. LoggerNet Suite1,2

Software Description

LoggerNetData

Generates displays of real-time or historical data,
post-processes data files, and generates reports.
It includes Split, RTMC, View Pro, and Data
Filer.

PC-OPC
Campbell Scientific OPC Server. Feeds
datalogger data into third-party, OPC-compatible
graphics packages.

PakBus Graph Bundled with LoggerNet. Maps and provides
access to the settings of a PakBus network.

RTMCPro

An enhanced version of RTMC. RTMC Pro
provides additional capabilities and more
flexibility, including multi-state alarms, email-
on-alarm conditions, hyperlinks, and FTP file
transfer.

RTMCRT
Allows viewing and printing multi-tab displays
of real-time data. Displays are created in RTMC
or RTMC Pro.

RTMC Web Server
Converts real-time data displays into HTML
files, allowing the displays to be shared via an
Internet browser.

CSIWEBS Web server. Converts RTMC and RTMC Pro
displays into HTML.

CSIWEBSL Web server for Linux. Converts RTMC and
RTMC Pro displays into HTML

1Clients require that LoggerNet — purchased separately — be running on the PC.
2RTMC-based clients require that LoggerNet or RTDAQ — purchased separately — be running on
the PC.

G.8.3 Software Tools List

Table 216. Software Tools
Software Compatibility Description

Network Planner PC, Windows

Available as part of the
LoggerNet suite. Assists in
design of networks and
configuration of network
elements.

Device Configuration Utility
(DevConfig) PC, Windows

Bundled with PC400,
LoggerNet, and RTDAQ. Also
availble at no cost at
www.campbellsci.com. Used
to configure settings and
update operating systems for
Campbell Scientific devices.

632

Appendix G. Supporting Products Lists

G.8.4 Software Development Kits List

Table 217. Software Development Kits
Software Compatibility Description

LoggerNet-SDK PC, Windows

Allows software developers to
create custom client
applications that communicate
through a LoggerNet server
with any datalogger supported
by LoggerNet. Requires
LoggerNet.

LoggerNetS-SDK PC, Windows

LoggerNet Server SDK.
Allows software developers to
create custom client
applications that communicate
through a LoggerNet server
with any datalogger supported
by LoggerNet. Includes the
complete LoggerNet Server
DLL, which can be distributed
with the custom client
applications.

JAVA-SDK PC, Windows

Allows software developers to
write Java applications to
communicate with
dataloggers.

TDRSDK PC, Windows

Software developer kit for PC
and Windows for
communication with the
TDR100 Time Domain
Reflectometer.

G.9 Power Supplies — Products
Related Topics:
 • Power Supplies — Specifications
 • Power Supplies — Quickstart (p. 44)
 • Power Supplies — Overview (p. 85)
 • Power Supplies — Details (p. 98)
 • Power Supplies — Products (p. 633)
 • Power Sources (p. 99)
 • Troubleshooting — Power Supplies (p. 469)

Several power supplies are available from Campbell Scientific to power the CR800.

G.9.1 Battery / Regulator Combinations List
Read More Information on matching power supplies to particular applications
can be found in the Campbell Scientific Application Note "Power Supplies",
available at www.campbellsci.com.

633

Appendix G. Supporting Products Lists

Table 218. Battery / Regulator Combinations
Model Description

PS100 12 Ahr, rechargeable battery and regulator (requires
primary source).

PS200 Smart 12 Ahr, rechargeable battery, and regulator (requires
primary source).

PS24 24 Ahr, rechargeable battery, regulator, and enclosure
(requires primary source).

PS84 84 Ahr, rechargeable battery, Sunsaver regulator, and
enclosure (requires primary source).

G.9.2 Batteries List

Table 219. Batteries
Model Description

BPALK D-cell, 12 Vdc alkaline battery pack

BP7
7 Ahr, sealed-rechargeable battery (requires regulator &
primary source). Includes mounting bracket for Campbell
Scientific enclosures.

BP12
12 Ahr, sealed-rechargeable battery (requires regulator &
primary source). Includes mounting bracket for Campbell
Scientific enclosures.

BP24
24 Ahr, sealed-rechargeable battery (requires regulator &
primary source). Includes mounting bracket for Campbell
Scientific enclosures.

BP84
84 Ahr, sealed-rechargeable battery (requires regulator &
primary source). Includes mounting bracket for Campbell
Scientific enclosures.

G.9.3 Regulators List

Table 220. Regulators
Model Description

CH100 12 Vdc charging regulator (requires primary source)

CH200 12 Vdc charging regulator (requires primary source)

G.9.4 Primary Power Sources List

Table 221. Primary Power Sources
Model Description

29796 24 Vdc 1.67 A output, 100 to 240 Vac 1 A input, 5 ft cable

SP5-L 5 watt solar panel (requires regulator)

SP10 10 watt solar panel (requires regulator)

634

Appendix G. Supporting Products Lists

SP10R 10 watt solar panel (includes regulator)

SP20 20 watt solar panel (requires regulator)

SP20R 20 watt solar panel (includes regulator)

SP50-L 50 watt solar panel (requires regulator)

SP90-L 90 watt solar panel (requires regulator)

DCDC18R 12 Vdc to 18 Vdc boost regulator (allows automotive
supply voltages to recharge sealed, rechargeable batteries)

G.9.5 24 Vdc Power Supply Kits List

Table 222. 24 Vdc Power Supply Kits
Model Description

28370 24 Vdc, 3.8 A NEC Class-2 (battery not included)

28371 24 Vdc, 10 A (battery not included)

28372 24 Vdc, 20 A (battery not included)

G.10 Enclosures — Products

Table 223. Enclosures — Products
Model Description

ENC10/12 10 inch x 12 inch weather-tight enclosure
(will not house CR3000)

ENC12/14 12 inch x 14 inch weather-tight enclosure. Pre-
wired version available.

ENC14/16 14 inch x 16 inch weather-tight enclosure. Pre-
wired version available.

ENC16/18 16 inch x 18 inch weather-tight enclosure. Pre-
wired version available.

ENC24/30 24 inch x 30 inch weather-tight enclosure

ENC24/30S Stainless steel 24 inch x 30 inch weather-tight
enclosure

Table 224. Prewired Enclosures
Model Description

PWENC12/14 Pre-wired 12 inch x 14 inch weather-tight enclosure.

PWENC14/16 Pre-wired 14 inch x 16 inch weather-tight enclosure.

PWENC16/18 Pre-wired 16 inch x 18 inch weather-tight enclosure.

635

Appendix G. Supporting Products Lists

G.11 Tripods, Towers, and Mounts Lists

Table 225. Tripods, Towers, and Mounts
Model Description

CM106B 3 meter (10 ft) tripod tower, galvanized steel

CM110 3 meter (10 ft) tripod tower, stainless steel

CM115 4.5 meter (15 ft) tripod tower, stainless steel

CM120 6 meter (20 ft) tripod tower, stainless steel

UT10 3 meter (10 ft) free-standing tower, aluminum

UT20 6 meter (20 ft) free-standing tower, aluminum,
guying is an option

UT30 10 meter (30 ft) free-standing tower, aluminum,
guying is an option

CM375 10 meter (30 ft) mast, galvanized and stainless
steel, requires guying.

CM300 0.58 meter (23 in) mast, stainless steel, free
standing, tripod, and guyed options

CM305 1.2 meter (47 in) mast, stainless steel, free
standing, tripod, and guyed options

CM310 1.42 meter (56 in) mast, stainless steel, free
standing, tripod, and guyed options

G.12 Enclosures List

Table 226. Protection from Moisture — Products
Model Description

6714 Desiccant 4 Unit Bag (Qty 20). Usually used
in ENC enclosures to protect the CR800.

A150-L Single Sensor Terminal Case, Vented
w/Desiccant.

4091 Desiccant 0.75g Bag. Normally used with
Sentek water content probes.

25366
CS450, CS451, CS455, and CS456
Replacement Desiccant Tube. Normally used
with CS4xx sensors.

10525 Desiccant and Document Holder, User
Installed. Normally use with ENC enclosures.

3885 Desiccant 1/2 Unit Bag (Qty 50).

CS210 Enclosure Humidity Sensor 11 Inch Cable.

636

Index

1
12 Volt Supply ... 103
12V Terminal ... 80, 103

5
5 Volt Pin ... 609
5 Volt Supply ... 102
50 Hz Rejection 98, 308
5V Terminal ... 80
5VoltLow .. 577

6
60 Hz Rejection 98, 308

7
7999 .. 129

9
9 Pin Connectors 239, 609

A
Abbreviations ... 166
Ac .. 481
Ac Excitation ... 102, 323
Ac Noise Rejection 308
Ac Power ... 529
Ac Sine Wave .. 69, 334
Accuracy .. 95, 319,

481, 507,
See 50 Hz
Rejection

Address ... 372, 373,
577

Address — Modbus 393
Address — PakBus 577
Address — SDI-12 262
Amperage .. 101
Amperes (Amps) 481
Analog ... 62, 481
Analog Control .. 349
Analog Input .. 65, 95
Analog Input Expansion 95, 348
Analog Input Range 95, 300
Analog Measurement 458
Analog Output ... 79, 95, 349,

526
Analog Sensor ... 345

Analog-to-Digital Conversion 297, 318,
319, 481

AND Operator .. 198, 539
Anemometer .. 70
ANSI .. 481, 613
API ... 90, 402
Argos ... 573
Arithmatic .. 159
Arithmetic Functions 542
Array .. 127, 133,

160, 496
Asynchronous Communication 78, 240
A-to-D .. 297, 318,

319, 481
Attributes ... 363
Autobaud ... 558
Automatic Calibration 315
Automatic Calibration Sequence 151
Automobile Power 100
AutoRange .. 300, 301

B
Background Calibration 151, 315,

318, 326,
577

Backup Battery .. 45, 93, 450
Battery Backup .. 45, 93
Battery Connection 47, 100
Baud .. 48, 109,

466, 558,
571

Baud Rate ... 240, 242,
556, 562,
573, 577

Beacon .. 375, 482,
577

Beginner Software 48, 50
Big Endian ... 240, 241,

619
Binary .. 482
Binary Control .. 349
Binary Format .. 137
Bit Shift .. 538
Bit Shift Operators 198, 537
Bitwise Comparison 198
Board Revision Number 577
BOOL8... 128, 197,

198, 482
Bool8 Data Type 196, 198
Boolean ... 128, 160,

161, 459,
482

637

Index

BOOLEAN Data Type 128, 482
Bridge .. 67, 319,

321
Bridge — Quarter-Bridge Shunt 219
Bridge Measurement 102, 323,

525
Buffer Depth .. 577
Buffer Size ... 242
Burst Mode .. 221
Byte Translation 245

C
Cable Length ... 309, 345
CAL Files ... 204
Calibration ... 73, 92, 151,

205, 315,
326

Calibration — Background 577
Calibration — Error 577
Calibration — Field 203
Calibration — Field - Example 207
Calibration — Field - Offset 209
Calibration — Field - Slope / Offset 211
Calibration -- Field - Two-Point 206
Calibration — Field - Zero 207
Calibration — Field Calibration Slope Only 214
Calibration — Functions 572
Calibration — Manual Field Calibration .. 205
Calibration — Single-Point Field Calibration 206
Callback ... 283, 371,

483, 491,
571

CAO ... 349
Card Bytes Free 577
Card Status ... 577
Care ... 92, 449
CE Compliance 95
Charging Circuit 473, 474
Circuit .. 321, 342,

351
Clients ... 631
CLK/HS Pin ... 609
Clock ... 75
Clock Accuracy 95
Clock Function... 552
Clock Synchronization 55
Closed Interval .. 143
Code .. 483
Coil .. 392
Collecting Data .. 55, 57
COM Port Connection 47
Commands - SDI-12 261

Comment ... 124
Common Mode .. 297, 300,

301
Common Mode Null 300, 301
Communication 47, 55, 89,

370, 387,
466, 467

communication Ports 577
Communications Memory Errors 467, 577
Communications Memory Free 467, 577
CompactFlash ... 365
Compile Errors .. 457, 462,

464
Compile Program 178
Compile Results 577
Compression ... 115, 440
Concatenation ... 276
Conditional Compile 178, 179
Conditioning Circuit 342
Configuration ... 109
Configure Display 440
Connection .. 43, 47, 75
Constant .. 127, 135,

136, 484
Constant -- Predefined 136
Constant Conversion 161
Constant Declaration 513
Continuous Analog Out 349
Control ... 79, 103,

349, 519,
522

Control I/O ... 95, 484
Control Instructions 497
Control Output Expansion 349
Control Peripheral 348
Control Port ... 78, 577
Conversion .. 161
CPU ... 355, 484
CPU Drive Free 577
cr .. 241
CR1000KD .. 75, 84, 180,

430, 484,
627

CR10X ... 143, 251,
558

CR200 ... 558
CR23X ... 251, 558
CR510 ... 251, 558
CRBasic Editor .. 123
CRBasic Program 48, 55, 124
CS I/O Port .. 81, 485,

609
Current ... 101

638

Index

Current Loop Sensor 66, 79, 319
Current Sourcing Limit 103, 349
Custom Display 433
Custom Menu .. 83, 84, 555
CVI .. 485
CWB100 .. 532

D
Data Acquisition System — Sensor 42
Data bits .. 241
Data Collection .. 55, 57
Data Destination 515
Data Fill Days .. 577
Data Format .. 89, 617
Data Monitoring 48, 55
Data Point.. 485
Data Preservation 364
Data Record Size 577
Data Recovery .. 478
Data Retrieval ... 87, 370
Data Storage ... 86, 142,

351, 515,
516

Data Storage — Trigger 194
Data Table ... 48, 138,

139, 140,
165, 195,
435, 514

Data Table Access 565
Data Table Header 163
Data Table Management 565
Data Table Modifier 514
Data Table Name 127, 577
Data Type .. 128, 129,

160, 198
Data Type — Bool8 196
Data Type — LONG 493
Data Type — NSEC 200, 495
Data type — UINT2 505
Data Type Format 242
Datalogger Support Software 93, 485
Date ... 439
dc ... 486
dc Excitation .. 102
DCE ... 81, 486,

487, 495
Debugging ... 461
Declaration .. 127, 138,

511
Declaration — Data Table 514
Declaration — Modbus 392
Default.CR1 ... 114
Desiccant... 92, 97, 486

DevConfig .. 109, 110,
487

Device Configuration 109, 110
Device Map ... 377
DHCP .. 288, 487
Diagnosis — Power Supply 470
Diagnostics .. 524
Dial Sequence ... 149
Dial String .. 577
Differential ... 64, 65, 487
Digital I/O ... 62, 78, 95,

349, 527
Digital Register .. 392
Dimension ... 132, 487
Diode OR Circuit 100
Disable Variable 143, 144,

193, 458
DisableVar ... 193, 458
Display ... 82, 430
Display — Custom 433
DNP Variable ... 388
DNP3 ... 90, 387,

571
DNS ... 288, 487
Documentation .. 124
Drive USR ... 577
DTE ... 81, 486,

487, 495
Duplex ... 241
Durable Setting .. 113

E
Earth Ground ... 79, 103,

488
Edge Timing .. 62, 78
Edit File.. 437
Edit Program ... 437
Editor ... 50
Editor -- Short Cut 123
Email .. 282, 567
EMF ... 303
Enclosures ... 90, 97
Encryption ... 90, 385
Endianness .. 240, 241,

619
Engineering Units 488
Environmental Enclosures 97
Erase Memory ... 577
Error ... 303, 311,

458, 459,
467

Error — Analog Measurement 106, 107,
458

639

Index

Error — Programming 457
Error — Soil Temperature Thermocouple 107
ESD ... 79, 488,

507
ESD Protection .. 103, 105
ESS ... 488
Ethernet Settings 577
Evapotranspiration 518
Example ... 163, 367,

368, 379
Example Program 194, 247,

252
Excitation ... 102, 488,

526
Excitation Reversal 317
Execution ... 149
Execution at Compile 518
Execution Interval 152, 153
Execution Time.. 488
Expression ... 158, 160,

161, 163,
488

Expression — Logical 162
Expression — String 164
Extended Commands — SDI-12 271
External Power Supply 80

F
False .. 163
FAT .. 354
Field Calibration 73, 203
FieldCal — Multiplier 212
FieldCal — Multiplier Only 215
FieldCal — Offset 210, 212
FieldCal — Zero 208
File Attributes .. 363
File Compression 115, 440
File Control .. 361, 488
File Display .. 437
File Management 361, 563
File Names .. 368
Files Manager .. 577
Fill and Stop Memory 351, 489
Final-Data Memory 489
Final-Memory Tables 435
Firmware ... 85
Fixed Voltage Range 301
Flag ... 133, 393
Floating Point .. 159
Format — Numerical 137
Forward ... 33
Fragmentation ... 354

Frequency .. 69, 331
Frequency Resolution 335
FTP .. 490
FTP Client .. 287
FTP Server .. 287
FTP Settings .. 577
Full Duplex ... 490
Full-Bridge ... 319
Full-Memory Reset 577
Function Codes — Modbus 393

G
Garbage ... 490
Gas-discharge Tubes 103
Generator .. 50, 123
global variable ... 490
Glossary .. 481
GOES .. 574
Graphs ... 433
Ground ... 79, 92, 103,

105, 301,
490

Ground Loop ... 107
Ground Potential Error 107
Ground Reference Offset 318
Gypsum Block ... 323
Gzip Compression 115

H
Half Bridge ... 319
Half Duplex .. 490, 491
Handshake, Handshaking 491
Hello Exchange 491
Hello Message ... 375
Hello Request .. 375
Hertz .. 491
Hexadecimal .. 137
Hidden Files... 90
Holding Register 392
HTML ... 286, 491
HTTP ... 283, 491
HTTP Settings ... 577
Humidity ... 92, 97

I
I/O Port .. 78
IEEE4 .. 128, 491
Include File .. 145, 577
INF ... 458, 491
Infinite .. 458
Information Services 282, 567

640

Index

Initialize ... 127
Initiate Telecommunications.................... 283, 371,

491, 571
INMARSAT-C .. 575
Input Channel .. 65
Input Expansion Module 84
Input Limits .. 95, 297,

301
Input Range ... 95, 300
Input Register .. 392
Input Reversal ... 317
Input/Output Instructions 491
Installation ... 43
Instruction .. 156
Instruction Times 524
Instructions — ABS 542
Instructions — AcceptDataRecords 558
Instructions — ACOS 540
Instructions — ACPower 529
Instructions — AddPrecise 546
Instructions — Alias 121, 127,

136, 157,
512

Instructions — AM25T 532
Instructions — AND 539
Instructions — AngleDegrees 511
Instructions — ArgosData 573
Instructions — ArgosDataRepeat 573
Instructions — ArgosError 573
Instructions — ArgosSetup 573
Instructions — ArgosTransmit 573
Instructions — ArrayIndex 562
Instructions — ArrayLength 562
Instructions — As 512
Instructions — ASCII 481, 549,

613
Instructions — ASIN 540
Instructions — ATN 540
Instructions — ATN2 540
Instructions — Average 516
Instructions — AvgRun 546
Instructions — AvgSpa 545
Instructions — AVW200 532
Instructions — Battery 44, 85, 98,

99, 274,
450, 470,
524, 577

Instructions — BeginProg / EndProg 519
Instructions — BrFull 525
Instructions — BrFull6W 525
Instructions — BrHalf 525
Instructions — BrHalf3W 525
Instructions — BrHalf4W 525
Instructions — Broadcast 375, 559

Instructions — CalFile 563
Instructions — Calibrate 572, 576
Instructions — Call 519
Instructions — CallTable 519
Instructions — Case 519
Instructions — CDM_VW300Config 532
Instructions — CDM_VW300Dynamic 532
Instructions — CDM_VW300Rainflow 532
Instructions — CDM_VW300Static 532
Instructions — Ceiling 542
Instructions — CheckPort 527
Instructions — CheckSum 549
Instructions — CHR 549
Instructions — ClockChange 552
Instructions — ClockReport 552, 559
Instructions — ClockSet 552
Instructions — ComPortIsActive 524
Instructions — Const 136, 513
Instructions — ConstTable / EndConstTable 513
Instructions — COS 540
Instructions — COSH 540
Instructions — Covariance 516
Instructions — CovSpa 545
Instructions — CPISpeed 532
Instructions — CS110 529
Instructions — CS110Shutter 529
Instructions — CS616 529
Instructions — CS7500 529
Instructions — CSAT3 529
Instructions — CWB100 532
Instructions — CWB100Diagnostics 532
Instructions — CWB100Routes 532
Instructions — CWB100RSSI 532
Instructions — Data / Read / Restore 522
Instructions — DataEvent 514
Instructions — DataGram 559
Instructions — DataInterval 142, 514
Instructions — DataLong / Read / Restore 522
Instructions — DataTable / EndTable 141, 514
Instructions — DataTime 514
Instructions — DaylightSaving 552
Instructions — DaylightSavingUS 552
Instructions — Delay 519
Instructions — DewPoint 544
Instructions — DHCPRenew 567
Instructions — DialModem 571
Instructions — DialSequence / EndDialSequence559
Instructions — DialVoice 554
Instructions — Dim 487, 512
Instructions — DisplayLine 555
Instructions — DisplayMenu / EndMenu . 555
Instructions — DisplayValue 555
Instructions — DNP 388, 571
Instructions — DNPUpdate 388, 571

641

Index

Instructions — DNPVariable 571
Instructions — Do / While / Until / Exit Do / Loop . 519
Instructions — EC100 529
Instructions — EC100Configure 529
Instructions — EMailRecv 567
Instructions — EMailSend 567
Instructions — EndSequence 519
Instructions — EQV 539
Instructions — Erase 562
Instructions — ESSInitialize 518
Instructions — ESSVariables 512
Instructions — EthernetPower 567
Instructions — ETsz 518
Instructions — ExciteV 526
Instructions — Exit 519
Instructions — EXP 542
Instructions — FFT 516
Instructions — FFTSpa 545
Instructions — FieldCal 207, 572
Instructions — FieldCalStrain 216, 218,

572
Instructions — FieldNames 516
Instructions — FileClose 563
Instructions — FileCopy 563
Instructions — FileEncrypt 563
Instructions — FileList 563
Instructions — FileManage 563
Instructions — FileMark 565
Instructions — FileOpen 563
Instructions — FileRead 563
Instructions — FileReadLine 563
Instructions — FileRename 563
Instructions — FileSize 563
Instructions — FileTime 563
Instructions — FileWrite 563
Instructions — FillStop 514
Instructions — FindSpa 562
Instructions — FIX 542
Instructions — FLOAT 128, 160,

161, 459,
489

Instructions — Floor 542
Instructions — For / To / Step / ExitFor / Next 519
Instructions — FormatFloat 549
Instructions — FormatLong 549
Instructions — FormatLongLong 549
Instructions — FP2 128, 489,

617
Instructions — FRAC 542
Instructions — FTPClient 567
Instructions — Function / Return / Exit Function /

EndFunctio
n 576

Instructions — GetDataRecord 559
Instructions — GetFile 559
Instructions — GetRecord 565
Instructions — GetVariables 559
Instructions — GOESData 574
Instructions — GOESGPS 574
Instructions — GOESSetup 574
Instructions — GOESStatus 574
Instructions — GPS 529
Instructions — HEX 549
Instructions — HexToDec 549
Instructions — Histogram 547
Instructions — Histogram4D 547
Instructions — HTTPGet 567
Instructions — HTTPOut 567
Instructions — HTTPPost 567
Instructions — HTTPPut 567
Instructions — HydraProbe 529
Instructions — If / Then / Else / ElseIf / EndIf 519
Instructions — IfTime 552
Instructions — IIF 539
Instructions — IMP 539
Instructions — Include 563
Instructions — INSATData 575
Instructions — INSATSetup 575
Instructions — INSATStatus 575
Instructions — InStr 549
Instructions — InstructionTimes 524
Instructions — INT 542
Instructions — INTDV 542
Instructions — IPInfo 567
Instructions — IPNetPower 567
Instructions — IPRoute 567
Instructions — IPTrace 567
Instructions — Is 567
Instructions — Left 549
Instructions — Len 549
Instructions — LevelCrossing 547
Instructions — LI7200 529
Instructions — LI7700 529
Instructions — LN or LOG 542
Instructions — LoadFieldCal 572
Instructions — LOG10 542
Instructions — LONG 128, 160,

161, 459,
493

Instructions — LowerCase 549
Instructions — LTrim 549
Instructions — Maximum 516
Instructions — MaxSpa 545
Instructions — Median 516
Instructions — MenuItem 555
Instructions — MenuPick 555

642

Index

Instructions — MenuRecompile 555
Instructions — Mid 549
Instructions — Minimum 516
Instructions — MinSpa 545
Instructions — MOD 542
Instructions — ModBusMaster 393, 571
Instructions — ModBusSlave 393, 571
Instructions — ModemCallback 571
Instructions — ModemHangup / EndModemHangup

 571
Instructions — Moment 516
Instructions — Move 562
Instructions — MoveBytes 393, 556
Instructions — MovePrecise 518
Instructions — MuxSelect 532
Instructions — Network 559
Instructions — NetworkTimeProtocol 567
Instructions — NewFieldCal 572
Instructions — NewFieldNames 512
Instructions — NewFile 563
Instructions — NOT 539
Instructions — OmniSatData................... 575
Instructions — OmniSatRandomSetup ... 575
Instructions — OmniSatStatus 575
Instructions — OmniSatSTSetup 575
Instructions — OpenInterval 143, 514
Instructions — Optional 576
Instructions — OR 539
Instructions — PakBusClock 552, 559
Instructions — PanelTemp 524
Instructions — PeakValley 516
Instructions — PeriodAvg 527
Instructions — PingIP 567
Instructions — PipelineMode 511
Instructions — PortGet 527
Instructions — PortPairConfig 527
Instructions — PortsConfig 527
Instructions — PortSet 527
Instructions — PPPClose 567
Instructions — PPPOpen 567
Instructions — PreserveVariables 512
Instructions — PRT 227, 544
Instructions — PRTCalc 544
Instructions — Public 498, 512
Instructions — PulseCount 527
Instructions — PulseCountReset 518
Instructions — PulsePort 527
Instructions — PWR 542
Instructions — RainFlow 547
Instructions — RainFlowSample 518, 547
Instructions — Randomize 546
Instructions — Read 522
Instructions — ReadIO 527
Instructions — ReadOnly 127, 512

Instructions — RealTime 524, 552
Instructions — RectPolar 542
Instructions — Replace 549
Instructions — ResetTable 565
Instructions — Resistance....................... 319
Instructions — Restore 522
Instructions — Right 549
Instructions — RMSSpa 545
Instructions — RND 546
Instructions — Round 542
Instructions — Route 559
Instructions — RoutersNeighbors 559
Instructions — Routes 559, 577
Instructions — RTrim 549
Instructions — RunProgram 563
Instructions — Sample 516
Instructions — SampleFieldCal 516, 572
Instructions — SampleMaxMin 516
Instructions — SatVP 544
Instructions — Scan / ExitScan / ContinueScan /

NextScan
 519

Instructions — SDI12Recorder 270, 529
Instructions — SDI12SensorResponse 269, 529
Instructions — SDI12SensorSetup 269, 529
Instructions — SDMAO4 532
Instructions — SDMAO4A 532
Instructions — SDMCAN 532
Instructions — SDMCD16AC 532
Instructions — SDMCD16Mask 532
Instructions — SDMCVO4 532
Instructions — SDMGeneric 532
Instructions — SDMINT8 532
Instructions — SDMIO16 532
Instructions — SDMSIO4 532
Instructions — SDMSpeed 532
Instructions — SDMSW8A 532
Instructions — SDMTrigger 532
Instructions — SDMX50 532
Instructions — SecsSince1990 552
Instructions — Select Case / Case / Case Is / Case

Else /
EndSelect
 519

Instructions — SemaphoreGet 151, 522
Instructions — SemaphoreRelease 522
Instructions — SendData 559
Instructions — SendFile 559
Instructions — SendGetVariables 559
Instructions — SendTableDef 559
Instructions — SendVariables 559
Instructions — SequentialMode 511
Instructions — SerialBrk 556
Instructions — SerialClose 242, 556

643

Index

Instructions — SerialFlush 242, 556
Instructions — SerialIn 242, 556
Instructions — SerialInBlock 242, 556
Instructions — SerialInChk 556
Instructions — SerialInRecord 242, 556
Instructions — SerialOpen 242, 556
Instructions — SerialOut 242, 556
Instructions — SerialOutBlock 242, 556
Instructions — SetSecurity 511
Instructions — SetSetting 565
Instructions — SetStatus 565
Instructions — SGN 542
Instructions — ShutDownBegin 522
Instructions — ShutDownEnd 522
Instructions — Signatures 90, 501,

524
Instructions — SIN 540
Instructions — SINH 540
Instructions — SlowSequence 153, 502,

519, 577
Instructions — SNMPVariable 567
Instructions — SolarPosition 544
Instructions — SortSpa 545
Instructions — SplitStr 549
Instructions — SPrintF 549
Instructions — Sqr 542
Instructions — StaticRoute 559
Instructions — StationName 127, 511,

577
Instructions — StdDev 516
Instructions — StdDevSpa 545
Instructions — StrainCalc 544
Instructions — StrComp 549
Instructions — STRING 128, 459,

503
Instructions — Sub / Exit Sub / End Sub 511
Instructions — SubMenu / EndSubMenu 555
Instructions — SubScan / NextSubScan 154, 519
Instructions — SW12 526
Instructions — TableHide 143, 514
Instructions — TableName.EventCount .. 565
Instructions — TableName.FieldName ... 565
Instructions — TableName.Output 565
Instructions — TableName.Record 565
Instructions — TableName.TableFull 565
Instructions — TableName.TableSize 565
Instructions — TableName.TimeStamp .. 565
Instructions — TAN 540
Instructions — TANH 540
Instructions — TCDiff 525
Instructions — TCPClose 567
Instructions — TCPOpen 567
Instructions — TCSe 525

Instructions — TDR100 532
Instructions — TGA 529
Instructions — Therm107 529
Instructions — Therm108 529
Instructions — Therm109 529
Instructions — Thermistor 525
Instructions — TimedControl 532
Instructions — TimeIntoInterval 552
Instructions — TimeIsBetween 519, 552
Instructions — Timer 552
Instructions — TimerIO 527
Instructions — TimeUntilTransmit 559
Instructions — Totalize 516
Instructions — TotalRun 537
Instructions — TriggerSequence 519
Instructions — Trim 549
Instructions — UDPDataGram 567
Instructions — UDPOpen 567
Instructions — Units 127, 136,

512
Instructions — UpperCase 549
Instructions — VaporPressure 544
Instructions — VibratingWire 527
Instructions — VoiceBeg / EndVoice 554
Instructions — VoiceHangup 554
Instructions — VoiceKey 554
Instructions — VoiceNumber 554
Instructions — VoicePhrases 554
Instructions — VoiceSetup 554
Instructions — VoiceSpeak 554
Instructions — VoltDiff 525
Instructions — VoltSE 525
Instructions — WaitDigTrig 519
Instructions — WaitTriggerSequence 519
Instructions — WebPageBegin / WebPageEnd ... 567
Instructions — WetDryBulb 544
Instructions — While / Wend 519
Instructions — WindVector 518
Instructions — WorstCase 565
Instructions — WriteIO 527
Instructions — XMLParse 567
Instructions — XOR 539
Instrumentation Amplifier 297
Integer ... 161, 492
Integrated Processing 544
Integration .. 307
Intermediate Memory 143
Intermediate Storage 486
Internal Battery .. 45, 93, 450
Interrupt ... 78
Interval ... 486
Introduction .. 33
Inverse Format Registers - Modbus 394

644

Index

Ionic Sensor .. 107
IP ... 282, 288,

492, 577
IP - Modbus ... 394
IP Address ... 492, 577
IP Gateway .. 577
IP Information .. 577

K
Keyboard Display 82, 84, 180,

430, 555

L
LAN — PakBus 379
Lapse ... 142
Lead .. 309
Lead Length .. 345
Leaf Node .. 372, 373
lf ... 241
Lightning .. 43, 92, 103,

488
Lightning Protection 105
Lightning Rod .. 105
Line Continuation 126
Linear Sensor .. 73
Link Performance 377
Lithium Battery .. 45, 450,

577
Little Endian .. 240, 241,

619
Local Variable ... 134, 493
Lock ... 90
LoggerNet.. 631
Logic .. 163
Logical Expression 162, 163
Logical Operator 539
Long Lead ... 309
Loop .. 493
Loop Counter .. 493
Low 12-V Counter 577
Low-Level Ac ... 334, 348
LSB .. 240, 241,

619

M
Maintenance .. 92, 449
Manage Files ... 577
Manual Organization 33
Manually Initiated 493
Marks and Spaces 241

Mass Storage Device 114, 356,
365, 493,
629

Math ... 159, 458,
537

Mathematical Operation 159
Mathematical Operator 537
MD5 digest .. 493
ME Pin .. 609
MeasOff ... 315
Measurement .. 295
Measurement — Error 311
Measurement — Instruction 156, 524
Measurement — Op Codes 577
Measurement — Peripheral 348
Measurement — Sequence 299
Measurement — Synchronizing 346
Measurement — Time 577
Measurement — Timing 299
Memory.. 86, 160,

351
Memory — Free 577
Memory — Size 577
Memory Conservation 124, 142,

160, 246
Memory Reset ... 360
Menu — Custom 180, 555
Messages .. 577
Milli .. 493
Millivoltage Measurement 297
Modbus .. 89, 288,

391, 393,
493, 571

Modem Control .. 571
Modem Hangup Sequence...................... 149
Modem/Terminal 494
Moisture ... 92, 97
Monitoring Data 48, 55
Mounting .. 43, 97
MSB ... 240, 241,

619
Multi-meter .. 494
Multiple Lines .. 126
Multiple Statements 126
Multiplexers ... 348
mV ... 494

N
Name ... 158, 577
NAN ... 128, 193,

301, 458,
494

Neighbor .. 374, 577

645

Index

Neighbor Device 494
Neighbor Filter ... 375
Network ... 373
Network Planner 110
Nine-Pin Connectors 239, 609
NIST .. 494
Node .. 372, 494,

577
Noise ... 98, 303,

307, 308,
309

Nominal Power .. 85
Not-A-Number ... 458
NSEC Data Type 128, 200,

495
NULL Character 257
Null Modem ... 486, 487,

495
Numbers of Records 145
Numerical Format 137

O
Ohm ... 495
Ohms Law ... 495
OID .. 301
OMNISAT .. 575
On-line Data Transfer 495
Op Codes .. 577
Open Input Detect 301, 313
Open Inputs ... 301
Operating System 577
Operating Temperature Range 97
Operator .. 537, 539
Operators — Bit Shift 537
OR Diode Circuit 100
OR Operator .. 198
OS Date ... 577
OS Signature ... 577
OS Version .. 577
Output .. 495
Output Array .. 496
OutputOpt .. 289
Overrange ... 231, 458,

494
Overrun ... 461, 577
Overview ... 75
Overview — Power Supply 470

P
Packet Size ... 577
PakBus .. 88, 373,

377, 496,

558
PakBus Address 372, 373,

577
PakBus Information 577
PakBus LAN .. 379
PakBus Overview 372
Panel Temperature 577
Parameter .. 496
Parameter Type 157
Password ... 90, 577
PC Program ... 467
PC Support Software 93
PC200W .. 48, 630
PC400 .. 631
PCM .. 301
PDA Support ... 631
PDM ... 79, 349
Period Average .. 62, 95, 341,

342, 496,
527

Peripheral .. 348, 496
Peripheral Port .. 81
Piezometer .. 42
Pin Out ... 609
Ping ... 288, 377,

497, 577
Pipeline Mode .. 103, 150,

151
Platinum Resistance Thermometer 227, 544
PLC .. 392
Poisson Ratio .. 497
Polar Sensor .. 107
Polarity ... 47
Polarity Reversal 317
Polarized Sensor 323
Port .. 78, 438
Power .. 48, 80, 95,

100, 101,
103

Power Budget .. 99, 274
Power Consumption 99
Powering Sensor 85, 101
Power-up ... 365
PPP ... 282, 567
PPP — Dial Response 577
PPP — Settings 577
PPP — Username 577
PPP Information 577
PPP Interface .. 577
PPP IP Address 492, 577
PPP Password .. 577
Precision .. 497, 507
Predefined Constant 136

646

Index

Preserve Data ... 125, 364
Preserve Settings 577
Pressure Transducer 313
Primer .. 41
Print Device ... 497
Print Peripheral 497
Priority ... 114, 149,

154
Probe ... 42, 626
Process Time .. 577
Processing... 537
Processing — Integrated 544
Processing — Output 143, 516
Processing — Spatial 545
Processing — Wind Vector 289
Processing Instructions 497
Processing Instructions — Output 486
Processor .. 95
Program ... 85
Program — Alias 136
Program — Array 133
Program — Compile Errors 457, 462,

464
Program — Constant 135
Program — Data Storage Processing Instruction 156
Program — Data Table 138
Program — Data Type 128
Program — DataInterval() Instruction 142
Program — DataTable() Instruction 141
Program — Declaration 127, 138,

511
Program — Dimension 132
Program — Documenting 124
Program — Execution 149
Program — Expression 158
Program — Field Calibration 204
Program — Floating Point Arithmetic 159
Program — Mathematical Operation 159
Program — Measurement Instruction 156
Program — Modbus 392
Program — Name in Parameter 157
Program — Output Processing 143
Program — Overrun 461, 577
Program — Parameter Type 157
Program — Pipeline Mode 150
Program — Resource Library 203
Program — Runtime Errors 457, 462,

464
Program — Scan 153
Program — Scan Priority 154
Program — Sequential Mode 151
Program — Slow Sequence 153
Program — Structure 121
Program — Subroutine 145, 281

Program — SubScan 154
Program — Task Priority 149
Program — Timing 152
Program — Unit 136
Program — Variable 127
Program Editor .. 50
Program Errors .. 462, 464,

577
Program Signature 577
Programming ... 48, 55, 85,

124
Programming — Capturing Events 167
Programming — Conditional Output 168
Programming — Groundwater Pump Test 169
Programming — Multiple Scans 177
Programming — Running Average 190
Programming — Scaling Array 175
Protection .. 92
Protocols Supported 95
Pulse .. 62, 498
Pulse Count ... 95, 331
Pulse Count Reset 175
Pulse Input .. 69, 70
Pulse Input Expansion 348
Pulse Measurement 527
Pulse Sensor ... 345
Pulse-Duration Modulation 79, 349
Pulse-Width Modulation 79, 349
PWM .. 79, 349

Q
Quarter-Bridge ... 216, 319
Quarter-Bridge Shunt 219
Quarter-Bridge Zero 220
Quickstart Tutorial 41

R
Rain Gage ... 345
Range Limit ... 128
Ratiometric .. 323
RC Resistor Shunt 218
Record Number 577
Reference Voltage 106
Regulator ... 498
Relay ... 350, 351
Relay Driver ... 103, 350
Reliable Power .. 98
Requirement — Power 99
Reset ... 360, 577
Resistance ... 499
Resistive Bridge 95, 319
Resistor ... 499

647

Index

Resolution ... 95
Resolution — Concept 507
Resolution — Data Type 128, 499,

507
Resolution — Definition 128, 499,

507
Resolution — Edge Timing 62
Resolution — Period Average 62
Retrieving Data.. 55, 57
RevDiff ... 315
Reverse Polarity 47, 100
RevEx .. 315
Ring Line (Pin 3) 499
Ring Memory ... 351, 499
RING Pin .. 609
Ringing .. 499
RMS .. 499
Route Filter .. 577
Router .. 372, 373,

577
RS-232 .. 48, 62, 73,

95, 241,
466, 499,
577

RS-232 Pin Out 609
RS-232 Port ... 81
RS-232 Power States 610
RS-232 Recording 344
RS-232 Sensor .. 238, 346
RTDAQ .. 631
RTU ... 392
Running Average 190
Runtime Errors .. 457, 462,

464
Runtime Signatures 577
RX ... 241
RX Pin .. 609

S
Sample Rate .. 500
Satellite .. 573
SCADA .. 89, 90, 387,

571
Scan .. 95, 153
Scan (execution interval) 95, 500
Scan Interval ... 95, 152
Scan Time ... 153, 500
Scientific Notation 137
SDE Pin .. 609
SDI-12 ... 95, 259,

263, 500,
529

SDI-12 Command 262
SDI-12 Extended Command 271
SDI-12 Measurement 458
SDI-12 Recording 344
SDI-12 Sensor ... 346
SDM ... 62, 78, 500
Security .. 90, 577
Seebeck Effect .. 500
Self-Calibration .. 326
Semaphore .. 501
Send .. 501
Sensor ... 42, 85, 626
Sensor — Analog 297
Sensor — Bridge 319
Sensor — Voltage 297
Sensor Power .. 85, 101
Sensor Support 295
Sequence .. 138
Sequence — Dial 149
Sequence — Incidental 149
Sequence — Modem Hangup 149
Sequence — Shut Down 149
Sequence — Web Page 149
Sequential Mode 103, 151
Serial ... 62, 501
Serial — Comms Sniffer Mode 475
Serial — I/O ... 238, 346,

556
Serial — Input .. 238
Serial — Input Expansion 348
Serial — Number 577
Serial — Port ... 239, 609
Serial — Port Connection 47
Serial — Sensor 346
Serial — Server 288
Serial — Talk Through Mode 475
Server .. 631
Set Time and Date 439
Setting ... 439
Setting — PakBus 440
Setting — Via CRBasic 113
Settings — Resident Files 113
Settling Error.. 311
Settling Time.. 307, 309,

310, 311,
312, 313,
345

Short Cut ... 50, 630
Shunt Calibration 219, 220
Shunt Zero ... 220
Shut Down Sequence 149
SI Système Internationale 501
Signal Conditioner 107

648

Index

Signal Settling Time 309, 311
Signatured Packet 88
Signatures — Program 176, 577
Signatures — Runtime 577
Signatures — System 167
Sine Wave ... 334
Single-Ended Measurement 64, 65, 106,

107, 501
Skipped Records 577
Skipped Scan .. 142, 461,

502, 577
Skipped Slow Scan 577
Skipped System Scan 577
SMTP .. 288, 502
SNMP .. 287
SNP ... 502
Software .. 93
Software — Beginner 48, 50
Solar Panel .. 471
SP .. 241
Spark Gap ... 103
Spatial Processing 545
Specifications .. 95
Square Wave .. 69
SRAM .. 351, 355
Standard Deviation 293
Star 4 (*4) Parameter Entry Table 497
Start Bit .. 242
Start Time .. 577
Start Up Code ... 577
Starter Software 48, 50
State .. 79, 502,

610
State Measurement 78
Statement Aggregation 126
Status .. 438
Status Table ... 578
Stop bits .. 242
Storage .. 515
Storage Media ... 351
Strain ... 324
Strain Calculation 324
String Command 549
String Expression 164
String Function .. 548
String Operation 275, 548
Structure — Program 121
Subroutine ... 145, 281
SubScan .. 154
Supply ... 44, 85, 98,

99, 274,
470

Support Software 503

Surge Protection 99, 103,
105

SW-12 Port .. 79, 95, 103,
526, 577

Switched 12 Vdc (SW12) Port 79, 95, 103,
526, 577

Synchronous ... 504
System Time ... 153, 504
Système Internationale 501

T
Table .. 48
Table — Data Header 163
Table Overrun ... 461
Task ... 150, 504
Task Priority .. 149
TCP ... 282, 288,

567
TCP Information 577
TCP Port .. 577
TCP Settings ... 577
TCP/IP ... 283, 504
TCP/IP Information 577
Telecommunication 48, 55, 88,

89, 370,
387

Telnet ... 287, 504
Telnet Settings .. 577
Temperature Range 97
Terminal Emulator 475
Terminal Emulator Menu 476
Terminal Input Module 349
Termination Character 257
Thermistor ... 227, 297,

504, 529
Thermocouple ... 46
Thermocouple Measurement 107, 525
Throughput .. 505
Time ... 200, 439
Time Skew ... 266, 318,

500
Time Zone ... 200
Timestamp ... 142, 200,

577
Timing .. 299
TIMs ... 349
Toggle .. 505
Transducer .. 42, 313
Transformer ... 85, 473
Transient ... 79, 92, 99,

461, 488,
507

Transparent Mode — SDI-12 475

649

Index

Tree Map ... 378
Trigger — Output 193
Trigger Variable 193
Triggers ... 193
Trigonometric Functions 541
TrigVar ... 193, 194
Troubleshooting 455, 577
Troubleshooting — PakBus Network 376
Troubleshooting — Power Supply........... 470
Troubleshooting — SDI-12 260
Troubleshooting — Solar Panel 471
True ... 163
TTL .. 505
TTL logic .. 505
TTL Recording... 344
Tutorial .. 41
Tutorial Exercise 46
TVS ... 99
TX .. 242
TX Pin .. 609

U
UDP ... 567
UINT2 .. 128, 505
UPS ... 44, 85, 98,

505
USB: Drive ... 114, 356,

365, 493,
629

User Defined Functions 576
User Program .. 124, 507
USR ... 355
USR Drive ... 577
USR Drive Free 577
UTC Offset .. 577

V
Vac .. 506
Variable ... 127, 160,

506
Variable Array .. 134
Variable Declaration 512
Variable Initialization 135
Variable Management 562
Variable Modifier 512
Variable Out of Bounds 577
Vdc .. 506
Vector .. 291, 292
Vehicle Power Connection 100
Verify Interval .. 577
Vibrating Wire Input Module 349
Viewing Data ... 48, 55

Visual Weather .. 631
Voice Modem .. 554
Volt Meter .. 506
Voltage Measurement 297, 525
Volts ... 506

W
Warning Message 462
Watchdog Errors 165, 353,

461, 464,
467, 507,
577, 578

Watchdog Timer 507
Water Conductivity 323
Weather Tight .. 92, 507
Web API .. 90, 402
Web Page .. 567
Web Page Sequence 149
Web Server.. 283
Wheatstone Bridge 319
Wind Vector ... 289, 291,

292
Wind Vector Processing 289
Wireless Sensor Network 532
Wiring .. 43, 47, 75,

345
Wiring Panel .. 43, 44, 47,

75
Writing Program 123

X
XML ... 507
XOR ... 539

Z
Zero ... 220
Zero Basis ... 203

650

Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES

www.campbellsci.com • info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)
PO Box 2450

Somerset West 7129
SOUTH AFRICA

www.csafrica.co.za • cleroux@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 8108

Garbutt Post Shop QLD 4814
AUSTRALIA

www.campbellsci.com.au • info@campbellsci.com.au

Campbell Scientific (Beijing) Co., Ltd.
8B16, Floor 8 Tower B, Hanwei Plaza

7 Guanghua Road
Chaoyang, Beijing 100004

P.R. CHINA
www.campbellsci.com • info@campbellsci.com.cn

Campbell Scientific do Brasil Ltda. (CSB)
Rua Apinagés, nbr. 2018 ─ Perdizes
CEP: 01258-00 ─ São Paulo ─ SP

BRASIL
www.campbellsci.com.br • vendas@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)
14532 – 131 Avenue NW
Edmonton AB T5L 4X4

CANADA
www.campbellsci.ca • dataloggers@campbellsci.ca

Campbell Scientific Centro Caribe S.A. (CSCC)
300 N Cementerio, Edificio Breller

Santo Domingo, Heredia 40305
COSTA RICA

www.campbellsci.cc • info@campbellsci.cc

Campbell Scientific Ltd. (CSL)
Campbell Park

80 Hathern Road
Shepshed, Loughborough LE12 9GX

UNITED KINGDOM
www.campbellsci.co.uk • sales@campbellsci.co.uk

Campbell Scientific Ltd. (CSL France)
3 Avenue de la Division Leclerc

92160 ANTONY
FRANCE

www.campbellsci.fr • info@campbellsci.fr

Campbell Scientific Ltd. (CSL Germany)
Fahrenheitstraße 13

28359 Bremen
GERMANY

www.campbellsci.de • info@campbellsci.de

Campbell Scientific Spain, S. L. (CSL Spain)
Avda. Pompeu Fabra 7-9, local 1

08024 Barcelona
SPAIN

www.campbellsci.es • info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or international representative.

http://www.campbellsci.com/
http://www.csafrica.co.za/
http://www.campbellsci.com.au/
http://www.campbellsci.com/
http://www.campbellsci.com.br/
http://www.campbellsci.ca/
http://www.campbellsci.cc/
http://www.campbellsci.co.uk/
http://www.campbellsci.fr/
http://www.campbellsci.de/
http://www.campbellsci.es/
https://www.campbellsci.com/

	Revision and Copyright Information
	Warranty
	Assistance
	Precautions
	Table of Contents
	1. Introduction
	1.1 HELLO
	1.2 Typography
	1.3 Capturing CRBasic Code
	1.4 Release Notes

	2. Cautionary Statements
	3. Initial Inspection
	4. System Quickstart
	4.1 Data-Acquisition Systems — Quickstart
	4.2 Sensors — Quickstart
	4.3 Datalogger — Quickstart
	4.3.1.1 Wiring Panel — Quickstart

	4.4 Power Supplies — Quickstart
	4.4.1 Internal Battery — Quickstart

	4.5 Data Retrieval and Telecommunications — Quickstart
	4.6 Datalogger Support Software — Quickstart
	4.7 Tutorial: Measuring a Thermocouple
	4.7.1 What You Will Need
	4.7.2 Hardware Setup
	4.7.2.1 External Power Supply

	4.7.3 PC200W Software Setup
	4.7.4 Write CRBasic Program with Short Cut
	4.7.4.1 Procedure: (Short Cut Steps 1 to 5)
	4.7.4.2 Procedure: (Short Cut Steps 6 to 7)
	4.7.4.3 Procedure: (Short Cut Step 8)
	4.7.4.4 Procedure: (Short Cut Steps 9 to 12)
	4.7.4.5 Procedure: (Short Cut Steps 13 to 14)

	4.7.5 Send Program and Collect Data
	4.7.5.1 Procedure: (PC200W Step 1)
	4.7.5.2 Procedure: (PC200W Steps 2 to 4)
	4.7.5.3 Procedure: (PC200W Step 5)
	4.7.5.4 Procedure: (PC200W Step 6)
	4.7.5.5 Procedure: (PC200W Steps 7 to 10)
	4.7.5.6 Procedure: (PC200W Steps 11 to 12)
	4.7.5.7 Procedure: (PC200W Steps 13 to 14)

	5. System Overview
	5.1 Measurements — Overview
	5.1.1 Time Keeping — Overview
	5.1.2 Analog Measurements — Overview
	5.1.2.1 Voltage Measurements — Overview
	5.1.2.1.1 Single-Ended Measurements — Overview
	5.1.2.1.2 Differential Measurements — Overview

	5.1.2.2 Current Measurements — Overview
	5.1.2.3 Resistance Measurements — Overview
	5.1.2.3.1 Voltage Excitation

	5.1.2.4 Strain Measurements — Overview

	5.1.3 Pulse Measurements — Overview
	5.1.3.1 Pulses Measured
	5.1.3.2 Pulse-Input Channels
	5.1.3.3 Pulse Sensor Wiring

	5.1.4 Period Averaging — Overview
	5.1.5 Vibrating-Wire Measurements — Overview
	5.1.6 Reading Smart Sensors — Overview
	5.1.6.1 SDI-12 Sensor Support — Overview
	5.1.6.2 RS-232 — Overview

	5.1.7 Field Calibration — Overview
	5.1.8 Cabling Effects — Overview
	5.1.9 Synchronizing Measurements — Overview

	5.2 PLC Control — Overview
	5.3 Datalogger — Overview
	5.3.1 Time Keeping — Overview
	5.3.2 Wiring Panel — Overview
	5.3.2.1 Switched Voltage Output — Overview
	5.3.2.2 Voltage Excitation — Overview
	5.3.2.3 Grounding Terminals
	5.3.2.4 Power Terminals
	5.3.2.4.1 Power In
	5.3.2.4.2 Power Out Terminals

	5.3.2.5 Communication Ports
	5.3.2.5.1 CS I/O Port
	5.3.2.5.2 RS-232 Ports
	5.3.2.5.3 SDI-12 Ports
	5.3.2.5.4 SDM Port
	5.3.2.5.5 CPI Port
	5.3.2.5.6 Ethernet Port

	5.3.3 Keyboard Display — Overview
	5.3.3.1 Integrated Keyboard Display
	5.3.3.2 Character Set
	5.3.3.3 Custom Menus — Overview

	5.3.4 Measurement and Control Peripherals — Overview
	5.3.5 Power Supplies — Overview
	5.3.6 CR800 Configuration — Overview
	5.3.7 CRBasic Programming — Overview
	5.3.8 Memory — Overview
	5.3.9 Data Retrieval and Telecommunications — Overview
	5.3.9.1 PakBus® Communications — Overview
	5.3.9.2 Telecommunications
	5.3.9.3 Mass-Storage Device
	5.3.9.4 Data-File Formats in CR800 Memory
	5.3.9.5 Data Format on Computer

	5.3.10 Alternate Telecommunications — Overview
	5.3.10.1 Modbus
	5.3.10.2 DNP3 — Overview
	5.3.10.3 TCP/IP — Overview

	5.3.11 Security — Overview
	5.3.12 Maintenance — Overview
	5.3.12.1 Protection from Moisture — Overview
	5.3.12.2 Protection from Voltage Transients
	5.3.12.3 Factory Calibration
	5.3.12.4 Internal Battery — Details

	5.4 Datalogger Support Software — Overview

	6. Specifications
	7. Installation
	7.1 Protection from Moisture — Details
	7.2 Temperature Range
	7.3 Enclosures
	7.4 Power Supplies — Details
	7.4.1 CR800 Power Requirement
	7.4.2 Calculating Power Consumption
	7.4.3 Power Sources
	7.4.3.1 Vehicle Power Connections

	7.4.4 Uninterruptable Power Supply (UPS)
	7.4.5 External Power Supply Installation

	7.5 Switched Voltage Output — Details
	7.5.1 Switched-Voltage Excitation
	7.5.2 Continuous Regulated (5V Terminal)
	7.5.3 Continuous Unregulated Voltage (12V Terminal)
	7.5.4 Switched Unregulated Voltage (SW12 Terminal)

	7.6 Grounding
	7.6.1 ESD Protection
	7.6.1.1 Lightning Protection

	7.6.2 Single-Ended Measurement Reference
	7.6.3 Ground-Potential Differences
	7.6.3.1 Soil Temperature Thermocouple
	7.6.3.2 External Signal Conditioner

	7.6.4 Ground Looping in Ionic Measurements

	7.7 CR800 Configuration — Details
	7.7.1 Configuration Tools
	7.7.1.1 Configuration with DevConfig
	7.7.1.2 Network Planner
	7.7.1.2.1 Overview
	7.7.1.2.2 Basics

	7.7.1.3 Configuration with Status/Settings/DTI
	7.7.1.4 Configuration with Executable CPU: Files
	7.7.1.4.1 Default.cr8 File
	7.7.1.4.2 Executable File Run Priorities

	7.7.2 CR800 Configuration — Details
	7.7.2.1 Updating the Operating System (OS)
	7.7.2.1.1 OS Update with DevConfig Send OS Tab
	7.7.2.1.2 OS Update with DevConfig
	7.7.2.1.3 OS Update with DevConfig
	7.7.2.1.4 OS Update with DevConfig

	7.7.2.2 Restoring Factory Defaults
	7.7.2.3 Saving and Restoring Configurations

	7.8 CRBasic Programming — Details
	7.8.1 Program Structure
	7.8.2 Writing and Editing Programs
	7.8.2.1 Short Cut Programming Wizard
	7.8.2.2 CRBasic Editor
	7.8.2.2.1 Inserting Comments into Program
	7.8.2.2.2 Conserving Program Memory

	7.8.3 Sending CRBasic Programs
	7.8.3.1 Preserving Data at Program Send

	7.8.4 Programming Syntax
	7.8.4.1 Program Statements
	7.8.4.1.1 Multiple Statements on One Line
	7.8.4.1.2 One Statement on Multiple Lines

	7.8.4.2 Single-Statement Declarations
	7.8.4.3 Declaring Variables
	7.8.4.3.1 Declaring Data Types
	7.8.4.3.2 Dimensioning Numeric Variables
	7.8.4.3.3 Dimensioning String Variables
	7.8.4.3.4 Declaring Flag Variables

	7.8.4.4 Declaring Arrays
	7.8.4.5 Declaring Local and Global Variables
	7.8.4.6 Initializing Variables
	7.8.4.7 Declaring Constants
	7.8.4.7.1 Predefined Constants

	7.8.4.8 Declaring Aliases and Units
	7.8.4.9 Numerical Formats
	7.8.4.10 Multi-Statement Declarations
	7.8.4.10.1 Declaring Data Tables
	7.8.4.10.2 Declaring Subroutines
	7.8.4.10.3 'Include' File
	7.8.4.10.4 Declaring Subroutines
	7.8.4.10.5 Declaring Incidental Sequences

	7.8.4.11 Execution and Task Priority
	7.8.4.11.1 Pipeline Mode
	7.8.4.11.2 Sequential Mode

	7.8.4.12 Execution Timing
	7.8.4.12.1 Scan() / NextScan
	7.8.4.12.2 SlowSequence / EndSequence
	7.8.4.12.3 SubScan() / NextSubScan
	7.8.4.12.4 Scan Priorities in Sequential Mode

	7.8.4.13 Programming Instructions
	7.8.4.13.1 Measurement and Data-Storage Processing
	7.8.4.13.2 Argument Types
	7.8.4.13.3 Names in Arguments

	7.8.4.14 Expressions in Arguments
	7.8.4.15 Programming Expression Types
	7.8.4.15.1 Floating-Point Arithmetic
	7.8.4.15.2 Mathematical Operations
	7.8.4.15.3 Expressions with Numeric Data Types
	7.8.4.15.4 Logical Expressions
	7.8.4.15.5 String Expressions

	7.8.4.16 Programming Access to Data Tables
	7.8.4.17 Programming to Use Signatures

	7.9 Programming Resource Library
	7.9.1 Advanced Programming Techniques
	7.9.1.1 Capturing Events
	7.9.1.2 Conditional Output
	7.9.1.3 Groundwater Pump Test
	7.9.1.4 Miscellaneous Features
	7.9.1.5 PulseCountReset Instruction
	7.9.1.6 Scaling Array
	7.9.1.7 Signatures: Example Programs
	7.9.1.7.1 Text Signature
	7.9.1.7.2 Binary Runtime Signature
	7.9.1.7.3 Executable Code Signatures

	7.9.1.8 Use of Multiple Scans

	7.9.2 Compiling: Conditional Code
	7.9.3 Displaying Data: Custom Menus — Details
	7.9.4 Data Input: Loading Large Data Sets
	7.9.5 Data Input: Array-Assigned Expression
	7.9.6 Data Output: Calculating Running Average
	7.9.7 Data Output: Triggers and Omitting Samples
	7.9.8 Data Output: Two Intervals in One Data Table
	7.9.9 Data Output: Using Data Type Bool8
	7.9.10 Data Output: Using Data Type NSEC
	7.9.10.1 NSEC Options

	7.9.11 Field Calibration — Details
	7.9.11.1 Field Calibration CAL Files
	7.9.11.2 Field Calibration Programming
	7.9.11.3 Field Calibration Wizard Overview
	7.9.11.4 Field Calibration Numeric Monitor Procedures
	7.9.11.4.1 One-Point Calibrations (Zero or Offset)
	7.9.11.4.2 Two-Point Calibrations (gain and offset)
	7.9.11.4.3 Zero Basis Point Calibration

	7.9.11.5 Field Calibration Examples
	7.9.11.5.1 FieldCal() Zero or Tare (Opt 0) Example
	7.9.11.5.2 FieldCal() Offset (Opt 1) Example
	7.9.11.5.3 FieldCal() Slope and Offset (Opt 2) Example
	7.9.11.5.4 FieldCal() Slope (Opt 3) Example
	7.9.11.5.5 FieldCal() Zero Basis (Opt 4) Example -- 8 10 30

	7.9.11.6 Field Calibration Strain Examples
	7.9.11.6.1 Field Calibration Strain Examples
	7.9.11.6.2 Field Calibration Strain Examples
	7.9.11.6.3 FieldCalStrain() Quarter-Bridge Shunt Example
	7.9.11.6.4 FieldCalStrain() Quarter-Bridge Zero

	7.9.12 Measurement: Excite, Delay, Measure
	7.9.13 Measurement: Faster Analog Rates
	7.9.13.1 Measurements from 1 to 100 Hz
	7.9.13.2 Measurement Rate: 101 to 600 Hz
	7.9.13.2.1 Measurements from 101 to 600 Hz 2

	7.9.13.3 Measurement Rate: 601 to 2000 Hz

	7.9.14 Measurement: PRT
	7.9.14.1 Measuring PT100s (100 Ω PRTs)
	7.9.14.1.1 Self-Heating and Resolution
	7.9.14.1.2 PRT Calculation Standards

	7.9.14.2 PT100 in Four-Wire Half-Bridge
	7.9.14.2.1 Calculating the Excitation Voltage
	7.9.14.2.2 Calculating the BrHalf4W() Multiplier
	7.9.14.2.3 Choosing Rf

	7.9.14.3 PT100 in Three-Wire Half Bridge
	7.9.14.4 PT100 in Four-Wire Full-Bridge

	7.9.15 PLC Control — Details
	7.9.16 Serial I/O: Capturing Serial Data
	7.9.16.1 Introduction
	7.9.16.2 I/O Ports
	7.9.16.3 Protocols
	7.9.16.4 Glossary of Serial I/O Terms
	7.9.16.5 Serial I/O CRBasic Programming
	7.9.16.5.1 Serial I/O Programming Basics
	7.9.16.5.2 Serial I/O Input Programming Basics
	7.9.16.5.3 Serial I/O Output Programming Basics
	7.9.16.5.4 Serial I/O Translating Bytes
	7.9.16.5.5 Serial I/O Memory Considerations
	7.9.16.5.6 Demonstration Program

	7.9.16.6 Serial I/O Application Testing
	7.9.16.6.1 Configure HyperTerminal
	7.9.16.6.2 Create Send-Text File
	7.9.16.6.3 Create Text-Capture File
	7.9.16.6.4 Serial I/O Example II

	7.9.16.7 Serial I/O Q & A

	7.9.17 Serial I/O: SDI-12 Sensor Support — Programming Resource
	7.9.17.1 SDI-12 Transparent Mode
	7.9.17.1.1 SDI-12 Transparent Mode Commands

	7.9.17.2 SDI-12 Recorder Mode
	7.9.17.3 SDI-12 Sensor Mode
	7.9.17.4 SDI-12 Power Considerations

	7.9.18 String Operations
	7.9.18.1 String Operators
	7.9.18.2 String Concatenation
	7.9.18.3 String NULL Character
	7.9.18.4 Inserting String Characters
	7.9.18.5 Extracting String Characters
	7.9.18.6 String Use of ASCII / ANSII Codes
	7.9.18.7 Formatting Strings
	7.9.18.8 Formatting String Hexadecimal Variables

	7.9.19 Subroutines
	7.9.20 TCP/IP — Details
	7.9.20.1 PakBus Over TCP/IP and Callback
	7.9.20.2 Default HTTP Web Server
	7.9.20.3 Custom HTTP Web Server
	7.9.20.4 FTP Server
	7.9.20.5 FTP Client
	7.9.20.6 Telnet
	7.9.20.7 SNMP
	7.9.20.8 Ping (IP)
	7.9.20.9 Micro-Serial Server
	7.9.20.10 Modbus TCP/IP
	7.9.20.11 DHCP
	7.9.20.12 DNS
	7.9.20.13 SMTP

	7.9.21 Wind Vector
	7.9.21.1 OutputOpt Parameters
	7.9.21.2 Wind Vector Processing
	7.9.21.2.1 Measured Raw Data
	7.9.21.2.2 Calculations

	8. Operation
	8.1 Measurements — Details
	8.1.1 Time Keeping — Details
	8.1.1.1 Time Stamps

	8.1.2 Analog Measurements — Details
	8.1.2.1 Voltage Measurements — Details
	8.1.2.1.1 Voltage Measurement Mechanics
	8.1.2.1.2 Voltage Measurement Limitations
	8.1.2.1.3 Voltage Measurement Quality

	8.1.2.2 Thermocouple Measurements —- Details
	8.1.2.3 Current Measurements — Details
	8.1.2.4 Resistance Measurements — Details
	8.1.2.4.1 Ac Excitation
	8.1.2.4.2 Resistance Measurements — Accuracy

	8.1.2.5 Strain Measurements — Details
	8.1.2.6 Auto-Calibration — Details
	8.1.2.6.1 Auto Calibration Process

	8.1.3 Pulse Measurements — Details
	8.1.3.1 Pulse Measurement Terminals
	8.1.3.2 Low-Level Ac Measurements — Details
	8.1.3.3 High-Frequency Measurements
	8.1.3.3.1 Frequency Resolution
	8.1.3.3.2 Frequency Measurement Q & A

	8.1.3.4 Switch-Closure and Open-Collector Measurements
	8.1.3.5 Edge Timing
	8.1.3.6 Edge Counting
	8.1.3.7 Pulse Measurement Tips
	8.1.3.7.1 TimerIO() NAN Conditions
	8.1.3.7.2 Input Filters and Signal Attenuation

	8.1.4 Period Averaging — Details
	8.1.5 Vibrating-Wire Measurements — Details
	8.1.5.1 Time-Domain Measurement

	8.1.6 Reading Smart Sensors — Details
	8.1.6.1 RS-232 and TTL
	8.1.6.2 SDI-12 Sensor Support — Details

	8.1.7 Field Calibration — Overview
	8.1.8 Cabling Effects
	8.1.8.1 Analog-Sensor Cables
	8.1.8.2 Pulse Sensors
	8.1.8.3 RS-232 Sensors
	8.1.8.4 SDI-12 Sensors

	8.1.9 Synchronizing Measurements

	8.2 Measurement and Control Peripherals — Details
	8.2.1 Analog-Input Modules
	8.2.2 Pulse-Input Modules
	8.2.2.1 Low-Level Ac Input Modules — Overview

	8.2.3 Serial I/O Modules — Details
	8.2.4 Terminal-Input Modules
	8.2.5 Vibrating-Wire Modules
	8.2.6 Analog-Output Modules
	8.2.7 PLC Control Modules — Overview
	8.2.7.1 Terminals Configured for Control
	8.2.7.2 Relays and Relay Drivers
	8.2.7.3 Component-Built Relays

	8.3 Memory
	8.3.1 Storage Media
	8.3.1.1 Memory Drives — On-Board
	8.3.1.1.1 Data Table SRAM
	8.3.1.1.2 CPU: Drive
	8.3.1.1.3 USR: Drive
	8.3.1.1.4 USB: Drive

	8.3.2 Data-File Formats
	8.3.3 Resetting the CR800
	8.3.3.1 Full Memory Reset
	8.3.3.2 Program Send Reset
	8.3.3.3 Manual Data-Table Reset
	8.3.3.4 Formatting Drives

	8.3.4 File Management
	8.3.4.1 File Attributes
	8.3.4.2 Files Manager
	8.3.4.3 Data Preservation
	8.3.4.4 Powerup.ini File — Details
	8.3.4.4.1 Creating and Editing Powerup.ini

	8.3.4.5 File Management Q & A

	8.3.5 File Names
	8.3.6 File-System Errors

	8.4 Data Retrieval and Telecommunications — Details
	8.4.1 Protocols
	8.4.2 Conserving Bandwidth
	8.4.3 Initiating Telecommunications (Callback)

	8.5 PakBus® Communications — Details
	8.5.1 PakBus Addresses
	8.5.2 Nodes: Leaf Nodes and Routers
	8.5.2.1 Router and Leaf-Node Configuration

	8.5.3 Linking PakBus Nodes: Neighbor Discovery
	8.5.3.1 Hello-Message
	8.5.3.2 Beacon
	8.5.3.3 Hello-Request
	8.5.3.4 Neighbor Lists
	8.5.3.5 Adjusting Links
	8.5.3.6 Maintaining Links

	8.5.4 PakBus Troubleshooting
	8.5.4.1 Link Integrity
	8.5.4.1.1 Automatic Packet-Size Adjustment

	8.5.4.2 Ping (PakBus)
	8.5.4.3 Traffic Flow

	8.5.5 LoggerNet Network-Map Configuration
	8.5.6 PakBus LAN Example
	8.5.6.1 LAN Wiring
	8.5.6.2 LAN Setup
	8.5.6.3 LoggerNet Setup

	8.5.7 Route Filters
	8.5.8 PakBusRoutes
	8.5.9 Neighbors
	8.5.10 PakBus Encryption

	8.6 Alternate Telecommunications — Details
	8.6.1 DNP3 — Details
	8.6.1.1 DNP3 Introduction
	8.6.1.2 Programming for DNP3
	8.6.1.2.1 Declarations (DNP3 Programming)
	8.6.1.2.2 CRBasic Instructions (DNP3)
	8.6.1.2.3 Programming for DNP3 Data Acquisition

	8.6.2 Modbus — Details
	8.6.2.1 Modbus Terminology
	8.6.2.1.1 Glossary of Modbus Terms

	8.6.2.2 Programming for Modbus
	8.6.2.2.1 Declarations (Modbus Programming)
	8.6.2.2.2 CRBasic Instructions (Modbus)
	8.6.2.2.3 Addressing (ModbusAddr)
	8.6.2.2.4 Supported Modbus Function Codes
	8.6.2.2.5 Reading Inverse-Format Modbus Registers

	8.6.2.3 Troubleshooting (Modbus)
	8.6.2.4 Modbus over IP
	8.6.2.5 Modbus Q and A
	8.6.2.6 Converting Modbus 16-Bit to 32-Bit Longs

	8.6.3 TCP/IP — Details
	8.6.3.1 PakBus Over TCP/IP and Callback
	8.6.3.2 Default HTTP Web Server
	8.6.3.3 Custom HTTP Web Server
	8.6.3.4 FTP Server
	8.6.3.5 FTP Client
	8.6.3.6 Telnet
	8.6.3.7 SNMP
	8.6.3.8 Ping (IP)
	8.6.3.9 Micro-Serial Server
	8.6.3.10 Modbus TCP/IP
	8.6.3.11 DHCP
	8.6.3.12 DNS
	8.6.3.13 SMTP
	8.6.3.14 Web API
	8.6.3.14.1 Authentication
	8.6.3.14.2 Command Syntax
	8.6.3.14.3 Time Syntax
	8.6.3.14.4 Data Management — BrowseSymbols Command
	8.6.3.14.5 Data Management — DataQuery Command
	8.6.3.14.6 Control — SetValueEx Command
	8.6.3.14.7 Clock Functions — ClockSet Command
	8.6.3.14.8 Clock Functions — ClockCheck Command
	8.6.3.14.9 File Management — Sending a File to a Datalogger
	8.6.3.14.10 File Management — FileControl Command
	8.6.3.14.11 File Management — ListFiles Command
	8.6.3.14.12 File Management — NewestFile Command

	8.7 Datalogger Support Software — Details
	8.8 Keyboard Display — Details
	8.8.1 Data Display
	8.8.1.1 Real-Time Tables and Graphs
	8.8.1.2 Real-Time Custom
	8.8.1.3 Final-Memory Tables

	8.8.2 Run/Stop Program
	8.8.3 File Display
	8.8.3.1 File: Edit

	8.8.4 Ports and Status
	8.8.5 Settings
	8.8.5.1 Set Time / Date
	8.8.5.2 PakBus Settings

	8.8.6 Configure Display

	8.9 Program and OS File Compression Q and A
	8.10 Security — Details
	8.10.1 Vulnerabilities
	8.10.2 Pass-Code Lockout
	8.10.2.1 Pass-Code Lockout By-Pass

	8.10.3 Passwords
	8.10.3.1 .csipasswd
	8.10.3.2 PakBus Instructions
	8.10.3.3 TCP/IP Instructions
	8.10.3.4 Settings — Passwords

	8.10.4 File Encryption
	8.10.5 Communication Encryption
	8.10.6 Hiding Files
	8.10.7 Signatures

	9. Maintenance — Details
	9.1 Protection from Moisture — Details
	9.2 Replacing the Internal Battery
	9.3 Factory Calibration or Repair Procedure

	10. Troubleshooting
	10.1 Troubleshooting — Essential Tools
	10.2 Troubleshooting — Basic Procedure
	10.3 Troubleshooting — Error Sources
	10.4 Troubleshooting — Status Table
	10.5 Programming
	10.5.1 Program Does Not Compile
	10.5.2 Program Compiles / Does Not Run Correctly
	10.5.3 NAN and ±INF
	10.5.3.1 Measurements and NAN
	10.5.3.1.1 Voltage Measurements
	10.5.3.1.2 SDI-12 Measurements

	10.5.3.2 Floating-Point Math, NAN, and ±INF
	10.5.3.3 Data Types, NAN, and ±INF
	10.5.3.4 Output Processing and NAN

	10.5.4 Status Table as Debug Resource
	10.5.4.1 CompileResults
	10.5.4.2 SkippedScan
	10.5.4.3 SkippedSlowScan
	10.5.4.4 SkippedRecord
	10.5.4.5 ProgErrors
	10.5.4.6 MemoryFree
	10.5.4.7 VarOutOfBounds
	10.5.4.8 Watchdog Errors
	10.5.4.8.1 Status Table WatchdogErrors
	10.5.4.8.2 Watchdoginfo.txt File

	10.6 Troubleshooting — Operating Systems
	10.7 Troubleshooting — Auto-Calibration Errors
	10.8 Communications
	10.8.1 RS-232
	10.8.2 Communicating with Multiple PCs
	10.8.3 Comms Memory Errors
	10.8.3.1 CommsMemFree(1)
	10.8.3.2 CommsMemFree(2)
	10.8.3.3 CommsMemFree(3)

	10.9 Troubleshooting — Power Supplies
	10.9.1 Troubleshooting Power Supplies — Overview
	10.9.2 Troubleshooting Power Supplies — Examples -- 8 10 30
	10.9.3 Troubleshooting Power Supplies — Procedures
	10.9.3.1 Battery Test
	10.9.3.2 Charging Regulator with Solar-Panel Test
	10.9.3.3 Charging Regulator with Transformer Test
	10.9.3.4 Adjusting Charging Voltage

	10.10 Terminal Mode
	10.10.1 Serial Talk Through and Comms Watch

	10.11 Logs
	10.12 Troubleshooting — Data Recovery

	11. Glossary
	11.1 Terms
	11.2 Concepts
	11.2.1 Accuracy, Precision, and Resolution

	12. Attributions
	Appendix A. CRBasic Programming Instructions
	A.1 Program Declarations
	A.1.1 Variable Declarations & Modifiers
	A.1.2 Constant Declarations

	A.2 Data-Table Declarations
	A.2.1 Data-Table Modifiers
	A.2.2 Data Destinations
	A.2.3 Processing for Output to Final-Data Memory
	A.2.3.1 Single-Source
	A.2.3.2 Multiple-Source

	A.3 Single Execution at Compile
	A.4 Program Control Instructions
	A.4.1 Common Program Controls
	A.4.2 Advanced Program Controls

	A.5 Measurement Instructions
	A.5.1 Diagnostics
	A.5.2 Voltage
	A.5.3 Thermocouples
	A.5.4 Resistive-Bridge Measurements
	A.5.5 Excitation
	A.5.6 Pulse and Frequency
	A.5.7 Digital I/O
	A.5.7.1 Control
	A.5.7.2 Measurement

	A.5.8 SDI-12 Sensor Suppport — Instructions
	A.5.9 Specific Sensors
	A.5.9.1 Wireless Sensor Network

	A.5.10 Peripheral Device Support

	A.6 PLC Control — Instructions
	A.7 Processing and Math Instructions
	A.7.1 Mathematical Operators
	A.7.2 Arithmetic Operators
	A.7.3 Bitwise Operations
	A.7.4 Compound-Assignment Operators
	A.7.5 Logical Operators
	A.7.6 Trigonometric Functions
	A.7.6.1 Intrinsic Trigonometric Functions
	A.7.6.2 Derived Trigonometric Functions

	A.7.7 Arithmetic Functions
	A.7.8 Integrated Processing
	A.7.9 Spatial Processing
	A.7.10 Other Functions
	A.7.10.1 Histograms

	A.8 String Functions
	A.8.1 String Operations
	A.8.2 String Commands

	A.9 Time Keeping — Instructions
	A.10 Voice-Modem Instructions
	A.11 Custom Menus — Instructions
	A.12 Serial Input / Output
	A.13 Peer-to-Peer PakBus® Communications
	A.14 Variable Management
	A.15 File Management
	A.16 Data-Table Access and Management
	A.17 TCP/IP — Instructions
	A.18 Modem Control
	A.19 SCADA
	A.20 Calibration Functions
	A.21 Satellite Systems
	A.21.1 Argos
	A.21.2 GOES
	A.21.3 OMNISAT
	A.21.4 INMARSAT-C

	A.22 User-Defined Functions

	Appendix B. Status, Settings, and Data Table Information (Status/Settings/DTI)
	B.1 Status/Settings/DTI Directories
	B.2 Status/Settings/DTI Descriptions (Alphabetical)

	Appendix C. Serial Port Pinouts
	C.1 CS I/O Communication Port
	C.2 RS-232 Communication Port
	C.2.1 Pin-Out
	C.2.2 Power States

	Appendix D. ASCII / ANSI Table
	Appendix E. FP2 Data Format
	Appendix F. Endianness
	Appendix G. Supporting Products Lists
	G.1 Dataloggers — List
	G.2 Measurement and Control Peripherals — Lists
	G.3 Sensor-Input Modules Lists
	G.3.1 Analog-Input Modules List
	G.3.2 Pulse-Input Modules List
	G.3.3 Serial I/O Modules List
	G.3.4 Vibrating-Wire Input Modules List
	G.3.5 Passive Signal Conditioners Lists
	G.3.5.1 Resistive-Bridge TIM Modules List
	G.3.5.2 Voltage-Divider Modules List
	G.3.5.3 Current-Shunt Modules List
	G.3.5.4 Transient-Voltage Suppressors List

	G.3.6 Terminal-Strip Covers List

	G.4 PLC Control Modules — Lists
	G.4.1 Digital-I/O Modules List
	G.4.2 Continuous-Analog-Output (CAO) Modules List
	G.4.3 Relay-Drivers — List
	G.4.4 Current-Excitation Modules List

	G.5 Sensors — Lists
	G.5.1 Wired-Sensor Types List
	G.5.2 Wireless-Network Sensors List

	G.6 Data Retrieval and Telecommunication Peripherals — Lists
	G.6.1 Keyboard Display — List
	G.6.2 Hardwire, Single-Connection Comms Devices List
	G.6.3 Hardwire, Networking Devices List
	G.6.4 TCP/IP Links — List
	G.6.5 Telephone Modems List
	G.6.6 Private-Network Radios List
	G.6.7 Satellite Transceivers List

	G.7 Data-Storage Devices — List
	G.8 Datalogger Support Software — Lists
	G.8.1 Starter Software List
	G.8.2 Datalogger Support Software — List
	G.8.2.1 LoggerNet Suite List

	G.8.3 Software Tools List
	G.8.4 Software Development Kits List

	G.9 Power Supplies — Products
	G.9.1 Battery / Regulator Combinations List
	G.9.2 Batteries List
	G.9.3 Regulators List
	G.9.4 Primary Power Sources List
	G.9.5 24 Vdc Power Supply Kits List

	G.10 Enclosures — Products
	G.11 Tripods, Towers, and Mounts Lists
	G.12 Enclosures List

	Index
	Campbell Scientific Companies

