SPECIFICATIONS

Measurement and Control Datalogger

All CR300 dataloggers are tested and guaranteed to meet electrical specifications in a standard -40° to +70°C non-condensing environment. Datalogger recalibration is recommended every three years. System configuration and critical specifications should be confirmed with Campbell Scientific before purchase.

ANALOG

Six terminals may be configured to make analog voltage or ratiometric measurements or configured as digital I/O.

VOLTAGE MEASUREMENTS (SE1 - SE6)

Up to three differential or six single-ended terminals configured for voltage measurements using a 24-bit Adc, one at a time.

INPUT RESISTANCE: 5 GO (f_{\rm N1} = 50/60), 300 MO (f_{\rm N1} = 4000)

INPUT LIMITS: -100 mV to +2500 mV

- SUSTAINED INPUT VOLTAGE WITHOUT DAMAGE: -6 V/+9 V (SE1, SE2), ± 17 V (SE3 to SE6)
- DC COMMON MODE REJECTION: > 120 dB with input reversal (≥90 dB without input reversal)

NORMAL MODE REJECTION: > 71 dB @ 50 Hz, > 74 dB @ 60 Hz

INPUT CURRENT @ 25°C: ±0.8 nA ($f_{N1} = 50/60$), ±13 nA ($f_{N1} = 4000$) RANGE AND RESOLUTION:

Notch		<i>Typical Resolution</i> ² (Differential w/Input Reversal)		Typical Re (Differential w/o	esolution ² to Input Reversal)
Frequency		Effective I	Resolution	Effective I	Resolution
(† _{N1}) (Hz)	Range' (mV)	RMS µV	bits	RMS µV	bits
4000	-100 to +2500	23	16.8	33	16.3
4000	-34 to +34	3.0	14.5	4.2	14.0
400	-100 to +2500	3.8	19.4	5.4	18.9
400	-34 to +34	0.58	16.8	0.82	16.3
50/00	-100 to +2500	1.6	20.6	2.3	20.1
50/00	-34 to +34	0.23	18.2	0.33	17.7

ACCURACY:4,3

0° to 40°C	-40° to 70°C
\pm (0.04% of reading + offset)	\pm (0.1% of reading + offset)

OFFSETS:

Range (mV)	Differential with Input Reversal (μV)	Differential without Input Reversal (μV)	Single-Ended (µV)
-100 to +2500	±20	±40	±60
-34 to +34	±6	±14	±20

MEASUREMENT SPEED: (multiplexed measurement time (ms) * reps + 0.8 ms)

f (11-)	Multiplexed Measurement Time (ms)		
I _{N1} (HZ)	w/Input Reversal	SE or w/o Input Reversal	
4000	2.9	1.4	
400	14.6	7.3	
50/60	103	51.5	

DEFAULT SETTLING TIME: 500 µs

RATIOMETRIC MEASUREMENTS (SE1 – SE6)

Resistance measurements for four- and six-wire full bridge and two-, three-, and four-wire half bridge using voltage excitation.

RATIOMETRIC ACCURACY: 4,5

0° to 40°C	-40° to 70°C
\pm (0.05% of voltage measurement + offset)	±(0.06% of voltage measurement+ offset)

CURRENT MEASUREMENTS (SE1, SE2)

Two analog inputs may be configured as independent 0 to 20 mA or 4 to 20 mA current loop inputs (not isolated) measured one at a time using the 24-bit Adc

ACCURACY:

0° to 40°C	-40° to 70°C
± 0.14% of reading	± 0.26% of reading

DIGITAL

PERIOD AVERAGE (SE1 – SE4)

Up to four analog inputs can be used for period averaging, one at a time.

ACCURACY: \pm (0.01% of reading + resolution), where resolution is 13 ns divided by the specified number of cycles to be measured.

FREQUENCY RANGE: 5 Hz to 200 kHz

VOLTAGE THRESHOLD: counts cycles on transition from <0.9 Vdc to >2.1 Vdc

DIGITAL I/O (SE1 – SE4, P_SW)

I/O HIGH STATE: 3.3 V

I∕O LOW STATE: 0 V

DRIVE CURRENT @ 3.0 V: 100 µA

MAXIMUM INPUT VOLTAGE: -6 V/+9 V (SE1, SE2), ±17 V (SE3, SE4, P_SW)

DIGITAL I/O (C1, C2)

I/O HIGH STATE: 5.0 V (output); 3.3 V logic (input) I/O LOW STATE: 0 V DRIVE CURRENT @ 3.5 V: 10 mA MAXIMUM INPUT VOLTAGE: -10 V/+15 V

 $^{\rm l} {\rm Range}$ overhead of $\sim \! 10\%$ beyond range guarantees that full-scale values will not cause over range.

²Effective resolution (ER) in bits is computed from ratio of full-scale range to RMS resolution.
³Accuracy does not include the sensor and measurement noise.

⁴Assumes input reversal for differential measurements not including bridge resistor errors and sensor and measurement noise.

⁵Ratiometric accuracy, rather than absolute accuracy, determines overall measurement accuracy of ratiometric resistance measurements.

PULSE COUNTING

SWITCH CLOSURE (P_SW)

MINIMUM SWITCH CLOSED TIME: 3 ms MINIMUM SWITCH OPEN TIME: 3 ms MAXIMUM BOUNCE TIME: 1 ms open w/o being counted MAXIMUM INPUT FREQUENCY: 150 Hz MAXIMUM INPUT VOLTAGE: ±17 Vdc

SWITCH CLOSURE (C1, C2)⁶

MAXIMUM INPUT FREQUENCY: 150 Hz MINIMUM SWITCH OPEN TIME: 3 ms

HIGH-FREQUENCY (C1, C2, SE1 – SE4, P_SW, P_LL)

C1-C2: 3 kHz, maximum,

- SE1-SE4: 35 kHz, maximum
- P_SW: 35 kHz, maximum
- P_LL: 20 kHz, maximum

LOW-LEVEL AC (P_LL)

RANGE (dependent on sine wave input)⁷

Sine Wave (mV RMS)	Range(Hz)
20	1.0 to 20
200	0.5 to 200
2000	0.3 to 10,000
5000	0.3 to 20.000

INPUT HYSTERESIS: 12 mV @ 1 Hz

MAXIMUM AC INPUT VOLTAGE: ±20 V

VOLTAGE OUTPUT

SWITCHED 12 V (BATTERY)8

One output provides unregulated 12 V (battery voltage) source under program control. Thermal fuse hold current = 1200 mA @ 0°C, 1100 mA @ 20°C, 830 mA @ 60°C.

0.15 TO 5 V ANALOG OUTPUTS (VX1, VX2)9

Two terminals configured for 150 to 5000 mV continuous analog output or voltage excitation using 12-bit Dac.

Range	Resolution	Maximum Source/Sink Current
150 to +5000 mV	4.5 mV	50 mA total, concurrent or individually

COMMUNICATIONS

INTERNET PROTOCOLS: PPP, ICMP/Ping, Auto-IP(APIPA), IPv4, IPv6, UDP, TCP, TLS, DHCP, SLAAC, DNS Client, SNMP, NTP, Telnet, HTTP/HTTPS, FTP/FTPS, SMTP/TLS, POP3/TLS

ADDITIONAL PROTOCOLS SUPPORTED: PakBus, PakBus Encryption, SDI-12, Modbus RTU/ASCII/TCP, DNP3/TCP, NTCIP, NMEA 0183. Custom user definable over serial, TCP, and UDP

DATA FILE FORMATS: CSV, XML, JSON, binary

USB: USB micro-B device only, 2.0 full-speed 12 Mbps, for computer connection.

RS-232: female RS-232, 9-pin interface

SERIAL (C1, C2): 0 to 5 V output, 1200 to 115.2k bps

SDI-12 (C1, C2): Two independent SDI-12 V1.3 compliant terminals configurable as sensor or recorder

⁶ Requires an external 100 kΩ resistor connected from the terminal to BAT+. ⁷AC coupling removes ac offsets up to ± 0.05 V. ⁸Not operational under USB power only.

⁹Range reduced to 0 to 2500 mV when under USB power.

ON-BOARD RADIO

RADIO TYPE:

CR300-RF407, CR300-RF412	CR300-RF422
Frequency Hopping Spread	SRD860 Radio with Listen before talk (LBT)
Spectrum Radios (FHSS)	and Automatic Frequency Agility (AFA)

TRANSMIT:

	CR300-RF407	CR300-RF412	CR300-RF422
Output Power	5 to 250 mW,	user selectable	2 to 25 mW, user selectable
Frequency	902 to 928 MHz (US, Canada)	915 to 928 MHz (Australia, New Zealand)	863 to 870 MHz (European Union)
Channel Capacity	Eight 25-channel hop sequences sharing 64 available channels	Eight 25-channel hop sequences sharing 31 available channels	Ten 30-channel hop sequences
RF Data Rates	200 kbps	200 kbps	10 kbps

RECEIVE SENSITIVITY:

CR300-RF407, CR300-RF412	CR300-RF422	
-101 dBm	-106 dBm	

ANTENNA CONNECTOR: Reverse Polarity SMA (RPSMA)

WLAN (CR300-WIFI only)

MAXIMUM POSSIBLE THROUGHPUT: 30 Mbps

MAXIMUM POSSIBLE OVER-THE-AIR DATA RATES:

802.11b	802.11g	802.11n
up to 11 Mbps	up to 54 Mbps	up to 72 Mbps

OPERATING FREQUENCY: 2.4 GHz, 20 MHz bandwidth

ANTENNA CONNECTOR: Reverse Polarity SMA (RPSMA)

SUPPORTED STANDARDS: EEE 802.11 b/g/n, IEEE 802.11 d/e/i, 802.1X, WEP, WPA/WPA2-Personal and Enterprise

OPERATIONAL MODES: Client or Access Point

TRANSMIT POWER: 7 to 18 dBm

Rx SENSITIVITY: -97 dBm

SYSTEM

PROCESSOR: ARM Cortex M4 running at 144 MHz

MEMORY

CPU DRIVE / PROGRAMS: 80 MB flash DATA: 30 MB flash OPERATING SYSTEM (OS): 2 MB flash

CLOCK ACCURACY: ±1 min. per month

CLOCK RESOLUTION: 1 ms

PROGRAM EXECUTION: 100 ms to one day

POWER REQUIREMENTS

CHARGER INPUT (CHG): 16 to 32 Vdc, current limited at 0.9 A. Power converter or solar panel input.

EXTERNAL BATTERIES (BAT): 12 Vdc, lead-acid 7 Ah battery, typical

INTERNAL LITHIUM BATTERY: 3 V coin cell CR2016 (Energizer) for battery-backed clock. 6 year life with no external power source.

TYPICAL POWER REQUIREMENTS

SLEEP: 1.5 mA ACTIVE 1 HZ SCAN WITH ONE ANALOG MEASUREMENT: 5 mA

ACTIVE PROCESSOR ALWAYS ON: 23 mA

USB POWER (USB): For programming and limited functionality.

ON-BOARD RADIO

AVERAGE ADDITIONAL CURRENT CONTRIBUTION @ 12 Vdc

	CR300-RF407, CR300-RF412	CR300-RF422
Transmit	45 mA	20 mA
Idle On	12 mA	9.5 mA
Idle 0.5 s Power Mode	4 mA	3.5 mA
Idle 1 s Power Mode	3 mA	2.5 mA
Idle 4 s Power Mode	1.5 mA	1.5 mA

ON-BOARD WI-FI

AVERAGE ADDITIONAL CURRENT CONTRIBUTION @ 12 Vdc

Mode	CR300-WIFI					
Client Mode	7 mA idle, 70 mA communicating					
Access Point Mode	62 mA idle, 65 mA communicating					
Sleep (disabled using IPNetPower() or DevConfig setting)	4 mA					

COMPLIANCE INFORMATION

VIEW EU DECLARATION OF COMPLIANCE FOR THE CR300 AND CR300-WIFI AT: <u>www.campbellsci.eu/cr300</u>

SHOCK AND VIBRATION: ASTM D4169-09

PROTECTION: IP30

ON-BOARD WIFI¹⁰ (CR300-WIFI Only):

UNITED STATES FCC ID: XF6-RS9113SB INDUSTRY CANADA (IC): 8407A-RS9113SB)

ON-BOARD RADIO:

CR300-RF407	CR300-RF412	CR300-RF422
United States: FCC Part 15.247: MCQ-XB900HP Industry Canada (IC): 1846A-XB900HP Mexico IF: RCPDIXB15-0672-A2	ACMA RCM United States: FCC Part 15.247: MCQ-XB900HP Industry Canada (IC): 1846A-XB900HP	View EU Declaration of Confor- mity for the CR300-RF422 at: www.campbellsci.eu/cr300

PHYSICAL

DIMENSIONS: 14.0 X 7.6 X 5.1 cm (5.5 x 3.0 x 2.0 in); additional clearance required for cables and leads

WEIGHT/MASS

CR300: 242 g (0.53 lb) CR300-WIFI/RF407/RF412/RF422: 249.5 g (0.55 lb)

MATERIAL

CASE: Powder-coated aluminum

WARRANTY

Three years against defects in materials and workmanship.

¹⁰ The user is responsible for emissions if changing the antenna type or increasing the gain.

TERMINAL FUNCTIONS

Each terminal may only take on one function.

Analog Input Function	C1	C2	P_SW	P_LL	VX1	VX2	SE1	SE2	SE3	SE4	SE5	SE6	RS-232	SW12	Max
Single Ended Voltage							\checkmark	\checkmark	~	~	\checkmark	\checkmark			6
Differential Voltage							Н	L	н	L	Н	L			3
4 to 20 or 0 to 20 mA							\checkmark	\checkmark							2
Analog Output Function	C1	C2	P_SW	P_LL	VX1	VX2	SE1	SE2	SE3	SE4	SE5	SE6	RS-232	SW12	Max
Switched-Voltage Excitation					~	\checkmark									2
5 V Source	~	~			~	~									4
12 V Source														\checkmark	1
Digital I/O Function	C 1	C2	P_SW	P_LL	VX1	VX2	SE1	SE2	SE3	SE4	SE5	SE6	RS-232	SW12	Max
RS-232													\checkmark		1
RS-232 0-5V	Tx	Rx													1
SDI-12	~	\checkmark													2
Pulse-Width Modulation							\checkmark	\checkmark	~	~					4
Timer Input							\checkmark	\checkmark	~	~					4
Period Average							\checkmark	~	~	~					4
Interrupt	~	~					\checkmark	~	~	~					6
General I/O	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	~	\checkmark					7
Pulse Counting Function	C1	C2	P_SW	P_LL	VX1	VX2	SE1	SE2	SE3	SE4	SE5	SE6	RS-232	SW12	Max
Switch Closure	\checkmark	\checkmark	\checkmark												3
High Frequency	\checkmark	\checkmark	\checkmark	√			\checkmark	\checkmark	~	\checkmark					8
Low Level AC				\checkmark											1

80 Hathern Road, Shepshed, LE12 9GX | +(0)1509 828888 | sales@campbellsci.co.uk | www.campbellsci.eu uk | AUSTRALIA | BRAZIL | CANADA | CHINA | COSTA RICA | FRANCE | GERMANY | SE ASIA | SOUTH AFRICA | SPAIN | USA

© 2016, 2017 Campbell Scientific March 30, 2017