Warranty and Assistance

The 43347 RTD TEMPERATURE PROBE AND 43502 ASPIRATED RADIATION SHIELD are warranted by CAMPBELL SCIENTIFIC, INC. to be free from defects in materials and workmanship under normal use and service for twelve (12) months from date of shipment unless specified otherwise. Batteries have no warranty. CAMPBELL SCIENTIFIC, INC.’s obligation under this warranty is limited to repairing or replacing (at CAMPBELL SCIENTIFIC, INC.’s option) defective products. The customer shall assume all costs of removing, reinstalling, and shipping defective products to CAMPBELL SCIENTIFIC, INC. CAMPBELL SCIENTIFIC, INC. will return such products by surface carrier prepaid. This warranty shall not apply to any CAMPBELL SCIENTIFIC, INC. products which have been subjected to modification, misuse, neglect, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied, including warranties of merchantability or fitness for a particular purpose. CAMPBELL SCIENTIFIC, INC. is not liable for special, indirect, incidental, or consequential damages.

Products may not be returned without prior authorization. The following contact information is for US and International customers residing in countries served by Campbell Scientific, Inc. directly. Affiliate companies handle repairs for customers within their territories. Please visit www.campbellsci.com to determine which Campbell Scientific company serves your country.

To obtain a Returned Materials Authorization (RMA), contact CAMPBELL SCIENTIFIC, INC., phone (435) 753-2342. After an applications engineer determines the nature of the problem, an RMA number will be issued. Please write this number clearly on the outside of the shipping container. CAMPBELL SCIENTIFIC’s shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#_____
815 West 1800 North
Logan, Utah 84321-1784

For all returns, the customer must fill out a “Declaration of Hazardous Material and Decontamination” form and comply with the requirements specified in it. The form is available from our website at www.campbellsci.com/repair. A completed form must be either emailed to repair@campbellsci.com or faxed to 435-750-9579. Campbell Scientific will not process any returns until we receive this form. If the form is not received within three days of product receipt or is incomplete, the product will be returned to the customer at the customer’s expense. Campbell Scientific reserves the right to refuse service on products that were exposed to contaminants that may cause health or safety concerns for our employees.
43347/43502 Table of Contents

PDF viewers note: These page numbers refer to the printed version of this document. Use the Adobe Acrobat® bookmarks tab for links to specific sections.

1. General .. 1

2. Specifications ... 2

3. Installation ... 3
 3.1 Siting .. 3
 3.2 Assembly and Mounting .. 3
 3.3 43502 Radiation Shield Installation .. 3
 3.4 41003-5 Radiation Shield Installation .. 5

4. Wiring ... 7
 4.1 43347-VX Temperature Probe Wiring ... 7
 4.2 43502 Aspirated Radiation Shield Wiring ... 9

5. Datalogger Programming for the 43347-VX Probe .. 9
 5.1 Programming for Calibrated 43347-VX Probes ... 10
 5.1.1 CR1000 Example for Calibrated 43347-VX Probes 10
 5.1.2 CR10X Example for Calibrated 43347-VX Probes 11
 5.2 Programming for Uncalibrated 43347-VX Probes ... 12
 5.2.1 CR1000 Example for Uncalibrated 43347-VX Probes 12
 5.2.2 CR10X Example for Uncalibrated 43347-VX Probes 12

6. 43347-IX Measurement using Current Excitation .. 13
 6.1 Wiring ... 13
 6.2 Datalogger Programming .. 14
 6.2.1 Datalogger Programming for Calibrated 43347–IX Probes 14
 6.2.2 Datalogger Programming for Uncalibrated 43347-IX Probes 15
 6.3 Resistance Measurement Instruction Details ... 17
 6.3.1 Determining the Excitation Current ... 17
 6.3.2 Reducing Measurement Noise ... 18

7. Maintenance .. 18

8. 43347 RTD Temperature Probe Calibration ... 18

9. Manufacturer’s Information ... 18

10. Troubleshooting .. 19
11. References ... 19

Appendices

A. Example CR10(X) Program for Ice Bath Calibration .. A-1

B. 43502 Aspirated Radiation Shield .. B-1

C. 43347 Aspirated Radiation Shield .. C-1
 C.1 Specifications ... C-2
 C.2 Installation ... C-3

D. Measure Two 43347-IX Probes Using One Current Excitation Channel D-1
 D.1 Wiring .. D-2
 D.2 Example Program for two Calibrated 43347-IX Probes D-2

Figures

 3-1. 43502 Radiation Shield Mounted to Tripod Mast 4
 3-2. 43502 Radiation Shield Mounted to a CM200 Series Crossarm 5
 3-3. 41003-5 Radiation Shield Mounted to Tripod Mast 6
 3-4. 41003-5 Radiation Shield Mounted to a CM200 Series Crossarm 6
 4-1. 43347-VX Temperature Probe Wiring .. 7
 4-2. 43502 Aspirated Radiation Shield Wiring ... 8
 6-1. 43347-IX Temperature Probe Schematic .. 13
 B-1. 43347 Probe and Bushing ... B-2
 B-2. 43502 Shield Power Connections ... B-2
 B-3. 43347 Probe Mounted Inside the 43502 Shield B-3
 C.1-1. 43347 RTD Temperature Probe and 43408 Aspirated Radiation Shield ... C-2
 C.2-1. PN 7515 10 m Aspirated Shield Mounting Bracket C-3
 C.2-2. 43408 Aspirated Radiation Shield Wiring C-4
 D-1. Schematic for Two 43347-IX Temperature Probes D-2

Tables

 1-1. Recommended Lead Lengths .. 1
 4-1. Datalogger Connections ... 8
 5-1. Wiring for Measurement Examples .. 9
 6-1. Datalogger Connections ... 14
 6-2. Wiring for Measurement Examples ... 15
 D-1. Wiring for Two 43347-IX Probes Example D-3
1. General

The -L option on the model 43347 RTD Temperature Probe (43347-L), and the 43502 Aspirated Radiation Shield (43502-L) indicates that the cable length is user specified. This manual refers to them as the 43347 probe and the 43502 radiation shield.

The 43347 is a 1000 ohm Resistance Temperature Device (RTD) used to measure ambient air temperature and delta or gradient air temperature. The standard 43347 probe has an uncertainty of ±0.3°C. For increased accuracy the 43347 probe can be ordered with a three point calibration with an uncertainty of ±0.1°C.

There are two cable options for the 43347. Option –VX configures the probe as a 4-wire half bridge that requires an voltage excitation and two differential input channels, and can be used with all CSI dataloggers except the CR200(X). Option –IX configures the probe for use with the CR3000 or CR5000 dataloggers, and requires a current excitation and one differential input channel.

The 43347 can be housed in the 41003-5 naturally aspirated radiation shield, or the 43502 motor aspirated radiation shield. The 43502 radiation shield employs concentric downward facing intake tubes and a small canopy shade to isolate the temperature probe from direct and indirect radiation. The 43347 probe mounts vertically in the center of the intake tubes. A brushless 12 VDC blower motor pulls ambient air into the shield and across the probe to reduce radiation errors. The blower operates off a 115 VAC/12 VDC transformer that is included with the shield.

Lead length for the 43347 and 43502 is specified when the probe/shield is ordered. Table 1-1 gives the recommended lead length for mounting the sensor at the top of the tripod/tower. Lead length can be 4 feet shorter when the sensor is mounted to the tripod mast / tower leg without the CM204 crossarm.

<table>
<thead>
<tr>
<th>TABLE 1-1. Recommended Lead Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM6</td>
</tr>
<tr>
<td>15’</td>
</tr>
</tbody>
</table>

The 43347 probe ships with:

(1) Instruction Manual
2. Specifications

43502 ASPIRATED RADIATION SHIELD

Sensor Types: Accommodates sensors up to 24mm (0.9 in) diameter

Radiation Error:

- Ambient Temp: <0.2°C (0.4°F) RMS (@1000 W/m² intensity)
- Delta T: <0.05°C (0.1°F) RMS with like shields equally exposed
- Aspiration Rate: 5 to 11 m/s (16-36 fps) depending on sensor size

Power Requirement: 12-14 VDC @500 mA for blower

Overall Height: 33 cm (13 in)

Overall Diameter: 20 cm (8 in)

Shield: 7 cm (2.7 in) dia. x 12 cm (4.7 in)

Blower Housing: 17 cm (6.7 in) dia. x 11 cm (4.3 in)

Mounting: V-Block and U-Bolt for vertical pipe 25-50 mm (1.0-2.0 in) dia.

41003-5 RADIATION SHIELD

Sensor Types: Accommodates temperature and humidity sensors up to 26 mm (1 in) diameter

Radiation Error: @1080 W/m² intensity – Dependent on wind speed

- 0.4°C (0.7°F) RMS @ 3 m/s (6.7 mph)
- 0.7°C (1.3°F) RMS @ 2 m/s (4.5 mph)
- 1.5°C (2.7°F) RMS @ 1 m/s (2.2 mph)

Construction: UV stabilized white thermoplastic plates

- Aluminum mounting bracket, white powder coated
- Stainless steel U-bolt clamp

Dimensions: 13 cm (5.1 in) diameter x 26 cm (10.2 in) high

Mounting fits vertical pipe 25-50 mm (1-2 in) diameter

Weight

- Net weight: 0.7 kg (1.5 lb)
- Shipping weight: 1.4 kg (3 lb)

43347 RTD TEMPERATURE PROBE

Dimensions

- Probe Tip: 0.125" diameter, 2.25" long
- Overall length: 7"

Sensing Element: HY-CAL 1000 ohm Platinum RTD

Temperature Range: ±50°C

Accuracy:

- ±0.3°C at 0° C
- ±0.1°C with NIST calibration

Temperature Coefficient: .00375 ohm/°C
3. Installation

3.1 Siting

Sensors should be located over an open level area at least 9 m (EPA) in diameter. The surface should be covered by short grass, or where grass does not grow, the natural earth surface. Sensors should be located at a distance of at least four times the height of any nearby obstruction, and at least 30 m (EPA) from large paved areas. Sensors should be protected from thermal radiation, and adequately ventilated.

Standard measurement heights:

- 1.5 m +/- 1.0 m (AASC)
- 1.25 – 2.0 m (WMO)
- 2.0 m (EPA)
- 2.0 m and 10.0 m temperature difference (EPA)

3.2 Assembly and Mounting

Tools Required:

- 1/2” open end wrench
- small screw driver provided with datalogger
- small Phillips screw driver
- UV resistant cable ties
- small pair of diagonal-cutting pliers

3.3 43502 Radiation Shield Installation

The 43502 mounting bracket has a U-bolt configured for attaching the shield to a vertical tripod mast or tower leg up to 2” in diameter. By moving the U-bolt to the other set of holes the bracket can be attached to a CM200 series crossarm, e.g. the CM204. The CM204 crossarm includes the CM210 Mounting Kit for attaching the crossarm to a tripod mast or tower leg. For triangular towers (e.g. the UT30), an additional PN CM210 Crossarm Mounting Kit can be ordered for attaching the crossarm to two tower legs for additional stability.

Attach the 43502 to the tripod/tower or crossarm using the U-bolt. Tighten the U-bolt sufficiently for a secure hold without distorting the plastic v-block. See the drawings in Appendix B for reference to names and locations of shield components and position of sensor within the shield.

The blower cover is hinged to allow easy access for sensor installation and cable connections. Loosen the captive screw in the blower cover to open. The junction box provides terminals for cable connections and properly positions the sensor within the shield assembly.

With the blower cover open connect blower power (12-14 VDC) to the terminals on the underside of the cover (Figure B-2). Terminal designations positive (POS), negative (NEG), and optional tachometer (TACH), are marked on the printed circuit board. Blower power is normally provided by the plug-in
power supply adapter included. BE SURE TO OBSERVE CORRECT POLARITY. Red is positive, black is negative. The blower motor draws approximately 420mA-480mA. Use sufficiently heavy gauge wire between the power supply adapter and the blower motor terminals to avoid significant voltage drop. Clamp the blower power cable with the cable clamp provided at the edge of the printed circuit card. When tying the cable to the mounting structure provide a sufficient loop in the cable to allow the blower cover to be opened and closed easily.

Install the 43347 probe inside the 43502 shield using the sensor mounting bushing (supplied with the 43502) as shown in Figure B-1. The sensor cable exits the side of the blower housing at the notches provided using the black grommet to provide a seal (Figure B-3). Clamp the cable to the lower flange of the housing to keep it in proper position when the cover is closed. Route the sensor cable to the instrument enclosure. Secure the cable to the tripod/tower using cable ties.

43502 Shield

FIGURE 3-1. 43502 Radiation Shield Mounted to Tripod Mast
3.4 41003-5 Radiation Shield Installation

The 41003-5 Radiation shield has a U-bolt for attaching the shield to tripod mast / tower leg (Figure 3-3), or CM200 series crossarm. The radiation shield ships with the U-bolt configured for attaching the shield to a vertical pipe. Move the U-bolt to the other set of holes to attach the shield it to a crossarm.

NOTE

The split nut that ships with the 41003-5 shield must be replaced with split nut PN 27251 (which must be ordered separately), which has a slightly larger diameter to accommodate the 43347 probe.

Loosen the split-nut on the bottom plate of the 41003-5, and insert the 43347 into the shield. Tighten the split-nut to secure the sensor in the shield. Route the sensor cable to the instrument enclosure. Secure the cable to the tripod/tower using cable ties.
43347 RTD Temperature Probe and 43502 Aspirated Radiation Shield

FIGURE 3-3. 41003-5 Radiation Shield Mounted to Tripod Mast

FIGURE 3-4. 41003-5 Radiation Shield Mounted to a CM200 Series Crossarm
4. Wiring

The 43347 comes in two versions—the “IX” version and the “VX” version. The “IX” version connects to dataloggers that can issue current excitation (CR3000, CR5000 only). The “VX” version can connect directly to dataloggers that only have voltage excitation (e.g., CR10(X), CR800, CR1000).

43347 probes with the –VX option are wired to the datalogger as described in Section 4. 43347 probes with the –IX option are wired to the CR3000 or CR5000 dataloggers as described in Section 6.

4.1 43347-VX Temperature Probe Wiring

The 43347-VX probe is configured as a four wire half bridge as shown in Figure 3-3. Each probe requires two differential inputs and one voltage excitation channel (one excitation channel can be used for two probes). The black and orange wires connect to the first of two contiguous input channels. For example, if channels 1 and 2 are used, the black and orange wires connect to 1H and 1L respectively, and the white and green wires connect to 2H and 2L respectively.

Connections to Campbell Scientific dataloggers are given in Table 4-1. When Short Cut software is used to create the datalogger program, wire the sensor to the channels shown on the wiring diagram created by Short Cut.

![FIGURE 4-1. 43347-VX Temperature Probe Wiring](image-url)
TABLE 4-1. Datalogger Connections

<table>
<thead>
<tr>
<th>Color</th>
<th>Wire Label</th>
<th>CR10(X), CR510</th>
<th>CR3000, CR1000, CR800, CR5000, CR23X, 21X, CR7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Volt Excite/+ RTD</td>
<td>Switched Excitation</td>
<td>Switched Excitation</td>
</tr>
<tr>
<td>White</td>
<td>Sense Signal</td>
<td>Differential (high)</td>
<td>Differential (high)</td>
</tr>
<tr>
<td>Green</td>
<td>Sense Signal Ref</td>
<td>Differential (low)</td>
<td>Differential (low)</td>
</tr>
<tr>
<td>Black</td>
<td>RTD Signal/- RTD</td>
<td>Differential (high)</td>
<td>Differential (high)</td>
</tr>
<tr>
<td>Orange</td>
<td>RTD Signal Ref</td>
<td>Differential (low)</td>
<td>Differential (low)</td>
</tr>
<tr>
<td>Purple</td>
<td>Excitation Reference</td>
<td>(AG)</td>
<td>±</td>
</tr>
<tr>
<td>Clear</td>
<td>Shield G</td>
<td>G</td>
<td>±</td>
</tr>
</tbody>
</table>

FIGURE 4-2. 43502 Aspirated Radiation Shield Wiring

NOTE Occasionally, a customer may need to connect an “IX” version of the sensor to a datalogger that has voltage excitation only (e.g., CR10(X), CR800, CR1000). The customer can do this by using a 4WPB1K terminal input module (refer to the 4WPB1K manual for more information).
4.2 43502 Aspirated Radiation Shield Wiring

The shield includes a 12 VDC transformer that plugs into 110 VAC. In most applications AC power is run to the tower or tripod and terminated in a junction box that is large enough to house the transformer(s).

Connect the red and black wires from the shield cable to the terminal block and transformer as shown in Figure 4-2.

5. Data Logger Programming for the 43347-VX Probe

This section is for users who write their own datalogger programs. A datalogger program to measure this sensor can be created using Campbell Scientific’s Short Cut Program Builder software. You do not need to read this section to use Short Cut.

Section 4 covers the 43347-VX probe, where the –VX specifies that the probe/cable is configured for a 4-wire half bridge measurement using an excitation voltage. Programming examples for the 43347-IX probe are covered in Section 6.

The 43347 temperature is measured with a four wire half-bridge measurement, Instruction BRHalf4W in CRBasic dataloggers, or Instruction 9 in Edlog dataloggers. The measurement applies an excitation voltage and makes two differential voltage measurements. The first measurement is made across the fixed resistor (Rf), the second is made across the RTD (Rs). The result is the ratio of the two resistances (Rs/Rf), which is not affected by lead length.

The result from the measurement is converted to temperature by a custom polynomial for calibrated temperature probes (Section 5.1), or the standard PRT resistance to temperature conversion for uncalibrated temperature probes (Section 5.2).

Table 5-1 shows the sensor wiring for the measurement examples Sections 5.1 and 5.2.

<table>
<thead>
<tr>
<th>Color</th>
<th>Function</th>
<th>Datalogger Channels used for Measurement Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>Shield</td>
<td>⊕ (G) for CR10(X)</td>
</tr>
<tr>
<td>Red</td>
<td>Switched Excitation</td>
<td>E1</td>
</tr>
<tr>
<td>White</td>
<td>Differential High</td>
<td>2H</td>
</tr>
<tr>
<td>Green</td>
<td>Differential Low</td>
<td>2L</td>
</tr>
<tr>
<td>Black</td>
<td>Differential High</td>
<td>1H</td>
</tr>
<tr>
<td>Orange</td>
<td>Differential Low</td>
<td>1L</td>
</tr>
<tr>
<td>Purple</td>
<td>Analog Reference</td>
<td>⊕ (AG) for CR10(X)</td>
</tr>
</tbody>
</table>
5.1 Programming for Calibrated 43347-VX Probes

Calibrated 43347 probes are provided with a calibration certificate from R.M. Young Co. that gives the relationship of resistance to temperature (°C) as Equation “T”.

\[T = -250.052585 + R \times 2.375187\times 10^{-1} + R^2 \times 1.258482\times 10^{-5} \]

The measurement result of the instruction with a multiplier of 1.0 and an offset of 0.0 is \(\frac{R_s}{R_f} \) = the RTD resistance divided by 1000.

5.1.1 CR1000 Example for Calibrated 43347-VX Probes

Because the calibration coefficients are to convert sensor resistance (Rs) to temperature, the BrHalf4W measurement result (Rs/Rf) must be multiplied by 1000 (Rf), before the coefficients are applied.

```
'CR1000

'Declare Variables and Units
Public RTD_Res
Public RTD_Cal_C
Units RTD_Cal_C = Deg C

'Define Data Tables
DataTable(Table1,True,-1)
DataInterval(0,60,Min,10)
Average(1,RTD_C,FP2,False)
EndTable

'Main Program
BeginProg
  Scan(5,Sec,1,0)

  'Measure 43347 (calibrated) probe and convert Rs/Rf to Rs
  BrHalf4W(RTD_Res,1,mV250,mV250,1,1,1,2500,True,True,0,_60Hz,1000,0)

  'Apply calibration coefficients (probe specific)
  '43347 calibration T=-250.052585+(R*2.375187e-1)+(R^2*1.258482e-5)
  RTD_Cal_C = -250.052585+(RTD_Res*2.375187e-1)+((RTD_Res^2)* 1.258482e-5)

  'Call Data Tables and Store Data
  CallTable(Table1)
NextScan
EndProg
```
5.1.2 CR10X Example for Calibrated 43347-VX Probes

Because the Full Bridge w/mv Excit (P9) resistance is divided by 1000, the coefficients given in Equation “T” can be entered into the polynomial without exponents. C0 is entered as given, C1 is divided by .001, and C2 is divided by .000001. For example:

Equation “T” from R.M. Young’s RTD Calibration Report:

\[T = -250.052585 + R_x \cdot 2.375187E-01 + R_x^2 \cdot 1.258482E-05 \]

Scaled coefficients to be entered into Instruction 55:

\[C_0 = -250.05 \]
\[C_1 = 237.52 \]
\[C_2 = 12.585 \]

;{/CR10X}
;
*Table 1 Program
 01: 5 Execution Interval (seconds)

;Measure the 43347 probe, result = Rs/Rf

1: Full Bridge w/mv Excit (P9)
 1: 1 Reps
 2: 24 250 mV 60 Hz Rejection Ex Range ;CR23X (200 mV); 21X,CR7 (500 mV)
 3: 24 250 mV 60 Hz Rejection Br Range ;CR23X (200 mV); 21X,CR7 (500 mV)
 4: 1 DIFF Channel
 5: 1 Excite all reps w/Exchan 1
 6: 2500 mV Excitation ;CR23X (2000 mV); 21X,CR7 (5000 mV)
 7: 1 Loc [RTD_C]
 8: 1 Mult
 9: 0 Offset

;Apply calibration coefficients (probe specific)
;43347 Calibration T = -250.052585,+(R*2.375187e-1)+(R^2*1.258482e-5)

2: Polynomial (P55)
 1: 1 Reps
 2: 1 X Loc [RTD_C]
 3: 1 F(X) Loc [RTD_C]
 4: -250.05 C0 ;Coefficients will differ for each probe
 5: 237.52 C1
 6: 12.585 C2
 7: 0.0 C3
 8: 0.0 C4
 9: 0.0 C5
5.2 Programming for Uncalibrated 43347-VX Probes

Instruction 9 applies an excitation voltage and makes two differential measurements. A multiplier of 1.0 on the four wire half-bridge measurement converts the measurement result to Rs/Ro (assuming Rf and Ro both equal 1000 ohms). The RTD temperature instruction converts Rs/Ro to temperature in accordance with DIN Standard 43760. Because the alpha of the RTD used in the temperature probe differs from DIN standard 43760, a multiplier of 1.0267 is required for Instruction 16.

5.2.1 CR1000 Example for Uncalibrated 43347-VX Probes

```plaintext
'CR1000

'Declare Variables
Public RTD_C

'Define Data Tables
DataTable(One_Hour,True,-1)
    DataInterval(0,60,Min,0)
        Sample(1,RTD_C,IEEE4)
    EndTable

'Main Program
BeginProg
    Scan(1,Sec,1,0)
        '43347 RTD Temperature Probe (not calibrated) measurement RTD_C:
            BrHalf4W(RTD_C,1,mV250,mV250,1,Vx1,1,2500,True,True,0,_60Hz,1,0)
            PRT(RTD_C,1,RTD_C,1.0267,0)
        'Call Data Tables and Store Data
            CallTable(One_Hour)
        NextScan
    EndProg
```

5.2.2 CR10X Example for Uncalibrated 43347-VX Probes

```plaintext
;{CR10X}

*Table 1 Program
01: 5  Execution Interval (seconds)
1:  Full Bridge w/mv Excit (P9)
    1: 1  Reps
    2: 24  250 mV 60 Hz Rejection Ex Range ;CR23X (200 mV); 21X,CR7 (500 mV)
    3: 24  250 mV 60 Hz Rejection Br Range ;CR23X (200 mV); 21X,CR7 (500 mV)
4:  1  DIFF Channel
5:  1  Excite all reps w/Exchan 1
6: 2500  mV Excitation ;CR23X (2000 mV); 21X,CR7 (5000 mV)
7:  1  Loc [ RTD_C ]
8:  1  Mult
9:  0  Offset
```
6. 43347-IX Measurement using Current Excitation

The 43347-IX probe is measured with the Resistance measurement instruction with the CR3000 and CR5000 dataloggers. The Resistance measurement applies a switched current excitation and measures the voltage across the 1000 ohm RTD. Appendix D shows how a single current excitation channel can be used to excite as many as 25 43347 probes connected in series if the excitation current is 170 μA. Details on determining the excitation current and other parameter options are described in Section 6.3.

6.1 Wiring

The 43347-IX probe is configured as shown in Figure 6-1. Connections to the CR3000 and CR5000 dataloggers are shown in Table 6-1.

When Short Cut software is used to create the datalogger program, wire the sensor to the channels shown on the wiring diagram created by Short Cut.

```
;Convert measurement result to Temperature deg C
2: Temperature RTD (P16)
1: 1  Reps
2: 1  R/R0 Loc [ RTD_C ]
3: 1  Loc [ RTD_C ]
4: 1.0267  Mult ; (0.00385/0.00375)
5: 0  Offset
```

Wire Label

<table>
<thead>
<tr>
<th>Wire Label</th>
<th>43347 Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>CLEAR</td>
</tr>
<tr>
<td>Current Excite/+ RTD</td>
<td>RED</td>
</tr>
<tr>
<td>Sense Signal</td>
<td>WHITE</td>
</tr>
<tr>
<td>Sense Signal Ref</td>
<td>GREEN</td>
</tr>
<tr>
<td>Current Return/- RTD</td>
<td>BLACK</td>
</tr>
</tbody>
</table>

FIGURE 6-1. 43347-IX Temperature Probe Schematic
TABLE 6-1. Datalogger Connections

<table>
<thead>
<tr>
<th>Color</th>
<th>Wire Label</th>
<th>CR3000, CR5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Current Excite/</td>
<td>Switched Current Excitation</td>
</tr>
<tr>
<td></td>
<td>+ RTD</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Sense Signal</td>
<td>Differential (high)</td>
</tr>
<tr>
<td>Green</td>
<td>Sense Signal Ref</td>
<td>Differential (low)</td>
</tr>
<tr>
<td>Black</td>
<td>Current Return/</td>
<td>Switched Current Excitation Return</td>
</tr>
<tr>
<td></td>
<td>- RTD</td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>Ground</td>
<td>Ground (⊕)</td>
</tr>
</tbody>
</table>

NOTE
Occasionally, a customer may need to connect an “IX” version of the sensor to a datalogger that has voltage excitation only (e.g., CR10(X), CR800, CR1000). The customer can do this by using a 4WPB1K terminal input module (refer to the 4WPB1K manual for more information).

6.2 Datalogger Programming

This section is for users who write their own programs. A datalogger program to measure this sensor can be created using Campbell Scientifics' Short Cut Program Builder software. You do not need to read this section to use Short Cut.

The 43347-IX is measured with the Resistance measurement instruction with the CR3000 and CR5000 dataloggers. The Resistance measurement applies a switched current excitation and measures the voltage across the 1000 ohm RTD. The result, with a multiplier of 1 and an offset of 0, is the RTD resistance in ohms. The measurement result is converted to temperature with the PRT instruction for uncalibrated probes, or with a polynomial equation for calibrated probes. Calibrated probes include a calibration certificate with the polynomial coefficients.

The Resistance and PRT Instructions with their parameters are listed below:

- **Resistance(Dest, Reps, Range, DiffChan, IexChan, MeasPEx, EXuA, RevEx, RevDiff, SettlingTime, Integ, Mult, Offset)**
- **PRT(Dest, Reps, Source, Mult, Offset)**

Table 6-2 shows the sensor wiring for the measurement examples.
TABLE 6-2. Wiring for Measurement Examples

<table>
<thead>
<tr>
<th>Color</th>
<th>Function</th>
<th>CR3000, CR5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Switched Current Excitation IX1</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Differential High 1H</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Differential Low 1L</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>Excitation Return IXR</td>
<td></td>
</tr>
<tr>
<td>Clear</td>
<td>Shield</td>
<td></td>
</tr>
</tbody>
</table>

6.2.1 Datalogger Programming for Calibrated 43347–IX Probes

Calibrated 43347-IX probes are provided with a calibration certificate that gives the relationship of resistance to temperature as Equation “T”, as shown in the example below:

\[T = -250.052585 + R \times 2.375187 \times 10^{-1} + R^2 \times 1.258482 \times 10^{-5} \]

The measurement result of the Resistance instruction (ohms) is converted to temperature with a polynomial equation and the coefficients from equation “T”, as shown below.

The following example program measures a calibrated 43347-IX probe every 1 second and stores a 15 minute average temperature in degrees Celsius.

```plaintext
'CR3000

'Declare Variables and Units
Public RTD_Res
Public RTD_Cal_C

'Define Data Tables
DataTable(PRT_Data,1,1000)
  DataInterval(0,15,Min,1)
  Average (1,RTD_Cal_C,IEEE4,False)
Endtable

'Main Program
BeginProg
  Scan(1,Sec,10,0)

  'Measure the 43347-IX probe
  Resistance (RTD_Res,1,mV200,1,1x1,1,170,True,True,0,_60Hz,1,0)

  'Convert RTD resistance to temperature
  '43347 calibration T=-250.052585+(R*2.375187e-1)+(R^2*1.258482e-5)
  RTD_Cal_C = -250.052585+(RTD_Res*2.375187e-1)+((RTD_Res^2)*1.258482e-5)
```

15
6.2.2 Datalogger Programming for Uncalibrated 43347-IX Probes

The measurement result of the Resistance instruction with a multiplier of 1.0 and an offset of 0.0 is the RTD resistance in ohms. For uncalibrated probes, the PRT instruction is used to convert the ratio Rs/Ro to temperature in accordance with DIN Standard 43760, where Rs is the measured resistance of the RTD, and Ro is the resistance of the RTD at 0 degrees C (1000 ohms). Because the alpha of the 43347 is 0.00375 and the alpha of DIN standard is 0.00385, a multiplier of 1.0267 (0.00385/0.00375) is required in the PRT instruction.

The PRT Instruction with its parameters is listed below:

\[
PRT(\text{Dest}, \text{Reps}, \text{Source}, \text{Mult}, \text{Offset})
\]

The following example program measures an uncalibrated 43347-IX probe every 1 second and stores a 15 minute average temperature in degrees Celsius.

```plaintext
'CR3000
'Declare Variables and Units
Public RTD_Res
Public RTD_RsRo
Public RTD_C

Const RTD_Ro = 1000.00 'This is the actual RTD resistance for this sensor at 0.0°C

'Define Data Tables
DataTable(PRT_Data,1,1000)
   DataInterval(0,10,Min,1)
   Average (1,RTD_C,IEEE4,False)
Endtable

'Main Program
BeginProg
Scan(3,Sec,10,0)

'Measure the 43347-IX Probe
Resistance (RTD_Res,1,mV200,1,Ix1,1,170,True,True,0,_60Hz,1,0)

'Convert RTD resistance to temperature
RTD_RsRo = (RTD_Res / RTD_Ro)
PRT (RTD_C,1,RTD_RsRo,1.0267,0.0)

CallTable PRT_Data

Next Scan
EndProg
```
6.3 Resistance Measurement Instruction Details

The Resistance instruction applies a switched current excitation to the 43347 probe, and makes two differential voltage measurements. The first differential voltage measurement is made across the RTD; the second is made across a precision 1000 Ω resistor in the CR3000 current excitation circuitry. The measurement result \((X) = \frac{V_s}{I_x} = \text{RTD resistance in ohms, where } V_s \text{ is the measured voltage and } I_x \text{ is the excitation current.} \)

The maximum excitation current is ±2.5 mA. The parameters for the excitation current, measurement range, differential channel, and options to reverse the excitation current and switch the differential inputs are configurable, as discussed in the following sections.

6.3.1 Determining the Excitation Current

Current passing through the RTD causes heating within the RTD, which is referred to as “self-heating”, resulting in a measurement error. To minimize self-heating errors, use the minimum current that will still give the desired resolution. The best resolution is obtained when the excitation is large enough to cause the signal voltage to fill the measurement range.

The following example determines an excitation current that keeps self-heating effects below 0.002°C in still air.

Self heating can be expressed as

\[\Delta T = (I_x^2 \cdot \text{RRTD}) \theta \]

Where:
- \(\Delta T \) = self heating in °C
- \(I_x \) = current excitation
- \(\text{RRTD} = 1000 \Omega \) RTD resistance
- \(\theta = 0.05°C/\text{mW} \) self heating coefficient

Solving the above equation for \(I_x \):

\[I_x = (\frac{\Delta T \cdot \text{RRTD}}{\theta})^{1/2} \]

To keep self-heating errors below 0.002 °C, the maximum current \(I_x \) is:

\[I_x = (0.002 °C / (1000 \Omega \cdot 0.05 °C / 0.001 \text{W}))^{1/2} \]

\[I_x = 200\mu\text{A} \]

The best resolution is obtained when the excitation is large enough to cause the signal voltage to fill the measurement full scale range (the possible ranges are +/- 5000, 1000, 200, 50 and 20mV).
The maximum voltage would be at the high temperature or highest resistance of the RTD. At +40°C, a 1000 Ω RTD with α = 3.75 Ω/°C is about 1150 ohms.

Using Ohm's law to determine the voltage across the RTD at 40°C.

\[V = Ix \cdot R \]

Using an Ix value of 200μA, the voltage is:

\[V = 200\mu A \times 1150 \text{ ohms} \]

\[V = 230\text{mV} \]

This is just over the +/- 200mV input voltage range of the CR3000. For a maximum voltage of 200mV, the current Ix is:

\[Ix = \frac{200\text{mV}}{1150 \text{ ohms}} \]

Ix ~170μA

6.3.2 Reducing Measurement Noise

AC power lines, pumps, and motors can be the source of electrical noise. If the 43347 probe or datalogger is located in an electrically noisy environment, the measurement should be made with the 60 or 50 Hz rejection options.

Offsets in the measurement circuitry may be reduced by reversing the current excitation (RevEx), and reversing the differential analog inputs (RevDiff), as shown in the program examples in Sections 6.2.

7. Maintenance

Inspect and clean the shield and probe periodically to maintain optimum performance. When the shield becomes coated with a film of dirt, wash it with mild soap and warm water. Use alcohol to remove oil film. Do not use any other solvent. Check mounting bolts periodically for possible loosening due to tower vibration.

8. 43347 RTD Temperature Probe Calibration

Calibration should be checked every 12 months. Probes used to measure a temperature gradient should be checked with respect to absolute temperature, and with respect to zero temperature difference. An excellent discussion on calibration procedures can be found in the Quality Assurance Handbook for Air Pollution Measurement Systems, Volume IV Meteorological Measurements1.

9. Manufacturer's Information

Refer to the RM Young 43502 Instruction Manual for additional information such as replacement parts, assembly drawings, and electrical schematics.
10. Troubleshooting

-99999, NAN displayed in input location:

Make sure the temperature probe is connected to the correct input channels (Sections 5 and 6). The input channel (Instruction 9) refers to the channel that the black and orange wires are connected to. The white and green wires connect to the next (higher) contiguous channel.

Unreasonable value displayed in input location:

Make sure the multiplier and offset values entered for Instruction 9 are correct. For calibrated temperature probes (Section 6.1), make sure the coefficients have been properly scaled and entered for Instruction 55. For uncalibrated temperature probes (Section 6.2), make sure the multiplier and offset values have been properly entered for Instruction 16.

Temperature reading too high:

Make sure the blower is working properly and there are no obstructions to the air flow in the sensor shield, telescoping arm, or vent holes. Also, check that the probe end of the shield points toward the prevailing wind.

11. References

Appendix A. Example CR10(X) Program for Ice Bath Calibration

The following program can be used to calibrate 43347 probes (probes ordered without the 3-point RM Young calibration) for users wanting better than ±0.3 °C. The calibration computes a multiplier for the P9 measurement Instruction (Section 5.2).

Procedure:

Immerse the stainless steel tip of the 43347 probe in a properly prepared ice bath and allow the temperature to stabilize (about an hour). Program the CR10X with the program listed below. Toggle Flag 1 high, which causes the 43347 probe to be measured 100 times. The average of the measurement result is placed into input location 2 and the reciprocal of location 2 is placed into input location 3. The value from location 3 is used as the multiplier for the P9 Instruction (Section 5.2). Typical values for locations 2 and 3 would be 1.0012 and 0.998 respectively.

```
;{CR10X}
;
*Table 1 Program
01: 1  Execution Interval (seconds)

1: If Flag/Port (P91)
  1: 21  Do if Flag 1 is Low
  2: 0  Go to end of Program Table

2: Z=F (P30)
  1: 0  F
  2: 0  Exponent of 10
  3: 1  Z Loc [ counter ]

3: Beginning of Loop (P87)
  1: 1  Delay
  2: 100  Loop Count

4: Full Bridge w/mv Excit (P9)
  1: 1  Reps
  2: 24  250 mV 60 Hz Rejection Ex Range
  3: 24  250 mV 60 Hz Rejection Br Range
  4: 1  DIFF Channel
  5: 1  Excite all reps w/Exchan 1
  6: 2500  mV Excitation
  7: 2  Loc [ result ]
  8: 1.0  Mult
  9: 0  Offset

5: Z=Z+1 (P32)
  1: 1  Z Loc [ counter ]
```
Appendix A. Example CR10(X) Program for Ice Bath Calibration

6: If (X<=F) (P89)
 1: 3 X Loc [P9_mult]
 2: 3 >=
 3: 100 F
 4: 30 Then Do

7: Do (P86)
 1: 10 Set Output Flag High (Flag 0)

8: Do (P86)
 1: 21 Set Flag 1 Low

9: End (P95)

10: Set Active Storage Area (P80)
 1: 3 Input Storage Area
 2: 2 Loc [result]

11: Average (P71)
 1: 1 Reps
 2: 2 Loc [result]

12: Z=1/X (P42)
 1: 2 X Loc [result]
 2: 3 Z Loc [P9_mult]

13: End (P95)
Appendix B. 43502 Aspirated Radiation Shield

43502 with 41382 TEMP/RH PROBE

- 43447-01 12VDC BLOWER
- 41382 TEMP/RH PROBE
- 43532 MOTOR CONNECTION P.C. BOARD
- BLOWER CABLE CLAMP
- SENSOR CABLE CLAMP
- 43534 SENSOR MTG BUSHING
- 43530 SHIELD ASSEMBLY
- TACHOMETER OUTPUT (SPECIAL ORDER ONLY)
- TEMP OR TEMP R.H. SENSOR
- RUBBER FLANGE BUSHING
- BLOWER MOTOR BLK RED
- BLOWER POWER 12-14 VDC @ 500MA
- TO DATA LOGGER

MODEL 43502 ASPIRATED RADIATION SHIELD OWG A
SECTION VIEW DWJ JM L
43502 TEMP/RH PROBE CONFIGURATION CMK 040607
R.M. YOUNG CO. TRAVERSE CITY, MI 49686 U.S.A. 231-946-3960
FIGURE B-1. 43347 Probe and Bushing

FIGURE B-2. 43502 Shield Power Connections
FIGURE B-3. 43347 Probe Mounted Inside the 43502 Shield
Appendix C. 43347 Aspirated Radiation Shield
The 43408 radiation shield employs concentric downward facing intake tubes and a small canopy shade to isolate the temperature probe from direct and indirect radiation. The 43347 temperature probe mounts vertically in the center of the intake tubes.

A brushless 12 VDC blower motor pulls ambient air into the shield and across the temperature probe to reduce radiation errors. The blower operates off a 115 VAC/12 VDC transformer that is included with the shield.

C.1 Specifications

43408 ASPIRATED RADIATION SHIELD:

- **DIMENSIONS:**
 - Length: 44", extendable to 75"
 - Diameter of Blower Housing: 6"

- **AIR FLOW RATE:**
 - 3 - 7 m/s depending on sensor size

- **TEMPERATURE RANGE:** ±50° C

- **POWER REQUIRED:**
 - 12 - 14 VDC @ 420 - 480 mA
 - 115 VAC/12 VDC - 800 mA transformer supplied

- **RADIATION ERROR:**
 - < 0.2°C radiation @ 1100 W/m² irradiance

- **LIFE EXPECTANCY ON BLOWER:**
 - 80,000 hrs @ 25°C

FIGURE C.1-1. 43347 RTD Temperature Probe and 43408 Aspirated Radiation Shield
C.2 Installation

Refer to the General Assembly drawing in the RM Young 43408 Instruction Manual (included) for reference to the names of shield components.

Thread the molded shield assembly into the appropriate threaded opening in the shield mounting tee at the end of the telescoping arm. Hand-tighten the shield to slightly compress the O-ring seal; do not cross-thread or overtighten.

Insert the sensor mounting tube and junction box with its split bushing into the shield mounting tee. Tighten the threaded split bushing to secure the junction box in place; do not overtighten.

Two U-bolt brackets attach the radiation shield to horizontal, vertical, or diagonal tower members up to 2 inches in diameter, spaced 12 to 30 inches apart. Campbell Scientific PN 7515 10 m Aspirated Shield Mounting Bracket can be used to mount the shield to a single vertical pipe or mast, as shown in Figure C.2-1.

The mounting arm should be horizontal with the vent holes facing downward, with the probe end pointing towards the prevailing wind. Tighten the U-bolt brackets sufficiently for a secure hold without distorting the plastic v-blocks. Loosen the band clamp and extend the arm at least 24 inches. Rotate the shield so the intake tube is oriented vertically with the intake opening facing down. Tighten the band clamp and secure the sensor lead to the arm using UV resistant cable ties.

FIGURE C.2-1. PN 7515 10 m Aspirated Shield Mounting Bracket
FIGURE C.2-2. 43408 Aspirated Radiation Shield Wiring
Appendix D. Measure Two 43347-IX Probes Using One Current Excitation Channel

One current excitation channel can excite multiple 43347 probes if the “Current Return” wire of the first probe is connected to the “Current Excitation” wire of the second probe.

In theory, a single Ix channel can excite up to 25 of the 43347–IX probes with 170 µA if all probes are at a temperature less than or equal to 45°C (see Section 6). At 45°C, the 43347 has a resistance of ~1175 ohms. The resistance increases as more probes are connected in series. The increase of resistance requires the Ix channel to raise the driving voltage to maintain the same current. The maximum voltage the Ix channel can drive is ±5 Vdc. Therefore, the maximum number of 43347 probes is:

\[
\text{Max. voltage/}(\text{current} \times \text{resistance per probe at 45°C})
\]

\[
5 \text{ volts/}(0.00017 \text{ amps} \times 1175 \text{ ohms}) = 25
\]

The CR3000’s differential channel count limits the number of probes to 14 without a multiplexer.

One disadvantage to driving multiple probes with a single Ix channel is that if one probe shorts or opens then the measurements of all the probes on that Ix channel will be bad. If, for example, there are two probes at each of three levels, it might be best to drive one probe from each level on one Ix and then drive the remaining probes on a second Ix. This creates separate A and B systems, which allow maintenance to be done on one system while the other system continues to make good measurements.
D.1 Wiring

Wiring for two 43347-IX probes is shown in Figure D-1.

<table>
<thead>
<tr>
<th>Wire Label</th>
<th>43347 Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>CLEAR</td>
</tr>
<tr>
<td>Current Excite/+ RTD</td>
<td>RED</td>
</tr>
<tr>
<td>Sense Signal</td>
<td>WHITE</td>
</tr>
<tr>
<td>Sense Signal Ref</td>
<td>GREEN</td>
</tr>
<tr>
<td></td>
<td>BLACK</td>
</tr>
<tr>
<td>Ground</td>
<td>CLEAR</td>
</tr>
<tr>
<td>Current Excite/+ RTD</td>
<td>RED</td>
</tr>
<tr>
<td>Sense Signal</td>
<td>WHITE</td>
</tr>
<tr>
<td>Sense Signal Ref</td>
<td>GREEN</td>
</tr>
<tr>
<td>Current Return/- RTD</td>
<td>BLACK</td>
</tr>
</tbody>
</table>

FIGURE D-1. Schematic for Two 43347-IX Temperature Probes

D.2 Example Program for two Calibrated 43347-IX Probes

This section includes an example CR3000 program that measures two calibrated 43347-IX probes. A CR5000 is programmed similarly. Wiring for the example program is shown in Table D-1.
Appendix D. Measure Two 43347-IX Probes Using One Current Excitation Channel

<p>| TABLE D-1. Wiring for Two 43347-IX Probes Example |
|----------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>Color</th>
<th>Function</th>
<th>CR3000, CR5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Switched Current Excitation</td>
<td>IX1</td>
</tr>
<tr>
<td>White</td>
<td>Differential High</td>
<td>1H</td>
</tr>
<tr>
<td>Green</td>
<td>Differential Low</td>
<td>1L</td>
</tr>
<tr>
<td>Black</td>
<td>Excitation Return</td>
<td>Red of Probe #2</td>
</tr>
<tr>
<td>Clear</td>
<td>Shield</td>
<td>‡</td>
</tr>
<tr>
<td>Probe #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Switched Current Excitation</td>
<td>Black of Probe #1</td>
</tr>
<tr>
<td>White</td>
<td>Differential High</td>
<td>2H</td>
</tr>
<tr>
<td>Green</td>
<td>Differential Low</td>
<td>2L</td>
</tr>
<tr>
<td>Black</td>
<td>Excitation Return</td>
<td>IXR</td>
</tr>
<tr>
<td>Clear</td>
<td>Shield</td>
<td>‡</td>
</tr>
</tbody>
</table>

'CR3000 Series Datalogger

'Declare Variables and Units
Public RTD1_Res, RTD1_Cal_C
Public RTD2_Res, RTD2_Cal_C

'Define Data Tables
DataTable (PRT_Data,1,1000)
 DataInterval (0,15,Min,1)
 Average(1,RTD1_Cal_C,IEEE4,False)
 Average(1,RTD2_Cal_C,IEEE4,False)
EndTable

'Main Program
BeginProg
 Scan (1,Sec,0,0)

'Measure the 43347-IX probes
 Resistance(RTD1_Res,1,mV200,1,Ix1,1,1,170,True,True,0,_60Hz,1,0)
 Resistance(RTD2_Res,1,mV200,2,Ix1,1,1,170,True,True,0,_60Hz,1,0)

'Convert RTD resistance to temperature
'43347 #1 calibration T=-250.052585+(R*2.375187e-1)+(R^2*1.258482e-5)
RTD1_Cal_C = -250.052585+(RTD1_Res*2.375187e-1)+((RTD1_Res^2)*1.258482e-5)
'43347 #2 calibration T=-250.152585+(R*2.475187e-1)+(R^2*1.358482e-5)
RTD2_Cal_C = -250.152585+(RTD1_Res*2.475187e-1)+((RTD1_Res^2)*1.358482e-5)
CallTable PRT_Data
NextScan
EndProg
Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES
www.campbellsci.com • info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)
PO Box 2450
Somerset West 7129
SOUTH AFRICA
www.csafrica.co.za • cleroux@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 444
Thuringowa Central
QLD 4812 AUSTRALIA
www.campbellsci.com.au • info@campbellsci.com.au

Campbell Scientific do Brazil Ltda. (CSB)
Rua Luisa Crapsi Orsi, 15 Butantã
CEP: 005543-000 São Paulo SP BRAZIL
www.campbellsci.com.br • suporte@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)
11564 - 149th Street NW
Edmonton, Alberta T5M 1W7
CANADA
www.campbellsci.ca • dataloggers@campbellsci.ca

Campbell Scientific Centro Caribe S.A. (CSCC)
300 N Cementerio, Edificio Breller
Santo Domingo, Heredia 40305
COSTA RICA
www.campbellsci.cc • info@campbellsci.cc

Campbell Scientific Ltd. (CSL)
Campbell Park
80 Hathern Road
Shepshed, Loughborough LE12 9GX
UNITED KINGDOM
www.campbellsci.co.uk • sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)
Miniparc du Verger - Bat. H
1, rue de Terre Neuve - Les Ulis
91967 COURTABOEUF CEDEX
FRANCE
www.campbellsci.fr • info@campbellsci.fr

Campbell Scientific Spain, S. L.
Avda. Pompeu Fabra 7-9, local 1
08024 Barcelona
SPAIN
www.campbellsci.es • info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or International representative.