

SBS500 & SBS500H

Tipping Bucket Raingauge

Campbell Scientific Ltd. acknowledges the technical expertise provided by Environmental Measurements Ltd. in their SBS500 Manual, on which this User Guide is based.

Issued: 16/04/2020

Copyright © 2003 Campbell Scientific CSL I.D - 520

This equipment is guaranteed against defects in materials and workmanship. We will repair or replace products which prove to be defective during the guarantee period as detailed on your invoice, provided they are returned to us prepaid. The guarantee will not apply to:

- Equipment which has been modified or altered in any way without the written permission of Campbell Scientific
- Batteries
- Any product which has been subjected to misuse, neglect, acts of God or damage in transit.

Campbell Scientific will return guaranteed equipment by surface carrier prepaid. Campbell Scientific will not reimburse the claimant for costs incurred in removing and/or reinstalling equipment. This guarantee and the Company's obligation thereunder is in lieu of all other guarantees, expressed or implied, including those of suitability and fitness for a particular purpose. Campbell Scientific is not liable for consequential damage.

Please inform us before returning equipment and obtain a Repair Reference Number whether the repair is under guarantee or not. Please state the faults as clearly as possible, and if the product is out of the guarantee period it should be accompanied by a purchase order. Quotations for repairs can be given on request. It is the policy of Campbell Scientific to protect the health of its employees and provide a safe working environment, in support of this policy a "Declaration of Hazardous Material and Decontamination" form will be issued for completion.

When returning equipment, the Repair Reference Number must be clearly marked on the outside of the package. Complete the "Declaration of Hazardous Material and Decontamination" form and ensure a completed copy is returned with your goods. Please note your Repair may not be processed if you do not include a copy of this form and Campbell Scientific Ltd reserves the right to return goods at the customers' expense.

Note that goods sent air freight are subject to Customs clearance fees which Campbell Scientific will charge to customers. In many cases, these charges are greater than the cost of the repair.

Campbell Scientific Ltd, 80 Hathern Road, Shepshed, Loughborough, LE12 9GX, UK Tel: +44 (0) 1509 601141 Fax: +44 (0) 1509 270924

Email: support@campbellsci.co.uk www.campbellsci.co.uk

About this manual

Some useful conversion factors:

Area: 1	in^2 (square inch) = 645 mm ²	Mass:	1 oz. (ounce) = 28.35 g 1 lb (pound weight) = 0.454 kg
Length:	1 in. (inch) = 25.4 mm 1 ft (foot) = 304.8 mm 1 yard = 0.914 m	Pressure:	1 psi (lb/in^2) = 68.95 mb
	1 mile = 1.609 km	Volume:	1 UK pint = 568.3 ml 1 UK gallon = 4.546 litres 1 US gallon = 3.785 litres

Recycling information

At the end of this product's life it should not be put in commercial or domestic refuse but sent for recycling. Any batteries contained within the product or used during the products life should be removed from the product and also be sent to an appropriate recycling facility.

Campbell Scientific Ltd can advise on the recycling of the equipment and in some cases arrange collection and the correct disposal of it, although charges may apply for some items or territories.

For further advice or support, please contact Campbell Scientific Ltd, or your local agent.

Campbell Scientific Ltd, Campbell Park, 80 Hathern Road, Shepshed, Loughborough, LE12 9GX, UK Tel: +44 (0) 1509 601141 Fax: +44 (0) 1509 270924 *Email: support@campbellsci.co.uk www.campbellsci.co.uk*

Safety

DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING, USING, MAINTAINING, AND WORKING ON OR AROUND **TRIPODS, TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC**. FAILURE TO PROPERLY AND COMPLETELY ASSEMBLE, INSTALL, OPERATE, USE, AND MAINTAIN TRIPODS, TOWERS, AND ATTACHMENTS, AND FAILURE TO HEED WARNINGS, INCREASES THE RISK OF DEATH, ACCIDENT, SERIOUS INJURY, PROPERTY DAMAGE, AND PRODUCT FAILURE. TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE HAZARDS. CHECK WITH YOUR ORGANIZATION'S SAFETY COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED PROTECTIVE EQUIPMENT PRIOR TO PERFORMING ANY WORK.

Use tripods, towers, and attachments to tripods and towers only for purposes for which they are designed. Do not exceed design limits. Be familiar and comply with all instructions provided in product manuals. Manuals are available at www.campbellsci.eu or by telephoning +44(0) 1509 828 888 (UK). You are responsible for conformance with governing codes and regulations, including safety regulations, and the integrity and location of structures or land to which towers, tripods, and any attachments are attached. Installation sites should be evaluated and approved by a qualified engineer. If questions or concerns arise regarding installation, use, or maintenance of tripods, towers, attachments, or electrical connections, consult with a licensed and qualified engineer or electrician.

General

- Prior to performing site or installation work, obtain required approvals and permits. Comply with all governing structure-height regulations, such as those of the FAA in the USA.
- Use only qualified personnel for installation, use, and maintenance of tripods and towers, and any attachments to tripods and towers. The use of licensed and qualified contractors is highly recommended.
- Read all applicable instructions carefully and understand procedures thoroughly before beginning work.
- Wear a hardhat and eye protection, and take other appropriate safety precautions while working on or around tripods and towers.
- **Do not climb** tripods or towers at any time, and prohibit climbing by other persons. Take reasonable precautions to secure tripod and tower sites from trespassers.
- Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical

- You can be killed or sustain serious bodily injury if the tripod, tower, or attachments you are installing, constructing, using, or maintaining, or a tool, stake, or anchor, come in contact with overhead or underground utility lines.
- Maintain a distance of at least one-and-one-half times structure height, or 20 feet, or the distance required by applicable law, whichever is greater, between overhead utility lines and the structure (tripod, tower, attachments, or tools).
- Prior to performing site or installation work, inform all utility companies and have all underground utilities marked.
- Comply with all electrical codes. Electrical equipment and related grounding devices should be installed by a licensed and qualified electrician.

Elevated Work and Weather

- Exercise extreme caution when performing elevated work.
- Use appropriate equipment and safety practices.
- During installation and maintenance, keep tower and tripod sites clear of un-trained or non-essential personnel. Take precautions to prevent elevated tools and objects from dropping.
- Do not perform any work in inclement weather, including wind, rain, snow, lightning, etc.

Maintenance

- Periodically (at least yearly) check for wear and damage, including corrosion, stress cracks, frayed cables, loose cable clamps, cable tightness, etc. and take necessary corrective actions.
- Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS, THE CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING FROM IMPROPER INSTALLATION, USE, OR MAINTENANCE OF TRIPODS, TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.

1.	General Description1
2.	Technical Specifications2
3.	Operation2
4.	Installation and Siting3
	4.1 Choosing a Site34.2 Unpacking44.3 Mounting44.4 Levelling4
5.	Wiring5
6.	Datalogger Programming5
	6.1 Pulse Channel Example Programs66.1.1 CR1000 Example Program66.1.2 CR200(X) Series Example Program76.1.3 CR10X Example Program76.2 Control Port Example86.2.1 CR1000 Example Program86.2.2 CR10X Example Program9
7.	Maintenance10
8.	Calibration11
	 8.1 Static Adjustment and Calibration
9.	SBS500H Heated Version14
	9.1 Operation of Heating Circuit15
10	. Advantages and Limitations of a Tipping Bucket Gauge17

Figures

1. SBS500 Series Raingauge	1
2. Filter Unit	2
3. Nozzle	2
4. Internal View of SBS500H (Heated Version)	3
5. Levelling the SBS500/SBS500H using a Spirit Level	5
6. Wiring Diagram for SBS500/SBS500H	
7. Setup for Static Calibration	11
8a. Dynamic Calibration using a Measured Quantity of Water	12
8b. Dynamic Calibration using the Constant Head Method	13
9. Heater Elements	15
10. 12V Heater System Wiring	16
11. 24V Heater System Wiring	16

Tables

1. Ca	alibration	Factors	13	3
-------	------------	---------	----	---

SBS500/SBS500H Raingauge

The SBS500 and SBS500H are well-designed tipping bucket raingauges which combine durable construction with reasonable cost. The gauge offers less resistance to air flow than most previous designs, which helps to reduce the sampling errors that inevitably occur during wind-driven rain, and the SBS series as a whole has less susceptibility to 'splash-out' errors. The gauge is manufactured for Campbell Scientific by Environmental Measurements Ltd. and, owing to its rugged aluminium construction, when correctly sited will provide many years of reliable operation in the most rigorous of environmental conditions. The SBS500H is a heated version of the SBS500. A larger version of the gauge (model SBS1000/SBS1000H), which has a higher resolution, is available to special order.

1. General Description

The information in this manual applies to both the SBS500 and the SBS500H, except for Section 7 which includes additional information applicable to the SBS500H heated version only.

The main collector body of the raingauge is constructed from 2 mm thick powder coated aluminium, giving strength and rigidity. The base section is manufactured from LM6 marine grade aluminium. The base includes three adjustable mounting feet and a bubble level gauge for free-standing applications, or the feet can be removed and the unit bolted firmly to a suitable mounting plinth or concrete slab for more permanent applications.

Figure 1. SBS500 Series Raingauge

2. Technical Specifications

Please note that models SBS1000 and SBS1000H are available to special order only.

Overall height: Collector area (SBS500): (SBS1000):	460 mm – 490 mm 500 cm ² 1000 cm ²
Tip sensitivity:	0.2 mm of rain per tip (SBS500)
	0.1 mm of rain per tip (SBS1000)
Output:	Contact closure – two reed switches allowing monitoring to be carried out on an additional channel.
	Reed contact rating: 50W (DC resistive)
	Reed supply voltage: 100V DC maximum
Weight (approx.):	6 Kg.

Heater Specifications (model SBS500H):

Supply current: 12V supply: Heaters off – 12 mA typ., Heaters on – 2.2A typ. 24V supply: Heaters off – 15 mA typ., Heaters off – 1.1A typ. Heaters are activated when internal enclosure temperature falls to 1°C and are deactivated when temperature rises to approx. 4°C.

3. Operation

The tipping bucket arrangement is similar to most other gauges of this type; precipitation is collected by the funnel and flows through a stainless steel gauze filter which traps and removes any leaves, etc. Water then passes through a nozzle into one of the two buckets situated at either end of a short balance arm. See illustrations below – see Figures 2 and 3.

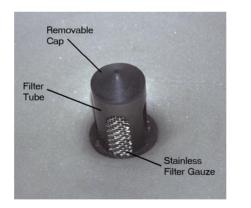


Figure 2. Filter Unit

Figure 3. Nozzle

The balance arm and bucket assembly rotates around precision rolling pivot bearings. The arm tips when the first bucket is full, emptying this bucket and positioning the second under the funnel. The tipping process repeats indefinitely as long as rain continues to fall, with each tip corresponding to a fixed quantity of rainfall. At each tip, the moving balance arm forces a magnet to pass a reed switch, causing contact to be made for a few milliseconds. A two-core cable is used to connect the gauge to the datalogger where the switch closures are counted. This mechanism is shown in Figure 4. The water is normally drained away through outlets, but adapters can be fitted if water retention is required.

Figure 4. Internal View of SBS500H (Heated Version)

The SBS500/SBS500H is adjusted at manufacture to tip once for each 0.2 mm of rain (a sensitivity of 0.25 mm/tip is optional). More information on gauge calibration is given in Section 8.

4. Installation and Siting

4.1 Choosing a Site

The site for a raingauge is often a compromise between optimum exposure and operational constraints. The optimum site is level ground with a uniform scattering of objects in the surrounding area, thus reducing overall wind speeds. However, these objects should not be large enough to cause eddy currents or high gust speeds to occur near to the gauge, or so close to the gauge that rain is prevented from entering the funnel. Site the gauge carefully, and try to avoid obvious sources of error, such as nearby trees or buildings or other obstructions.

A useful 'rule of thumb' is that the distance between the gauge and any obstruction should be at least as great as twice the height of the obstruction above the ground. For standard meteorological sites in the UK, the Meteorological Office specify the height at which the rim of a raingauge should be above a short grass surface, and the SBS500/SBS500H should be exposed similarly if measurements are required for comparison with those from agrometeorological or synoptic sites.

NOTE No two raingauge designs are ever likely to produce identical results, and identical raingauges can give slightly different catches even when sited within a metre of each other.

Research has shown that a raingauge obstructs the flow of air and that the flow accelerates and turbulence increases over the top of the funnel. This can cause less rain to be collected in the funnel than otherwise would have fallen on the ground.

The body of the SBS500/SBS500H has a profile which has been designed to reduce drag and turbulence using extensive practical data collected by Dr. Ian Strangeways (Strangeways, 1996) and it can therefore be sited conventionally on exposed sites with some confidence. Further details on the exposure of raingauges are given in HMSO (1956, 1982) and by Rodda (1967). Another useful text on exposure and associated errors is Painter (1976).

NOTE	If the gauge is sited in the area of livestock, then fencing will almost
	always be required to prevent damage from (and to) the animals.

4.2 Unpacking

Unpack the SBS500/SBS500H carefully. The tipping mechanism is immobilised before shipping to prevent damage in transit. To release the mechanism:

- 1. Remove the funnel of the gauge from its base by unscrewing the three screws and lifting the funnel.
- 2. Remove the piece of foam from under the bucket mechanism. Check the bucket mechanism for freedom of movement. The foam may be saved for use whenever the raingauge is transported.

4.3 Mounting

The SBS500/SBS500H weighs 6 Kg, and so is heavy enough that it can, in many cases, be simply placed on an appropriate flat surface, ready for use.

However, three holes adjacent to the levelling feet are provided so that steel pegs (also provided) can be fitted for extra security in softer ground. In areas of high winds, or where additional security is required, these holes can be use to bolt the gauge (after correct levelling) to a solid surface, such as a concrete slab, using appropriate anchor bolts – see Figure 3 which shows these extra bolts.

4.4 Levelling

If the raingauge is tilted by more than a few degrees, the bucket mechanism may be thrown out of balance, significantly affecting its calibration. Furthermore, during wind-driven rain the response of a gauge with a tilted funnel collector will vary with wind direction. It is therefore important to ensure that the rim of the raingauge funnel is precisely levelled, using a spirit level.

Although a small circular bubble-type spirit level is incorporated into the base assembly of the raingauge, this is provided only as a 'quick check' for initial setting up. Always level the rim precisely, using a separate spirit level (see Figure 5) and check regularly. Level the gauge by slackening the locking nuts on the adjustable feet, adjust the feet to achieve a perfectly level rim, and retighten the locknuts. If required, fit the pegs through the holes provided next to the adjusters.

NOTE Accurate and precise levelling of the raingauge, as described above, using a spirit level, is the simplest and most effective way to ensure accurate rainfall measurements.

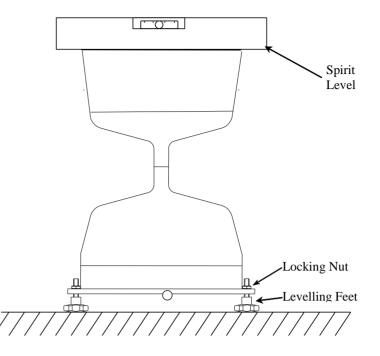


Figure 5. Levelling the SBS500/SBS500H using a Spirit Level

5. Wiring

The raingauge is supplied with a 6 m cable which may be extended if required. For most applications the SBS500/SBS500H may be connected directly to a pulse counting input on the datalogger as shown in Figure 6. For a long cable, a significant capacitance can exist between the conductors, which discharges across the reed switch as it closes. As well as shortening the life of the switch, a voltage transient may be induced in any other wires which run close to the raingauge cable each time the gauge tips. A 100Ω resistor is fitted inside the gauge to protect the switch from arcing and prevent transients.

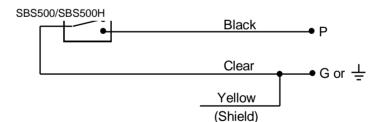


Figure 6. Wiring Diagram for SBS500/SBS500H

6. Datalogger Programming

NOTE

This section is for users who write their own programs. A datalogger program to measure this sensor can be generated using Campbell Scientific's Short Cut Program Builder software. You do not need to read this section to use Short Cut.

Precipitation is measured using a Pulse Count with a switch closure configuration code. The multiplier used in the Pulse Count instruction determines the units in which rainfall is reported.

The sensitivity of the SBS500/SBS500H is set at manufacture to a nominal figure of 0.2 mm/tip and each gauge is subsequently calibrated as described in Section 8.1. For precise measurements, use this calibration value in your program instead of the nominal 0.2 mm multiplier.

6.1 Pulse Channel Example Programs

The following example programs use a pulse channel to read the output from the precipitation gauge. The CR1000 example will also work with the CR800, CR850, CR3000, and CR5000. CR9000(X) programming is similar to the CR1000 except it has an additional parameter in the PulseCount instruction to specify the pulse module's slot.

The CR10X program will also work with the CR500, CR510, CR10, 21X or CR23X. CR7 programming is similar to the CR10X but has an additional parameter in the PulseCount instruction to specify the slot that the Pulse Card is in.

6.1.1 CR1000 Example Program

'CR1000

'SBS500 Tipping Blk > P1 ' Clr > ground 'Declare Variables and Units Public Rain_mm Units Rain_mm=mm DataTable(Rain,True,-1) DataInterval(0,60,Min,0)

Totalize(1,Rain_mm,FP2,0) EndTable BeginProg Scan(1,Sec,1,0) PulseCount(Rain_mm,1,1,2,0,0.2,0) CallTable(Rain) NextScan

EndProg

6.1.2 CR200(X) Series Example Program

'CR200(X) Series 'SBS500 Tipping Blk > P_SW *Clr* > *ground* 'Declare Variables and Units Public Rain_mm Units Rain_mmmmm 'Define Data Tables DataTable(Rain,True,-1) DataInterval(0,60,Min) Totalize(1,Rain_mm,0) EndTable 'Main Program BeginProg Scan(1,Sec) 'SBS500 Rain Gauge measurement Rain_mm: PulseCount(Rain_mm,P_SW,2,0,0.2,0) 'Call Data Tables and Store Data CallTable(Rain) NextScan EndProg

6.1.3 CR10X Example Program

;{CR10X}		
*Table	e 1 Program	
01:	1.0000	Execution Interval (seconds)
1: Pul	se (P3)	
1:	1	Reps
2:	1	Pulse Channel 1
3:	2	Switch Closure, All Counts
4:	3	Loc [Rain_mm]
5:	0.2	Multiplier
6:	0	Offset
2: If ti	me is (P92)	
1:	0	Minutes (Seconds) into a
2:	60	Interval (same units as above)
3:	10	Set Output Flag High (Flag 0)
3: Set	Active Stora	ge Area (P80)
1:	1	Final Storage Area 1
2:	101	Array ID
	al Time (P77)	
1:	1220	Year, Day, Hour/Minute (midnight = 2400)
	alize (P72)	
1:	1	Reps

2: 3 Loc [Rain_mm] *Table 2 Program 01: 0 Execution Interval (seconds) *Table 3 Subroutines End Program

6.2 Control Port Example

The following example programs use a control port to read the output from the precipitation gauge. The CR1000 example will also work with the CR800, CR850, and CR3000. The CR10X program will also work with the CR500, CR510, or CR23X.

6.2.1 CR1000 Example Program

'CR1000 'SBS500 Tipping Blk > C4Clr > 5v'Declare Variables and Units Public BattV Public Rain_mm Units BattV = Volts Units Rain mm =mm DataTable(OneMin,True,-1) DataInterval(0.1.Min.10) Totalize (1,Rain mm,FP2,False) EndTable 'Define Data Tables DataTable(OneDay,True,-1) DataInterval(0,1440,Min,10) Minimum(1,BattV,FP2,False,False) Totalize (1,Rain_mm,FP2,False) 'SBS500 tipping bucket EndTable 'Main Program **BeginProg** Scan(5,Sec,1,0) 'Default Datalogger Battery Voltage measurement BattV PanelTemp (PTemp,_50Hz) Battery(BattV) 'SBS500 Heated Rain Gauge measurement Rain mm PulseCount(Rain_mm,1,14,2,0,0.2,0) 'Call Data Tables and Store Data CallTable(OneMin) CallTable(OneDay) NextScan EndProg

6.2.2 CR10X Example Program

;{CR10X}	
; *Table 1 Program	
01: 1	Execution Interval (seconds)
1: Pulse (P3)	
1: 1	Reps
2: 8	Control Port 8 (switch closure only) ;Black wire connect to C8
3: 2	Switch Closure, All Counts
4: 1 5. 0.2	Loc [Rain_mm]
5. 0.2 6: 0	Multiplier Offset
0. 0	Oliser
2: If time is (P92)	
1: 0	Minutes (Seconds) into a
2: 60	Interval (same units as above)
3: 10	Set Output Flag High (Flag 0)
3: Set Active Stora	ge Area (P80)
1: 1	Final Storage Area 1
2: 101	Array ID
4: Real Time (P77)	
1: 1220	Year, Day, Hour/Minute (midnight = 2400)
	- ····;- ··;;········· (················
5: Totalize (P72)	
1: 1	Reps
2: 1	Loc [Rain_mm]
*Table 2 Program	
02: 0.0000	Execution Interval (seconds)
*Table 3 Subroutines	
End Program	
U	

Output Instruction 72, Totalize, is used in the output section of the program to output the total rainfall over the output interval. This section should be executed every scan and not placed in a subroutine or conditional statement.

7. Maintenance

To ensure reliable and accurate measurements, we recommend that the following checks be carried out every month if possible.

NOTE If the gauge is connected to an operating datalogger you should try to avoid manually tipping the buckets during maintenance unless doing the balance check described in Item 5a, below.

- 1. Inspect the funnel for any damage or blockage and check the integrity of the connecting cable. At certain times of the year, leaves may accumulate in the bottom of the funnel, clogging the filter and preventing water flow to the buckets beneath, or reducing the flow rate to a slow drip. Remove the funnel from the base and clear any leaves or debris.
- 2. Clean the filter as follows:
 - a) Unscrew the end cap from the filter tube.
 - b) Carefully remove the stainless steel filter gauze and clean.
 - c) Replace the filter and re-fit and replace the filter cap.
- 3. Check that the gauge is still level. It is surprisingly easy for an apparently immovable gauge to become tilted as a result of small ground movements, vandalism or just inquisitive fingers.
- 4. Remove any dirt from, and clean, the bucket, being careful not to tip the bucket if the gauge is still transmitting to the datalogger. If you want to check that the balance arm/bucket assembly is free to move, see Items 5a and 5b, below.

Checking the Balance Arm Assembly with an Active Datalogger Link

5a. If the datalogger is still active and logging data, you can still check that the balance arm is free to move. This can be done by slowly pouring a measured quantity of water (say 250 cm³) through the gauge and counting the tips. It is worthwhile carrying this out at regular weekly intervals (for example, every Monday at 0900) while leaving the gauge connected to the datalogger. Providing a significant volume of water is used, these weekly checks can easily be identified in the logged measurements. This simple procedure confirms that the gauge is functioning, detects any marked change in the calibration and (if carried out punctually) introduces an independent time check into the records.

Checking the Balance Arm with an Inactive Datalogger Link

5b. If the datalogger is disconnected or not logging data, it is a good idea to check the balance arm for stiffness. The simplest way to do this in the field is to attempt to balance the bucket in its centre position. It should be very difficult (if not impossible) to do this. If the bucket balances easily, then examine the assembly for any dirt or wear on the pivot pin and bucket tubes.

A spares kit is available, comprising filter, filter cap etc. Please contact Campbell Scientific for spare parts requirements.

8. Calibration

The sensitivity of the SBS500/SBS500H is set at manufacture to a nominal figure of 0.2 mm/tip (optionally 0.25 mm/tip) and each gauge is subsequently calibrated as described in Section 8.1. The calibration factor is given on a certificate at the end of this manual and is also recorded on a label inside the raingauge. For precise measurements use this calibration value in your program instead of the nominal value of 0.2 shown in the program fragment in Section 6, above. Update this figure if the value changes on recalibration.

Before any re-calibration is undertaken, take the opportunity to check and carry out any maintenance that may be required.

8.1 Static Adjustment and Calibration

The following procedure is carried out during manufacture and may be repeated if the calibration appears to have shifted.

1. Install the gauge over a sink unit as illustrated in Figure 7, ensuring that it is correctly levelled.

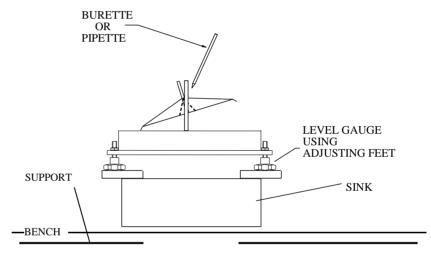


Figure 7. Setup for Static Calibration

2. Using a burette or pipette, slowly drip in 10 cm³ of water (for the 0.2 mm/tip gauge) into one side of the bucket. The bucket should tip on the last drip of water. Adjust the relevant calibration screw, situated under the tipping bucket, until this condition is met. Repeat for the other side of the bucket.

It may not be possible to set the screws very precisely using this method, but it should be done with as much care as possible. It is obviously very important to ensure that both buckets tip in response to the same amount of water. Many manufacturers and users of tipping bucket gauges aim to adjust the bucket settings until exactly the correct calibration is achieved. However, a dynamic test (see below) is required to check this calibration precisely after each readjustment and the process becomes very time-consuming. In any case, it is virtually impossible to get the adjustments absolutely correct, and it is generally preferable to adjust the settings as closely as is reasonably practical, and then to derive a calibration factor for each gauge individually after a dynamic calibration.

8.2 Dynamic Calibration

The SBS500/SBS500H can be calibrated dynamically in two ways – by using a measured quantity of water or, preferably, by using the 'constant head' method. These two methodologies are described below.

1. Set up the gauge as illustrated in Figure 8a or Figure 8b, carefully levelled and connected to the datalogger.

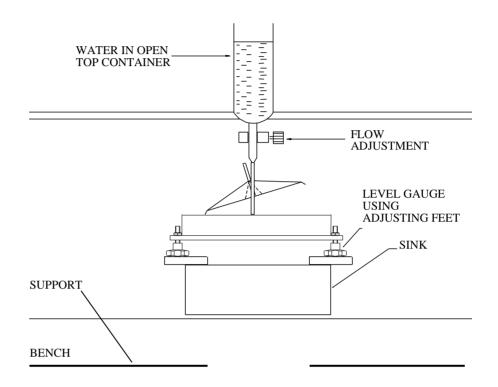


Figure 8a. Dynamic Calibration using a Measured Quantity of Water

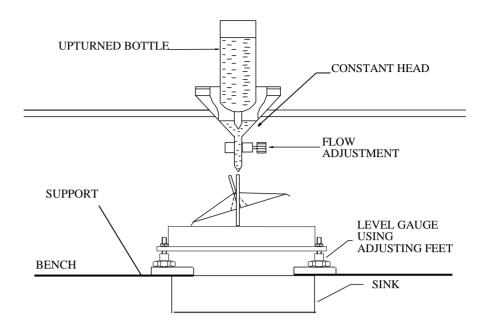


Figure 8b. Dynamic Calibration using the Constant Head Method

- 2. Fill the water container with 1000 cm³ of water for a 0.2 mm calibration. This is usually achieved most precisely and consistently by weighing the water on a balance capable of measuring to 0.1g (0.1 cm³). An alternative is to use a good quality graduated measuring cylinder.
- 3. Allow the water to drip slowly into the gauge, allowing at least 60 minutes for the container to empty (approximately 40 seconds for each tip). This is a rate equivalent to a rainfall of 10 mm/hour, as recommended in BS7843 Section 2.1 for calibration purposes. At the end of this period approximately 100 tips will have occurred. The exact number is obtained from the datalogger, together with an estimation of what fraction of a 'tip' is left in whichever bucket is still filling as the flow of water finishes. This fraction can either be assessed visually, or, for a more exact estimate, a graduated syringe can be used.

8.3 Calculating the Calibration Factor

Table 1. Calib	oration Factors
Number of Tips	Calibration Factor
97.8 to 98.2	0.204 mm/tip
98.3 to 98.7	0.203 mm/tip
98.8 to 99.2	0.202 mm/tip
99.3 to 99.7	0.201 mm/tip
99.8 to 100.2	0.200 mm/tip
100.3 to 100.7	0.199 mm/tip
100.8 to 101.2	0.198 mm/tip
101.3 to 101.7	0.197 mm/tip

Using the figures from the dynamic calibration tables, the calibration factor can be read from Table 1.

Alternatively, the calibration factor can be calculated using the formula shown below:

The nominal number of tips for a 0.2 mm bucket is 100.

Let N equal the *actual* number of tips plus the fractional part left in the one bucket.

The calibration factor (CF) is then:

CF = 0.2 (optionally 0.25) x 80/N

For example, if N = 78.8, then:

CF = 0.2 (optionally 0.25) x 80/78.8

= 0.203 mm/tip

In other words, each tip corresponds to 0.203 mm of rainfall. Provided that CF lies between 0.197 and 0.204 mm, it will be acceptable for most purposes. If the CF lies outside these limits, repeat the static and dynamic calibration procedures.

The amount of rainfall in any particular interval is obtained by multiplying the number of recorded tips by the calibration factor.

This type of dynamic calibration gives repeatable results indoors, but it is not a true representation of the gauge's sensitivity to natural precipitation. Useful results can be obtained by comparing the output from the SBS500/SBS500H with the catches from a standard 'Snowdon pattern' gauge (HMSO, 1956) sited nearby.

Care should be taken when studying such comparisons, however, as even two identical raingauges can give different readings if spaced a few metres apart.

As discussed above, the design of the gauge and its exposure are important factors. The aerodynamic design of the SBS series of raingauges should produce readings close to the true precipitation on the ground, in a wider range of weather conditions, than conventional raingauges (even 'standard' designs such as the 'Snowdon' gauge). For sites with poor exposure characteristics, comparison of different types of gauges may vary with weather conditions.

9. SBS500H Heated Version

The following describes the additional parts for the heated version of the raingauge. See Figure 4 for an internal view of the SBS500H, showing the heaters, control unit and terminals.

The heating system is designed to prevent the bucket assembly and pivot freezing and icing up in cold temperatures, and to return the raingauge to full operation as quickly as possible. It consists of:

- 1) Two series of heater elements.
- 2) An electronic sensor.
- 3) The heater control unit.

NOTE The heating system is not designed to melt heavy accumulations of snow, although any snow that does melt within the funnel assembly will be recorded as precipitation.

9.1 Operation of Heating Circuit

A separate power supply must be connected to the heating system before it will function. The supply must be capable of providing a current of 2.2A from a 12V system, or 1.1A from a 24V system. Such a supply should normally be independent of the datalogger power supply. A Campbell Scientific Power Supply unit such as PS100E-LA, BP17E-LA or BP24E-LA, are not rated to provide the required current.

The heaters require a direct current (DC) supply. When attaching a power cable to the heater connections, either use a separate cable from the signal cable, or use a cable with individually screened pairs to avoid inducing false readings when the heater turns on and off.

When power is connected, the temperature is controlled automatically. The temperature sensor, mounted above the tipping bucket, monitors the air temperature within the raingauge.

The controller automatically activates the heaters when the temperature inside the raingauge enclosure drops to 1°C. The heaters will remain on until the temperature inside the enclosure reaches 4°C.

The heaters consist of six wire-wound ceramic resistors as shown in Figure 9. They are arranged in two blocks of three resistors.

Figure 9. Heater Elements

The heaters operate from a 12V supply. A 24V version is available to special order. The appropriate schematic wiring diagrams, showing links for the 12V and 24V versions, are shown below.

CAUTION

Ensure that you use the appropriate configuration and set the link(s) for 12V or 24V input supply to suit your heater control unit.

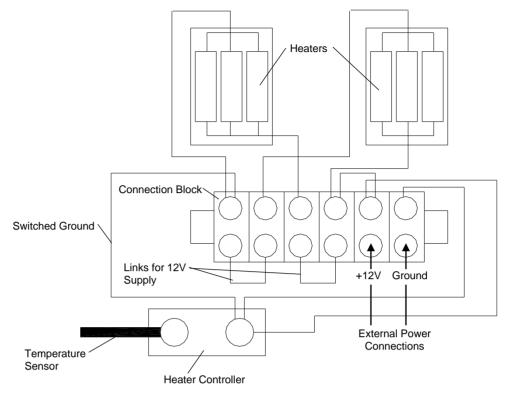


Figure 10. 12V Heater System Wiring

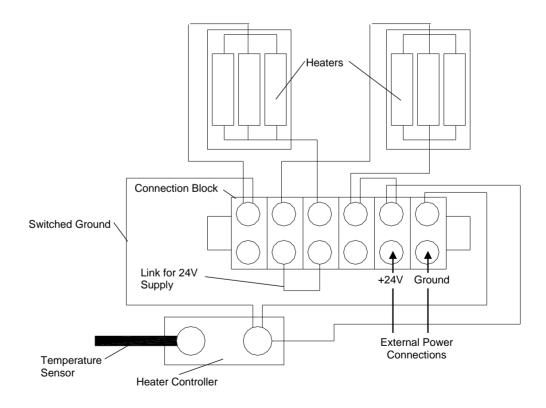


Figure 11. 24V Heater System Wiring

10. Advantages and Limitations of a Tipping Bucket Gauge

Gauges which operate on the tipping bucket principle provide a digital output, which simplifies connection to a datalogger. The pulses returned during rainfall may be counted over any time interval desired allowing accurate determination of the rainfall rate (this variable, sometimes called 'intensity', is frequently used in soil erosion studies and is relevant to some aspects of crop pathology).

A tipping bucket gauge responds to discrete quanta of rainfall, and the accuracy and reproducibility of this quantum are determined not only by factors such as friction in the bearings, etc. but also by the rate of fill of the buckets. When the rainfall rate is high, a bucket may *start* to tip when the necessary volume of water has been collected, but while the bucket is moving away from the funnel outlet, an extra volume will have been collected and lost through spillage. The resulting degradation in accuracy is of the order of 4% at rainfall rates of 25 mm/hr and 8% at 133 mm/hr for most gauges (Parkin et al, 1982). This is important when results from gauges of different designs are compared. These errors worsen when gauge sensitivity is increased. It follows that gauge design is always a compromise between the need for good resolution and good overall accuracy in rainfall totals.

References

HMSO (1956) Handbook of Meteorological Instruments, Part 1, Met.0. 577.

HMSO (1982) Observers Handbook, Met.0. 933.

Painter, R.D. (1976) in *Methods of Plant Ecology* pp. 369-410. Ed. by S.B.Chapman, Blackwell Scientific Press, Oxford

Parkin, D.A., King, W.D. and Shaw, D.E. (1982) An automatic raingauge network for a cloud seeding experiment J.Appl.Meteorol. p. 228.

Rodda, J.C., (1967) *The rainfall measurement problem* Proc. IAHS Gen. Ass. Bern, IAHS Pub. No. 78, pp. 215-231

Strangeways, I.C. (1996) Back to Basics: The 'Met Enclosure': Part 2(b) – Raingauges, their errors'. Weather, 51, pp. 298-303.

SBS500 Series Tipping Bucket Raingauge

The serial number and calibration factor for this gauge are as follows: (these are also recorded on a label inside the gauge)

Serial No.

Calibration Factor:	
---------------------	--

Date:

Shepshed, Loughborough, LE12 9GX, UK Tel: +44 (0) 1509 601141 Fax: +44 (0) 1509 601091

Email: support@campbellsci.co.uk www.campbellsci.co.uk

Company Registration Number: 1933935 VAT No. GB 428 4539 33

🔜 🌠 式 🚱 🚮 🚍

Global Sales & Support Network

A worldwide network of companies to help meet your needs

Australia

Location:Garbutt, QLD AustraliaPhone:61.7.4401.7700Email:info@campbellsci.com.auWebsite:www.campbellsci.com.au

Brazil

Location: São Paulo, SP Brazil Phone: 11.3732.3399 Email: vendas@campbellsci.com.br Website: www.campbellsci.com.br

Canada

Location:	Edmonton, AB Canada
Phone:	780.454.2505
Email:	dataloggers@campbellsci.ca
Website:	www.campbellsci.ca

China

Location:	Beijing, P. R. China
Phone:	86.10.6561.0080
Email:	info@campbellsci.com.cn
Website:	www.campbellsci.com

Costa Rica

Location: San Pedro, Costa Rica Phone: 506.2280.1564 Email: info@campbellsci.cc Website: www.campbellsci.cc

France

Location:Vincennes, FrancePhone:0033.0.1.56.45.15.20Email:info@campbellsci.frWebsite:www.campbellsci.fr

Germany

Location: Bremen, Germany Phone: 49.0.421.460974.0 Email: info@campbellsci.de Website: www.campbellsci.de

South Africa

Location:	Stellenbosch, South Africa
Phone:	27.21.8809960
Email:	sales@campbellsci.co.za
Website:	www.campbellsci.co.za

Southeast Asia

Location:Bangkok, ThailandPhone:66.2.719.3399Email:thitipongc@campbellsci.asiaWebsite:www.campbellsci.asia

Spain

Location:	Barcelona, Spain
Phone:	34.93.2323938
Email:	info@campbellsci.es
Website:	www.campbellsci.es

UK

Location:Shepshed, Loughborough, UKPhone:44.0.1509.601141Email:sales@campbellsci.co.ukWebsite:www.campbellsci.co.uk

USA

Location:	Logan, UT USA
Phone:	435.227.9120
Email:	info@campbellsci.com
Website:	www.campbellsci.com

Other Locations: Sales and support are provided in many other locations through an extensive network of international reps. For the full list, please visit *www.campbellsci.com/contact#dir*.

More info: +44(0) 1509 828 888