

Innovative Design

EC150 and CSAT3A

Open-Path CO./H.O Gas Analyzer and Sonic Anemometer

Use as part of open-path eddy-covariance system or as stand-alone IRGA

Overview

Campbell Scientific's EC150 is an integrated insitu open-path analyzer and sonic anemometer specifically designed for eddy covariance flux measurements. It simultaneously measures

Benefits and Features

- > Unique optical configuration allows for a slim aerodynamic shape with minimal wind distortion
- Measurements are temperature compensated without active heat control
- Analyzer and sonic anemometer measurements are synchronized by a common set of electronics
- > Low power consumption; suitable for solar power applications
- Low noise
- Maximum output rate of 50 Hz with 25 Hz bandwidth
- > Tolerant to window contamination
- > Angled windows to shed water and are tolerant to window contamination

> Field rugged

temperature.

- > Field serviceable
- Factory calibrated over wide range of CO₂, H₂O, pressure and temperature in all combinations encountered in practice

absolute carbon dioxide and water vapour

densities, air temperature, barometric pressure

and three-dimensional wind speed and sonic air

- Extensive set of diagnostic parameters
- Fully compatible with Campbell Scientific dataloggers; field setup, configuration, and field zero and span can be accomplished directly from the datalogger.
- Speed of Sound: Determined from three acoustic paths; corrected for crosswind effects
- Rain: Innovative signal processing and transducer wicks considerably improve performance of the anemometer during precipitation events

Outputs

CSAT3A

- ↓ U_x(m/s)*
- ↓ U_v (m/s)*
- ↓ U₂ (m/s)*
- > Sonic Temperature (°C)*
- Sonic Diagnostic*

EC150

- CO₂ Density (mg/m³)
- H_2O Density (g/m³)
- Gas Analyzer Diagnostic
- Ambient Temperature (°C)
- Atmospheric Pressure (kPa)
- CO₂ Signal Strength
- H₂O Signal Strength
- Source Temperature (°C)

General Specifications^a

Operating Temperature Range: -30° to +50°C Calibrated Pressure Range: 70 to 106 kPa Input Voltage: 10 to 16 Vdc Power @ 25°C: 5 W (steady state and power-up) Measurement Rate: 60 Hz Output Bandwith: 5, 10, 12.5, or 20 Hz user programmable Output Options: SDM, RS-485, USB, analogue (CO, and H₂O only) Auxiliary Inputs: air temperature and pressure

Dimensions

Analyzer: 13.8 cm x 7.4 cm x 10.1 cm (12.8 in x 2.9 in x 4.0 in) **Electronics:** 24.1 cm x 35.6 cm x 14 cm (9.5 in x 14 in x 5.5 in)

Weight:

EC150 Head and Cables: 2.0 kg (4.4 lb) CSAT3A Head and Cables: 1.7 kg (3.7 lb) EC100 Electronics: 3.2 kg (7 lbs)

Cable Length: 3 m (10 ft) from EC150/CSAT3A head to EC100

Gas Analyzer/Sonic Volume Separation: 5 cm (2.0 in)

Warranty: 3 years or 17,500 hours of operation, whichever comes first.

Gas Analyzer Specifications^{a,b}

> Path Length: 15.37 cm (6.05 in) Performance

	CO ₂	H ₂ O
Accuracy ^c	1% ^d	2% ^d
Precision RMS (maximum) ^c	0.2 mg/m³ (0.15 μmol/mol)	0.004 g/m³ (0.006 mmol/mol)
Calibrated Range	0 to 1000 μmol/mol ^f	0 to 72 mmol/mol (37°C dew point)
Zero Drift with Temperature (maximum)	±0.55 mg/m³/°C (±0.3 μmol/mol/°C)	±0.037 g/m³/°C (±0.05 mmol/mol/°C)
Gain Drift with Temperature (maximum)	±0.1% of reading/°C	±0.3% of reading/°C
Cross Sensitivity (maximum)	$\pm 1.1 \times 10^{-4} \text{ mol CO}_2 / \text{mol H}_2 O$	$\pm 0.1 \text{ mol H}_2\text{O/mol CO}_2$

Sonic Anemometer Specifications^a

- Measurement Path
- Vertical: 10.0 cm (3.9 in.)
- Horizontal: 5.8 cm (2.3 in.)

Transducer Diameter

> 0.64 cm (0.25 in.)

Range

-) u_u: ±30 m s⁻¹
-) u_v: ±60 m s⁻¹
- u_z: ±8 m s⁻¹ T_z -50° to +60°C
- Wind Direction: ±170°

Accuracy^g

- Offset Error u, u: <±8.0 cm s⁻¹ u: <±4.0 cm s⁻¹
 - Wind Direction: ±0.7° while horizontal wind at 1 m s⁻¹

Gain Error

Wind Vector within $\pm 5^{\circ}$ of horizontal: $<\pm 2\%$ of reading Wind Vector within ±10° of horizontal: <±3% of reading Wind Vector within $\pm 20^{\circ}$ of horizontal: $<\pm 6\%$ of reading

Measurement Precision RMS

u, u: 1 mm s⁻¹ u²: 0.5 mm s⁻¹ Sonic Temperature: 0.025°C Wind Direction: 0.6°

Barometer Specifications^a

	-BB Basic Barometer	-EB Enhanced Barometer (Vaisala PTB110)
Total Accuracy	±3.7 kPa at -30°C, falling linearly to ±1.5 kPa at 0°C, (-30° to 0°C), ±1.5 kPa (0° to 50°C)	±0.15 kPa (-30° to +50°C)
Measurement Rate	10 Hz	1 Hz

Ambient Temperature Specifications^a

Manufacturer: BetaTherm 100

Total Accuracy: ±0.15°C (-30° to +50°C)

^aSubject to change without notice.

^bA temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration.

Assumes the gas analyzer was properly zero and spanned using the appropriate standards; CO, span concentration was 400 ppm; H₂O span dewpoint was at 12°C (16.7 ppt); zero/span temperature was 25°C; zero/span pressure was 84 kPa; subsequent measurements made at or near the span concentration; temperature is not more than $\pm 6^{\circ}$ C from the zero/span temperature; and ambient temperature is within the gas analyzer operating temperature range. ^dStandard deviation of calibration residuals.

«Nominal conditions for precision verification test: 25°C, 86 kPa, 400 μmol/mol CO., 12°C dewpoint, and 20 Hz bandwidth. ^f0 to 3,000 µmol/mole available upon request.

 $^{\circ}$ The accuracy specification for the sonic anemometer is for wind speeds <30 m s⁻¹ and wind angles between $\pm 170^{\circ}$.

80 Hathern Road, Shepshed, LE12 9GX UK | +(0)1509 828888 | sales@campbellsci.co.uk | www.campbellsci.eu UK | AUSTRALIA | BRAZIL | CANADA | CHINA | COSTA RICA | FRANCE | GERMANY | SE ASIA | SOUTH AFRICA | SPAIN | USA

© 2012 Campbell Scientific December 8, 2015

K6A1IA)

Ordering Information

Flux Sensors

EC150 CO, and H₂O Open-Path Gas Analyzer

Sensing Heads Options (must choose one)

-GH Gas Analyzer Only -SH CSAT3A and Gas Analyzer

Pressure Sensor Option (must choose one)

-BB Basic Barometer -BB Enhanced Barometer

Carrying Cases

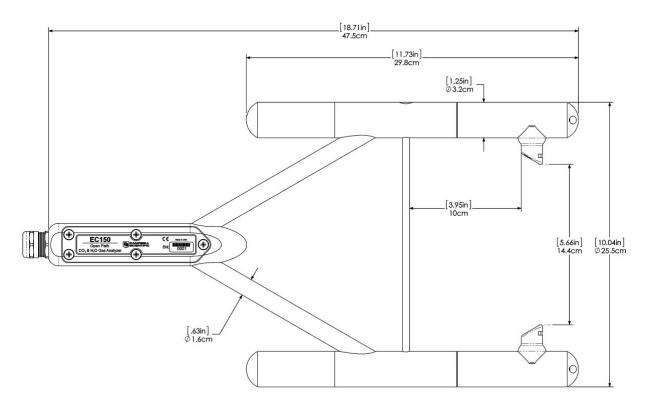
10822 EC150 Carrying Case without foam insert. It holds the gas analyzer alone.

009505-002 CSAT3A Carrying Case without foam insert*.

*A foam insert is included with the respective sensor. If these carry cases are not ordered the sensors are supplied with the foam in cardboard boxes.

Cables

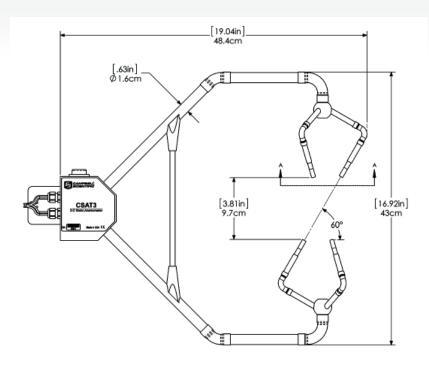
For the following cables, specify the length required, in metres. A 10 m length is recommended. Connectors can be fitted if required when wired to a datalogger enclosure.

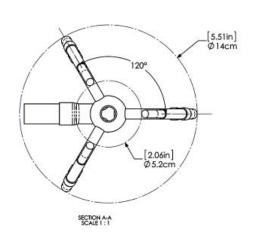

CABLEPCBL Two-conductor, 16-AWG cable with a Santoprene[®] jacket is used to power the EC150.

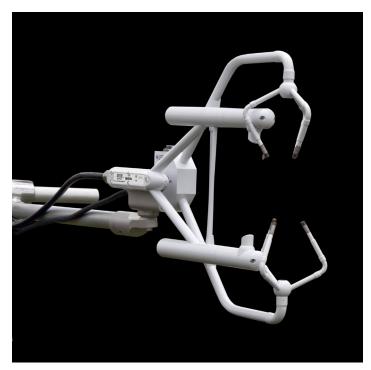
CABLE4CBL Four-conductor, 22-AWG cable with drain wire and Santoprene jacket is used to attach the SDM or Analogue Output connector on the EC150 electronics box.

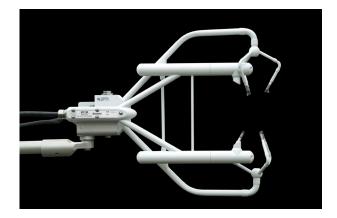
CABLESCBL Five-conductor, 24-AWG cable with drain wire and Santoprene jacket is recommended for connecting the EC150 with an MD485 multidrop modem.

Zero and Span Accessories


010828 EC150 Zero and Span Shroud Kit **010829** EC150 Lab Stand Kit




Dimensions of EC150 analyzer head


80 Hathern Road, Shepshed, LE12 9GX UK | +(0)1509 828888 | sales@campbellsci.co.uk | www.campbellsci.eu UK | AUSTRALIA | BRAZIL | CANADA | CHINA | COSTA RICA | FRANCE | GERMANY | SE ASIA | SOUTH AFRICA | SPAIN | USA © 2012 Campbell Scientific December 8, 2015

EC150 gas analyzer with CSAT3A Sonic Anemometer Head

EC150 gas analyzer with CSAT3A Sonic Anemometer Head

80 Hathern Road, Shepshed, LE12 9GX UK | +(0)1509 828888 | sales@campbellsci.co.uk | www.campbellsci.eu uk | Australia | brazil | canada | china | costa rica | france | germany | se asia | south africa | spain | usa