App. Note Code: 2RA-H Revision: 1

PPLIC TION NOT

Eppley PIR Precision Infrared Radiometer

Copyright © 2001-2007 Campbell Scientific, Inc.

Eppley PIR Precision Infrared Radiometer

The Eppley Laboratory, Inc. Precision Infrared Radiometer (PIR) consists of a thermopile and two thermistors and provides several measurement options. This application note describes interfacing Campbell Scientific dataloggers with the PIR, explains how to measure the thermopile and thermistors, and apply the temperature compensation to the thermopile output. This note assumes previous experience with Campbell Scientific dataloggers.

Wiring

The thermopile is connected, using wires A and C, to a differential analog channel. Connect C to the high (H) side and A to the low (L) side of the differential channel.

The two thermistors are each wired to a single-ended analog channel and analog ground; thermistors are not polarity sensitive. Wires D and E are the case thermistor. Wires F and G are for the dome thermistor. The dome thermistor allows you to correct for the dome temperature. This is not necessary for many applications and is not discussed in this application note. Information about correcting for dome temperature is provided in the Eppley PIR manual.

To complete the circuit, a bridge completion resistor must be wired between an excitation channel and the single-ended measurement channel. The bridge completion resistor should be a 1 kOhm, precision- and temperature-stable resistor. The power (watt) rating of the resistor is not important. Other resistors can be used, but the datalogger must be programmed accordingly.

Programming the Datalogger

The datalogger program performs three basic tasks, typically in the following order:

- Measures the sensor (voltage and resistance measurements).
- Converts the measurements to appropriate units.
- Writes the data to final storage.

Measuring the Sensors

Thermopile

Program Instruction 2 (P02) is used to make the differential voltage measurement. The PIR sensor has a very small full-scale output range, less than 1.5 mV. Using the smallest voltage range $(\pm 2.5 \text{ mV})$ of the CR10X will return the best measurement. Use a differential channel from 1 through 6, ensuring it's the same channel in which the sensor is wired. The output is in millivolts.

1: Volt (Diff) (P2)

1:	1	Reps
2:	1	2.5 mV Slow Range
3:	1	DIFF Channel
4:	1	Loc [PIR_mV]
5:	1.0	Mult
6:	0.0	Offset

Thermistor

Each thermistor's half-bridge circuit is measured with Program Instruction 5 (P5). Select the ± 2500 mV Fast Range and a single-ended channel from 1 through 12, ensuring the single-ended channel is not used by another input. Choose an excitation channel and use ± 2500 mV for the excitation voltage. The same excitation channel can be used by both thermistors, but don't share bridge completion resistors.

2: AC Half Bridge (P5)

1:	1	Reps
2:	15	2500 mV Fast Range
3:	3	SE Channel
4:	1	Excite all reps w/Exchan 1
5:	2500	mV Excitation
6:	2	Loc [Case_Res]
7:	1.0	Mult
8:	0.0	Offset

Converting to Appropriate Units

The thermistor measurements must be converted to temperature in $^{\circ}$ K. The mV output from the thermopiles is converted to W m⁻², then corrected for the temperature effects on the PIR's case.

Converting Thermistor Measurements to Resistance

The P5 instruction used to measure the thermistor returns a ratiometric output. To convert to resistance, use Instruction 59 (P59). Note the multiplier of 1000; this is the value of the bridge completion resistor.

 3: BR Transform Rf[X/(1-X)] (P59)

 1: 1
 Reps

 2: 2
 Loc [Case_Res]

 3: 1000
 Multiplier (Rf)

With the resistance of the thermistor in an input location, convert the resistance to temperature.

Converting Resistance to Temperature

Equation 1 converts the resistance of the thermistor to temperature in $^{\circ}$ K. This conversion requires some basic math functions that can be entered in a subroutine or in the main body of the program table.

$\Gamma = 1/(A + B * Ln(R) + C * (Ln)^3)$	(Eq. 1)

Where:

T = temperature in degrees Kelvin

A = 0.0010295 or 1.0295 E - 3

B = 0.0002391 or 2.391E -4

C = 0.000001568 or 1.568E - 7

 \mathbf{R} = the measured resistance of the thermistor

Ln(R) = the natural log of the thermistor resistance

; Load constants A, B and C to input locations 4: Z=F (P30)

4: Z=	F (P30)		
1:	1.0295	F	
2:	-3	Exponent of 10	
3:	6	Z Loc [ConstA] ; *** A term
5: Z=1	F (P30)		
1:	2.391	F	
2:	-4	Exponent of 10	
3:	7	Z Loc [ConstB]
6: Z=	F (P30)		
1:	1.568	F	
2:	-7	Exponent of 10	
3:	8	Z Loc [ConstC]

; Convert resistance of thermistor to natural log	g of resistance
7: $Z=LN(X)$ (P40)	
1: 2 X Loc [Case_Res]	
2: 9 $Z \text{ Loc } [\text{ Ln}_{\text{Res}} S1] ; *** \text{ Na}$	atural log of resistance
; Multiply constant B with Natural log of resiste	ince
; Store result in "B term", bLn_res	
8: Z=X*Y (P36)	
1: 7 X Loc [ConstB]	
2: 9 Y Loc [Ln_Res]	
3: 10 Z Loc [bLn_res] ; *** E	3 term
; Square natural log of resistance	
9: Z=X*Y (P36)	
1: 9 X Loc [Ln_Res]	
2: 9 Y Loc [Ln_Res]	
3: 11 Z Loc [Ln_res2] ;Natural	log of resistance squared
: Cube natural log of resistance	
10: Z=X*Y (P36)	
1: 9 X Loc [Ln Res]	
$2: 11 \qquad Y \operatorname{Loc} [\operatorname{Ln} \operatorname{res} 2]$	
3: 12 Z Loc [Ln_res3] ;Natural	l log of resistance cubed
· Multiply constant C with natural log of resistance rai	sed to the third power
$11 \cdot 7 = X \cdot Y (P36)$	sea to the third power
1: 8 X Loc [ConstC]	
$\begin{array}{ccc} 1. & 0 & \text{In Loc} [\text{ consterm}] \\ 2. & 12 & \text{Y Loc} [\text{ In res3}] \end{array}$	
3: 12 Z Loc [Ln_res3] ; *** (C term
; Add A term to B term, store in location case_t 12: Z=X+Y (P33)	етр
1: 6 X Loc [ConstA]	
2: 10 Y Loc $\begin{bmatrix} bLn \\ resS1 \end{bmatrix}$	
3: 2 Z Loc [case_temp]	
· Add C term to A and B term store in location	
, Thus C term to T and D term, store in toeution 12. 7 $\mathbf{V}_{1}\mathbf{V}_{2}(\mathbf{D}22)$	Case temp
13° $I = 3 + 1$ (P33)	Case_temp
13: $Z=X+Y$ (P33) 1: 2 X Loc [case temp]	Case_temp

3: 2 Z Loc [case_temp]

; Take the reciprocal of the "Case_temp", result is temperature in degrees Kelvin 14: Z=1/X (P42)

1: 2 X Loc [case_temp]

2: 2 Z Loc [case_temp] ; *** Temp in degrees K

Converting Thermopile Measurements to W m⁻²

The thermopile measurement output is in mV. To convert mV to W m⁻², the PIR sensitivity is divided into the mV output. Sensitivity is given in units of μ V W⁻¹ m². The proper multiplier is: 1/PIR sensitivity.

Example: Thermopile sensitivity = 3.41 μV W^-1 m^2 or .00341 mV / W/m²

The thermopile sensitivity is obtained from the PIR calibration sheet.

Multiplier = $(1)/(.00341 \text{ mV} / \text{W/m}^2) = 293.255$

Now that the multiplier has been calculated, use Instruction 37 to convert the thermopile mV output to W m^{-2} .

3: Z=X*F (P37) 1: 1 X Loc [PIR_mV] 2: 293.255 F ; *** Multiplier 3: 14 Z Loc [PIR_Aterm]

Correcting for PIR Case Temperature

You must account for the effects of the PIR case temperature. The thermopile output is adjusted using Equation 2:

Corrected Thermopile Output = $A + (C * T^4)$ (Eq. 2)

Where:

A = Thermopile output in W m⁻² C = Stefan-Boltzmann constant = $5.6697E - 8 W m^{-2} K^{-4}$

 T^4 = the case temperature in degrees K raised to the fourth power

Datalogger program instructions can be placed in a subroutine or the main body of the program.

Use the following instructions:

; load number 4 into input location Power4 16: Z=F (P30)

· · ·		
4	F	
0	Exponent of 10	
11	Z Loc [Power4]
	4 0 11	 4 F 0 Exponent of 10 11 Z Loc [Power4

; *Raise temperature to the fourth power* 17: Z=X^Y (P47)

1:	10	X Loc [case_temp]
2:	11	Y Loc [Power4]

3: 10 Z Loc [case_temp]

; Load 5.6697E -8 into PIR_Bterm

- 18: Z=F (P30)
- 1: 5.669 F
- 2: -8 Exponent of 10
- 3: 13 Z Loc [PIR_Bterm]

; Multiply 5.6697E -8 by Temp K raised to the fourth

; This is the PIR B term

19: Z=X*Y (P36)

1: 13 X Loc	PIR Bterm 1
-------------	--------------------

2: 10	Y Loc [case_temp]
-------	---------------------

3: 13 Z Loc [PIR_Bterm]

; *Add PIR A term to PIR B term. Output is in Watts per meter squared.* 20: Z=X+Y (P33)

1:	14	X Loc [PIR_Aterm]
2:	13	Y Loc [PIR_Bterm]
3:	15	Z Loc [PIR Watt]

Writing Data to Final Storage

First determine when to write data to final storage then what data to write. The program should set the output flag before any output processing instructions are executed. Below is the portion of a datalogger program that outputs the data to final storage.

; Every 60 minutes at the top of the hour, set the Output Flag 6: If time is (P92)

- 1: 0 Minutes (Seconds --) into a
- 2: 60 Interval (same units as above)
- 3: 10 Set Output Flag High (Flag 0)

;Output the day, hour, and minute				
7: R	eal Time (P7	7)		
1:	0220	Day, Hour/Minute (midnight = 2400)		
; Stor	re the PIR ha	ourly average		

8: Average (P71)

· · · ·	crage (I	/1)
1:	1	Reps
2:	15	Loc [PIR_Watt]

; Store the PIR minimum value for the past hour 9: Minimum (P74)

1:	1	Reps
2:	00	Time Option
3:	15	Loc [PIR_Watt]

; Store the PIR maximum value for the past hour 10: Maximum (P73)

1:	1	Reps
2:	00	Time Option
3:	15	Loc [PIR_Watt]

Sample CR10X Program

;{CR10X}

;

*Table 1 Program 01: 10 Execution Interval (seconds)

; Measure thermopile

1: Volt (Diff) (P2)

1:	1	Reps
2:	1	2.5 mV Slow Range
3:	1	DIFF Channel
4:	1	Loc [PIR_mV]
5:	1.0	Mult
6:	0.0	Offset

; Measure case thermistor		
2: AG	C Half Brid	ge (P5)
1:	1	Reps
2:	15	2500 mV Fast Range
3:	3	SE Channel
4:	1	Excite all reps w/Exchan 1
5:	2500	mV Excitation
6:	2	Loc [Case_Res]
7:	1.0	Mult
8:	0.0	Offset
; App	ly eppley ca	alibration to thermopile output
3: Z=	=X*F (P37)	
1:	1	X Loc [PIR_mV]
2:	256.891	F
3:	14	Z Loc [PIR_Aterm]
; Call	Subroutine	e 1, used to calculate case temperature
4: De	o (P86)	-
1:	1	Call Subroutine 1
; Call	Subroutine	e 2, Used to correct thermopile output
5: Do	o (P86)	
1:	2	Call Subroutine 2
; Stor	e the data l	nourly
6: If	time is (P92	2)
1:	0	Minutes (Seconds) into a
2:	60	Interval (same units as above)
3:	10	Set Output Flag High (Flag 0)
7: Re	eal Time (P	77)
1:	0220	Day, Hour/Minute (midnight = 2400)
8: Av	verage (P71)
1:	1	Reps
2:	15	Loc [PIR_Watt]
9: Minimum (P74)		
1:	1	Reps
2:	00	Time Option
3:	15	Loc [PIR_Watt]

10: Maximum	(P73)
1: 1	Reps
2: 00	Time Option
3: 15	Loc [PIR_Watt]
*Table 2 Progra	ım
02: 0.000	0 Execution Interval (seconds)
*Table 3 Subro	utines
1: Beginning o	f Subroutine (P85)
1: 1	Subroutine 1
; Equation to co	onvert YSI 10 K thermistor resistance to temperature
; in degrees K	$(D, D) = o(I, D) \wedge 2$
, 1/1 - u + U(L)	$n(K) + C(Ln(K))^{-5}$
; Coefficients u	sed in equation above
; $a = 0.001029$.	5 = ConstA
b = 0.000239	l = ConstB
; $c = 1.568E-7$	= ConstC
; Calculate resi	stance from P5 instruction (Table 1, line 2)
2: BR Transfor	rm Rf[X/(1-X)] (P59)
1: 1	Reps
2: 2	Loc [Case_Res]
3: 1000	Multiplier (Rf)
; Load constant	ts a, b and c to input locations
3: Z=F (P30)	
1: 1.029	5 F
2: -3	Exponent of 10
3: 3	Z Loc [ConstA] ; *** A term
4: Z=F (P30)	
1: 2.391	F
2: -4	Exponent of 10
3: 4	Z Loc [ConstB]
5: Z=F (P30)	
1: 1.568	F
2: -7	Exponent of 10
3: 5	Z Loc [ConstC]

; Conv	vert resist	tance of thermistor to natural log of resistance
6: Z=	LN(X) (I	240)
1:	2	X Loc [Case_Res]
2:	6	Z Loc [Ln_Res] ; *** Natural log of resistance
; Mult	iply cons	tant B with Natural log of resistance
; Store	result in	n "B term, bLn_res"
7: Z=2	X*Y (P3	6)
1:	4	X Loc [ConstB]
2:	6	Y Loc [Ln_Res]
3:	7	Z Loc [bLn_res] ; *** B term
; Squa	re naturc	al log of resistance
8: Z=	X*Y (P3	6)
1:	6	X Loc [Ln_Res]
2:	6	Y Loc [Ln Res]
3:	8	Z Loc [Ln res2]; Natural log of resistance squared
; Cube 9: Z=	e natural X*Y (P3	log of resistance 6)
1:	6	X Loc [Ln Res]
2:	8	Y Loc [Ln res2]
3:	9	Z Loc [Ln res3]; Natural log of resistance cubed
; Multip	oly constat	nt C with natural log of resistance raised to the third power
10: Z=	=X*Y (P	36)
1:	5	X Loc [ConstC]
2:	9	Y Loc [Ln_res3]
3:	9	Z Loc [Ln_res3] ; *** C term
; Add A	A term to	B term natural log of resistance, store in location
; case	temp	0.5
11: Z=	=X+Y (P	33)
1:	3	X Loc [ConstA]
2:	7	Y Loc [bLn res]
<u>-</u> . 3.	10	$Z \log \left[\operatorname{case}_{\mathrm{res}} \right]$
5.	10	
; Add	C term to	A and B term, store in location case_temp
12: Z=	=X+Y (P	33)
1:	10	X Loc [case temp]

; Inve	rt A plus B	plus C term. Result is temperature in degrees
; Kelv	$\frac{1}{\sqrt{2}}$)
13: Z	=1/X (P42)) VI. o.o. [. o.o.g., town]
1:	10	A Loc [case_temp]
2:	10	Z Loc [case_temp] ; and Temp in degrees K
14: E	nd (P95)	
15: B	eginning o	f Subroutine (P85)
1:	2	Subroutine 2
; Appl	y case the	rmistor correction to PIR thermopile output
; Corr	rection is P	PIR output in watts per meter squared plus
; 5.669	E -8 multip	lied by the case temperature raised to the fourth power.
; Loac	l number 4	into input location Power4
16: Z	=F (P30)	
1:	4	F
2:	0	Exponent of 10
3:	11	Z Loc [Power4]
; Rais	e temperat	ure to the fourth power
17: Z	=X^Y (P4'	7)
1:	10	X Loc [case_temp]
2:	11	Y Loc [Power4]
3:	10	Z Loc [case_temp]
; Loac	l 5.669E -8	8 into PIR_Bterm
18: Z	=F (P30)	
1:	5.669	F
2:	-8	Exponent of 10
3:	13	Z Loc [PIR_Bterm]
; Mult	iply 5.6691	E -8 by Temp K raised to the fourth
; This is the PIR B term		
19: Z	=X*Y (P3)	6)
1:	13	X Loc [PIR_Bterm]
2:	10	Y Loc [case_temp]
3:	13	Z Loc [PIR_Bterm]

; *Add PIR A term to PIR B term. Output is in Watts per meter squared.* 20: Z=X+Y (P33)

 1:
 14
 X Loc [PIR_Aterm]

 2:
 13
 Y Loc [PIR_Bterm]

 3:
 15
 Z Loc [PIR_Watt]

21: End (P95)

End Program