0872E3
Goodrich
Ice Detector

User Manual

Issued 31.3.09

Copyright © 2006-2007 Campbell Scientific (Canada) Corp.
Printed under Licence by Campbell Scientific Ltd.
Guarantee

This equipment is guaranteed against defects in materials and workmanship. This guarantee applies for twelve months from date of delivery. We will repair or replace products which prove to be defective during the guarantee period provided they are returned to us prepaid. The guarantee will not apply to:

- Equipment which has been modified or altered in any way without the written permission of Campbell Scientific
- Batteries
- Any product which has been subjected to misuse, neglect, acts of God or damage in transit.

Campbell Scientific will return guaranteed equipment by surface carrier prepaid. Campbell Scientific will not reimburse the claimant for costs incurred in removing and/or reinstalling equipment. This guarantee and the Company’s obligation thereunder is in lieu of all other guarantees, expressed or implied, including those of suitability and fitness for a particular purpose. Campbell Scientific is not liable for consequential damage.

Please inform us before returning equipment and obtain a Repair Reference Number whether the repair is under guarantee or not. Please state the faults as clearly as possible, and if the product is out of the guarantee period it should be accompanied by a purchase order. Quotations for repairs can be given on request.

When returning equipment, the Repair Reference Number must be clearly marked on the outside of the package.

Note that goods sent air freight are subject to Customs clearance fees which Campbell Scientific will charge to customers. In many cases, these charges are greater than the cost of the repair.
PLEASE READ FIRST

About this manual

Please note that this manual was originally produced by Campbell Scientific Inc. primarily for the North American market. Some spellings, weights and measures may reflect this origin.

Some useful conversion factors:

<table>
<thead>
<tr>
<th>Category</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1 in² (square inch) = 645 mm²</td>
</tr>
</tbody>
</table>
| Length | 1 in. (inch) = 25.4 mm
1 ft (foot) = 304.8 mm
1 yard = 0.914 m
1 mile = 1.609 km |
| Mass | 1 oz. (ounce) = 28.35 g
1 lb (pound weight) = 0.454 kg |
| Pressure | 1 psi (lb/in²) = 68.95 mb |
| Volume | 1 UK pint = 568.3 ml
1 UK gallon = 4.546 litres
1 US gallon = 3.785 litres |

In addition, while most of the information in the manual is correct for all countries, certain information is specific to the North American market and so may not be applicable to European users.

Differences include the U.S standard external power supply details where some information (for example the AC transformer input voltage) will not be applicable for British/European use. Please note, however, that when a power supply adapter is ordered it will be suitable for use in your country.

Some brackets, shields and enclosure options, including wiring, are not sold as standard items in the European market; in some cases alternatives are offered. Details of the alternatives will be covered in separate manuals.

Recycling information

At the end of this product’s life it should not be put in commercial or domestic refuse but sent for recycling. Any batteries contained within the product or used during the products life should be removed from the product and also be sent to an appropriate recycling facility.

Campbell Scientific Ltd can advise on the recycling of the equipment and in some cases arrange collection and the correct disposal of it, although charges may apply for some items or territories.

For further advice or support, please contact Campbell Scientific Ltd, or your local agent.

Campbell Scientific Ltd, Campbell Park, 80 Hathern Road, Shepshed, Loughborough, LE12 9GX, UK
Tel: +44 (0) 1509 601141 Fax: +44 (0) 1509 601091
Email: support@campbellsco.co.uk
www.campbellsco.co.uk
Contents

PDF viewers note: These page numbers refer to the printed version of this document. Use the Adobe Acrobat® bookmarks tab for links to specific sections.

1. Introduction .. 1

2. Installation ... 2
 2.1 Location ... 2
 2.2 Mounting ... 3
 2.3 Wiring .. 3

3. Operational Check Using Datalogger ... 4

4. Programming Example for CR1000 ... 5

Appendices

A. Operation of the 0872E3 ... A-1
 A1.1 Operation .. A-1
 A1.2 System Operation .. A-1
 A1.3 Data Link ... A-1
 A1.4 System Commands ... A-2
 A1.5 Failure Detection ... A-3
 A1.6 Probe Frequency Variation .. A-3
 A1.7 Electrical Design .. A-3
 A1.8 Maintenance ... A-5

B. FCC Compliancy .. B-1

C. Specification Drawings ... C-1

Figures

1. Model 0872E3 Goodrich Ice Detector ... 2
2. Mounting ... 3
3. Electrical Block Diagram .. A-4
4. Assembly Drawing .. A-12
5. Detail Assembly Drawing ... A-13
6. FCC Compliancy Statement .. B-1
1. Introduction

This technical manual provides operation and field level maintenance information for the 0872E3 Ice Detector manufactured by Goodrich Sensor Systems. The 0872E3 consists of four functional assemblies: a Main circuit card assembly (CCA), an Output Interface CCA, a Filter assembly, and a Strut and Probe assembly. The CCAs and all electrical connections are contained within the 0872E3s housing. Access to these items is made through a large, hinged cover that is secured to the housing with captive screws.

The 0872E3 detects ice accumulation on an ultrasonic axially vibrating tube and communicates the associated frequency changes through an RS-232 or digital current loop data link. The 0872E3 is mounted on a pole (Figure 1) and is designed to operate continuously in an outdoor environment. The 0872E3 requires only period recalibration; no other maintenance is normally required.

Additional technical information on theory of operation and detailed communication requirements is contained in Appendix C (Specification Drawing 0872E3).

LIST OF ACRONYMS

CCA Circuit Card Assembly
Bit Built-In Test
EPROM Electrically Programmable Read Only Memory
ESD Electrostatic Discharge
FRU Field Replacement Unit
IDS Ice Detection Sensor

WARNING
Probe will become hot during and shortly after heater activation. Severe burns may result if probe is contacted during this time.

CAUTION
Heater activation during test must not exceed 5 seconds if the ambient temperature is greater than 5°C or damage to the probe may result.
2. Installation

2.1 Location

The 0872E3 should be mounted to a sturdy pole located away from buildings or other obstacles that could shadow the sensing element from freezing rain. The 0872E3 should be installed so that the sensing probe is a minimum 36 inches above the ground. The attached mounting bracket is ideal for mounting the 0872E3 to the pole.
2.2 Mounting

1. Position the 0872E3 on mounting pole with the sensing probe pointing upward. Tighten band clamps (shown in photo below).

2. Remove one ground stud nut.
3. Position ground wire on ground stud.
4. Replace and tighten ground stud nut.
5. Connect cables to connectors J1(IDS) and J2(IDS).
6. Remove protective tube from strut and probe.

2.3 Wiring

<table>
<thead>
<tr>
<th>Ice Detector Connections</th>
<th>Wire colour</th>
<th>Description</th>
<th>120 VAC Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>Black</td>
<td>120 VAC Line</td>
<td>Line</td>
</tr>
<tr>
<td>J1</td>
<td>White</td>
<td>120 VAC Neutral</td>
<td>Neutral</td>
</tr>
<tr>
<td>J1</td>
<td>Green</td>
<td>120 VAC Ground</td>
<td>Ground</td>
</tr>
<tr>
<td>Ground Stud</td>
<td>Green</td>
<td>Ground</td>
<td>Earth Ground</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datalogger Connections</th>
<th>Wire colour</th>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>J2</td>
<td>Green</td>
<td>RS-232 Rx</td>
<td>C1</td>
</tr>
<tr>
<td>J2</td>
<td>White</td>
<td>RS-232 Tx</td>
<td>C2</td>
</tr>
<tr>
<td>J2</td>
<td>Black</td>
<td>RS-232 Signal Gnd</td>
<td>G</td>
</tr>
<tr>
<td>J2</td>
<td>Clear</td>
<td>Shield</td>
<td>G</td>
</tr>
</tbody>
</table>
3. Operational Check Using Datalogger

Before deploying this unit in the field, please perform this quick operational check to verify its integrity.

The operational check can be performed using the following steps:

1. With the unit removed from the packaging, connect the power and communications cables.
2. Connect the unit to the datalogger using the wiring diagram provided in this manual.
3. After verifying that everything is connected correctly, remove the protective sleeve and probe cover, then apply power to the unit and the datalogger.
4. Using Loggernet or similar connection software, load the following program into the datalogger.

'E3 Ice Detector Operational Check Program

'Declare Public Variables

Public Frequency as String
Public IDS_Status as String
Public Heating as String

'Main Program
BeginProg

SerialOpen (Com1,300,0,0,10000)

Scan (30,Sec,0,0)

SerialOut (Com1,"Z1","",0,100)
Delay(0,5,Sec)
SerialFlush (Com1)
SerialIn (Frequency,Com1,100,0,100)
SerialOut (Com1,"Z4","",0,100)
Delay (0,15,Sec)
SerialFlush (Com1)
SerialIn (IDS_Status,Com1,100,0,100)
SerialOut (Com1,"Z302","",0,100)
Delay (0,5,Sec)
SerialFlush (Com1)
SerialIn (Heating,Com1,100,0,100)

NextScan

EndProg
5. Using the numeric screens in Loggernet, add the public variables to the display. To do this, click and drag public to the upper left cell in the display. This will paste all three public strings into the view. It will take up to 30 seconds to see results.

6. The following is the expected results for an operational unit. If you receive these results, the unit is ready for field installation.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>*ZPxxxxxyy</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDS_Status</td>
<td>ZP E3 – IDS passes extended checks</td>
</tr>
<tr>
<td>Heating</td>
<td>ZDOK51</td>
</tr>
</tbody>
</table>

*xxxxx is frequency (39970 – 40030 Hz) and yy is the Checksum.

4. Programming Example for CR1000

```plaintext
'Declare Public Variables
Public PTemp, batt_volt
Public MainString as String * 30
Public Frequency as String * 10
Public CSum as String * 3
Public Intermediate(8) as String * 10
Public Status as String * 3
Public Ice
Public Inter(4) as float
Public T107
Public Threshold
Public HeatTime
Public Flag(2)

'Define Data Tables
DataTable (Test,1,-1)
    DataInterval (0,20,Sec,10)
    Minimum (1,batt_volt,FP2,0,False)
    Sample (1,PTemp,FP2)
EndTable

DataTable (IceAcc,True,-1)
    Sample (1,Ice,IEEE4)
EndTable

'Main Program
BeginProg
    SerialOpen (Com2,300,0,0,10000)

    Scan (10,Sec,0,0)
    PanelTemp (PTemp,250)
    Battery (Batt_volt)

    'Send serial out command to request frequency information
    SerialOut (Com2,"Z1","Z",0,600)
    SerialFlush (Com2)
    Delay (0,5,Sec)

    'Send serial in command to read information from datalogger Buffer.
    SerialIn (MainString,Com2,100,0,100)

    'The following instructions as used to parse the received string into useful numbers.
    Intermediate(1) = Left (MainString,11)
    Intermediate(2) = Left (MainString,6)
    Status = Right (Intermediate(2),3)
```
Intermediate(3) = Left (MainString,13)

CSum = Right (Intermediate(3),2)

Inter(1) = Frequency

'Formula used to convert the Frequency into Ice Thickness.
Ice = -0.00015*Inter(1) + 6

'Used to make sure we do not have negative Ice thicknesses in data
If Ice < 0 then
 Ice = 0
EndIf

'Measure Temperature Sensor to make sure the temperature is
'less than 5 degrees
Therm107 (T107,1,1,Vx1,0,_60Hz,1.0,0)

'Check to see the temperature is less than 5 degrees
'If so, apply heat if there is Ice accumulation.
If T107 <= 5 and Ice >= Threshold then
 HeatTime = 214.29 * Ice + 5.7142
 HeatTime = INT (HeatTime)

 'If the heat time is calculated higher than 45 seconds, heat for only 45
 seconds.
 If HeatTime > 45 then HeatTime = 45

 CallTable IceAcc

 SerialOut (Com1,"Z3"+HeatTime,"",0,100)
EndIf

CallTable Test
NextScan
EndProg
Appendix A. Operation of the 0872E3

A1.1 Operation

Apply power to the 0872E3. Wait 30 seconds minimum, then perform the following sequence of commands to ensure proper operation of the unit.

<table>
<thead>
<tr>
<th>Command</th>
<th>Response</th>
<th>Wait (minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>Xpxxxxxyy</td>
<td>5 sec</td>
</tr>
<tr>
<td>Z4</td>
<td>ZP E3</td>
<td>15 sec</td>
</tr>
<tr>
<td>Z302</td>
<td>ZDOK51</td>
<td>5 sec</td>
</tr>
</tbody>
</table>

*xxxxx is frequency (39970-40030 Hz) and yy is the checksum

A1.2 System Operation

Ice is sensed due to the effect of mass loading on the probe. As ice bonds to the probe the probe mass increases and its natural frequency decreases. The sensor outputs a normalized frequency (corresponding to the ice accretion level) that has been averaged over one minute. The 0872E3 will respond when interrogated by the host system with one of the four different requests described below:

Z1 – SEND FREQUENCY DATA
Z3 – DE-ICE STRUT AND PROBE
Z4 – PERFORM EXTENDED DIAGNOSTICS
F5 – PERFORM FIELD CALIBRATION

A1.3 Data Link

The 0872E3 is interrogated once per minute by the host system. The host system sends ASCII characters to the 0872E3 and awaits the appropriate response. Control characters and control procedures are compatible with ANSI X3.28 and ANSI X3.66, respectively. The data format consists of the following:

- 1 Start Bit
- 8 Data Bits
- 1 Stop Bit
- No Parity
- 300 Baud
- Full Duplex
- Serial Asynchronous
- Configured as Data Terminal Equipment (DTE)

Either RS-232 or digital current loop interface can be used to communicate with the 0872E3.
A1.4 System Commands

NOTE

All system commands must be in upper case.

Z1 – Typing Z1 commands the 0872E3 to “Send Routine Data”. The expected output from the 0872E3 is:

- **ZPXXXXXCC** Normal Operation
- **ZDXXXXXCC** De-icing Cycle

“XXXXX” is the probe frequency (averaged over one minute) and “CC” is the checksum. The probe frequency must be between 38,400 and 41,500 Hz. Three failure response outputs are also possible after a Z1 command:

- **ZF1XXXXXCC** Probe Failure
- **ZF2XXXXXCC** Heater Failure
- **ZF3XXXXXCC** Electronics Failure

Z3 – Typing “Z3XX” Commands the 0872E3 to turn the strut and probe heaters on for “XX” seconds, where “XX” is a two digit number between 01 and 60. The expected output for the 0872E3 is:

- **ZDOK51** Confirmation of Heater Activation

If a heater failure is detected or if “XX” is not a valid input, the 0872E3 will not acknowledge the “Z3” request.

WARNING

Probe will become hot during and shortly after heater activation. Severe burns may result if probe is contacted during this time.

CAUTION

Heater activation during test must not exceed 5 seconds if the ambient temperature is greater than 5°C or damage to the probe may result.

Z4 – Typing “Z4” commands the 0872E3 to perform extended diagnostics. The possible outputs from the 0872E3 are:

- **ZP E3** 0872E3 Passes
- **ZD D7** 0872E3 in De-ice Mode
- **ZF1 EA** Probe Failure
- **ZF2 EB** Heater Failure
- **ZF3 EC** Electronics Failure

F5 – Typing “F5” commands the 0872E3 to re-calibrate the probe frequency. The 0872E3 responds with:
Recalibrate? Y or N

Responding with “Y” will recalibrate the nominal probe frequency to 40,000 Hz. Responding with “N” or no response within 10 seconds will cancel the F5 request.

NOTE
Probe calibration should only be done under the conditions specified in Paragraph 6.7 (Field Calibration).

A1.5 Failure Detection

The 0872E3 continuously monitors the following functions:

- Power Supply Voltage
- Memory and Storage Checksums
- Probe Frequency within Operating Range
- Timing
- I/O Port Operation

In addition, the heater control circuit is checked once every ten hours and whenever a Z3 or Z4 command is received.

All failures are logged into a non-volatile RAM circuit and can be read out at the factory using a RS-232 data request. After factory repair, this data is cleared from the non-volatile RAM memory.

A1.6 Probe Frequency Variation

It is normal for the 0872E3 frequency (returned after a “Z1” command) to vary slightly due to the effects of temperature, even in non-icing conditions. The frequency can vary up to 15 Hz due to changing ambient temperature. Greater frequency variation is possible during, and shortly after, the heaters have been activated. The frequency will return to normal as the probe cools.

A1.7 Electrical Design

A1.7.1 Electrical Input Requirements

The ice detector utilizes 115 VAC (103.5 to 126.5 VRMS), 55 to 65 hertz input power. Normal operation continues for power interruptions of less than 10 milliseconds. Power interruptions greater than 10 milliseconds will cause the 0872E3 to go into a reset condition. Under this condition, the 0872E3 will resume operation automatically after the power is reapplied, going through the power-up test sequence.

A1.7.2 Power Consumption

Power consumption under the stated supply voltage conditions are shown below:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Maximum Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring</td>
<td>10 Watts</td>
</tr>
<tr>
<td>Detection (no heater power)</td>
<td>10 Watts</td>
</tr>
<tr>
<td>De-icing</td>
<td>385 Watts</td>
</tr>
<tr>
<td>Failure</td>
<td>10 Watts</td>
</tr>
</tbody>
</table>
Figure 3. Electrical Block Diagram

<table>
<thead>
<tr>
<th>Internal Electronics Block</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller</td>
<td>Performs the ice detection and BIT functions</td>
</tr>
<tr>
<td>Heater Control</td>
<td>Activates probe/strut de-icing</td>
</tr>
<tr>
<td>Watch Dog Timer/Reset</td>
<td>Monitors internal power supply voltages and power disruptions. Checks microcontroller for operation</td>
</tr>
<tr>
<td>Solid-State Power Supply</td>
<td>Provides +5 VDC to unit</td>
</tr>
<tr>
<td>Serial Output</td>
<td>Provides RS-232 and digital current pulse</td>
</tr>
<tr>
<td>Serial Input</td>
<td>Receives RS-232 and digital current pulse</td>
</tr>
<tr>
<td>EPROM/NV-RAM/ RAM</td>
<td>Various memories needed for operation of microcontroller</td>
</tr>
</tbody>
</table>
A1.8 Maintenance

A1.8.1 Maintenance Concept

The maintenance concept for the 0872E3 consists of:

- BIT detecting and isolating a 0872E3 fault to one of three subassemblies.
- Replacement of the faulty subassembly (with 0872E3 attached to the mounting pole).
- Return failed subassembly to Campbell Scientific for repair

A1.8.2 Calibration and Preventative Maintenance

The sensor is designed to require no adjustments, alignments, scheduled maintenance, or preventative maintenance. A field calibration feature is included in the design, but the calibration is not performed on a scheduled basis.

NOTE: Probe calibration should only be done under the conditions specified in Paragraph 6.7 (Field Calibration).

A1.8.3 Fault Isolation

Failures can be broken into two categories: BIT detected failures, and those that BIT does not detect (non BIT failures).

A1.8.3.1 BIT Detected Failures

ZF1 Probe Failure

If a ZF1 failure is indicated in response to the Z1 or Z4 command, proceed as follows:

1. Perform steps 1-6 of paragraph 6.5.3 (removal of strut and probe assembly) to electrically disconnect probe from Main CCA.
2. Connect a functional strut and probe assembly to J3(MAIN) and J4(MAIN) on the Main CCA. Install select capacitor (for the functional strut at C7. The test strut and probe assembly can be temporarily placed on top of the 0872E3 housing.
3. Turn power to the 0872E3 “On” and wait for 30 seconds. Issue the Z4 command. If the ZF1 failure code is still indicated, replace the Main CCA. If the failure is no longer indicated, replace the strut and probe assembly.

ZF2 Heater Failure

If a ZF2 failure is indicated in response to the Z1 or Z4 command, or if a “no response” condition occurs after issuing the Z3 command, proceed as follows:

1. Perform steps 1-6 of paragraph 6.5.3 (removal of strut and probe assembly) to electrically disconnect probe from Main CCA.
2. Check resistance between J4(S/P)-1 and J4(S/P)-2 using an ohmmeter. Resistance must be 42 ± 5 ohms. If resistance is within range, replace Main CCA. If resistance is out of range, replace strut and probe assembly.
ZF3 Electronic Failure

If a ZF3 failure is indicated in response to the Z1 or Z4 command, replace the Main CCA. No further troubleshooting is required.

A1.8.3.2 Non BIT Failures

If the sensor fails to respond to commands, proceed as follows:

1. Verify AC power is on and main J1(IDS) and J2(IDS) connectors are connected to the IDS.
2. Switch to RS-232 mode. If the 0872E3 communicates in RS-232 mode, but not is current loop mode, replace the Output Interface CCA. If the 0872E3 fails to communicate in either mode, continue with step 3.
3. Switch AC power off. Disconnect connector J1(IDS). Using an ohmmeter, measure the resistance between connector J1(IDS)-A and J1(IDS)-B. If resistance is less than 200 ohms, replace Main CCA. If not, loosen four cover screws and open cover. Remove plastic guard covering J1(MAIN) terminal block by depressing three white clips on each side of guard. Measure resistance between J12(MAIN) pins 1 and 2. If resistance is less than 200 ohms, replace Filter Assembly. If greater than 200 ohms, replace Main CCA.

A1.8.4 Removal of 0872E3

Most repairs can be accomplished without removing the 0872E3 from the mounting pole. If removal is required, proceed as follows:

1. Switch 115 VAC power to 0872E3 off.
2. Place protective tube over strut and probe.
3. Disconnect connectors J1(IDS) and J2(IDS). Place ESD protective caps over connectors.
4. Remove ground nut and wire from ground stud. Put nut back on finger tight.
5. Loosen mounting bolts and remove unit from mounting pole.

A1.8.5 Disassembly

A1.8.5.1 Removal of Output Interface CCA

Refer to Figure 3 for removal of Output Interface CCA.

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Remove power to unit prior to opening sensor cover or injuries could result from electrical shock.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION</td>
<td>This is a Class 1 ESDS item. ESD precautions must be taken prior to opening sensor cover or equipment damage could result.</td>
</tr>
</tbody>
</table>
1. Switch 115 VDC power to the 0872E3 off. Disconnect J1(IDS).
2. Loosen captive screws on sensor cover.
3. Open sensor cover. Cover is hinged to housing. (Pull cover up, then back to open.)
4. Carefully disconnect J1(I/O) and J2(I/O) plugs from Output Interface CCA.
5. Remove green ground wire from case.
6. Remove Output Interface CCA by gently pulling off from Main CCA.

A1.8.5.2 Removal of Main CCA

Refer to Figures 3 and 4 for removal of Main CCA.

WARNING

Remove power to unit prior to opening sensor cover or injuries could result from electrical shock.

CAUTION

This is a Class 1 ESDS item. ESD precautions must be taken prior to opening sensor cover or equipment damage could result.

1. Switch 115 VAC power to 0872E3 off. Disconnect J1(IDS).
2. Loosen captive screws on sensor cover.
3. Open sensor cover. Cover is hinged to housing (pull cover up, then back to open.)
4. Remove Output Interface CCA per paragraph 6.5.1.
5. Remove plastic terminal block cover mounted on snap-on standoffs.
6. Remove terminal screws #1, #2, and #3 with a flat-tip screwdriver. The lugs on these wires are closed-ended.
7. Carefully remove select capacitor C7. Depress latch and pull capacitor straight upward. (This capacitor will be reinstalled on the replacement CCA.)
8. Carefully disconnect J2(MAIN), J3(MAIN), and J4(MAIN) plugs from main CCA.
9. Remove two remaining wires from terminal block (see Figures 3 and 4).
10. Remove Main CCA mounting screws.
11. Remove Main CCA from sensor housing.

A1.8.5.3 Removal of Strut and Probe Assembly from Heat Sink

Refer to Figure 3 for removal of strut and probe assembly from heat sink.

WARNING

Remove power to unit prior to opening sensor cover or injuries could result from electrical shock.

CAUTION

This is a Class 1 ESDS item. ESD precautions must be taken prior to opening sensor cover or equipment damage could result.
NOTE

Strut and probe replacement can be done at any ambient temperature, however, the unit should be field calibrated only when the ambient temperature is between -10°C and +10°C (see paragraph 6.7).

1. Switch 115VAC power to 0872E3 off. Disconnect J1(IDS).
2. Place protective tube over strut and probe.
3. Loosen captive bolts on sensor cover.
4. Open sensor cover. Cover is hinged to housing (pull cover up, then back to open).
5. Carefully remove select capacitor C7. Depress latch and pull capacitor straight out.
6. Carefully disconnect connectors P3(I/O) and P4(I/O) from J3(MAIN) and J4(MAIN). Remove black grommet from hole in top of housing.

NOTE

Some early units have a small amount of silicone RTV sealing the hole in the housing in place of the grommet. The RTV should be carefully removed prior to strut removal so that the connectors can be routed through the housing and heat sink.

7. Remove four strut mounting screws securing strut to heat sink.
8. Remove strut and probe assembly from heat sink. Carefully feed connectors through the housing and heat sink as the strut is removed.
9. Remove and examine strut and probe O-ring.

A1.8.5.4 Removal of Programmed EPROM

WARNING

Remove power to unit prior to opening sensor cover or injuries could result from electrical shock.

CAUTION

This is a Class 1 ESDS item. ESD precautions must be taken prior to opening sensor cover or equipment damage could result.

1. Switch 115VAC power to 0872E3 off. Disconnect J1(IDS).
2. Loosen captive bolts on sensor cover.
3. Open sensor cover. Cover is hinged to housing (pull cover up, then back to open.)
4. Remove Output Interface CCA per paragraph 5.5.1.
5. The EEPROM is located in the lower left corner of the Main CCA. It is distinguished from other components by the socket eject levers used to secure and remove the component from the socket. Push tabs on socket eject levers outward to lift and remove EPROM from Main CCA.
A1.8.5.5 Removal of Filter Assembly

Refer to Figures 3 and 4 for removal of Filter Assembly.

WARNING

Remove power to unit prior to opening sensor cover or injuries could result from electrical shock.

CAUTION

This is a Class 1 ESDS item. ESD precautions must be taken prior to opening sensor cover or equipment damage could result.

1. Switch 115VAC power to 0872E3 off. Disconnect J1(IDS) and J2(IDS).
2. Loosen captive bolts on sensor cover.
3. Open sensor cover. Cover is hinged to housing (pull cover up, then back to open).
4. Remove jam nut securing J1(IDS) connector to housing.
5. Disconnect wires from line filter at terminal block J1(MAIN), terminals 1 and 2.
6. Disconnect green/yellow wire (originating at line filter) from ground stud.
7. Remove two shoulder nuts securing line filter to housing.
8. Remove J1(IDS) connector and line filter from housing.

A1.8.6 Assembly

Refer to Figures 3 and 4 for installation of FRUs.

A1.8.6.1 Installation of Main CCA

1. Ensure that 115VAC power to 0872E3 is off and J1(IDS) is disconnected.
2. Install Select Capacitor C7 into replacement Main CCA.
3. Position Main CCA into housing with terminal block to the bottom side (ground lug side) of the housing.
4. Install Main CCA mounting screws.
5. Install latching electrical connectors J2(MAIN), J3(MAIN) and J4(MAIN).
6. Position wires on terminal block and tighten terminal screws.
 • Blue wire to terminal #1
 • White wire from terminal #1 to terminal #4
 • Brown wire to terminal #2
 • Black wire from terminal #2 to terminal #5
 • Green wire (from ground stud) to terminal #3
7. Torque terminal block screws to 9 in-lbs.
8. Snap plastic terminal block cover in place.
9. Install Output Interface CCA per paragraph 5.6.2.
10. Position cover on housing.
11. Torque cover mounting screws to 28 in-lbs.
12. Perform “System Verification” (paragraph 6.8).
A1.8.6.2 Installation of Output Interface CCA

1. Ensure that 115VAC power to 0872E3 is off.
2. Align four plastic standoffs with corresponding holes on Main CCA and snap in place.
3. Install green ground wire to internal ground stud.
4. Install plugs J1(I/O) and J2(I/O) in receptacles on Output Interface CCA.
5. Perform “System Verification” (paragraph 5.8).

A1.8.6.3 Installation of Strut and Probe Assembly

1. Ensure that 115VAC power to 0872E3 is off and J1(IDS) is disconnected.
2. Replacement select capacitor is provided with the spare strut and probe assembly. Install select capacitor into Main CCA location C7.
3. Install O-ring in channel in strut. Feed probe and heater wires through heat sink into housing.
4. Carefully position strut and probe assembly on heat sink taking care not to pinch any wires.
5. Secure strut and probe assembly to heat sink with four screws. Torque to 12 in-lbs.
6. Connect probe electrical connectors P3(I/O) and P4(I/O) at J3(MAIN) and J4(MAIN).
7. Route wires through grommet and press grommet into hole in top of hole (about two-thirds of grommet should be inside hole).
8. Position cover on housing.
9. Torque cover mounting screws to 28 in-lbs.
10. Remove protective tube from strut and probe.
11. Perform “System Verification” (paragraph 6.8).

A1.8.6.4 Installation of Programmed EPROM

1. Ensure that 115VAC power to 0872E3 is off and J1(IDS) is disconnected.
2. Orient replacement EPROM so that the notch faces the same direction as other integrated circuits on the CCA. Push EPROM evenly into socket until it is fully seated and eject levers clamp into place.

It may be necessary to squeeze the eject levers together slightly to fully seat the EPROM.

3. Install Output Interface CCA per paragraph 5.6.2
4. Perform steps 10 and 11 of paragraph 5.6.1 (Installation of Main CCA).
5. Perform “System Verification” (paragraph 5.8).
A1.8.6.5 Installation of Filter Assembly

Refer to Figures 3 and 4 for installation of filter assembly.

1. Install line filter onto housing studs so that side of filter with two leads face down.
2. Secure line filter to housing using lockwasher and shoulder nut (two places). Torque to 8 in-lbs.
3. Remove jam nut from connector. Insert connector through D-hole in housing and secure with jam nut.

NOTE
Ensure connector O-ring remains in the groove. Torque jam nut to 80 in-lbs.

4. Perform “System Verification” (paragraph 6.8).

A1.8.7 Field Calibration

Field Calibration of the 0872E3 may be required after replacement of the Strut and Probe Assembly or Main CCA. Field calibration should be invoked if the “Z1” frequency of a clean and dry probe at 0 ± 10°C is less than 39970 Hz or greater than 40030 Hz. Calibration should not be performed under any of the following conditions:

- Temperature is greater than 10°C or less than -10°C.
- Freezing rain or snow has accreted on the sensing probe.
- Liquid water or other contaminants are visible on the probe.
- Within 20 minutes of a “Z3” (de-ice) command.
- Z1 or Z4 commands indicate a fail condition

A1.8.7.1 Calibration Procedure

1. Insure temperature is 0 ± 10°C and the probe is clean and dry.
2. Type “F5”.
3. Type “Y” when prompted.
4. Wait one minute.
5. Type “Z1”. The 0872E3 should respond with “ZPXXXXXYY”. “XXXXX” represents the probe frequency and should be between 39995 and 40005.

A1.8.8 System Verification

1. Ensure connectors J1(IDS) and J2(IDS) are attached to the 0872E3 and 115VAC power to the 0872E3 is on.
2. Type “Z1”. The 0872E3 should respond with “ZPXXXXXYY”. “XXXXX” represents the probe frequency. If probe is clean and dry and the ambient temperature is 0° ± 10°C, the probe frequency should be between 39970 and 40030.
3. Type “Z4”. The 0872E3 should respond with “ZP E3”.
4. Type “Z302”. The 0872E3 should respond with “ZDOK51”.

A-12
Figure 4. Assembly Drawing

<table>
<thead>
<tr>
<th>Item Name</th>
<th>Manufacturer’s Part Number</th>
<th>CAGE Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main CCA</td>
<td>00872-0150-0003</td>
<td>59885</td>
</tr>
<tr>
<td>Output Interface CCA</td>
<td>00872-0149-0002</td>
<td>59885</td>
</tr>
<tr>
<td>Strut and Probe Assembly</td>
<td>00872-0286-0002</td>
<td>59885</td>
</tr>
<tr>
<td>Filter Assembly</td>
<td>00872-0325-0001</td>
<td>59885</td>
</tr>
<tr>
<td>Programmed EPROM</td>
<td>00872-0151-0003</td>
<td>59885</td>
</tr>
</tbody>
</table>
A1.8.9 Output Interface Circuit

The Output Interface CCA contains all the necessary electronics to convert the RS-232 signal from the Main CCA to a current pulse output. Standard RS-232 output is also available.

A1.8.10 Electrical Connections

Electrical Connections to the 0872E3 are made at the two main unit connectors located on the outside of the housing. Connector J1(IDS) connects power to the 0872E3. J2(IDS) connects the RS-232 and current loop signal lines to the 0872E3.

![Diagram of J1(IDS) Power Connector](image)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>115 VAC hot</td>
</tr>
<tr>
<td>B</td>
<td>115 VAC Neutral</td>
</tr>
<tr>
<td>C</td>
<td>Case Ground</td>
</tr>
</tbody>
</table>
J2(IDS) Power Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>RS-232Tx</td>
</tr>
<tr>
<td>B</td>
<td>RS-232Rx</td>
</tr>
<tr>
<td>C</td>
<td>RS-232 Signal Gnd.</td>
</tr>
<tr>
<td>D</td>
<td>Unused</td>
</tr>
<tr>
<td>E</td>
<td>Unused</td>
</tr>
<tr>
<td>F</td>
<td>Current Loop Rx+</td>
</tr>
<tr>
<td>G</td>
<td>Current Loop Rx-</td>
</tr>
<tr>
<td>H</td>
<td>Current Loop Tx+</td>
</tr>
<tr>
<td>J</td>
<td>Current Loop Tx-</td>
</tr>
<tr>
<td>K</td>
<td>Unused</td>
</tr>
</tbody>
</table>
Appendix B. FCC Compliancy

B2.1 FCC Compliancy Statement

<table>
<thead>
<tr>
<th>1 TEST SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Report #:</td>
</tr>
<tr>
<td>Company:</td>
</tr>
<tr>
<td>Requester:</td>
</tr>
<tr>
<td>Phone:</td>
</tr>
<tr>
<td>Test Date(s):</td>
</tr>
<tr>
<td>Equipment Under Test:</td>
</tr>
<tr>
<td>General Test Summary:</td>
</tr>
<tr>
<td>Original Grant or Permissive Change:</td>
</tr>
<tr>
<td>Verification/Certification Status:</td>
</tr>
<tr>
<td>Modifications Necessary for Compliance:</td>
</tr>
<tr>
<td>Tested By:</td>
</tr>
<tr>
<td>Report Written By:</td>
</tr>
<tr>
<td>Approval/NVLAP Signatory:</td>
</tr>
</tbody>
</table>

Figure 6. FCC Compliancy Statement
Appendix C. Specification Drawings

3.1 0872E3 Specification Drawing
<table>
<thead>
<tr>
<th>REV.</th>
<th>PAGE</th>
<th>PARA.</th>
<th>CHANGE DESCRIPTION</th>
<th>ECO NO.</th>
<th>APP</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1-8</td>
<td>-</td>
<td>DWG RELEASE</td>
<td>038711</td>
<td>86</td>
<td>8/1/44</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td></td>
<td>In ESD Caution statement chg. DOD- HDBK To: MIL-HDBK</td>
<td>038576</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>Spec. 2.1 -- Fr: Rosemount, To: Rosemount Aerospace Inc.</td>
<td></td>
<td>85</td>
<td>1/4/18</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>Add +/- to. to .43, 1.00 dim.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>View A-A, View B-B, View C-C ---- add +/- tol. to dims.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>16</td>
<td></td>
<td>In View C-C change dim. from: 1.50 (38.1) To: 1.4 +/- .2 (36.6).</td>
<td>038687</td>
<td>RA1</td>
<td>9/18/18</td>
</tr>
</tbody>
</table>
1.0 SCOPE

This specification establishes the performance design and test requirements for the Ice Detection Sensor (IDS) to be used by the Canadian Atmospheric Environment Service (AES).

2.0 APPLICABLE DOCUMENTS

In the event of conflict between the documents referenced herein and the contents of this specification, the contents of this specification shall be considered the superseding requirement.

2.1 AES DOCUMENTS

S009 Statement of Work for Rosemount Aerospace Inc.
Ice Detection Sensor

2.2 RMTAERO DOCUMENTS

D9420132 Acceptance Test Procedure - Model 0872E3
D9320557 Burn-In Test Procedure - Model 0872E3

3.0 DESIGN REQUIREMENTS

3.1 PERFORMANCE

The IDS shall be capable of detecting freezing rain whenever ice has accreted to 0.005 inches on the probe. The IDS shall output the probe frequency that has been normalized over a one minute period using the data communications link as described in the following paragraphs. The output probe frequency shall have a resolution of 1 Hz. After a deice cycle the IDS shall be capable of detecting ice after a cool down period of 5 minutes nominal and 15 minutes maximum.

3.1.1 INSTALLATION

The IDS shall be mounted on a pole such that the sensing probe is pointing vertically up.

3.1.2 COMMUNICATION REQUIREMENTS

The IDS will be interrogated once per minute by the host system. The host system will send ASCII characters to the IDS and will wait for the appropriate response. The communication link will consist of an standard RS-232C datalink or a modification of an AES designed digital current loop (See Appendix A.) Control characters and control procedures shall be compatible with ANSI X3.28 and ANSI X 3.66 respectively. The data format shall consist of the following:
Data format:
- 1 Start bit
- 8 Data bits
- 1 Stop bit
- No Parity
- 300 Baud
- Full Duplex
- Serial Asynchronous
- Configured as Data Terminal Equipment (DTE)

There are four interrogation request modes:

<table>
<thead>
<tr>
<th>Request</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>Send Routine Data</td>
</tr>
<tr>
<td>Z3XX</td>
<td>Perform Deice Cycle</td>
</tr>
<tr>
<td>Z4</td>
<td>Perform Extended Diagnostics</td>
</tr>
<tr>
<td>P5</td>
<td>Field Calibration</td>
</tr>
</tbody>
</table>

3.1.2.1 RESPONSE TO Z1 REQUEST

The IDS shall send the following data in response to a Z1 request. Z1 requests will be exercised once per minute.

Message to Z1 Request - Example: ZP 40000

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start of Transmission</td>
<td>STX</td>
</tr>
<tr>
<td>2</td>
<td>Carriage Return</td>
<td>CR</td>
</tr>
<tr>
<td>3</td>
<td>Line Feed</td>
<td>LF</td>
</tr>
<tr>
<td>4</td>
<td>Sensor ID</td>
<td>Z</td>
</tr>
<tr>
<td>5</td>
<td>Sensor Status</td>
<td>P/F/D (See Note 1)</td>
</tr>
<tr>
<td>6</td>
<td>Failure Code</td>
<td>X (See Note 2)</td>
</tr>
<tr>
<td>7-11</td>
<td>Probe Frequency</td>
<td>XXXXX (See Note 3)</td>
</tr>
<tr>
<td>12-13</td>
<td>Checksum</td>
<td>YY (See Note 4)</td>
</tr>
<tr>
<td>14</td>
<td>End of Transmission</td>
<td>ETX</td>
</tr>
<tr>
<td>15</td>
<td>Carriage Return</td>
<td>CR</td>
</tr>
<tr>
<td>16</td>
<td>Line Feed</td>
<td>LF</td>
</tr>
</tbody>
</table>
Note 1 - The Sensor status is a single byte representing pass (P), fail (F), or debris (D). Pass (P) shall indicate that the IDS is fully operational. Fail (F) shall indicate the internal diagnostics of the IDS has detected a failure. Debris (D) shall indicate that the IDS is in the debris mode. When the IDS reports a "D", the actual probe frequency will continue to be reported. When the IDS reports an "F", the reported frequency will be invalid.

Note 2 - The Failure Code will be blank when the IDS reports a sensor status of "P" or "D". When the sensor status reports an "F", the Failure Code shall be as follows:

1 - Probe Frequency Failure: \(\leq 38,400 \text{ Hz} \) or \(\geq 41,500 \text{ Hz} \)
2 - Probe/strut Heater Failure
3 - Electronics Failure

Note 3 - The reported probe frequency shall be the probe frequency that has been averaged over the previous one minute and normalized to 40,000 Hz. The following formula shall be used:

\[
\text{Normalized Frequency} = \frac{\text{One Minute Average Frequency}}{40,000} - \text{Stored calibration frequency}
\]

The last part of the equation provides an offset to the actual probe frequency and allows for correcting minor drifting of the probe frequency due to aging.

Note 4 - The checksum shall be the sum of all bytes preceding the checksum byte using modulo 256 to calculate the value of the checksum.

3.1.2.2 Response to Z3XX Request

The Z3 request for debris shall be accompanied by a two byte suffix; i.e. Z3XX. The numerical values of XX shall be between 01 and 60 and represent the amount of time, in seconds, that the sensor is to turn on its debris heaters. Numerical values greater than 60 seconds will be ignored by the IDS.

Message Response to Z3XX Poll - Example: ZDOK
3.1.2.3 Response to Z4 Request

This response sends the results of the sensor extended diagnostics routine.

Message Response to Z4 Poll - Example: ZF2

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start of transmission</td>
<td>STX</td>
</tr>
<tr>
<td>2</td>
<td>Carriage return</td>
<td>CR</td>
</tr>
<tr>
<td>3</td>
<td>Line feed</td>
<td>LF</td>
</tr>
<tr>
<td>4</td>
<td>Sensor ID</td>
<td>Z</td>
</tr>
<tr>
<td>5</td>
<td>Sensor Status</td>
<td>D</td>
</tr>
<tr>
<td>6-8</td>
<td>Deice Acknowledgement</td>
<td>OK (Note 1)</td>
</tr>
<tr>
<td>9</td>
<td>Checksum</td>
<td>YY</td>
</tr>
<tr>
<td>10</td>
<td>End of transmission</td>
<td>ETX</td>
</tr>
<tr>
<td>11</td>
<td>Carriage return</td>
<td>CR</td>
</tr>
<tr>
<td>12</td>
<td>Line feed</td>
<td>LF</td>
</tr>
</tbody>
</table>

Note 1. The IDS status is a single byte representing pass or fail, "P" or "F" of the sensor’s extended diagnostics or deice, "D", when the sensor is in the deice mode.

Note 2. The 3XX command is received and the heaters are turned on.

Note 3. The byte values shall be sent only after the command is received and the heaters are turned on.
Note 2. The Failure Code will be blank, " ", when the sensor status is "P" or "D". When the sensor status is an "F", the Failure Code shall be as follows:

"1" - Probe Failure
"2" - Prove Deflecting Heater Failure
"3" - Electronics Failure

Note 3. The checksum should be calculated using the modulo 256 summation of all bytes preceding the checksum byte.

3.1.2.4 Response to F5 Request

The IDS shall respond to a F5 request with the following:

"Recalibrate? Y or N"

The IDS shall respond at the completion of the recalibration cycle with the message that shows the effort has been successfully completed and with the recalibration frequency.

Message Response to F5 Poll - Example: ZP 39998

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start of transmission</td>
<td>STX</td>
</tr>
<tr>
<td>2</td>
<td>Carriage return</td>
<td>CR</td>
</tr>
<tr>
<td>3</td>
<td>Line feed</td>
<td>LF</td>
</tr>
<tr>
<td>4</td>
<td>Sensor ID</td>
<td>Z</td>
</tr>
<tr>
<td>5</td>
<td>Sensor Status</td>
<td>P/F/D</td>
</tr>
<tr>
<td>6</td>
<td>Failure Code</td>
<td>X</td>
</tr>
<tr>
<td>7-11</td>
<td>Calibration Frequency</td>
<td>XXXXX (Note 1)</td>
</tr>
<tr>
<td>11-13</td>
<td>Checksum</td>
<td>YY</td>
</tr>
<tr>
<td>14</td>
<td>End of transmission</td>
<td>ETX</td>
</tr>
<tr>
<td>15</td>
<td>Carriage return</td>
<td>CR</td>
</tr>
<tr>
<td>16</td>
<td>Line feed</td>
<td>LF</td>
</tr>
</tbody>
</table>

Note 1. Bytes 7-11 represent the frequency to which the sensor is calibrated. This frequency is used to obtain the normalized frequency as described in Paragraph 3.1.2.1, Note 3.
Note 2. Sensor re-calibration using the F5 request may be performed on an "as required" basis. The probe must be clean and free of ice and other foreign matter before performing the re-calibration. The ambient temperature shall be 0±10°C at the time of the recalibration.

3.2 POWER REQUIREMENTS

The IDS shall operate from 115±10 VAC, 60±5 Hz, single phase power. The basic electronic system shall require a maximum of 10 Watts. Heaters shall be provided to remove ice from the probe and shall require a maximum 385 watts during the deicing mode. The deice function shall be upon command of the host system. External and internal ground studs shall be supplied as specified in paragraph 3.6.

3.3 SELF TEST

The system shall be capable of performing three classes of tests: (1) continuous self-testing that runs automatically, (2) self-test every 10 hours to check heater continuity, and (3) specific tests plus sensor dialogue that are run on demand in response to an external command (See paragraph 3.4). The operation of the self-testing software shall not interfere with the collection, processing, storage or reporting of data. Tests that are run on demand shall be designed to be performed locally to isolate problems when an actual or perceived failure has occurred.

The continuous self-test shall be designed to detect any out of tolerance conditions. Internal power supplies of the IDS shall be continuously monitored for proper operation. The continuous self-test shall test the following for failure and out of tolerance conditions as required to meet a 95% confidence factor:

- Heater continuity
- Probe Frequency
- External RAM
- Non-volatile Calibration Checksum
- I/O Port Operation
- Power Supply Voltage
- Software Cycle Timing

A watchdog timer/power monitor circuit shall be incorporated into the design of the IDS to monitor the operation of the microcontroller. In normal operation, the microcontroller circuit will input a pulse into the watch dog timer circuit approximately every second. If the watch dog does not receive this pulse, it shall cause the microprocessor to go into a reset condition, which will re-initialize the microcontroller. The power monitor circuit shall cause the microcontroller to reset any time the internal 5.0 VDC power supply voltage drops below and then rises above 4.65 VDC.

All detected failures shall be logged into a non-volatile RAM circuit for failure analysis at a repair facility at a later time. Any logged failure(s) shall be capable of being cleared from the non-volatile RAM by an appropriate method.
3.4 EXTENDED BIT

Additional on command diagnostic capabilities shall be provided for those faults that cannot be detected by the internal self test. These additional tests consist of ROM checksum and heater control circuit checks. These additional functions shall be performed through commands of the host system (Z4 Command).

Any detected failures shall be logged into a non-volatile RAM circuit and be removable as described in paragraph 3.3.

3.5 LOGISTICS

3.5.1 MAINTAINABILITY

3.5.1.1 MEAN TIME TO REPAIR

The IDS shall demonstrate at the Field Replaceable Unit (FRU) level, a mean time to repair (MTTR) which is less than 30 minutes at a 95% confidence level. The MTTR shall include the time required to fault detect, fault isolate, remove and replace the faulty FRU and perform a checkout and any necessary calibration of the subsystem.

3.5.1.2 SERVICEABILITY

All modules, circuit boards, or other components shall be readily-accessible. External connectors and fasteners shall be readily-accessible to allow for easy field replacement of the unit.

3.5.1.3 CALIBRATION AND PREVENTIVE MAINTENANCE

The IDS shall be designed to eliminate or minimize the need for equipment adjustments, alignments, and calibrations. Preventive maintenance, as required, shall not be necessary more frequently than every 180 days. This includes any servicing that may be needed to clean the sensor probe.

3.5.2 RELIABILITY

3.5.2.1 REQUIRED MTBF

The IDS shall have an MTBF in excess of 33,333 hours, while operating in a ground fixed environment. This reliability prediction shall be based on MIL-HDBK-217 and shall assume an ambient operating temperature of 40°C for the calculations.
3.5.2.2 DERATING OF ELECTRONIC PARTS AND MATERIALS

In the application of electronic parts and materials, the parts and materials selected shall be used within their electrical ratings and environmental capabilities. Derating shall be accomplished as necessary to assure the required equipment reliability within the specified operating conditions. Parts derating guidelines or requirements shall be based on MIL-HDBK-217.

3.6 EQUIPMENT SAFETY

Commercial power input shall be in accordance with National Fire Protection Association (NFPA) 70. The design and construction of the equipment, shall insure that all external parts, surfaces, and shields are at ground potential at all times during normal operation.

A grounding stud on the electrically conductive chassis shall serve as the common tie point for static and safety grounding. The path from the tie point to ground shall be continuous and permanent, shall have ample carrying capacity to safely conduct any fault currents that may be imposed upon it, shall have impedance sufficiently low to limit the potential above ground, and shall have sufficient mechanical strength to minimize possibility of ground disconnection.

Access covers shall be attached or hinged in such a manner as to insure that they are at the same ground potential as the equipment whether in a closed or open position.

3.7 DESIGN AND CONSTRUCTION

3.7.1 FUNGUS-INERT MATERIAL

Only inherently fungus-inert materials shall be used except that the other materials may be used in hermetically sealed assemblies or other specifically approved items.

3.7.2 ELECTRICAL CONNECTORS

The IDS shall incorporate the following electrical connectors as shown on sheet 16, view A-A.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>115 VAC Power Input</td>
</tr>
<tr>
<td>B</td>
<td>115 VAC Neutral (Power Return)</td>
</tr>
<tr>
<td>C</td>
<td>Case Ground (Safety)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE</th>
<th>CASE CODE</th>
<th>DRAWING NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>59888</td>
<td>0872E3</td>
</tr>
</tbody>
</table>

ROSEMOUNT AEROSPACE INC.
EASTON, MARYLAND

C-10
Appendix C

C-11

J2: Signal Connector, Bendix PT07SE-12-10P

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>RS232Tx</td>
</tr>
<tr>
<td>B</td>
<td>RS232 Rx</td>
</tr>
<tr>
<td>C</td>
<td>RS232 Signal Ground</td>
</tr>
<tr>
<td>D</td>
<td>Unused</td>
</tr>
<tr>
<td>E</td>
<td>Unused</td>
</tr>
<tr>
<td>F</td>
<td>Current Loop Rx,</td>
</tr>
<tr>
<td>G</td>
<td>Current Loop Rx,</td>
</tr>
<tr>
<td>H</td>
<td>Current Loop Tx,</td>
</tr>
<tr>
<td>I</td>
<td>Current Loop Tx,</td>
</tr>
<tr>
<td>K</td>
<td>Unused</td>
</tr>
</tbody>
</table>

3.7.3 CSA REQUIREMENTS

The IDS shall be designed and constructed for certification to Canadian Electrical Code, Part 1. Each IDS shall be tested for dielectric strength, J1 pins 1 and 2 to J1 pin 3 (case ground) at 1414 VDC for one minute.

3.7.4 INTERCHANGEABILITY

Provisions shall be made for design tolerances such that items having the dimensions and characteristics permitted by the item specification may be used as replacements without selection or departure from the specified equipment. When the item specification provides more than one characteristic or tolerance, the item having the broadest characteristics and tolerances that will fulfill the equipment performance requirements shall be used. However, delays in development or production caused by procurement time required for such items may be avoided by substitution of readily available acceptable items of higher quality.

3.7.5 ELECTROSTATIC DISCHARGE REQUIREMENT

The IDS shall not require special ESD handling requirements when all covers are in place. If the IDS uses ESD sensitive devices, appropriate ESD warning labels shall be affixed to the outside of the unit, easily visible to maintenance personnel.
3.7.6 EXTERNAL FINISHES

The IDS shall have corrosion resistant external finishes to the environmental conditions as specified in paragraph 3.8.1. As a minimum, the strut, heatsink and all portions of the strut shall be clear anodized per MIL-A-8625, Type III, Class 2; the sensing probe shall be electroless nickel plated per MIL-C-26074B, Class I, Grade B; the housing shall be finished with 2 coats of gloss acrylic white paint over a chemical conversion coat per MIL-C-5541, Class 3.

3.7.7 CURRENT LOOP COMMUNICATION

The IDS shall incorporate a current loop communication port in addition to the standard RS-232C communication port. The current loop shall be per Appendix A. Any deviation from this design shall require the approval of AES.

3.8 ENVIRONMENTAL CONDITIONS

3.8.1 OPERATIONAL ENVIRONMENT

The IDS shall be designed, fabricated, and tested to withstand the environmental conditions anticipated at any site encountered in Canada. The IDS shall be designed to operate in those environments 24 hours a day, 365 days a year. Table A is a detailed listing of the maximum environmental requirement that the IDS shall be fully capable of operating in.
<table>
<thead>
<tr>
<th>Environmental Conditions</th>
<th>Operational Test Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Temperature</td>
<td>50°C</td>
</tr>
<tr>
<td>Low Temperature</td>
<td>-50°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>74% RH 35°C to</td>
</tr>
<tr>
<td></td>
<td>100% RH @ 25°C</td>
</tr>
<tr>
<td>Wind (Steady)</td>
<td>to 30 kts</td>
</tr>
<tr>
<td>Wind (Gust)</td>
<td>to 46 kts</td>
</tr>
<tr>
<td>Rain</td>
<td>to 3"/hr with 30 kts wind</td>
</tr>
<tr>
<td>Freezing Rain</td>
<td>ice accretion to 1 inch with 20 kt wind at a rate of ½ inch per hour</td>
</tr>
<tr>
<td>Dust</td>
<td>Exposure to dust laden environment</td>
</tr>
<tr>
<td>Insolation (Sunshine)</td>
<td>Heat build up when exposed to 90 watts/ft² at 50°C</td>
</tr>
<tr>
<td>Low Pressure</td>
<td>to 15.7 in. Hg</td>
</tr>
<tr>
<td>Electromagnetic Interference</td>
<td>Exposure to airport environment</td>
</tr>
<tr>
<td></td>
<td>In addition, the IDS shall meet the requirements of paragraph 3.8.2</td>
</tr>
<tr>
<td>Salt fog</td>
<td>Exposure normal to coastal marine environment</td>
</tr>
<tr>
<td>Vibration (Handling)</td>
<td>Exposure normal to transit handling procedures via common carrier 3-5 Hz with acceleration of 1G</td>
</tr>
<tr>
<td>Vibration (Handling Shock)</td>
<td>Up to 22 inch drop (in shipping container)</td>
</tr>
</tbody>
</table>
3.8.2 EMI EMISSION/PROTECTION REQUIREMENTS

3.8.2.1 DOC EMISSION REQUIREMENTS

The IDS shall meet the CSA type approval requirements for "Electromagnetic Emissions from Data Processing Equipment and Electronic Office Machines" CSA Document Number C108.8-M2983 or the Federal Communications Commission (FCC) type approval requirements for Part 15, Subpart B of the Code or Federal Regulations for Class A Digital Devices. Type approval testing is required and the IDS must be certified as compliant with the above requirements.

3.8.2.2 PROTECTION REQUIREMENTS

The IDS shall meet the susceptibility requirements of MIL-STD-461C, Part 7 and Part 10. "Electromagnetic Interference Characteristics, Requirements for Equipment" as follows:

- **CS01** Conducted Susceptibility, Power Leads, 30 Hz - 50 KHz
- **CS02** Conducted Susceptibility, Power and Interconnecting Control Leads, 0.05 - 400 MHz
- **CS06** Conducted Susceptibility, Spikes, Power Leads
- **UM05** Requirements for Commercial Electrical Equipment and Electromechanical Equipment (Group 1), paragraph 3.2.3 Radiated Susceptibility.

The IDS shall be tested to show compliance to the above requirements.

4.0 NAMEPLATE INFORMATION

The following information shall be contained as a minimum on the nameplate:

- **IC R DETECTION SENSOR**
- **MODEL 0872E3**
- **SERIAL NUMBER XXXX**
- **CAGE CODE 59885**
- **ROSEMOUNT AEROSPACE INC**
- **BURNNSVILLE, MN 55306**
CAUTION - ELECTROSTATIC SENSITIVE DEVICE, REMOVE ELECTROSTATIC PROTECTION AT USE OR IN PROTECTIVE AREA, REUSE PACKAGING MATERIALS FOR THE UNSERVICEABLE ITEM; SEE MIL-HDBK-283 FOR PROTECTIVE HANDLING OR TESTING MEASURES FOR THIS ITEM. THIS IS A CLASS 1 ESDS ITEM, WHEN THE COVER IS OPEN.

COVER HINGES ON THIS SIDE OF HOUSING.

STRUT AND PROBE PROTECTIVE COVERS MUST BE REMOVED AT INSTALLATION, RETAIN FOR SHIPMENT OF UNSERVICEABLE ITEMS.

TORQUE M-6 COVER MOUNTING SCREWS TO 20.0 IN-LBS.

EXTERNAL GROUNDING WIRE TO BE ATTACHED BETWEEN TWO EXITING NUTS. TORQUE SHOULD NOT EXCEED 7.0 FT-LBS (04 IN-LBS).

NOTES: UNLESS OTHERWISE SPECIFIED
VIEW A-A

VIEW B-B

VIEW C-C

Rosemount Aerospace Inc.

Engineering Changes Shall Be Incorporated By The Design Activity.

DR G.JENSEN 940589
CRD SLS 940813

SIZE CASE CODE DRAWING NO. 0872E3
52885 1:14 SHEET 16
APPENDIX A
Please visit www.campbellsci.com to obtain contact information for your local US or International representative.