
IN
ST

R
U

C
T

IO
N

 M
A

N
U

A
L

BMP5 Direct SDK
Revision: 9/17

C o p y r i g h t © 2 0 0 4 - 2 0 1 7
C a m p b e l l S c i e n t i f i c , I n c .

Campbell Scientific, Inc.
BMP5 SDK End User License
Agreement (EULA)
NOTICE OF AGREEMENT: Please carefully read this EULA. By installing or using this software, you are
agreeing to comply with the terms and conditions herein. The term "developer" herein refers to anyone using this
BMP5 Direct SDK.

By accepting this agreement, you acknowledge and agree that Campbell Scientific may from time-to-time, and
without notice, make changes to one or more components of the SDK or make changes to one or more components
of other software on which the SDK relies. In no instance will Campbell Scientific be responsible for any costs or
liabilities incurred by you or other third parties as a result of these changes.

The core operational files included with this BMP5 Direct SDK (hereinafter referred to as “BMP5 Direct
Binaries”) include the files: SimplePB.DLL and coralib3d.dll. Developer may distribute or sell their software
including the BMP5 Direct Binaries subject to the terms hereafter set forth.

RELATIONSHIP

Campbell Scientific, Inc. hereby grants a license to use BMP5 Direct Binaries in accordance with the license
statement above. No ownership in Campbell Scientific, Inc. patents, copyrights, trade secrets, trademarks, or trade
names is transferred by this Agreement. Developer may use these BMP5 Direct Binaries to create as many
applications as desired and freely distribute them. Campbell Scientific, Inc. expects no royalties or any other
compensation. Developer is responsible for supporting applications created using the BMP5 Direct Binaries.

RESPONSIBILITIES OF DEVELOPER

The Developer agrees:

• To provide a competent programmer familiar with Campbell Scientific, Inc. datalogger programming to write
the applications.

• Not to sell or distribute documentation on use of the BMP5 Direct Binaries.

• Not to sell or distribute the applications that are provided as examples in the BMP5 Direct SDK.

• To develop original works. Developers may copy and paste portions of the code into their own applications,
but their applications are expected to be unique creations.

• This Agreement does not give Developer the right to sell or distribute any other Campbell Scientific, Inc.
Software (e.g., PC200W, VisualWeather, LoggerNet or any of their components, files, documentation, etc.) as
part of Developer's application. Distribution of any other Campbell Scientific, Inc. software requires a
separate distribution agreement.

• Not to sell or distribute applications that compete directly with any application developed by Campbell
Scientific, Inc. or its affiliates.

• Not to use Campbell Scientific’s name, trademarks, or service marks in connection with any program you
develop with the SDK. You may not state or infer in any way that Campbell Scientific endorses any program
you develop, unless prior written approval is received from Campbell Scientific.

• To assure that each application developed with BMP5 Direct Binaries clearly states the name of the person or
entity that developed the application. This information should appear on the first window the user will see.

WARRANTY

There is no written or implied warranty provided with the BMP5 Direct SDK software other than as stated herein.
Developer agrees to bear all warranty responsibility of any derivative products distributed by Developer.

TERMINATION

Any license violation or breach of Agreement will result in immediate termination of the developer's rights herein
and the return of all BMP5 Direct SDK materials to Campbell Scientific, Inc.

MISCELLANEOUS

Notices required hereunder shall be in writing and shall be given by certified or registered mail, return receipt
requested. Such notice shall be deemed given in the case of certified or registered mail on the date of receipt. This
Agreement shall be governed and construed in accordance with the laws of the State of Utah, USA. Any dispute
resulting from this Agreement will be settled in arbitration.

This Agreement sets forth the entire understanding of the parties and supersedes all prior agreements,
arrangements and communications, whether oral or written pertaining to the subject matter hereof. This
Agreement shall not be modified or amended except by the mutual written agreement of the parties. The failure of
either party to enforce any of the provisions of this Agreement shall not be construed as a waiver of such
provisions or of the right of such party thereafter to enforce each and every provision contained herein. If any
term, clause, or provision contained in this Agreement is declared or held invalid by a court of competent
jurisdiction, such declaration or holding shall not affect the validity of any other term, clause, or provision herein
contained. Neither the rights nor the obligations arising under this Agreement are assignable or transferable.

If within 30 days of receiving the BMP5 Direct SDK product developer does not agree to the terms of license,
developer shall return all materials without retaining any copies of the product and shall remove any use of the
BMP5 Direct Binaries in any applications developed or distributed by Developer. In the absence of such return,
CSI shall consider Developer in agreement with the herein, stated license terms and conditions.

COPYRIGHT

This software is protected by United States copyright law and international copyright treaty provisions. This
software may not be altered in any way without prior written permission from Campbell Scientific. All copyright
notices and labeling must be left intact.

Limited Guarantee
The following warranties are in effect for ninety (90) days from the
date of shipment of the original purchase. These warranties are not
extended by the installation of upgrades or patches offered free of
charge.

Campbell Scientific warrants that the installation media on which the
software is recorded and the documentation provided with it are free
from physical defects in materials and workmanship under normal
use. The warranty does not cover any installation media that has been
damaged, lost, or abused. You are urged to make a backup copy (as
set forth above) to protect your investment. Damaged or lost media is
the sole responsibility of the licensee and will not be replaced by
Campbell Scientific.

Campbell Scientific warrants that the software itself will perform
substantially in accordance with the specifications set forth in the
instruction manual when properly installed and used in a manner
consistent with the published recommendations, including
recommended system requirements. Campbell Scientific does not
warrant that the software will meet licensee’s requirements for use, or
that the software or documentation are error free, or that the operation
of the software will be uninterrupted.

Campbell Scientific will either replace or correct any software that
does not perform substantially according to the specifications set forth
in the instruction manual with a corrected copy of the software or
corrective code. In the case of significant error in the installation
media or documentation, Campbell Scientific will correct errors
without charge by providing new media, addenda, or substitute pages.
If Campbell Scientific is unable to replace defective media or
documentation, or if it is unable to provide corrected software or
corrected documentation within a reasonable time, it will either
replace the software with a functionally similar program or refund the
purchase price paid for the software.

All warranties of merchantability and fitness for a particular purpose
are disclaimed and excluded. Campbell Scientific shall not in any case
be liable for special, incidental, consequential, indirect, or other
similar damages even if Campbell Scientific has been advised of the
possibility of such damages. Campbell Scientific is not responsible for
any costs incurred as a result of lost profits or revenue, loss of use of
the software, loss of data, cost of re-creating lost data, the cost of any
substitute program, telecommunication access costs, claims by any
party other than licensee, or for other similar costs.

This warranty does not cover any software that has been altered or
changed in any way by anyone other than Campbell Scientific.
Campbell Scientific is not responsible for problems caused by
computer hardware, computer operating systems, or the use of
Campbell Scientific’s software with non-Campbell Scientific
software.

Licensee’s sole and exclusive remedy is set forth in this limited
warranty. Campbell Scientific’s aggregate liability arising from or
relating to this agreement or the software or documentation
(regardless of the form of action; e.g., contract, tort, computer
malpractice, fraud and/or otherwise) is limited to the purchase price
paid by the licensee.

PLEASE READ FIRST

About this manual

Please note that this manual was originally produced by Campbell Scientific Inc. primarily for the North

American market. Some spellings, weights and measures may reflect this origin.

Some useful conversion factors:

Area: 1 in
2
 (square inch) = 645 mm

2

Length: 1 in. (inch) = 25.4 mm

 1 ft (foot) = 304.8 mm

 1 yard = 0.914 m

 1 mile = 1.609 km

Mass: 1 oz. (ounce) = 28.35 g

 1 lb (pound weight) = 0.454 kg

Pressure: 1 psi (lb/in
2
) = 68.95 mb

Volume: 1 UK pint = 568.3 ml

 1 UK gallon = 4.546 litres

 1 US gallon = 3.785 litres

In addition, while most of the information in the manual is correct for all countries, certain information

is specific to the North American market and so may not be applicable to European users.

Differences include the U.S standard external power supply details where some information (for

example the AC transformer input voltage) will not be applicable for British/European use. Please note,

however, that when a power supply adapter is ordered it will be suitable for use in your country.

Reference to some radio transmitters, digital cell phones and aerials may also not be applicable

according to your locality.

Some brackets, shields and enclosure options, including wiring, are not sold as standard items in the

European market; in some cases alternatives are offered. Details of the alternatives will be covered in

separate manuals.

Part numbers prefixed with a “#” symbol are special order parts for use with non-EU variants or for

special installations. Please quote the full part number with the # when ordering.

Recycling information

At the end of this product’s life it should not be put in commercial or domestic refuse but

sent for recycling. Any batteries contained within the product or used during the

products life should be removed from the product and also be sent to an appropriate

recycling facility.

Campbell Scientific Ltd can advise on the recycling of the equipment and in some cases

arrange collection and the correct disposal of it, although charges may apply for some

items or territories.

 For further advice or support, please contact Campbell Scientific Ltd, or your local agent.

Campbell Scientific Ltd, 80 Hathern Road, Shepshed, Loughborough, LE12 9GX, UK

Tel: +44 (0) 1509 601141 Fax: +44 (0) 1509 601091

Email: support@campbellsci.co.uk

www.campbellsci.co.uk

i

Table of Contents
PDF viewers: These page numbers refer to the printed version of this document. Use the
PDF reader bookmarks tab for links to specific sections.

1. BMP5 Direct SDK Overview 1
1.1 General Notes on BMP5 Direct SDK Usage.. 1
1.2 Datalogger Program Table Structure.. 2
1.3 Developing Applications Using the .NET Framework 2

2. SimplePB.dll Reference .. 2
2.1 OpenPort().. 2
2.2 ClosePort() ... 3
2.3 OpenIPPort() .. 3
2.4 CloseIPPort() .. 3
2.5 GetClock().. 4
2.6 SetClock() .. 4
2.7 GetValue().. 5
2.8 SetValue() .. 6
2.9 GetData().. 7
2.10 GetDataHeader() .. 8
2.11 GetCommaData() ... 9
2.12 File_Send() ... 10
2.13 GetAddress() .. 11
2.14 GetStatus() ... 12
2.15 GetTableNames() ... 13
2.16 GetDLLVersion() ... 13
2.17 GetLastResults() .. 14
2.18 FileControl() .. 14
2.19 SetSecurity() .. 15
2.20 GetTableRecordsCount() ... 15

Appendix

A. Sample Program Table Structure A-1
A.1 CR200 Datalogger Program Tables .. A-2

A.1.1 CR200 Datalogger Program ... A-3
A.2 WeatherHawk Weather Station Tables ... A-4

CRBasic Example
A-1. CR200 Datalogger Program .. A-3

1

BMP5 Direct SDK
1. BMP5 Direct SDK Overview

The BMP5 Direct Software Development Kit (SDK) comprises a simple call-
level API (SimplePB.dll) wrapper for the included coralib3d.dll
communications server. Client applications developed using the SDK will
execute calls to the C-type functions exposed by the SimplePB.dll to effect
datalogger communications via the coralib3d.dll.

The SDK components and example applications are installed by default in
C:\Campbellsci\BMP5DirectSDK. The SDK does not require registration on
the host PC. However, the SimplePB.dll wrapper and the coralib3d.dll
communications server must be installed into the same folder as the client
application’s executable.

If you have been using version 4.3 or earlier of the BMP5Direct SDK
on your machine, you may wish to uninstall, remove, or relocate the
files located in the C:\Campbellsci\BMP5DirectSDK\Examples
folder before installing this version. This will help avoid confusion
about code locations after installation.

This version uses a folder structure in this form:
\Examples\C#
\Examples\MFC-VS2015
\Examples\VB.NET

Older versions use a folder structure like this:
\Examples\C#\SmplPB_CS
\Examples\MFC
\Examples\VBNET

1.1 General Notes on BMP5 Direct SDK Usage
The SDK supports only PakBus® datalogger communication via a serial port
(COM) link or a TCP/IP socket connection. PakBus packet routing is not
supported. Only a single, directly connected (leaf node) PakBus datalogger is
accessible at any one time.

The “dialing” of communication devices such as a dial-up phone modem or an
RF500M modem is not supported. However, a connection via a transparent
bridging device such as an RF450 or an RF401 radio is possible.

A successful call to the OpenPort() or OpenIPPort() function will start the
CORALIB3D communications server (hereafter, referred to as “the Server”).
The application should stop the Server by calling either the CloseIPPort() or
ClosePort() function before exiting.

Both the Server and the SimplePB.dll wrapper write log files to
C:\Campbellsci\SimplePB\Ver#\logs; where “Ver#” is the version number of
the SimplePB.dll. These files can provide useful information about the Server’s
behavior when troubleshooting connection issues. Refer to Appendix E of the
LoggerNet Instruction Manual for information regarding log files.

NOTE

https://s.campbellsci.com/documents/us/manuals/loggernet.pdf

BMP5 Direct SDK

2

Once a connection is established, additional functions can be called to
accomplish the desired task. For example: send and manage datalogger
programs, check or set the datalogger clock, query the datalogger for data table
information, get/set table values, and collect table records.

1.2 Datalogger Program Table Structure
The application developer must understand the table structure of the program
running in the datalogger because table and field names and numbers are used
as arguments for many of the functions exposed by the SimplePB.dll. The
GetTableNames() function can be used to obtain a list of tables and their
associated numbers. Refer to Appendix A, Sample Program Table Structure (p.
A-1), for information regarding the table structure of PakBus dataloggers.

1.3 Developing Applications Using the .NET Framework
From the perspective of the .NET Framework, the SimplePB.dll is unmanaged
code; not unlike the native functions of the Windows® API. Therefore, the
platform invoke (P/Invoke) services provided by the common language run-
time (CLR) can be utilized to directly access the SimplePB.dll functions.

Fundamentally, the implementation involves attaching a “DllImport” attribute
(requires the System.Runtime.InteropServices namespace) to a static or shared
declaration of the external function. The DllImport attribute notifies the CLR
of the name of the DLL to load and the exposed function to call. An example
of using the OpenPort() function is shown in the C# code snippet below:

[DllImportAttribute("SimplePB.dll", EntryPoint = "OpenPort", CallingConvention =
CallingConvention.StdCall)]
public static extern int OpenPort(int comPortNumber, int baudRate);

Attention should be paid to the marshalling of parameter data types.
Particularly, the “Strings” in the managed code and the “char” arrays in the
unmanaged functions. The SimplePB.dll functions expect the “char” arrays to
be null-terminated and UTF8 encoded.

The recommended method for accommodating the C-type pointers used by
many of the SimplePB.dll functions is to marshal the parameter as a
System.IntPtr type. In the case of pointer to a pointer types (char**), pass the
IntPtr by reference (ref or ByRef). Optionally, the “unsafe” keyword in C#
allows for the direct use of pointer types.

Best practice is to encapsulate or “wrap” the SimplePB.dll function calls into a
shared class and expose them to application code via public functions. This
approach is implemented in both the C# and VB.NET example applications
provided with the SDK.

2. SimplePB.dll Reference
The following C-style functions are exposed by the SimplePB.dll.

2.1 OpenPort()
Opens a COM port (serial port) on the host computer using the specified COM
port and baud rate.

BMP5 Direct SDK

3

Syntax
int _stdcall OpenPort (int com_port_no, int baud)

Parameters
com_port_no: COM port to open.

baud: Baud rate to be used by the COM port.

Return Codes
0 = Successful.

 –1 = Port failed to open or is already open.

2.2 ClosePort()
Closes the currently open COM port or IP port connection.

Syntax
int _stdcall ClosePort()

Return Codes
0 = Successful.

 –1 = Port failed to close or was not open.

2.3 OpenIPPort()
Opens a TCP socket connection with a network device using the specified IP
address and port number. An appropriate device would be a cell modem, serial
server, or datalogger. IPv4 and IPv6 addresses or fully qualified domain names
are supported.

Syntax
int _stdcall OpenIPPort (char const *ip_address, int tcp_port)

Parameters
ip_address: Pointer to the memory location of a char array defining the IP
address to be used. Must be a null-terminated array of UTF8 encoded bytes.

tcp_port: Port number that will be used when communicating with the
datalogger.

Return Codes
0 = Successful.

 –1 = IP port failed to open or is already open.

2.4 CloseIPPort()
Closes the currently open IP port (synonymous with ClosePort()).

BMP5 Direct SDK

4

Syntax
int _stdcall CloseIPPort()

Return Codes
0 = Successful.

 –1 = IP port failed to close or was not open.

2.5 GetClock()
Queries the datalogger for its current date and time.

Syntax
int _stdcall GetClock (int pakbus_address, int device_type, char **return_data,
int *return_data_len)

Parameters
pakbus_address: PakBus® address of the datalogger.

device_type: Type of datalogger:
1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the datalogger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
0 = Successful.

 –1 = Communication timed out.
 –2 = Port is not open.

Example of data returned by function call
14:12:35 04/16/2004

2.6 SetClock()
Sets the date and time of the datalogger to match the host computer’s clock.

Syntax
int _stdcall SetClock (int pakbus_address, int device_type, char **return_data,
int *return_data_len)

BMP5 Direct SDK

5

Parameters
pakbus_address: PakBus address of the datalogger.

device_type: Type of datalogger:
1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the datalogger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
0 = Successful.

 –1 = Communication timed out.
 –2 = Port is not open.

Example of data returned by function call
14:22:51 04/16/2004 (Old Time Old Date)
14:22:27 04/16/2004 (New Time New Date)

2.7 GetValue()
Queries the datalogger for a value or an array of values from the specified table
and field.

Syntax
int _stdcall GetValue (int pakbus_address, int device_type, int swath, char
const *table_name, char const *field_name, char **return_data, int
*return_data_len)

Parameters
pakbus_address: PakBus address of the datalogger.

device_type: Type of datalogger:
1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

BMP5 Direct SDK

6

swath: The number of values to collect starting at the location specified in the
field_name parameter. The requested swath must be within the bounds of an
indexed array or an error will occur.

table_name: Pointer to the memory location of a char array defining the name
of the table in which the value(s) exist. Must be a null-terminated array of
UTF8 encoded bytes.

field_name: Pointer to the memory location of a char array defining the field in
which the value(s) exist. Field_name may specify an array element (example:
“Temp(3)”). Must be a null-terminated array of UTF8 encoded bytes.

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the datalogger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
0 = Successful.

 –1 = Communication timed out.
 –2 = Port is not open.

Example of data returned by function call
12.753,111.9,1.239 (Swath of 3 values from fields)

2.8 SetValue()
Set the value of the specified field in the specified datalogger table.

Syntax
int _stdcall SetValue (int pakbus_address, int device_type, char const
*table_name, char const *field_name, char const *value)

Parameters
pakbus_address: PakBus address of the datalogger.

device_type: Type of datalogger:
1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

table_name: Pointer to the memory location of a char array defining the name
of the table in which the field will be set. Must be a null-terminated array of
UTF8 encoded bytes.

BMP5 Direct SDK

7

field_name: Pointer to the memory location of a char array defining the field
that will be set with the new value. Must be a null-terminated array of UTF8
encoded bytes.

value: Pointer to the memory location of a char array defining the value used to
set the field. Must be a null-terminated array of UTF8 encoded bytes.

Return Codes
0 = Successful.

 –1 = Communication timed out.
 –2 = Port is not open.

2.9 GetData()
Queries the datalogger for records and returns each record formatted as a list of
fieldname:value pairs. A return code of ‘1’ indicates that additional records
remain to be transferred. The function call should be iterated until the return
code is ‘0’.

Syntax
int _stdcall GetData (int pakbus_address, int device_type, int table_no, int
record_no, char **return_data, int *return_data_len)

Parameters
pakbus_address: PakBus address of the datalogger.

device_type: Type of datalogger:
1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

table_no: The number for the table from which to collect data.

record_no: The record number where data collection will start. All records
following this record number will be included in the collection. Therefore, if
the record number is set to 0, all records in the table will be collected. In
addition, if the record number specified does not exist in the datalogger, all
existing records from the oldest to the newest will be returned. However, if the
record number is set to a negative number, only the most recent record in the
table will be collected. There is not a way to specify and collect a single record
from a table using this command unless that record is the most recent record in
the table.

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the datalogger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

BMP5 Direct SDK

8

Return Codes
0 = Complete.
1 = Successful but more data to collect.

 –1 = Communication timed out.
 –2 = Port is not open.
 –3 = Invalid table number.

Example of data returned by function call
"2004-04-16 14:18:03",1 (Time stamp, Record number)
1,OSversion,v03A (Field number, Field name, Field value)
2,OSDate,06-Jan-04
3,ProgName,BATT.CR2
4,ProgSig,54451
5,CalOffset,2.625
6,PakBusAddress,1
7,RfInstalled,424
8,RfNetAddr,0
9,RfAddress,0
10,RfHopSeq,0
11,RfPwrMode,RF1_Sec
12,Rf_ForceOn,0
13,RfSignalLevel,0
14,RfRxPakBusCnt,0
15,VarOutOfBounds,0
16,SkipScan,0
17,TrapCode,0
18,WatchDogCnt,0
19,ResetTables,0
20,BattVoltage,12.3943

2.10 GetDataHeader()
Returns the TOA5 file header for the specified table.

Syntax
int _stdcall GetDataHeader (int pakbus_address, int device_type, int table_no,
char **return_data, int *return_data_len)

Parameters
pakbus_address: PakBus address of the datalogger.

device_type: Type of datalogger:
1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

table_no: The number of the table for which the header will be generated.

BMP5 Direct SDK

9

return_data: Pointer to a pointer to the memory location of a char array
containing the header returned by the DLL.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
0 = Successful.
1 = Successful but more data to collect.

 –1 = Communication timed out.
 –2 = Port is not open.
 –3 = Invalid table number.

Example of data returned by function call
"TIMESTAMP","RECORD", OSVersion, OSDate, OSSignature

2.11 GetCommaData()
Queries the datalogger for records and returns each record in a TOA5 comma-
separated format. A return code of ‘1’ indicates that additional records remain
to be transferred. The function call should be iterated until the return code is
‘0’.

Syntax
int _stdcall GetData (int pakbus_address, int device_type, int table_no, int
record_no, char **return_data, int *return_data_len)

Parameters
pakbus_address: PakBus address of the datalogger.

device_type: Type of datalogger:
1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

table_no: The number for the table from which to collect data.

record_no: The record number where data collection will start. All records
following this record number will be included in the collection. Therefore, if
the record number is set to 0, all records in the table will be collected. In
addition, if the record number specified does not exist in the datalogger, all
existing records from the oldest to the newest will be returned. However, if the
record number is set to a negative number, only the most recent record in the
table will be collected. There is not a way to specify and collect a single record
from a table using this command unless that record is the most recent record in
the table.

BMP5 Direct SDK

10

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the datalogger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
0 = Complete.
1 = Successful but more data to collect.

 –1 = Communication timed out.
 –2 = Port is not open.
 –3 = Invalid table number.

Example of data returned by function call
"2005-09-08 14:13:47",1,"CR1000.Std.05","050624",47178

2.12 File_Send()
Sends the specified program to the datalogger. A return code of ‘1’ indicates
that a fragment of the file has been successfully transferred, but additional
fragments remain. The array pointed to by ‘return_data’ will contain a string
indicating the current progress of the file transfer. The function call should be
iterated until the return code is ‘0’. Once the operation is complete,
‘return_data’ will point to an array containing the compile results.

Sending a .CR2 file to a CR200 will cause the Server to attempt to invoke the
CR200 compiler located at C:\Campbellsci\Lib\CR200Compilers. If the
compiler is not installed, an error will be returned.

Syntax
int _stdcall File_Send (int pakbus_address, int device_type, char const
*file_name, char **return_data, int *return_data_len)

Parameters
pakbus_address: PakBus address of the datalogger.

device_type: Type of datalogger:
1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

file_name: Pointer to the memory location of a char array defining the path and
file name of the program file to be sent to the datalogger. Must be a null-
terminated array of UTF8 encoded bytes.

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the DLL.

BMP5 Direct SDK

11

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
0 = Complete.
1 = Successful but more data to transfer.

 –1 = Communication timed out.
 –2 = Port is not open.
 –3 = Cannot open source file.
 –4 = File name is too long.
 –5 = Datalogger timed out.
 –6 = File offset does not match.
 –7 = Datalogger reported an error.
 –8 = File control error.
 –9 = Cannot get program status.

Example of data returned from a CR1000
OS Version: CR1000.Std.05
OS Signature: 19128
Serial Number: 1031
PowerUp Progr: CPU:Program.cr1
Compile Status: Datalogger Program Running
Program Name: CPU:Program.cr1
Program Sig.: 32083
Compile Result: Compiled in SequentialMode.

2.13 GetAddress()
Queries the open port for a connected PakBus device; if found, the PakBus
address is returned. If multiple PakBus devices are connected, only the first to
respond is reported.

Syntax
int _stdcall GetAddress (int device_type, char **return_data, int
*return_data_len)

Parameters
device_type: Type of datalogger:

1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the DLL.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

BMP5 Direct SDK

12

Return Codes
0 = Successful.

 –1 = Communication timed out.
 –2 = Port is not open.

Example of data returned by function call
PakBusAddress=1;

2.14 GetStatus()
Queries the datalogger for a summary of its current status.

Syntax
int _stdcall GetStatus (int pakbus_address, int device_type, char
**return_data, int *return_data_len)

Parameters
pakbus_address: PakBus address of the datalogger.

device_type: Type of datalogger:
1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the datalogger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
0 = Successful.

 –1 = Communication timed out.
 –2 = Port is not open.

Example of data returned from a CR200
OS Version: v03A
OS Signature: 43529
Serial Number:
PowerUp Progr:
Compile Status: Datalogger Program Running
Program Name: BATT.CR2
Program Sig.: 54451
Compile Result: Program Running
Batt=12.38V

BMP5 Direct SDK

13

2.15 GetTableNames()
Query the datalogger for its table names and numbers.

Syntax
int _stdcall GetTableNames (int pakbus_address, int device_type, char
**return_data, int *return_data_len)

Parameters
pakbus_address: PakBus address of the datalogger.

device_type: Type of datalogger:
1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the datalogger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

Return Codes
0 = Successful.

 –1 = Communication timed out.
 –2 = Cannot read table definitions from the datalogger.

Example of data returned by function call
1 Status
2 DataTable1
3 DataTable2
4 Public

2.16 GetDLLVersion()
Gets the version of the SimplePB.dll being used.

Syntax
int _stdcall GetDLLVersion (char **return_data, int *return_data_len)

Parameters
return_data: Pointer to a pointer to the memory location of a char array
containing the data returned from the datalogger.

return_data_len: Pointer to the memory location containing the length of the
char array returned from the DLL.

BMP5 Direct SDK

14

Return Codes
0 = Successful.

Example of data returned by function call
SimplePB.dll Version 2.0 / 2,2,3,0I

2.17 GetLastResults()
Retrieves the return_data results from memory for the previous function as a
String. This function is useful for developers that don’t want to manage
memory pointers. A new BSTR is allocated each time this function is called.

Syntax
BSTR _stdcall GetLastResults ()

2.18 FileControl()
Used to control compilation and execution of the datalogger program and do
file management.

Syntax
int _stdcall FileControl (int pakbus_address, int device_type, char const
*file_name, int command)

Parameters
pakbus_address: PakBus address of the datalogger.

device_type: Type of datalogger:
1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

file_name: Pointer to the memory location of a char array defining the path and
file name of the device or file subject to the specified command.

command: Specifies the action to be executed upon the specified device or file:
1 = Compile and run; marks the program as “run on power up”
2 = Run on power up
3 = Make hidden
4 = Delete file
5 = Format device
6 = Compile and run (preserve data if no table changed)
7 = Stop running program
8 = Stop running program and delete associated files
9 = Make the specified file the operating system
10 = Compile and run but do not change the "run on power up" program
11 = Pause execution of the running program

BMP5 Direct SDK

15

12 = Resume execution of the running program
13 = Stop the running program, delete associated files, and mark as run now

and on power up
14 = Stop the running program, delete associated files, and mark as run now

but not on power up

Return Codes
0 = Successful.

 –1 = Communication timed out.
 –2 = Port is not open.

2.19 SetSecurity()
Sets the security code that will be used to communicate with the datalogger.

Syntax
int _stdcall SetSecurity (int security_code)

Parameter
Security_code: Security code to use.

Return Codes
0 = Success.

 –1 = Failure.

2.20 GetTableRecordsCount()
Queries the datalogger to determine the number of records that are available for
collection from the specified table.

Syntax
int _stdcall GetTableRecordsCount (int pakbus_address, int device_type, int
table_no, unsigned long *records_count)

Parameters
pakbus_address: The PakBus address of the datalogger.

Device_type: Type of datalogger:
1 = CR200
2 = CR10XPB, CR23XPB, CR510PB
3 = CR1000
4 = CR3000
5 = CR800 Series
9 = CR6 Series

13 = CR300 Series
14 = CR1000X Series

table_no: Number of the table from which to get the records count.

records_count: Pointer to the memory location where the records count value
will be written.

BMP5 Direct SDK

16

Return Codes
0 = Successful.
1 = Successful but more data to collect.

 –1 = Communication timed out.
 –2 = Port is not open.
 –3 = Invalid table number.

A-1

Appendix A. Sample Program Table
Structure

The table structure of a PakBus® datalogger is given in the example below.
This example shows a datalogger with two user defined tables plus the Status
table and Public or Inlocs table. The second table in the example below
contains three records and the third table contains four records. Both the Status
table and Public or Inlocs table will always return the most recent records and
will not contain any historical data records.

The first table is the Status table, which shows the status of the datalogger. The
Public or Inlocs table contains all public variables or input locations. All other
tables found in the datalogger are created and defined by the user in the
datalogger program. The tables in a PakBus datalogger will always contain a
record number and timestamp followed by the data fields.

Table 1 – Status

Record No Time Stamp Data Field 1 Data Field 2 Data Field 3-19 Data Field 20

Table 2 – User Defined

RN 0 Time Stamp Data Field 1 Data Field 2

RN 1 Time Stamp Data Field 1 Data Field 2

RN 2 Time Stamp Data Field 1 Data Field 2

Table 3 – User Defined

RN 0 Time Stamp Data Field 1 Data Field 2 Data Field 3 Data Field 4 Data Field 5

RN 1 Time Stamp Data Field 1 Data Field 2 Data Field 3 Data Field 4 Data Field 5

RN 2 Time Stamp Data Field 1 Data Field 2 Data Field 3 Data Field 4 Data Field 5

RN 3 Time Stamp Data Field 1 Data Field 2 Data Field 3 Data Field 4 Data Field 5

Table 4 – Public or Inlocs

Record No Time Stamp Data 1 Data 2 Data 3 Data 4 Data 5 Data 6

Appendix A. Sample Program Table Structure

A-2

A.1 CR200 Datalogger Program Tables
The following tables show the table structure from a program installed in a
CR200 datalogger. This program measures and stores the minimum battery
voltage and the minimum and maximum temperature over a 60-minute
interval. When communicating with a datalogger using the BMP5 Direct SDK,
knowing the table structure of the running program is necessary for some
commands.

Table Number 1 – Status

Field Number Field Name Units Notes:

Field 1 OSVersion Operating system version

Field 2 OSDate Date of operating system

Field 3 ProgName The name of the program running in the datalogger

Field 4 ProgSig The signature of the running program

Field 5 CalOffset

Field 6 PakBusAddress The PakBus address of the datalogger (1-4094)

Field 7 RfInstalled Radio detected

Field 8 RfNetAddr Valid addresses are 0-63

Field 9 RfAddress Valid addresses are 0-1023

Field 10 RfHopSeq Valid numbers are 0-6

Field 11 RfPwrMode RF1_Sec

Field 12 Rf_ForceOn

Field 13 RfSignalLevel RF signal strength should be above 40

Field 14 RfRxPakBusCnt

Field 15 VarOutOfBounds

Field 16 SkipScan Program didn’t complete before the next execution interval

Field 17 TrapCode

Field 18 WatchDogCnt Number of watchdog errors

Field 19 ResetTables Clears all stored data

Field 20 BattVoltage Volts Current battery voltage

Appendix A. Sample Program Table Structure

A-3

Table Number 2 – Hourly: The Hourly table contains the minimum battery voltage and the minimum and
maximum temperature over a 60-minute interval.

Field Number Field Name Units Notes:

Field 1 Battery_Min Volts

Field 2 Battery_Time Time

Field 2 Temp_Min Deg C

Field 3 Temp_Max Deg C

Table Number 3 – Public: The Public table contains only the most recent “real-time” record for the variable
described in the datalogger program.

Field Number Field Name Units Notes:

Field 1 Batt_Volt Volts

Field 2 Temp Deg C

A.1.1 CR200 Datalogger Program

CRBasic Example A-1. CR200 Datalogger Program

'CR200 Series
'Declare Variables and Units
Public Batt_Volt, Temp

Units Batt_Volt=Volts
Units Temp=Deg C

'Define Data Tables
DataTable(Hourly,True,-1)
 DataInterval(0,60,Min)
 Minimum(1,Batt_Volt,False,True)
 FieldNames("Battery_MIN,Battery_Time")
 Maximum(1,Temp,False,False)
 Minimum(1,Temp,False,False)
EndTable
'Main Program
BeginProg
 Scan(10,Sec)
 'Default Datalogger Battery Voltage measurement Batt_Volt:
 Battery(Batt_Volt)
 '109 Temperature Probe measurement Temp:
 Therm109(Temp,1,1,1,1.0,0.0)
 'Call Data Tables and Store Data
 CallTable(Hourly)

 NextScan
EndProg

Appendix A. Sample Program Table Structure

A-4

A.2 WeatherHawk Weather Station Tables
The following tables show the table structure from a default WeatherHawk®
weather station program installed in a CR200 datalogger. When
communicating with a datalogger using the BMP5 Direct SDK, knowing the
table structure of the running program is necessary for some commands

Table Number 1 – Status

Field Number Field Name Units Notes:

Field 1 OSVersion Operating system version

Field 2 OSDate Date of operating system

Field 3 ProgName The name of the program running in the datalogger

Field 4 ProgSig The signature of the running program

Field 5 CalOffset

Field 6 PakBusAddress The PakBus address of the datalogger (1-4094)

Field 7 RfInstalled Radio detected

Field 8 RfNetAddr Valid addresses are 0-63

Field 9 RfAddress Valid addresses are 0-1023

Field 10 RfHopSeq Valid numbers are 0-6

Field 11 RfPwrMode RF1_Sec

Field 12 Rf_ForceOn

Field 13 RfSignalLevel RF signal strength should be above 40

Field 14 RfRxPakBusCnt

Field 15 VarOutOfBounds

Field 16 SkipScan Program didn’t complete before the next execution interval

Field 17 TrapCode

Field 18 WatchDogCnt Number of watchdog errors

Field 19 ResetTables Clears all stored data

Field 20 BattVoltage Volts Current battery voltage

Appendix A. Sample Program Table Structure

A-5

Table Number 2 – SiteVal: The SiteVal table contains values that are stored for calculations by the
WeatherHawk program. Data is only stored when field “SaveSite” in the Public table is set to one.

Field Number Field Name Units Notes:

Field 1 Altitude_m Meter

Field 2 Latitude Degrees

Field 3 Longitude Degrees

Field 4 BPoffset_KPa KPa

Field 5 Int_Timer Minutes

Table Number 3 – Data1: This table contains data output at the Int_timer rate from the Public table. For
example, if Int_timer = 15 min, this table contains 15 min data.

Field Number Field Name Units Notes:

Field 1 BatVolt_V Volts

Field 2 BatVolt_V_Min Volts

Field 3 AirTemp_C_Avg Celsius

Field 4 RH_Avg Percent

Field 5 WindSpeed_ms_Avg m/s

Field 6 Solar_Avg W/m^2

Field 7 ETo mm

Field 8 AirTemp_C_Min Celsius

Field 9 AirTemp_C_TMn Time Example: 2004-01-25 13:49:50

Field 10 Max_AirTemp Celsius

Field 11 AirTemp_C_C_Tmx Time Example: 2004-01-25 13:49:50

Field 12 WindSpeed_ms_WVc(1) m/s Average wind speed

Field 13 WindSpeed_ms_WVc(2) Degrees Unit vector wind direction

Field 14 WindSpeed_ms_Max m/s

Field 15 Baromete_KPa KPa

Field 16 RainYearly_mm mm

Appendix A. Sample Program Table Structure

A-6

Table Number 4 – Data2: This table contains daily data values.

Field Number Field Name Units Notes:

Field 1 BatVolt_V_Min Volts

Field 2 AirTemp_C_Max Celsius

Field 3 AirTemp_C_Min Celsius

Field 4 WindSpeed_ms_Max m/s

Field 5 RainYearly_mm mm

Field 6 DailyETo_mm mm

Table Number 5 – Public: The Public table contains only the most recent “real-time” record.

Field Number Field Name Units Notes:

Field 1 SaveSite Set to one to save values to SiteVal table

Field 2 Latitude Degrees Decimal format: 41 deg 45 min = 14.75

Field 3 Longitude Degrees Decimal format: 41 deg 45 min = 14.75

Field 4 Altitude_m Metre

Field 5 Bpoffset_KPa KPa

Field 6 Int_timer Minutes

Field 7 RainReset Set to 1 to reset RainYearly_mm variable

Field 8 BatVolt_V Volts

Field 9 Solar W/m^2

Field 10 AirTemp_C Celsius

Field 11 RH Percent

Field 12 Barometer_KPa KPa Sea level adjustment barometric pressure

Field 13 WindSpeed_ms m/s

Field 14 WindDirect_deg Degrees

Field 15 RainYearly_mm mm Running sum of rainfall

Field 16 DailyETo_mm mm Running sum of Eto (resets at midnight)

Campbell Scientific Companies

Campbell Scientific, Inc.
815 West 1800 North
Logan, Utah 84321
UNITED STATES

www.campbellsci.com • info@campbellsci.com

Campbell Scientific Africa Pty. Ltd.
PO Box 2450

Somerset West 7129
SOUTH AFRICA

www.campbellsci.co.za • cleroux@csafrica.co.za

Campbell Scientific Southeast Asia Co., Ltd.
877/22 Nirvana@Work, Rama 9 Road

Suan Luang Subdistrict, Suan Luang District
Bangkok 10250

THAILAND
www.campbellsci.asia • info@campbellsci.asia

Campbell Scientific Australia Pty. Ltd.
PO Box 8108

Garbutt Post Shop QLD 4814
AUSTRALIA

www.campbellsci.com.au • info@campbellsci.com.au

Campbell Scientific (Beijing) Co., Ltd.
8B16, Floor 8 Tower B, Hanwei Plaza

7 Guanghua Road
Chaoyang, Beijing 100004

P.R. CHINA
www.campbellsci.com • info@campbellsci.com.cn

Campbell Scientific do Brasil Ltda.
Rua Apinagés, nbr. 2018 ─ Perdizes
CEP: 01258-00 ─ São Paulo ─ SP

BRASIL
www.campbellsci.com.br • vendas@campbellsci.com.br

Campbell Scientific Canada Corp.
14532 – 131 Avenue NW
Edmonton AB T5L 4X4

CANADA
www.campbellsci.ca • dataloggers@campbellsci.ca

Campbell Scientific Centro Caribe S.A.
300 N Cementerio, Edificio Breller

Santo Domingo, Heredia 40305
COSTA RICA

www.campbellsci.cc • info@campbellsci.cc

Campbell Scientific Ltd.
Campbell Park

80 Hathern Road
Shepshed, Loughborough LE12 9GX

UNITED KINGDOM
www.campbellsci.co.uk • sales@campbellsci.co.uk

Campbell Scientific Ltd.
3 Avenue de la Division Leclerc

92160 ANTONY
FRANCE

www.campbellsci.fr • info@campbellsci.fr

Campbell Scientific Ltd.
Fahrenheitstraße 13

28359 Bremen
GERMANY

www.campbellsci.de • info@campbellsci.de

Campbell Scientific Spain, S. L.
Avda. Pompeu Fabra 7-9, local 1

08024 Barcelona
SPAIN

www.campbellsci.es • info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or international representative.

http://www.campbellsci.com/
http://www.campbellsci.co.za/
http://www.campbellsci.asia/
http://www.campbellsci.com.au/
http://www.campbellsci.com/
http://www.campbellsci.com.br/
http://www.campbellsci.ca/
http://www.campbellsci.cc/
http://www.campbellsci.co.uk/
http://www.campbellsci.fr/
http://www.campbellsci.de/
http://www.campbellsci.es/
https://www.campbellsci.com/

	Revision and Copyright Information
	EULA
	Limited Guarantee
	PLEASE READ FIRST
	Table of Contents
	1. BMP5 Direct SDK Overview
	1.1 General Notes on BMP5 Direct SDK Usage
	1.2 Datalogger Program Table Structure
	1.3 Developing Applications Using the .NET Framework

	2. SimplePB.dll Reference
	2.1 OpenPort()
	Syntax
	Parameters
	Return Codes

	2.2 ClosePort()
	Syntax
	Return Codes

	2.3 OpenIPPort()
	Syntax
	Parameters
	Return Codes

	2.4 CloseIPPort()
	Syntax
	Return Codes

	2.5 GetClock()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.6 SetClock()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.7 GetValue()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.8 SetValue()
	Syntax
	Parameters
	Return Codes

	2.9 GetData()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.10 GetDataHeader()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.11 GetCommaData()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.12 File_Send()
	Syntax
	Parameters
	Return Codes
	Example of data returned from a CR1000

	2.13 GetAddress()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.14 GetStatus()
	Syntax
	Parameters
	Return Codes
	Example of data returned from a CR200

	2.15 GetTableNames()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.16 GetDLLVersion()
	Syntax
	Parameters
	Return Codes
	Example of data returned by function call

	2.17 GetLastResults()
	Syntax

	2.18 FileControl()
	Syntax
	Parameters
	Return Codes

	2.19 SetSecurity()
	Syntax
	Parameter
	Return Codes

	2.20 GetTableRecordsCount()
	Syntax
	Parameters
	Return Codes

	Appendix A. Sample Program Table Structure
	A.1 CR200 Datalogger Program Tables
	A.1.1 CR200 Datalogger Program

	A.2 WeatherHawk Weather Station Tables

	Campbell Scientific Companies

