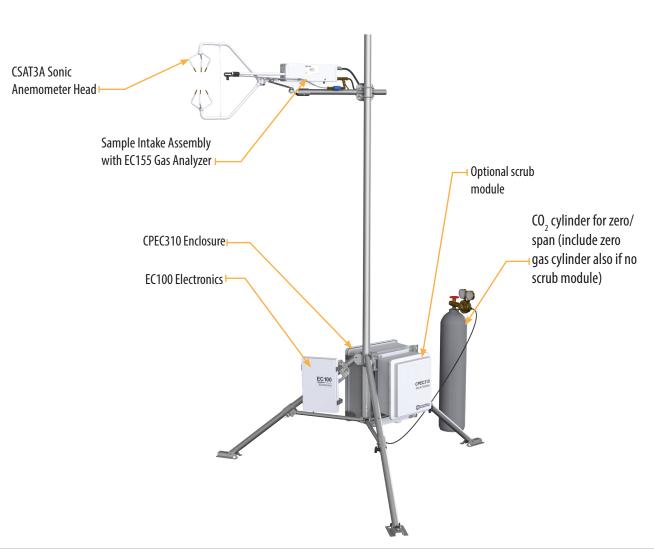
QUICK DEPLOY GUIDE

5

CPEC310

Closed-Path Eddy-Covariance System

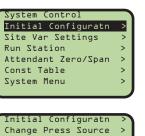


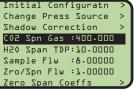
Info Link

IMPORTANT NOTE: This Quick Deploy Guide is meant to be a general reference to give the installer an overview of the steps required to make this system operational. The Owner's Manual is the definitive source for detailed installation instructions and information.

Caution!

- Do not connect or disconnect the EC155 gas analyzer head or the CSAT3A sonic anemometer head from the EC100 electronics while the EC100 is powered. Doing so can result in unpredictable performance of the system or damage to the instrument head.
- Grounding electrical components in the measurement system is critical. Proper earth (chassis) grounding will ensure maximum electrostatic discharge (ESD) protection and higher measurement accuracy.
- Use care when connecting and disconnecting tube fittings to avoid introducing dust or other contaminants.
- Do not overtighten the tube fittings. Consult the manual for information on proper connection.
- The CPEC310 power source should be designed thoughtfully to ensure uninterrupted power. If needed, contact Campbell Scientific for assistance.
- Retain all spare caps and plugs as these are required when shipping or storing the CPEC310 system.


Using the CR1000KD keypad to configure settings and zero/span on a deployed system


When not using datalogger support software such as *Loggernet*, turn on the +12Vdc power supply and use the CR1000KD keypad to configure the settings and zero/span.

- 1. Press **Enter** to activate the display. Press **Enter** again to display the System Control menu.
- 2. Select Initial Configuratn. Press Enter.

CPEC310 System Diagram

3. Select CO2 Spn Gas. Press Enter.

Current Value:

400.000

New Value: XXX **.** XX

Modify Value CO2 Spn Gas 4. Enter the CO2 span gas concentration of the cylinder and press Enter. Press Esc to return to the main menu.

- 5. On the System Control menu, select Site Var Settings to customize site specific variables.
- 6. Enter site-specific variables. Press **Esc** when complete to return to the main menu.

Site Var Settir	ngs:
Meas height	:2.00000
Pck Surf typ	: GRASS
Canopy hght	:0.50000
d D = auto	:0.00000
ZO ₁ O = auto	:0:00000
GPS height	:2.00000
Bulk density	:1300.00
	Meas height Pck Surf typ Canopy hght dı O = auto ZOıO = auto GPS height

- 7. On the System Control menu, select **Run** Station.
- Set Auto Z/S on to **True** to automate zero 8. and span. Press **Esc** to return to the main menu.
- 9. On the System Control menu, select Const Table to modify sensor information.
- 10. Add and remove sensors by selecting -1 for *true* and **0** for *false*. Once the changes are completed, select Apply and Restart at the bottom of the screen. Select **Yes** to save the changes. The device will then restart.

Run Station : Pump Tmpr 0k: True Pump Tmpr : 30.0000 Pump flow : 8.00000 System diag : 0 Auto Z/S on True pump off FLD_MEA EC155 PW on : True			
Pump Tmpr 0k: True Pump Tmpr : 30.0000 Pump flow : 8.00000 System diag : 0 Auto Z/S on True pump off : FLD_MEA	Run	Station :	
Pump Tmpr : 30.0000 Pump flow : 8.00000 System diag : 0 Auto Z/S on True pump off : FLD_MEA			True
Pump flow 8.00000 System diag 0 Auto Z/S on True pump off :			
Auto Z/S on True pump off : FLD_MEA		•	8.00000
pump off : FLD_MEA	Syste	em diag :	0
–	Auto	Z/S on	True
EC155_PW_on : True	pump	off :	FLD_MEA
	EC155	5_P⊎_on ∶	True

NMBR_HFP	÷.,	4
L_TVT2N2_97H	:	P5.0000
5_TVT2N2_97H	:	P5.0000
HFP_SNSTVT_3	:	P5.0000
HFP_SNSTVT_4	:	P5.0000
CAL_INTV	:	1440
Apply and Res	sta	irt

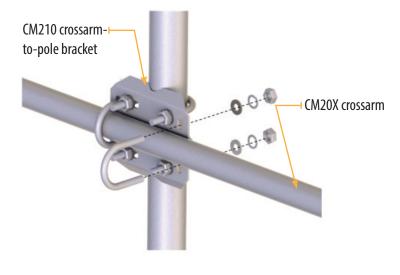
Required Gear

The following tools are required to install the CPEC310 system in the field. Additional tools may be required for a user-supplied tripod or tower.

- 1. 9/16-in, open-end wrench
- 2. 1/2-in, open-end wrench
- 3. 11/16-in, open-end wrench
- Adjustable wrench 4.

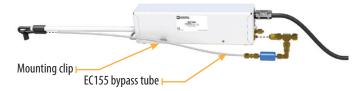
2

Small, flat-tip screwdriver 5.

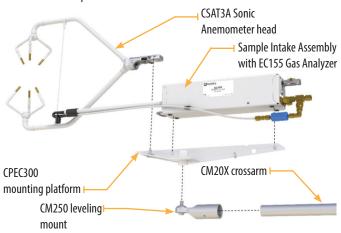


1. Set up the tripod and crossarm pole.

Secure the tripod to the ground.

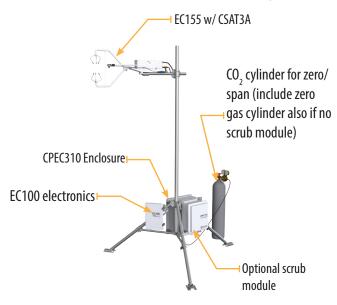


Attach the horizontal crossarm pole to the desired height on the tripod.

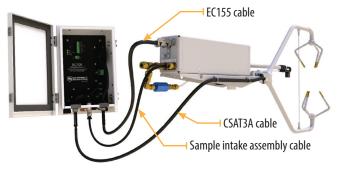


- 6. Large, flat-tip screwdriver
- 7. Sledgehammer (to drive grounding rod into the ground)
- 8. 3/16-in hex-key wrench

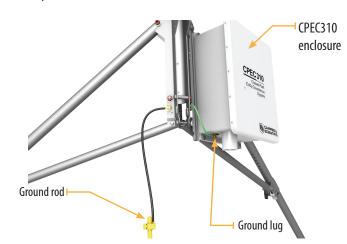
Mount the EC155 bypass tube.

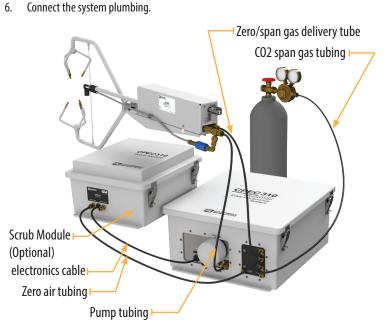


Connect the CM250 mount to the crossarm and then connect the sensors mounted on the CPEC300-Series Mounting Platform, as shown. Use the bubble level on the CSAT3A to level the platform.



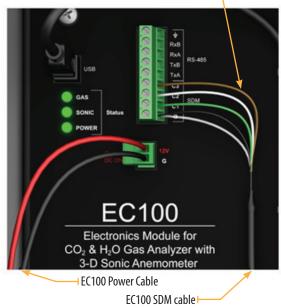
3. Mount the enclosures.


Mount the enclosures on the legs of the tripod as shown. The CPEC310 enclosure and optional scrub module are mounted back to back on the same leq.

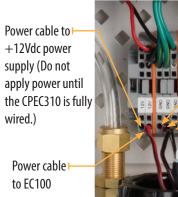


4. Connect the sensor head to the measurement electronics.

5. Ground the tripod and the enclosures.



Note: A zero gas cylinder can be used in place of the scrub module to provide zero gas for zeroing the analyzer.


7. Wiring.

Connect the SDM from the main enclosure and EC100 power cables to the EC100 This wire may be brown or red

electronics.

Draw the EC100 power cable and EC100 SDM cable through the feedthrough at the bottom of the CPEC310 enclosure and connect them to the DINrail.

Ground cable to SDM black and clear ground wires

SDM cable to EC100

+12Vdc power

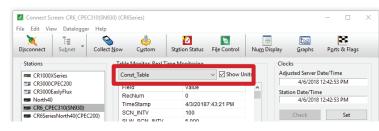
Ground cable

supply (off)

to EC100

8. Datalogger

Insert a MicroSD card into the datalogger and connect power.


Configuring with LoggerNet/PC200W or PC400

Turn on the +12 Vdc power supply and use either LoggerNet, PC200W, or PC400 on your laptop to configure settings and zero/span. If using the CR1000KD keypad, use the instructions on the front page of this guick deploy guide.

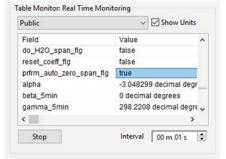
1. Connect to the datalogger

2. Go to the **Const Table** within the **EasyFlux™ DL** program.

3. Set the variables listed below to enable auto zero and span. -1 indicates true and 0 indicates false. ZRO S days be ZRO S the aut

FN INVT is the number of	CHECK_ZERO		
PN_INVI is the number of	SET_ZERO		
etween zero and span and	CHECK_CO2SPN		
OFST is the minutes after	SET_CO2SPN		
-	CHECK_H2OSPN		
to zero and span begins	SET_H2OSPN		

- Confirm all the sensors used at the site 4 are set to **-1**. To change a value in this table, right-click on the current value and select View/Modify from the pop-up menu. Press Apply once the new value has been entered.
- Once all of the sensors and constant settings are correct, scroll to the bottom and set ApplyAndRestart to *true*.


CPEC310SCRUB	-1
ZRO_SPN_INTV	1
ZRO_SPN_OFST	30
TIME_ZRO_SPN	60
CHECK_ZERO	-1
SET_ZERO	-1
CHECK_CO2SPN	-1
SET_CO2SPN	-1
CHECK_H2OSPN	-1
SET_H2OSPN	0

Const_Table	V Show Unit
Field	Value
SENSOR_LI200	0
SENSOR_LI190	0
SENSOR_SI111	0
SENSOR_NR01	0
SENSOR_CNR4	0
SENSOR_TE525	0
SENSOR_TCAV	0
SENSOR_CS65X	-1
NMBR_CS65X	1
CSSDI12_ADR1	3
SENSOR_HFP01	0
SENSOR_HFPSC	-1
NMBR_HFP	1
HFP_SNSTVT_1	62
CAL_INTV	1,440
ApplyAndRestart	true

5. Review the Public table and confirm that site specific variables are set appropriately. Note: Setting these variables does not require an **ApplyAndRestart**.

sconnect Subnet Collec	tt Now Custom Si	tation Status File Control	Nu <u>m</u> Displ	ay <u>G</u> raphs P <u>o</u> rt	
Stations	Table Monitor: Real Time	Monitoring		Clocks	
CR1000XSeries	Public	V Show Ur	nits	Adjusted Server Date/Tir	
T CR3000CPEC200	Field	Value		4/6/2018 12:53:4	
CR3000EaslyFlux		· · · · · · ·	^	Station Date/Time	
North40	RecNum TimeStamp	2,345,820 4/6/2018 12:53:45 PM		4/6/2018 12:53:4	
CR6_CPEC310(SN930)					
 CR6SeriesNorth40(CPEC200) CR6SeriesSN900 	card_storage_availab TIMESTAMP_START	201804061230 YYYYMM		Check	
	TIMESTAMP_START	YYYYMMDDHHMM			
	sonic_azimuth	_		Pause Clock Update	
	latitude	41.766 decimal degrees		Current Program	
	hemisphere NS	1 admensional		-	
	longitude	-111.855 decimal degree		EasyFlux_DL_CR6CP	
	hemisphere EW	-1 admensional			
	altitude	1356 m		Send New	
	height measurement				
	surface_type	2 admensional		Notes	
	height canopy	0.5 m			
	displacement_user				
List Alphabetically	roughness_user	0 m			

6. Set prfrm_auto_zero_ **span_fig** to **true** to automate the zero and span funtions.

7. Set **CO2_span_gas** to match the CO2 concentration of the CO₂ span gas tank.

Table Monitor: Real Time Monitoring		
Public	🗸 🗹 Show Units	
sec_on_site	44526.9	
CO2_span_gas	384 umolCO2 mol-1	
Td_span_gas	10 deg C	
H2O_span_gas	15.65283 mmolH2O mc	
e_span_gas	1.232174 kPa 🗸 🗸	
<	>	
Stop	Interval 00 m 01 s	