
PR
O

G
R

A
M

M
E

R
’S M

A
N

U
A

L

LoggerNet and LNServer
Software Development Kits 4.5

Revision: 9/17

C o p y r i g h t © 2 0 0 4 - 2 0 1 7
C a m p b e l l S c i e n t i f i c , I n c .

Campbell Scientific, Inc.
Software SDK End User License
Agreement (EULA)
NOTICE OF AGREEMENT: Please carefully read this EULA. By installing or using this software, you are agreeing to comply
with the terms and conditions herein. If you do not want to be bound by this EULA, you must promptly return the software, any
copies, and accompanying documentation in its original packaging to Campbell Scientific or its representative.

This agreement applies equally to the LoggerNet SDK software and the LNServer SDK software. The LoggerNet SDK and
LNServer SDK software are hereinafter referred to, synonymously, as the SDK. The term "developer" herein refers to anyone
using the SDK.

By accepting this agreement you acknowledge and agree that Campbell Scientific may from time-to-time, and without notice,
make changes to one or more components of the SDK, or make changes to one or more components of other software on which
the SDK relies. In no instance will Campbell Scientific be responsible for any costs or liabilities incurred by you or other third
parties as a result of these changes.

LICENSE FOR USE: Campbell Scientific grants you a non-exclusive, non-transferable, royalty-free license to use this
software in accordance with the following:

1) The purchase of this software allows you to install and use a single instance of the software on one physical computer or
one virtual machine only.

2) This software cannot be loaded on a network server for the purposes of distribution or for access to the software by
multiple operators. If the software can be used from any computer other than the computer on which it is installed, you
must license a copy of the software for each additional computer from which the software may be accessed.

3) If this copy of the software is an upgrade from a previous version, you must possess a valid license for the earlier version
of software. You may continue to use the earlier copy of software only if the upgrade copy and earlier version are installed
and used on the same computer. The earlier version of software may not be installed and used on a separate computer or
transferred to another party.

4) This software package is licensed as a single product. Its component parts may not be separated for use on more than one
computer.

5) You may make one (1) backup copy of this software onto media similar to the original distribution, to protect your
investment in the software in case of damage or loss. This backup copy can be used only to replace an unusable copy of
the original installation media.

6) You may not use Campbell Scientific’s name, trademarks, or service marks in connection with any program you develop
with the SDK. You may not state or infer in any way that Campbell Scientific endorses any program you develop, unless
prior written approval is received from Campbell Scientific.

7) If the software program you develop requires you, your customer, or a third party to use additional licensable software
from Campbell Scientific that software must be purchased from Campbell Scientific or its representative under the terms
of its separate EULA.

8) This license allows you to redistribute the ActiveX (dll) controls and the communication DLL with the software developed
using the SDK. No other Campbell Scientific examples, documentation, or source code may be distributed with your
application.

9) The SDK may not be used to develop and publicly sell or distribute any product that directly competes with Campbell
Scientific’s datalogger support software.

10) This Agreement does not give Developer the right to sell or distribute any other Campbell Scientific, Inc. Software (e.g.,
PC200W, VisualWeather, LoggerNet or any of their components, files, documentation, etc.) as part of Developer's
application. Distribution of any other Campbell Scientific, Inc. software requires a separate distribution agreement.

The ActiveX® controls provided with the SDK include the files: CsiBrokerMap.dll, CsiCoraScript.dll, CsiDatalogger.dll,
CsiDataSource.dll, CsiLogMonitor.dll, CsiServerDirect.dll (LoggerNet SDK only) and CsiServer.dll (LNServer SDK only). In

addition, a limited communication server DLL, CORALIB3D.DLL (LoggerNet SDK only), or an unlimited communication
server DLL, CORALIB3.DLL (LNServer SDK only), is included with the SDK.

RELATIONSHIP: Campbell Scientific, Inc. hereby grants a license to use the SDK Controls in accordance with the license
statement above. No ownership in Campbell Scientific, Inc. patents, copyrights, trade secrets, trademarks, or trade names is
transferred by this Agreement. Developer may use these SDK controls to create as many applications as desired and freely
distribute those applications. Campbell Scientific, Inc. expects no royalties or any other compensation outside of the SDK
purchase price. Developer is responsible for supporting applications created using the SDK Controls.

RESPONSIBILITIES OF DEVELOPER

The Developer agrees:

• To provide a competent programmer familiar with Campbell Scientific, Inc. datalogger programming and software to
write the applications.

• Not to sell or distribute documentation on use of the SDK Controls.

• Not to sell or distribute the applications that are provided as examples in the SDK.

• To develop original works. Developers may copy and paste portions of the code into their own applications, but their
applications are expected to be unique creations.

• Not to sell or distribute applications that compete directly with any application developed by Campbell Scientific, Inc. or
its affiliates.

• To assure that each application developed with the SDK Controls clearly states the name of the person or entity that
developed the application. This information should appear on the first window the user will see.

WARRANTY

There is no written or implied warranty provided with the SDK software other than as stated herein. Developer agrees to bear
all warranty responsibility of any derivative products distributed by Developer.

TERMINATION

Any license violation or breach of Agreement will result in immediate termination of the developer's rights herein and the
return of all SDK materials to Campbell Scientific, Inc.

MISCELLANEOUS

Notices required hereunder shall be in writing and shall be given by certified or registered mail, return receipt requested. Such
notice shall be deemed given in the case of certified or registered mail on the date of receipt. This Agreement shall be
governed and construed in accordance with the laws of the State of Utah, USA. Any dispute resulting from this Agreement
will be settled in arbitration.

This Agreement sets forth the entire understanding of the parties and supersedes all prior agreements, arrangements and
communications, whether oral or written pertaining to the subject matter hereof. This agreement shall not be modified or
amended except by the mutual written agreement of the parties. The failure of either party to enforce any of the provisions of
this Agreement shall not be construed as a waiver of such provisions or of the right of such party thereafter to enforce each and
every provision contained herein. If any term, clause, or provision contained in this Agreement is declared or held invalid by a
court of competent jurisdiction, such declaration or holding shall not affect the validity of any other term, clause, or provision
herein contained. Neither the rights nor the obligations arising under this Agreement are assignable or transferable.

If within 30 days of receiving the SDK product developer does not agree to the terms of license, developer shall return all
materials without retaining any copies of the product and shall remove any use of the SDK Controls in any applications
developed or distributed by Developer. CSI shall refund 1/2 of the purchase price within 30 days of receipt of the materials. In
the absence of such return, CSI shall consider developer in agreement with the herein stated license terms and conditions.

COPYRIGHT: This software is protected by United States copyright law and international copyright treaty provisions. This
software may not be altered in any way without prior written permission from Campbell Scientific. All copyright notices and
labeling must be left intact.

Limited Guarantee
The following warranties are in effect for ninety (90) days from the
date of shipment of the original purchase. These warranties are not
extended by the installation of upgrades or patches offered free of
charge.

Campbell Scientific warrants that the installation media on which the
software is recorded and the documentation provided with it are free
from physical defects in materials and workmanship under normal
use. The warranty does not cover any installation media that has been
damaged, lost, or abused. You are urged to make a backup copy (as
set forth above) to protect your investment. Damaged or lost media is
the sole responsibility of the licensee and will not be replaced by
Campbell Scientific.

Campbell Scientific warrants that the software itself will perform
substantially in accordance with the specifications set forth in the
instruction manual when properly installed and used in a manner
consistent with the published recommendations, including
recommended system requirements. Campbell Scientific does not
warrant that the software will meet licensee’s requirements for use, or
that the software or documentation are error free, or that the operation
of the software will be uninterrupted.

Campbell Scientific will either replace or correct any software that
does not perform substantially according to the specifications set forth
in the instruction manual with a corrected copy of the software or
corrective code. In the case of significant error in the installation
media or documentation, Campbell Scientific will correct errors
without charge by providing new media, addenda, or substitute pages.
If Campbell Scientific is unable to replace defective media or
documentation, or if it is unable to provide corrected software or
corrected documentation within a reasonable time, it will either
replace the software with a functionally similar program or refund the
purchase price paid for the software.

All warranties of merchantability and fitness for a particular purpose
are disclaimed and excluded. Campbell Scientific shall not in any case
be liable for special, incidental, consequential, indirect, or other
similar damages even if Campbell Scientific has been advised of the
possibility of such damages. Campbell Scientific is not responsible for
any costs incurred as a result of lost profits or revenue, loss of use of
the software, loss of data, cost of re-creating lost data, the cost of any
substitute program, telecommunication access costs, claims by any
party other than licensee, or for other similar costs.

This warranty does not cover any software that has been altered or
changed in any way by anyone other than Campbell Scientific.
Campbell Scientific is not responsible for problems caused by
computer hardware, computer operating systems, or the use of
Campbell Scientific’s software with non-Campbell Scientific
software.

Licensee’s sole and exclusive remedy is set forth in this limited
warranty. Campbell Scientific’s aggregate liability arising from or
relating to this agreement or the software or documentation
(regardless of the form of action; e.g., contract, tort, computer
malpractice, fraud and/or otherwise) is limited to the purchase price
paid by the licensee.

PLEASE READ FIRST

About this manual

Please note that this manual was originally produced by Campbell Scientific Inc. primarily for the North

American market. Some spellings, weights and measures may reflect this origin.

Some useful conversion factors:

Area: 1 in
2
 (square inch) = 645 mm

2

Length: 1 in. (inch) = 25.4 mm

1 ft (foot) = 304.8 mm

1 yard = 0.914 m

1 mile = 1.609 km

Mass: 1 oz. (ounce) = 28.35 g

1 lb (pound weight) = 0.454 kg

Pressure: 1 psi (lb/in
2
) = 68.95 mb

Volume: 1 UK pint = 568.3 ml

1 UK gallon = 4.546 litres

1 US gallon = 3.785 litres

In addition, while most of the information in the manual is correct for all countries, certain information

is specific to the North American market and so may not be applicable to European users.

Differences include the U.S standard external power supply details where some information (for

example the AC transformer input voltage) will not be applicable for British/European use. Please note,

however, that when a power supply adapter is ordered it will be suitable for use in your country.

Reference to some radio transmitters, digital cell phones and aerials may also not be applicable

according to your locality.

Some brackets, shields and enclosure options, including wiring, are not sold as standard items in the

European market; in some cases alternatives are offered. Details of the alternatives will be covered in

separate manuals.

Part numbers prefixed with a “#” symbol are special order parts for use with non-EU variants or for

special installations. Please quote the full part number with the # when ordering.

Recycling information

At the end of this product’s life it should not be put in commercial or domestic refuse but

sent for recycling. Any batteries contained within the product or used during the

products life should be removed from the product and also be sent to an appropriate

recycling facility.

Campbell Scientific Ltd can advise on the recycling of the equipment and in some cases

arrange collection and the correct disposal of it, although charges may apply for some

items or territories.

For further advice or support, please contact Campbell Scientific Ltd, or your local agent.

Campbell Scientific Ltd, 80 Hathern Road, Shepshed, Loughborough, LE12 9GX, UK

Tel: +44 (0) 1509 601141 Fax: +44 (0) 1509 601091

Email: support@campbellsci.co.uk

www.campbellsci.co.uk

i

Table of Contents
PDF viewers: These page numbers refer to the printed version of this document. Use the
PDF reader bookmarks tab for links to specific sections.

1. LoggerNet SDK and LNServer SDK Overview 1-1
1.1 Purpose of the SDK .. 1-1
1.2 Requirements ... 1-1

1.2.1 Required Campbell Scientific, Inc. Software 1-1
1.2.2 Development Tools ... 1-1

1.3 Included Components .. 1-2
1.3.1 Files Included in the SDK ... 1-2

1.3.1.1 ActiveX® Controls (DLLs) ... 1-2
1.3.1.2 LoggerNet Server DLL .. 1-2

1.3.1.2.1 Coralib3d.dll .. 1-3
1.3.1.2.2 Coralib3.dll .. 1-3

1.3.1.3 Manuals .. 1-3
1.3.1.4 Example Projects .. 1-3

1.4 Developing .NET Applications Using the SDK 1-3
1.4.1 Adding an SDK Control to a .NET Project 1-4
1.4.2 Creating the Runtime Callable Wrapper 1-4

2. CsiServer and CsiServerDirect Controls 2-1
2.1 Purpose of the CsiServer and CsiServerDirect Controls 2-1
2.2 CsiServer and CsiServerDirect Interface ... 2-1

2.2.1 Properties .. 2-1
2.2.2 Methods .. 2-1
2.2.3 Events ... 2-2

3. Developing an Application Using the CsiServer
Control .. 3-1

3.1 Purpose ... 3-1
3.2 Using the CsiServer Control .. 3-1

3.2.1 Getting Started with the CsiServer Control 3-1
3.2.2 CsiServer Control Application Example 3-1

4. CsiCoraScript Control ... 4-1
4.1 Purpose of the CsiCoraScript Control ... 4-1
4.2 Connecting to the Server .. 4-1
4.3 Using CoraScript Commands .. 4-1

4.3.1 Setting up a Network .. 4-2
4.3.2 Real-Time Data Display ... 4-2

4.3.2.1 Table-Data Dataloggers .. 4-3
4.3.2.2 Mixed-Array Dataloggers ... 4-3

4.4 CsiCoraScript Interface ... 4-4
4.4.1 Properties .. 4-4
4.4.2 Methods .. 4-4
4.4.3 Events ... 4-4

Table of Contents

ii

5. Developing an Application Using the
CsiCoraScript Control .. 5-1

5.1 Purpose ... 5-1
5.2 Using the CsiCoraScript Control ... 5-1

5.2.1 Getting Started with the CsiCoraScript Control 5-1
5.2.2 CsiCoraScript Control Application Example 5-1

6. CsiBrokerMap Control .. 6-1
6.1 Purpose of the CsiBrokerMap Control ... 6-1
6.2 Connecting to the LoggerNet Server .. 6-1
6.3 How Collections Work ... 6-2

6.3.1 Visual Basic View of Collections ... 6-2
6.3.1.1 Accessing Collections with For Each 6-2
6.3.1.2 Accessing Collections with Indexes and Names 6-2

6.3.2 Visual C++ View of Collections ... 6-2
6.4 CsiBrokerMap Interfaces ... 6-3

6.4.1 BrokerMap Interface ... 6-3
6.4.1.1 Properties .. 6-3
6.4.1.2 Methods .. 6-3
6.4.1.3 Events ... 6-3

6.4.2 BrokerCollection Interface .. 6-3
6.4.2.1 Properties .. 6-3
6.4.2.2 Methods .. 6-4

6.4.3 Broker Interface .. 6-4
6.4.3.1 Properties .. 6-4
6.4.3.2 Methods .. 6-4

6.4.4 TableCollection Interface .. 6-4
6.4.4.1 Properties .. 6-4
6.4.4.2 Methods .. 6-4

6.4.5 Table Interface .. 6-4
6.4.5.1 Properties .. 6-4
6.4.5.2 Methods .. 6-4

6.4.6 ColumnCollection Interface .. 6-5
6.4.6.1 Properties .. 6-5
6.4.6.2 Methods .. 6-5

6.4.7 Column Interface ... 6-5
6.4.7.1 Properties .. 6-5

7. Developing an Application Using the
CsiBrokerMap Control .. 7-1

7.1 Purpose ... 7-1
7.2 Using the CsiBrokerMap Control ... 7-1

7.2.1 Getting Started with the CsiBrokerMap Control 7-1
7.2.2 CsiBrokerMap Control Application Example 7-2

8. CsiDatalogger .. 8-1
8.1 Purpose of the CsiDatalogger Control ... 8-1
8.2 Connecting to the Server .. 8-1
8.3 Datalogger Interface ... 8-1

8.3.1 Properties .. 8-1
8.3.2 Methods ... 8-2

Table of Contents

iii

8.3.3 Events ... 8-2

9. Developing an Application Using the
CsiDatalogger Control... 9-1

9.1 Purpose ... 9-1
9.2 Using the CsiDatalogger Control .. 9-1

9.2.1 Getting Started with the CsiDatalogger Control 9-1
9.2.2 CsiDatalogger Control Application Example 9-2

10. CsiDataSource Control .. 10-1
10.1 Purpose of the CsiDataSource Control .. 10-1
10.2 Connecting to the Server .. 10-1
10.3 CsiDataSource Interfaces .. 10-2

10.3.1 DSource Interface ... 10-2
10.3.1.1 Properties .. 10-2
10.3.1.2 Methods .. 10-2
10.3.1.3 Events ... 10-2

10.3.2 Advisor Interface ... 10-2
10.3.2.1 Properties .. 10-3
10.3.2.2 Methods .. 10-3

10.3.3 DataColumnCollection Interface .. 10-3
10.3.3.1 Properties .. 10-3
10.3.3.2 Methods .. 10-3

10.3.4 DataColumn Interface ... 10-3
10.3.4.1 Properties .. 10-3

10.3.5 Record ... 10-4
10.3.5.1 Properties .. 10-4
10.3.5.2 Methods .. 10-4

10.3.6 RecordCollection .. 10-4
10.3.6.1 Properties .. 10-4
10.3.6.2 Methods .. 10-4

10.3.7 Value Interface .. 10-4
10.3.7.1 Properties .. 10-4

11. Developing an Application Using the
CsiDataSource Control 11-1

11.1 Purpose ... 11-1
11.2 Using the CsiDataSource Control .. 11-1

11.2.1 Getting Started with the CsiDataSource Control 11-1
11.2.2 CsiDataSource Control Application Example 11-2

12. CsiLogMonitor Control .. 12-1
12.1 Purpose of the CsiLogMonitor Control .. 12-1
12.2 CsiLogMonitor Interface .. 12-2

12.2.1 Properties .. 12-2
12.2.2 Methods .. 12-2
12.2.3 Events ... 12-2

13. Developing an Application Using the
CsiLogMonitor Control .. 13-1

Table of Contents

iv

13.1 Purpose ... 13-1
13.2 Using the CsiLogMonitor Control .. 13-1

13.2.1 Getting Started with the CsiLogMonitor Control 13-1
13.2.2 CsiLogMonitor Control Application Example 13-2

14. CsiServer and CsiServerDirect Control
Reference .. 14-1

14.1 CsiServer and CsiServerDirect Interface 14-1
14.1.1 Properties .. 14-1
14.1.2 Methods ... 14-4
14.1.3 Events .. 14-5

15. CsiCoraScript Control Reference 15-1
15.1 CoraScript Interface ... 15-1

15.1.1 Properties .. 15-1
15.1.2 Methods ... 15-3
15.1.3 Events .. 15-5

16. CsiBrokerMap Control Reference 16-1
16.1 BrokerMap Interface .. 16-1

16.1.1 Properties .. 16-1
16.1.2 Methods ... 16-4
16.1.3 Events .. 16-5

16.2 BrokerCollection Interface ... 16-7
16.2.1 Properties .. 16-7
16.2.2 Methods ... 16-8

16.3 Broker Interface .. 16-9
16.3.1 Properties .. 16-9
16.3.2 Methods ... 16-11

16.4 TableCollection Interface ... 16-12
16.4.1 Properties .. 16-12
16.4.2 Methods ... 16-12

16.5 Table Interface .. 16-14
16.5.1 Properties .. 16-14
16.5.2 Methods ... 16-15

16.6 ColumnCollection Interface ... 16-16
16.6.1 Properties .. 16-16
16.6.2 Methods ... 16-16

16.7 Column Interface .. 16-18
16.7.1 Properties .. 16-18

17. CsiDatalogger Control Reference 17-1
17.1 CsiDatalogger Interface ... 17-1

17.1.1 Properties .. 17-1
17.1.2 Methods ... 17-6
17.1.3 Events .. 17-14

18. CsiDataSource Control Reference 18-1
18.1 DSource Interface ... 18-1

18.1.1 Properties .. 18-1
18.1.2 Methods ... 18-4

Table of Contents

v

18.1.3 Events ... 18-5
18.2 Advisor Interface .. 18-11

18.2.1 Properties .. 18-11
18.2.2 Methods .. 18-19

18.3 DataColumnCollection Interface ... 18-21
18.3.1 Properties .. 18-21
18.3.2 Methods .. 18-22

18.4 DataColumn Interface .. 18-24
18.4.1 Properties .. 18-24

18.5 Record Interface ... 18-25
18.5.1 Properties .. 18-25
18.5.2 Methods .. 18-26

18.6 RecordCollection ... 18-28
18.6.1 Properties .. 18-28
18.6.2 Methods .. 18-28

18.7 Value Interface ... 18-29
18.7.1 Properties .. 18-29

19. CsiLogMonitor Control Reference 19-1
19.1 LogMonitor Interface ... 19-1

19.1.1 Properties .. 19-1
19.1.2 Methods .. 19-5
19.1.3 Events ... 19-7

Appendix

A. Server and Device Operational Statistics
Tables .. A-1

A.1 Device History Statistics ... A-1
A.1.1 Attempts ... A-1
A.1.2 Failures .. A-1
A.1.3 Retries .. A-1

A.2 Device Standard Statistics ... A-2
A.2.1 Communication Enabled .. A-2
A.2.2 Average Error Rate .. A-2
A.2.3 Total Retries ... A-2
A.2.4 Total Failures ... A-2
A.2.5 Total Attempts ... A-2
A.2.6 Communication Status ... A-3
A.2.7 Last Clock Check ... A-3
A.2.8 Last Clock Set .. A-3
A.2.9 Last Clock Difference .. A-3
A.2.10 Collection Enabled ... A-3
A.2.11 Last Data Collection .. A-4
A.2.12 Next Data Collection.. A-4
A.2.13 Last Collect Attempt .. A-4
A.2.14 Collection State .. A-4
A.2.15 Values in Last Collection ... A-5
A.2.16 Values to Collect .. A-5
A.2.17 Values in Holes .. A-5
A.2.18 Values in Uncollectable Holes ... A-5
A.2.19 Line State ... A-6
A.2.20 Polling Active .. A-6

Table of Contents

vi

A.2.21 FS1 to Collect ... A-7
A.2.22 FS1 Collected ... A-7
A.2.23 FS2 to Collect ... A-7
A.2.24 FS2 Collected ... A-7
A.2.25 Logger Ver ... A-7
A.2.26 Watchdog Err ... A-7
A.2.27 Prog Overrun .. A-8
A.2.28 Mem Code .. A-8
A.2.29 Collect Retries .. A-8
A.2.30 Low Voltage Stopped Count .. A-8
A.2.31 Low Five Volts Error Count ... A-8
A.2.32 Lithium Battery Voltage .. A-9
A.2.33 Table Definitions State ... A-9
A.2.34 Link Time Remaining .. A-9
A.2.35 RFTD Blacklisted... A-10

A.3 Server Statistics ... A-10
A.3.1 Disc Space Available ... A-10
A.3.2 Available Virtual Memory ... A-10
A.3.3 Used Virtual Memory .. A-10
A.3.4 Restart Count .. A-10
A.3.5 Up Time ... A-11
A.3.6 Last Backup Time .. A-11
A.3.7 Next Auto Backup .. A-11

Figures
1-1. Adding an SDK Control to the Toolbox ... 1-4
1-2. Adding a Reference to the SDK control’s Type Library 1-5
1-3. Wrapper Class Properties ... 1-6
3-1. CsiServer Example ... 3-2
5-1. CsiCoraScript Example .. 5-2
7-1. CsiBrokerMap Example ... 7-2
9-1. CsiDatalogger Example .. 9-2
11-1. CsiDataSource Example ... 11-2
13-1. CsiLogMonitor Example .. 13-2

Table
1-1. Supported Development Tools ... 1-2

VB.NET Examples
3-1. Starting the Server using the startServer() Method 3-3
3-2. Retrieving and Displaying the Server Version using the

serverVersion Property ... 3-3
3-3. Stopping the Server using the stopServer() Method 3-4
5-1. Establishing a Connection to a LoggerNet Server using the

serverConnect() Method ... 5-3
5-2. Handling the onServerConnectStarted() Event 5-3
5-3. Handling the onServerConnectFailure() Event 5-4
5-4. Executing a CoraScript Command using the executeScript()

Method .. 5-5
7-1. Establishing a Connection to the LoggerNet Server using the

start() Method ... 7-3
7-2. Handling the onAllStarted() Event ... 7-4
7-3. Populating the TreeView Object with the Broker Map 7-5

Table of Contents

vii

7-4. Handling the onBrokerAdd() Event ... 7-6
9-1. Establishing a Connection to a LoggerNet Server using the

serverConnect() Method ... 9-3
9-2. Displaying Text Messages using the WriteMessage() Sub 9-4
9-3. Handling the onServerConnectStarted() Event 9-4
9-4. Handling the onServerConnectFailure() Event 9-5
9-5. Using the loggerConnectStart() Method .. 9-6
9-6. Using the loggerConnectCancel() Method 9-7
9-7. Using the clockSetStart() Method .. 9-8
9-8. Handling the onClockComplete() Event .. 9-9
9-9. Using the manualPollStart() Method ... 9-10
9-10. Using the manualPollCancel() Method ... 9-11
9-11. Handling the onManualPollComplete() Event 9-11
9-12. Using the programReceiveStart() Method 9-12
9-13. Handling the onProgramReceiveProgress() Event 9-13
9-14. Handling the onProgramReceiveComplete() Event 9-13
9-15. Using the programSendStart() Method .. 9-14
9-16. The ExtractFileName() Function ... 9-15
9-17. Handling the onSendProgramProgress() Event............................. 9-15
9-18. Handling the onSendProgramComplete() Event 9-16
11-1. The WriteMessage Procedure .. 11-3
11-2. Establishing a Connection to the LoggerNet Server using the

connect() Method .. 11-4
11-3. Starting an Advisor to Monitor Data in All Columns of a

Specific Datalogger and Table .. 11-5
11-4. Receiving Records via the onAdviseRecord Event 11-6
11-5. Stopping an Advisor Using the stop() Method 11-7
13-1. Establishing a Connection to the LoggerNet Server using the

serverConnect() Method ... 13-3
13-2. Handling the onServerConnectStarted() Event 13-4
13-3. Handling the onCommLogRecord() Event 13-5
13-4. Handling the onTranLogRecord() Event .. 13-5
13-5. Using the commLogMonitorStop() Method to Pause and Restart

Monitoring of Communication Logs .. 13-6

Table of Contents

viii

1-1

Section 1. LoggerNet SDK and
LNServer SDK Overview

This document serves as a programmer’s reference for two Campbell Scientific
software products; the LoggerNet SDK and the LNServer SDK. The products
differ only in the functionality of the LoggerNet Server DLL supplied with
each, and the unique ActiveX® control required to start and stop the respective
server. The remainder of the supplied components are common to each product
and are identical in their function, operation and use. All components are
documented herein.

Hereafter, except where noted, the term SDK is used in reference to both
products synonymously.

1.1 Purpose of the SDK
The ActiveX® controls comprising the SDK encapsulate the proprietary
messaging protocol used between the LoggerNet server and client applications.
These controls provide a means for developing applications that incorporate the
functionality of a LoggerNet server without the need to understand the
intricacies of the messaging protocol. Not only is development time reduced,
but applications are insulated from future changes to the messaging protocol.

It is important to understand that it is the LoggerNet server that communicates
directly with and collects data from a network of Campbell Scientific
dataloggers. The SDK provides the means with which an application is able to
ascertain and define the structure of the network, manage the server’s
communications with the network, access the collected data, and monitor the
server’s operation.

1.2 Requirements
1.2.1 Required Campbell Scientific, Inc. Software

The SDK supports the development of either client or standalone applications.
Client applications communicate with an independent LoggerNet server,
existing either on the local host or on a remote PC, via a TCP/IP connection.
Alternately, by incorporating and distributing the provided LoggerNet Server
DLL, a fully autonomous application can be achieved.

LoggerNet server version 1.1 or higher is required for client applications.

1.2.2 Development Tools
The SDK’s ActiveX® controls have been tested with the following
development tools for Microsoft® Windows®:

Section 1. LoggerNet SDK and LNServer SDK Overview

1-2

TABLE 1-1. Supported Development Tools

Development Tool Examples Available

Visual C++® (MFC)* Yes

C#.NET Yes

VB.NET Yes

*Information about supported Visual Studio versions is provided
in the readme.txt file located in C:\Campbellsci\LoggerNetSDK
or C:\Campbellsci\LoggerNetServerSDK.

1.3 Included Components
1.3.1 Files Included in the SDK

By default, the installation of the SDK will create an application working
directory in the root of the C:\Campbellsci directory. The top folder in the
working directory will be named LoggerNetSDK or LoggerNetServerSDK,
depending on the product installed. This folder will contain three additional
folders: a Controls folder containing the six ActiveX® controls and the
LoggerNet Server DLL; an Examples folder containing the example Visual
Studio® project files; and a Manuals folder containing documentation and
reference manuals.

1.3.1.1 ActiveX® Controls (DLLs)
The six ActiveX® controls are implemented as Dynamically Linked Libraries
(DLLs) and are registered on the development host by default during the
installation of the SDK. Any controls used in the development of an
application must also be registered on the application host. The latter can be
accomplished as part of an installation program or done manually using the
RegSvr32.exe utility installed with the Windows OS.

Each of the six controls provides specific functionality and, as demonstrated in
the example projects, can work independently from the others. Depending on
the application requirements, only a few or all of the controls may be needed.

1.3.1.2 LoggerNet Server DLL
Fundamentally, the LoggerNet Server DLL provides the core functions of
datalogger communication, data collection and storage. Additionally, it
functions as the ‘server’ component of a client-server architecture by exposing
an API for client applications. It is this interface that is abstracted by the SDK.

The LoggerNet Server DLL does not need to be registered but must be placed
in the application folder, in the PATH environmental variable, or in the
Windows system directory.

Depending on the product installed, one of two versions of the LoggerNet
Server DLL is included with the SDK. The versions differ in the types of
telecommunication devices supported.

Section 1. LoggerNet SDK and LNServer SDK Overview

1-3

1.3.1.2.1 Coralib3d.dll
The Coralib3d server is installed with the LoggerNet SDK. This limited
function LoggerNet server supports only direct communications with the
datalogger via RS-232, USB, or TCP/IP connections. The CsiServerDirect
control is used to start and stop this server.

1.3.1.2.2 Coralib3.dll
The full function Coralib3 server is installed with the LNServer SDK. The
CsiServer control is used to start and stop this server.

1.3.1.3 Manuals
The SDK Beginner’s Guide contains information comparing available
Campbell Scientific SDK products. The LoggerNet and LNServer SDK
Programmer’s Reference (this document) contains detailed information
regarding the use of the SDK. The CoraScript Interpreter Reference
(cora_cmd.pdf) provides a command reference for use with the CsiCoraScript
control. All manuals are in PDF format.

1.3.1.4 Example Projects
Example Microsoft Visual Studio projects are included with the SDK that
demonstrate the implementation of each of the ActiveX® controls. The example
applications are written in various development languages; C#, VB.NET and
C++ (VisualStudio-MFC). Most of the example projects are Windows Forms
applications, but a Console project that implements the CsiCoraScript control
is included in the C# and VB.NET folders.

The examples are intended to demonstrate how the SDK controls can be used
in a typical application. While the examples do exercise the core functionality
of each control, not every attribute is utilized. This is most true with regard to
the multiple interfaces of the CsiDataSource control. However, a competent
developer should have no difficulty in extrapolating the examples into a highly
functional, custom application.

1.4 Developing .NET Applications Using the SDK
The ActiveX® components of the SDK are built on the Component Object
Model (COM) architecture and expose a COM interface. To enable COM
interoperability, the .NET Framework utilizes a Runtime Callable Wrapper
(RCW). The RCW infrastructure enables communications between the .NET
application and the COM interface, and provides data type marshaling and
event handling.

In Microsoft’s Visual Studio, the SDK components can be imported into a
.NET Windows Forms application via one of two methods: by simply dropping
the ActiveX® control onto the form or by adding a reference to the component
type library. Either method will create a RCW class that, once instantiated, can
be accessed like any other .NET object. The latter method was employed in the
development of the .NET examples included with the SDK and in the example
code illustrated in this document.

The ActiveX® controls in the SDK must run in a 32-bit process on
64-bit machines. Compiler options should be set to target the x86
platform.

NOTE

Section 1. LoggerNet SDK and LNServer SDK Overview

1-4

1.4.1 Adding an SDK Control to a .NET Project
Before a control can be added to or referenced in a project, the control must be
added to the Visual Studio Toolbox. In VS2012 or later, this is accomplished
by right-clicking in the Toolbox and selecting Choose Items from the shortcut
menu. In the resulting Choose Toolbox Items dialogue box, select the COM
Components tab and check the SDK control(s) required by the project as
shown in FIGURE 1-1.

FIGURE 1-1. Adding an SDK Control to the Toolbox

1.4.2 Creating the Runtime Callable Wrapper
The RCW can be created by invoking the tlbimp utility from a command line
or via Visual Studio.

To have Visual Studio create the RCW, a reference to the type library of the
control must be added to the project. To invoke the Reference Manager, right-
click the project in the Solution Explorer and select Add Reference. In the
Reference Manager dialogue, select the COM tab and then Type Libraries.
From the list of libraries, select the required control as shown in FIGURE 1-2.

Section 1. LoggerNet SDK and LNServer SDK Overview

1-5

FIGURE 1-2. Adding a Reference to the SDK control’s Type Library

For this example, clicking the OK button will create an RCW class named
Interop.CsiServerlib. A CsiServerLib reference will be added to the References
folder in the Solution Explorer and the file Interop.CsiServerLib.dll will be
added to the obj folder.

By default, Visual Studio will embed the wrapper class within the
main assembly of the project. However, for proper runtime
functionality of the SDK controls, the RCW must be distributed
with the application as a separate assembly.

To have Visual Studio create the RCW as a separate assembly, ensure that the
Embed Interop Types property of the wrapper class is set to False before
building the project. See FIGURE 1-3.

NOTE

Section 1. LoggerNet SDK and LNServer SDK Overview

1-6

FIGURE 1-3. Wrapper Class Properties

2-1

Section 2. CsiServer and
CsiServerDirect Controls
2.1 Purpose of the CsiServer and CsiServerDirect

Controls
The CsiCoraScript, CsiBrokerMap, CsiDatalogger, CsiDataSource and
CsiLogMonitor SDK controls must connect to and communicate with a
LoggerNet server. Therefore, a LoggerNet server must be running on the
network. In lieu of an existing LoggerNet server, the CsiServer and
CsiServerDirect controls allow an application to start and stop the respective
LoggerNet Server DLL included with the SDK (see Section 1.3.1.2, LoggerNet
Server DLL (p. 1-2)).

Some consideration should be given to the type of software application
required before beginning a project using the SDK. Campbell Scientific sells a
complete LoggerNet software package that includes the LoggerNet server and
many complex software clients. Many developers merely want to create a
custom software interface that extends an existing LoggerNet installation. The
included LoggerNet Server DLL will not be required for this type of
application. However, if a standalone software solution is required that will
replace or be used instead of Campbell Scientific’s LoggerNet software
package, the CsiServer or CsiServerDirect control will be required to activate
the included LoggerNet Server DLL.

2.2 CsiServer and CsiServerDirect Interface
With the exception of their names and the respective LoggerNet Server DLL
that each activates, the CsiServer and CsiServerDirect controls are identical.
They each expose the following interface. See Section 14, CsiServer and
CsiServerDirect Control Reference (p. 14-1), for detailed descriptions of these
properties, methods, and events.

2.2.1 Properties
• applicationWorkDir As String (p. 14-1)

• buildDate As String (read-only) (p. 14-1)

• logFileDir As String (p. 14-2)

• serverStarted As Boolean (read-only) (p. 14-2)

• serverVersion As String (read-only) (p. 14-2)

• serverWorkDir As String (Required) (p. 14-3)

• tcpPort As Integer (p. 14-3)

• tcpPortEx As Long (p. 14-4)

2.2.2 Methods
• startServer() (p. 14-4)

• stopServer() (p. 14-5)

Section 2. CsiServer and CsiServerDirect Controls

2-2

2.2.3 Events
• onServerFailure (String reason) (p. 14-5)

3-1

Section 3. Developing an Application
Using the CsiServer Control
3.1 Purpose

This section shows by example how to build a simple application using the
SDK CsiServer control. Due to the functional similarities and identical
interface, this section also serves as an example for developing an application
using the CsiServerDirect control. The application’s functions are:

1. Start the LoggerNet Server DLL (Coralib3.dll).

2. Display the functional status of the server.

3. Retrieve and display the version number of the LoggerNet Server DLL.

4. Stop the LoggerNet Server DLL.

3.2 Using the CsiServer Control
3.2.1 Getting Started with the CsiServer Control

This example assumes that:

• The CsiServer control has been correctly registered on the application
host.

• The Coralib3.dll exists in the application folder, the PATH environmental
variable, or the Windows® system directory.

• A Windows Forms application is to be developed using the Visual
Studio® 2012 (or later) IDE, and the VB.NET programming language.

Complete the following steps first:

1. Start Visual Studio and create a new Visual Basic® Windows Forms
Application targeting the .NET Framework 4.0.

2. Following the procedures outlined in Section 1.4, Developing .NET
Applications Using the SDK (p. 1-3), add the CsiServer control to the
Toolbox and create the RCW class.

3. In the Solution Explorer, right-click the Form1.vb file and rename it
CsiServerForm.vb.

3.2.2 CsiServer Control Application Example
Begin by modifying the blank form to create a Graphical User Interface (GUI)
that supports the required functionality. The finished form should resemble the
example shown in FIGURE 3-1.

Section 3. Developing an Application Using the CsiServer Control

3-2

FIGURE 3-1. CsiServer Example

Once the interface has been designed, the necessary Visual Basic code can be
added to attain the required functionality. The first order of business is to
instantiate the RCW class (CsiServerLib.CsiServerControl). Add the following
code to the CsiServerForm class.

Dim WithEvents csiServer As New CsiServerControl

Key elements of the application’s file structure are defined by properties of the
CsiServer control. The Application Working Directory (applicationWorkDir) is
where the server will write data files. The server’s configuration file
(CsiLgrNet.xml) is maintained in the Server Working Directory
(serverWorkDir). The server will write its log files to the Log File Directory
(logFileDir).

It is required that the Server Working Directory be specified. If the
Application or Log File directories are not specified, each will default to the
location of the Server Working Directory. By convention, serverWorkDir is
specified as c:\campbellsci\LoggerNetServerSDK\sys\bin, but may be pointed
to a location of the developer’s choosing.

The server’s configuration file is the repository for the server settings as well
as the settings for all other devices in the network map. Initially, the network
map will be empty, and the network will need to be constructed using the
CsiCoraScript control. Alternately, the serverWorkDir property can be pointed
to an existing configuration file; presumably, from a previous or existing
LoggerNet installation.

The following code snippets illustrate the basic functionality of the CsiServer
control. For more comprehensive code examples, refer to the VB.NET example
project files supplied with the SDK.

Section 3. Developing an Application Using the CsiServer Control

3-3

The following code example illustrates starting the Server (startSever()
method):

VB.NET Example 3-1. Starting the Server using the startServer() Method
Private Sub btnStartServer_Click(sender As Object, e As EventArgs) Handles btnStartServer.Click

 Try
 'First, check to see if the server is already started
 If csiServer.serverStarted Then

 txtStatus.Text = "Server Already Started"
 Else

 'Set required properties for the LoggerNet Server
 csiServer.serverWorkDir = "c:\campbellsci\LoggerNetServerSDK\sys\bin"
 'Start the LoggerNet Server
 csiServer.startServer()
 txtStatus.Text = "Server Started"

 'Update the form
 btnStartServer.Enabled = False
 btnStopServer.Enabled = True
 btnSvrVersion.Enabled = True

 End If

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .Net Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSIServerLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CsiServerLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, _

 "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & vbCrLf & ex.Message, "CSI Server Start: ERROR")

 End Try
End Sub

The following code example illustrates how to retrieve and display the server
version (serverVersion property):

VB.NET Example 3-2. Retrieving and Displaying the Server Version using the serverVersion Property
Private Sub btnSvrVersion_Click(sender As Object, e As EventArgs) Handles btnSvrVersion.Click

 Try
 'Display the version of the server started by the CsiServer control
 MessageBox.Show("Server Version: " & csiServer.serverVersion, "CSI Server Version")

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .Net Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSIServerLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CsiServerLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, _

 "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & vbCrLf & ex.Message, "CSI Server Version Button: ERROR")

 End Try
End Sub

Section 3. Developing an Application Using the CsiServer Control

3-4

The following code example illustrates stopping the server (stopServer
method):

VB.NET Example 3-3. Stopping the Server using the stopServer() Method
Private Sub btnStopServer_Click(sender As Object, e As EventArgs) Handles btnStopServer.Click

 Try
 'Stop the LoggerNet Server

 If csiServer.serverStarted Then
 csiServer.stopServer()
 txtStatus.Text = "Server Stopped"

 'Update the form
 btnStopServer.Enabled = False
 btnStartServer.Enabled = True
 btnSvrVersion.Enabled = False

 Else
 txtStatus.Text = "Server Already Stopped"

 End If

 Catch ex As Exception
 MessageBox.Show(ex.Source & vbCrLf & ex.Message, "CSI Server Stop: ERROR")

 End Try
End Sub

Add additional objects and functionality as necessary to meet the specific
requirements of the application. Complete examples using the CsiServer and
CsiServerDirect controls are included with the SDK installation.

4-1

Section 4. CsiCoraScript Control
4.1 Purpose of the CsiCoraScript Control

The CsiCoraScript control provides the ability to administer the LoggerNet
server. There are many different settings and commands available with this
control.

Specific LoggerNet server functions and tasks are set by passing CoraScript
commands to the LoggerNet server. CoraScript commands execute LoggerNet
server operations that include adding devices to the network map, data
collection, listing table and datalogger information, and changing settings in
the LoggerNet server and attached devices. CoraScript commands and their
descriptions can be found in the CoraScript Interpreter Reference manual
(cora_cmd.pdf) installed with the LoggerNet or LNServer SDK.

The CsiCoraScript control executes a single CoraScript command
at a time. The following CoraScript commands are currently
unsupported in the SDK: connect, disconnect, help, exit, bye, quit,
and list-commands.

4.2 Connecting to the Server
There are two basic actions required for this control to connect to the
LoggerNet server:

1. Set server properties:

• serverName – The name or IP address of the LoggerNet server. The
default value is localhost.

• serverPort – The port on which the LoggerNet server is running. The
default value is 6789.

• serverLogonName (Optional) – If security has been enabled on the
server, a valid logon name is required.

• serverLogonPassword (Optional) – If security has been enabled on
the server, a valid password that corresponds with a valid logon name
is required.

2. Invoke the serverConnect() method.

4.3 Using CoraScript Commands
CoraScript commands are used to setup and manipulate the LoggerNet server.
A thorough knowledge of these powerful commands is recommended before
attempting to make changes to settings or devices in the LoggerNet server.
The following sections outline some basic commands that can be used to
quickly set up devices and collect data from the network.

NOTE

Section 4. CsiCoraScript Control

4-2

4.3.1 Setting up a Network
Some of the commands that can be used when initially setting up a datalogger
network on the LoggerNet server include:

• add-device – used to add root ports, dataloggers, and telecommunication
devices to the network map.

• set-device-setting – used to change settings of specific devices in the
network map.

• delete-branch – used to remove a device and any children of a device from
the network map.

• list-devices – shows the devices in the network map

The following example shows the basic CoraScript commands used to set up a
CR10X connected directly to the LoggerNet server via RS-232:

add-device com-port COM1 as-child “”;
add-device cr10x CR10X as-child “COM1”;

The following example shows basic CoraScript commands used to set up a
CR6 datalogger named MyCr6 connected to the LoggerNet server via Ethernet:

add-device tcp-com-port IPPort as-child “”;
set-device-setting IPPort 15 192.168.25.04:6785;
add-device pakbus-port PakBusPort as-child IPPort;
add-device cr6 MyCr6 as-child PakBusPort;

4.3.2 Real-Time Data Display
Some developers want to display data values as quickly as they change in the
datalogger. Each time a datalogger program executes, new values are written as
input locations. Collecting these input locations provides a snapshot of the
most recent values contained in the datalogger. The CsiDataSource control can
be used to set up an advisor that will watch the LoggerNet data cache and
display new or existing data values that are collected. CoraScript commands
are used to set up the collect areas of LoggerNet and to enable scheduled
collection of specific datalogger tables to automate the collection process.

Please note that although the commands below will enable collection of input
locations from a datalogger, using input locations for real-time comparison of
values can be problematic. When input locations are collected, the collection is
merely a snapshot of the current values that exist in each location. If, for
example, the datalogger program has not completely executed, some of the
values collected may be new while other values may have not changed from
the previous program execution. Please keep this information in mind if input
locations are used in real-time data display or calculations. If correlating values
are necessary, a better approach writes values to final storage every program
execution and collects those values as quickly as possible.

Section 4. CsiCoraScript Control

4-3

4.3.2.1 Table-Data Dataloggers
The LoggerNet server, by default, creates a collect area for the Public or
InLocs (Input Locations) table of table-data dataloggers such as the CR6 or
CR10X-TD. The basic CoraScript commands that are used to enable
collection and establish scheduled collection are:

• set-collect-area-setting – used to enable a device for collection

• set-device-setting – used to activate scheduled collection for a device

If you have added a CR6 named MyCr6 to the datalogger network and you
have a program running on that device, the following command will enable the
Public table for collection by activating the collect-area-setting
scheduleEnabled (id = 2):

set-collect-area-setting MyCr6 public 2 1;

Every time a manual poll or any other collection occurs, data will be collected
for the Public table of the CR6. If a CsiDataSource advisor has been created,
it will trigger and display the new values. If you want to automate the data
collection process, set the device's scheduled collection interval through the
device setting collectSched (id = 5):

set-device-setting MyCr6 5 {1 19900101 300000 120000 3 86400000};

With the above setting, the LoggerNet server will automatically collect all
tables enabled for collection from the CR6 every 300000 milliseconds. Once
this setting is in place, the activated DataSource advisor will display updates as
they are automatically collected.

4.3.2.2 Mixed-Array Dataloggers
Although the CsiDataSource control can create a temporary data cache to
watch all input locations, mixed-array dataloggers, like the CR7 and CR10X,
require additional commands to create a permanent collect area for input
locations. Input Locations (InLocs) contain values that are usually stored every
time the program executes. However, the LoggerNet server does not create a
permanent data cache by default containing data from InLocs for a mixed-array
datalogger. If a permanent collect area for InLocs is desired or only specific
InLocs are needed, the collect area must be created manually in the LoggerNet
server. The following commands are used to set up a permanent InLocs collect
area for a mixed-array datalogger:

• create-inlocs-area – create a collect area containing specified input
locations

• set-collect-area-setting – used to enable a device for collection

• set-device-setting – used to activate scheduled collection for a device

The following example sets up collection for two input locations of a CR10X
by identifying the station, declaring a name for the collect area, and listing the
input locations to include:

create-inlocs-area CR10X InLocsArea {1 "inlocs1"} {2 {inlocs2}};

Section 4. CsiCoraScript Control

4-4

Collect area names must always be unique. Therefore, if an attempt is made to
create a collect area with exactly the same name as a collect area that already
exists, the LoggerNet server will automatically index the name of the collect
area being created. For example, if collect area InLocsArea already exists and
an attempt is made to create another collect area with the same name, the
LoggerNet server will automatically name the new collect area InLocsArea1.

To activate a collect area for collection and to automate the collection process
use the following commands:

set-collect-area-setting CR10X InLocsArea 2 1;
set-device-setting CR10X 5 {1 19900101 300000 120000 3 86400000};

With the above setting, the LoggerNet server will automatically collect all
tables enabled for collection from the CR10X every 300000 milliseconds.
Once this setting is in place, the activated CsiDataSource advisor will display
new data values as they are collected.

4.4 CsiCoraScript Interface
See Section 15, CsiCoraScript Control Reference (p. 15-1), for descriptions of
these properties, methods, and events.

4.4.1 Properties
• serverConnected As Boolean (read-only) (p. 15-1)

• serverLogonName As String (p. 15-1)

• serverLogonPassword As String (p. 15-2)

• serverName As String (p. 15-2)

• serverPort As Long (p. 15-3)

4.4.2 Methods
• executeScript(String script, Long asyncID) As String (p. 15-3)

• serverConnect() (p. 15-4)

• serverDisconnect() (p. 15-4)

4.4.3 Events
• onScriptComplete(Long asyncID, String result) (p. 15-5)

• onServerConnectStarted() (p. 15-5)

• onServerConnectFailure(server_failure_type server_failure) (p. 15-5)

5-1

Section 5. Developing an Application
Using the CsiCoraScript Control
5.1 Purpose

This section shows an example of how to build a simple application using the
CsiCoraScript control. The application’s functions are:

1. Connect to a running LoggerNet server.

2. Execute CoraScript commands to administer the LoggerNet server.

5.2 Using the CsiCoraScript Control
5.2.1 Getting Started with the CsiCoraScript Control

The CsiCoraScript SDK control (an ActiveX® object) is used to administer the
datalogger network by passing CoraScript commands to the LoggerNet server.

This example assumes that:

• The CsiCoraScript control has been correctly registered on the application
host.

• A Windows® Forms application is to be developed using the Visual
Studio® 2012 (or later) IDE and the VB.NET programming language.

• A LoggerNet server is running and accessible on the network

Complete the following steps first:

1. Start Visual Studio and create a new Visual Basic® Windows Forms
Application targeting the .NET Framework 4.0.

2. Following the procedures outlined in Section 1.4, Developing .NET
Applications Using the SDK (p. 1-3), add the CsiCoraScript control to the
Toolbox and create the RCW class.

3. In the Solution Explorer, right-click the Form1.vb file and rename it
CoraScriptForm.vb.

5.2.2 CsiCoraScript Control Application Example
Begin by modifying the blank form to create a Graphical User Interface (GUI)
that supports the required functionality. The finished form should resemble the
example shown in FIGURE 5-1.

Section 5. Developing an Application Using the CsiCoraScript Control

5-2

FIGURE 5-1. CsiCoraScript Example

Once the interface has been designed, the necessary Visual Basic code can be
added to attain the required functionality. The first order of business is to
instantiate the RCW class (CsiCoraScriptLib.CsiCoraScriptControl). Add the
following code to the CsiCoraScriptForm class.

Dim WithEvents CsiCoraScript As New CsiCoraScriptControl

The following code snippets illustrate the basic functionality of the
CsiCoraScript control. For more comprehensive code examples, refer to the
VB.NET example project files supplied with the SDK.

Section 5. Developing an Application Using the CsiCoraScript Control

5-3

The first task of the application is to establish a connection to LoggerNet server
(serverConnect() method):

VB.NET Example 5-1. Establishing a Connection to a LoggerNet Server using the serverConnect() Method
Private Sub btnConnect_Click(sender As Object, e As EventArgs) Handles btnConnect.Click

 Try
 'Set connection properties
 CsiCoraScript.serverName = txtSvrAddress.Text
 CsiCoraScript.serverPort = Convert.ToInt32(txtSvrPort.Text)
 CsiCoraScript.serverLogonName = txtUsername.Text
 CsiCoraScript.serverLogonPassword = txtPassword.Text

 'Call serverConnect()
 'If a connection is made, the control will raise the onServerConnectStarted() event.
 'If a connection is not made, the control will raise the onServerConnectFailure event
 CsiCoraScript.serverConnect()

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .Net Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSICoraScriptLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CsiCoraScriptLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI CoraScript Connect Button : ERROR")
 End Try
End Sub

If the connection succeeds, the onServerConnectStarted() event gets triggered.
The following code example illustrates how this event can be handled:

VB.NET Example 5-2. Handling the onServerConnectStarted() Event
Private Sub CsiCoraScript_onServerConnectStarted() Handles CsiCoraScript.onServerConnectStarted

 'This event is called when the CsiCoraScript control has successfully connected to the
server.
 Try
 'Update the form
 btnConnect.Enabled = False
 btnDisconnect.Enabled = True
 btnExecute.Enabled = True

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI CoraScript onServerConnectStarted Event : ERROR")
 End Try
End Sub

Section 5. Developing an Application Using the CsiCoraScript Control

5-4

If the connection fails, the onServerConnectFailure() event gets called. This
event will pass one of several enumerated failure codes to the application. The
following code example illustrates how this event can be handled:

VB.NET Example 5-3. Handling the onServerConnectFailure() Event
Private Sub CsiCoraScript_onServerConnectFailure(ByVal server_failure As _

 CsiCoraScriptLib.server_failure_type) _
 Handles CsiCoraScript.onServerConnectFailure

 'This event is called when the attempt to connect to the server failed, or when the
 ‘established connection has been broken.
 Try
 'Show failure type
 MessageBox.Show("Could not connect to Server: " & server_failure.ToString(), _

 "onServerConnect Failure Event")

 'Execute a Disconnect to insure a stable interface.
 btnDisconnect_Click(Me, New EventArgs())

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI CoraScript onServerConnectFailure Event : ERROR")
 End Try
End Sub

Section 5. Developing an Application Using the CsiCoraScript Control

5-5

The following code example illustrates use of the executeScript() method for
executing a CoraScript command:

VB.NET Example 5-4. Executing a CoraScript Command using the executeScript() Method
Private Sub btnExecute_Click(sender As Object, e As EventArgs) Handles btnExecute.Click
 Try

 'Send CoraScript command to the server
 'Sample CoraScript commands include:
 ' List-Devices;
 ' add-device com-port Comport before "";
 ' add-device pakbus-port PakBusPort as-child Comport;
 ' add-device cr1000 CR1000 as-child PakBusPort;

 'If the asyncID parameter of the executeScript() method is set to 0,
 'the command will execute synchronously (i.e., the program waits for the
 'execution of the CoraScript command to complete before continuing). The results
 'are returned to the caller.

 'If the asyncID parameter of the executeScript() method is other than 0,
 'the command will execute asynchronously (i.e., the program continues execution).
 'When the CoraScript command is complete, the onScriptComplete() event
 'will be raised and passed the results.

 'For this example we use synchronous execution.
 Me.Cursor = Cursors.WaitCursor
 txtCoraResult.Text = CsiCoraScript.executeScript(txtCoraScript.Text, 0)
 txtCoraResult.SelectionStart = txtCoraResult.Text.Length
 txtCoraResult.ScrollToCaret()
 Me.Cursor = Cursors.Default

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .Net Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSICoraScriptLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CsiCoraScriptLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message,

 "CSI CoraScript Execute Button : ERROR")
 End Try
End Sub

Add additional objects and functionality as necessary to meet the specific
requirements of the application. Complete examples using the CsiCoraScript
control are included with the SDK installation.

Section 5. Developing an Application Using the CsiCoraScript Control

5-6

6-1

Section 6. CsiBrokerMap Control
6.1 Purpose of the CsiBrokerMap Control

The CsiBrokerMap control gives developers access to the server’s broker map,
which is the list of brokers or dataloggers known by the LoggerNet server.
This control also keeps track of all tables on each of the brokers including the
table definitions or columns. This table information is derived from the collect
areas that are known by the LoggerNet server after a datalogger program has
been associated or table definitions have been retrieved. The user may also
create collect areas manually in the LoggerNet server.

The application or user will use the information provided by the CsiBrokerMap
control as input parameters for other controls in the SDK. For example, the
CsiCoraScript, CsiDatalogger, and CsiDataSource controls will require
specific information about brokers, tables, and columns existing in the network
in order to function.

6.2 Connecting to the LoggerNet Server
There are two basic actions required to connect to the LoggerNet server:

1) Set server properties:

• serverName – The name of the LoggerNet server or IP address. The
default value is localhost.

• serverPort – The port on which the LoggerNet server is running. The
default value is 6789.

• serverLogonName (Optional) – If security has been enabled on the
server, a valid logon name is required.

• serverLogonPassword (Optional) – If security has been enabled on
the server, a valid password that corresponds with a valid logon name
is required.

2) Invoke the start() method.

Section 6. CsiBrokerMap Control

6-2

6.3 How Collections Work
The CsiBrokerMap uses the concept of collections in its implementation.
Collections provide layers of objects and a standard way to access those
objects. There are two basic ways to look at collections. The Visual Basic®
(VB.Net) view describes how a VB.Net programmer would view a collection,
which is simpler than for Visual C++®.

6.3.1 Visual Basic View of Collections
The CsiBrokerMap collections are simply three levels of grouped items.
Brokers exist at the top-most level; within brokers are tables and within tables
are columns. Each of these levels can be accessed with the dot operator in
Visual Basic. The following example illustrates how to access all of the
brokers in the BrokerMap collection:

6.3.1.1 Accessing Collections with For Each
For Each b in BrokerMap.Brokers
 Debug.Print b.name
Next

This simplistic code allows you to iterate through the BrokerMap collection
simply without having to worry about indexes and going out of bounds. In the
code above, it would be possible to access all of the tables in each broker by
nesting a similar loop inside the existing one stating For Each t in
BrokerMap.Brokers(b).Tables. By repeating similar code for the columns,
the whole broker map could be displayed.

6.3.1.2 Accessing Collections with Indexes and Names
The brokers, tables, and columns can be accessed not only with the “For
Each” loop, but also by index and name. Consider the following examples:

BrokerMap.Brokers("CR9000").Tables("minute").Columns("temp").size
For i = 0 to BrokerMap.Brokers.Count – 1
 Debug.Print BrokerMap.Brokers(i)
Next

The first line of code assumes that a datalogger named CR9000 with a table
named minute exists in the broker map. The code also assumes a column
named temp exists in the table named minute. These names could also be
String variables instead of literal strings.

6.3.2 Visual C++ View of Collections
Visual C++ requires a little more work to capture the information provided by
this control, but not much more than Visual Basic’s iterative method using
indexes. Please refer to the code in the Visual C++ examples included with the
LoggerNet SDK installation.

Section 6. CsiBrokerMap Control

6-3

6.4 CsiBrokerMap Interfaces
The following interfaces are included in the CsiBrokerMap control:

• Broker
• BrokerMap
• BrokerCollection
• Column
• ColumnCollection
• Table
• TableCollection

6.4.1 BrokerMap Interface
See Section 16.1, BrokerMap Interface (p. 16-1), for detailed descriptions of
these properties, methods, and events.

6.4.1.1 Properties
• serverName As String (p. 16-1)

• serverLogonName As String (p. 16-1)

• serverLogonPassword As String (p. 16-2)

• serverPort As Long (p. 16-3)

• autoExpand As Boolean (p. 16-3)

• serverConnected As Boolean (p. 16-4)

6.4.1.2 Methods
• brokers() As Object (p. 16-4)

• finish() (p.16-4)

• start() (p. 16-5)

6.4.1.3 Events
• onAllStarted() (p. 16-5)

• onBrokerAdded(Object Broker) (p. 16-5)

• onBrokerDeleted(Object Broker) (p. 16-6)

• onFailure(BrokerMapFailureType failure_code) (p. 16-6)

• onTableAdded(Object Broker, Object Table) (p. 16-7)

• onTableDeleted(Object Broker, Object Table) (p. 16-7)

• onTableChanged(Object Broker, Object Table) (p. 16-7)

• onBrokerStarted(Object Broker) (p. 16-7)

6.4.2 BrokerCollection Interface
See Section 16.2, BrokerCollection Interface (p. 16-7), for descriptions of these
properties and methods.

6.4.2.1 Properties
• count As Long (p. 16-7)

Section 6. CsiBrokerMap Control

6-4

6.4.2.2 Methods
• Item(id) As Broker (p. 16-8)

• _NewEnum() (GetEnumerator() in .NET) (p. 16-9)

6.4.3 Broker Interface
See Section 16.3, Broker Interface (p. 16-9), for descriptions of these properties
and methods.

6.4.3.1 Properties
• id As Long (p. 16-9)

• name As String (p. 16-9)

• type As BrokerType (p. 16-10)

• datalogger_type As String (p. 16-10)

• allStarted As Boolean (p. 16-11)

6.4.3.2 Methods
• Tables() As Object (p. 16-11)

• start_expansion() (p. 16-11)

6.4.4 TableCollection Interface
See Section 16.4, TableCollection Interface (p. 16-12), for descriptions of these
properties and methods.

6.4.4.1 Properties
• Count As Long (p. 16-12)

6.4.4.2 Methods
• Item(id) As Table (p. 16-12)

• _NewEnum() (GetEnumerator() in .NET) (p. 16-13)

6.4.5 Table Interface
See Section 16.5, Table Interface (p. 16-14), for descriptions of these properties
and methods.

6.4.5.1 Properties
• interval As Long (p. 16-14)

• name As String (p. 16-14)

• originalSize As Long (p. 16-14)

• size As Long (p. 16-15)

6.4.5.2 Methods
• Columns() As Object (p. 16-15)

• start_expansion() (p. 16-15)

Section 6. CsiBrokerMap Control

6-5

6.4.6 ColumnCollection Interface
See Section 16.6, ColumnCollection Interface (p. 16-16), for descriptions of these
properties and methods.

6.4.6.1 Properties
• Count As Long (p. 16-16)

6.4.6.2 Methods
• Item(id) As Column (p. 16-16)

• _NewEnum() (GetEnumerator() in .NET) (p. 16-17)

6.4.7 Column Interface
See Section 16.7, Column Interface (p. 16-18), for descriptions of these properties.

6.4.7.1 Properties
• description As String (p. 16-18)

• name As String (p. 16-18)

• process As String (p. 16-18)

• type As CsiDataTypeCode (p. 16-19)

• units As String (p. 16-20)

• writable As Long (p. 16-21)

Section 6. CsiBrokerMap Control

6-6

7-1

Section 7. Developing an Application
Using the CsiBrokerMap Control
7.1 Purpose

This section shows by example how to build a simple application using the
CsiBrokerMap SDK control. The application’s stated functions are:

1. Display names of all stations in the current network.

2. Upon selection of any single station, display tables associated with that
station's currently running program.

3. Upon selection of any single table, display all fields (columns) included in
that table.

The following section illustrates how to build an application that can perform
these tasks using SDK controls and the LoggerNet server.

7.2 Using the CsiBrokerMap Control
7.2.1 Getting Started with the CsiBrokerMap Control

The CsiBrokerMap is an SDK control (an ActiveX® object) designed to display
names of dataloggers in the current network. This control can also display
names of all tables belonging to the selected datalogger and columns in the
selected table. This information is derived from collect area information
created when a program is associated with a datalogger or when table
definitions are retrieved from the datalogger. Since the CsiBrokerMap control
does not list devices if collect areas are not known, it may be necessary to use
the CoraScript control to associate the program or to retrieve the table
definitions.

This example assumes that:

• The CsiBrokerMap control has been correctly registered on the application
host.

• A Windows® Forms application is to be developed using the Visual
Studio® 2012 (or later) IDE and the VB.NET programming language.

• A LoggerNet server is currently running and accessible on the network.

• At least one station already exists in the LoggerNet server's network map.

• The datalogger program has been associated or table definitions have been
retrieved.

Section 7. Developing an Application Using the CsiBrokerMap Control

7-2

Complete the following steps first:

1. Start Visual Studio and create a new Visual Basic® Windows Forms
Application targeting the .NET Framework 4.0.

2. Following the procedures outlined in Section 1.4, Developing .NET
Applications Using the SDK (p. 1-3), add the CsiBrokerMap control to the
Toolbox and create the RCW class.

3. In the Solution Explorer, right-click the Form1.vb file and rename it
frmBrokerMap.vb.

7.2.2 CsiBrokerMap Control Application Example
Begin by modifying the blank form to create a Graphical User Interface (GUI)
that supports the required functionality. The finished form should resemble the
example shown in FIGURE 7-1.

FIGURE 7-1. CsiBrokerMap Example

Section 7. Developing an Application Using the CsiBrokerMap Control

7-3

Once the interface has been designed, the necessary Visual Basic code can be
added to attain the required functionality. The first order of business is to
instantiate the RCW class (CSIBROKERMAPLib.BrokerMap). Add the
following code to the CsiBrokerMapForm class.

Dim WithEvents CsiBrokerMap As New BrokerMap

The following code snippets illustrate the basic functionality of the
CsiBrokerMap control. For more comprehensive code examples, refer to the
VB.NET example project files supplied with the SDK.

The first task of the application is to establish a connection to LoggerNet
server. The following code example illustrates using the start() method:

VB.NET Example 7-1. Establishing a Connection to the LoggerNet Server using the start() Method
Private Sub btnConnect_Click(sender As Object, e As EventArgs) Handles btnConnect.Click

 Try

 'Clear any current connection
 CsiBrokerMap.finish()

 'Set connection properties
 CsiBrokerMap.serverName = txtSvrAddress.Text
 CsiBrokerMap.serverPort = Convert.ToInt32(txtSvrPort.Text)
 CsiBrokerMap.serverLogonName = txtUsername.Text
 CsiBrokerMap.serverLogonPassword = txtPassword.Text

 'Disable refreshing of the tree until the onAllStarted event
 RefreshOn = False

 'Call start() to connect to the server and start the Broker Map query
 'If a connection is made, the control will raise the onAllStarted() event.
 'If a connection is not made, the control will raise the onFailure() event
 CsiBrokerMap.start()

 Me.Cursor = Cursors.WaitCursor

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .NET Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSIBROKERMAPLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CSIBROKERMAPLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI BrokerMap Connect Button : ERROR")
 End Try

End Sub

Section 7. Developing an Application Using the CsiBrokerMap Control

7-4

If the connection succeeds, the onAllStarted() event will be raised after all of
the initial onBrokerAdded() and onTableAdded() events have been called and
the broker map is known. The following code example illustrates how this
event can be handled:

VB.NET Example 7-2. Handling the onAllStarted() Event
Private Sub CsiBrokerMap_onAllStarted() Handles CsiBrokerMap.onAllStarted

 'This event is called after all of the initial onBrokerAdded() and onTableAdded() events
 'have been called from the start() method and the Broker Map is known.

 Me.Cursor = Cursors.Default

 'Enable refreshing of tree on change events
 RefreshOn = True

 Try
 'Update the form
 btnConnect.Enabled = False
 btnDisconnect.Enabled = True
 btnUpdateBrokerMap.Enabled = True

 'Clear the tree view
 tvwDisplay.Nodes.Clear()

 'Create the Broker Map tree
 Me.RefreshTree()

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI BrokerMap onAllStarted Event: ERROR")
 End Try
End Sub

The onAllStarted() event handler enables and calls the Sub RefreshTree(). It is
the RefreshTree() procedure that iterates through the collections to populate the
TreeView object with the broker map. It is required that the RefreshTree()
procedure be disabled prior to the handling of the onAllStarted() event to
prevent the repetitive redrawing of the broker map due to the initial
onBrokerAdded() and onTableAdded() events. Add the following line of code
to the declarations section of the CsiBrokerMapForm class.

Dim RefreshOn As Boolean = False

The following code example illustrates the process of iterating through the
Broker, Table and Column collections to populate the TreeView object with
the broker map:

Section 7. Developing an Application Using the CsiBrokerMap Control

7-5

VB.NET Example 7-3. Populating the TreeView Object with the Broker Map
Private Sub RefreshTree()

 'Declare variables
 Dim myRootNode, myNode, myNode2 As TreeNode

 Try
 Me.Cursor = Cursors.WaitCursor

 'Clear the tree
 tvwDisplay.Nodes.Clear()

 'Setup the root node
 myRootNode = tvwDisplay.Nodes.Add("Root", "Broker Map")

 'Read the status of the checkboxes to determine the
 'names of the stations, tables and columns that will populate
 'the tree.

 'The Display Stations checkbox is always checked, so Stations will
 'always be displayed.

 'Iterate through every station/broker in the map.
 For Each b As CSIBROKERMAPLib.Broker In CsiBrokerMap.Brokers

 'Add each Station by name as a child of the root
 myNode = myRootNode.Nodes.Add(b.name, b.name)

 'If Display Tables is checked, add all the tables
 'for this current station as child nodes
 If chkDisplayTables.Checked Then

 For Each t As CSIBROKERMAPLib.Table In b.Tables

 'Add each table by name as child of the station
 myNode2 = myNode.Nodes.Add(t.name)

 'If Display Columns is checked, add all the columns
 'for this current Table as child nodes
 If chkDisplayColumns.Checked Then

 For Each c As CSIBROKERMAPLib.Column In t.Columns

 'Add each Column by name as child of the Table
 myNode2.Nodes.Add(c.name)

 Next 'c As CSIBROKERMAPLib.Column

 End If
 Next 't AS CSLIBROKERMAPLib.Table

 End If
 Next 'b AS CSIBROKERMAPLib.Broker

 'If Expand Tree when Updating is checked, expand the tree and scroll to the top
 If chkExpandTree.Checked Then

 tvwDisplay.ExpandAll()

 End If

 Me.Cursor = Cursors.Default

 Catch ex As Exception
 Me.Cursor = Cursors.Default
 MessageBox.Show("An error has occurred while populating the tree: " & ex.Message)

 End Try
End Sub

Section 7. Developing an Application Using the CsiBrokerMap Control

7-6

To ensure that the application is responsive to dynamic changes in the server’s
broker map, the onBrokerAdded, onBrokerDeleted, onTableAdded,
onTableDeleted, and onTableChanged events should be handled to refresh the
TreeView object. The following example code illustrates how the
onBrokerAdded() event can be handled:

VB.NET Example 7-4. Handling the onBrokerAdd() Event
Private Sub CsiBrokerMap_onBrokerAdded(Broker As Object) Handles CsiBrokerMap.onBrokerAdded

 'This event is called as new brokers are added to the broker map.
 Try
 'A new station has been added, we should refresh the tree
 If RefreshOn Then

 Me.RefreshTree()
 End If

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI BrokerMap onBrokerAdded Event: ERROR")
 End Try
End Sub

Add additional functionality, error handling, and objects as necessary to meet
the specific requirements of your application. Complete examples using the
CsiBrokerMap control are included in the LoggerNet SDK installation.

8-1

Section 8. CsiDatalogger
8.1 Purpose of the CsiDatalogger Control

The CsiDatalogger control allows the developer to manage datalogger
functions through the LoggerNet server. The basic managerial functions of this
control include: sending a program to the datalogger, retrieving a program from
the datalogger, checking the clock on the datalogger as well as setting it to the
current time, setting variable values, and performing manual polls of the
datalogger. Another important function creates an active connection between
the server and the datalogger, to eliminate connection and disconnection
overhead on slower connections.

8.2 Connecting to the Server
There are two basic actions required for this control to connect to the
LoggerNet server:

1. Set server properties:

• serverName – The name or IP address of the LoggerNet server . The
default value is localhost.

• serverPort – The port on which the LoggerNet server is running. The
default value is 6789.

• serverLogonName (Optional) – If security has been enabled on the
server, a valid logon name is required.

• serverLogonPassword (Optional) – If security has been enabled on
the server, a valid password that corresponds with a valid logon name
is required.

2. Invoke the serverConnect() method.

8.3 Datalogger Interface
8.3.1 Properties

• clockBusy As Boolean (p. 17-1)

• loggerConnected As Boolean (p. 17-1)

• loggerName As String (p. 17-2)

• manualPollBusy As Boolean (p. 17-2)

• programReceiveBusy As Boolean (p. 17-2)

• programSendBusy As Boolean (p. 17-3)

• selectiveManualPollBusy As Boolean (p. 17-3)

• serverConnected As Boolean (p. 17-3)

• serverLogonName As String (p. 17-4)

• serverLogonPassword As String (p. 17-5)

• serverName As String (p. 17-5)

• serverPort As Long (p. 17-6)

Section 8. CsiDatalogger

8-2

8.3.2 Methods
• clockCancel() (p. 17-6)

• clockCheckStart() (p. 17-7)

• clockSetStart() (p. 17-7)

• loggerConnectCancel() (p. 17-8)

• loggerConnectStart(logger_priority_type priority) (p. 17-8)

• manualPollCancel() (p. 17-9)

• manualPollStart() (p. 17-9)

• programReceiveCancel() (p. 17-10)

• programReceiveStart(String fileName) (p. 17-10)

• programSendCancel() (p. 17-11)

• programSendStart(String file_name, String program_name) (p. 17-11)

• selectiveManualPollCancel() (p. 17-12)

• selectiveManualPollStart(collect_area As String) (p. 17-12)

• serverConnect() (p. 17-13)

• serverDisconnect() (p. 17-13)

8.3.3 Events
• onClockComplete(Boolean successful, clock_outcome_type respose_code,

Date current_date) (p. 17-14)

• onLoggerConnectFailure(logger_failure_type fail_code) (p. 17-15)

• onLoggerConnectStarted() (p. 17-16)

• onManualPollComplete(Boolean successful, manual_poll_outcome_type
response_code) (p. 17-17)

• onProgramCompiled() (p. 17-18)

• onProgramReceiveComplete(Boolean successful,
prog_receive_outcome_type response_code) (p. 17-19)

• onProgramReceiveProgress(Long Received_bytes) (p. 17-20)

• onProgramSendComplete(Boolean successful, prog_send_outcome_type
response_code, String compile_result) (p. 17-20)

• onProgramSendProgress(Long sent_bytes, Long total_bytes) (p. 17-22)

• onProgramSent() (p. 17-22)

• onSelectiveManualPollComplete(Boolean successful,
selective_manual_poll_outcome_type response_code) (p. 17-23)

• onServerConnectFailure(server_failure_type failure_code) (p. 17-24)

• onServerConnectStarted() (p. 17-25)

9-1

Section 9. Developing an Application
Using the CsiDatalogger Control
9.1 Purpose

This section shows by example how to build a simple application using the
CsiDatalogger SDK control. The application’s stated functions are:

1. Connect to the LoggerNet server.

2. Establish an active connection with the datalogger.

3. Check and display time at the datalogger.

4. Retrieve data stored in the datalogger.

5. Send/Receive datalogger programs.

The following section illustrates how to build an application that can perform
these tasks using the CsiDatalogger control and the LoggerNet server.

9.2 Using the CsiDatalogger Control
9.2.1 Getting Started with the CsiDatalogger Control

CsiDatalogger SDK control (an ActiveX® object) operates through the
LoggerNet server to provide an application with the ability to interact with
connected dataloggers.

This example assumes that:

• The CsiDatalogger control has been correctly registered on the application
host.

• A Windows® Forms application is to be developed using the Visual
Studio® 2012 (or later) IDE and the VB.NET programming language.

• A LoggerNet server is currently running and accessible on the network.

• At least one station already exists in the LoggerNet server's network map.

Complete the following steps first:

1. Start Visual Studio and create a new Visual Basic® Windows Forms
Application targeting the .NET Framework 4.0.

2. Following the procedures outlined in Section 1.4, Developing .NET
Applications Using the SDK (p. 1-3), add the CsiDatalogger control to the
Toolbox and create the RCW class.

3. In the Solution Explorer, right-click the Form1.vb file and rename it
frmDatalogger.vb.

Section 9. Developing an Application Using the CsiDatalogger Control

9-2

9.2.2 CsiDatalogger Control Application Example
Begin by modifying the blank form to create a Graphical User Interface (GUI)
that supports the required functionality. The finished form should resemble the
example shown in FIGURE 9-1.

FIGURE 9-1. CsiDatalogger Example

Section 9. Developing an Application Using the CsiDatalogger Control

9-3

Once the interface has been designed, the necessary Visual Basic code can be
added to attain the required functionality. The first order of business is to
instantiate the RCW class (CSIDATALOGGERLib.Datalogger). Add the
following code to the frmDatalogger class:

Dim WithEvents CsiDatalogger As New DataLogger

Additionally, System.IO and System.Text namespace need to be imported. In
the space above the frmDatalogger class declaration, add the following two
lines of code:

Imports System.IO
Imports System.Text

The following code snippets illustrate the basic functionality of the
CsiDatalogger control. For more comprehensive code examples, refer to the
VB.NET example project files supplied with the SDK.

The first task of the application is to establish a connection to LoggerNet
server. The following code example illustrates using the serverConnect()
method:

VB.NET Example 9-1. Establishing a Connection to a LoggerNet Server using the serverConnect() Method
Private Sub btnConnect_Click(sender As Object, e As EventArgs) Handles btnConnect.Click

 Try
 'Set connection properties before connecting.
 CsiDatalogger.serverName = txtSvrAddress.Text
 CsiDatalogger.serverPort = Convert.ToInt32(txtSvrPort.Text)
 CsiDatalogger.serverLogonName = txtUsername.Text
 CsiDatalogger.serverLogonPassword = txtPassword.Text

 'Call serverConnect to Connect to the Server.
 'If a connection is made, the control will raise the onServerConnectStarted event.
 'If the connection fails, the onServerConnectFailure event will be raised.
 CsiDatalogger.serverConnect()

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .NET Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSIDATALOGGERLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CSIDATALOGGERLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger Connect Button: Error")
 End Try
End Sub

Section 9. Developing an Application Using the CsiDatalogger Control

9-4

Many of the procedures in this example application require the displaying of
text messages. The Sub WriteMessages() is used to facilitate this. The
following code example illustrates the WriteMessages() procedure:

VB.NET Example 9-2. Displaying Text Messages using the WriteMessage() Sub
Private Sub WriteMessages(ByVal msg As String)

 Try
 'Add new message to textbox
 txtMessages.Text += vbCrLf & msg

 'Scroll down so the last entry is visible
 txtMessages.SelectionStart = txtMessages.Text.Length
 txtMessages.ScrollToCaret()

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger WriteMessages: ERROR")
 End Try
End Sub

If the serverConnect() method succeeds in establishing a connection with the
server, the onServerConnectStarted() event is triggered. The following code
example illustrates how the event can be handled:

VB.NET Example 9-3. Handling the onServerConnectStarted() Event
Private Sub CsiDatalogger_onServerConnectStarted() Handles CsiDatalogger.onServerConnectStarted

 'This event gets called once a connection has been established with the Server.
 Try
 'Write server connection message.
 WriteMessages(vbCrLf & "onServerConnectStarted()")
 WriteMessages("Connected to LoggerNet Server: " & CsiDatalogger.serverName)

 'Update the form.
 btnConnect.Enabled = False
 btnDisconnect.Enabled = True
 btnManPollStart.Enabled = True
 btnSelManPollStart.Enabled = True
 btnClockCheck.Enabled = True
 btnClockSet.Enabled = True
 btnLgrConStart.Enabled = True
 btnSendBrowse.Enabled = True
 btnPgmSend.Enabled = True
 btnPgmRetrieve.Enabled = True
 btnRetrieveBrowse.Enabled = True

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger onServerConnectStarted: Error")
 End Try
End Sub

Section 9. Developing an Application Using the CsiDatalogger Control

9-5

If the serverConnect() method fails, the onServerConnectFailure() event is called
and passes a failure code to the application. The following code example
illustrates how the event can be handled to display the error code:

VB.NET Example 9-4. Handling the onServerConnectFailure() Event
Private Sub CsiDatalogger_onServerConnectFailure(ByVal failure_code As
CSIDATALOGGERLib.server_failure_type) Handles CsiDatalogger.onServerConnectFailure

 Try
 'Display the failure code.
 MessageBox.Show("The connection failed: " & failure_code.ToString, _

 "onServerConnectFailure Event")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger onServerConnectFailure Event: Error")
 End Try
End Sub

The default behaviour of the LoggerNet server is to establish a connection
with a datalogger, execute the requisite transaction, and close the connection
when completed. However, there may be scenarios where it would be more
expedient to have the connection persist through multiple transactions rather
than having to reestablish the connection for each. To facilitate this scenario,
the loggerConnectStart() method can be called to establish a persistent
connection with a datalogger. This is sometimes referred to as an Active
connection and will persist until the loggerConnectCancel() method is called to
close the connection.

It should be noted that the CsiDatalogger control can support only a single
connection at a time. If one attempts to establish a second connection while a
persistent connection is active, the E_CSI_BUSY error will be returned. If the
application requires concurrent connections, multiple instances of the
CsiDatalogger control will be required.

Section 9. Developing an Application Using the CsiDatalogger Control

9-6

The following code example illustrates the use of the loggerConnectStart()
method:

VB.NET Example 9-5. Using the loggerConnectStart() Method
Private Sub btnLgrConStart_Click(sender As Object, e As EventArgs) Handles btnLgrConStart.Click

 'This method will cause the server to establish a persistent connection to the specified
 ‘datalogger.

 Try
 'First, check to see if a datalogger name has been entered.
 If txtLoggerName.Text = "" Then

 MessageBox.Show("Must enter a Datalogger Name!")
 Exit Sub

 Else
 'Specify the datalogger with which to establish a persistent connection.
 CsiDatalogger.loggerName = txtLoggerName.Text

 End If

 'Make a high priority connection and write the message.
 CsiDatalogger.loggerConnectStart(CSIDATALOGGERLib.logger_priority_type.lp_priority_normal)

 WriteMessages(vbCrLf & "Attempting to establish an Active connection with: " _
 & CsiDatalogger.loggerName)

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .NET Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSIDATALOGGERLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CSIDATALOGGERLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger Active Connection Start Button: Error")
 End Try
End Sub

If the loggerConnectStart() method is successful, onLoggerConnectStarted
event will be called. Otherwise the onLoggerConnectFailure event will be
called and pass a failure code to the application. The loggerConnectCancel()
method cancels the active connection and returns the server to the default
behaviour.

Section 9. Developing an Application Using the CsiDatalogger Control

9-7

The following code example illustrates the loggerConnectCancel() method:

VB.NET Example 9-6. Using the loggerConnectCancel() Method
Private Sub btnLgrConStop_Click(sender As Object, e As EventArgs) Handles btnLgrConStop.Click

 'This method cancels the current persistent connection.

 Try
 'Call the CsiDatalogger.loggerConnectCancel method to cancel the connection.
 CsiDatalogger.loggerConnectCancel()
 'Write the disconnect message.
 WriteMessages(vbCrLf & CsiDatalogger.loggerName & ": Active connection stopped.")

 'Update form
 btnLgrConStart.Enabled = True
 btnLgrConStop.Enabled = False
 txtLoggerName.Enabled = True

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger Active Connection Stop Button: Error")
 End Try
End Sub

Section 9. Developing an Application Using the CsiDatalogger Control

9-8

The clockCheckStart() method will check the clock on the datalogger while the
clockSetStart() method sets the clock on the datalogger to the time of the
LoggerNet server. Both of these methods call the onClockComplete() event
that returns a success indicator, a response code and, if successful, the current
time of the datalogger clock.

The following code examples illustrate the clockSetStart() method followed by
the onClockComplete event handler:

VB.NET Example 9-7. Using the clockSetStart() Method
Private Sub btnClockSet_Click(sender As Object, e As EventArgs) Handles btnClockSet.Click

 Try
 'If an active connection has been established, only the connected datalogger
 'can be accessed.
 If CsiDatalogger.loggerConnected Then

 'Start the clock set on the specified datalogger and write the message.
 'The onClockComplete event will be raised when the clock check is complete.
 CsiDatalogger.clockSetStart()
 WriteMessages(vbCrLf & CsiDatalogger.loggerName & ": Clock Set Started")

 Else
 'If no active connection is in effect, other dataloggers in the network map
 'can be accessed.
 'First check to see if a datalogger name has been entered.
 If txtLoggerName.Text = "" Then

 MessageBox.Show("Must enter a Datalogger Name!")
 Exit Sub

 Else
 'Specify the datalogger with which to establish a connection.
 CsiDatalogger.loggerName = txtLoggerName.Text

 End If

 'Start the clock set and write the message.
 'The onClockComplete event will be raised when the clock set is complete.
 CsiDatalogger.clockSetStart()
 WriteMessages(vbCrLf & CsiDatalogger.loggerName & ": Clock Set Started")

 End If

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .NET Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSIDATALOGGERLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CSIDATALOGGERLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger Clock Set Button: Error")
 End Try
End Sub

Section 9. Developing an Application Using the CsiDatalogger Control

9-9

VB.NET Example 9-8. Handling the onClockComplete() Event
Private Sub CsiDatalogger_onClockComplete(ByVal successful As Boolean, ByVal response_code As
CSIDATALOGGERLib.clock_outcome_type, ByVal current_date As Date) _

 Handles CsiDatalogger.onClockComplete

 'This event is called after a clock check or a clock set method has completed.
 Try
 'Write a message in accordance with the results
 If successful Then

 'Write the dataloggers time
 WriteMessages("Current Datalogger Clock: " & current_date.ToString)

 Else
 'If the action was not successful, write the response_code
 WriteMessages("The Clock Check/Set failed: " & response_code.ToString)

 End If
 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger onClockComplete event: Error")
 End Try
End Sub

Section 9. Developing an Application Using the CsiDatalogger Control

9-10

The manualPollStart() method initiates a data collection for all tables in the
specified datalogger that are enabled for scheduled collection (collect area
setting: scheduleEnabled = True). The selectiveManualPollStart() method
initiates a data collection for only the specified table; regardless of the table’s
scheduleEnabled setting. Both of these methods have a corresponding cancel
method (manualPollCancel() and selectiveManualPollCancel(), respectively)
and a corresponding completion event (onManualPollComplete() and
onSelectiveManualPollComplete, respectively) which returns the appropriate
response code if the poll succeeded, failed, or was cancelled.

The following code example illustrates the manualPollStart() method:

VB.NET Example 9-9. Using the manualPollStart() Method
Private Sub btnManPollStart_Click(sender As Object, e As EventArgs) Handles
btnManPollStart.Click

 'This method will request that the server poll the tables in the datalogger
 'that have been enabled for scheduled collection in accordance with the
 'collect mode settings.
 Try
 'If an active connection has been established, only the connected datalogger
 'can be accessed.
 If CsiDatalogger.loggerConnected Then

 'Start the Manual Polling on the connected datalogger and write the message.
 'The onManualPollComplete event will be raised when the polling is complete.
 CsiDatalogger.manualPollStart()
 WriteMessages(vbCrLf & CsiDatalogger.loggerName & ": Manual Poll Started")

 Else
 'If no active connection is in effect, other dataloggers in the network map
 'can be accessed.
 'First check to see if a datalogger name has been entered.
 If txtLoggerName.Text = "" Then

 MessageBox.Show("Must enter a Datalogger Name!")
 Exit Sub

 Else
 'Specify the datalogger with which to establish a connection.
 CsiDatalogger.loggerName = txtLoggerName.Text

 End If

 'Start the Manual Polling and write the message.
 'The onManualPollComplete event will be raised when the polling is complete.
 CsiDatalogger.manualPollStart()
 WriteMessages(vbCrLf & CsiDatalogger.loggerName & ": Manual Poll Started")

 End If

 'Update the form
 btnManPollStart.Enabled = False
 btnManPollStop.Enabled = True

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .NET Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSIDATALOGGERLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CSIDATALOGGERLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger Manual Poll Start Button: Error")
 End Try
End Sub

Section 9. Developing an Application Using the CsiDatalogger Control

9-11

The following code example illustrates the manualPollCancel() method:

VB.NET Example 9-10. Using the manualPollCancel() Method
Private Sub btnManPollStop_Click(sender As Object, e As EventArgs) Handles btnManPollStop.Click

 'This method will attempt to cancel a manual polling process. If successful, the
 ‘onManualPollComplete event will return an mp_outcome_aborted response_code.
 Try
 'Only call this method if a manual poll is in process.
 If CsiDatalogger.manualPollBusy Then

 'Call the method and write the message.
 CsiDatalogger.manualPollCancel()
 WriteMessages("Attempting to cancel manual poll!")

 Else
 MessageBox.Show("There is no manual poll in process")

 End If

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger Manual Poll Stop Button: Error")
 End Try
End Sub

The following code example illustrates the handling of the
onManualPollComplete() event:

VB.NET Example 9-11. Handling the onManualPollComplete() Event
Private Sub CsiDatalogger_onManualPollComplete(ByVal successful As Boolean, response_code As
CSIDATALOGGERLib.manual_poll_outcome_type) _

 Handles CsiDatalogger.onManualPollComplete

 'This event is called when a manual poll transaction completes.
 Try
 'Write a message in accordance with the results
 If successful Then

 'Write the dataloggers time
 WriteMessages("Manual Poll was Successful")

 Else
 'If the action was not successful, write the response_code
 WriteMessages("Manual Poll Failed: " & response_code.ToString)

 End If

 'Update the form
 btnManPollStart.Enabled = True
 btnManPollStop.Enabled = False

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger onManualPollCompete event: Error")
 End Try
End Sub

Section 9. Developing an Application Using the CsiDatalogger Control

9-12

The programReceiveStart() method retrieves the currently running program
from a datalogger and saves it with the name and location specified by the
filename parameter. The following code example illustrates the use of the
programReceiveStart() method:

VB.NET Example 9-12. Using the programReceiveStart() Method
Private Sub btnPgmRetrieve_Click(sender As Object, e As EventArgs) Handles btnPgmRetrieve.Click

 'This method retrieves the currently running program from the connected datalogger and
 'saves that file as the specified filename.
 'The onProgramReceiveProgress() event will be called periodically as the file is being
 ‘transferred.
 'The onProgramReceiveComplete() event returns the success or failure results of the completed
 'process.

 Try
 'If an active connection has been established, only the connected datalogger
 'can be accessed.
 If CsiDatalogger.loggerConnected Then

 'Check to see if a program retrieve file name has been entered.
 If txtPgmRetrieve.Text = "" Then

 MessageBox.Show("Must enter a save as file name!")
 Exit Sub

 Else
 'Call the programReceiveStart() method.
 CsiDatalogger.programReceiveStart(txtPgmRetrieve.Text)

 End If
 Else

 'If no active connection is in effect, other dataloggers in the network map
 'can be accessed.
 'First check to see if a datalogger name has been entered.
 If txtLoggerName.Text = "" Then

 MessageBox.Show("Must enter a Datalogger Name!")
 Exit Sub

 Else
 'Specify the datalogger with which to establish a connection.
 CsiDatalogger.loggerName = txtLoggerName.Text

 End If
 'Check to see if a program retrieve file name has been entered.
 If txtPgmRetrieve.Text = "" Then

 MessageBox.Show("Must enter a save as file name!")
 Exit Sub

 Else
 'Call the programReceiveStart() method.
 CsiDatalogger.programReceiveStart(txtPgmRetrieve.Text)

 End If
 End If

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .NET Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSIDATALOGGERLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CSIDATALOGGERLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger Program Retrieve Button: Error")
 End Try
End Sub

Section 9. Developing an Application Using the CsiDatalogger Control

9-13

The onProgramReceiveProgress() event is triggered and provides information
regarding the progress of the program retrieval. The following code example
illustrates how the event can be handled:

VB.NET Example 9-13. Handling the onProgramReceiveProgress() Event
Private Sub CsiDatatlogger_onProgramReceiveProgress(ByVal received_bytes As Long) Handles
CsiDatalogger.onProgramReceiveProgress

 'This event periodically returns a notification of how many bytes have been received from the
 ‘datalogger during the retrieval of a program.

 Try
 'Write the progress notification to the textbox.
 WriteMessages(vbCrLf & "Program Receive Progress:")
 WriteMessages(received_bytes.ToString & " bytes received.")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger onProgramReceiveProgress event: Error")
 End Try
End Sub

The onProgramReceiveComplete() event also runs when the file retrieval
process either completes or fails. The following code example illustrates how
the event can be handled:

VB.NET Example 9-14. Handling the onProgramReceiveComplete() Event
Private Sub CsiDataLogger_onProgramReceiveComplete(ByVal successful As Boolean, _

 ByVal response_code As CSIDATALOGGERLib.prog_receive_outcome_type) Handles _
 CsiDatalogger.onProgramReceiveComplete

 'This event returns the success or failure information after a programReceiveSend() method
 ‘has completed.

 Try
 'If the Program Retrieval was successful, write the message.
 If successful Then

 WriteMessages(vbCrLf & "The program was successfully retrieved.")
 Else

 'Write the failure code to the textbox.
 WriteMessages(vbCrLf & "The program retrieval failed: " & response_code.ToString)
 End If

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger onProgramReceiveComplete event: Error")
 End Try
End Sub

The programSendStart() method sends a program to the specified datalogger
and calls the onProgramSendProgress() event, the onProgramSent() event, and
the onProgramSendComplete() event respectively.

The following code example illustrates the programSendStart() method:

Section 9. Developing an Application Using the CsiDatalogger Control

9-14

VB.NET Example 9-15. Using the programSendStart() Method
Private Sub btnPgmSend_Click(sender As Object, e As EventArgs) Handles btnPgmSend.Click

 'This method starts the process of sending a program file to the specified datalogger.

 Try
 'Declare variable
 Dim filename As String

 'If an active connection has been established, only the connected datalogger
 'can be accessed.
 If CsiDatalogger.loggerConnected Then

 'Check to see if a program file has been entered.
 If txtPgmSend.Text = "" Then

 MessageBox.Show("Must enter a valid Program file name!")
 Exit Sub

 Else
 'Extract the program file name from the path.
 filename = ExtractFilename(txtPgmSend.Text)
 'If a valid program file name is returned, send the program to the datalogger.
 If Not String.IsNullOrEmpty(filename) Then

 'call the programSendStart method.
 CsiDatalogger.programSendStart(txtPgmSend.Text, filename)

 Else
 MessageBox.Show("Invalid Program file name!")
 Exit Sub

 End If
 End If

 Else
 'If no active connection is in effect, other dataloggers in the network map
 'can be accessed.
 'First check to see if a datalogger name has been entered.
 If txtLoggerName.Text = "" Then

 MessageBox.Show("Must enter a Datalogger Name!")
 Exit Sub

 Else
 'Specify the datalogger with which to establish a connection.
 CsiDatalogger.loggerName = txtLoggerName.Text

 End If
 'Check to see if a program file has been entered.
 If txtPgmSend.Text = "" Then

 MessageBox.Show("Must enter a valid Program file name!")
 Exit Sub

 Else
 'Extract the program file name from the path.
 filename = ExtractFilename(txtPgmSend.Text)
 'If a valid program file name is returned, send the program to the datalogger.
 If Not String.IsNullOrEmpty(filename) Then
 'call the programSendStart method.
 CsiDatalogger.programSendStart(txtPgmSend.Text, filename)

 Else
 MessageBox.Show("Invalid Program file name!")
 Exit Sub

 End If
 End If

 End If

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .NET Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSIDATALOGGERLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CSIDATALOGGERLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

Section 9. Developing an Application Using the CsiDatalogger Control

9-15

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, "CSI Datalogger Program Send

Button: Error")
 End Try
End Sub

The above code calls on a utility function (ExtractFileName()) to extract the
file name from a path string. The following is the code for that function:

VB.NET Example 9-16. The ExtractFileName() Function
Private Function ExtractFilename(filepath As String) As String
 ' If path ends with a "\", it's a path only so return String.Empty.
 If filepath.Trim().EndsWith("\") Then Return String.Empty

 ' Determine where last backslash is.
 Dim position As Integer = filepath.LastIndexOf("\")
 ' If there is no backslash, assume that this is a file name.
 If position = -1 Then
 ' Determine whether file exists in the current directory.
 If File.Exists(Environment.CurrentDirectory + Path.DirectorySeparatorChar + filepath) Then

 Return filepath
 Else

 Return String.Empty
 End If

 Else
 ' Determine whether file exists using filepath.
 If File.Exists(filepath) Then

 ' Return file name without file path.
 Return filepath.Substring(position + 1)

 Else
 Return String.Empty

 End If
 End If
End Function

The following code example illustrates how the onSendProgramProgress()
event can be handled:

VB.NET Example 9-17. Handling the onSendProgramProgress() Event
Private Sub CsiDatalogger_onProgramSendProgress(ByVal sent_bytes As Long, _

 ByVal total_bytes As Long)
 Handles CsiDatalogger.onProgramSendProgress

 'This event periodically returns notification of how many sent_bytes out of a program’s
 'total_bytes have been sent to the datalogger.

 Try
 'Write the progress message.
 WriteMessages(vbCrLf & "Program Send Progress:")
 WriteMessages("Sending " & sent_bytes.ToString & " bytes out of " _

 & total_bytes.ToString & " total.")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, "CSI Datalogger

onProgramSendProgress event: Error")
 End Try
End Sub

Section 9. Developing an Application Using the CsiDatalogger Control

9-16

The following code example illustrates how the onSendProgramComplete()
event can be handled:

VB.NET Example 9-18. Handling the onSendProgramComplete() Event
Private Sub CsiDatalogger_onProgramSendComplete(ByVal successful As Boolean, _

 ByVal response_code As CSIDATALOGGERLib.prog_send_outcome_type, _
 ByVal compile_results As String) Handles CsiDatalogger.onProgramSendComplete

 'This event is called when the program send process has completed.
 Try
 'If the program was sent successfully, write the message and compile results.
 If successful Then

 WriteMessages(vbCrLf & "The program send succeeded." & vbCrLf & compile_results)
 Else

 WriteMessages(vbCrLf & "The program send failed: " & response_code.ToString)
 End If

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI Datalogger onProgramSendComplete event: Error")
 End Try
End Sub

Additional functionality, error handling, and objects should be added as
necessary beyond the example interface and code listed above to meet the
specific requirements of your application. Complete examples using the
CsiDatalogger control are included in the LoggerNet SDK installation.

10-1

Section 10. CsiDataSource Control
10.1 Purpose of the CsiDataSource Control

The CsiDataSource control allows an application to monitor data collected
through the LoggerNet server. These sessions that monitor data are known as
advisors. Advisors display data collected in the LoggerNet server data cache.
This control can have multiple advisor sessions with a single server connection.

This control requires that the LoggerNet server collect data for the same tables
or final storage areas that are being monitored. If you start an advisor on a
table that is not being collected by the LoggerNet server, you will not receive
any onAdviseRecord events. An exception to this rule occurs if you are
monitoring input locations on a mixed-array datalogger. When you create an
advisor for an input location on a mixed-array datalogger, a temporary data
cache is created. Then, with the advisor ready, enabling scheduled collection
with the datalogger will return records to the advisor.

The CsiBrokerMap control is often used in conjunction with this control to
display what tables and columns can be monitored. Additionally, the
CsiDatalogger control can also be used to issue a manual data poll and collect
records from the datalogger.

10.2 Connecting to the Server
There are two basic actions required to connect to the LoggerNet server:

1. Set server properties:

• serverName – The name or IP address of the LoggerNet server. The
default value is localhost.

• serverPort – The port on which the LoggerNet server is running. The
default value is 6789.

• logonName (Optional) – If security has been enabled on the server, a
valid logon name is required.

• logonPassword (Optional) – If security has been enabled on the
server, the correct password for a valid logon name is required.

2. Invoke the connect() method.

Section 10. CsiDataSource Control

10-2

10.3 CsiDataSource Interfaces
The following interfaces are used in the CsiDataSource control:

• DSource – the controlling interface

• Advisor – created through the DSource interface to monitor certain data
columns on a specified station and table.

• Record – received in the event onAdviseRecord. A record is a collection
of values that contain data.

• Value – contains the name and value of a single column.

10.3.1 DSource Interface
See Section 18.1, DSource Interface (p. 18-1), for descriptions of these properties,
methods, and events.

10.3.1.1 Properties
• logonName As String (p. 18-1)

• logonPassword As String (p. 18-1)

• serverName As String (p. 18-2)

• serverPort As Long (p. 18-2)

• state As data_source_state (p. 18-3)

• sendRecordBlocks as Boolean (p. 18-3)

10.3.1.2 Methods
• connect() (p. 18-4)

• createAdvisor() As Object (p. 18-4)

• disconnect() (p. 18-5)

10.3.1.3 Events
• onAdviseReady(Object myAdvisor) (p. 18-5)

• onAdviseRecord(Object myAdvisor, Object myRecord) (p. 18-6)

• onAdvisorFailure(csiAdvisorFailureCode failure, Advisor myAdvisor) (p. 18-6)

• onControlFailure(csidsFailureCode failure_code) (p. 18-8)

• onControlReady() (p. 18-8)

• onVariableSetComplete(Long tran_id, Object myAdvisor, Boolean
successful, variable_outcome_code response_code) (p. 18-9)

• onAdviseRecords(Object myAdvisor, object record_collection) (p. 18-10)

10.3.2 Advisor Interface
See Section 18.2, Advisor Interface (p. 18-11), for descriptions of these properties,
methods, and events.

Section 10. CsiDataSource Control

10-3

10.3.2.1 Properties
• advisorName As String (p. 18-11)

• orderOption As csidsOrderOptionType (p. 18-11)

• startDate As Date (p. 18-12)

• startFileMarkNo As Long (p. 18-13)

• startIntervalSeconds As Long (p. 18-14)

• startOption As csidsStartOptionType (p. 18-14)

• startRecordNo As Long (p. 18-15)

• startRecordNoString As String (p. 18-16)

• state As advisor_state (p. 18-17)

• stationName As String (p. 18-17)

• tableName As String (p. 18-18)

• startDateNanoSeconds As Long (p. 18-18)

• maxRecordsPerBlock As Long (p. 18-18)

10.3.2.2 Methods
• columns() As Object (p. 18-19)

• start() (p. 18-19)

• stop() (p. 18-20)

• variableSetCancel(Long tran_id) (p. 18-20)

• variableSetStart(String column_name, String value) as Long (p. 18-20)

10.3.3 DataColumnCollection Interface
See Section 18.3, DataColumnCollection Interface (p. 18-21), for descriptions of
these properties and methods.

10.3.3.1 Properties
• count As Long (p. 18-21)

10.3.3.2 Methods
• add(String column_name) (p. 18-22)

• addAll() (p. 18-22)

• find(String column_name) As Boolean (p. 18-22)

• Item(id) As DataColumn (p. 18-23)

• remove(String columnName) (p. 18-23)

• removeAll() (p. 18-24)

• _NewEnum() (GetEnumerator() in .NET) (p. 18-24)

10.3.4 DataColumn Interface
See Section 18.4, DataColumn Interface (p. 18-24), for descriptions of these
properties.

10.3.4.1 Properties
• name As String (p. 18-24)

Section 10. CsiDataSource Control

10-4

10.3.5 Record
See Section 18.5, Record Interface (p. 18-25), for descriptions of these properties,
methods, and events.

10.3.5.1 Properties
• fileMarkNo As Long (p. 18-25)

• nanoSeconds as Long (p. 18-25)

• recordNo As Long (p. 18-25)

• timeStamp As Date (p. 18-26)

• valuesCount As Long (p. 18-26)

10.3.5.2 Methods
• Item(id) As Value (p. 18-26)

• _NewEnum() (GetEnumerator() in .NET) (p. 18-27)

10.3.6 RecordCollection
10.3.6.1 Properties

• Count As Long (p. 18-28)

10.3.6.2 Methods
• Item(Value id, Record ppIRecord) (p. 18-28)

• _NewEnum() (GetEnumerator() in .NET) (p. 18-29)

10.3.7 Value Interface
See Section 18.7, Value Interface (p. 18-29), for descriptions of these properties,
methods, and events.

10.3.7.1 Properties
• columnName As String (p. 18-29)

• value As Variant (p. 18-29)

11-1

Section 11. Developing an Application
Using the CsiDataSource Control
11.1 Purpose

The CsiDataSource control primarily monitors data residing in the LoggerNet
server data cache. The LoggerNet server data cache is a location where the
server stores collected datalogger records. The control can also be used to see
measurements performed in real-time; for example, values being recorded for
input locations in mixed-array dataloggers. The CsiBrokerMap control often
accompanies this control to display the names of tables and columns in each
table so they can be selected for data monitoring. However, the example
illustrated in this section requires that the user enter a station and table that are
known to exist on the LoggerNet server and all columns will be monitored
within that table. The application we develop will:

1. Connect to a LoggerNet server.

2. Allow the user to enter a known station and table.

3. Monitor data in all columns of the table.

The following section illustrates how to build an application that can perform
these tasks using the CsiDataSource control and the LoggerNet server.

11.2 Using the CsiDataSource Control
11.2.1 Getting Started with the CsiDataSource Control

CsiDataSource is an SDK control (an ActiveX® object) designed to monitor
data collected from the dataloggers in the LoggerNet network. This example
assumes that:

• The CsiDataSource control has been correctly registered on the
application host.

• A Windows® Forms application is to be developed using the Visual
Studio® 2012 (or later) IDE and the VB.NET programming language.

• A LoggerNet server is currently running and accessible on the network.

• At least one station already exists in the LoggerNet server's network map.

Complete the following steps first:

1. Start Visual Studio and create a new Visual Basic® Windows Forms
Application targeting the .NET Framework 4.0.

2. Following the procedures outlined in 1.4, Developing .NET Applications
Using the SDK (p. 1-3), add the CsiDataSource control to the Toolbox and
create the RCW class.

3. In the Solution Explorer, right-click the Form1.vb file and rename it
frmDSource.vb.

Section 11. Developing an Application Using the CsiDataSource Control

11-2

11.2.2 CsiDataSource Control Application Example
Begin by modifying the blank form to create a Graphical User Interface (GUI)
that supports the required functionality. The finished form should resemble the
example shown in FIGURE 11-1.

FIGURE 11-1. CsiDataSource Example

Section 11. Developing an Application Using the CsiDataSource Control

11-3

Once the interface has been designed, the necessary Visual Basic code can be
added to attain the required functionality. The first order of business is to
instantiate the RCW class (CSIDATASOURCELib.DSource). Also, an object of
the type advisor must be declared. Add the following code to the frmDSource
class:

Dim WithEvents CSIDataSource As New DSource

Private CurrentAdvisor As CSIDATASOURCELib.Advisor

Additionally, the System.Text namespace needs to be imported. In the space
above the frmDSource class declaration, add the following code:

Imports System.Text

The following code snippets illustrate the basic functionality of the
CsiDataSource control. For more comprehensive code examples, refer to the
VB.NET example project files supplied with the SDK.

Many of the procedures in this example application require the displaying of
data records and text messages. The Sub WriteMessage() is used to facilitate
this. The following code example illustrates the WriteMessage() procedure:

VB.NET Example 11-1. The WriteMessage Procedure
Private Sub WriteMessage(ByVal Msg As String)

 'Get the number of lines displayed in the textbox.
 Dim lineCount = txtMessages.Lines.Length
 'Define a buffer for building the string to display.
 Dim buff As New StringBuilder

 Try
 'We want to limit the number of lines contained in the textbox.
 'The limit chosen is a compromise between displaying as much information
 'as practicable without degrading the performance of the textbox.
 If lineCount < 100 Then

 'Add the current contents of the textbox to the buffer
 'and append a new line.
 buff.Append(txtMessages.Text)
 buff.Append(Environment.NewLine)

 End If

 'Add the new message to the buffer.
 buff.Append(Msg)
 'Write the string buffer to the textbox, overwriting the existing text.
 txtMessages.Text = buff.ToString

 'Scroll down so that the last entry is visible.
 txtMessages.SelectionStart = txtMessages.Text.Length
 txtMessages.ScrollToCaret()

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI DataSource WriteMessage: ERROR")
 End Try
End Sub

Section 11. Developing an Application Using the CsiDataSource Control

11-4

The first task of the application is to establish a connection to the LoggerNet
server. The following code example illustrates using the connect() method:

VB.NET Example 11-2. Establishing a Connection to the LoggerNet Server using the connect() Method
Private Sub btnConnect_Click(sender As Object, e As EventArgs) Handles btnConnect.Click

 Try
 'Set connection properties before connecting.
 CSIDataSource.serverName = txtSvrAddress.Text
 CSIDataSource.serverPort = Convert.ToInt32(txtSvrPort.Text)
 CSIDataSource.logonName = txtUsername.Text
 CSIDataSource.logonPassword = txtPassword.Text

 'Call connect()
 'If a connection is made, the control will raise the onControlReady() event.
 'If a connection is not made, the onControlFailure() event will raised.
 CSIDataSource.connect()

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .NET Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSIDATASOURCELib.HRESULT_Errors and display the associated error.
 Dim com_ex As CSIDATASOURCELib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI DataSource Connect Button : ERROR")
 End Try
End Sub

Section 11. Developing an Application Using the CsiDataSource Control

11-5

Once connected to the LoggerNet server, the advisor can be created by entering
a known datalogger and table in the text fields and calling the createAdvisor()
method. An application may use the CsiBrokerMap to display all stations and
allow the user to select a specific datalogger, table, and column. However, in
this example, the user merely enters the name of a datalogger and table known
to exist in the LoggerNet server network map. An example of the code used to
start an advisor that will monitor data in all columns of a specific datalogger
and table can be found in the following example code:

VB.NET Example 11-3. Starting an Advisor to Monitor Data in All Columns of a Specific Datalogger and Table
Private Sub btnStartAdvisor_Click(sender As Object, e As EventArgs) Handles
btnStartAdvisor.Click

 Try
 'If there is a current connection, create a new advisor and add all columns
 If CSIDataSource.state = data_source_state.dataSourceConnected Then

 CurrentAdvisor = CSIDataSource.createAdvisor
 CurrentAdvisor.advisorName = "newAdvisor"
 CurrentAdvisor.stationName = txtDataLoggerName.Text
 CurrentAdvisor.tableName = txtTableName.Text

 'Select the order in which the Server will send records to the advisor
 CurrentAdvisor.orderOption = csidsOrderOptionType.csidsOrderLoggedWithoutHoles
 'Specify how the first record to send is selected
 CurrentAdvisor.startOption = csidsStartOptionType.csidsStartAtRecordId

 'Check the status of the Send Record Blocks checkbox
 If cbxSndRecBlks.CheckState = CheckState.Checked Then

 CSIDataSource.sendRecordBlocks = True
 'Set the maximum number of records per block
 CurrentAdvisor.maxRecordsPerBlock = 1024L

 Else
 CSIDataSource.sendRecordBlocks = False

 End If

 'Add all of the table columns to the advisor
 Dim myCols As CSIDATASOURCELib.IDataColumnCollection
 myCols = CurrentAdvisor.Columns
 myCols.addAll()

 'Start the advisor. If started, the onAdviseReady event and either
 'the onAdviseRecord or onAdviseRecords event will be raised.
 'If the advisor fails to start, the onAdvisorFailure event will be called.
 CurrentAdvisor.start()

 End If

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .NET Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSIDATASOURCELib.HRESULT_Errors and display the associated error.
 Dim com_ex As CSIDATASOURCELib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI DataSource StartAdvisor Button: ERROR")
 End Try
End Sub

Section 11. Developing an Application Using the CsiDataSource Control

11-6

After starting the advisor, the onAdviseReady() event will run and begin
watching the specified table and columns for new data. Depending on the
value of the CsiDataSource.sendRecordBlocks property, new data records are
sent from the LoggerNet server cache individually via the onAdviseRecord
event or in blocks via the onAdviseRecords event. For an example of handling
the latter, see the example project code supplied with the SDK. The following
code example illustrates how records are received via the onAdviseRecord
event:

VB.NET Example 11-4. Receiving Records via the onAdviseRecord Event
Private Sub CSIDataSource_onAdviseRecord(ByVal myAdvisor As Object, myRecord As Object) Handles
CSIDataSource.onAdviseRecord

 'The DataSource onAdviseRecord event indicates that a new data record has been received by
 'an Advisor. The Advisor and associated Record are returned.
 Try
 'Declare variables
 Dim rec As CSIDATASOURCELib.IRecord
 rec = myRecord

 'Update form
 btnStartAdvisor.Enabled = False
 btnStopAdvisor.Enabled = True
 cbxSndRecBlks.Enabled = True
 btnSetVar.Enabled = True

 'Write the Advisor name and Record information.
 WriteMessage(vbCrLf & "onAdviseRecord()")
 WriteMessage("Advisor Name: " & CurrentAdvisor.advisorName)
 WriteMessage("FileMarkNo: " & rec.fileMarkNo.ToString())
 WriteMessage("RecordNo: " & rec.recordNo.ToString())
 WriteMessage("TimeStamp: " & rec.timeStamp.ToString())

 'Write record column values
 For Each Val As CSIDATASOURCELib.value In rec

 WriteMessage(Val.columnName & " : " & Val.value.ToString())
 Next Val

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI DataSource onAdviseRecord: ERROR")
 End Try
End Sub

Section 11. Developing an Application Using the CsiDataSource Control

11-7

The advisor will continue displaying new records as they are received until the
stop() method is called to stop the advisor. The following code illustrates the
use of this method:

VB.NET Example 11-5. Stopping an Advisor Using the stop() Method
Private Sub btnStopAdvisor_Click(sender As Object, e As EventArgs) Handles btnStopAdvisor.Click
 Try
 'Stop the Advisor
 CurrentAdvisor.stop()

 'Update form
 WriteMessage(vbCrLf & "Advisor Stopped.")
 btnStopAdvisor.Enabled = False
 btnStartAdvisor.Enabled = True
 btnSetVar.Enabled = False

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSI DataSource StopAdvisor Button: ERROR")
 End Try
End Sub

Additional functionality, error handling, and objects should be added as
necessary beyond the example interface and code listed above to meet the
specific requirements of your application. Complete examples using the
CsiDataSource control are included in the LoggerNet SDK installation.

Section 11. Developing an Application Using the CsiDataSource Control

11-8

12-1

Section 12. CsiLogMonitor Control
12.1 Purpose of the CsiLogMonitor Control

The CsiLogMonitor control provides access to log message from the
LoggerNet server. The log messages stream to this control as a text string.
Use this control to display log messages or to monitor events as they occur on
the server and call other operations or programs based on these LoggerNet
server events.

The types of log files that can be retrieved from the LoggerNet server with the
CsiLogMonitor control include the transaction log and the communication log.
The transaction log messages use the following basic format:

“StationName”, “MessageTypeCode”, “Message”

The developer can create a program using the CsiLogMonitor control to filter
each message by station name and watch for message types and messages that
indicate a specific event. By parsing the transaction log text string and looking
for the triggering messages listed below, the declared station event can be
monitored.

The communication log messages use the following basic format:

“StationName”, “Severity”, “Message”

The severity types in the communication log are “S” for a status message, “W”
for a warning message, and “F” for a failure message. Status messages are
general communication messages, warning messages declare a possible
problem and communication retries, and failure messages appear when all
retries have been exhausted and communication will no longer be attempted by
the LoggerNet server for a specific transaction.

Section 12. CsiLogMonitor Control

12-2

12.2 CsiLogMonitor Interface
See Section 19, CsiLogMonitor Control Reference (p. 19-1), for detailed
descriptions of these properties, methods, and events.

12.2.1 Properties
• commLogMonitorBusy As Boolean (p. 19-1)

• commLogRecordsBack As Long (p. 19-1)

• serverConnected As Boolean (p. 19-2)

• serverLogonName As String (p. 19-2)

• serverLogonPassword As String (p. 19-2)

• serverName As String (p. 19-3)

• serverPort As Long (p. 19-3)

• tranLogMonitorBusy As Boolean (p. 19-4)

• tranLogRecordsBack As Long (p. 19-4)

12.2.2 Methods
• commLogMonitorStart() (p. 19-5)

• commLogMonitorStop() (p. 19-5)

• serverConnect() (p. 19-6)

• serverDisconnect() (p. 19-6)

• tranLogMonitorStart() (p. 19-6)

• tranLogMonitorStop() (p. 19-7)

12.2.3 Events
• onCommLogFailure(log_monitor_failure_type failure_code) (p. 19-7)

• onCommLogRecord(Date timestamp, String comm_log_record) (p. 19-8)

• onServerConnectFailure(server_failure_type failure_code) (p. 19-8)

• onServerConnectStarted() (p. 19-9)

• onTranLogFailure(log_monitor_failure_type failure_code) (p. 19-9)

• onTranLogRecord(Date timestamp, String tran_log_record) (p. 19-10)

13-1

Section 13. Developing an Application
Using the CsiLogMonitor Control
13.1 Purpose

This section shows an example of how to build a simple application using the
CsiLogMonitor control. The application’s functions are:

1. Connect to a running LoggerNet server.

2. Monitor the LoggerNet server transaction and communication logs.

13.2 Using the CsiLogMonitor Control
13.2.1 Getting Started with the CsiLogMonitor Control

The CsiLogMonitor SDK control (an ActiveX® object) connects to the
LoggerNet server and monitors transaction and communication logs.

This example assumes that:

• The CsiLogMonitor control has been correctly registered on the
application host.

• A Windows® Forms application is to be developed using the Visual
Studio® 2012 (or later) IDE and the VB.NET programming language.

• A LoggerNet server is currently running and accessible on the network.

• At least one station already exists in the LoggerNet server’s network
map.

Complete the following steps first:

1. Start Visual Studio and create a new Visual Basic® Windows Forms
Application targeting the .NET Framework 4.0.

2. Following the procedures outlined in Section 1.4, Developing .NET
Applications Using the SDK (p. 1-3), add the CsiLogMonitor control to the
Toolbox and create the RCW class.

3. In the Solution Explorer, right-click the Form1.vb file and rename it
frmLogMonitor.vb.

Section 13. Developing an Application Using the CsiLogMonitor Control

13-2

13.2.2 CsiLogMonitor Control Application Example
Begin by modifying the blank form to create a Graphical User Interface (GUI)
that supports the required functionality. The finished form should resemble the
example shown in FIGURE 13-1.

FIGURE 13-1. CsiLogMonitor Example

Once the interface has been designed, the necessary Visual Basic code can be
added to attain the required functionality. The first order of business is to
instantiate the RCW class (CSILogMonitorLib.LogMonitor). Add the following
code to the frmLogMonitor class.

Dim WithEvents CsiLogMonitor As New LogMonitor

The following code snippets illustrate the basic functionality of the
CsiLogMonitor control. For more comprehensive code examples, refer to the
VB.NET example project files supplied with the SDK.

Section 13. Developing an Application Using the CsiLogMonitor Control

13-3

The first task of the application is to establish a connection to the LoggerNet
server. The following code example illustrates using the serverConnect()
method:

VB.NET Example 13-1. Establishing a Connection to the LoggerNet Server using the serverConnect() Method
Private Sub btnConnect_Click(sender As Object, e As EventArgs) Handles btnConnect.Click

 Try
 'Set connection properties before connecting.
 CsiLogMonitor.serverName = txtSvrAddress.Text
 CsiLogMonitor.serverPort = Convert.ToInt32(txtSvrPort.Text)
 CsiLogMonitor.serverLogonName = txtUsername.Text
 CsiLogMonitor.serverLogonPassword = txtPassword.Text

 'Call serverConnect().
 'If a connection is made, the control will raise the onServerConnectStarted() event.
 'If a connection is not made, the onServerConnectFailure() event will be raised.
 CsiLogMonitor.serverConnect()

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULOT will be captured in the InteropServices.COMException class
 'and cause the .Net Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSILogMonitorLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CSILogMonitorLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CSILogMonitor Connect Button: Error")
 End Try
End Sub

If the connection succeeds, the onServerConnectStarted() event gets triggered.
Otherwise, the onServerConnectFailure() event gets called if the connection
fails.

In order to start monitoring the transaction log, the tranLogMonitorStart()
method must be called. To monitor communication log messages, call the
commLogMonitorStart() method.

The LoggerNet server maintains a buffer of historical log messages. By
default, the last 100 log file messages will be retrieved when log monitoring
first starts. To change the number of historical log messages that are retrieved,
set the commLogRecordsBack and tranLogRecordsBack properties before
starting log monitoring.

Section 13. Developing an Application Using the CsiLogMonitor Control

13-4

The following code example illustrates how the onServerConnectStarted()
event can be handled to initialize properties and to start the collection of both
types of log messages follows:

VB.NET Example 13-2. Handling the onServerConnectStarted() Event
Private Sub CsiLogMonitor_onServerConnectStarted() Handles CsiLogMonitor.onServerConnectStarted

 'This event is called when a successful connection has been made to the LoggerNet server.
 Try

 'Set the number of initial log records to display.
 CsiLogMonitor.tranLogRecordsBack = 25
 CsiLogMonitor.commLogRecordsBack = 25

 'Start the Trans log monitoring.
 'This method starts monitoring of the transaction log entries on the server.
 'The control will raise the onTranLogRecord() event as log entries are retrieved or
 'the onTranLogFailure() event if the method fails.
 CsiLogMonitor.tranLogMonitorStart()

 'Start the Comms log monitoring.
 'This method starts monitoring of the transaction log entries on the server.
 'The control will raise the onCommLogRecord() event as log entries are retrieved or
 'the onCommLogFailure() event if the method fails.
 CsiLogMonitor.commLogMonitorStart()

 'Update the form
 btnConnect.Enabled = False
 btnDisconnect.Enabled = True
 chkPauseComm.Enabled = True
 chkPauseTrans.Enabled = True

 Catch ex As Runtime.InteropServices.COMException
 'If the call to the control causes an error, a custom HRESULT will be returned.
 'This HRESULT will be captured in the InteropServices.COMException class
 'and cause the .Net Runtime to throw an exception.

 'We need to map the COMException.ErrorCode property to the values enumerated in
 'CSILogMonitorLib.HRESULT_Errors and display the associated error.
 Dim com_ex As CSILogMonitorLib.HRESULT_Errors = ex.ErrorCode
 MessageBox.Show(ex.Source & ": " & vbCrLf & com_ex.ToString, "A COM Exception was thrown")

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CsiLogMonitor onServerConnectStarted event: Error")
 End Try
End Sub

Section 13. Developing an Application Using the CsiLogMonitor Control

13-5

Log messages will be passed as Strings to the onCommLogRecord() and
onTranLogRecord() events respectively as they are generated by the
LoggerNet server. A timestamp for when the log message is generated is also
passed to these events.

The following code example illustrates how the onCommLogRecord() event
can be handled to display the log messages:

VB.NET Example 13-3. Handling the onCommLogRecord() Event
Private Sub CsiLogMonitor_onCommLogRecord(ByVal timestamp As Date, _

 ByVal comm_log_record As String) _
 Handles CsiLogMonitor.onCommLogRecord

 'This event is called when a Communication log record is passed from the server.
 Try
 'Limit the number of lines contained in the Communication Log textbox.
 If txtCommsLog.Lines.Length > 100 Then

 txtCommsLog.Clear()
 End If

 'Add the record to the Communication log textbox.
 If chkPauseComm.Checked = False Then

 txtCommsLog.Text += vbCrLf & timestamp.ToString & ": " & comm_log_record
 txtCommsLog.SelectionStart = txtCommsLog.Text.Length
 txtCommsLog.ScrollToCaret()

 End If

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CsiLogMonitor onCommLogRecord event: Error")
 End Try
End Sub

The following code example illustrates how the onTranLogRecord() event can
be handled to display the log messages:

VB.NET Example 13-4. Handling the onTranLogRecord() Event
Private Sub CsiLogMonitor_onTranLogRecord(ByVal timestamp As Date, _

 ByVal tran_log_record As String) _
 Handles CsiLogMonitor.onTranLogRecord

 'This event is called when a Transaction log record is passed from the server
 Try
 'Limit the number of lines contained in the Transaction Log textbox.
 If txtTransLog.Lines.Length > 100 Then

 txtTransLog.Clear()
 End If

 'Add the record to the Transaction Log textbox.
 If chkPauseTrans.Checked = False Then

 txtTransLog.Text += vbCrLf & timestamp.ToString & ": " & tran_log_record
 txtTransLog.SelectionStart = txtTransLog.Text.Length
 txtTransLog.ScrollToCaret()

 End If
 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, _

 "CsiLogMonitor onTranLogRecord event: Error")
 End Try
End Sub

Section 13. Developing an Application Using the CsiLogMonitor Control

13-6

Stop monitoring logs with the commLogMonitorStop() and
tranLogMonitorStop() events. The following code example illustrates how the
commLogMonitorStop() method can be used in conjunction with a checkbox
control to pause and restart monitoring of the communication logs:

VB.NET Example 13-5. Using the commLogMonitorStop() Method to Pause and Restart Monitoring of
Communication Logs

Private Sub chkPauseComm_CheckStateChanged(sender As Object, e As EventArgs) _
 Handles chkPauseComm.CheckStateChanged

 'We will use this checkbox to start and stop the Communication Log monitoring.
 Try

 If chkPauseComm.Checked = True Then
 CsiLogMonitor.commLogMonitorStop()

 Else
 'If connected to the server, start monitoring
 If CsiLogMonitor.serverConnected Then

 CsiLogMonitor.commLogMonitorStart()
 End If

 End If

 Catch ex As Exception
 MessageBox.Show(ex.Source & ": " & vbCrLf & ex.Message, "CsiLogMonitor

chkPauseComm_CheckStateChanged: Error")
 End Try
End Sub

Add additional functionality, error handling, and objects as necessary beyond
the example interface and code listed above to meet the specific requirements
of your application. Complete examples using the CsiLogMonitor control are
included in the LoggerNet SDK installation.

14-1

Section 14. CsiServer and
CsiServerDirect Control Reference
14.1 CsiServer and CsiServerDirect Interface

14.1.1 Properties
Server.applicationWorkDir

Name
Server.applicationWorkDir As String

Description
This property gives the location where the LoggerNet server data files are
stored and must be set before starting LoggerNet. If this property needs to be
changed after the LoggerNet server has been started, call stopServer(), set the
new location, and then call startServer().

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

Server.buildDate

Name
Server.buildDate As String

Description
This read-only property displays the build date of the LoggerNet server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_STARTED Error: The LoggerNet server is not started

Section 14. CsiServer Control Reference

14-2

Server.logFileDir

Name
Server.logFileDir As String

Description
This property specifies the location where the LoggerNet server writes log files
and must be set before starting the LoggerNet server. If this property needs to
be changed after the LoggerNet server has been started, call stopServer(), set
the new location, and then call startServer(). By default, the log file directory
will be placed in the LoggerNet server working directory.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

Server.serverStarted

Name
Server.serverStarted As Boolean

Description
This read-only value displays the current state of a LoggerNet server that has
been started by the server control. If the LoggerNet server is running, this
value will be TRUE. Otherwise, this value will be FALSE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Server.serverVersion

Name
Server.serverVersion As String

Description
This property is a read-only value that displays the version of the LoggerNet
server.

Section 14. CsiServer Control Reference

14-3

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_STARTED Error: The LoggerNet server is not started

Server.serverWorkDir

Name
Server.serverWorkDir As String (Required)

Description
This required property must be specified before starting the LoggerNet server
and describes the location of the LoggerNet server configuration files. This
property must be set before starting the LoggerNet server or the startServer()
event will fail. If this location needs to be changed after the LoggerNet server
has been started, call stopServer(), set the new location, and then call
startServer().

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

Server.tcpPort

Name
Server.tcpPort As Integer

Description
This property sets the TCP port that the LoggerNet server will use when
listening for client connections and must be set before starting the LoggerNet
server. LoggerNet uses the TCP port 6789 by default. This property accepts
1 to 32767 as valid values.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 14. CsiServer Control Reference

14-4

Server.tcpPortEx

Name
Server.tcpPortEx As Long

Description
This property sets the TCP port that the LoggerNet server will use when
listening for client connections and must be set before starting the LoggerNet
server. LoggerNet uses TCP port 6789 by default. This property accepts the
full range of valid TCP port numbers 1 to 65535.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

14.1.2 Methods
Server.startServer()

Name
Server.startServer()

Description
This method starts the LoggerNet server. The Coralib3.dll or the Coralib3d.dll
must exist in the application folder, the PATH environmental variable, or the
Windows® directory or this method will fail.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ALREADY_STARTED Error: This error is returned if the
server control has already started
the LoggerNet server

E_CSI_INVALIDARG Error: No working directory set

E_CSI_FAIL Error: Another LoggerNet server
not started by the server control is
already running or an unexpected
error has occurred

Section 14. CsiServer Control Reference

14-5

Server.stopServer()

Name
Server.stopServer()

Description
This method will stop the LoggerNet server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

14.1.3 Events
Server_onServerFailure()

Name
onServerFailure(String reason)

Description
This event gets triggered when the LoggerNet server started by the server
control fails.

Section 14. CsiServer Control Reference

14-6

15-1

Section 15. CsiCoraScript Control
Reference
15.1 CoraScript Interface

15.1.1 Properties
CoraScript.serverConnected

Name
CoraScript.serverConnected As Boolean (read-only)

Description
This Boolean property describes the state of the connection between the
CoraScript control and the LoggerNet server. The property returns TRUE if the
connection exists. Otherwise, the property returns FALSE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

CoraScript.serverLogonName

Name
CoraScript.serverLogonName As String

Description
Specifies the account name that should be used when connecting to the
LoggerNet server. If security is enabled on the target LoggerNet server, this
string must be one of the account names recognized by the LoggerNet server.

Valid Values
If security is enabled on the target LoggerNet server, this string must be one of
the account names recognized by the LoggerNet server.

Default Value
The default value for this property is an empty string. This property will only
affect the operation of the control if security is enabled on the LoggerNet
server.

Section 15. CsiCoraScript Control Reference

15-2

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

CoraScript.serverLogonPassword

Name
CoraScript.serverLogonPassword As String

Description
This property specifies the password that should be used when connecting to
the LoggerNet server. If security is enabled on the target LoggerNet server,
this password string must be associated with the account described in the
logonName property.

Valid Values
If security is enabled on the target LoggerNet server, this string must be the
password associated with the account named by CoraScript.serverLogonName.

Default Value
The default value for this property is an empty string. This property will only
affect the operation of the control if security is enabled on the LoggerNet
server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to the
LoggerNet server is present

CoraScript.serverName

Name
CoraScript.serverName As String

Description
Specifies the TCP/IP interface address for the computer hosting the LoggerNet
server. This string must be formatted either as a qualified Internet machine
domain name or as an Internet address string. An example of a valid machine
domain name address is www.campbellsci.com. An example of a valid Internet
address string is 63.255.173.183.

https://www.campbellsci.com/

Section 15. CsiCoraScript Control Reference

15-3

The default value for this property is the string localhost.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverName while connected to the
LoggerNet server

CoraScript.serverPort

Name
CoraScript.serverPort As Long

Description
Specifies the TCP port number that the LoggerNet server is using on the
hosting computer. The valid range for this property is port 1 to port 65535.

The default value for this property is port 6789, which is the default port
number assigned for the LoggerNet server. The default value for this property
will connect to a LoggerNet server port in most cases.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: The port value is out of range or invalid

E_CSI_BUSY Error: Attempt to set serverPort while connected
to the LoggerNet server

15.1.2 Methods
CoraScript.executeScript()

Name
CoraScript.executeScript(String script, Long asychID)
As String

Description
This method allows a single CoraScript command to be executed by the
LoggerNet server. Pass the CoraScript command in as the first parameter and
use the second parameter to determine whether the method performs
asynchronously or synchronously. If you want this command to execute
synchronously, pass in a zero (0) for the asyncID. If an asyncID other than
zero (0) is specified, the onScriptComplete() event will be triggered with the
result and the asyncID that was specified.

Section 15. CsiCoraScript Control Reference

15-4

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected Error

CoraScript.serverConnect()

Name
CoraScript.serverConnect()

Description
This method attempts to connect to the LoggerNet server using the values in
the previously set properties: serverName, serverPort, serverLogonName, and
serverLogonPassword. This method triggers onServerConnectStarted() if the
connection is successful, or onServerConnectFailure() if the connection fails.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

CoraScript.serverDisconnect()

Name
CoraScript.serverDisconnect()

Description
This method will disconnect from the LoggerNet server and will set the
serverConnected state to FALSE. This method should only be called when
the value of serverConnected, is TRUE. Otherwise, this method will return
E_CSI_NOT_CONNECTED.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_NOT_CONNECTED Error: The server is not connected

Section 15. CsiCoraScript Control Reference

15-5

15.1.3 Events
CoraScript_onScriptComplete()

Name
onScriptComplete(Long asyncID, String result)

Description
This event displays the results from the method CoraScript.executeScript().
However, this event is only activated when an asyncID other than “0” is passed
to that method.

CoraScript_onServerConnectStarted()

Name
onServerConnectStarted()

Description
The control has connected to the LoggerNet server.

CoraScript_onServerConnectFailure()
Name

onServerConnectFailure(server_failure_type
server_failure)

Description
An error has occurred that caused the connection to the LoggerNet server to
fail for this control.

Table of Possible Failure Codes

Enumeration Name Value Description

server_failure_unknown 0 Indicates that an error has
occurred but its nature is
unknown

server_failure_logon 1 Indicates that this control was
unable to logon to the
LoggerNet server because either
the logonName or
logonPassword property is
incorrect

server_failure_session 2 Indicates that the
communication session with the
LoggerNet server failed
resulting in a failed transaction

server_failure_unsupported 3 The version of the LoggerNet
server does not support this
transaction

Section 15. CsiCoraScript Control Reference

15-6

Enumeration Name Value Description

server_failure_security 4 Indicates that the account
specified by logonName does
not have sufficient privileges to
start this transaction with the
LoggerNet server

server_failure_bad_host_or_port 5 Indicates that either the
serverName or the serverPort
property is incorrect

16-1

Section 16. CsiBrokerMap Control
Reference
16.1 BrokerMap Interface

16.1.1 Properties
BrokerMap.serverName

Name
BrokerMap.serverName As String

Description
Specifies the TCP/IP interface address for the computer that is hosting the
LoggerNet server. This string must be formatted either as a fully qualified
Internet machine domain name or as an IP address string. An example of a
valid machine domain name address is www.campbellsci.com. An example of
a valid IP address string is 63.255.173.183.

Default Value
The default value for this property is the string localhost.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverName while connected to the
server

BrokerMap.serverLogonName

Name
BrokerMap.serverLogonName As String

Description
Specifies the account name that should be used when connecting to the
LoggerNet server. If security is enabled on the target LoggerNet server, this
string must be one of the account names recognized by the LoggerNet server.

Valid Values
If security is enabled on the target LoggerNet server, this string must be an
account name recognized by the LoggerNet server. These accounts can be set
up using the Security Manager that is part of the LoggerNet Admin software
suite or through the CsiCoraScript control.

https://www.campbellsci.com/

Section 16. CsiBrokerMap Control Reference

16-2

Default Value
The default value for this property is an empty string.

Notes
This property is only used if security is enabled on the LoggerNet server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverLogonName while connected
to the LoggerNet server

BrokerMap.serverLogonPassword
Name

BrokerMap.serverLogonPassword As String

Description
This property specifies the password that should be used when connecting to
the LoggerNet server. If security is enabled on the target LoggerNet server,
this password string must be associated with the account described in the
logonName property.

Valid Values
If security is enabled on the target LoggerNet server, this string must be a valid
password associated with the account described in the serverLogonName
property.

Default Value
The default value for this property is an empty string.

Notes
This property is only used if security is enabled on the LoggerNet server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverLogonPassword while
connected to the LoggerNet server

Section 16. CsiBrokerMap Control Reference

16-3

BrokerMap.serverPort

Name
BrokerMap.serverPort As Long

Description
Specifies the TCP port number that the LoggerNet server is using on the
hosting computer. The valid range for this property is 1 to 65535.

Default Value
The default value for this property, assigned to the LoggerNet server, is 6789.
In most cases, the default value for this property is acceptable.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverPort while connected
to the LoggerNet server

E_CSI_INVALIDARG Error: The port value is invalid (out of range)

BrokerMap.autoExpand

Name
BrokerMap.autoExpand As Boolean

Description
This setting determines if the broker will automatically expand to include all
brokers and tables or if the Broker.start_expansion() method must be called to
list all the brokers and Table.start_expansion() method to list all tables for each
broker. If the list of brokers and tables is extensive, it may be quicker to list
the brokers and expand the tables for each broker separately. The default
setting is TRUE, which means that all brokers and tables will be expanded
automatically.

Default Value
The default value for this property is TRUE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 16. CsiBrokerMap Control Reference

16-4

BrokerMap.serverConnected

Name
BrokerMap.serverConnected As Boolean

Description
This property describes the state of the connection between the BrokerMap
control and the LoggerNet server. If the connection is active, the property is
TRUE. Otherwise, the property is FALSE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal Return

16.1.2 Methods
BrokerMap.Brokers()

Name
BrokerMap.Brokers() As Object

Description
Use this method to iterate through the brokers and return a broker collection.

BrokerMap.finish()
Name

BrokerMap.finish()

Description
This method tells the control to discontinue sending events or changes to the
brokers, which holds the current broker map in a static format for your
application. This method should only be called after the start() method has
been invoked. Calling this method will cause the control to disconnect from the
server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 16. CsiBrokerMap Control Reference

16-5

BrokerMap.start()

Name
BrokerMap.start()

Description
This method starts the broker map query to get the brokers, tables, and
columns. Immediately following the invocation of this method, the events
onBrokerAdded() and onTableAdded() will follow to describe the brokers and
tables currently in the broker map.

If there is already a connection to the server, this method will return the error
E_CSI_ALREADY_CONNECTED. If an error occurs while trying to connect, this
method will return the error E_CSI_BAD_HOST_OR_PORT.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ALREADY_CONNECTED Error: Already connected to the
LoggerNet server

E_CSI_BAD_HOST_OR_PORT Error: Cannot connect. Property
serverName or serverPort possibly
wrong

16.1.3 Events
BrokerMap_onAllStarted()

Name
onAllStarted()

Description
This event is a result of invoking the start() method. This event gets called
after all of the initial onBrokerAdded() and onTableAdded() events have been
called from the start() method and the broker map is known.

BrokerMap_onBrokerAdded()
Name

onBrokerAdded(Object Broker)

Description
This event gets called as new brokers are added to the broker map.
Information about the new broker can be accessed with the broker object
returned with this event.

Section 16. CsiBrokerMap Control Reference

16-6

BrokerMap_onBrokerDeleted()

Name
onBrokerDeleted(Object Broker)

Description
This event gets called as brokers are deleted from the broker map. Information
about the broker deleted from the broker map can be accessed with the broker
object returned with this event. After the broker object returned by this event
goes out of scope, the referenced object in the control will be permanently
deleted. The broker is kept alive for this event so that its properties can be
referenced by the client application one last time.

BrokerMap_onFailure()
Name

onFailure(BrokerMapFailureType failure_code)

Description
When the BrokerMap control fails, an error from the following table will be
returned with this event:

Table of Failure Codes

Name Value Description

failure_unknown 0 The cause of the failure
could not be determined

failure_connection_failed 1 The connection has failed.
Check the serverName and
serverPort

failure_invalid_logon 2 The LoggerNet server has
security enabled and the
logon is invalid. Check
serverLogonName and
serverLogonPassword

failure_server_security 3 The LoggerNet server has
security enabled and you do
not have sufficient privileges
to complete this transaction

failure_table_browser 4 There has been an error
while getting table
information

Section 16. CsiBrokerMap Control Reference

16-7

BrokerMap_onTableAdded()

Name
onTableAdded(Object Broker, Object Table)

Description
This event gets called when a new table is added to a broker in the broker map.
Information about the table added to the broker in the broker map can be
accessed with the table object and broker object returned by this event.

BrokerMap_onTableDeleted()
Name

onTableDeleted(Object Broker, Object Table)

Description
This event gets called when a table is deleted from a broker in the broker map.
The table that was deleted will be returned as a broker object and a table object
with this event.

BrokerMap_onTableChanged()
Name

onTableChanged(Object Broker, Object Table)

Description
This event executes when a table in a broker changes. Information about the
broker and table that changed are returned with this event.

BrokerMap_onBrokerStarted()
Name

onBrokerStarted(Object Broker)

Description
An event that indicates a broker is in a started state. Information about the
broker is returned with this event.

16.2 BrokerCollection Interface
16.2.1 Properties
BrokerCollection.Count

Name
BrokerCollection.Count As Long

Description
This property returns the number of brokers in the network map.

Section 16. CsiBrokerMap Control Reference

16-8

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

16.2.2 Methods
BrokerCollection.Item()

Name
BrokerCollection.Item(id) As Broker

Description
A broker can be referenced by an integer, a long, or by the name of the broker
(a string). If the number is less than zero or is greater than the number of
brokers minus one, the COM error E_CSI_ARRAY_OUT_OF_BOUNDS will be
returned. If the broker cannot be found by name, the COM error
E_CSI_NOT_FOUND will be returned.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ARRAY_OUT_OF_BOUNDS Error: Array out of bounds

E_CSI_NOT_FOUND Error: Couldn't find the broker by
name in the broker map

E_CSI_FAIL Error: Wrong variant type passed to
this method or unexpected error

Visual Basic®
Return Type
Broker

Example
Referencing the broker by a number value
Dim iterator As Long
For iterator = 0 to BrokerMap.Broker.Count – 1
 Debug.Print
 BrokerMap.Brokers(iterator).ID
Next iterator

Referencing the broker by name:
Dim brokerName as String
Dim myid as long
brokerName = "cr10x"
myid = BrokerMap.Brokers(brokerName).id

Section 16. CsiBrokerMap Control Reference

16-9

BrokerCollection._NewEnum()

Name
BrokerCollection._NewEnum()

Description
Return the next broker in the broker map sequence.

Important
This method is only intended for use with the Visual Basic programming
language. Visual Basic programmers do not need to access this method
directly but can use it indirectly with the For Each loop. This method is
included in the documentation to explain why the method exists, but, again, it
is not accessed directly.

Visual Basic
Example
Dim b As Broker
For Each b in BrokerMap.Brokers
 Debug.print b.name
Next

16.3 Broker Interface
16.3.1 Properties
Broker.ID

Name
Broker.id As Long

Description
This is a read-only property describing the unique ID of each broker.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Broker.name

Name
Broker.name As String

Description
This read-only property returns the name of a broker.

Section 16. CsiBrokerMap Control Reference

16-10

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Broker.type

Name
Broker.type As BrokerType

Description
This read-only property returns the type of the broker.

Possible Values
Table of Broker Type Enumeration

Name Value Description

broker_active 1 The data broker associated with the
current configuration of a device
object

broker_backup 2 A data broker associated with a
previous configuration of a device
object

broker_client 3 A data broker created at the request
of a client

broker_statistics 4 A data broker created by the
LoggerNet server to report operating
statistics

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Broker.datalogger_type

Name
Broker.datalogger_type As String

Description
The read-only device type of the broker.

Section 16. CsiBrokerMap Control Reference

16-11

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Broker.allStarted

Name
Broker.allStarted As Boolean

Description
Set to TRUE when all the tables for the broker have been reported.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

16.3.2 Methods
Broker.Tables()

Name
Broker.Tables() As Object

Description
This method returns a reference to a TableCollection, which can be used to
iterate through the tables in a broker.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Broker.start_expansion()
Name

Broker.start_expansion()

Description
If the BrokerMap autoExpand property has been set to FALSE, use this method
to access the list of tables for a broker.

Section 16. CsiBrokerMap Control Reference

16-12

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal Return

16.4 TableCollection Interface
16.4.1 Properties
TableCollection.Count

Name
TableCollection.Count As Long

Description
This property returns the number of tables in a TableCollection.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

16.4.2 Methods
TableCollection.Item()

Name
TableCollection.Item(id) As Table

Description
Returns the requested table if it exists. A table can be referenced by a number
(like an index) or by a string (the name of the table). If the number is less than
zero or is greater than the number of tables, the error
E_CSI_ARRAY_OUT_OF_BOUNDS will be returned. If the table cannot be found by
name, the error E_CSI_NOT_FOUND will be returned.

Prototypes
TableCollection.Item(Number) – Array index
TableCollection.Item(String) – Table name

Section 16. CsiBrokerMap Control Reference

16-13

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ARRAY_OUT_OF_BOUNDS Error: Array subscript out of bounds

E_CSI_NOT_FOUND Error: Table not found by name in
the broker map

E_CSI_FAIL Error: Wrong variant type passed or
unexpected error

Visual Basic
Return Type
Table

Example
By number:
long iterator
For iterator = 0 to BrokerMap.Broker("cr9000").Tables.Count – 1
 Debug.Print BrokerMap.Brokers("cr9000").Tables.ID
Next iterator

By string:
Dim tableName as String
Dim myid as long
tableName = "cr10x"
myid = BrokerMap.Broker("cr9000").Tables(tableName).id

TableCollection._NewEnum()

Name
TableCollection._NewEnum()

Description
Return the next Table in the sequence.

This method is only intended for use with Visual Basic. Visual
Basic programmers do not need to access this method directly.
They use it indirectly by using the collections with the For Each
loop. This method is included in the documentation to explain why
the method exists, but, again, it is not accessed directly.

Important

Section 16. CsiBrokerMap Control Reference

16-14

16.5 Table Interface
16.5.1 Properties
Table.interval

Name
Table.interval As Long

Description
The time interval between records. If the table is event-driven, a value of zero
will be used.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Table.name

Name
Table.name As String

Description
This read-only property returns the name of the table.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Table.originalSize
Name

Table.originalSize As Long

Description
This property returns the number of records that can be stored in the original
datalogger table.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 16. CsiBrokerMap Control Reference

16-15

Table.size

Name
Table.size As Long

Description
 This property returns the number of records that can be stored in this table.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

16.5.2 Methods
Table.Columns()

Name
Table.Columns() As Object

Description
This method is used as a reference for a ColumnCollection to get the columns
of a table.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Visual Basic
Example
Dim cc As ColumnCollection
Set cc = BrokerMap.Brokers("cr9000").Tables("public").Columns

Table.start_expansion
Name

Table.start_expansion()

Description
If the BrokerMap autoExpand property has been set to FALSE, use this method
to access the list of columns for a table within a broker.

Section 16. CsiBrokerMap Control Reference

16-16

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal Return

16.6 ColumnCollection Interface
16.6.1 Properties
ColumnCollection.Count

Name
ColumnCollection.Count As Long

Description
This property returns the number of columns in the ColumnCollection.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

16.6.2 Methods
ColumnCollection.Item()

Name
ColumnCollection.Item(id) As Column

Description
This method returns the reference id for a column. If the number is less than
zero or is greater than the number of columns, the error
E_CSI_ARRAY_OUT_OF_BOUNDS will be returned. If the column cannot be found
by name, the error E_CSI_NOT_FOUND will be returned.

Prototypes
ColumnCollection.Item(Number) – Array index
ColumnCollection.Item(String) – Table name

Section 16. CsiBrokerMap Control Reference

16-17

COM Return Values
Table of Possible Values

Code Meaning
S_OK Success: Normal return
E_CSI_ARRAY_OUT_OF_BOUNDS Error: Array out of bounds
E_CSI_NOT_FOUND Error: Column not found in broker

map by name
E_CSI_FAIL Error: Wrong variant type passed or

unexpected error

Visual Basic
Return Type
Column

Examples
(1)
Dim myColumn as Column
BrokerMap.Brokers("cr9000").Tables("public").Columns.Item(0)

(2)
Dim myColumn as Column
BrokerMap.Brokers("cr9000").Tables("public").Columns(0)

(3)
Dim myColumn as Column
BrokerMap.Brokers("cr9000").Tables("public").Columns.Item("speed")

(4)
Dim myColumn as Column
BrokerMap.Brokers("cr9000").Tables("public").Columns("speed")

Examples (1) and (2) are equivalent, as well as examples
(3) and (4). The default method for collection interfaces
is Item().

ColumnCollection._NewEnum()

Name
ColumnCollection._NewEnum()

Description
Return the next Column in the sequence.

This method is only intended for use with Visual Basic. Visual
Basic programmers do not need to access this method directly.
They use it indirectly by using the collections with the For Each
loop. This method is included in the documentation to explain why
the method exists, but, again, there is no need to access this
method directly.

Important

Section 16. CsiBrokerMap Control Reference

16-18

16.7 Column Interface
16.7.1 Properties
Column.description

Name
Column.description As String

Description
This read-only property returns a description of the column.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Column.name

Name
Column.name As String

Description
This read-only property returns the name of the column.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Column.process

Name
Column.process As String

Description
A read-only property that identifies the processing performed on the data. For
data coming from table-data and mixed-array dataloggers, this value will be an
empty string.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 16. CsiBrokerMap Control Reference

16-19

Column.type

Name
Column.type As CsiDataTypeCode

Description
This read-only property identifies the type of data for the column. Following
are the possible values for this enumerated property:

Table of Data Type Enumeration

Name Value Description

dt_CsiUInt1 1 1 byte unsigned int

dt_CsiUInt2 2 2 byte unsigned int

dt_CsiUInt4 3 4 byte unsigned int

dt_CsiInt1 4 1 byte signed int

dt_CsiInt2 5 2 byte signed int

dt_CsiInt4 6 4 byte signed int

dt_CsiInt8 32 8 byte signed int

dt_CsiFs2 7 2 byte final storage (also known as FP2)

dt_CsiFs3 15 3 byte final storage (also known as FP3)

dt_CsiFs4 26 4 byte final storage

dt_CsiFsf 27 allows storage of either CsiFs2 or CsiFs4
Requires 4 bytes

dt_CsiFp4 8 4 byte CSI float

dt_CsiIeee4 9 4 byte IEEE float

dt_CsiIeee8 18 8 byte IEEE float

dt_CsiBool 10 1 byte Boolean (0 or 1)

dt_CsiBool8 17 1 byte bit field

dt_CsiSec 12 4 byte sec since 1 Jan 1990

dt_CsiUSec 13 6 byte 10s of microseconds since 1 Jan
1990

dt_CsiNSec 14 4 byte sec since 1 Jan 1990 + 4 byte
nanoseconds

dt_CsiAscii 11 fixed-length string

dt_CsiAsciiZ 16 null-terminated variable-length string

dt_CsiInt4Lsf 20 4 byte signed int (LSB first)

dt_CsiUInt2Lsf 21 2 byte signed int (LSB first)

Section 16. CsiBrokerMap Control Reference

16-20

Name Value Description

dt_CsiUInt4Lsf 22 4 byte signed int (LSB first)

dt_CsiNSecLsf 23 same as nanoseconds with the components
in LSB

dt_CsiIeee4Lsf 24 4 byte IEEE float (LSB first)

dt_CsiIeee8Lsf 25 8 byte IEEE float (LSB first)

dt_CsiInt8Lsf 33 8 byte signed int (LSB first)

dt_CsiBool2 30 2 byte Boolean (non-zero = true)

dt_CsiBool4 31 4 byte Boolean (non-zero = true)

dt_CsiInt2Lsf 19 2 byte signed int (LSB first)

dt_CsiLgrDate 29 8 bytes of nanoseconds since 1990

dt_CsiLgrDateLsf 28 8 bytes of nanoseconds since 1990 (LSB
first)

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Column.units
Name

Column.units As String

Description
This read-only property identifies the data engineering units.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 16. CsiBrokerMap Control Reference

16-21

Column.writable

Name
Column.writable As Long

Description
This property is read-only and describes whether or not this column can be
changed or set by using the variableSet() method as described in the
CsiDatalogger control.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 16. CsiBrokerMap Control Reference

16-22

17-1

Section 17. CsiDatalogger Control
Reference
17.1 CsiDatalogger Interface

17.1.1 Properties
Datalogger.clockBusy

Name
Datalogger.clockBusy As Boolean

Description
This property describes the state of the control concerning clock transactions.
If a clock check or a clock set is currently executing, clockBusy returns TRUE,
and any attempt to execute another clock check or clock set will return an
error.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.loggerConnected
Name

Datalogger.loggerConnected As Boolean

Description
This Boolean property describes the state of the LoggerNet server connection
management invoked from loggerConnectStart(). This property only describes
the state of connection management not the state of the physical connection to
the datalogger. To monitor the physical line state, start an advisor with the
DataSource control and monitor the statistics table for that device. For
information on devices statistics tables, look in the appendix of this document.

If connection management is active, a persistent connection between the server
and the datalogger is present or in process. This type of connection can be very
useful if you must make requests to the datalogger on a frequent basis because
you avoid reconnection overhead for each request. To turn off active
connection management, see loggerConnectCancel (p. 17-8).

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 17. CsiDatalogger Control Reference

17-2

Datalogger.loggerName

Name
Datalogger.loggerName As String

Description
Specifies the datalogger or station name that will be accessed.

Valid Values
This property must match one of the actual datalogger device names in the
LoggerNet server network map.

Default Value
The default value for this property is an empty string.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the datalogger is present

Datalogger.manualPollBusy
Name

Datalogger.manualPollBusy As Boolean

Description
This Boolean property describes the state of the control concerning a manual
poll. If a manual poll is currently executing then manualPollBusy will return
TRUE, and any attempt to execute another manual poll will return an error.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.programReceiveBusy
Name

Datalogger.programReceiveBusy As Boolean

Description
This read-only, Boolean property describes the state of the LoggerNet server in
relation to the method programReceiveStart(). If the LoggerNet server is

Section 17. CsiDatalogger Control Reference

17-3

currently retrieving a program from the datalogger, this property will return
TRUE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.programSendBusy
Name

Datalogger.programSendBusy As Boolean

Description
This Boolean property describes the state of the LoggerNet server in relation to
the method programSendStart(). If the LoggerNet server is currently sending a
program to the datalogger, this property will return TRUE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.selectiveManualPollBusy
Name

Datalogger.selectiveManualPollBusy As Boolean

Description
This Boolean property describes the state of the control concerning a selective
manual poll. If a selective manual poll is currently in process, this property
will return TRUE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.serverConnected
Name

Datalogger.serverConnected As Boolean

Section 17. CsiDatalogger Control Reference

17-4

Description
This Boolean property describes the state of the connection between the client
application and the LoggerNet server. If the connection is successful, the
property is returned as TRUE. Otherwise, the property is returned as FALSE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.serverLogonName

Name
Datalogger.serverLogonName As String

Description
Specifies the account name that should be used when connecting to the
LoggerNet server. If security is enabled on the target LoggerNet server, this
string must be one of the account names recognized by the LoggerNet server.

Valid Values
If security is enabled on the target LoggerNet server, this property must be one
of the account names recognized by the LoggerNet server. These accounts can
be set up using the LoggerNet Security Administration Client that is part of the
LoggerNet software suite or the CsiCoraScript control that is part of the SDK.

Default Value
The default value for this property is an empty string. This property is only
used if security is enabled on the LoggerNet server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

Section 17. CsiDatalogger Control Reference

17-5

Datalogger.serverLogonPassword

Name
Datalogger.serverLogonPassword As String

Description
This property specifies the password that should be used when connecting to
the LoggerNet server. If security is enabled on the target LoggerNet server,
this password string must be associated with the account described in the
logonName property.

Valid Values
If security is enabled on the target LoggerNet server, this property must be the
password associated with the account described by serverLogonName.

Default Value
The default value for this property is an empty string. This property is only
used if security is enabled on the LoggerNet server.

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

Datalogger.serverName
Name

Datalogger.serverName As String

Description
This property specifies the TCP/IP interface address for the computer hosting
the LoggerNet server. This string must be formatted either as a fully qualified
Internet machine domain name or as an IP address string. An example of a
valid machine domain name address is www.campbellsci.com. An example of a
valid IP address string is 207.201.118.35. The default value for this
property is the string, localhost.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverName while connected to the
LoggerNet server

http://www.campbellsci.com/

Section 17. CsiDatalogger Control Reference

17-6

Datalogger.serverPort

Name
Datalogger.serverPort As Long

Description
Specifies the TCP port number that the LoggerNet server is using on the
hosting computer. The valid range for this property is 1 to 65535.

Default Value
The default value for this property, assigned to the LoggerNet server during
install, is 6789. In most cases, the default value for this property is acceptable.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: The port value is invalid

E_CSI_BUSY Error: Attempt to set serverPort while connected
to the LoggerNet server

17.1.2 Methods
Datalogger.clockCancel()

Name
Datalogger.clockCancel()

Description
This method should be called to cancel either a clockCheckStart() or a
clockSetStart(). If the clock set or clock check was successfully cancelled, the
event onClockComplete() will return a cancellation code. If the clockCancel()
was called too late in the process, the event onClockComplete() will return
either a success or failure code instead. This method should only be called
when the clockCheckStart() method or the clockSetStart() method is in process.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 17. CsiDatalogger Control Reference

17-7

Datalogger.clockCheckStart()

Name
Datalogger.clockCheckStart()

Description
This method should be called to check the date and time on a specified
datalogger. This method should only be called when the value of
serverConnected is TRUE. If not, this method will return
E_CSI_NOT_CONNECTED. Upon completion, this method will fire the event
onClockComplete.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Clock communication is busy servicing
a request

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

Datalogger.clockSetStart()

Name
Datalogger.clockSetStart()

Description
This method should be called to set the date and time on the specified
datalogger to the date and time of the LoggerNet server. This method should
only be called when the value of serverConnected is TRUE. If not, this method
will return E_CSI_NOT_CONNECTED. Upon completion, this method calls the
event onClockComplete.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Clock communication is busy servicing
a request

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

Section 17. CsiDatalogger Control Reference

17-8

Datalogger.loggerConnectCancel()

Name

Description

Datalogger.loggerConnectCancel()

This method cancels an active connection between the LoggerNet server and
the specified datalogger. When a persistent connection is cancelled, the
LoggerNet server returns to the default behaviour of connecting to the
datalogger for each transaction and disconnecting from the datalogger after
each transaction finishes.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.loggerConnectStart()

Name
Datalogger.loggerConnectStart(logger_priority_type
priority)

Parameters
The following values indicate the priority of maintaining the connection when
other devices might need the resources:

Table of 'Priority' Values

priority_high = 0

priority_normal = 1

priority_low = 2

Description
This method will open a persistent connection to the specified datalogger.
Keeping the connection open will allow the LoggerNet server to handle
multiple transactions without disconnecting. The default behaviour of the
server is to shut down a link unless there is a reason (a client sponsored
transaction, a setting such as PakBus® port always open or hangup delay, or an
internal transaction (scheduled poll) pending). Keeping the connection open is
very helpful if it takes a considerable amount of time for the server to connect
to a datalogger, such as on a dialup connection. In most cases, a persistent
connection is not required.

This method should only be called when the value of serverConnected, is
TRUE. If not, this method will return E_CSI_NOT_CONNECTED. This method
triggers onLoggerConnectStarted or onLoggerConnectFailure, depending on its
success or failure.

Section 17. CsiDatalogger Control Reference

17-9

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: A persistent communications link has
already been started with this datalogger

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

Datalogger.manualPollCancel()

Name

Description

Datalogger.manualPollCancel()

This method should be called to cancel a manualPollStart() command. If the
manual poll was successfully cancelled, the event onManualPollComplete()
will return a cancellation code. If the manualPollCancel() was called too late
in the manual poll process, the event onManualPollComplete() will return
either a success or failure code instead. This method should only be called
when a manual poll is in process.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.manualPollStart()

Name
Datalogger.manualPollStart()

Description
This method will initiate a collection from all areas that are marked to be
polled with scheduled collection. This method should only be called when the
value of serverConnected is TRUE. If not, this method will return
E_CSI_NOT_CONNECTED. Upon completion, this method calls the event
onManualPollComplete().

Section 17. CsiDatalogger Control Reference

17-10

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Manual poll communication is busy
servicing a request

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

Datalogger.programReceiveCancel()

Name
Datalogger.programReceiveCancel()

Description
This method attempts to cancel the programReceiveStart() command. Mixed-
array dataloggers will not recognize this request and will continue to transfer
their program even though the datalogger control is no longer receiving it.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.programReceiveStart()

Name
Datalogger.programReceiveStart(String fileName)

Description
This method retrieves the current program from the connected datalogger and
saves that file as the specified filename. This event triggers
onProgramReceiveProgress() and onProgramReceiveComplete() during the
programReceive() and after the programReceive() respectively.

This method should only be called when the value of serverConnected is
TRUE. If not, this method will return E_CSI_NOT_CONNECTED.

Parameters
FileName: This location is the full path and name where the file will be saved.

Section 17. CsiDatalogger Control Reference

17-11

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: A previous call to
programReceiveStart() has not completed

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

Datalogger.programSendCancel()

Name
Datalogger.programSendCancel()

Description
This method attempts to cancel the programSendStart() method. The program
send process can be cancelled if it has not already begun. Otherwise, the
method will be ignored.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.programSendStart()

Name
Datalogger.programSendStart(String file_name, String
program_name)

Description
This method starts to transfer a file designated by file_name to the specified
datalogger. It also calls the events: onProgramSendProgress(),
onProgramSent(), and onProgramSendComplete(). This method should only
be called when the value of serverConnected is TRUE. Otherwise, this method
will return E_CSI_NOT_CONNECTED.

Parameters
file_name: The full path on the local machine designating the location of the
program that will be sent.

program_name: Designates the name of the program that will be sent to the
specified datalogger. The file will be placed on the "CPU" device by default;
there are currently no other options.

Section 17. CsiDatalogger Control Reference

17-12

The file name should have no path specification, but should merely be the
name of the file. If this setting is specified as an empty string, the name will be
derived from the file_name property. The server may truncate the file name on
Crx000 dataloggers in order to make it fit the file system on those devices.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: A previous call to programSendStart()
has not completed

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

Datalogger.selectiveManualPollCancel
Name

Description

Datalogger.selectiveManualPollCancel()

This method should be called to cancel a selectiveManualPollStart()
command. If the selective manual poll was successfully cancelled, the event
onSelectiveManualPollComplete() will return a selective manual poll aborted
code. If the selectiveManualPollCancel() was called too late in the manual poll
process, the event onSelectiveManualPollComplete() will return either a
success or failure code instead. This method should only be called when a
selective manual poll is in process.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.selectiveManualPollStart

Name
Datalogger.selectiveManualPollStart(collect_area As
String)

Description
Use this method to poll a specific table in a datalogger. Upon completion, this
method calls the event onSelectiveManualPollComplete().

Section 17. CsiDatalogger Control Reference

17-13

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: A previous call has not completed

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

Datalogger.serverConnect()

Name
Datalogger.serverConnect()

Description
This method attempts to connect to the LoggerNet server using the previously
set properties: serverName, serverPort, serverLogonName, and
serverLogonPassword. This method triggers onServerConnectStarted or
onServerConnectFailure depending on its success or failure.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BAD_HOST_OR_PORT Error: Server name or port is invalid or
unreachable

E_CSI_ALREADY_CONNECTED Error: Already connected to the
LoggerNet server

Datalogger.serverDisconnect()

Name
Datalogger.serverDisconnect()

Description
This method will disconnect from the LoggerNet server. This method will set
serverConnected to FALSE and should only be called when the value of
serverConnected is TRUE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 17. CsiDatalogger Control Reference

17-14

17.1.3 Events
Datalogger_onClockComplete()

Name
onClockComplete(Boolean successful,
clock_outcome_type response_code, Date current_date)

Parameters
successful: Describes whether a clock set or clock check succeeded.

response_code: The following list describes the possible response codes from
a clock transaction:

Table of Response Code Values

Enumeration Name Value Description

co_outcome_unknown 0 Indicates that an error has occurred but its
nature is unknown

co_outcome_success_clock_checked 1 Indicates that the clock was successfully
checked on the specified datalogger (see
loggerName)

co_outcome_success_clock_set 2 Indicates that the clock was successfully set on
the specified datalogger (see loggerName)

co_outcome_session_failed 3 Indicates that the communication session with
the LoggerNet server failed resulting in the
clock check/set transaction failing

co_outcome_invalid_logon 4 Indicates that this control was unable to logon to
the LoggerNet server because either the
serverLogonName or serverLogonPassword
property is incorrect

co_outcome_server_security_blocked 5 Indicates that the account specified by
serverLogonName does not have sufficient
privileges assigned to start the transaction with
the LoggerNet server

co_outcome_communication_failed 6 Indicates that there was a communication failure
between the LoggerNet server and the
datalogger. If this happens, retry the transaction.

co_outcome_communication_disabled 7 Indicates that LoggerNet has not been set up to
communicate with this datalogger. You will
need to enable communications before you will
be able to successfully communicate with the
datalogger.

Section 17. CsiDatalogger Control Reference

17-15

Enumeration Name Value Description

co_outcome_logger_security_blocked 8 Indicates that security has been enabled on the
LoggerNet server and that the account specified
by serverLogonName does not have sufficient
privileges to communicate with the datalogger

co_outcome_invalid_device_name 9 Indicates that the device named by loggerName
was not found in the broker map

co_outcome_unsupported 10 Indicates that the device loggerName does not
support this transaction

co_outcome_cancelled 11 Indicates that a previous clock check or set
command was cancelled successfully

co_outcome_device_busy 12 Indicates the datalogger is busy with another
transaction

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onLoggerConnectFailure()

Name
onLoggerConnectFailure(logger_failure_type fail_code)

Description
This event indicates there was an error when making an persistent connection
with the specified datalogger.

Parameter
Table of Fail Code Values

Enumeration Name Value Description

lf_failure_unknown 0 Indicates that an error has occurred but its
nature is unknown

lf_failure_unexpected 1 Indicates than an unexpected error has
occurred

Section 17. CsiDatalogger Control Reference

17-16

Enumeration Name Value Description

lf_failure_connection_failed 2 Indicates that the connection failed. This can
happen if a connection has been successfully
established but then lost or an invalid
serverName or serverHostPort property value
was specified. This type of failure can also
occur if the IP stack on the server host or on
the host for this application is not configured
correctly.

lf_failure_invalid_logon 3 Indicates that this control was unable to logon
to the LoggerNet server because either the
serverLogonName or serverLogonPassword
property is incorrect

lf_failure_server_security_blocked 4 Indicates that security has been enabled on
the server and that the serverLogonName
does not have sufficient privileges or
serverLogonPassword is incorrect

lf_failure_device_name_invalid 5 Indicates that the device loggerName was not
found in the network map

lf_failure_server_terminated_transaction 6 Indicates that the server has terminated the
transaction

lf_failure_device_does_not_support 7 Indicates that the device loggerName does not
support this transaction

lf_failure_path_does_not_support 8 This transaction is not supported for this
network path. The name of the blocking
device will be supplied as the next parameter.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onLoggerConnectStarted()

Name
onLoggerConnectStarted()

Description
This event gets called when a connection to the datalogger has been established
and is a result of invoking the method loggerConnectStart().

Section 17. CsiDatalogger Control Reference

17-17

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onManualPollComplete()

Name
onManualPollComplete(Boolean successful,
manual_poll_outcome_type response_code)

Description
A response from the LoggerNet server upon the completion of a manual poll.

Parameters
successful: Describes whether the manual poll was successful.

response_code: The following list describes the possible response codes from
a manual poll transaction.

Table of Response Code Values

Enumeration Name Value Description

mp_outcome_unknown 0 Indicates that an error has occurred but its
nature is unknown

mp_outcome_success 1 Indicates that the manual poll was successful
on the specified datalogger

mp_outcome_invalid_logon 2 Indicates that this control was unable to logon
to the LoggerNet server because either the
serverLogonName or serverLogonPassword
property is incorrect

mp_outcome_server_session_failed 3 Indicates that the communication session with
the server failed resulting in the manual poll
transaction failing

mp_outcome_invalid_device_name 4 Indicates that the datalogger device
loggerName was not found in the broker map

mp_outcome_unsupported 5 Indicates that the device does not support the
manual poll transaction

mp_outcome_server_security_blocked 6 Indicates that the account specified by
serverLogonName does not have sufficient
privileges assigned to start the transaction with
the LoggerNet server

mp_outcome_logger_security_blocked 7 Indicates that security is set on the datalogger
blocking this transaction

Section 17. CsiDatalogger Control Reference

17-18

Enumeration Name Value Description

mp_outcome_comm_failure 8 Indicates that there was a communication
failure between the LoggerNet server and the
datalogger. If this happens, retry the
transaction.

mp_outcome_communication_disabled 9 Indicates that LoggerNet has been set up not to
communicate with this datalogger. Enable
communications before attempting
communication with the datalogger.

mp_outcome_table_defs_invalid 10 Indicates that the table definitions in the
LoggerNet server do not match those in the
datalogger

mp_outcome_aborted 11 Indicates that a previous manual poll command
was cancelled successfully

mp_outcome_logger_locked 12 Indicates that the datalogger is locked

mp_outcome_file_io_failed 13 Indicates that the LoggerNet server could not
write to the data cache

mp_outcome_no_table_defs 14 Indicates that table definitions have not been
downloaded by the LoggerNet server

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onProgramCompiled()
Name

onProgramCompiled()

Description
This event returns notification when the program has compiled successfully on
the datalogger and table definitions are being retrieved.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return.

Section 17. CsiDatalogger Control Reference

17-19

Datalogger_onProgramReceiveComplete()

Name
onProgramReceiveComplete(Boolean successful,
prog_receive_outcome_type response_code)

Description
This event gets called when the method programReceiveStart() has completed.

Parameters
successful: Describes if the program was retrieved successfully.

response_code: The following table describes the possible response codes.

Table of Possible Response Codes

Enumeration Name Value Description

pr_success 0 Indicates that the program was received
successfully

pr_failure_unknown 1 Indicates that an unknown failure has occurred

pr_failure_no_cached_file 2 Indicates that the datalogger does not have a
file to receive

pr_failure_logger_communication_error 3 Indicates that the connection failed. This can
happen if a connection has been successfully
established but then lost or because an invalid
serverName or serverPort property value was
specified. This type of failure can also occur if
the IP stack on the server host or on the host
for this application is not configured correctly.

pr_failure_disabled_communication 4 Indicates that LoggerNet has not been set up
to communicate with this datalogger

pr_failure_logger_security 5 Indicates that the LoggerNet server cannot
communicate with the datalogger because the
datalogger security code is incorrect

pr_failure_invalid_server_logon 6 Indicates that the serverLogonName or the
serverLogonPassword is incorrect

pr_failure_server_connection_failure 7 Indicates that the control could not connect to
the server

pr_failure_invalid_device_name 8 Indicates that the device set in the property
loggerName could not be found in the
network map

pr_failure_cannot_open_file 9 Indicates that the file could not be opened for
writing. You may not have permissions to
write in that directory or the file may be in
use.

Section 17. CsiDatalogger Control Reference

17-20

Enumeration Name Value Description

pr_failure_server_security 10 Indicates that security has been enabled on the
LoggerNet server and that you do not have
sufficient privileges to connect

pr_failure_not_supported 11 Indicates that this transaction is not supported

pr_aborted_by_client 12 Indicates that this transaction was cancelled

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onProgramReceiveProgress()
Name

onProgramReceiveProgress(Long Received_bytes)

Description
This event periodically returns notification of how many bytes have been
received from the datalogger during the retrieval of a program. This event gets
called after the programReceiveStart() method has been called.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onProgramSendComplete()
Name

onProgramSendComplete(Boolean successful,
prog_send_outcome_type response_code, String
compile_result)

Description
This event gets called when the program sending process has finished.

Parameters
successful: Describes if the programSendStart was successful.

response_code: Found in the table of possible response codes.

compile_result: Result string from the datalogger.

Section 17. CsiDatalogger Control Reference

17-21

Table of Possible Response Codes

Enumeration Name Value Description

ps_outcome_unknown 0 Indicates that an error has occurred but its
nature is unknown

ps_outcome_success 1 Indicates that the program was sent successfully

ps_outcome_in_progress 2 Indicates that another program file send
transaction is already in progress

ps_outcome_invalid_program_name 3 Indicates that the program specified to send is
invalid or non-existent

ps_outcome_server_resource_error 4 Indicates that the LoggerNet server has
encountered a resource error

ps_outcome_communication_failed 5 Indicates that the connection failed. This can
happen if a connection has been successfully
established but then lost or because an invalid
serverName or serverPort property value was
specified. This type of failure can also occur if
the IP stack on the server host or on the host for
this application is not configured correctly.

ps_outcome_communication_disabled 6 Indicates that LoggerNet has not been set up to
communicate with this datalogger

ps_outcome_logger_compile_error 7 Indicates that the datalogger was unable to
compile the program. The program should be
reviewed for errors and resent to the datalogger.

ps_outcome_logger_security_failed 8 Indicates that the LoggerNet server cannot
communicate with the datalogger because the
datalogger security code is incorrect

ps_outcome_invalid_logon 9 Indicates that the property serverLogonName or
serverLogonPassword is invalid

ps_outcome_session_failed 10 Indicates that the communication session with
the server failed causing the program send
transaction to fail

ps_outcome_invalid_device_name 11 Indicates that the device named by loggerName
was not found in the network map

ps_outcome_cannot_open_file 12 Indicates that the program to send could not be
opened to read

ps_outcome_server_security_failed 13 Indicates that the LoggerNet server has security
enabled and that the serverLogonName or
serverLogonPassword is incorrect

ps_outcome_logger_buffer_full 14 Indicates that the datalogger's storage buffer is
full

Section 17. CsiDatalogger Control Reference

17-22

Enumeration Name Value Description

ps_outcome_network_locked 15 Indicates that the network is locked by another
transaction

ps_outcome_aborted_by_client 16 Indicates that this transaction has been cancelled

ps_outcome_table_defs_failed 17 Indicates that the table definitions were not
obtained from the datalogger

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onProgramSendProgress()
Name

onProgramSendProgress(Long sent_bytes, Long
total_bytes)

Description
This event periodically returns notification of how many sent_bytes out of a
program’s total_bytes have been sent to the datalogger. This event could
be helpful in a progress bar and gets called periodically after invoking the
programSendStart() method.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onProgramSent()

Name
onProgramSent()

Description
This event returns notification when the program has been sent but gets called
before the program has been compiled on the datalogger and table definitions
have been retrieved.

Section 17. CsiDatalogger Control Reference

17-23

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onSelectiveManualPollComplete()

Name
onSelectiveManualPollComplete(Boolean successful,
selective_manual_poll_outcome_type response_code)

Description
The response from the LoggerNet server when the selective manual poll
completes.

Parameters
successful: Describes if the polling was successfully.

response_code: The following table describes the possible response codes.

Table of Response Code Values

Enumeration Name Value Description

smp_outcome_unknown 0 Indicates that an unknown error as occurred

smp_outcome_success 1 Indicates that the selective manual poll was
successful

smp_outcome_invalid_logon 2 Indicates that this control was unable to logon to
the LoggerNet server because either the
serverLogonName or serverLogonPassword
property is incorrect

smp_outcome_server_session_failed 3 Indicates that the communication session with
the server failed causing the selective manual
poll transaction to fail

smp_outcome_invalid_device_name 4 Indicates that the datalogger device loggerName
was not found in the broker map

smp_outcome_unsupported 5 Indicates that the device does not support the
selective manual poll process

smp_outcome_server_security_blocked 6 Indicates that the account specified by
serverLogonName does not have sufficient
privileges assigned to start the transaction with
the LoggerNet server

smp_outcome_logger_security_blocked 7 Indicates that security is set on the datalogger
blocking this transaction

Section 17. CsiDatalogger Control Reference

17-24

Enumeration Name Value Description

smp_outcome_comm_failure 8 Indicates that there was a communication failure
between the LoggerNet server and the
datalogger

smp_outcome_communication_disabled 9 Indicates that communication to this datalogger
has been disabled in the LoggerNet server

smp_outcome_table_defs_invalid 10 Indicates that the table definitions in the
LoggerNet server do not match those in the
datalogger

smp_outcome_table_name_invalid 11 Indicates that the table specified was not found

smp_outcome_file_io_failure 12 Indicates that the LoggerNet server could not
write to the data cache table

smp_outcome_logger_busy 13 Indicates that the datalogger is busy with
another transaction

smp_outcome_aborted 14 Indicates that the selective manual poll was
successfully cancelled

Datalogger_onServerConnectFailure()

Name
onServerConnectFailure(server_failure_type
failure_code)

Description
This event gets called if a connection cannot be established with the LoggerNet
server using the serverConnect() method.

Parameters
failure_code: The following are possible values for failure_code.

Table of Possible Failure Codes

Enumeration Name Value Description

server_failure_unknown 0 Indicates that an unknown failure has occurred

server_failure_logon 1 Indicates that there was a failure connecting to the
LoggerNet server because either serverLogonName or
serverLogonPassword is incorrect

server_failure_session 2 Indicates that the communication session with the
server failed resulting in the serverConnect
transaction failing

server_failure_unsupported 3 Indicates that the datalogger defined in the property
loggerName could not support this transaction

Section 17. CsiDatalogger Control Reference

17-25

Enumeration Name Value Description

server_failure_security 4 Indicates that the server has security enabled and that
the serverLogonName or the serverLogonPassword
properties did not have sufficient privileges to
perform this method

server_failure_bad_host_or_port 5 Indicates that either the serverName or the serverPort
property is incorrect

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onServerConnectStarted()

Name
onServerConnectStarted()

Description
This event gets called once a connection has been established with the
LoggerNet server using the serverConnect() method.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 17. CsiDatalogger Control Reference

17-26

18-1

Section 18. CsiDataSource Control
Reference
18.1 DSource Interface

18.1.1 Properties
DSource.logonName

Name
DSource.logonName As String

Description
Specifies the account name that should be used when connecting to the
LoggerNet server. If security is enabled on the target LoggerNet server, this
string must be one of the account names recognized by the LoggerNet server.

Default Value
The default value for this property is an empty string. This property is only
used if security is enabled on the LoggerNet server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal Return

E_CSI_BUSY Error: Attempt to set serverLogonPassword while
connected to the LoggerNet server

DSource.logonPassword
Name

DSource.logonPassword As String

Description
This property specifies the password that should be used when connecting to
the LoggerNet server. If security is enabled on the target LoggerNet server,
this password string must be associated with the account described in the
logonName property.

Default Value
The default value for this property is an empty string. This property is only
used if security is enabled on the LoggerNet server.

Section 18. CsiDataSource Control Reference

18-2

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverLogonPassword while
connected to the LoggerNet server

DSource.serverName

Name
DSource.serverName As String

Description
This property specifies the TCP/IP interface address for the computer hosting
the LoggerNet server. This string must be formatted either as a fully qualified
Internet machine domain name or as an IP address string. An example of a
valid machine domain name address is www.campbellsci.com. An example of a
valid IP address string is 207.201.118.35.

Default Value
The default value for this property is the string, localhost.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverName while connected to the
LoggerNet server

DSource.serverPort

Name
DSource.serverPort As Long

Description
This property specifies the TCP port number that the LoggerNet server is using
on the hosting computer. The valid range for this property is 1 to 65535.

Default Value
The default value for this property, assigned to the LoggerNet server during
install, is 6789. In most cases, the default value for this property is acceptable.

http://www.campbellsci.com/

Section 18. CsiDataSource Control Reference

18-3

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Cannot write to this property because
there is a connection to the LoggerNet server

E_CSI_INVALIDARG Error: Value out of range

DSource.state

Name
DSource.state As data_source_state

Description
This property describes the state of the control in regards to a connection with
the LoggerNet server. The following are the possible values of this property:

Table of Possible Values

Enumeration Name Value Description

dataSourceDisconnected 1 The control is currently disconnected and its read/write
properties are accessible

dataSourceConnecting 2 The connect method has been invoked and the control is
attempting to connect to the LoggerNet server. Properties are
read-only at this time.

dataSourceConnected 3 The connect method has been successfully invoked and the
control has a connection to the server. It is appropriate at this
time to create advisors and start them.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

DSource.sendRecordBlocks

Name
DSource.sendRecordBlocks As Boolean

Description
When set to TRUE, records will be sent back from LoggerNet to an advisor in
blocks rather than one at a time. This is a more efficient method of receiving
records if a large number of records are being collected.

Section 18. CsiDataSource Control Reference

18-4

Default Value
This property is set to FALSE by default.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

18.1.2 Methods
DSource.connect()

Name
DSource.connect()

Description
This method allows you to connect to the LoggerNet server. When you invoke
this method, the control will attempt to connect to the specified LoggerNet
server. If it succeeds, you will receive the event onControlReady. If you are
already connected, you will receive the COM error
E_CSI_ALREADY_CONNECTED. If the serverName and/or serverPort properties
cannot be resolved or are incorrect, you will receive the error code
E_CSI_BAD_HOST_OR_PORT.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ALREADY_CONNECTED Error: Already connected to the server

E_CSI_BAD_HOST_OR_PORT Error: Server hostname or port is
incorrect

DSource.createAdvisor()

Name
DSource.createAdvisor()As Object

Description
This method creates a new advisor object. Keep a reference to the advisor so it
will not go out of scope. If you create and start an advisor but don't get any
data, you are probably letting the advisor go out of scope. When handling
multiple advisors, use a collection or list. The property advisorName is
provided for convenience when using a collection to hold names of the
advisors you create.

Section 18. CsiDataSource Control Reference

18-5

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_NOT_CONNECTED Error: The control is not connected to the
LoggerNet server and therefore cannot create
any advisors. Connect to the LoggerNet
server first

E_FAIL Error: An unexpected error has occurred

Visual Basic®
Example
Dim myAdvisor As new advisor
Set myAdvisor = DSource.createAdvisor

DSource.disconnect()

Name
DSource.disconnect()

Description
This method attempts to disconnect from the current LoggerNet server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

18.1.3 Events
DSource_onAdviseReady()

Name
onAdviseReady(Object myAdvisor)

Description
This event returns notification that an advisor has been started and will send
onAdviseRecord() events when records are collected by the LoggerNet server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 18. CsiDataSource Control Reference

18-6

DSource_onAdviseRecord()

Name
onAdviseRecord(Object myAdvisor, Object myRecord)

Description
This event returns notification of newly acquired data from an advisor. If
records are not being acquired, the advisor will not display them. Please make
sure the tables specified in the advisor are enabled for collection through the
use of CoraScript commands (set-collect-area-setting setting ID 2). Once the
tables are enabled for collection, use the datalogger control to manually collect
records or use the CoraScript control to enable scheduled collection.

COM Return Values
Table of Possible Values

Code Meaning

 S_OK Success: Normal return

DSource_onAdvisorFailure()

Name
onAdvisorFailure(csiAdvisorFailureCode failure,
Advisor myAdvisor)

Description
Indicates there was a failure with the advisor specified in myAdvisor.

Parameters
Table of Possible Response Codes

Enumeration Name Value Description

csiAdvisorFailureUnknown 0 Indicates that an error has occurred but its
nature is unknown

csiAdvisorFailureConnectionFailed 1 Indicates that the connection failed. This can
happen if a connection has been successfully
established but then lost or because an invalid
serverName or serverPort property value was
specified. This type of failure can also occur if
the IP stack on the server host or on the host for
this application is not configured correctly.

csiAdvisorFailureInvalidLogon 2 Indicates that this control was unable to logon
to the LoggerNet server because either the
logonName or logonPassword property is
incorrect

Section 18. CsiDataSource Control Reference

18-7

Enumeration Name Value Description

csiAdvisorFailureInvalidStationName 3 Indicates that the datalogger device named by
stationName is not found in the server's
network map at the time the advisor is started.
Changes made to the station name after the
advisor is started are triggered with code value
9 – csiAdvisorFailureStationShutDown (see
below).

csiAdvisorFailureInvalidTableName 4 Indicates that the table specified by tableName
does not exist for the specified station at the
time the advisor is started. A table name
change that occurs after the advisor is activated
will trigger code value 8 –
csiAdvisorFailureTableDeleted (see below).

csiAdvisorFailureServerSecurity 5 Indicates that the account specified by
logonName does not have sufficient privileges
assigned to start the data advise transaction
with the LoggerNet server

csiAdvisorFailureInvalidStartOption 6 Indicates that the startOption is either invalid or
not supported by the LoggerNet server

csiAdvisorFailureInvalidOrderOption 7 Indicates that the orderOption is either invalid
or not supported by the LoggerNet server

csiAdvisorFailureTableDeleted 8 Indicates that the table has been deleted (or
renamed) while the data advise transaction is in
progress. This can happen if table definitions
are refreshed on the device or if a new program
file is sent to the datalogger.

csiAdvisorFailureStationShutDown 9 Indicates that the station that owns the table has
been shut down while the data advise
transaction is in progress. This can happen if
the device is deleted, renamed, or if the
LoggerNet server is shut down.

csiAdvisorFailureUnsupported 10 The version of the LoggerNet server doesn't
support this transaction

csiAdvisorFailureInvalidColumnName 11 Indicates that the column name is invalid

csiAdvisorFailureInvalidArrayAddress 12 Indicates that the array address is invalid

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 18. CsiDataSource Control Reference

18-8

DSource_onControlFailure()

Name
onControlFailure(csidsFailureCode failure_code)

Description
This event is triggered when an error has occurred that affects the control as a
whole.

Table of Possible Failure Codes

Enumeration Name Value Description

csidsFailureUnknown 0 Indicates that an error has occurred but its nature is unknown

csidsFailureLogon 1 Indicates that this control was unable to logon to the
LoggerNet server because either the logonName or
logonPassword property is incorrect

csidsFailureSession 2 Indicates that the communication session with the server
failed resulting in failed transactions

csidsFailureUnsupported 3 The version of the LoggerNet server doesn't support this
transaction

csidsFailureSecurity 4 Indicates that the account specified by logonName does not
have sufficient privileges to start the transaction with the
LoggerNet server

Other codes besides those shown above are included in the
enumeration of the DataSource control’s interface, but they are
never triggered.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

DSource_onControlReady()
Name

onControlReady()

Description
This event is triggered when a connection to the server has been established
and is a result of invoking the connect() method. Once this event has been
called, advisors can be created and started.

NOTE

Section 18. CsiDataSource Control Reference

18-9

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

DSource_onVariableSetComplete()

Name
onVariableSetComplete(Long tran_id, Object myAdvisor,
Boolean successful, variable_outcome_code
response_code)

Description
This event gets called when the method variableSetStart() has completed.

Parameters
tran_id: The transaction ID used to track this event.

myAdvisor: References the advisor that started the variable set transaction.

successful: Indicates whether the transaction succeeded.

response_code: Values from the following table.

Table of Possible Response Code Outcomes

Enumeration Name Value Description

vo_outcome_unknown 0 Indicates that the outcome could not
be determined

vo_outcome_succeeded 1 Indicates that the setting of the
variable was set successfully

vo_outcome_connection_failed 2 Indicates that the control could not
connect to the LoggerNet server

vo_outcome_invalid_logon 3 Indicates that the logonName or
logonPassword was incorrect

vo_outcome_server_security_blocked 4 Indicates that security has been
enabled on the LoggerNet server and
that you do not have sufficient
privileges to connect

vo_outcome_column_read_only 5 Indicates that the column sent is read-
only

vo_outcome_invalid_table_name 6 Indicates that the table name was not
found on the datalogger

vo_outcome_invalid_column_name 7 Indicates that the column name was
not found on the datalogger

Section 18. CsiDataSource Control Reference

18-10

Enumeration Name Value Description

vo_outcome_invalid_subscript 8 Indicates that the index of the
variable was invalid. For array
values, subscripts start at "1".

vo_outcome_invalid_data_type 9 Indicates that the type of the data sent
for this variable does not match the
variable type

vo_outcome_communication_failed 10 Indicates that communication has
failed during this transaction

vo_outcome_communication_disabled 11 Indicates that LoggerNet has not been
set up to communicate with this
datalogger

vo_outcome_logger_security_blocked 12 Indicates that the datalogger's
security has been enabled and you do
not have sufficient privileges to set a
variable

vo_outcome_unmatched_logger_table_definition 13 Indicates that the LoggerNet server's
table definitions are not the same as
the datalogger's table definitions

vo_outcome_invalid_device_name 14 Indicates that the device named by
stationName could not be found in
the network map

vo_outcome_aborted_by_user 15 Indicates that a VariableSetCancel
command successfully prevented the
variable change from occurring

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

DSource_onAdviseRecords()

Name
onAdviseRecords(Object myAdvisor, Object
record_collection)

Description
This event notification returns a block of records delivered by LoggerNet to an
active advisor. The sendRecordBlocks property must be set to TRUE and the
table specified in the advisor must be enabled for collection for this event to
work.

Section 18. CsiDataSource Control Reference

18-11

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

18.2 Advisor Interface
18.2.1 Properties
Advisor.advisorName

Name
Advisor.advisorName As String

Description
A user-defined field used to distinguish between advisors.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Advisor.orderOption

Name
Advisor.orderOption As csidsOrderOptionType

Description
This property specifies the order in which the LoggerNet server will send
records to the advisor. This property must use one of the following values:

Table of Possible csidsOrderOptionType Values

Enumeration Name Value Description

csidsOrderCollected 1 The records will be sent in the same order that the
LoggerNet server collects them. This option can
send the records out of sequence particularly with
Campbell Scientific table-data dataloggers but all
collected records will be sent.

Section 18. CsiDataSource Control Reference

18-12

Enumeration Name Value Description

csidsOrderLoggedWithHoles 2 The records will be sent in the order they were
logged in the datalogger. This order is determined
by the record number (which is assigned by the
datalogger) and the file mark number (which is
assigned by the server) to create a unique key for
each record. If a record has not yet been collected
but the LoggerNet server judges (by datalogger
table size) that the record can still be collected, no
record will be sent until the missing record (hole)
has either been collected or the LoggerNet server
decides that the record can no longer be collected.

csidsOrderLoggedWithoutHoles 3 The records will be sent in the order that they were
logged by the datalogger. This option is similar to
the csidsOrderLoggedWithHoles only uncollected
records (holes) will be skipped.

csidsOrderRealTime 4 The records will be sent in the order they were
logged in the datalogger but if more than one record
is collected at a time, all other records except for the
most recent of the collection will be ignored.

Default Value
The default value for this property is csidsOrderRealTime (4).

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The advisor is started and already accessing the
LoggerNet server data

Advisor.startDate

Name
Advisor.startDate As Date

Description
This property specifies the timestamp for the earliest record to be selected
when the value of the startOption property is csidsStartAtTimeStamp.

Section 18. CsiDataSource Control Reference

18-13

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped.

COM Return Values
Table of Possible Values

Code Meaning
S_OK Success: Normal return
E_CSI_BUSY Error: The advisor is started and already accessing the

LoggerNet server data

Advisor.startFileMarkNo

Name
Advisor.startFileMarkNo As Long

Description
In conjunction with startRecordNo, this property specifies the first record to be
sent when the value of startOption is equal to csidsStartAtRecordId. The file
mark number is an internal tag used by LoggerNet that is applied to each
record. The file mark number is assigned to each record by the LoggerNet
server and used in combination with the record ID to create a unique key for
each record. If the value of this property is specified as 0xffffffff (–1 if
treated as a signed number), the server will start in the current file mark and
ignore any previous file marks.

Valid Values
Any integer from 0 to 2147483647 inclusive is a valid value.

Default Value
The default value for this property is 0.

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Cannot write to property. Advisor is running.
Disconnect first with stop.

Section 18. CsiDataSource Control Reference

18-14

Advisor.startIntervalSeconds

Name
Advisor.startIntervalSeconds As Long

Description
This property specifies the number of seconds back from the newest record in
the table to collect when the value of startOption is set to
csidsStartRelativeToNewest.

Valid Values
A valid value must either be zero or a positive integer.

Default Value
The default value for this property is 0 (meaning select the newest record).

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The advisor is started and already accessing the
LoggerNet server data

Advisor.startOption

Name
Advisor.startOption As csidsStartOptionType

Description
This property specifies how to select the first record when retrieving collected
data from the LoggerNet server data cache.

Valid Values
This property must take on one of the following values:

Table of Possible csidsStartOptionType Values

Enumeration Name Value Description

csidsStartAtRecordId 1 The first record will be the record identified by
startFileMarkNo and startRecordNo. If no such record
exists in the table, the record that is closest and newer
than the specified record will be selected.

Section 18. CsiDataSource Control Reference

18-15

Enumeration Name Value Description

csidsStartAtTimeStamp 2 The first record that has a timestamp equal to the
timestamp specified by the startDate will be selected. If
no such record exists in the table, the record that has the
closest timestamp that is newer than the one specified
will be selected.

csidsStartAtNewest 3 The newest record (determined by the combination of
record number and file mark number) will be selected.

csidsStartAfterNewest 4 The next new record to be logged in the table will be the
first record sent.

csidsStartRelativeToNewest 5 The first record selected will be the one that has a
timestamp closest to the timestamp of the newest record
less the value of startIntervalSeconds.

csidsStartAtRecordOffset 6 The first record selected will be a specified number of
records back from the newest in the data cache.

Default Value
The default value for this property is csidsStartAtNewest (3).

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The advisor is started and already accessing the
LoggerNet server data

Advisor.startRecordNo

Name
Advisor.startRecordNo As Long

Description
This property, in conjunction with the property startFileMarkNo, specifies the
first record to be sent when the value of startOption is equal to
csidsStartAtRecordId. Any value can be assigned to this property.

Default Value
The default value for this property is 0.

Section 18. CsiDataSource Control Reference

18-16

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped. Internally the control and the LoggerNet server
treat this property as an unsigned 32-bit integer. Visual Basic and other
container environments, however, do not have the capability of formatting and
properly manipulating unsigned integers. Developers in these environments
should consider using the startRecordNoString property instead.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Cannot write to property. Advisor has already
started. Stop the advisor first.

Advisor.startRecordNoString
Name

Advisor.startRecordNoString As String

Description
This property, in conjunction with startFileMarkNo, is used to specify the first
record to be sent when the value of startOption is equal to
csidsStartAtRecordId. This string should be formatted as an unsigned integer
with a range of 0 to 4294967295.

Default Value
The default value for this property is 0.

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The advisor is started and already accessing the
LoggerNet server data

Section 18. CsiDataSource Control Reference

18-17

Advisor.state

Name
Advisor.state As advisor_state

Description
This property returns the current state of the advisor. The following table
describes the states that might be returned:

Table of Possible Advisor State Values

Enumeration Name Value Description

advisorStopped 1 The advisor is stopped and its properties can be modified. This
is the default state when an advisor is created.

advisorStarting 2 The control is starting but is not yet in a state to listen for data.
No properties can be set at this point. The control is in a state
where none of its properties can be set.

advisorStarted 3 The advisor is waiting for data from the server and will notify
the client through onAdviseRecord when new data arrives.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Advisor.stationName
Name

Advisor.stationName As String

Description
This property describes the name of the station that will be monitored for data.
Whenever this property is set, the DataColumns in the DataColumnCollection
for this advisor are removed in order to avoid having invalid columns in the
collection for a station and a table.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The advisor is started and already accessing the
LoggerNet server data

Section 18. CsiDataSource Control Reference

18-18

Advisor.tableName

Name
Advisor.tableName As String

Description
This property describes the name of the table in the LoggerNet server being
monitored by the advisor. Whenever this property is set, the DataColumns in
the DataColumnCollection for this advisor are removed in order to avoid
having invalid columns in the collection for a station and a table.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The advisor is started and already accessing the
LoggerNet server data

Advisor.startDateNanoSeconds

Name
Advisor.startDateNanoSeconds As Long

Description
This property specifies the sub-second resolution to associate with the start
date.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The advisor is started and already accessing the
LoggerNet server data

Advisor.maxRecordsPerBlock

Name
Advisor.maxRecordsPerBlock As Long

Description
This property sets the maximum number of records that will be included in a
block of records received from LoggerNet if the sendRecordBlocks property is
set to TRUE. The default value is 100.

Section 18. CsiDataSource Control Reference

18-19

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The advisor is started and already accessing the
LoggerNet server data

18.2.2 Methods
Advisor.columns

Name
Advisor.columns() As Object

Description
This method returns a reference to the DataColumnCollection for this advisor,
which can be used to iterate through the DataColumns.

Visual Basic
Return Value
DataColumnCollection

Example
Dim dcc As DataColumnCollection
dcc = myAdvisor.Columns

Advisor.start()
Name

Advisor.start()

Description
This method starts the advisor to monitor data for a specified station, table, and
column. This is an asynchronous event that calls onAdvisorRecord(). If the
advisor fails, the onAdvisorFailure() event will get called.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ALREADY_CONNECTED Error: This advisor has already been
started

E_FAIL Error: An unexpected error has
occurred

Section 18. CsiDataSource Control Reference

18-20

Advisor.stop()

Name
Advisor.stop()

Description
This method will stop the advisor from monitoring the LoggerNet data cache
for transactions. When an advisor is stopped, its properties can be modified.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Advisor.variableSetCancel()

Name
Advisor.variableSetCancel(Long tran_id)

Description
This method attempts to cancel a variableSetStart() transaction. The event
onVariableSetComplete() will notify you if the cancellation was successful.
This method should only be called when the state of advisorStarted is TRUE.

Parameter
tran_id: The unique transaction ID given by variableSetStart().

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Advisor.variableSetStart()
Name

Advisor.variableSetStart(String column_name, String
value) As Long

Description
This method sets a variable in the specified datalogger. The event
onVariableSetComplete() will be called upon the completion of
variableSetStart(). This method should only be called when the state
dataSourceConnected is TRUE and an advisor has been started. If not, this
method will return E_CSI_NOT_CONNECTED.

Section 18. CsiDataSource Control Reference

18-21

Parameters
columnName: The name of the column that is being changed. If this is an
array value, then use the CRBasic Editor syntax for arrays. Parentheses are
used with element subscripts separated by commas.

myArray(3) or,

myArray(2,4,1)

If the column is not an array value, the brackets for the index are not needed.

value: The value of the variable as a String.

Return Value
The transaction ID associated with this command can be used to cancel a
specific variable set command with variableSetCancel() or to keep track of the
variables displayed in a form that were set successfully.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server
or no current advisor started

18.3 DataColumnCollection Interface
18.3.1 Properties
DataColumnCollection.count

Name
DataColumnCollection.count As Long

Description
This property returns the number of DataColumns in the collection.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 18. CsiDataSource Control Reference

18-22

18.3.2 Methods
DataColumnCollection.add()

Name
DataColumnCollection.add(String column_name)

Description
This method adds a column name to the collection of DataColumns. By adding
a column name to this collection, you tell the advisor to retrieve values in the
record for that column. The column name added must be valid for the station
and table specified in the advisor. If no column names are added to this
collection, data records will only contain file mark numbers, record numbers,
and timestamps.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_FAIL Error: The column name is not a valid column for this station
and table

DataColumnCollection.addAll()

Name
DataColumnCollection.addAll()

Description
This method adds all of the columns for the defined station and table to the
DataColumnCollection. If any previous columns existed in the collection for
this advisor, they will be cleared out before the new DataColumns are added.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

DataColumnCollection.find()

Name
DataColumnCollection.find(String column_name) As
Boolean

Description
This property returns whether the specified column exists in the
DataColumnCollection.

Section 18. CsiDataSource Control Reference

18-23

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

DataColumnCollection.Item()

Name
DataColumnCollection.Item(id) As DataColumn

Description
A DataColumn can be referenced by a numeric type such as an integer or a
long. If the number is less than zero or is greater than the number of brokers
–1, then the COM error E_CSI_ARRAY_OUT_OF_BOUNDS will be returned.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: An incorrect variant type was
passed. Expecting a numerical value

E_CSI_ARRAY_OUT_OF_BOUNDS Error: The numerical index was out of
the bounds of the array. Please specify
a value from zero (0) to Count - 1

E_CSI_FAIL Error: An unexpected error has
occurred

DataColumnCollection.remove()

Name
DataColumnCollection.remove(String columnName)

Description
This method removes the specified column from the DataColumnCollection. If
the column does not exist in the collection, an error will be returned.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: Cannot remove. The column specified
does not exist in the collection

Section 18. CsiDataSource Control Reference

18-24

DataColumnCollection.removeAll()

Name
DataColumnCollection.removeAll()

Description
This method removes all of the DataColumns that are presently a part of the
DataColumnCollection. This method does not return an error if the collection is
already empty.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

DataColumnCollection._NewEnum()

Name
DataColumnCollection._NewEnum()

Description
Returns the next data column in the sequence.

Important
This method is only intended for use with the Visual Basic programming
language. Visual Basic programmers do not need to access this method
directly. They use it indirectly by using the collections with the For Each
loop. This method is included in the documentation to explain why the method
exists, but, again, there is no need to access this method directly.

18.4 DataColumn Interface
18.4.1 Properties
DataColumn.name

Name
DataColumn.name As String

Description
This read-only property gives the name of the DataColumn added to the
DataColumnCollection.

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 18. CsiDataSource Control Reference

18-25

18.5 Record Interface
18.5.1 Properties
Record.fileMarkNo

Name
Record.fileMarkNo As Long

Description
This read-only property returns the file mark number associated with the
current record. The file mark number is assigned to each record by the
LoggerNet server and used in combination with the record ID to create a
unique key for each record. This property can take on any value from 0 to
2147483647.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Record.nanoSeconds
Name

Record.nanoSeconds As Long

Description
This read-only property returns the sub-second resolutions of the timestamp
associated with the current record. This property can take on any value from 0
to 2147483647.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Record.recordNo
Name

Record.recordNo As Long

Description
This read-only property returns the record number associated with the current
record. This property can take on any value from 0 to 2147483647.

Section 18. CsiDataSource Control Reference

18-26

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Record.timeStamp

Name
Record.timeStamp As Date

Description
This read-only property returns the timestamp associated with the current
record.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Record.valuesCount

Name
Record.valuesCount As Long

Description
This read-only property returns the number of values in this record.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

18.5.2 Methods
Record.Item()

Name
Record.Item(id) As Value

Description
This method returns a reference to a value found by the specified ID. A broker
can be referenced by an integer (a Long) or by the name of the broker (a
String). If the number is less than zero or is greater than the number of
brokers, the COM error E_CSI_ARRAY_OUT_OF_BOUNDS will be returned. If the

Section 18. CsiDataSource Control Reference

18-27

broker cannot be found by name, the COM error E_CSI_NOT_FOUND will be
returned.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ARRAY_OUT_OF_BOUNDS Error: Array out of bounds

E_CSI_NOT_FOUND Error: Couldn't find the broker by name
in the broker map

E_CSI_FAIL Error: Wrong variant type passed to this
method or unexpected error

Visual Basic
Return Type
Value

Example
Number value (like an array):
Long iterator
For iterator = 0 to myRecord.Count – 1
 ... = myRecord(iterator).value
Next iterator

Referencing the Broker by name:
DIM valueName as String
valueName = "battTemp"
DIM value as long
value = myRecord("battTemp").value
 OR
value = myRecord(valueName).value

Record._NewEnum()

Name
Record._NewEnum()

Description
Returns the next value in the record.

Important
This method is only intended for use with the Visual Basic programming
language. Visual Basic programmers do not need to access this method
directly. They use it indirectly by using the collections with the For Each
loop. This method is included in the documentation to explain why the method
exists, but, again, there is no need to access this method directly.

Section 18. CsiDataSource Control Reference

18-28

Visual Basic
Example
Dim v As value
For Each v in myRecord
 ... = v.value
Next

18.6 RecordCollection
18.6.1 Properties
RecordCollection.Count

Name
RecordCollection.Count As Long

Description
The number of values in the collection.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal Return

18.6.2 Methods
RecordCollection.Item()

Name
RecordCollection.Item(Value id, Record ppIRecord)

Description
This method is used to iterate through the values by the specified index ID.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ARRAY_OUT_OF_BOUNDS Error: Array out of bounds

E_CSI_FAIL Error: An unexpected error has
occurred

Section 18. CsiDataSource Control Reference

18-29

RecordCollection._NewEnum()

Name
RecordCollection._NewEnum()

Description
Returns the next record.

Important
This method is not accessed directly. It is used indirectly with the use of a For
Each loop.

18.7 Value Interface
18.7.1 Properties
Value.columnName

Name
Value.columnName As String

Description
 This property returns the name of the column.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Value.value
Name

Value.value As Variant

Description
This property returns the actual data value.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 18. CsiDataSource Control Reference

18-30

19-1

Section 19. CsiLogMonitor Control
Reference
19.1 LogMonitor Interface

19.1.1 Properties
LogMonitor.commLogMonitorBusy

Name
LogMonitor.commLogMonitorBusy As Boolean

Description
This Boolean property describes the state of the LogMonitor control’s
monitoring of communication logs on the LoggerNet server. The property
returns TRUE if the communication logs are being actively monitored.
Otherwise, the property returns FALSE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

LogMonitor.commLogRecordsBack
Name

LogMonitor.commLogRecordsBack As Long

Description
The LoggerNet server maintains a communication log history buffer that can
be accessed using this property. When the commLogMonitorStart() method is
called, by default 100 historical log files will be retrieved from the LoggerNet
server. If a different number of historical log entries are desired, set this
property to the exact number of entries to initially retrieve from the LoggerNet
server. This number must be one or greater.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: The number must be one or greater

E_CSI_BUSY Error: Attempting to set this property while
the logs are being actively monitored

Section 19. CsiLogMonitor Control Reference

19-2

LogMonitor.serverConnected

Name
LogMonitor.serverConnected As Boolean

Description
This Boolean property describes the state of the connection between the
LogMonitor control and the LoggerNet server. The property returns TRUE if the
connection exists. Otherwise, the property returns FALSE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

LogMonitor.serverLogonName

Name
LogMonitor.serverLogonName As String

Description
This property specifies the account name that should be used when connecting
to the LoggerNet server. If security is enabled on the target LoggerNet server,
this string must be one of the account names recognized by the LoggerNet
server.

Default Value
The default value for this property is an empty string. This property will only
affect the operation of the control if security is enabled on the LoggerNet
server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

LogMonitor.serverLogonPassword

Name
LogMonitor.serverLogonPassword As String

Description
This property specifies the password that should be used when connecting to
the LoggerNet server. If security is enabled on the target LoggerNet server,

Section 19. CsiLogMonitor Control Reference

19-3

this string must be the password associated with the account named by
LogMonitor.serverLogonName.

Default Value
The default value for this property is an empty string. This property will only
affect the operation of the control if security is enabled on the LoggerNet
server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to the
LoggerNet server is present

LogMonitor.serverName

Name
LogMonitor.serverName As String

Description
This property specifies the TCP/IP interface address for the computer hosting
the LoggerNet server. This string must be formatted either as a qualified
Internet machine domain name or as an Internet address string. An example of
a valid machine domain name address is www.campbellsci.com. An example
of a valid Internet address string is 63.255.173.183.

Default Value
The default value for this property is the string localhost.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverName while connected to the
LoggerNet server

LogMonitor.serverPort

Name
LogMonitor.serverPort As Long

Description
This property specifies the TCP port number that the LoggerNet server is using
on the hosting computer. The valid range for this property is port 1 to port
65535.

http://www.campbellsci.com/

Section 19. CsiLogMonitor Control Reference

19-4

Default Value
The default value for this property is port 6789, which is the default port
number assigned for the LoggerNet server. Therefore, the default value for this
property will connect to a LoggerNet server port in most cases.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: The port value is out of range or invalid

E_CSI_BUSY Error: Attempt to set serverPort while connected
to the LoggerNet server

LogMonitor.tranLogMonitorBusy
Name

LogMonitor.tranLogMonitorBusy As Boolean

Description
This Boolean property describes the state of the LogMonitor control accessing
transaction logs on the LoggerNet server. The property returns TRUE if the
communication logs are being accessed. Otherwise, the property returns
FALSE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

LogMonitor.tranLogRecordsBack

Name
LogMonitor.tranLogRecordsBack As Long

Description
The LoggerNet server maintains a transaction log history buffer that can be
accessed using this property. When the tranLogMonitorStart() method is
called, by default 100 historical log files will be retrieved from the LoggerNet
server. If a different number of historical log entries are desired, set this
property to the exact number of entries to initially retrieve from the LoggerNet
server. This number must be one or greater.

Section 19. CsiLogMonitor Control Reference

19-5

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: The number must be one or greater

E_CSI_BUSY Error: Attempting to set this property while
the logs are being actively monitored

19.1.2 Methods
LogMonitor.commLogMonitorStart()

Name
LogMonitor.commLogMonitorStart()

Description
This method starts monitoring the communication log entries on the LoggerNet
server. This method triggers onCommLogRecord() as log entries are retrieved
or onCommLogFailure() if the method fails.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not Connected to the LoggerNet
server

E_CSI_BUSY Error: Log monitoring is already active

LogMonitor.commLogMonitorStop()

Name
LogMonitor.commLogMonitorStop()

Description
This method will stop active monitoring of the communication logs on the
LoggerNet server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Section 19. CsiLogMonitor Control Reference

19-6

LogMonitor.serverConnect()

Name
LogMonitor.serverConnect()

Description
This method attempts to connect to the LoggerNet server using the values in
the previously set properties: serverName, serverPort, serverLogonName, and
serverLogonPassword. This method triggers onServerConnectStarted() if the
connection is successful, or onServerConnectFailure() if the connection fails.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

LogMonitor.serverDisconnect()
Name

LogMonitor.serverDisconnect()

Description
This method will disconnect from the LoggerNet server and will set the
serverConnected state to FALSE.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

LogMonitor.tranLogMonitorStart()

Name
LogMonitor.tranLogMonitorStart()

Description
This method starts monitoring the transaction log entries on the LoggerNet
server. This method triggers onTranLogRecord() as log entries are retrieved or
onTranLogFailure() if the method fails.

Section 19. CsiLogMonitor Control Reference

19-7

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

LogMonitor.tranLogMonitorStop()

Name
LogMonitor.tranLogMonitorStop()

Description
This method will stop active monitoring of the transaction logs on the
LoggerNet server.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

19.1.3 Events
LogMonitor_onCommLogFailure()

Name
onCommLogFailure(log_monitor_failure_type
failure_code)

Description
This event indicates an error has occurred while trying to retrieve
communication log entries from the LoggerNet server. This failure codes are
in the following table:

Table of Possible Failure Codes

Enumeration Name Value Description

lm_failure_unknown 0 Indicates that an error has occurred
but its nature is unknown

lm_failure_session_failure 1 Indicates that communication with
the LoggerNet server failed resulting
in a failed session

lm_failure_invalid_logon 2 Indicates that this control was unable
to logon to the LoggerNet server
because either the logonName or
logonPassword property is incorrect

Section 19. CsiLogMonitor Control Reference

19-8

Enumeration Name Value Description

lm_failure_server_security_
blocked

3 Indicates that the account specified
by logonName does not have
sufficient privileges to start this
transaction with the LoggerNet
server

lm_failure_unsupported_tran
saction

4 This version of the LoggerNet server
does not support this transaction

lm_invalid_log_id 5 The log ID is not valid.
Note: this ID is only used internally
by the LogMonitor control

lm_failure_server_cancelled 6 The LoggerNet server is shutting
down the connection

LogMonitor_onCommLogRecord()

Name
onCommLogRecord(Date timestamp, String
comm_log_record)

Description
When actively monitoring the communication log, this event is triggered when
a new log record is passed from the LoggerNet server. The communication log
entry is a string that contains the station name, message type, and message.
Possible message types include “S” for status, “W” for warning, and “F” for
failure.

LogMonitor_onServerConnectFailure()

Name
onServerConnectFailure(server_failure_type
failure_code)

Description
This event indicates there was an error with the connection to the LoggerNet
server. This event triggers when an error has occurred that affects the control
as a whole.

Table of Possible Failure Codes

Enumeration Name Value Description

server_failure_unknown 0 Indicates that an error has occurred
but its nature is unknown

server_failure_logon 1 Indicates that this control was unable
to logon to the LoggerNet server
because either the logonName or
logonPassword property is incorrect

Section 19. CsiLogMonitor Control Reference

19-9

Enumeration Name Value Description

server_failure_session 2 Indicates that the communication
session with the LoggerNet server
failed resulting in a failed transaction

server_failure_unsupported 3 The version of the LoggerNet server
does not support this transaction

server_failure_security 4 Indicates that the account specified
by logonName does not have
sufficient privileges to start this
transaction with the LoggerNet
server

server_failure_bad_host_or_
port

5 Indicates that either the serverName
or the serverPort property is incorrect

LogMonitor_onServerConnectStarted()

Name
onServerConnectStarted()

Description
This event triggers when the LogMonitor control has connected to the
LoggerNet server.

LogMonitor_onTranLogFailure()

Name
onTranLogFailure(log_monitor_failure_type
failure_code)

Description
This event indicates an error has occurred while trying to retrieve transaction
log entries from the LoggerNet server. This event triggers when an error has
occurred that affects the method that monitors the transaction logs on the
LoggerNet server.

Table of Possible Failure Codes

Enumeration Name Value Description

lm_failure_unknown 0 Indicates that an error has occurred
but its nature is unknown

lm_failure_session_failure 1 Indicates that communication with
the LoggerNet server failed resulting
in a failed session

Section 19. CsiLogMonitor Control Reference

19-10

Enumeration Name Value Description

lm_failure_invalid_logon 2 Indicates that this control was unable
to logon to the LoggerNet server
because either the logonName or
logonPassword property is incorrect

lm_failure_server_security_
blocked

3 Indicates that the account specified
by logonName does not have
sufficient privileges to start this
transaction with the LoggerNet
server

lm_failure_unsupported_tran
saction

4 This version of the LoggerNet server
does not support this transaction

lm_invalid_log_id 5 The log ID is not valid.
Note: this ID is only used internally
by the LogMonitor control

lm_failure_server_cancelled 6 The LoggerNet server is shutting
down the connection

LogMonitor_onTranLogRecord()

Name
onTranLogRecord(Date timestamp, String
tran_log_record)

Description
When actively monitoring the transaction log, this event is triggered when a
new log record is passed from the LoggerNet server. The transaction log entry
is a string that contains the station name, message number, and message.

A-1

Appendix A. Server and Device
Operational Statistics Tables

The LoggerNet server and devices in the network map maintain statistics that
help to describe their operation. These statistics are made available to the
clients in a collection of tables associated with a special data broker of type
“__Statistics__”. The LoggerNet server guarantees that there is only one data
broker of this type available.

Each device in the network map is represented by two tables in the Statistics
data broker. The names of the tables are the result of appending the strings
“_hist” and “_std” to the device name. The network controller also maintains
statistics regarding the operation of the server in general. The statistics are
available in the “__LgrNet___controller__” table.

A.1 Device History Statistics
The name of a history table for a device is the result of appending the string
“_hist” to the device name. This table consists of three columns and has a row
size of seventy-two. A new record of the table is generated every ten minutes.
This allows the table to describe the operation of the datalogger over the last 24
hours if the LoggerNet server version is 1.3.6.8 or greater. If the LoggerNet
server version is less than 1.3.6.8, only the last 12 hours will be stored. The
counters for this table are set to zero at the beginning of each ten-minute
interval. The columns of the table are as follows:

A.1.1 Attempts
Column Name: “Attempts”
Column Definition Description: “Attempts”
Type: uint4
Description: Records the total number of communication attempts the device
made during the ten-minute interval. This counter is incremented by one for
every entry that appears in the communication status log and is associated with
the device.

A.1.2 Failures
Column Name: “Failures”
Column Definition Description: “Failures”
Type: uint4
Description: Records the total number of communication failures that the
device experienced during the ten-minute interval. This counter is incremented
by one for every “F” record that appears in the communication status log and is
associated with the device.

A.1.3 Retries
Column Name: “Retries”
Column Definition Description: “Retries”
Type: uint4
Description: Records the total number of retries that the device experienced
during the ten-minute interval. This counter is incremented by one for every

Appendix A. Server and Device Operational Statistics Tables

A-2

“W” record that appears in the communication status log and is associated with
the device.

A.2 Device Standard Statistics
The name of the standard statistics table associated with a device is the result
of appending the string “_std” to the device name. The number of columns in
the table is variable depending on the device type although there are statistics
that are common to all device types.

A.2.1 Communication Enabled
Column Name: “Communication Enabled”
Column Definition Description: “Comm Enabled”
Type: Boolean
Applies To: All Device Types
Description: Relays whether communication is enabled for this device.

A.2.2 Average Error Rate
Column Name: “Avg Error Rate”
Column Definition Description: “Avg Err %”
Type: Float
Applies To: All Device Types
Description: A running average of the number of “W” or “F” messages that are
logged in the communication status log for the device versus the total number
of messages logged.

A.2.3 Total Retries
Column Name: “Total Retries”
Column Definition Description: “Total Retries”
Type: uint4
Applies To: All Device Types
Description: A running total of the number of communication retry events that
have been logged since the device was started or the statistic was last reset.

A.2.4 Total Failures
Column Name: “Total Failures”
Column Definition Description: “Total Failures”
Type: uint4
Applies To: All Device Types
Description: A running total of the number of communication failure events
that have been logged since the device was stared or the statistic was last reset.

A.2.5 Total Attempts
Column Name: “Total Attempts”
Column Definition Description: “Total Attempts”
Type: uint4
Applies To: All Device Types
Description: A running total of the number of communication attempts that
have been made for the device since the device was started or the statistic was
last reset.

Appendix A. Server and Device Operational Statistics Tables

A-3

A.2.6 Communication Status
Column Name: “Communication Status”
Column Definition Description: “Comm Status”
Type: Byte Enumeration
Applies To: All Device Types
Description: Describes the current communication state of the device. The
following values are defined:

1. Normal (last communication succeeded).

2. Marginal (last communication required at least one retry).

3. Critical (last communication failed).

4. Unknown (No communication attempt occurred during the interval).

A.2.7 Last Clock Check
Column Name: “Last Clock Check”
Column Definition Description: “Last Clk Chk”
Type: timestamp
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR300
series, CR800, CR1000, CR3000, and RF95T.
Description: Relays the server time when the clock was last checked.

A.2.8 Last Clock Set
Column Name: “Last Clock Set”
Column Definition Description: “Last Clk Set”
Type: timestamp
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR300
series, CR800, CR1000, CR3000, and RF95T.
Description: Relays the server time when the clock was last set.

A.2.9 Last Clock Difference
Column Name: “Last Clock Diff”
Column Definition Description: “Last Clk Diff”
Type: int8
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR300
series, CR800, CR1000, CR3000, and RF95T.
Description: Relays the difference between the server clock and the datalogger
clock at the last time the clock was checked or set.

A.2.10 Collection Enabled
Column Name: “Collection Enabled”
Column Definition Description: “Coll Enabled”
Type: Boolean

Appendix A. Server and Device Operational Statistics Tables

A-4

Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR300
series, CR800, CR1000, and CR3000.
Description: Set to true to indicate that the scheduled collection is enabled for
the datalogger.

A.2.11 Last Data Collection
Column Name: “Last Data Collection”
Column Definition Description: “Last Data Coll”
Type: timestamp
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR300
series, CR800, CR1000, and CR3000.
Description: The server time when the last data collection took place for the
datalogger. This statistic will be updated after a manual poll or scheduled data
collection succeeds or partially succeeds (brings in some data from some areas
but not all data from all selected areas).

A.2.12 Next Data Collection
Column Name: “Next Data Collection”
Column Definition Description: “Next Data Coll”
Type: timestamp
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR300
series, CR800, CR1000, and CR3000.
Description: The server time when the next polling event will take place for the
datalogger with the currently active schedule.

A.2.13 Last Collect Attempt
Column Name: “Last_Collect_Attempt”
Column Definition Description: “Last Coll Attempt”
Type: timestamp
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR300
series, CR800, CR1000, and CR3000.
Description: Describes the last time data collection (manual poll or scheduled
collection) was started for this device.

A.2.14 Collection State
Column Name: “Collection State”
Column Definition Description: “Coll State”
Type: Enumeration
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR300
series, CR800, CR1000, and CR3000.
Description: The current state of scheduled collection for the datalogger. The
following values are defined:

Appendix A. Server and Device Operational Statistics Tables

A-5

1. Normal – The normal collection schedule is active.

2. Primary – The primary retry schedule is active.

3. Secondary – The secondary retry schedule is active.

4. Schedule Off – The collection schedule is disabled.

5. Comm Disabled – Communication for this device, one of its parents,
or for the entire network is disabled.

6. Invalid Table Defs – Collection for this station is disabled until the
table definitions are refreshed.

7. Network Paused – Automated operations are paused for the network.

8. Unreachable – The device cannot be reached through the network.

A.2.15 Values in Last Collection
Column Name: “Vals in Last Collect”
Column Definition Description: “Vals Last Coll”
Type: uint4
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR300
series, CR800, CR1000, and CR3000.
Description: The number of scalar values that have been collected from the
datalogger since the last poll began.

A.2.16 Values to Collect
Column Name: “Values to Collect”
Column Definition Description: “Vals to Coll”
Type: uint4
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR300
series, CR800, CR1000, and CR3000.
Description: The number of scalar values expected in the current or last poll.

A.2.17 Values in Holes
Column Name: “Values in Holes”
Column Definition Description: “Holes”
Type: uint4
Applies To: CR10T, CR10X-TD, CR510T, CR23X-TD, CR1000X series, CR6
series, CR300 series, CR800, CR1000, CR3000, and CRVW.
Description: The number of values in holes that need to be collected from the
datalogger.

A.2.18 Values in Uncollectable Holes
Column Name: “Values in Uncollectable Holes”
Column Definition Description: “Uncoll Holes”
Type: uint4

Appendix A. Server and Device Operational Statistics Tables

A-6

Applies To: CR10T, CR0X-TD, CR510-TD, CR23X-TD, CR1000X series,
CR6 series, CR300 series, CR800, CR1000, CR3000, and CRVW.
Description: The total number of values that have been in uncollectable holes
since the device was started or the statistic was reset.

A.2.19 Line State
Column Name: “Line State”
Column Definition Description: “Line State”
Type: Enumeration
Applies To: All Devices
Description: The current line state for this device. The following values are
defined:

1. Not Applicable – In its current configuration, this device will not
communicate directly with the server. This value will appear in
association with BMP1 dataloggers connected to the server through an
RF95T.

2. Off-Line – The server has no communication resources open for this
device.

3. On-Line – The server has communication resources open for this
device.

4. Transparent – This device has been dialed to reach a child device.

5. Undialing – The child devices have gone off-line and this device is
cleaning up the link so that it can go to an off-line state.

6. Comm-Disabled – Communications are disabled for either this device,
its parent, or for the whole network.

7. Unreachable – This device cannot be reached through the network.

8. Pending – The device has requested the link from its parent but that
request is still pending.

9. Targeted – The device has requested the link from its parent and its
parents are being dialed to open the link.

10. Waiting – The device is a TCP comm port waiting for an incoming
connection for call-back.

A.2.20 Polling Active
Column Name: “Polling_Active”
Column Definition Description: “Polling Active”
Type: Boolean
Applies To: All datalogger devices
Description: Reflects whether there is presently a polling operation that is
active for the device. A value of true indicates that some sort of polling is
taking place.

Appendix A. Server and Device Operational Statistics Tables

A-7

A.2.21 FS1 to Collect
Column Name: “FS1_Values_to_Collect”
Column Definition Description: “FS1 to Collect”
Type: uint4
Applies To: 21X, CR7, CR10, CR10X, CR500, CR510, CR23X
Description: Reflects the total number of final storage values that need to be
collected from final storage area one of a mixed-array datalogger if collect is
active for that area. If collection is not active for that area, this statistic reflects
the last count that should have been collected.

A.2.22 FS1 Collected
Column Name: “FS1_Values_Collected”
Column Definition Description: “FS1 Collected”
Type: uint4
Applies To: 21X, CR7, CR10, CR10X, CR500, CR510, CR23X
Description: Reflects the total number of final storage values that have been
collected from a mixed-array datalogger’s final storage area one.

A.2.23 FS2 to Collect
Column Name: “FS2_Values_to_Collect”
Column Definition Description: “FS2 to Collect”
Type: uint4
Applies To: CR10, CR10X, CR510, CR23X
Description: Reflects the total number of final storage values that need to be
collected from final storage area two of a mixed-array datalogger if collect is
active for that area. If collection is not active for that area, this statistic reflects
the last count that should have been collected.

A.2.24 FS2 Collected
Column Name: “FS2_Values_Collected”
Column Definition Description: “FS2 Collected”
Type: uint4
Applies To: CR10, CR10X, CR510, CR23X
Description: Reflects the total number of final storage values that have been
collected from a mixed-array datalogger’s final storage area two.

A.2.25 Logger Ver
Column Name: “Logger_Interface_Version”
Column Definition Description: “Logger Ver”
Type: uint4
Applies To: 21X, CR7, CR10, CR10X, CR500, CR510, CR23X
Description: Relays the datalogger interface version as given in the
datalogger’s response to the “A” command.

A.2.26 Watchdog Err
Column Name: “Watchdog_Timer_Reset Count”
Column Definition Description: “Watchdog Err”
Type: uint4
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10X-PB,
CR510-PB, CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series,

Appendix A. Server and Device Operational Statistics Tables

A-8

CR300 series, CR800, CR1000, and CR3000.
Description: Relays the datalogger watchdog error count as given in the mixed-
array datalogger’s response to the “A” command.

A.2.27 Prog Overrun
Column Name: “Program_Table_Overruns_Count”
Column Definition Description: “Prog Overrun”
Type: uint4
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10X-PB,
CR510-PB, CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series,
CR800, CR1000, CR3000, CR300 series, CR9000, CR5000
Description: Relays the number of datalogger program overruns that have
occurred since the last reset as given in the mixed-array datalogger’s response
to the “A” command.

A.2.28 Mem Code
Column Name: “Memory_Size_Code”
Column Definition Description: “Mem Code”
Type: uint4
Applies To: 21X, CR7, CR10, CR10X, CR500, CR510, CR23X
Description: Relays the memory size code as given by the mixed-array
datalogger’s response to the “A” command.

A.2.29 Collect Retries
Column Name: “Collect_Retries”
Column Definition Description: “Coll Retries”
Type: uint4
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR300
series, CR800, CR1000, and CR3000.
Description: Reports the number of collection retries that the datalogger device
has had since the first collection error occurred. This statistic is reset to zero
when the logger returns to a normal collection state.

A.2.30 Low Voltage Stopped Count
Column Name: “Low_Volt_Stopped”
Column Definition Description: “Low Volt Stopped”
Type: uint4
Applies To: CR10X, CR500, CR510, CR23X, CR1000X series, CR1000,
CR800, CR3000, CR6 series, and CRVW.
Description: Reports the number of times that a mixed-array datalogger has
shut itself down because its supply voltage has been too low. This information
is read from the “A” command.

A.2.31 Low Five Volts Error Count
Column Name: “Low_5v”
Column Definition Description: “Low 5v”
Type: uint4
Applies To: CR23X, CR1000X series, CR1000, CR800, CR3000

Appendix A. Server and Device Operational Statistics Tables

A-9

Description: Reports the number of times the datalogger’s +5 volt supply has
been reported below five volts.

A.2.32 Lithium Battery Voltage
Column Name: “Lith_Batt_Volt”
Column Definition Description: “Lith Batt Volt”
Type: Float
Applies To: CR10X, CR500, CR510, CR23X, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR800,
CR1000, CR3000, CRS451, CRVW, CR9000, CR5000.
Description: Reports the lithium battery voltage on mixed-array dataloggers.
This value is extracted from the results of the “A” command.

The CR300 series has a unique field “LithiumBattery” of type String. If the
internal battery supplied sufficient power to maintain the clock while external
power was absent, the field will display “OK, ON POWER UP.” If the internal
battery is missing or failed to supply enough power while external power was
absent, the field will display “FAIL, ON POWER UP.” The LithiumBattery
field is only updated on power up, that is, when external power is first applied.

A.2.33 Table Definitions State
Column Name: “TableDefsState”
Column Definition Description: “Table Defs State”
Type: Enumeration
Applies To: CR10T, CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000,
CR10X-PB, CR510-PB, CR23XPB, CR205, CR210, CR215, CR1000X series,
CR6 series, CR300 series, CR800, CR1000, and CR3000.
Description: Relays the current state of cached table definitions for a table-
based datalogger. The following values are defined:

1. None – No table definitions have been received from the datalogger.

2. Current – The LoggerNet server’s table definitions are believed to be
current for the datalogger.

3. Suspect – A collection attempt has returned an invalid table
definitions code. The LoggerNet server needs to verify the table
definitions for the datalogger.

4. Getting – Indicates that the LoggerNet server is currently trying to get
the table definitions from the datalogger.

5. Invalid – The table definitions are known to be invalid and the need to
be refreshed before collection can continue.

A.2.34 Link Time Remaining
Column Name: “Link Time Remaining”
Column Definition Description: “Link Time Remaining”
Type: uint4
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510T, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-PB,
CR23X-PB, CR205, CR210, CR215, CR1000X series, CR6 series, CR300
series, CR800, CR1000, CR3000.

Appendix A. Server and Device Operational Statistics Tables

A-10

Description: Relates the number of milli-seconds remaining for the device to
remain on-line based upon its value of maxTimeOnLine for that device as well
as for its parent device. If there is no limitation, the value will be the largest
possible integer (0xFFFFFFFF). This statistic will be re-calculated every 10
seconds.

A.2.35 RFTD Blacklisted
Column Name: “RFTD Blacklisted”
Column Definition Description: “RFTD Blacklisted”
Type: bool
Applies To: CR10X-TD, CR510-TD, CR23X-TD, RF95-PB
Description: Specifies a value of true if the station is on an RF-TD network and
the server believes that the station has been blacklisted by the RF base. A
station will be placed on the base's blacklist if it fails to respond to a
communication attempt from the server. The base will remove the station from
that list when it has responded to a time-division polling attempt by the base.

A.3 Server Statistics
The statistics relating to the host machine for the LoggerNet server or to the
operation of the LoggerNet sever as a whole can be found in the table name
“__LgrNet____controller__”. These statistics are updated every ten seconds.
There is only one row defined for the table. The statistics available in this table
are as follows:

A.3.1 Disc Space Available
Column Name: “DiscSpaceAvail”
Column Definition Description: “Disc Space Avail”
Type: int8
Description: Relays how many bytes are free on the volume where the server’s
working directory resides.

A.3.2 Available Virtual Memory
Column Name: “AvailVirtMem”
Column Definition Description: “Avail Virt Mem”
Type: uint4
Description: Relays the amount of virtual memory that is available to the server
process.

A.3.3 Used Virtual Memory
Column Name: “UsedVirtMem”
Column Definition Description: “Used Virt Mem”
Type: uint4
Description: Relays the amount of virtual memory that is being used by the
server process. This value is derived from the AvailVirtMem by subtracting
the value of that statistic from the maximum win32 memory size.

A.3.4 Restart Count
Column Name: “RestartCount”
Column Definition Description: “Restart Count”
Type: uint4

Appendix A. Server and Device Operational Statistics Tables

A-11

Description: Relates the number of times that the server has restarted
automatically after aborting due to an unexpected exception. This is the
equivalent of the datalogger watchdog count.

A.3.5 Up Time
Column Name: “UpTime”
Column Definition Description: “Up Time”
Type: int8
Description: Relates the number of milliseconds that the server has been
operational.

A.3.6 Last Backup Time
Column Name: “lastBackupTime”
Column Definition Description: “lastBackupTime”
Type: timestamp
Description: Specifies the last time that a backup (automated or otherwise)
took place.

A.3.7 Next Auto Backup
Column Name: “nextAutoBackup”
Column Definition Description: “nextAutoBackup”
Type: timestamp
Description: Specifies the next time that an automated backup will take place.
If automated backups are not enabled, this statistic will have a value of 1
January 1990.

Appendix A. Server and Device Operational Statistics Tables

A-12

Campbell Scientific Companies

Campbell Scientific, Inc.
815 West 1800 North
Logan, Utah 84321
UNITED STATES

www.campbellsci.com • info@campbellsci.com

Campbell Scientific Africa Pty. Ltd.
PO Box 2450

Somerset West 7129
SOUTH AFRICA

www.campbellsci.co.za • cleroux@csafrica.co.za

Campbell Scientific Southeast Asia Co., Ltd.
877/22 Nirvana@Work, Rama 9 Road

Suan Luang Subdistrict, Suan Luang District
Bangkok 10250

THAILAND
www.campbellsci.asia • info@campbellsci.asia

Campbell Scientific Australia Pty. Ltd.
PO Box 8108

Garbutt Post Shop QLD 4814
AUSTRALIA

www.campbellsci.com.au • info@campbellsci.com.au

Campbell Scientific (Beijing) Co., Ltd.
8B16, Floor 8 Tower B, Hanwei Plaza

7 Guanghua Road
Chaoyang, Beijing 100004

P.R. CHINA
www.campbellsci.com • info@campbellsci.com.cn

Campbell Scientific do Brasil Ltda.
Rua Apinagés, nbr. 2018 ─ Perdizes
CEP: 01258-00 ─ São Paulo ─ SP

BRASIL
www.campbellsci.com.br • vendas@campbellsci.com.br

Campbell Scientific Canada Corp.
14532 – 131 Avenue NW
Edmonton AB T5L 4X4

CANADA
www.campbellsci.ca • dataloggers@campbellsci.ca

Campbell Scientific Centro Caribe S.A.
300 N Cementerio, Edificio Breller

Santo Domingo, Heredia 40305
COSTA RICA

www.campbellsci.cc • info@campbellsci.cc

Campbell Scientific Ltd.
Campbell Park

80 Hathern Road
Shepshed, Loughborough LE12 9GX

UNITED KINGDOM
www.campbellsci.co.uk • sales@campbellsci.co.uk

Campbell Scientific Ltd.
3 Avenue de la Division Leclerc

92160 ANTONY
FRANCE

www.campbellsci.fr • info@campbellsci.fr

Campbell Scientific Ltd.
Fahrenheitstraße 13

28359 Bremen
GERMANY

www.campbellsci.de • info@campbellsci.de

Campbell Scientific Spain, S. L.
Avda. Pompeu Fabra 7-9, local 1

08024 Barcelona
SPAIN

www.campbellsci.es • info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or international representative.

http://www.campbellsci.com/
http://www.campbellsci.co.za/
http://www.campbellsci.asia/
http://www.campbellsci.com.au/
http://www.campbellsci.com/
http://www.campbellsci.com.br/
http://www.campbellsci.ca/
http://www.campbellsci.cc/
http://www.campbellsci.co.uk/
http://www.campbellsci.fr/
http://www.campbellsci.de/
http://www.campbellsci.es/
https://www.campbellsci.com/

	Revision and Copyright Information
	EULA
	Limited Guarantee
	PLEASE READ FIRST
	Table of Contents
	Section 1. LoggerNet SDK and LNServer SDK Overview
	1.1 Purpose of the SDK
	1.2 Requirements
	1.2.1 Required Campbell Scientific, Inc. Software
	1.2.2 Development Tools

	1.3 Included Components
	1.3.1 Files Included in the SDK
	1.3.1.1 ActiveX® Controls (DLLs)
	1.3.1.2 LoggerNet Server DLL
	1.3.1.2.1 Coralib3d.dll
	1.3.1.2.2 Coralib3.dll

	1.3.1.3 Manuals
	1.3.1.4 Example Projects

	1.4 Developing .NET Applications Using the SDK
	1.4.1 Adding an SDK Control to a .NET Project
	1.4.2 Creating the Runtime Callable Wrapper

	Section 2. CsiServer and CsiServerDirect Controls
	2.1 Purpose of the CsiServer and CsiServerDirect Controls
	2.2 CsiServer and CsiServerDirect Interface
	2.2.1 Properties
	2.2.2 Methods
	2.2.3 Events

	Section 3. Developing an Application Using the CsiServer Control
	3.1 Purpose
	3.2 Using the CsiServer Control
	3.2.1 Getting Started with the CsiServer Control
	3.2.2 CsiServer Control Application Example

	Section 4. CsiCoraScript Control
	4.1 Purpose of the CsiCoraScript Control
	4.2 Connecting to the Server
	4.3 Using CoraScript Commands
	4.3.1 Setting up a Network
	4.3.2 Real-Time Data Display
	4.3.2.1 Table-Data Dataloggers
	4.3.2.2 Mixed-Array Dataloggers

	4.4 CsiCoraScript Interface
	4.4.1 Properties
	4.4.2 Methods
	4.4.3 Events

	Section 5. Developing an Application Using the CsiCoraScript Control
	5.1 Purpose
	5.2 Using the CsiCoraScript Control
	5.2.1 Getting Started with the CsiCoraScript Control
	5.2.2 CsiCoraScript Control Application Example

	Section 6. CsiBrokerMap Control
	6.1 Purpose of the CsiBrokerMap Control
	6.2 Connecting to the LoggerNet Server
	6.3 How Collections Work
	6.3.1 Visual Basic View of Collections
	6.3.1.1 Accessing Collections with For Each
	6.3.1.2 Accessing Collections with Indexes and Names

	6.3.2 Visual C++ View of Collections

	6.4 CsiBrokerMap Interfaces
	6.4.1 BrokerMap Interface
	6.4.1.1 Properties
	6.4.1.2 Methods
	6.4.1.3 Events

	6.4.2 BrokerCollection Interface
	6.4.2.1 Properties
	6.4.2.2 Methods

	6.4.3 Broker Interface
	6.4.3.1 Properties
	6.4.3.2 Methods

	6.4.4 TableCollection Interface
	6.4.4.1 Properties
	6.4.4.2 Methods

	6.4.5 Table Interface
	6.4.5.1 Properties
	6.4.5.2 Methods

	6.4.6 ColumnCollection Interface
	6.4.6.1 Properties
	6.4.6.2 Methods

	6.4.7 Column Interface
	6.4.7.1 Properties

	Section 7. Developing an Application Using the CsiBrokerMap Control
	7.1 Purpose
	7.2 Using the CsiBrokerMap Control
	7.2.1 Getting Started with the CsiBrokerMap Control
	7.2.2 CsiBrokerMap Control Application Example

	Section 8. CsiDatalogger
	8.1 Purpose of the CsiDatalogger Control
	8.2 Connecting to the Server
	8.3 Datalogger Interface
	8.3.1 Properties
	8.3.2 Methods
	8.3.3 Events

	Section 9. Developing an Application Using the CsiDatalogger Control
	9.1 Purpose
	9.2 Using the CsiDatalogger Control
	9.2.1 Getting Started with the CsiDatalogger Control
	9.2.2 CsiDatalogger Control Application Example

	Section 10. CsiDataSource Control
	10.1 Purpose of the CsiDataSource Control
	10.2 Connecting to the Server
	10.3 CsiDataSource Interfaces
	10.3.1 DSource Interface
	10.3.1.1 Properties
	10.3.1.2 Methods
	10.3.1.3 Events

	10.3.2 Advisor Interface
	10.3.2.1 Properties
	10.3.2.2 Methods

	10.3.3 DataColumnCollection Interface
	10.3.3.1 Properties
	10.3.3.2 Methods

	10.3.4 DataColumn Interface
	10.3.4.1 Properties

	10.3.5 Record
	10.3.5.1 Properties
	10.3.5.2 Methods

	10.3.6 RecordCollection
	10.3.6.1 Properties
	10.3.6.2 Methods

	10.3.7 Value Interface
	10.3.7.1 Properties

	Section 11. Developing an Application Using the CsiDataSource Control
	11.1 Purpose
	11.2 Using the CsiDataSource Control
	11.2.1 Getting Started with the CsiDataSource Control
	11.2.2 CsiDataSource Control Application Example

	Section 12. CsiLogMonitor Control
	12.1 Purpose of the CsiLogMonitor Control
	12.2 CsiLogMonitor Interface
	12.2.1 Properties
	12.2.2 Methods
	12.2.3 Events

	Section 13. Developing an Application Using the CsiLogMonitor Control
	13.1 Purpose
	13.2 Using the CsiLogMonitor Control
	13.2.1 Getting Started with the CsiLogMonitor Control
	13.2.2 CsiLogMonitor Control Application Example

	Section 14. CsiServer and CsiServerDirect Control Reference
	14.1 CsiServer and CsiServerDirect Interface
	14.1.1 Properties
	14.1.2 Methods
	14.1.3 Events

	Section 15. CsiCoraScript Control Reference
	15.1 CoraScript Interface
	15.1.1 Properties
	15.1.2 Methods
	15.1.3 Events

	Section 16. CsiBrokerMap Control Reference
	16.1 BrokerMap Interface
	16.1.1 Properties
	16.1.2 Methods
	16.1.3 Events

	16.2 BrokerCollection Interface
	16.2.1 Properties
	16.2.2 Methods

	16.3 Broker Interface
	16.3.1 Properties
	16.3.2 Methods

	16.4 TableCollection Interface
	16.4.1 Properties
	16.4.2 Methods

	16.5 Table Interface
	16.5.1 Properties
	16.5.2 Methods

	16.6 ColumnCollection Interface
	16.6.1 Properties
	16.6.2 Methods

	16.7 Column Interface
	16.7.1 Properties

	Section 17. CsiDatalogger Control Reference
	17.1 CsiDatalogger Interface
	17.1.1 Properties
	17.1.2 Methods
	17.1.3 Events

	Section 18. CsiDataSource Control Reference
	18.1 DSource Interface
	18.1.1 Properties
	18.1.2 Methods
	18.1.3 Events

	18.2 Advisor Interface
	18.2.1 Properties
	18.2.2 Methods

	18.3 DataColumnCollection Interface
	18.3.1 Properties
	18.3.2 Methods

	18.4 DataColumn Interface
	18.4.1 Properties

	18.5 Record Interface
	18.5.1 Properties
	18.5.2 Methods

	18.6 RecordCollection
	18.6.1 Properties
	18.6.2 Methods

	18.7 Value Interface
	18.7.1 Properties

	Section 19. CsiLogMonitor Control Reference
	19.1 LogMonitor Interface
	19.1.1 Properties
	19.1.2 Methods
	19.1.3 Events

	Appendix A. Server and Device Operational Statistics Tables
	A.1 Device History Statistics
	A.1.1 Attempts
	A.1.2 Failures
	A.1.3 Retries

	A.2 Device Standard Statistics
	A.2.1 Communication Enabled
	A.2.2 Average Error Rate
	A.2.3 Total Retries
	A.2.4 Total Failures
	A.2.5 Total Attempts
	A.2.6 Communication Status
	A.2.7 Last Clock Check
	A.2.8 Last Clock Set
	A.2.9 Last Clock Difference
	A.2.10 Collection Enabled
	A.2.11 Last Data Collection
	A.2.12 Next Data Collection
	A.2.13 Last Collect Attempt
	A.2.14 Collection State
	A.2.15 Values in Last Collection
	A.2.16 Values to Collect
	A.2.17 Values in Holes
	A.2.18 Values in Uncollectable Holes
	A.2.19 Line State
	A.2.20 Polling Active
	A.2.21 FS1 to Collect
	A.2.22 FS1 Collected
	A.2.23 FS2 to Collect
	A.2.24 FS2 Collected
	A.2.25 Logger Ver
	A.2.26 Watchdog Err
	A.2.27 Prog Overrun
	A.2.28 Mem Code
	A.2.29 Collect Retries
	A.2.30 Low Voltage Stopped Count
	A.2.31 Low Five Volts Error Count
	A.2.32 Lithium Battery Voltage
	A.2.33 Table Definitions State
	A.2.34 Link Time Remaining
	A.2.35 RFTD Blacklisted

	A.3 Server Statistics
	A.3.1 Disc Space Available
	A.3.2 Available Virtual Memory
	A.3.3 Used Virtual Memory
	A.3.4 Restart Count
	A.3.5 Up Time
	A.3.6 Last Backup Time
	A.3.7 Next Auto Backup

	Campbell Scientific Companies

