Product Manual

Revision: 11/18

Copyright © 2008 – 2018 Campbell Scientific

This equipment is guaranteed against defects in materials and workmanship. We will repair or replace products which prove to be defective during the guarantee period as detailed on your invoice, provided they are returned to us prepaid. The guarantee will not apply to:

- Equipment which has been modified or altered in any way without the written permission of Campbell Scientific
- Batteries
- Any product which has been subjected to misuse, neglect, acts of God or damage in transit.

Campbell Scientific will return guaranteed equipment by surface carrier prepaid. Campbell Scientific will not reimburse the claimant for costs incurred in removing and/or reinstalling equipment. This guarantee and the Company's obligation thereunder is in lieu of all other guarantees, expressed or implied, including those of suitability and fitness for a particular purpose. Campbell Scientific is not liable for consequential damage.

Please inform us before returning equipment and obtain a Repair Reference Number whether the repair is under guarantee or not. Please state the faults as clearly as possible, and if the product is out of the guarantee period it should be accompanied by a purchase order. Quotations for repairs can be given on request. It is the policy of Campbell Scientific to protect the health of its employees and provide a safe working environment, in support of this policy a "Declaration of Hazardous Material and Decontamination" form will be issued for completion.

When returning equipment, the Repair Reference Number must be clearly marked on the outside of the package. Complete the "Declaration of Hazardous Material and Decontamination" form and ensure a completed copy is returned with your goods. Please note your Repair may not be processed if you do not include a copy of this form and Campbell Scientific Ltd reserves the right to return goods at the customers' expense.

Note that goods sent air freight are subject to Customs clearance fees which Campbell Scientific will charge to customers. In many cases, these charges are greater than the cost of the repair.

Campbell Scientific Ltd, 80 Hathern Road, Shepshed, Loughborough, LE12 9GX, UK Tel: +44 (0) 1509 601141 Fax: +44 (0) 1509 270924

Email: support@campbellsci.co.uk www.campbellsci.co.uk

About this manual

Please note that this manual was originally produced by Campbell Scientific Inc. primarily for the North American market. Some spellings, weights and measures may reflect this origin.

Some useful conversion factors:

Area: 1	in^2 (square inch) = 645 mm ²	Mass:	1 oz. (ounce) = 28.35 g 1 lb (pound weight) = 0.454 kg
Length:	1 in. (inch) = 25.4 mm 1 ft (foot) = 304.8 mm 1 yard = 0.914 m	Pressure:	1 psi (lb/in ²) = 68.95 mb
	1 mile = 1.609 km	Volume:	1 UK pint = 568.3 ml 1 UK gallon = 4.546 litres 1 US gallon = 3.785 litres

In addition, while most of the information in the manual is correct for all countries, certain information is specific to the North American market and so may not be applicable to European users.

Differences include the U.S standard external power supply details where some information (for example the AC transformer input voltage) will not be applicable for British/European use. *Please note, however, that when a power supply adapter is ordered it will be suitable for use in your country.*

Reference to some radio transmitters, digital cell phones and aerials may also not be applicable according to your locality.

Some brackets, shields and enclosure options, including wiring, are not sold as standard items in the European market; in some cases alternatives are offered. Details of the alternatives will be covered in separate manuals.

Part numbers prefixed with a "#" symbol are special order parts for use with non-EU variants or for special installations. Please quote the full part number with the # when ordering.

Recycling information

At the end of this product's life it should not be put in commercial or domestic refuse but sent for recycling. Any batteries contained within the product or used during the products life should be removed from the product and also be sent to an appropriate recycling facility.

Campbell Scientific Ltd can advise on the recycling of the equipment and in some cases arrange collection and the correct disposal of it, although charges may apply for some items or territories.

For further advice or support, please contact Campbell Scientific Ltd, or your local agent.

Campbell Scientific Ltd, 80 Hathern Road, Shepshed, Loughborough, LE12 9GX, UK Tel: +44 (0) 1509 601141 Fax: +44 (0) 1509 270924 Email: support@campbellsci.co.uk www.campbellsci.co.uk

Safety

DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING, USING, MAINTAINING, AND WORKING ON OR AROUND **TRIPODS, TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC**. FAILURE TO PROPERLY AND COMPLETELY ASSEMBLE, INSTALL, OPERATE, USE, AND MAINTAIN TRIPODS, TOWERS, AND ATTACHMENTS, AND FAILURE TO HEED WARNINGS, INCREASES THE RISK OF DEATH, ACCIDENT, SERIOUS INJURY, PROPERTY DAMAGE, AND PRODUCT FAILURE. TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE HAZARDS. CHECK WITH YOUR ORGANIZATION'S SAFETY COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED PROTECTIVE EQUIPMENT PRIOR TO PERFORMING ANY WORK.

Use tripods, towers, and attachments to tripods and towers only for purposes for which they are designed. Do not exceed design limits. Be familiar and comply with all instructions provided in product manuals. Manuals are available at www.campbellsci.eu or by telephoning +44(0) 1509 828 888 (UK). You are responsible for conformance with governing codes and regulations, including safety regulations, and the integrity and location of structures or land to which towers, tripods, and any attachments are attached. Installation sites should be evaluated and approved by a qualified engineer. If questions or concerns arise regarding installation, use, or maintenance of tripods, towers, attachments, or electrical connections, consult with a licensed and qualified engineer or electrician.

General

- Prior to performing site or installation work, obtain required approvals and permits. Comply with all governing structure-height regulations, such as those of the FAA in the USA.
- Use only qualified personnel for installation, use, and maintenance of tripods and towers, and any attachments to tripods and towers. The use of licensed and qualified contractors is highly recommended.
- Read all applicable instructions carefully and understand procedures thoroughly before beginning work.
- Wear a hardhat and eye protection, and take other appropriate safety precautions while working on or around tripods and towers.
- **Do not climb** tripods or towers at any time, and prohibit climbing by other persons. Take reasonable precautions to secure tripod and tower sites from trespassers.
- Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical

- You can be killed or sustain serious bodily injury if the tripod, tower, or attachments you are installing, constructing, using, or maintaining, or a tool, stake, or anchor, come in contact with overhead or underground utility lines.
- Maintain a distance of at least one-and-one-half times structure height, or 20 feet, or the distance required by applicable law, whichever is greater, between overhead utility lines and the structure (tripod, tower, attachments, or tools).
- Prior to performing site or installation work, inform all utility companies and have all underground utilities marked.
- Comply with all electrical codes. Electrical equipment and related grounding devices should be installed by a licensed and qualified electrician.

Elevated Work and Weather

- Exercise extreme caution when performing elevated work.
- Use appropriate equipment and safety practices.
- During installation and maintenance, keep tower and tripod sites clear of un-trained or non-essential personnel. Take precautions to prevent elevated tools and objects from dropping.
- Do not perform any work in inclement weather, including wind, rain, snow, lightning, etc.

Maintenance

- Periodically (at least yearly) check for wear and damage, including corrosion, stress cracks, frayed cables, loose cable clamps, cable tightness, etc. and take necessary corrective actions.
- Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS, THE CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING FROM IMPROPER INSTALLATION, USE, OR MAINTENANCE OF TRIPODS, TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.

Table of Contents

PDF viewers: These page numbers refer to the printed version of this document. Use the PDF reader bookmarks tab for links to specific sections.

1. Introduction1
2. Precautions 1
3. Initial Inspection1
4. QuickStart1
5. Overview
5.1Measurement35.2Leaf Mimicry4
6. Specifications4
7. Installation5
7.1Field Installation
8. Maintenance8
9. Acknowledgement8
Appendices
A. Importing Short Cut Code Into CRBasic Editor A-1
B. Example Programs B-1
B.1Example CR1000X ProgramB-1B.2Example CR6 ProgramB-2
Figures
 7-1. LWS Dielectric Leaf Wetness Sensor

Tables

B-1.	CR1000X Example Program Wiring	B-1
В-2.	CR6 Example Program Wiring	B-2

CRBasic Examples

B-1. CR1000X Program for Measuring the LWS	B	-1	l
--	---	----	---

B-2. CR6 Program for Measuring the LWS.....B-2

LWS Dielectric Leaf Wetness Sensor

1. Introduction

Direct measurement of leaf wetness is problematic. Secure long-term attachment of a sensor to a representative living leaf is difficult. Leaf position, sun exposure, and health are in constant flux. To avoid these problems, leaf wetness sensors have been developed to estimate by inference the wetness of nearby leaves. The LWS estimates leaf surface wetness by measuring the dielectric constant of the sensor upper surface. The LWS is able to detect the presence of miniscule amounts of water or ice. Individual sensor calibration is not normally necessary.

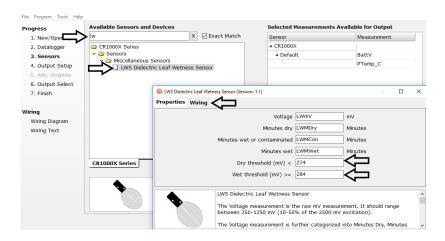
NOTE This manual provides information only for CRBasic data loggers. For retired Edlog data logger support, see an older manual at *www.campbellsci.com/old-manuals*.

2. Precautions

- READ AND UNDERSTAND the *Safety* section at the front of this manual.
- Care should be taken when opening the shipping package to not damage or cut the cable jacket. If damage to the cable is suspected, contact Campbell Scientific.
- Although the LWS is rugged, it should be handled as a precision scientific instrument.
- Over time, the accumulation of dust and bird droppings can cause the dry output to rise. We recommend that the sensor be periodically cleaned using a moist cloth, or when you detect elevated dry output.
- The LWS is intended only for applications wherein the data logger provides short excitation, leaving the sensor quiescent most of the time. Continuous excitation may cause the sensor to exceed government specified limits on electromagnetic emissions.

3. Initial Inspection

- Upon receipt of the LWS, inspect the packaging and contents for damage. File damage claims with the shipping company.
- The model number and cable length are printed on a label at the connection end of the cable. Check this information against the shipping documents to ensure the correct product and cable length are received.


4. QuickStart

A video that describes data logger programming using *Short Cut* is available at: *www.campbellsci.eu/videos/cr1000x-datalogger-getting-started-program-part-3*. *Short Cut* is an easy way to program your data logger to measure the LWS and assign data logger wiring terminals. *Short Cut* is available as a

download on *www.campbellsci.eu*. It is included in installations of *LoggerNet*, *PC200W*, *PC400*, or *RTDAQ*.

The following procedure also describes programming with Short Cut.

- 1. Open Short Cut and click Create New Program.
- 2. Double-click the data logger model.
- In the Available Sensors and Devices box, type LWS. You can also locate the sensor in Sensors | Miscellaneous Sensors folder. Double-click LWS Dielectric Leaf Wetness Sensor. Enter the Dry threshold (mV) < and Wet threshold (mV) >= values (see Section 7.3.3, *Interpreting Data (p. 7)*, for information about determining the dry threshold and wet threshold values).

4. Click on the **Wiring** tab to see how the sensor is to be wired to the data logger. Click **OK** after wiring the sensor.

i LWS Dielectric Leaf Wetne	ess Sensor (Version: 1.2)				×
Properties Wiring					
1	LWS	CR1000X Series			
	Orange or Red	_1H			
	Bare	_ᆜ_ (Ground)			
	Brown or White	_VX1			
	Click a CR1000X Series terminal name LWS Dielectric Leaf Wetness Senso The Voltage measurement is the ra 250-1250 mV (10-50% of the 2500	r w mV measurement. It should r	ange be	tween	^
	The Voltage measurement is furthe Contaminated, and Minutes Wet as If mV < 274 Then Minutes Dry = Scan Interval in se Else	r categorized into Minutes Dry, follows:	Minutes	Wet or	~
	1	ОК С	ancel	Hel	p

5. Repeat steps three and four for other sensors. Click Next.

6. In **Output Setup**, type the scan rate, meaningful table names, and the **Data Output Storage Interval**.

Short Cut (CR1000X Series) Eile Program Tools Help	CACampbellscriSCWiniuntitled.scw –	×
Progress 1. New/Open 2. Datalogger	How often should the CR1000X Series measure its sensor(s)?	Ø
3. Sensors 4. Output Setup 5. Adv. Outputs 6. Output Select	Data is processed by the datalogger and then stored in an output table. Two tables are defined by default; up to 10 tables can be added.	Ø
7. Finish	1 Hourly 2 Table2	_
Wiring Diagram	Table Name Hourly Delete Table	•
Wiring Text	Data Output Storage Interval Makes 720 measurements per output interval Date upon the chosen measurement interval of \$ Seconds.	0
	Copy to External Storage	0,
	Advanced Outputs (all tables)	0
	Specify how often measurements are to be made and how often outputs are to be stored. Note that multiple output intervals can be specified, one for each output table. By default, an output table is set up to send data to memory based on time. Select the Advanced Output option to send data to memory based on one or more of the following conditions: time, the state of a flag, or the value of a measurement.	< >
	✓ Previous Next Finish Help	

7. Select the output options.

gress 1. New/Open	Selected Measurer Output	nents Available for		Selected Me	asurements	for Output		
2. Datalogger	Sensor	Measurement	Average	1 Hourly	2 Daily			
3. Sensors	 CR1000X 		ETo	Sensor	/leasurement	Processing	Output Labe	Units
4. Output Setup	 Default 	BattV	Maximum	LWS	LWmV	Sample	LWmV	mV
5. Adv. Outputs		PTemp_C	Minimum	LWS	LWMDrv	Total	LWMDry_TO	Minutes
6. Output Select	▲ LWS	LWmV	Sample	LWS	LWMCon	Total	LWMCon_TC	
7. Finish	-	LWMDry		LWS	LWMWet	Total	_ LWMWet_TO	
	-	LWMCon	StdDev					
irina	- he	LWMWet	Total					
Wiring Diagram			WindVector					
Wiring Text								
wining rext								
					_			
				🖌 Edit	👷 Remo	ove		
	Select	which measurements t	o store in whicl	144			uld be proces	sed. For ead
	value	to be stored in the tabl	e, choose a me	h tables and h asurement fro	iow each meas m "Selected N	urement sho leasurements	Available for	Output."
	value Next,	to be stored in the tabl select one of the proce	e, choose a me ssing functions	h tables and h asurement fro , such as Ave	iow each meas m "Selected M rage, Sample,	urement sho leasurements	Available for	Output."
	value Next,	to be stored in the tabl	e, choose a me ssing functions	h tables and h asurement fro , such as Ave	iow each meas m "Selected M rage, Sample,	urement sho leasurements	Available for	Output."
	value Next,	to be stored in the tabl select one of the proce	e, choose a me ssing functions	h tables and h asurement fro , such as Ave	ow each meas m "Selected N rage, Sample, memory.	urement sho leasurements	Available for at the output	Output."

- 8. Click **Finish** and save the program. Send the program to the data logger if the data logger is connected to the computer.
- 9. If the sensor is connected to the data logger, check the output of the sensor in *LoggerNet*, *PC400*, *RTDAQ*, or *PC200W* to make sure it is making reasonable measurements.

NOTE Short Cut uses the execution interval to make the minutes wet, dry, and contaminated calculations (Section 7.3.2, Minutes Dry, Minutes Wet or Contaminated, and Minutes Wet (p. 7)). You need to take this into account while editing the Short Cut program.

5. Overview

5.1 Measurement

The LWS measures the dielectric constant of a zone approximately 1 cm from the upper surface of the sensor. The dielectric constant of water (\approx 80) and ice

(\approx 5) are much higher than that of air (\approx 1), so the measured dielectric constant is strongly dependent on the presence of moisture or frost on the sensor surfaces. The sensor outputs a millivolt signal proportional to the dielectric of the measurement zone, and therefore proportional to the amount of water or ice on the sensor surface.

5.2 Leaf Mimicry

The LWS is designed to approximate the thermodynamic properties of most leaves. If the specific heat of a typical leaf is estimated at 3750 J kg⁻¹ K⁻¹, density estimated at 0.95 g/cm³, and thickness estimated at 0.4 mm, then the heat capacity of the leaf is \approx 1425 J m⁻² K⁻¹. This heat capacity is closely approximated by the thin (0.65 mm) fibreglass construction of the LWS, which has a heat capacity of 1480 J m⁻² K⁻¹. By mimicking the thermodynamic properties of a leaf, the LWS closely matches the wetness state of the canopy.

The sensor closely matches the radiative properties of real leaves. Healthy leaves generally absorb solar radiation in much of the visible portion of the spectrum, but selectively reject much of the energy in the near-infrared. The surface coating of the LWS absorbs well in the near-infrared region, but the white colour reflects most of the visible radiation. Spectroradiometer measurements indicate that the overall radiation balance of the sensor closely matches that of a healthy leaf. During normal use, prolonged exposure to sunlight can cause some yellowing of the coating, which does not affect the function of the sensor. The surface coating is hydrophobic — similar to a leaf with a hydrophobic cuticle. The sensor matches the wetness state of these types of leaves, but may not match the wetness duration of pubescent leaves or leaves with less waxy cuticles.

6. Specifications

Features:

- Imitates characteristics of a leaf
- Does not require painting or calibration of individual sensors
- Detects trace amounts of water or ice on the leaf surface
- Compatible with Campbell Scientific CRBasic data loggers: CR200(X) series, CR300 series, CR6 series, CR800 series, CR1000, CR1000X, CR3000, CR5000, and CR9000(X)

Settling Time:	10 ms
Excitation:	2.5 Vdc (2 mA) to 5.0 Vdc (7 mA)
Minimum Excitation Time:	10 ms
Output:	300 to 1250 mV (depends on excitation voltage)
Operating Temperature:	-40 to 60 °C
Length:	12.0 cm (4.7 in)
Width:	5.8 cm (2.3 in)

Height:	0.8 cm (0.3 in)
Maximum Cable Length:	75 m (246 ft)
Interchangeability:	Interchangeable without painting or individual calibration

7. Installation

If you are programming your data logger with *Short Cut*, skip Section 7.2, *Wiring (p. 6)*, and Section 7.3, *Programming (p. 6)*. *Short Cut* does this work for you. See Section 4, *QuickStart (p. 1)*, for a *Short Cut* tutorial.

7.1 Field Installation

The LWS includes two holes for mounting the sensor on a small diameter rod by using zip ties or 4-40 bolts (FIGURE 7-1 and FIGURE 7-2). Typical deployment is in a plant canopy or on a weather station mast.

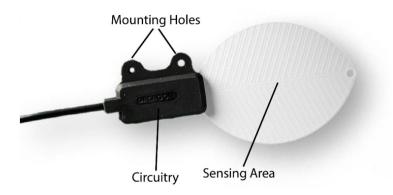


FIGURE 7-1. LWS Dielectric Leaf Wetness Sensor

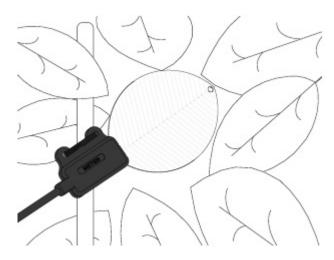


FIGURE 7-2. Top view of a typical LWS installation

7.2 Wiring

Wire Colour	Wire Function	Data Logger Connection Terminal
Brown or White	Voltage excitation input	U configured for voltage excitation ¹ , EX, VX (voltage excitation)
Orange or Red	Analogue voltage output	U configured for single-ended analogue input ¹ , SE (single-ended, analogue input)
Clear	Shield	≟ (analogue ground)

7.3 Programming

Short Cut is the best source for up-to-date data logger programming code.

If your data acquisition requirements are simple, you can probably create and maintain a data logger program exclusively with *Short Cut*. If your data acquisition needs are more complex, the files that *Short Cut* creates are a great source for programming code to start a new program or add to an existing custom program.

NOTE Short Cut cannot edit programs after they are imported and edited in *CRBasic Editor*.

A Short Cut tutorial is available in Section 4, QuickStart (p. 1). If you wish to import Short Cut code into CRBasic Editor to create or add to a customized program, follow the procedure in Appendix Appendix A, Importing Short Cut Code Into CRBasic Editor (p. 4-1). Programming basics for CRBasic data loggers are provided in the following sections. Complete program examples for CRBasic data loggers can be found in Appendix B, Example Programs (p. B-1). Programming basics and programming examples for Edlog data loggers are provided at www.campbellsci.com/old-manuals.

7.3.1 Voltage Measurement

The LWS requires excitation voltage between 2.5 and 5 Vdc. It produces an output voltage dependent on the dielectric constant of the medium surrounding the sensor. Output voltage ranges from 10 to 50% of the excitation voltage.

Except for the CR200(X), CRBasic data loggers use the **BRHalf()** instruction to measure the sensor output. The **BRHalf()** instruction and parameters are as follows:

BRHalf(Dest,Reps,Range,SeChan,ExChan,MeasPEx,ExmV,RevEx,Settling, fN1/Integ,Mult,Offset)

The CR200(X) uses the **ExDelSE()** CRBasic instruction to measure the sensor output. The **ExDelSE()** instruction and parameters are as follows:

ExDelSE(Dest, Reps, SEChan, ExChan, ExmV, Delay, Mult, Offset)

7.3.2 Minutes Dry, Minutes Wet or Contaminated, and Minutes Wet

The Voltage measurement can be further categorized into Minutes Dry, Minutes Wet or Contaminated, and Minutes Wet as follows:

```
If mV < 274 Then
Minutes Dry = Scan Interval in seconds / 60
Else
If mV >= 284 Then
Minutes Wet = Scan Interval in seconds / 60
Else
Minutes Wet or Contaminated = Scan Interval in seconds / 60
End If
End If
```

Given a 2500 mV excitation, the thresholds of less than 274 mV for dry and greater or equal to 284 mV for wet are recommended by Meter Environment. However, the thresholds can be adjusted as needed. Minutes dry, minutes wet or contaminated, and minutes wet can then be totalled and stored for any given period (table interval). Minutes wet or contaminated can be considered a wet condition or a contaminated condition depending on the user's evaluation of the sensors condition. The user may also choose to store an average of the voltage measurement for post processing later.

7.3.3 Interpreting Data

Many leaf wetness applications, such as phytopathology, require a Boolean interpretation of leaf wetness data. A Boolean threshold is determined by analyzing a few days of time-series data. The time-series data in FIGURE 7-3, was obtained using a 5 Vdc excitation. The sensor yields approximately 445 mV when dry, approximately 475 mV when frosted, and greater than 475 mV when wet. Therefore, a Boolean wetness threshold of 500 mV should serve well for interpreting these data.

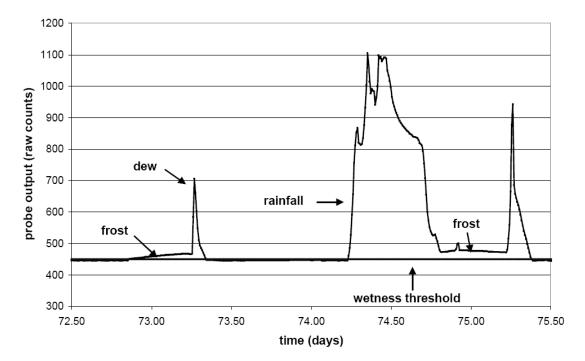


FIGURE 7-3. Typical LWS response

Duration of leaf wetness can be determined either by post processing of data, or by programming the data logger to accumulate time of wetness based on the Boolean threshold. Accumulation of dust and debris, such as avian fecal matter, will change the Boolean threshold. So, while having the data logger accumulate time of leaf wetness, or time of frost, may be convenient, assurance of data quality requires retention of the base millivolt measurements.

NOTE

Collect data frequently enough to capture changes in surface wetness. A sample frequency of 15 minutes or less is usually necessary to accurately capture leaf wetness duration.

8. Maintenance

The accumulation of dust and debris will cause the dry output to increase and change the Boolean threshold. Clean the sensing surface with a moist cloth periodically or when elevated dry output is detected.

The LWS leaf wetness sensor withstands typical outdoor radiation and precipitation loads for more than two years. If using the LWS in areas with unusually high radiation loads, Campbell Scientific recommends applying Revivex UV Protectant (available from *www.gearaid.com/products/revivex-care-uv-protect*) every 45 days. Revivex UV Protectant is the only tested and approved UV blocking system for this leaf wetness sensor. Revivex UV Protectant was formerly known as Gear Aid UV Tech.

To apply Revivex UV Protectant:

- 1. Wipe sensor clean.
- 2. Spray sensor surface with Revivex UV Protectant.
- 3. Rub with soft cloth until dry.

9. Acknowledgement

Portions of this manual are copyrighted by Meter Environment and are used by permission.

Appendix A. Importing Short Cut Code Into CRBasic Editor

This tutorial shows:

- Importing a *Short Cut* program into a program editor for additional refinement
- Importing a wiring diagram from *Short Cut* into the comments of a custom program

Short Cut creates files, which can be imported into *CRBasic Editor*. Assuming defaults were used when *Short Cut* was installed, these files reside in the C:\campbellsci\SCWin folder:

- .DEF (wiring and memory usage information)
- .CR2 (CR200(X)-series datalogger code)
- .CR300 (CR300-series datalogger code)
- .CR6 (CR6-series datalogger code)
- .CR8 (CR800-series datalogger code)
- .CR1 (CR1000 datalogger code)
- .CR1X (CR1000X-series datalogger code)
- .CR3 (CR3000 datalogger code)
- .CR5 (CR5000 datalogger code)

Import Short Cut code and wiring diagram into CRBasic Editor:

- 1. Create the *Short Cut* program following the procedure in Section 4, *QuickStart (p. 1)*. Finish the program. On the **Advanced** tab, click the **CRBasic Editor** button. The program opens in CRBasic with the name **noname.CR_**. Provide a name and save the program.
- **NOTE** Once the file is edited with *CRBasic Editor*, *Short Cut* can no longer be used to edit the program it created.
 - 2. The program can now be edited, saved, and sent to the data logger.
 - 3. Import wiring information to the program by opening the associated .DEF file. By default, it is saved in the c:\campbellsci\SCWin folder. Copy and paste the section beginning with heading "–Wiring for CRXXX–" into the CRBasic program, usually at the head of the file. After pasting, edit the information such that an apostrophe (') begins each line. This character instructs the data logger compiler to ignore the line when compiling. You can highlight several lines of CRBasic code then right-click and select **Comment Block**. (This feature is demonstrated at about 5:10 in the *CRBasic | Features* video.)

Appendix B. Example Programs

For these programs, the dry threshold is 274 and the wet threshold is 284. To determine minutes dry, minutes wet or contaminated, and minutes wet, the value 0.8333333 is used. This value was calculated based on a 5 s scan interval (scan interval/60 s). Refer to Section 7.3.2, *Minutes Dry, Minutes Wet or Contaminated, and Minutes Wet (p. 7)*, for more information.

B.1 Example CR1000X Program

TABLE B-1. CR1000X Example Program WiringColourFunctionCR1000XBrown or WhiteExcitationVX1Orange or RedAnalogue OutSE1ClearAnalogue Ground\frac{1}{2}

CRBasic Example B-1. CR1000X Program for Measuring the LWS			
'CR1000X			
'Declare Variables and Units Public BattV Public PTemp_C Public LWmV Public LWMDry Public LWMCon Public LWMWet			
Units BattV=Volts Units PTemp_C=Deg C Units LWmV=mV Units LWMDry=Minutes Units LWMCon=Minutes Units LWMWet=Minutes			
<pre>'Define Data Tables DataTable(Hourly,True,-1) DataInterval(0,60,Min,10) Sample(1,BattV,FP2) Sample(1,PTemp_C,FP2) Sample(1,LWmV,FP2) Totalize(1,LWMDry,FP2,False) Totalize(1,LWMCon,FP2,False) Totalize(1,LWMWet,FP2,False) EndTable</pre>			
DataTable(Daily,True,-1) DataInterval(0,1440,Min,10) Minimum(1,BattV,FP2,False,False) EndTable			
'Main Program BeginProg 'Main Scan			

The wiring for the example is shown in TABLE B-1.

```
Scan(5, Sec, 1, 0)
    'Default Data Logger Battery Voltage measurement 'BattV'
   Battery(BattV)
    'Default Wiring Panel Temperature measurement 'PTemp_C'
   PanelTemp(PTemp_C,60)
    'LWS Dielectric Leaf Wetness Sensor measurement 'LWmV'
    BrHalf(LWmV,1,mV5000,1,VX1,1,2500,False,10000,60,2500,0)
    'Determine Minutes Dry 'LWMDry', Minutes Wet or Contaminated 'LWMCon'.
    'and Minutes Wet 'LWMWet'. The value 0.083333333 is the scan rate divided by
    60 \ s \ (5 \ s/60 \ s = 0.08333333).
    LWMDry=0
   LWMCon=0
   LWMWet=0
   If LWmV<274 Then
     LWMDry=0.08333333
   Else
     If LWmV>=284 Then
       LWMWet=0.08333333
      Else
       LWMCon=0.08333333
     EndIf
   EndIf
    'Call Data Tables and Store Data
   CallTable(Hourly)
   CallTable(Daily)
 NextScan
EndProg
```

B.2 Example CR6 Program

The wiring for the example is shown in TABLE B-2.

TABLE B-2. CR6 Example Program Wiring				
Colour Function CR6				
Brown or White	Excitation	U1		
Orange or Red	Analogue Out	U2		
Clear	Analogue Ground	Ŧ		

'CR6 Series

'Declare Variables and Units Public BattV Public PTemp_C Public LWMV Public LWMDry Public LWMCon Public LWMWet Units BattV=Volts Units PTemp_C=Deg C Units LWMV=mV Units LWMDry=Minutes Units LWMCon=Minutes Units LWMWet=Minutes

```
'Define Data Tables
DataTable(Hourly,True,-1)
  DataInterval(0,60,Min,10)
  Sample(1,LWmV,FP2)
  Totalize(1,LWMDry,FP2,False)
  Totalize(1,LWMCon,FP2,False)
 Totalize(1,LWMWet,FP2,False)
EndTable
DataTable(Daily,True,-1)
  DataInterval(0,1440,Min,10)
 Minimum(1,BattV,FP2,False,False)
EndTable
'Main Program
BeginProg
  'Main Scan
  Scan(5,Sec,1,0)
    'Default Data Logger Battery Voltage measurement 'BattV'
    Battery(BattV)
    'Default Wiring Panel Temperature measurement 'PTemp_C'
    PanelTemp(PTemp_C,60)
    'LWS Dielectric Leaf Wetness Sensor measurement 'LWmV'
    BrHalf(LWmV,1,mV5000,U2,U1,1,2500,False,10000,60,2500,0)
    'Determine Minutes Dry 'LWMDry', Minutes Wet or Contaminated 'LWMCon',
    'and Minutes Wet 'LWMWet'. The value 0.08333333 is the scan rate divided by
    60 \ s \ (5 \ s/60 \ s = 0.08333333).
    LWMDry=0
    LWMCon=0
    LWMWet=0
    If LWmV<274 Then
      LWMDry=0.08333333
    Else
      If LWmV>=284 Then
        LWMWet=0.08333333
      Else
        LWMCon=0.08333333
      EndIf
    EndIf
    'Call Data Tables and Store Data
    CallTable Hourly
    CallTable Daily
  NextScan
EndProg
```

Campbell Scientific Worldwide Offices

Australia

Location: Garbutt, QLD Australia Email: *info@campbellsci.com.au* Website: *www.campbellsci.com.au*

Brazil

Location: São Paulo, SP Brazil Email: andread@campbellsci.com.br Website: www.campbellsci.com.br

Canada

Location: Edmonton, AB Canada Email: *dataloggers@campbellsci.ca* Website: *www.campbellsci.ca*

China

Location: Beijing, P. R. China Email: *info@campbellsci.com.cn* Website: *www.campbellsci.com.cn*

Costa Rica

Location: San José, Costa Rica Email: *info@campbellsci.cc* Website: *www.campbellsci.cc*

France

Location: Antony, France Email: *info@campbellsci.fr* Website: *www.campbellsci.fr*

Germany

Location: Bremen, Germany Email: *info@campbellsci.de* Website: *www.campbellsci.de*

South Africa

Location: Stellenbosch, South Africa Email: sales@csafrica.co.za Website: www.campbellscientific.co.za

Southeast Asia

Location: Bangkok, Thailand Email: *info@campbellsci.asia* Website: *www.campbellsci.asia*

Spain

Location: Barcelona, Spain Email: *info@campbellsci.es* Website: *www.campbellsci.es*

UK

Location: Shepshed, Loughborough, UK Email: *sales@campbellsci.co.uk* Website: *www.campbellsci.co.uk*

USA

Location: Logan, UT USA Email: *info@campbellsci.com* Website: *www.campbellsci.com*

Please visit *www.campbellsci.com/contact* to obtain contact information for your local US or international representative.