

Now with Vortex **Technology**

Use as part of closed-path eddycovariance system

Overview

Campbell Scientific's EC155 closed-path analyzer incorporates vortex technology for reduced maintenance, an absolute pressure sensor in the sample cell for more accurate measurements, and a sample cell with improved corrosion protection. The EC155 can be combined with the CSAT3A sonic anemometer, as shown in the main image. The revised CSAT3A has a more aerodynamic and rigid design.

The EC155 is ordered as part of a CPEC300-series system (CPEC300, CPEC306, or CPEC310), which also includes the sample pump, data logger, optional valve module, and optional scrub module to provide a zero air source. The EC155 with anemometer simultaneously measures absolute carbon dioxide and water vapor mixing ratio, sample cell temperature and pressure, and three-dimensional wind speed and sonic air temperature.

Benefits and Features

- Vortex Intake (U.S. Pat. No. 9,217,692) greatly reduces maintenance frequency compared to traditional in-line
- Heated inlet increases protection against condensation
- More accurate pressure measurements with the new sample cell absolute pressure sensor
- > Fully integrated, detachable intake
- Improved corrosion protection with stainless-steel sample
- Improved sonic temperature from more rigid CSAT3 geometry
- Stream-lined, aerodynamic CSAT3A mounting
- Slim aerodynamic shape with minimal wind distortion
- Analyzer, sample cell, and sonic anemometer measurements have matched bandwidths and are synchronized by a common set of electronics
- Low power consumption; suitable for solar power applications

- **)** Low noise
- Small sample cell for excellent frequency response
- Integrated zero/span connection for simplified field zero/ span
- > Field rugged
- > Field serviceable
- Factory calibrated over wide range of CO_2 , H_2O , pressure and temperature in all combinations encountered in practice
- Extensive set of diagnostic parameters
- Fully compatible with Campbell Scientific data loggers; field setup, configuration, and field zero and span can be accomplished directly from the data logger
- Rain: innovative signal processing and transducer wicks considerably improve performance of the anemometer during precipitation events

Technical Description

The EC155 has the following outputs:

- U_{x} (m/s) *
-) U_v (m/s) *
- $U_7 (m/s) *$
- Sonic Temperature (°C)*
- Sonic Diagnostic*
- CO₂ Mixing Ratio (µmol/mol)
- H₂O Mixing Ratio (mmol/mol)

- Gas Analyzer Diagnostic
- Cell Temperature (°C)
- Cell Pressure (kPa)
- CO₂ Signal Strength
- H₂O Signal Strength
- Differential Pressure (kPa)
- Source Temperature (°C)

*Requires a CSAT3A Sonic Anemometer Head.

 \pm 1.5 kPa (> 0°C), increasing

Specifications

Operating Temperature Range	-30° to +50°C	Sample Cell Pressure Accuracy	=
Operating Pressure	70 to 106 kPa	Gas Analyzer - CO ₂ P	e
Input Voltage Range	10 to 16 Vdc	Accuracy	7
Power	5 W (steady state and power up) at 25℃	Accuracy	Accuracy
Measurement Rate	60 Hz		
Output Bandwidth	5, 10, 12.5, or 20 Hz (user- programmable)		
Output Options	SDM, RS-485, USB, analog (CO_2 and H_2O only)		
Auxiliary Inputs	Air temperature and pressure		
EC100 Barometer Accuracy	 		
Sample Intake/Sonic Volume Separation	15.6 cm (6.1 in.)		2
Warranty	3 years or 17,500 hours of operation (whichever comes first)	Precision RMS (maximum)	(
Cable Length	3 m (10 ft) from EC155/CSAT3A to EC100		1
Weight	0.4 kg (0.9 lb) for mounting hardware3.9 kg (8.5 lb) for EC155 head and cables		
		Calibrated Range	(
			ŀ
	1.7 kg (3.7 lb) for CSAT3A head		r
	and cables 3.2 kg (7 lb) for EC100	Zero Drift with Temperature (maximum)	:=
Gas Analyzer	electronics	Gain Drift with Temperatu (maximum)	
•	1 0 1 5°C (20° + 2 + 50°C)	Cross Sensitivity (maximum)) _
Sample Cell Thermistor Accuracy	± 0.15°C (-30° to +50°C)		

linearly to ±3.7 kPa at -30°C erformance Assumes the following: the gas analyzer was properly zero and spanned using the appropriate standards; CO₂ span concentration was 400 ppm; H₂O span dewpoint was at 12°C (16.7 ppt); zero/span temperature was 25°C; zero/ span pressure was 84 kPa; subsequent measurements made at or near the span concentration; temperature is not more than ±6°C from the zero/span temperature; and ambient temperature is within the gas analyzer operating temperature range. ▶ 1% (Standard deviation of calibration residuals.) 0.15 µmol/mol Nominal conditions for precision verification test: 25°C, 86 kPa, 400 μmol/mol CO₂, 12°C dewpoint, and 20 Hz bandwidth. 0 to 1,000 µmol/mol (0 to 3,000 μmol/mol available upon request.) ±0.3 µmol/mol/°C ±0.1% of reading/°C $\pm 1.1 \times 10^{-4} \text{ mol CO}_2 / \text{mol H}_2\text{O}$

Gas Analyzer - H₂O Performance

Accuracy Assumes the following: the gas analyzer was properly zero and spanned using the appropriate standards; CO₂ span concentration was 400 ppm; H₂O span dewpoint was at 12°C (16.7 ppt); zero/span temperature was 25°C; zero/ span pressure was 84 kPa; subsequent measurements made at or near the span concentration; temperature is not more than ±6°C from the zero/span temperature; and ambient temperature is within the gas analyzer operating temperature range. > 2% (Standard deviation of calibration residuals.) Precision RMS (maximum) 0.006 mmol/mol Nominal conditions for precision verification test: 25°C, 86 kPa, 400 μmol/mol CO₂, 12°C dewpoint, and 20 Hz bandwidth. Calibrated Range 0 to 72 mmol/mol (38°C dewpoint) Zero Drift with Temperature ±0.05 mmol/mol/°C (maximum)

Gain Drift with Temperature ±0.3% of reading/°C (maximum)

Cross Sensitivity (maximum) ±0.1 mol H₂O/mol CO₂

Sonic Anemometer - Accuracy		
-NOTE-	The accuracy specification for the sonic anemometer is for wind speeds $< 30 \text{ m s}^{-1}$ and wind angles between $\pm 170^{\circ}$.	
Offset Error	$< \pm 4.0 \text{cm s}^{-1} (\text{for u}_z)$ $> \pm 0.7^{\circ} \text{while horizontal wind at}$ $< 1 \text{m s}^{-1} (\text{for wind direction})$ $< \pm 8.0 \text{cm s}^{-1} (\text{for u}_x, \text{u}_y)$	
Gain Error	 < ±6% of reading (for wind vector within ±20° of horizontal) < ±2% of reading (for wind vector within ±5° of horizontal) < ±3% of reading (for wind vector within ±10° of horizontal) 	
Measurement Precision RMS	 0.6° (for wind direction) 0.025°C (for sonic temperature) 0.5 mm s⁻¹ (for u_z) 1 mm s⁻¹ (for u_x, u_y) 	