

Introduction

The quick deploy quide is a reference tool outlining the setup process. Keep this document with the CRVW3 for future reference. The CRVW3 Owner's Manual is the definitive source for detailed setup, configuration, and installation instructions.

www.campbellsci.eu/crvw3

Quick Deploy Contents

- Hardware Overview
- VSPECT Overview
- Deployment Instructions:
 - Precautions
 - 1. Software
 - 2. Setup & Configuration
 - 3. Sensor Connection
 - 4. Power Options
 - 5. Field Installation
 - 6. Data Collection & Communications
 - 7. Radio Network Basics
 - 8. Maintenance

Precautions

The CRVW3 is a rugged instrument and can provide years of service with proper care and maintenance.

- Protect the CRVW3 from over-voltage (16–28 Vdc charge input)
- Protect the CRVW3 from internal moisture (maintain desiccant)
- Protect the CRVW3 from electrostatic discharge (ground properly)

VSPECT[™] Overview

VSPECTTM provides the best vibrating wire measurement available⁴. Sensor frequency is easily identified while filtering out environmental and electrical noise that affects the quality of other vibrating wire readers. VSPECT[™] provides measurement diagnostics to understand sensor response, installation guality, and identify incorrect wiring or damaged sensors.

Output and Diagnostics

Sensor Frequency⁵ (Hz)

Frequency is the basic measurement from a vibrating wire sensor. The frequency can be converted into engineering units (pressure, displacement, etc.) and is identified as the largest measured amplitude signal within the frequency sweep.

Sensor Amplitude⁶ (mV RMS)

Signal strength from the vibrating wire sensor. Amplitude varies and is affected by the sensor type, excitation strength (adjustable), and sensor cable length.

Signal-to-Noise Ratio⁶ (unitless)

The signal-to-noise ratio is calculated as sensor signal amplitude divided by the largest noise amplitude within the sweep frequency. A low signal-to-noise ratio indicates a weak sensor signal or a noisy environment.

Measurement Graphs

The following two sets of graphs illustrate the use of VSPECT[™] to identify a sensor signal in a guiet and noisy environment. Both graphs were created from the same sensor using the Vibrating Wire Report created using a VWAnalyzer. Fig. 1 was measured in an electrically guiet environment, while Fig. 2 was measured in an electrically noisy environment (AC power) similar to what can be seen in a field environment (power lines, motors, radio signals, etc.). The time series on Fig. 1 shows a relatively clean signal 19 that is more clearly identified 17 on the frequency spectrum 16. The time series 23 on Fig. 2 shows the influence of the noise 24. Vibrating wire readers that only use the time series 😰 to determine the frequency may report an incorrect frequency as a result of noise. The frequency spectrum (VSPECT^M) filters the noise 21 and easily identifies the sensor signal 22. VSPECT[™] provides noise immunity by correctly identifying the sensor signal and ignoring the influence of electrical noise that plagues time-domain-based vibrating wire readers.

- 16 The Frequency Spectrum graph shows signals with respect to frequency (VSPECT[™])
- The sensor signal is determined as the largest signal within the frequency sweep 17 18
- The Time Series graph shows raw signals observed with respect to time
- A time series with minimal noise influence 19
- The frequency sweep is shown as the white area on the graph, only signals within the 20 frequency sweep will be considered as a possible sensor signal

Noise Frequency⁶ (Hz)

The largest amplitude noise signal within the frequency sweep.

Decay Ratio⁶ (Hz)

Signal attenuation; how guickly the signal strength decreases.

Thermistor/RTD Resistance⁵ (ohms)

- Used to calculate sensor temperature and correct for thermal effects⁷.
- ⁴Protected under U.S. Patent No. 7,779,690
- ⁵ Frequency and resistance are measured values
- ⁶ Diagnostic values used to describe the quality of the frequency measurement
- ⁷ The temperature measurement (when present) can be used in the CRVW3, another datalogger or post processed to apply a thermal correction.

-

Figure 2: VW Signal With Noise

- A sensor signal is easily identified even when noise is present in the measurement 22
- A time series with observable noise 23
- Noise in the time series (this is what confuses non-VSPECT[™] devices)

- Device Configuration Utility (DevConfig) is used to setup and configure the CRVW3.
- *PC200W*, *PC400*, and LoggerNet are used to collect data (see step 6), all include DevConfig.

- USB drivers, and the steps to connect the CRVW3, are shown on the CRVW Series page of *DevConfig*, version 2.10 or higher is required.
- DevConfig and PC200W may be downloaded (no cost) at: www.campbellsci.com/downloads

6

10

1

9

-

Setup & Configuration

Settings in *DevConfig* for the CRVW3 datalogger, radio, and the channels are shown below. Additional explanations are included in DevConfig. The USB connection can power the CRVW3 during setup.

O Device Configuration Utility 2.10	
<u>File Backup Options H</u> elp	
Device Type	Settings Editor Logger Control Data Monitor Send OS Troubleshoot Terminal
🗄 Camera	Current Setting:
Cellular Modem	
🗉 Datalogger 📑	Main PakBus Channel 1 Channel 2 Channel 3 Radio Radio Advanced
CR 1000	Company
CR 10X-PB	Campbell Scientific, Inc.
CR200 Series	Model
CR 23X-PB	CRVW3-451
CR2000	OS Version
CR3000	CRVWx.00.33
CR510-PB	Serial Number
CR6	19506905
CR800 Series	Station Name
CRVW Series	CRVW3-451_04n40
Datalogger (Other)	Magaurament Interval
E Network Peripheral	1 Minute

Settings Editor		
Main	Measurement interval and current station OS version	
PakBus	PakBus address, security settings, and PakBus communications	
	settings	
Channel	Channel configuration: frequency sweep, thermistor & calcs	
Radio/Advanced	Radio operation mode, ID, power mode, transmit strength, and	
	RF packet settings	
Logger Control	Set datalogger clock	
Data Monitor	Look at most recent data	
Send OS	Send/update the CRVW3 OS	
Troubleshoot	Test sensor response/channel. Used to verify sensor operation,	
	wiring, or to troubleshoot (requires 12Vdc power connection).	
Terminal	Not typically used. A low level communication tool.	

Sensor Connection

- Loosen and remove plug from cable entry location (bottom of enclosure)
- Insert cable from the outside
- Connect the sensor to the CRVW3 wiring panel as described in the table and illustration below
- Hand-tighten the cable entries (Do Not Over Tighten)

Label	Description	Common Colour Schemes	
VW	First Vibrating Wire Lead	Red	Orange
VW	Second Vibrating Wire Lead	Black	Orange/White
<u>+</u>	Ground Lead	Shield	Shield
Т	First Thermistor Lead	Green	Blue
T	Second Thermistor Lead	White	Blue/White

Wiring Note:

Vibrating wire leads may be wired in reverse order (black and red instead of red and black). Thermistor leads are similarly interchangeable.

Power Options

- Connect the battery cable (rechargeable or alkaline D-cells) to the CRVW3 wiring panel
- Connect solar panel (optional) to charge "+" & "-" (Solar Panel Polarity Matters)
- A 10 Watt solar panel is commonly used, however a 5 or 20 Watt may also be used depending on sitespecific communications and location

		LED Indicators
Wireless RX/TX	Flash red	Radio transmit
	Flash green	Radio receive
	Solid red	Radio error
	Solid orange	Busy (configuring)
	Off	No communications
Status	Solid green	Measurement
	Flash green	"Awake" mode, USB, recently configured
	Solid orange	Busy (configuring, or can't communicate)
	Solid red	Measurement/program error
	Flash red	USB power insufficient for measurements
	Off	Device is asleep, waiting for next measurement

Regulator/Solar Panel Note:

 The rechargeable battery will be charged by the CRVW3 when used with a solar panel (proper installation, solar conditions).

and desiccant packs are installed. Orient the enclosure to minimize water entry (typically with cable entries facing downward).

A small antenna may be connected directly to the enclosure. For longer distance communications, a higher gain or directional antenna with an exterior cable may be necessary. A surge suppressor kit (pn #31312) is recommended when using cabled antennas.

Radios can only communicate with similar radios. For example, a CRVW3-RF407 can only communicate with other devices that have a built-in -RF407 radio option, or are connected to a stand-alone RF407 radio. The only exception to this rule is the CRVW3-RF451, which can communicate with other devices that have a built-in -RF451 radio option, or are connected to a stand-alone RF451 or RF450.

Sensor operation should be validated prior to leaving the site by using the Data Monitor or Troubleshoot tab in DevConfig.

Before

After

Installation Note:

Antenna Options

Radios

/erify Senso

Protect environmentally exposed antenna connections with selfvulcanizing tape (pn #21212) as shown to the right.

Data Collection & Communications

PC200W, PC400, or LoggerNet Software:

- Create a station in the software for the CRVW3 based on specific communication requirements (direct connect, radio, multiple stations, etc.)
- Collect data from the station

6

Radio & Automated collections require LoggerNet

Direct Requires USB cable (included)

- Supported by all three software packages
- USB • Data can be collected with the CRVW3 powered by USB/PC power

- A centralized datalogger collects site data into a single device
- Multiple CRVW3 dataloggers connect to a centralized datalogger

Communications Note:

A more thorough discussion on connection methods and advanced communications is found in the CRVW3 Manual.

Radio Network Basics

- DevConfig is used to setup/configure individual settings. Network Planner (LoggerNet) may be used to setup complete networks, or to see the settings that *LoggerNet* would assign (Pakbus addresses, router settings, etc.).
- Select appropriate antennas based on site conditions.
- Successfull communications will be aided by:
- line-of-site between stations
- raised antenna locations
- Make sure radio settings match (see table below)

RF451 Settings	RF407, RF412, RF422, and RF427 Settings
Only one master radio	Protocol, power mode, and retry levels
Subnet and Network IDs	RF Network and Hop Sequence

Maintenance

Routine maintenance is the best standard of practice to promote a functioning system. Here are some maintenance recommendations; some sites may have more specific maintenance requirements.

Moisture Protection	 Minimize moisture intrusion inside the enclosure Replace desiccant (pn #6714) and humidity indicator card (pn #28878) as needed Check cable entry points for a good seal Wipe moisture off lid gasket prior to opening (reduce water ingress)
Grounding	 Check grounding rod, grounding cable, and connections Inspect for loose connections
Solar Panel	 Clean solar panel with mild detergent and a clean cloth Remove any solar barriers (fallen debris, overhead branches, leaves, etc.)
Data Collection	• Data should be collected at regular intervals