Guarantee

This equipment is guaranteed against defects in materials and workmanship. We will repair or replace products which prove to be defective during the guarantee period as detailed on your invoice, provided they are returned to us prepaid. The guarantee will not apply to:

- Equipment which has been modified or altered in any way without the written permission of Campbell Scientific
- Batteries
- Any product which has been subjected to misuse, neglect, acts of God or damage in transit.

Campbell Scientific will return guaranteed equipment by surface carrier prepaid. Campbell Scientific will not reimburse the claimant for costs incurred in removing and/or reinstalling equipment. This guarantee and the Company's obligation thereunder is in lieu of all other guarantees, expressed or implied, including those of suitability and fitness for a particular purpose. Campbell Scientific is not liable for consequential damage.

Please inform us before returning equipment and obtain a Repair Reference Number whether the repair is under guarantee or not. Please state the faults as clearly as possible, and if the product is out of the guarantee period it should be accompanied by a purchase order. Quotations for repairs can be given on request. It is the policy of Campbell Scientific to protect the health of its employees and provide a safe working environment, in support of this policy a “Declaration of Hazardous Material and Decontamination” form will be issued for completion.

When returning equipment, the Repair Reference Number must be clearly marked on the outside of the package. Complete the “Declaration of Hazardous Material and Decontamination” form and ensure a completed copy is returned with your goods. Please note your Repair may not be processed if you do not include a copy of this form and Campbell Scientific Ltd reserves the right to return goods at the customers’ expense.

Note that goods sent air freight are subject to Customs clearance fees which Campbell Scientific will charge to customers. In many cases, these charges are greater than the cost of the repair.
About this manual

Please note that this manual was originally produced by Campbell Scientific Inc. primarily for the North American market. Some spellings, weights and measures may reflect this origin.

Some useful conversion factors:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (square inch)</td>
<td>645 mm2</td>
</tr>
<tr>
<td>Length (inch)</td>
<td>25.4 mm</td>
</tr>
<tr>
<td>1 ft (foot)</td>
<td>304.8 mm</td>
</tr>
<tr>
<td>1 yard</td>
<td>0.914 m</td>
</tr>
<tr>
<td>1 mile</td>
<td>1.609 km</td>
</tr>
<tr>
<td>Mass (ounce)</td>
<td>28.35 g</td>
</tr>
<tr>
<td>1 lb (pound weight)</td>
<td>0.454 kg</td>
</tr>
<tr>
<td>Pressure (psi)</td>
<td>68.95 mb</td>
</tr>
<tr>
<td>Volume (UK pint)</td>
<td>568.3 ml</td>
</tr>
<tr>
<td>1 UK gallon</td>
<td>4.546 litres</td>
</tr>
<tr>
<td>1 US gallon</td>
<td>3.785 litres</td>
</tr>
</tbody>
</table>

In addition, while most of the information in the manual is correct for all countries, certain information is specific to the North American market and so may not be applicable to European users.

Differences include the U.S standard external power supply details where some information (for example the AC transformer input voltage) will not be applicable for British/European use. Please note, however, that when a power supply adapter is ordered it will be suitable for use in your country.

Reference to some radio transmitters, digital cell phones and aerials may also not be applicable according to your locality.

Some brackets, shields and enclosure options, including wiring, are not sold as standard items in the European market; in some cases alternatives are offered. Details of the alternatives will be covered in separate manuals.

Part numbers prefixed with a “#” symbol are special order parts for use with non-EU variants or for special installations. Please quote the full part number with the # when ordering.

Recycling information

At the end of this product’s life it should not be put in commercial or domestic refuse but sent for recycling. Any batteries contained within the product or used during the products life should be removed from the product and also be sent to an appropriate recycling facility.

Campbell Scientific Ltd can advise on the recycling of the equipment and in some cases arrange collection and the correct disposal of it, although charges may apply for some items or territories.

For further advice or support, please contact Campbell Scientific Ltd, or your local agent.
DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING, USING, MAINTAINING, AND WORKING ON OR AROUND TRIPODS, TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC. FAILURE TO PROPERLY AND COMPLETELY ASSEMBLE, INSTALL, OPERATE, USE, AND MAINTAIN TRIPODS, TOWERS, AND ATTACHMENTS, AND FAILURE TO HEED WARNINGS, INCREASES THE RISK OF DEATH, ACCIDENT, SERIOUS INJURY, PROPERTY DAMAGE, AND PRODUCT FAILURE. TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE HAZARDS. CHECK WITH YOUR ORGANIZATION'S SAFETY COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED PROTECTIVE EQUIPMENT PRIOR TO PERFORMING ANY WORK.

Use tripods, towers, and attachments to tripods and towers only for purposes for which they are designed. Do not exceed design limits. Be familiar and comply with all instructions provided in product manuals. Manuals are available at www.campbellsci.eu or by telephoning +44(0) 1509 828 888 (UK). You are responsible for conformance with governing codes and regulations, including safety regulations, and the integrity and location of structures or land to which towers, tripods, and any attachments are attached. Installation sites should be evaluated and approved by a qualified engineer. If questions or concerns arise regarding installation, use, or maintenance of tripods, towers, attachments, or electrical connections, consult with a licensed and qualified engineer or electrician.

General

• Prior to performing site or installation work, obtain required approvals and permits. Comply with all governing structure-height regulations, such as those of the FAA in the USA.
• Use only qualified personnel for installation, use, and maintenance of tripods and towers, and any attachments to tripods and towers. The use of licensed and qualified contractors is highly recommended.
• Read all applicable instructions carefully and understand procedures thoroughly before beginning work.
• Wear a hardhat and eye protection, and take other appropriate safety precautions while working on or around tripods and towers.
• Do not climb tripods or towers at any time, and prohibit climbing by other persons. Take reasonable precautions to secure tripod and tower sites from trespassers.
• Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical

• You can be killed or sustain serious bodily injury if the tripod, tower, or attachments you are installing, constructing, using, or maintaining, or a tool, stake, or anchor, come in contact with overhead or underground utility lines.
• Maintain a distance of at least one-and-one-half times structure height, or 20 feet, or the distance required by applicable law, whichever is greater, between overhead utility lines and the structure (tripod, tower, attachments, or tools).
• Prior to performing site or installation work, inform all utility companies and have all underground utilities marked.
• Comply with all electrical codes. Electrical equipment and related grounding devices should be installed by a licensed and qualified electrician.

Elevated Work and Weather

• Exercise extreme caution when performing elevated work.
• Use appropriate equipment and safety practices.
• During installation and maintenance, keep tower and tripod sites clear of un-trained or non-essential personnel. Take precautions to prevent elevated tools and objects from dropping.
• Do not perform any work in inclement weather, including wind, rain, snow, lightning, etc.

Maintenance

• Periodically (at least yearly) check for wear and damage, including corrosion, stress cracks, frayed cables, loose cable clamps, cable tightness, etc. and take necessary corrective actions.
• Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS, THE CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING FROM IMPROPER INSTALLATION, USE, OR MAINTENANCE OF TRIPODS, TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.
Table of Contents

PDF viewers: These page numbers refer to the printed version of this document. Use the PDF reader bookmarks tab for links to specific sections.

1. Introduction ... 1
2. Precautions ... 1
3. Initial Inspection .. 1
 3.1 Shipping Kit .. 2
4. QuickStart ... 2
5. Overview ... 4
6. Specifications ... 5
7. Installation ... 6
 7.1 Getting Sensor Ready to Use ... 7
 7.2 Mount Sensor ... 8
 7.3 Wiring to the Datalogger .. 8
 7.4 Programming ... 9
 7.5 Calibration ... 9
8. Maintenance .. 10
 8.1 Cleaning Sensor and Replacing Membrane ... 11

Appendices

A. Importing Short Cut Code Into CRBasic Editor .. A-1
B. Example Programs ... B-1
 B.1 VoltDiff CR1000X Example ... B-1
 B.2 VoltSE CR200(X) Program ... B-2
C. Dissolved Oxygen Tables .. C-1
 C.1 Dissolved Oxygen in Fresh Water ... C-1
 C.2 Dissolved Oxygen in Salt Water ... C-2

Figures

8-1. Separate the lower body from the upper body ... 11
8-2. Remove membrane and membrane O-ring ... 12
8-3. Using a toothbrush to clean sensor .. 13
8-4. Proper O-ring placement .. 13
Table of Contents

8-5. Installing membrane...14
8-6. Check for leakage...15

Tables
7-1. CS511 Wire Colour, Function, and Datalogger Connection9
B-1. Wiring for CR1000X Example ..B-1
B-2. Wiring for CR200(X) Example ...B-2

CRBasic Examples
B-1. VoltDiff CR1000X Example..B-1
B-2. VoltSE CR200(X) Program ...B-2
1. Introduction

The CS511 is a rugged, low-maintenance sensor that is manufactured by Sensorex. It consists of a self-polarizing galvanic cell that generates a millivolt signal proportional to the amount of oxygen present in the measured medium (typically water).

NOTE
This manual provides information only for CRBasic dataloggers. For retired Edlog datalogger support, see a retired manual at www.campbellsci.com/old-manuals. Also refer to a retired manual if the CS511 was purchased before June 2008 and for information on using the retired PT4-L Agitator.

2. Precautions

- READ AND UNDERSTAND the Safety section at the front of this manual.

- The CS511 is a precision instrument. Please handle it with care.

- Because the CS511 is shipped dry, electrolyte needs to be added before using the sensor (Section 7.1, Getting Sensor Ready to Use (p. 7)).

- Letting the CS511 dry in the field shortens the life of the membrane and sensor.

- The sensor should be stored dry and empty. Therefore, empty the electrolyte, rinse the sensor, and remove the membrane.

- Replace the membrane and recalibrate the sensor before redeploying the CS511 after it has been stored out of water or dried up in the field.

- While cleaning, do not touch the centre electrode (Section 8.1, Cleaning Sensor and Replacing Membrane (p. 11)).

3. Initial Inspection

- Upon receipt of the CS511, inspect the packaging and contents for damage. File damage claims with the shipping company.

- Immediately check package contents against the shipping documentation (see Section 3.1, Shipping Kit (p. 2)). Contact Campbell Scientific about any discrepancies.

- The model number and cable length are printed on a label at the connection end of the cable. Check this information against the shipping documents to ensure the expected product and cable length were received.
3.1 Shipping Kit

The CS511 ships with:

1. Membrane replacement tool
2. Bottled electrolyte, 250 ml
3. Teflon membranes
4. Membrane O-rings

4. QuickStart

A video that describes datalogger programming using Short Cut is available at: www.campbellsen.eu/videos/cr1000x-datalogger-getting-started-program-part-3. Short Cut is an easy way to program your datalogger to measure the sensor and assign datalogger wiring terminals. Short Cut is available as a download on www.campbellsen.eu. It is included in installations of LoggerNet, PC200W, PC400, or RTDAQ.

The following procedure also describes using Short Cut to program the CS511.

1. Open Short Cut and click Create New Program.
2. Double-click the datalogger model.
3. In the Available Sensors and Devices box, type CS511, or locate the sensor in the Sensors | Water | Quality folder. Double-click CS511 Dissolved Oxygen Probe. The default calibration value of 0.34 is based on an average. It is preferable to calibrate the sensor by using the procedure provided in Section 7.5, Calibration (p. 9). Click on the Wiring tab to see how the sensor is to be wired to the datalogger.
4. Repeat step three for other sensors.

5. In Output Setup, type the scan rate, meaningful table names, and the Data Output Storage Interval.
6. Select the measurement and its associated output options.

7. Click **Finish** and save the program. Send the program to the datalogger if the datalogger is connected to the computer.

8. If the sensor is connected to the datalogger, check the output of the sensor in the data display in *LoggerNet, PC400, RTDAQ, or PC200W* to make sure it is making reasonable measurements.

5. Overview

The CS511 is a galvanic sensor, which produces a millivolt signal proportional to the amount of oxygen present in the measured medium. Oxygen diffuses through the membrane onto the cathode, reacts chemically, and combines with the anode. An electrical current is produced by this chemical reaction which is converted from microamps to millivolts by an in-line resistor. An in-line thermistor also conditions the signal providing automatic temperature compensation. With these features, the sensor produces a linear, millivolt output proportional to the oxygen present in the medium in which it is placed.

The sensor consists of two parts, an upper part with cathode, anode, and cable, and a lower part comprising of a screw-on membrane cap. The CS511 is shipped dry, but has a membrane installed in the cap. With the membrane in place, the cap must be filled with electrolyte solution before the cap is screwed onto the top component.

The CS511 is self-polarizing and requires no external power source.
6. Specifications

Features:

- In-line thermistor provides automatic temperature compensation
- Compatible with the following CRBasic dataloggers: CR200(X) series, CR300 series, CR6 series, CR800 series, CR1000, CR1000X series, CR3000, CR5000, and CR9000(X)

Principle of Measurement: Membrane-covered, galvanic oxygen sensor

Output Signal: 33 mV ± 9 mV (100% saturation), < 2 mV (0% saturation)

Accuracy: Better than ± 2% of reading ± 1 digit when calibration temperature equals measuring temperature ± 5 °C

Response Time: 5 min. from 100% to 0% oxygen

Materials of Construction

- Body: Noryl
- Anode: Zinc
- Cathode: Silver

Diameter: 5.72 cm (2.25 in)

Height: 17.78 cm (7 in) from bottom of sensor to end of cable-strain relief

Shipping Weight: 0.8 kg (1.75 lb)

Cable Jacket Material: PVC

Operating Conditions

- Temperature: 0 to 50 °C (32 to 122 °F)
- Pressure: 0 to 100 psig
- Minimum Submersion Depth: 60 mm (2.5 in)
- Minimum Water Flow: 5 cm/s (2 inch/s) across membrane

Calibration: In air or in air saturated water

Temperature Compensation: Automatic from 4 to 40 °C (40 to 104 °F)

Range of Dissolved Oxygen: 0.5 to 50 ppm

Sensor Electrolyte: NaCl + glycerol (prevents freezing)
7. Installation

If you are programming your datalogger with Short Cut, skip Section 7.3, *Wiring to the Datalogger* (p. 8), and Section 7.4, *Programming* (p. 9). Short Cut does this work for you. See Section 4, *QuickStart* (p. 2), for a Short Cut tutorial.
7.1 Getting Sensor Ready to Use

1. Unscrew the lower body from the upper body.

2. Inspect the membrane for wrinkles. Replace membrane if wrinkled (see Section 8.1, Cleaning Sensor and Replacing Membrane (p. 11)).

3. Pour clean water into the lower body and look for leakage around the membrane. Dispose of the water, and if there is leakage, replace membrane (see Section 8.1, Cleaning Sensor and Replacing Membrane (p. 11)).
4. Pour fresh electrolyte in the bottom cap and fill to the top of the cap.

5. Keep the sensor upright with the cable pointed upwards (not sideways). Screw the bottom cap onto the upper body until hand tight.

NOTE

Excess electrolyte will leak out at the joint between the sensor cap and upper body.

7.2 Mount Sensor

Mount the CS511 in water at a slight angle, which prevents bubbles from becoming trapped on the membrane.

7.3 Wiring to the Datalogger

Datalogger connection is provided in TABLE 7-1. The CS511 can use one differential terminal or one single-ended terminal. Differential wiring is better at rejecting electrical noise and ground loop error.
7.4 Programming

Short Cut is the best source for up-to-date datalogger programming code.

If your data acquisition requirements are simple, you can probably create and maintain a datalogger program exclusively with *Short Cut*. If your data acquisition needs are more complex, the files that *Short Cut* creates are a great source for programming code to start a new program or add to an existing custom program.

A *Short Cut* tutorial is available in Section 4, *QuickStart* (p. 2). If you wish to import *Short Cut* code into *CRBasic Editor* to create or add to a customized program, follow the procedure in Appendix A, *Importing Short Cut Code Into CRBasic Editor* (p. A-1). Programming basics for *CRBasic* dataloggers are provided in the following sections. Complete program examples for select dataloggers can be found in Appendix B, *Example Programs* (p. B-1).

The `VoltDiff()` or `VoltSE()` can be used to measure the CS511. Choose a voltage range of 100 mV or higher.

7.5 Calibration

The multiplier is used to calibrate the CS511 sensor. To calculate the multiplier:

1. Program the datalogger by using a multiplier of one (see Section 4, *QuickStart* (p. 2), or Section 7.4, *Programming* (p. 9)).

2. Connect the CS511 to the datalogger (see wiring diagram generated by *Short Cut* or Section 7.3, *Wiring to the Datalogger* (p. 8)).

3. If the CS511 has been deployed in the field, gently wipe the membrane with a soft cloth.
4. Place the CS511 in air away from direct sunlight with the membrane facing upward.

5. Place a drop of clean water on the membrane.

6. Wait for readings to stabilize. This may take 15 minutes or more.

7. Determine the air temperature and barometric pressure.

8. Using a calibration chart such as that provided in Appendix C, *Dissolved Oxygen Tables* (p. C-1), determine the oxygen concentration of the air.

9. Use the following equation to calculate the multiplier:

\[M = \frac{P}{R} \]

where:
- \(M \) = Multiplier
- \(P \) = Concentration in PPM of the air (from the calibration chart)
- \(R \) = The signal output of the sensor when using a multiplier of one

10. Change the multiplier in the datalogger program from one to the calculated number (see Section 4, *QuickStart* (p. 2), or Section 7.4, *Programming* (p. 9)).

Instead of step 10, the following expression can be used that allows a new multiplier to be added to the program without rewriting, compiling, and downloading the program to the datalogger.

CRBasic Expression for Entering Multiplier:

\[\text{DOppm} = \text{DOMult} \times \text{DOMV} \]

With this method, the multiplier value is typed into the expression through the Public Table by using the numeric display in PC200W, LoggerNet, PC400, or datalogger keyboard display.

8. **Maintenance**

Campbell Scientific offers maintenance kits that contain membranes, membrane O-rings, washers, and a bottle of electrolyte. A spare parts kit is also available that contains two membrane locks, two tensioning washers, two body O-rings, and one membrane replacement tool. Refer to www.campbellsci.eu/order/cs511-l for more information.

The CS511 uses a strong, easy-to-clean, and easy-to-change membrane in a screw-on membrane cap. The sensor can be fully overhauled in five minutes.
8.1 Cleaning Sensor and Replacing Membrane

1. Unscrew the lower body from the upper body (FIGURE 8-1).

![FIGURE 8-1. Separate the lower body from the upper body](image)

2. Safely dispose of the electrolyte. Make sure the O-ring does not fall out of the cap.

3. Using the membrane tool, unscrew the membrane lock that is in the lower body (FIGURE 8-2).

4. Remove and dispose of the membrane and its O-ring (FIGURE 8-2).
FIGURE 8-2. Remove membrane and membrane O-ring
5. To clean, immerse the top part of the sensor in distilled white vinegar (3% acetic acid) for about 30 minutes. If vinegar is unavailable, use a soft toothbrush, automatic dishwasher detergent, and clean water to clean the cathode, anode, and plastic without touching the centre electrode. Rinse all components thoroughly with clean water after cleaning (FIGURE 8-3).

| CAUTION | Avoid touching or scratching the centre electrode while cleaning. |

![Figure 8-3](image)

FIGURE 8-3. Using a toothbrush to clean sensor

6. Replace the membrane and its O-ring by first placing the new O-ring at the bottom of the membrane cavity (FIGURE 8-4). Remove the paper backing from a new membrane and place the new membrane on top of the O-ring, and place the washer on top of the membrane. Using the membrane tool, install the membrane lock on top of the washer (FIGURE 8-5). Make sure the cap is upright (not sideways) when securing the membrane lock to the washer.

![Figure 8-4](image)

FIGURE 8-4. Proper O-ring placement
7. Inspect the membrane for wrinkles; replace membrane if wrinkled.
8. Pour some clean water into the lower body and look for leakage around the membrane (FIGURE 8-6); replace membrane if there is leakage. If there is no leakage, dispose of the water.

9. Pour fresh electrolyte into the bottom cap and fill to the top of the cap.

10. Keep the sensor upright so that the cable is pointed upwards (not sideways). Hand tighten the bottom cap onto the upper body.

NOTE Excess electrolyte will leak out at the joint between the cap and upper body.
Appendix A. Importing Short Cut Code Into CRBasic Editor

This tutorial shows:

- Importing a Short Cut program into a program editor for additional refinement
- Importing a wiring diagram from Short Cut into the comments of a custom program

Short Cut creates files, which can be imported into CRBasic Editor. Assuming defaults were used when Short Cut was installed, these files reside in the C:\campbellsci\SCWin folder:

- .DEF (wiring and memory usage information)
- .CR2 (CR200(X)-series datalogger code)
- .CR300 (CR300-series datalogger code)
- .CR6 (CR6-series datalogger code)
- .CR8 (CR800-series datalogger code)
- .CR1 (CR1000 datalogger code)
- .CR1X (CR1000X-series datalogger code)
- .CR3 (CR3000 datalogger code)
- .CR5 (CR5000 datalogger code)
- .CR9 (CR9000(X) datalogger code)

Import Short Cut code and wiring diagram into CRBasic Editor:

1. Create the Short Cut program following the procedure in Section 4, QuickStart (p. 2). Finish the program. On the Advanced tab, click the CRBasic Editor button. The program opens in CRBasic with the name noname.CR_. Provide a name and save the program.

 NOTE
 Once the file is edited with CRBasic Editor, Short Cut can no longer be used to edit the datalogger program.

2. The program can now be edited, saved, and sent to the datalogger.

3. Import wiring information to the program by opening the associated .DEF file. By default, it is saved in the c:\campbellsci\SCWin folder. Copy and paste the section beginning with heading “–Wiring for CRXXX–” into the CRBasic program, usually at the head of the file. After pasting, edit the information such that an apostrophe (’) begins each line. This character instructs the datalogger compiler to ignore the line when compiling. You can highlight several lines of CRBasic code then right-click and select Comment Block. (This feature is demonstrated at about 5:10 in the CRBasic | Features video.)
Appendix B. Example Programs

B.1 VoltDiff CR1000X Example

Programming for the CR300 series, CR800, CR850, CR1000, CR3000, and CR5000 is similar to this CR1000X program. TABLE B-1 shows the wiring for the example.

<table>
<thead>
<tr>
<th>CR1000X Connection</th>
<th>Sensor Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>White</td>
</tr>
<tr>
<td>1L</td>
<td>Black</td>
</tr>
<tr>
<td>Ground</td>
<td>Clear</td>
</tr>
</tbody>
</table>

CRBasic Example B-1. VoltDiff CR1000X Example

'CR1000X

'Declare Variables and Units
Public Batt_Volt
Public DOMV
Public DOPpm
Public DOMult

Units Batt_Volt=Volts
Units DOMV=mV
Units DOPpm=ppm

'Define Data Tables
DataTable(Hourly,True,-1)
 DataInterval(0,60,Min,10)
 Sample(1,DOMV,FP2)
 Sample(1,DOPpm,FP2)
 Sample(1,Batt_Volt,FP2)
EndTable

DataTable(Daily,True,-1)
 DataInterval(0,1440,Min,10)
 Minimum(1,Batt_Volt,FP2,False,False)
EndTable

'Main Program
BeginProg
 Scan(5,Sec,1,0)
 'Default Datalogger Battery Voltage measurement Batt_Volt:
 Battery(Batt_Volt)
 'CS511 Dissolved Oxygen Sensor measurements DOMV and DOPpm:
 VoltDiff(DOMV,1,mV200,1,True,0,60,1,0)
 DOPpm = DOMult * DOMV
 'Call Data Tables and Store Data
 CallTable(Hourly)
 CallTable(Daily)
 NextScan
EndProg
B.2 VoltSE CR200(X) Program

The CR200(X)-series must use the VoltSE() instruction since these dataloggers do not make differential measurements. If the other CRBasic dataloggers use the VoltSE() instruction instead of the VoltDiff() instruction, their programming will be similar to this example. TABLE B-2 shows the wiring for the example.

<table>
<thead>
<tr>
<th>CR200(X) Connection</th>
<th>Sensor Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE1</td>
<td>White</td>
</tr>
<tr>
<td>Ground</td>
<td>Black</td>
</tr>
<tr>
<td>Ground</td>
<td>Clear</td>
</tr>
</tbody>
</table>

CRBasic Example B-2. VoltSE CR200(X) Program

'CR200(X) Series

'Declare Variables and Units
Public Batt_Volt
Public DOMV
Public DOpmm
Public DOMult

Units Batt_Volt=Volts
Units DOMV=mV
Units DOpmm=ppm

'Define Data Tables
DataTable(Hourly,True,-1)
 DataInterval(0,60,Min)
 Sample(1,DOMV)
EndTable

DataTable(Daily,True,-1)
 DataInterval(0,1440,Min)
 Minimum(1,Batt_Volt,False,False)
EndTable

'Main Program
BeginProg
 Scan(10,Sec)
 'Default Datalogger Battery Voltage measurement Batt_Volt:
 Battery(Batt_Volt)
 'CS511 Dissolved Oxygen Sensor measurements DOMV and DOpmm:
 VoltSE(DOMV,1,1,1,0)
 DOpmm = DOMult * DOMV
 'Call Data Tables and Store Data
 CallTable(Hourly)
 CallTable(Daily)
 NextScan
EndProg
Appendix C. Dissolved Oxygen Tables

C.1 Dissolved Oxygen in Fresh Water

<table>
<thead>
<tr>
<th>ALTITUDE (Feet/Metres) and equivalent BAROMETRIC PRESSURE (mm Hg/mbar)</th>
<th>Temperature °C</th>
<th>Temperature °F</th>
<th>Dissolved Oxygen (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>760</td>
<td>14.0</td>
<td>14.60</td>
</tr>
<tr>
<td>500</td>
<td>747</td>
<td>14.4</td>
<td>14.34</td>
</tr>
<tr>
<td>1000</td>
<td>733</td>
<td>14.0</td>
<td>14.09</td>
</tr>
<tr>
<td>1500</td>
<td>721</td>
<td>13.6</td>
<td>13.84</td>
</tr>
<tr>
<td>2000</td>
<td>708</td>
<td>13.2</td>
<td>13.60</td>
</tr>
<tr>
<td>2500</td>
<td>695</td>
<td>13.2</td>
<td>13.36</td>
</tr>
<tr>
<td>3000</td>
<td>683</td>
<td>12.8</td>
<td>13.12</td>
</tr>
<tr>
<td>3500</td>
<td>671</td>
<td>12.4</td>
<td>12.89</td>
</tr>
<tr>
<td>4000</td>
<td>659</td>
<td>12.0</td>
<td>12.67</td>
</tr>
<tr>
<td>4500</td>
<td>648</td>
<td>11.6</td>
<td>12.44</td>
</tr>
<tr>
<td>5000</td>
<td>636</td>
<td>11.2</td>
<td>12.22</td>
</tr>
<tr>
<td>5500</td>
<td>625</td>
<td>10.8</td>
<td>12.01</td>
</tr>
<tr>
<td>6000</td>
<td>614</td>
<td>10.4</td>
<td>11.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEMPERATURE °C</th>
<th>Dissolved Oxygen (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°C</td>
<td>32.0</td>
</tr>
<tr>
<td>2°C</td>
<td>35.6</td>
</tr>
<tr>
<td>3°C</td>
<td>37.4</td>
</tr>
<tr>
<td>4°C</td>
<td>39.2</td>
</tr>
<tr>
<td>5°C</td>
<td>41.0</td>
</tr>
<tr>
<td>6°C</td>
<td>42.8</td>
</tr>
<tr>
<td>7°C</td>
<td>44.6</td>
</tr>
<tr>
<td>8°C</td>
<td>46.4</td>
</tr>
<tr>
<td>9°C</td>
<td>48.2</td>
</tr>
<tr>
<td>10°C</td>
<td>50.0</td>
</tr>
<tr>
<td>11°C</td>
<td>51.8</td>
</tr>
<tr>
<td>12°C</td>
<td>53.6</td>
</tr>
<tr>
<td>13°C</td>
<td>55.4</td>
</tr>
<tr>
<td>14°C</td>
<td>57.2</td>
</tr>
<tr>
<td>15°C</td>
<td>59.0</td>
</tr>
<tr>
<td>16°C</td>
<td>60.8</td>
</tr>
<tr>
<td>17°C</td>
<td>62.6</td>
</tr>
<tr>
<td>18°C</td>
<td>64.4</td>
</tr>
<tr>
<td>19°C</td>
<td>66.2</td>
</tr>
<tr>
<td>20°C</td>
<td>68.0</td>
</tr>
<tr>
<td>21°C</td>
<td>69.8</td>
</tr>
<tr>
<td>22°C</td>
<td>71.6</td>
</tr>
<tr>
<td>23°C</td>
<td>73.4</td>
</tr>
<tr>
<td>24°C</td>
<td>75.2</td>
</tr>
<tr>
<td>25°C</td>
<td>77.0</td>
</tr>
<tr>
<td>26°C</td>
<td>78.8</td>
</tr>
<tr>
<td>27°C</td>
<td>80.6</td>
</tr>
<tr>
<td>28°C</td>
<td>82.4</td>
</tr>
<tr>
<td>29°C</td>
<td>84.2</td>
</tr>
<tr>
<td>30°C</td>
<td>86.0</td>
</tr>
<tr>
<td>31°C</td>
<td>87.8</td>
</tr>
<tr>
<td>32°C</td>
<td>89.6</td>
</tr>
<tr>
<td>33°C</td>
<td>91.4</td>
</tr>
<tr>
<td>34°C</td>
<td>93.2</td>
</tr>
<tr>
<td>35°C</td>
<td>95.0</td>
</tr>
<tr>
<td>36°C</td>
<td>96.8</td>
</tr>
<tr>
<td>37°C</td>
<td>98.6</td>
</tr>
<tr>
<td>38°C</td>
<td>100.4</td>
</tr>
<tr>
<td>39°C</td>
<td>102.2</td>
</tr>
<tr>
<td>40°C</td>
<td>104.0</td>
</tr>
</tbody>
</table>

Solubility of dissolved oxygen (mg/L) as a function of temperature and pressure for moist air, salinity = 0.0 ppt.
Appendix C. Dissolved Oxygen Tables

C.2 Dissolved Oxygen in Salt Water

Solubility of dissolved oxygen (mg/L) as a function of temperature and salinity for moist air at sea level

<table>
<thead>
<tr>
<th>TEMP °C</th>
<th>SALINITY - Parts per Thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>32.0</td>
</tr>
<tr>
<td>1</td>
<td>33.8</td>
</tr>
<tr>
<td>2</td>
<td>35.6</td>
</tr>
<tr>
<td>3</td>
<td>37.4</td>
</tr>
<tr>
<td>5</td>
<td>41.0</td>
</tr>
<tr>
<td>6</td>
<td>42.8</td>
</tr>
<tr>
<td>7</td>
<td>44.6</td>
</tr>
<tr>
<td>8</td>
<td>46.4</td>
</tr>
<tr>
<td>9</td>
<td>48.2</td>
</tr>
<tr>
<td>10</td>
<td>50.0</td>
</tr>
<tr>
<td>11</td>
<td>51.8</td>
</tr>
<tr>
<td>12</td>
<td>53.6</td>
</tr>
<tr>
<td>13</td>
<td>55.4</td>
</tr>
<tr>
<td>14</td>
<td>57.2</td>
</tr>
<tr>
<td>15</td>
<td>59.0</td>
</tr>
<tr>
<td>16</td>
<td>60.8</td>
</tr>
<tr>
<td>17</td>
<td>62.6</td>
</tr>
<tr>
<td>18</td>
<td>64.4</td>
</tr>
<tr>
<td>19</td>
<td>66.2</td>
</tr>
<tr>
<td>20</td>
<td>68.0</td>
</tr>
<tr>
<td>21</td>
<td>69.8</td>
</tr>
<tr>
<td>22</td>
<td>71.6</td>
</tr>
<tr>
<td>23</td>
<td>73.4</td>
</tr>
<tr>
<td>24</td>
<td>75.2</td>
</tr>
<tr>
<td>25</td>
<td>77.0</td>
</tr>
<tr>
<td>26</td>
<td>78.8</td>
</tr>
<tr>
<td>27</td>
<td>80.6</td>
</tr>
<tr>
<td>28</td>
<td>82.4</td>
</tr>
<tr>
<td>29</td>
<td>84.2</td>
</tr>
<tr>
<td>30</td>
<td>86.0</td>
</tr>
<tr>
<td>31</td>
<td>87.8</td>
</tr>
<tr>
<td>32</td>
<td>89.6</td>
</tr>
<tr>
<td>33</td>
<td>91.4</td>
</tr>
<tr>
<td>34</td>
<td>93.2</td>
</tr>
<tr>
<td>35</td>
<td>95.0</td>
</tr>
<tr>
<td>36</td>
<td>96.8</td>
</tr>
<tr>
<td>37</td>
<td>98.6</td>
</tr>
<tr>
<td>38</td>
<td>100.4</td>
</tr>
<tr>
<td>39</td>
<td>102.2</td>
</tr>
<tr>
<td>40</td>
<td>104.0</td>
</tr>
</tbody>
</table>
Campbell Scientific Worldwide Offices

Australia
Location: Garbutt, QLD Australia
Email: info@campbellsci.com.au
Website: www.campbellsci.com.au

Germany
Location: Bremen, Germany
Email: info@campbellsci.de
Website: www.campbellsci.de

Brazil
Location: São Paulo, SP Brazil
Email: andread@campbellsci.com.br
Website: www.campbellsci.com.br

South Africa
Location: Stellenbosch, South Africa
Email: sales@csafrica.co.za
Website: www.campbellscientific.co.za

Canada
Location: Edmonton, AB Canada
Email: dataloggers@campbellsci.ca
Website: www.campbellsci.ca

Southeast Asia
Location: Bangkok, Thailand
Email: info@campbellsci.asia
Website: www.campbellsci.asia

China
Location: Beijing, P. R. China
Email: info@campbellsci.com.cn
Website: www.campbellsci.com.cn

Spain
Location: Barcelona, Spain
Email: info@campbellsci.es
Website: www.campbellsci.es

Costa Rica
Location: San José, Costa Rica
Email: info@campbellsci.cc
Website: www.campbellsci.cc

UK
Location: Shepshed, Loughborough, UK
Email: sales@campbellsci.co.uk
Website: www.campbellsci.co.uk

France
Location: Antony, France
Email: info@campbellsci.fr
Website: www.campbellsci.fr

USA
Location: Logan, UT USA
Email: info@campbellsci.com
Website: www.campbellsci.com

Please visit www.campbellsci.com/contact to obtain contact information for your local US or international representative.