
IN
ST

R
U

C
T

IO
N

 M
A

N
U

A
L

SDM-CAN 
Datalogger-to-CANbus 

Interface 
Revision: 3/18 

C o p y r i g h t  ©  2 0 0 1 - 2 0 1 8
C a m p b e l l  S c i e n t i f i c ,  I n c .





Guarantee 

This equipment is guaranteed against defects in materials and workmanship. 

We will repair or replace products which prove to be defective during the 

guarantee period as detailed on your invoice, provided they are returned to us 

prepaid. The guarantee will not apply to: 

 Equipment which has been modified or altered in any way without the

written permission of Campbell Scientific

 Batteries

 Any product which has been subjected to misuse, neglect, acts of God or

damage in transit.

Campbell Scientific will return guaranteed equipment by surface carrier 

prepaid. Campbell Scientific will not reimburse the claimant for costs incurred 

in removing and/or reinstalling equipment. This guarantee and the Company’s 

obligation thereunder is in lieu of all other guarantees, expressed or implied, 

including those of suitability and fitness for a particular purpose. Campbell 

Scientific is not liable for consequential damage. 

Please inform us before returning equipment and obtain a Repair Reference 

Number whether the repair is under guarantee or not. Please state the faults as 

clearly as possible, and if the product is out of the guarantee period it should 

be accompanied by a purchase order.  Quotations for repairs can be given on 

request. It is the policy of Campbell Scientific to protect the health of its 

employees and provide a safe working environment, in support of this policy a 

“Declaration of Hazardous Material and Decontamination” form will be 

issued for completion. 

When returning equipment, the Repair Reference Number must be clearly 

marked on the outside of the package. Complete the “Declaration of 

Hazardous Material and Decontamination” form and ensure a completed copy 

is returned with your goods. Please note your Repair may not be processed if 

you do not include a copy of this form and Campbell Scientific Ltd reserves 

the right to return goods at the customers’ expense. 

Note that goods sent air freight are subject to Customs clearance fees which 

Campbell Scientific will charge to customers. In many cases, these charges are 

greater than the cost of the repair. 

Campbell Scientific Ltd, 

80 Hathern Road,  

Shepshed, Loughborough, LE12 9GX, UK 

Tel: +44 (0) 1509 601141 

Fax: +44 (0) 1509 270924
Email: support@campbellsci.co.uk 

www.campbellsci.co.uk 

http://www.campbellsci.com/




PLEASE READ FIRST 

About this manual 

Please note that this manual was originally produced by Campbell Scientific Inc. primarily for the North 

American  market. Some spellings, weights and measures may reflect this origin. 

Some useful conversion factors: 

Area:   1 in
2
 (square inch) = 645 mm

2
 

Length:    1 in. (inch) = 25.4 mm 

1 ft (foot) = 304.8 mm 

1 yard = 0.914 m 

1 mile = 1.609 km 

Mass:  1 oz. (ounce) = 28.35 g 

1 lb (pound weight) = 0.454 kg 

Pressure: 1 psi (lb/in
2
) = 68.95 mb 

Volume: 1 UK pint = 568.3 ml 

1 UK gallon = 4.546 litres 

1 US gallon = 3.785 litres 

In addition, while most of the information in the manual is correct for all countries, certain information 

is specific to the North American market and so may not be applicable to European users.  

Differences include the U.S standard external power supply details where some information (for 

example the AC transformer input voltage) will not be applicable for British/European use. Please note, 

however, that when a power supply adapter is ordered it will be suitable for use in your country. 

Reference to some radio transmitters, digital cell phones and aerials may also not be applicable 

according to your locality. 

Some brackets, shields and enclosure options, including wiring, are not sold as standard items in the 

European market; in some cases alternatives are offered. Details of the alternatives will be covered in 

separate manuals. 

Part numbers prefixed with a “#” symbol are special order parts for use with non-EU variants or for 

special installations. Please quote the full part number with the # when ordering. 

Recycling information 

At the end of this product’s life it should not be put in commercial or domestic refuse but 

sent for recycling.  Any batteries contained within the product or used during the 

products life should be removed from the product and also be sent to an appropriate 

recycling facility. 

Campbell Scientific Ltd can advise on the recycling of the equipment and in some cases 

arrange collection and the correct disposal of it, although charges may apply for some 

items or territories.  

For further advice or support, please contact Campbell Scientific Ltd, or your local agent. 

Campbell Scientific Ltd, 80 Hathern Road, Shepshed, Loughborough, LE12 9GX, 

UK Tel: +44 (0) 1509 601141    Fax: +44 (0) 1509 270924
Email: support@campbellsci.co.uk 

www.campbellsci.co.uk 





Precautions 
DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING, USING, MAINTAINING, AND WORKING ON 
OR AROUND TRIPODS, TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, 
CROSSARMS, ENCLOSURES, ANTENNAS, ETC.  FAILURE TO PROPERLY AND COMPLETELY ASSEMBLE, 
INSTALL, OPERATE, USE, AND MAINTAIN TRIPODS, TOWERS, AND ATTACHMENTS, AND FAILURE TO HEED 
WARNINGS, INCREASES THE RISK OF DEATH, ACCIDENT, SERIOUS INJURY, PROPERTY DAMAGE, AND 
PRODUCT FAILURE.  TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE HAZARDS.  CHECK WITH YOUR 
ORGANIZATION'S SAFETY COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED PROTECTIVE 
EQUIPMENT PRIOR TO PERFORMING ANY WORK. 

Use tripods, towers, and attachments to tripods and towers only for purposes for which they are designed.  Do not 
exceed design limits.  Be familiar and comply with all instructions provided in product manuals.  Manuals are 
available at www.campbellsci.eu or by telephoning +44(0) 1509 828 888 (UK).  You are responsible for conformance 
with governing codes and regulations, including safety regulations, and the integrity and location of structures or land 
to which towers, tripods, and any attachments are attached.  Installation sites should be evaluated and approved by a 
qualified engineer.  If questions or concerns arise regarding installation, use, or maintenance of tripods, towers, 
attachments, or electrical connections, consult with a licensed and qualified engineer or electrician. 

General 
• Prior to performing site or installation work, obtain required approvals and permits. Comply with all

governing structure-height regulations, such as those of the FAA in the USA.
• Use only qualified personnel for installation, use, and maintenance of tripods and towers, and any

attachments to tripods and towers.  The use of licensed and qualified contractors is highly recommended.
• Read all applicable instructions carefully and understand procedures thoroughly before beginning work.
• Wear a hardhat and eye protection, and take other appropriate safety precautions while working on or

around tripods and towers.
• Do not climb tripods or towers at any time, and prohibit climbing by other persons. Take reasonable

precautions to secure tripod and tower sites from trespassers.
• Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical 
• You can be killed or sustain serious bodily injury if the tripod, tower, or attachments you are installing,

constructing, using, or maintaining, or a tool, stake, or anchor, come in contact with overhead or
underground utility lines.

• Maintain a distance of at least one-and-one-half times structure height, or 20 feet, or the distance
required by applicable law, whichever is greater, between overhead utility lines and the structure (tripod,
tower, attachments, or tools).

• Prior to performing site or installation work, inform all utility companies and have all underground utilities
marked.

• Comply with all electrical codes.  Electrical equipment and related grounding devices should be installed
by a licensed and qualified electrician.

Elevated Work and Weather 
• Exercise extreme caution when performing elevated work.
• Use appropriate equipment and safety practices.
• During installation and maintenance, keep tower and tripod sites clear of un-trained or non-essential

personnel.  Take precautions to prevent elevated tools and objects from dropping.
• Do not perform any work in inclement weather, including wind, rain, snow, lightning, etc.

Maintenance 
• Periodically (at least yearly) check for wear and damage, including corrosion, stress cracks, frayed cables,

loose cable clamps, cable tightness, etc. and take necessary corrective actions.
• Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST DEGREE OF SAFETY IN ALL CAMPBELL 
SCIENTIFIC PRODUCTS, THE CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING FROM IMPROPER 
INSTALLATION, USE, OR MAINTENANCE OF TRIPODS, TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS 
SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC. 





i 

Table of Contents 
PDF viewers:  These page numbers refer to the printed version of this document.  Use the 
PDF reader bookmarks tab for links to specific sections. 

1. Introduction ................................................................ 1 
1.1 General Description ............................................................................. 1 
1.2 Specifications ....................................................................................... 2 

1.2.1 General Features and Specifications ............................................. 2 
1.2.2 Electrical Specifications ................................................................ 3 

1.2.2.1 Power Consumption ........................................................... 3 
1.2.3 Physical Specifications ................................................................. 4 

2. Installation .................................................................. 4 
2.1 Address Switch Configuration ............................................................. 4 
2.2 Internal Jumper Settings ....................................................................... 5 
2.3 Connection to the Datalogger and Power Supply ................................. 8 

2.3.1 LED Status Indication ................................................................. 10 
2.4 Connection to CAN-Bus. ................................................................... 10 

3. Programming CR10X, CR7 and CR23X
Dataloggers to use the SDM-CAN ......................... 12 

3.1 General Principles .............................................................................. 12 
3.2 System Limitations............................................................................. 13 
3.3 The Datalogger Instruction................................................................. 14 

3.3.1 Instruction 118: SDM-CAN ........................................................ 15 
3.3.2 SDM Address (Parameter 01:) .................................................... 15 
3.3.3 TQUANTA, TSEG1, TSEG2 (Parameters 02:, 03:, 04:) ............ 15 
3.3.4 ID (Parameters 05:, 06:, 07:) ....................................................... 17 
3.3.5 Data Type (Parameter 08:) .......................................................... 18 

3.3.5.1 Collect and retrieve a data value: ..................................... 19 
3.3.5.2 Build a data frame for transmission: ................................ 19 
3.3.5.3 Transmit individual data values onto the CAN-Bus: ........ 20 
3.3.5.4 Transmit a previously built data frame on to the 

CAN-Bus (type 25): ...................................................... 20 
3.3.5.5 Set-up previously built data frame as a Remote Frame 

Response (type 26): ...................................................... 21 
3.3.5.6 Read error counters (type 27): .......................................... 21 
3.3.5.7 Read and reset the error counters (type 28): ..................... 21 
3.3.5.8 Read status (type 29): ....................................................... 21 
3.3.5.9 Read the signature and version number of the 

SDM-CAN operating system (type 30): ....................... 22 
3.3.5.10 Send Remote Frame Request (type 31): ........................... 22 
3.3.5.11 Set SDM-CAN internal software switches (type 32): ...... 22 
3.3.5.12 Read SDM-CAN internal switches (type 33): .................. 24 

3.3.6 Start Bit Number (Parameter 09:) ............................................... 24 
3.3.7 Number of Bits (Parameter 10:) .................................................. 24 
3.3.8 Number of Values (Parameter 11:) ............................................. 25 
3.3.9 Location (Parameter 12:) ............................................................ 25 



Table of Contents 

ii 

3.3.10 Multiplier (Parameter 13:) .......................................................... 25 
3.3.11 Offset (Parameter 14:) ................................................................ 25 

3.4 Advanced Programming Techniques ................................................. 25 
3.4.1 Interrupts Using the I/O Connection .......................................... 25 
3.4.2 Group Trigger ............................................................................. 27 
3.4.3 Frame buffers with filtering and triggering ................................ 27 

3.4.3.1 Setup of Mask and Filter / trigger .................................... 28 
3.4.3.2 Reading / Polling Buffer .................................................. 28 
3.4.3.3 Basic Sequence of Buffer Usage: .................................... 29 

3.5 Program Examples............................................................................. 29 
3.5.1 Reading CAN Data ..................................................................... 29 
3.5.2 Simple CAN Data Transmission ................................................ 30 
3.5.3 Building and Sending Data Frames ............................................ 32 
3.5.4 Using the Interrupt Function ...................................................... 32 
3.5.5 Using the Group Trigger ............................................................ 33 

4. Programming CRBasic Dataloggers to use the
SDM-CAN ................................................................ 35 

4.1 General Principles ............................................................................. 35 
4.1.1 High Speed Block Mode ............................................................ 35 

4.2 Datalogger Instruction ....................................................................... 36 
4.2.1 Reading CAN Data ..................................................................... 36 
4.2.2 Simple CAN Data Transmission ................................................ 37 
4.2.3 Digital I/O Triggered CANbus Measurements ........................... 38 
4.2.4 SlowSequence Instruction .......................................................... 39 

5. Using the RS232 Serial Diagnostics Port ............... 39 
5.1 Connecting to the RS232 User Port ................................................... 39 
5.2 Diagnostic Commands....................................................................... 40 
5.3 Loading a New Operating System into the SDM-CAN Interface ..... 43 

6. Attributions ............................................................... 43 

Appendices 

A. Principles of Operation .......................................... A-1 
A.1 Data Collection ................................................................................ A-1 
A.2 Frame Transmission ........................................................................ A-2 

B. A Summary of Data Types ..................................... B-1 

C. Application of the SDM-CAN on Networks
Complying with the J1939 SAE Standards ........ C-1 

C.1 J1939 29-Bit Identifier Format ........................................................ C-1 
C.2 J1939 11-Bit Identifier Format ........................................................ C-1 
C.3 J1939 Data Frame Format ............................................................... C-2 



Table of Contents 

iii 

C.4 Retrieving J1939 Accelerator Pedal Position Data using a
CR9000/CR5000 (Bus Speed 250k Baud) .................................... C-2 

C.4.1 Encoding the Identifier Field Values ........................................ C-2 
C.4.2 Finding the Start Bit .................................................................. C-3 

C.5 Retrieving J1939 Accelerator Pedal Position Data using a
CR23X/CR10X (Bus Speed 250k Baud) ...................................... C-4 

C.5.1 Encoding the Identifier Field Values ........................................ C-4 
C.5.2 Finding the Start Bit .................................................................. C-5 

D. Examples of CAN Data Frames and Data
Encoding and Decoding ...................................... D-1 

Figures 
1-1. SDM-CAN CAN-Bus Interface ........................................................... 1 
2-1. SDM-CAN Internal Jumpers ................................................................ 7 
2-2. SDM-CAN Isolation enabled (default) ................................................ 7 
2-3. SDM-CAN Isolation disabled .............................................................. 8 
2-4. Using the Spring Loaded Terminal Blocks (Top Option) .................... 9 
2-5. Using the Spring Loaded Terminal Blocks (Front Option) .................. 9 

Tables 
2-1. Switch Position and Addresses ............................................................ 5 
2-2. LED Status Indication ........................................................................ 10 
2-3. CIA CAN Connector Pin Connections ............................................... 11 
3-1. Typical settings of the CAN Speed Parameters ................................. 17 
5-1. RS232 Pin Out ................................................................................... 40 
C-1. Mapping of the J1939 Fields into a 29-Bit Identifier ....................... C-1 
C-2. Mapping of the J1939 Fields into a 11-Bit Identifier ....................... C-1 
C-3. J1939 Data Frame Format ................................................................ C-2 
C-4. Mapping of J1939 Identifier Field values into a 29-Bit Identifier .... C-3 
C-5. Accelerator Pedal Position Value Byte Number .............................. C-3 
C-6. Mapping of J1939 Identifier Field Values into a 29-Bit Identifier ... C-4
C-7. Accelerator Pedal Position Value Byte Number .............................. C-5 



Table of Contents 

iv 



1 

SDM-CAN Datalogger-to-CANbus 
Interface 

1. Introduction
The SDM-CAN interface is designed to allow a Campbell Scientific datalogger 
to sample data directly from a CAN-Bus communications network and thereby 
allow such data to be stored along with, and in synchronization with, other data 
values measured directly by the datalogger. 

To use the SDM-CAN device it is assumed that you have a full working 
understanding of the CAN network you wish to monitor. While there are 
moves to standardize CAN networks for different types of applications, the 
SDM-CAN device is designed to be as generic as possible thus allowing use in 
a wide range of applications, including research and development, where you 
may be working outside the normal standards.  

As a result you will need to know details of the electrical configuration of the 
network, the speed and CAN standard in use,  plus knowledge of the identifiers 
of the data packets that are of interest and the way in which data is encoded 
within those packets at the binary level. This information may need to be 
obtained from the designers of the network, from proprietary documentation or 
from the standards to which a network claims to comply. 

Campbell Scientific cannot provide full technical support in the understanding 
and decoding of data on all types of CAN networks. 

FIGURE 1-1.  SDM-CAN CAN-Bus Interface 

1.1 General Description 
The SDM-CAN forms an intelligent interface between a Campbell Scientific 
datalogger and a CAN-Bus communications network. The SDM-CAN is 
configured by the datalogger under the control of the user’s datalogger 
program.  



SDM-CAN Datalogger-to-CANbus Interface 

2 

By this process the SDM-CAN can capture data on the CAN-Bus and filter out 
packets of interest to the user. Within each data packet the device is able to 
read one or more data values and convert them to numeric values compatible 
with the normal data stored by the datalogger.  

The SDM-CAN will act as a passive listen-only device with its transmitter 
disabled in hardware. Alternatively it can be configured to send/respond to 
Remote Frame Requests, allowing it to poll remote devices for data. Data 
packets can also be constructed to allow it to send data out onto the CAN-Bus 
so it then acts as a sensor itself. 

Data is transferred between the SDM-CAN interface and the datalogger using 
Campbell Scientific’s high speed SDM communications protocol. This 
protocol allows the SDM-CAN to be used in parallel with other SDM devices 
(including other SDM-CAN interfaces) which might, for instance, be on other 
CAN-Bus networks in the same vehicle. 

In addition to connectors to the CAN network and the datalogger, an RS232 
port is also provided both for diagnostics and operating system upgrades. 

1.2 Specifications 

1.2.1 General Features and Specifications 
• Uses Campbell Scientific’s SDM communication protocol to communicate 

with the datalogger via  a three wire serial multidrop connection. Support is 
planned for CR10X, CR23X, CR7, CR5000 and CR9000 dataloggers.

• Up to 16 units can be used per datalogger, with the modules’ SDM address 
set by rotary switch.

• CAN 2.0A and 2.0B active and passive modes supported

• Up to 1 Mbaud max data rate. Standard baud rates supported are 1M, 
800K, 500K, 250K, 125K, 50K, 20K and lower. Other non-standard baud 
rates may be possible –  please contact Campbell Scientific.

• Receive and transmit up to 128 different data values from up to 128 CAN 
ID’s.

• Build and send a CAN data frame.

• Send Remote Frame Requests.

• Send data frame in response to an external Remote Frame Request.

• Supports a number of power down modes to allow power saving in power 
critical applications.

• All configuration of the interface is specified within the user’s datalogger 
program.

• LED status flash at power up 



SDM-CAN Datalogger-to-CANbus Interface 

3 

• Additional I/O port for signalling to the datalogger that data is available,
e.g. using an interrupt function.

• Has a 9 pin, DCE RS232 port with auto baud rate detection (1200 to
115200) for diagnosis and operating software download.

• Standard operating temperature range (tested), -25ºC to +50ºC. Can be
used over an extended temperature range –  contact Campbell Scientific
for details.

• High speed block mode for fast data collection.

• Buffer assisted burst mode for capturing back to back high speed CAN
data.

• Buffer’s support data frame filtering and triggering.

• View the EU Declaration of Conformity at www.campbellsci.eu/sdm-can

1.2.2 Electrical Specifications 
• Power supply range:  7 to 26V DC.

• Optional (switch selectable) galvanic isolation between the datalogger and
the CAN-Bus. The minimum isolation breakdown is 50V – this barrier is
for signal isolation only, i.e. it is not a safety barrier.

• Hitachi H8S,16 bit CPU clocked at 10 MHz.

• Uses the latest Philips SJA1000 CAN controller clocked at 16 MHz.

• CAN-Bus physical interface using Philips PCA82C251 driver for 1 Mbaud
capability, for use in 12V or 24V systems.

• CAN-Bus physical connection conforms to CIA draft standard 102 version
2, 9 pin D connector. (The interface will differ from this standard only with
respect to pin 9, which outputs 5V DC instead of 7-13V DC.)

• A 3 way, unpluggable screw terminal block for CAN High, Low and G
also provided.

• Transmit and acknowledge to CAN-Bus can be disabled by a hardware
jumper for safety reasons, e.g. for in-vehicle, listen only monitoring.

• I/O terminal used for interrupts is pulled low by a 100 Kohm resistor and is
driven to 5V via a 1 Kohm impedance when an interrupt is pending.

1.2.2.1 Power Consumption 

• Typical active current in self-powered, isolated mode with the CAN-Bus
in the recessive state: 70 mA. (This is when the SDM-CAN is not
transmitting.)

https://www.campbellsci.com/sdm-can#documents_


SDM-CAN Datalogger-to-CANbus Interface 

4 

• Typical active current in self-powered, isolated mode with the CAN-Bus in
the dominant state: 120 mA (this is when data is being transmitted from the
SDM-CAN device).

• Where the DC-DC converter is not used, and power is provided to the
isolated CAN driver circuits by an external source, the current drain by the
SDM-CAN is approximately 50 mA lower than the figures quoted above.

• Typical active current, non-isolated with the CAN-Bus in the recessive
state: 30 mA.

• Typical active current, non-isolated with the CAN-Bus in the dominant
state: 70 mA

• Typical Standby Current with or without isolation is less than 1mA (in this
mode the CAN hardware is turned off so the module cannot wake on
receipt of CAN data). Current consumption increases to typically 50 mA
during periods of communication to the datalogger or when the RS232
port is active.

1.2.3 Physical Specifications 
• Maximum dimensions: width 175 mm, height 100 mm, depth 23 mm

(without mounting brackets).

• Weight: 300g without mounting brackets.

• The device can be vertically mounted with all the connectors on the top
surface.

• The SDM address switch is on the right hand side.

• Fittings are available to allow vertical mounting in the CR9000 or on
enclosure chassis plates.

2. Installation
The SDM-CAN can be mounted in a normal card slot of a CR9000 (using 
optional special end brackets), on a chassis plate (using the standard brackets 
supplied) or can be left free-standing.  

CR9000 and CR7 dataloggers require optional SDM connection kits and all 
dataloggers may require an upgrade to a version of operating system which 
supports the SDM-CAN interface.  

2.1 Address Switch Configuration 
Before installing the SDM-CAN, set the SDM address switch to ensure that the 
interface has a unique address on the SDM bus, and that the address is set to 
match the commands in the datalogger program relevant to each interface. 

The SDM address switch can be set to 1 of 16 addresses. The factory-set 
address is 00. TABLE 2-1 shows switch position and the corresponding 



SDM-CAN Datalogger-to-CANbus Interface 

5 

address. The Base 4 address is also shown, as this is the address entered in the 
datalogger program.  

Please see Section 3, Programming CR10X, CR7 and CR23X Dataloggers to 
use the SDM-CAN, before using address F (33 base 4) as this address is often 
used as a ‘group trigger’ to synchronize measurements by several SDM 
devices. 

The switch is positioned on the right-hand side of the case, so you may have to 
remove the mounting bracket to gain access to this switch. 

TABLE 2-1.  Switch Position and Addresses 

Switch Setting Base 4 Address 

0 00 

1 01 

2 02 

3 03 

4 10 

5 11 

6 12 

7 13 

8 20 

9 21 

A 22 

B 23 

C 30 

D 31 

E 32 

F 33 

2.2 Internal Jumper Settings 
The SDM-CAN interface is fitted with a number of jumpers which configure 
the connection to the CAN network. 

Prior to setting these jumpers you need to give some consideration on how best 
to connect the SDM-CAN interface to the network: 

1) Decide whether the CAN network is already terminated, or if the SDM-
CAN needs to provide termination. In most instances the network will
already be terminated and so the default setting is no termination.

2) Decide whether to operate the SDM-CAN in a mode where it is isolated
from the CAN network. This is the ‘safest’ mode of operation as it



SDM-CAN Datalogger-to-CANbus Interface 

6 

minimizes the risk of corrupting the CAN data by the formation of 
grounds loops which could inject noise onto the CAN-Bus. The default 
setting is to run in isolated mode. 

3) If running in isolated mode decide whether the SDM-CAN will supply
power via a built-in DC-DC converter for the isolated CAN interface
components, or whether power will be sourced from an external supply.
Using a converter adds 40-50 mA to the power consumption of the SDM-
CAN when it is active. However, if a converter is not used, power must be
provided from elsewhere (see below). The default setting is for the
converter to be OFF, although for many applications you may need to turn
it on once you have considered the implications for your power supply.

4) Decide whether the transmit functions of the SDM-CAN interface need to
be enabled in hardware. The disabled mode of operation is the safest,
especially in vehicle applications, as it avoids the risk of the SDM-CAN
sending bad data onto the CAN network. However, in some modes of
operation, transmission is obligatory e.g. to let the SDM-CAN request data,
acknowledge data or to transmit data onto the bus. If transmission is to be
enabled, the relevant jumpers need  to be changed. Additionally
transmission must be enabled by sending the SDM-CAN an instruction
which both enables and specifies the method of transmission. See Section
3.3, The Datalogger Instruction, data type 32, below.

Access to the jumpers requires the removal of the lid of the SDM-CAN. Please 
follow anti-static precautions during the removal of the lid and also when 
changing the jumpers. Refer to FIGURE 2-1 for details of the jumper positions. 
Labels are also provided in white writing on the circuit board. 

If white jumper block not fitted then refer to FIGURE 2-2 for isolation enabled 
and FIGURE 2-3 for isolation disabled. 



SDM-CAN Datalogger-to-CANbus Interface 

7 

This jumper block 
is used to select 
isolated or non-
isolated CAN-Bus 
interface. The 
jumper block can 
be removed and 
rotated so that the 
red bar is nearest 
to the mode arrow 
head. The default 
is  for isolation 
enabled. 

Transmission of 
CAN data is 
hardware disabled 
by default. To 
enable transmission, 
move the jumper to 
the TX enable 
position. 

The CAN-Bus 
termination 
impedance is 
disabled by default. 
If you need the bus 
to be terminated, 
then move the 
jumper to the 120R 
IN position. 

The DC-DC converter is off by 
default. This will reduce power 
consumption from the +12V 
supply but means that the isolated 
circuits must be powered 
externally. To enable the DC-DC 
converter move the jumper to the 
DC-DC ON position.

SDM-CAN PCB      
Once the case lid 
has been removed. 
OBSERVE ANTI-
STATIC 
PRECAUTIONS. 

FIGURE 2-1.  SDM-CAN Internal Jumpers 

FIGURE 2-2.  SDM-CAN Isolation enabled (default) 



SDM-CAN Datalogger-to-CANbus Interface 

8 

FIGURE 2-3.  SDM-CAN Isolation disabled 

2.3 Connection to the Datalogger and Power Supply 
To allow communication between the SDM-CAN and a datalogger, firstly 
connect it to the datalogger’s SDM port, and then connect to a 12V power 
supply. Both the datalogger and the SDM-CAN 12V power supply must share 
a common ground. 

The SDM port is provided in different ways on different dataloggers: 

CR10X and CR23X – use the C1, C2 and C3 control ports. 

CR7 – a special SDM terminal block is provided as part of the SDM upgrade 
kit. This terminal block is fitted on a small module adjacent to the 9 way 
‘Serial I/O’ connector on the front of the 700 control module. The 
connections are labelled C1, C2 and C3. 

CR5000 – use the port connections labelled SDM-C1, SDM-C2 and SDM-C3. 

CR9000 – connections are made via the 9 way, ‘CSI Serial I/O’ connector on 
the 9080 PAM card. Pins 6, 7 and 8 are used as C3, C2 and C1 respectively. 
Pin 2 is ground. Campbell Scientific offers connection modules for this port 
which allow access to the SDM function as well as retaining normal function 
of the serial port, please contact your local sales office for further details. 

The SDM-CAN requires a nominal 12V power supply connection  (7-26V) 
rated at 150 mA. Normally the datalogger supply can be used for this feed. A 
connection to ground is also required. If the 12V supply is separate from the 
datalogger, both the ground of the supply and datalogger must be connected 
together. 

The SDM and power connections are made to a black terminal block on the 
left-hand side of the SDM-CAN interface. This terminal block has special 
spring loaded terminals which are simple to use and highly resistant to 
loosening in high vibration environments. To open the terminal simply insert 



SDM-CAN Datalogger-to-CANbus Interface 

9 

the tip of a small flat blade screw driver (3 mm width) into the rectangular hole 
above the circular terminal hole. Push in the blade of the screwdriver until the 
spring is released and the terminal opens. Insert the pre-stripped wire and then 
remove the screwdriver. See FIGURE 2-4. If space is limited, as when the unit 
is mounted in an enclosure etc., the screwdriver can be inserted into the front of 
the terminal block to push open the spring, as shown in FIGURE 2-5. 

FIGURE 2-4.  Using the Spring Loaded Terminal Blocks (Top Option) 

FIGURE 2-5.  Using the Spring Loaded Terminal Blocks (Front Option) 

Where you need to install more than one wire in a single terminal connector, 
use only stranded wires and twist the wires together before inserting them in 
the terminal. This type of terminal is not suitable for use with multiple solid 
core wires unless the wires are joined externally, e.g. using a ferrule. 

Route the wires from the SDM-CAN interface to the datalogger connections 
using the shortest route. Avoid running them near cables which could cause 
noise pickup. In noisy environments use low capacitance signal cable with an 
overall foil screen, connecting the screen to the datalogger power ground.  

Where multiple SDM devices are in use connect them in parallel to datalogger 
SDM ports, making sure each device has a unique SDM address. Ensure that 
the maximum cable length between the datalogger and the SDM-CAN does 
not exceed 3 metres.  



SDM-CAN Datalogger-to-CANbus Interface 

10 

An additional I/O terminal is provided on the SDM-CAN for use with 
dataloggers which support interrupt driven logging events. This might typically 
be used to enable the rapid capture of time critical CAN data, where the I/O 
port can be used to indicate to the datalogger that data has been captured and is 
available for immediate collection (see below). In most applications this 
function will not be used and the terminal need not be connected. Where it is 
required, it should be connected to a digital input on the datalogger. 

2.3.1 LED Status Indication 
When power is applied to the SDM-CAN the red ‘STATUS’ LED will flash to 
indicate the current status of the unit as a result of the power-up checks. 

If the LED flashes once, the module has passed all power-up tests and should 
operate correctly. The other flash sequences are shown below. Problems with 
the operating system can normally be fixed by reloading the operating system. 

Please contact Campbell Scientific if you are unable to resolve the problem. 

TABLE 2-2.  LED Status Indication 

Number of flashes Indication 

1 SDM-CAN is ok. 

2 OS signature bad. 

10 OS downloaded has failed. 

2.4 Connection to CAN-Bus. 
The physical connection to the CAN-Bus is achieved by one of two methods 
which is by either the 3 way un-pluggable screw terminals or the 9 pin ‘D’ plug 
which conforms to CIA draft standard 102 version 2.  

The basic connections of the CAN-Bus to the three-way terminal are CAN 
High, CAN Low and 0V ground reference. The 3 way screw terminal is 
marked as ‘G H L’ on the SDM-CAN case, where  G=Ground, H=CAN High, 
L=CAN Low. 

The CIA, 9 pin, ‘D’ connector pin configuration is shown in TABLE 2-3. 



SDM-CAN Datalogger-to-CANbus Interface 

11 

TABLE 2-3.  CIA CAN Connector Pin 
Connections 

Pin Function 

1 Reserved, NOT INTERNALLY CONNECTED. 

2 CAN Low. 

3 CAN Ground. 

4 Reserved, NOT INTERNALLY CONNECTED. 

5 CAN Shield. 

6 CAN Ground. 

7 CAN High. 

8 Reserved, NOT INTERNALLY CONNECTED. 

9 CAN +5volts. Input or output (see text). 

If the SDM-CAN hardware is configured (in either isolated or non-isolated 
mode) with the DC-DC converter ON, then Pin 9 of the 9 pin ‘D’ connector 
will provide +5V +/-10% at up to 40 mA to any external device. If isolation 
is enabled and the DC-DC converter is set to OFF then this pin acts as an 
input for an external power supply capable of providing +5volts +/-10% at up 
to 100 mA to provide power to the isolated circuitry of the SDM-CAN. 

The 3-way terminal block and CIA connector are connected in 
parallel internally and are not two separate connections to 
different CAN interfaces.  

Please refer to the documentation for your CAN network to check the preferred 
method of connection. For many applications various standards will apply 
giving recommended practices for connection. Apart from the choice of 
connector some standards recommend different ways of ‘tapping’ into CAN 
networks and also recommend maximum lengths for ‘T’s or ‘stubs’ off the 
network. For instance, at the highest baud rate of 1Mbit/s, ISO11898 
recommends a maximum bus length of 40 m and a maximum stub length of 
0.3 m. These lengths increase significantly at lower bit rates.

As discussed above you also need to consider: 

• If the SDM-CAN should terminate the network
• If it should be configured in isolated mode
• If transmission should be enabled
• The source of power for the isolation hardware.

NOTE 



SDM-CAN Datalogger-to-CANbus Interface 

12 

3. Programming CR10X, CR7 and CR23X
Dataloggers to use the SDM-CAN

This section describes the programming methods used for the above 
dataloggers to configure and use the SDM-CAN Interface. This section also 
covers general principles and techniques which are relevant to the other 
dataloggers. 

3.1 General Principles 
The SDM-CAN interface is controlled by instructions that the user enters in the 
datalogger program. For the dataloggers covered by this section the Program 
Instruction is number P118. Full details of the instruction are given below. This 
sub-section has been written to introduce the parameters of Instruction P118 
and how they allow you to control the different operations of the SDM-CAN. 

The initial function is to configure the SDM-CAN interface when the 
datalogger program is compiled. At this stage, the datalogger analyses the P118 
parameters used by the program and sends the relevant commands to the SDM-
CAN to configure it to perform appropriate tasks.  

The most common configuration task, at compile time, is to set up the SDM-
CAN to instruct it to filter out only the data frames of interest from all data 
‘passing on the bus’. 

The other configuration task done at this point is to specify the speed at which 
the CAN-Bus is to operate. It is important to ensure the parameters which 
define the speed are set correctly and all instructions have the same values 
entered for these parameters otherwise either no data will be received, or you 
risk corrupting data on the bus, if the SDM-CAN is enabled for transmission. 

The next common function is to read data back from the SDM-CAN,  to 
decode it, and to store it in input locations once the program is running. A 
single entry of P118 in the program can both configure the SDM-CAN during 
program compilation and also cause data to be read back from the SDM-CAN 
when that instruction is executed during normal program execution. 

Similarly there is also a function which is used to send simple data from the 
datalogger input locations onto the CAN-Bus via the SDM-CAN. Again a 
single call of P118 can both configure and then transmit the data when the 
program is running. 

A more complicated version of this function is also possible where multiple 
P118 instructions are used to build a transmit data frame within the SDM-
CAN, made up of a series of fixed or variable data values from input locations. 
A subsequent P118 is used to instruct the SDM-CAN to transmit the frame 
either immediately or in a response to a remote frame request from another 
device. 

Finally there are some special functions normally achieved by a single a call of 
P118. One such function is used to change internal ‘switches’ within the SDM-
CAN which control its mode of operation, e.g. power mode, response to failed 
transmissions etc. Similar functions also allow you to read back the settings of 
these ‘switches’ into input locations and also to read and/or reset the number of 



SDM-CAN Datalogger-to-CANbus Interface 

13 

CAN errors detected and to also determine the general status of the SDM-CAN 
interface. 

3.2 System Limitations 
The SDM-CAN interface, in combination with a datalogger, has some 
limitations of which you need to be aware: 

1) Memory Allocation and P118

Firstly, as discussed above, when the datalogger compiles a program with
P118 in it, it sends commands to the SDM-CAN instructing it what to do
at run time. When it does this the SDM-CAN allocates some of its
memory (a ‘bin’) for each call of P118 in the program. Appendix A,
Principles of Operation, discusses the operation of these bins and other
buffers in the SDM-CAN in more detail. However, most users only need
to know that there is a limit of 128 bins in the SDM-CAN thus
constraining the number of instances of P118 for any one SDM-CAN to
128.

It is, of course, possible to have several SDM-CAN devices connected to
the datalogger(s), each with separate SDM addresses, and each with up to
128 calls of P118.

2) Data Capture Limitations

Another limitation is the capability of the overall speed at which the
datalogger can pick up and transfer data values back to its memory. These
limitations do not arise within the SDM-CAN interface itself, as it uses a
high speed CAN interface along with a fast microprocessor. Data can
therefore be captured off the CAN-Bus at close to the maximum bus
loading at the maximum baud rate. However, the limitations arise from the
datalogger itself, both in terms of its capability to call P118 often enough
(especially when making other measurements) and also in its capability to
transfer the data from the SDM-CAN back into its memory over the SDM
communications port.

The exact throughput possible is determined by a very complicated
combination of variables, including the speed of the datalogger in
question, the program it is running, how many SDM devices are in use
and, to a lesser degree, other tasks it is running, e.g. communications
activity.

In practice, for fast data, it will not be practical to capture every single data
packet. However, the SDM-CAN will be used to sample the last reading it
received on the CAN-Bus before the datalogger requests data.

If a new data value has not been captured from the CAN-Bus since the last
value was transferred to the datalogger, the SDM-CAN can either be set to
always return the previous value captured (default) or it can be configured
(see the internal software switch settings below) to return the standard out
of range value to the datalogger, i.e. –99999 if the value has already been
read. This value will also be returned in the event of other errors including
communication errors between the datalogger and SDM-CAN.



SDM-CAN Datalogger-to-CANbus Interface 

14 

Data stored in packets on the CAN-Bus can be encoded in a number of 
different ways. The SDM-CAN itself can cater for many different types of 
data, but there are some limitations imposed by the way in which the data 
is stored in the datalogger. The prime limitation is that data read into the 
datalogger is first converted into a 4 byte floating point format which can 
only resolve, at most, 23 bits, or roughly 7 digits, of the decimal equivalent 
of any number stored. Furthermore, when data is stored to final storage, 
the resolution is truncated again to either 4 or 5 digits (with the exception 
of the CR5000/9000 dataloggers which also support storage in IEEE4 
format). 

To avoid over-running the datalogger’s internal floating point resolution, 
the maximum length of integer that the SDM-CAN can send or receive is 
therefore limited to 16 bits. This limited resolution can cause problems 
when reading CAN data where data is encoded as 32 or 64 bit integers.  

The simplest solution, in those cases, is to read the value as a series of 16 
bit integers written to separate input locations in the datalogger. These can 
then either be combined once the data has been recovered to a computer 
or, if some of the resolution is not needed, the data values can be 
combined in the datalogger using its normal maths functions. You must 
bear in mind, however, the limitations of the 4-byte floating point 
calculations and the output resolution of the datalogger. 

The CAN standard also allows some types of data to be spread across 
several data packets, where those data packets all have the same identifier. 
Such data normally would consist of fixed identifiers stored as ASCII data, 
which do not normally have to be logged. Reliably capturing such data 
with the SDM-CAN is not possible, with the current software, unless the 
sequential packets are transmitted relatively slowly. Please contact 
Campbell Scientific for further information if you have a requirement to 
do this. 

3) When transmitting CAN frames from the SDM-CAN there are situations
where some frames are not transmitted. This is because the SDM-CAN has
a two layer buffer for transmitted frames. This allows a frame to be
transmitted whilst a new frame is being built. However if your program
tries to send frames too quickly, before earlier frames are sent, the frames
will be overwritten and lost.

This scenario generally does not happen with CR10X / CR23X loggers as
they are not fast enough. But with the CR5000 / CR9000 loggers it is
possible to overrun the double buffer especially in pipe line mode if you
are transmitting more than 2 frames per scan. It is recommended to use
sequential mode in this case as it allows a delay between CAN-BUS
instructions.

3.3 The Datalogger Instruction 
The instruction used by all of the dataloggers covered in this chapter is 
Instruction 118. The structure of the instruction and parameter types is shown 
below. This structure is given in the same format that normal instructions are 
shown in the datalogger manuals. Please refer to the datalogger manual for a 



SDM-CAN Datalogger-to-CANbus Interface 

15 

description of the data types, entry of the instruction and how to index (‘--’) 
parameters.  

In some previous versions of datalogger operating systems, 
Instruction 118 was used for the now obsolete OBDII interface. 
Older datalogger manuals and Edlog help systems may still refer 
to this instruction. Please make sure you are using a version of the 
operating system that supports P118 and refer to a more recent 
datalogger manual or Edlog help system. 

It will be apparent for some functions of P118 that some parameters are not 
relevant or have no function. In these cases simply leave the parameter(s) at 
their default value(s) which is normally zero. 

3.3.1 Instruction 118: SDM-CAN 
PARAM. NUMBER DATA TYPE DESCRIPTION RANGE 

01: 2 SDM address 00..33 

02: 2 TQUANTA 0-63

03: 2 TSEG1 0-15

04: 2 TSEG2 0-7

05: 4 ID bits 0-10 0-2047 ‘--’ Set 11bit ID.

06: 4 ID bits 11-23 0-8191

07: 2 ID bits 24-28 0-31

08: 2 Data type 0-33

09: 2 Start bit number 0-64, ‘--’ Left-hand referenced LSB.

10: 2 Number of bits 0-64, ‘--' Enable Interrupt mode.

11: 4 Number of values 0-99

12: 4 Input Location 

13: FP Multiplier 

14 FP Offset 

3.3.2 SDM Address (Parameter 01:) 
This parameter should match the SDM address set by the address switch on the 
side of the module to which this instruction applies. Please see Section 2.1, 
Address Switch Configuration, above, for more details. Also see the section 
below, regarding the special function of address 33. 

3.3.3 TQUANTA, TSEG1, TSEG2 (Parameters 02:, 03:, 04:) 
These parameters are used to set the bit rate and other timing parameters for the 
CAN-Bus network. On some networks the relationship between some of these 
parameters is predefined and just one parameter, the baud rate, is quoted. For 
maximum flexibility, though, the user is given access to all of the relevant 
parameters. TABLE 3-1 gives some typical values of the parameters for a 

NOTE 



SDM-CAN Datalogger-to-CANbus Interface 

16 

range of baud rates. However, be sure to check that these are correct for your 
specific network before using them. 

The parameters are entered as integer numbers which define various times that 
control when the binary data is sampled by the CAN hardware. The following 
discussion and nomenclature is common to the set-up of most CAN controller 
chips. If you are not familiar with CAN at this level please seek the advice of 
someone who is familiar with your network to determine these parameters. 

The overall speed of the network is specified by the baud rate, in bits per 
seconds, which define the time per bit (tbit) by the simple relationship: 

tbit  = 1 / baudrate 

Within the time period for each bit the CAN standards define three different 
time segments which ultimately control when the CAN hardware samples the 
signal. 

This is often shown in a diagram, thus: 

S-SG   PROP_SEG  PHASE_SEG1      PHASE_SEG2 

Bit time (tbit) 

Sample point 

1 time-quanta  (tq) 
 

tTSEG1 tTSEG2 

The bit time is divided into time-quanta (tq), of which there are between 8-23 
time- quantum in the bit time. The tq  (in seconds) used by the SDM-CAN is 
set by the scaling factor TQUANTA (parameter 02). This is the parameter that 
largely determines the baud rate. To work out a suitable value of TQUANTA, 
knowing the required tq, the following equation is used: 

TQUANTA = tq * 8*106 

The first time segment is known as the synchronization segment (S-SG)  and 
by convention is one time-quanta  long. 

This is followed by two segments known as the propagation segment and phase 
segment one. These are determined by the characteristics of the network and 
other devices on the network. The total of these two time segments determines 
the time  

when the SDM-CAN samples the data bit and is known as tTSEG1. The final 
segment is known as phase segment two or tTSEG2 



SDM-CAN Datalogger-to-CANbus Interface 

17 

The relationship between these times is summarized by: 

tbit=tq+tTSEG1+tTSEG2 

t TSEG1  (in seconds) is set using the scaling factor TSEG1 (parameter 03), the 
value of which is calculated using the following equation: 

TSEG1 = tTSEG1 / tq 

tTSEG2  is set using scaling factor TSEG2 (parameter 04) the value of which is 
calculated using: 

TSEG2 = tTSEG2 / tq 

When determining the settings of these parameters it is important to ensure that 
the size and total number of tq exactly matches the baud rate at which the 
network is to run, as the tolerance allowable is normally quoted as +/-1.5%. 

The relative settings of TSEG1 and TSEG2 are not so critical as they control 
when the hardware samples the data value and there is normally quite a wide 
tolerance over which this will work. 

If no data other than the baud rate of a network is available a simple ‘rule of 
thumb’ is to set the parameters such that there are at least eight time-quanta in 
the span of the bit width and that the sample point is 80% through the bit 
width. 

TABLE 3-1.  Typical settings of the CAN Speed Parameters 

Baud rate TQUANTA TSEG1 TSEG2 

1M 1 5 2 

800 K 1 7 2 

500 K 2 5 2 

250 K 4 5 2 

125 K 8 5 2 

50 K 16 7 2 

20 K 40 7 2 

The same three values for these parameters should be used in 
every call of the P118 instruction in the datalogger program.  

3.3.4 ID (Parameters 05:, 06:, 07:) 
A CAN data frame includes an identifier (ID) which is used by devices on the 
network to identify each type of packet on the network. Some standards reserve 
certain IDs or ranges of IDs for specific functions. The J1939 SAE standard for 
instance reserves certain parts of the ID to identify the type of data, its priority 
and its origin (see Appendix C, Application of the SDM-CAN on Networks 
Complying with the J1939 SAE Standards, for a discussion of this standard and 
use with the  SDM-CAN). The SDM-CAN is, however, transparent to any 

NOTE 



SDM-CAN Datalogger-to-CANbus Interface 

18 

special meaning of the ID; each packet is only referenced by the full ID. The 
CAN 2.0A standard uses an ID with 11 bits, while CAN 2.0B uses 29 bits.  

When entering IDs into Instruction P118,  three parameters are used. This is 
because the ID size, in number of bits, is too large to be encoded into a single 
parameter. 

The first ID parameter (parameter 05) sets bits 0..10, entered as a number 
between 0 and 2047. This parameter also determines whether an 11-bit or a 29-
bit Identifier is set. If you index this parameter then an 11bit Identifier is set; 
the following two parameters are then irrelevant and are normally left at zero.  

The second ID parameter (parameter 06) encodes bits 11..23 entered as 0 to 
8191. The third ID parameter (parameter 07) is for bits 24 to 28 entered as 0 to 
31. 

CAN networks either work with 11 or 29 bit IDs. As a general rule 
you cannot have packets with different length IDs on the same 
network. Therefore make sure parameter 05 specifies the same 
length ID for all calls of P118. 

3.3.5 Data Type (Parameter 08:) 
This parameter determines the type of data involved and/or the type of function 
this call of P118 will perform. The data type parameter is entered as a two-digit 
parameter in the range of 0-33. A summary table of the data types described 
below is given in Appendix B, A Summary of Data Types, of this manual for 
quick reference. 

As a general rule, this function is applied only to data packets with the ID 
specified in parameters 05..07. The action applies to a certain number of bits 
within the data frame that is specified in parameter 10, starting at the bit 
specified in parameter 09. In some cases the number-of-bits parameter is 
overridden implicitly by the data type specified, e.g. IEEE4 data is always 32 
bits in length. For integer values, the longest integer you read or send from one 
datalogger input location is 16 bits as a result of limitations in the datalogger. 
See Section 3.2, System Limitations, above for an explanation and work-
arounds. 

For data types that read or set status, switches or error codes, only the input 
location parameter, multiplier and offset are used. Other parameters can be set 
to zero. 

As defined by the CAN standard, data is always encoded or decoded on the 
assumption that the least significant bit is transmitted last or  is on the ‘right-
hand side’ of a data frame. The data frame can be from 0 to 64 bits in length, 
but is normally a multiple of 8-bit bytes. This means there are typically 0-8 
bytes in the data frame.  

Please refer to Appendix D, Examples of CAN Data Frames and Data 
Encoding and Decoding, for examples of typical data frames and how to 
decode data within them. Appendix D, Examples of CAN Data Frames and 
Data Encoding and Decoding, also contains diagrams to show the method of 
pointing to the start bit within the data frame. 

NOTE 



SDM-CAN Datalogger-to-CANbus Interface 

19 

For convenience the start bit can be referenced from either end of the frame 
(see parameter 09 below), but this does not change the direction in which data 
is encoded or decoded. Within a byte the MSBit is always first (on the left). 

Where the number-of-values parameter (parameter 11) is greater than one, the 
same function is applied to successive sections of the data frame, moving 
towards the ‘left’ of the frame. Data values are read to, or written from, 
successive input locations in the datalogger.  

The data types can be grouped into different type of functions, as follows: 

3.3.5.1 Collect and retrieve a data value: 

This function programs the SDM-CAN to capture a particular data packet and 
pass specific data from the data frame within that packet back to the 
datalogger.  

Parameter Value Data Type 

1 Unsigned integer, most significant byte 1st. 

2 Unsigned integer, least significant byte 1st. 

3 Signed integer, most significant byte 1st. 

4 Signed integer, least significant byte 1st. 

5 4 byte IEEE floating point number, most significant byte 1st. 

6 4 byte IEEE floating point number, least significant byte 1st. 

3.3.5.2 Build a data frame for transmission: 

The data will be sent to the SDM-CAN where it is written into a working 8-
byte buffer in memory. The data is written starting at the bit position 
determined by parameter 09 and the number of bits stored by parameter 10. 
When the data type parameter is set in the range of 7..12, the data is written to 
the buffer directly, i.e. it overwrites any previous data in that memory (see also 
types 13..18).  

Once the buffer is complete, after using other P118s with this range of data 
types to construct the desired data frame, it is sent out onto the CAN-Bus by a 
further call of P118 with parameter 08 set to 25 or 26 (see below).  

Parameter Value Data Type 

7 Unsigned integer, most significant byte 1st. 

8 Unsigned integer, least significant byte 1st. 

9 Signed integer, most significant byte 1st. 

10 Signed integer, least significant byte 1st. 

11 4 byte IEEE floating point number, most significant byte 1st. 

12 4 byte IEEE floating point number, least significant byte 1st. 

Setting parameter 08 in the range of  13..18 has the same function as in 
the7..12 range, except that the data values written are logically ‘OR’ed with 



SDM-CAN Datalogger-to-CANbus Interface 

20 

values previously written into the memory buffer. This allows complex bit 
patterns to be defined, sometimes changing only as little as one bit at a time. 

Parameter  Value Data type 

13 Unsigned integer, most significant byte 1st. 

14 Unsigned integer, least significant byte 1st. 

15 Signed integer, most significant byte 1st. 

16 Signed integer, least significant byte 1st. 

17 4 byte IEEE floating point number, most significant byte 1st. 

18 4 byte IEEE floating point number, least significant byte 1st. 

3.3.5.3 Transmit individual data values onto the CAN-Bus: 

This range of parameter values instructs the datalogger to send a data value to 
the SDM-CAN in the format specified; it is loaded into the specified point in a 
data frame and then immediately transmitted onto the CAN-Bus. Bits within 
the data frame that are not set are left at zero. The data frame length is set to the 
minimum size (in whole bytes) required to hold the type of data value 
specified. 

Parameter Value Data Type 

19 Unsigned integer, most significant byte 1st. 

20 Unsigned integer, least significant byte 1st. 

21 Signed integer, most significant byte 1st. 

22 Signed integer, least significant byte 1st. 

23 4 byte IEEE floating point number, most significant byte 1st. 

24 4 byte IEEE floating point number, least significant byte 1st. 

3.3.5.4 Transmit a previously built data frame on to the CAN-Bus (type 25): 

When parameter 08 is set to 25, P118 will cause the datalogger to tell the 
SDM-CAN to transmit a previously ‘built’ data frame which is stored in the 
memory buffer for this packet ID (see data types 7..18 above). 

The length of the data frame transmitted is determined by  parameter 10. If 
number of bits is less than a complete number of full bytes (1-8) then the 
number of bytes sent will be rounded up and all unused bits will be set to zero. 

The data start bit position will normally be set to one so the data frame starts at 
the beginning of the memory buffer. However, you can enter a value greater 
than one to allow part of the buffer to be transmitted, which can simplify some 
binary masking operations. 

The memory buffer is left unchanged after transmission. 



SDM-CAN Datalogger-to-CANbus Interface 

21 

3.3.5.5 Set-up previously built data frame as a Remote Frame Response (type 26): 
When parameter 08 is set to 26, P118 will configure the SDM-CAN to use a 
previously ‘built’ data frame as remote frame response for packets of the 
specified ID. The length and start positions are specified as for data type 25. 

3.3.5.6 Read error counters (type 27): 

This will return 4 values, in successive input locations starting at the location 
set by parameter 12, which show certain errors the SDM-CAN has recorded. 
The errors are written in the following order: transmit, receive, overrun and 
watchdog counts. Each is a count from 0 to 255. 

The transmit, receive and overrun counters are measures of the errors on the 
CAN-Bus network as defined by the CAN standards. If the transmit counter 
reaches 255 then the CAN device goes into a ‘bus-off’ state, where it 
effectively disconnects itself from the network. 

If the SDM-CAN switches to the ‘bus-off’ state, any further reads of the error 
counters will show the transmit counter fixed at 127. The counters then need to 
be reset to enable further use of the SDM-CAN (see data type 28, below). If 
this situation occurs on a regular basis, firstly check the datalogger program 
(P118 parameters). If these are correct, check the structure and design of the 
network. 

The watchdog counter only increments (and is automatically reset) when the 
SDM-CAN ‘crashes’ either due to an internal software error or a hardware 
fault. Please contact Campbell Scientific for further advice.  

3.3.5.7 Read and reset the error counters (type 28): 

This functions in exactly the same way as type 27 except that after reading the 
error counters they are reset to zero. This will also re-enable the SDM-CAN 
interface to the CAN-Bus if it has automatically entered the ‘bus-off’ state.  

When the counters are reset, the CAN controller chip enters a special state and 
waits until it sees a period equal to 11 successive bits of inactivity on the CAN-
Bus before it returns to the normal ‘on-line’ state. Therefore this function 
should not be called too frequently otherwise data may be lost.  

3.3.5.8 Read status (type 29): 

This data type instructs the datalogger to request the current status of the SDM-
CAN and writes the results into a single, specified, input location. The status is 
encoded within that location in the format ‘abcd’ where each letter is a digit in 
the range 0 to 9 indicating a different  type of status information. 

Status ‘a’: 0 This digit is currently unused. 

Status ‘b’: 0 This digit is currently unused. 

Status ‘c’: 0 This digit is currently unused. 

Status ‘d’: 0 Bus-On; the SDM-CAN is involved in bus activities. All of 
the error counters are less than 96. 



SDM-CAN Datalogger-to-CANbus Interface 

22 

1 Bus-On; the SDM-CAN is involved in bus activities. One 
of the error counters is equal to or greater than 96. 

2 Bus-Off; the SDM-CAN is not involved in bus activities. 
All of the error counters are less than 96. 

3 Bus-Off; the SDM-CAN is not involved in bus activities. 
One of the error counters is equal to or greater than 96. 

See data type 28 above for details of the error counters and how to reset them. 

3.3.5.9 Read the signature and version number of the SDM-CAN operating system (type 
30): 

This will return the OS signature and the OS Version number in separate 
locations. If the SDM-CAN detects that the OS signature is bad then zero will 
be returned.  

3.3.5.10 Send Remote Frame Request (type 31): 

A special type of CAN frame, called ‘remote frame request’ is transmitted with 
the CAN ID specified.  

3.3.5.11 Set SDM-CAN internal software switches (type 32): 
This data type instructs the datalogger to change some internal software switch 
settings that control the way it works. The new switch settings are read from a 
specified input location. The settings are encoded within that location in the 
format of a four digit number. For explanation purposes the four digits are 
represented as ‘abcd’ where each letter is a digit in the range 0 to 9 which 
indicates a different  type of switch setting.  

Once set the switches remain set until changed by another call of P118 or on 
loading a different program. Therefore it is only necessary to call a P118 to set 
these switches once, after program compilation, or when a switch needs to be 
changed using a call of P118 within an IF..THEN program construct (see the 
program examples below). 

Switch ‘a’: 0 This digit is currently unused; enter zero 

Switch ‘b’: 0 SDM-CAN returns the last value captured from the 
network, even if read before (Default) 

1 SDM-CAN returns –99999 if a data value is requested 
by the datalogger and a new value has not been 

captured from the network, since the last request. 

2-9 Currently unused 

Switch ‘c’: 0 Disable I/O Interrupts (Default) – see Section 3.4.1, 
Interrupts Using the I/O Connection 

1 Enable I/O Interrupts, pulsed mode 

2 Enable I/O Interrupts, fast mode 

3-7 Currently unused 



SDM-CAN Datalogger-to-CANbus Interface 

23 

8 Set low power standby mode. The SDM-CAN cannot 
wake from this state as a result of CAN-Bus activity. 
Setting this switch to any other value will bring the 

SDM-CAN out of standby. 

9 Leave this switch setting unchanged 

Switch ‘d’: 0 Listen only mode, no CAN transmission or 
acknowledgement to a correctly received CAN frame is 
possible. The SDM-CAN runs in ‘Error Passive’ mode 

(Default). 

1 One shot transmission, no re-transmission will occur in 
the event of loss of arbitration or error. Frames received 

correctly from an external node are acknowledged 

2 Self-reception. A frame transmitted from the SDM-
CAN that was acknowledged by an external node will 

also be received by the SDM-CAN but no re-
transmission will occur in the event of loss of 

arbitration or error. Frames received correctly from an 
external node are acknowledged 

3 Normal, re-transmission will occur in the event of loss 
of arbitration or error. Frames received correctly from 
an external node are acknowledged. This is the usual 

setting to use if the SDM-CAN is to be used to transmit 
data. 

4 One shot transmission and self test mode. The SDM-
CAN will perform a successful transmission even if 
there is no acknowledgement from an external CAN 

node. Frames received correctly from an external node 
are acknowledged 

5 Self-reception and self test mode. The SDM-CAN will 
perform a successful transmission even if there is no 

acknowledgement from an external CAN node. Frames 
received correctly from an external node are 

acknowledged. The SDM-CAN will receive its own 
transmission 

6 Normal and self test mode. The SDM-CAN will 
perform a successful transmission even if there is no 

acknowledgement from an external CAN node. Frames 
received correctly from an external node are 

acknowledged. 

7 Similar to switch setting 'd-3' , but this setting is 
'remembered' at power-up. During power-up, the SDM-

CAN will acknowledge all valid messages. 

NOTE: This setting relies on the datalogger having set 
up the SDM-CAN before use. 

8 Not defined 

9 Leave this switch setting unchanged 



SDM-CAN Datalogger-to-CANbus Interface 

24 

Please refer to the CAN standards and your own network 
documentation for a more detailed explanation of the switch ‘d’ 
modes. It is important to choose the correct setting when the SDM-
CAN is required to transmit data. Also remember to check the 
jumper settings inside the SDM-CAN if enabling transmission, as 
the default setting is for transmission to be disabled in hardware. 

3.3.5.12 Read SDM-CAN internal switches (type 33): 

This data type returns the internal switch settings, into a specified input 
location. The switch values shown are encoded in the same way as they are set 
(see type 34 above), with the exception that a switch setting of 9 is reserved to 
show an undefined error (please contact Campbell Scientific if such an error 
occurs). 

3.3.6 Start Bit Number (Parameter 09:) 
The start bit number is used to point to the least significant bit (LSB) of the 
data value within the CAN data frame to which this instruction relates. Within 
CAN data frames there is no general standard as to the order or format of the 
binary data. ISO11898 does specify that data should be sent with the most 
significant bit (MSB) first, least significant bit (LSB) last. Most diagrams show 
the MSB on the left and the LSB on the right. However, some users may find 
the start point for the data is referenced in the opposite fashion, i.e. as a count 
from the left side of the frame, and so the SDM-CAN supports both methods of 
referencing the start point. 

By default the SDM-CAN follows the ISO standard and the LSB is referenced 
to the right-most bit of the frame. The bit number can range from 1 to 64 as 
there are up to 64 bits in a CAN frame. If the parameter is indexed, (marked ‘--
’) then the reference is changed to point to the LSB relative to the left-hand 
most bit of the frame. Please note, though, that choosing this option does not 
have any automatic affect on the type (direction) of encoding or decoding used 
– it only changes the method of pointing to the LSB.

When entering the start bit, you should always point to the position 
of the least significant bit of the data to be decoded/encoded. 
Please refer to Appendix D, Examples of CAN Data Frames and 
Data Encoding and Decoding, for diagrams and examples of 
typical data types. 

3.3.7 Number of Bits (Parameter 10:) 
This relates to the number of bits to use in this transaction. This number can 
range from 1 to 64 as there are up to 64 bits in a CAN frame. If this parameter 
is indexed (‘--’) then, when a new value is received, the SDM-CAN, relevant to 
this particular call of Instruction P118,  will pulse the I/O port to indicate to the 
datalogger that the data has been captured and can be read (see below). 

NOTE 

NOTE 



SDM-CAN Datalogger-to-CANbus Interface 

25 

For some data types this parameter will be overridden by a fixed 
number of bits required by the data type; even so the interrupt 
setting can still be set. For integer values, the longest integer you 
can read or send from one datalogger input location is 16 bits as a 
result of limitations within the datalogger (see Section 3.2, System 
Limitations, above for an explanation and work-arounds. 

3.3.8 Number of Values (Parameter 11:) 
This is the number of values that will be transferred to or from the datalogger 
in one operation. For each value transferred, the number of bits (parameter 10) 
will be added to the start bit number (parameter 9) when the start point is 
referenced to the right-hand side of the data frame. If referenced to the left-
hand side, then the number of bits is subtracted from the current bit position. 
The consequence of this is that successive values are always from right to left 
in the frame. 

3.3.9 Location (Parameter 12:) 
This is the start input location where data will be read from or stored to. For 
any remaining values/repetition, each value will be read from, or stored into, 
the next incremental location. 

3.3.10 Multiplier (Parameter 13:) 
The data written to, or read from, an input location is multiplied by this 
parameter.  

3.3.11 Offset (Parameter 14:) 
The data written to, or read from, an input location has this offset parameter 
added to it. 

3.4 Advanced Programming Techniques 

3.4.1 Interrupts Using the I/O Connection 
The I/O port can be used to signal to a datalogger that specific data has been 
captured, by the SDM-CAN, from the CAN network and is available for 
collection by the datalogger.  

The main application for this is where CAN data needs to be captured at a 
much faster rate than the normal scan interval of the datalogger and the 
requirement is to capture as many CAN packets as possible. In this case the 
interrupt facility can be used to give capture of the CAN data as a higher 
priority over the normal scheduled measurement tasks, allowing the data to be 
captured at the highest rate possible. 

The interrupt facility can also help solve the conceptual problem of capturing 
data into the datalogger from another system (one of the other devices on the 
CAN-Bus) which is running on a different asynchronous clock from the 
datalogger itself. This problem needs some consideration in all applications 

NOTE 



SDM-CAN Datalogger-to-CANbus Interface 

26 

except those where the datalogger can be made the master (i.e. where it 
requests data from the remote devices when its needs the data).  

In other applications one has to cater for the possibility that data might not be 
available from the CAN network when the datalogger clock causes the 
datalogger to run its program. This can happen even when the CAN data is 
being transmitted at the same rate as the datalogger is running, simply because 
the two system clocks drift relative to each other. The interrupt facility allows 
you to ensure that data can be captured at the highest possible rate, but you still 
have to use special programming and/or data analysis techniques to 
synchronize the data with other measurements. The main problem is that the 
interrupt function might run more time stamps to the faster measurements in 
order to allow normal data analysis. 

To enable the interrupt facility on the SDM-CAN you need to index (--) the 
program on the number-of-bits parameter (10) of the particular P118 
instruction that you want to cause the interrupt when data is received. The 
following rules apply: 

• The interrupt function only applies to data types which read data from
the CAN-Bus.

• You can mark more than one P118 instruction to generate an interrupt,
but you will then need to read data from all the possible data types
which are indexed, as one or more may contain a new value and all
new data must be read before the interrupt is cleared.

• With the CR10X and CR23X dataloggers you should ensure that all of
the P118 instructions which are marked to cause an interrupt are in the
same interrupt subroutine, normally number 98. Other dataloggers do
not currently support the interrupt subroutine mechanism, but can be
used in a similar mode by polling the digital input connected to the
SDM-CAN I/O port, and only actually reading the data when the port
is high.

As well as indexing parameter 10 of the instructions, you also have to enable 
the interrupt function by changing an internal software ‘switch’ in the SDM-
CAN. This is done by calling P118 with data type 32, and setting digit ‘c’ to 1 
or 2. (See above).  

A switch value of 1 causes the interrupt function to operate in the following 
way: 

a) With no Interrupt pending the I/O port is pulled low with 100Kohms.

b) With an interrupt pending, i.e. data has been captured, the SDM-CAN will
first check that no other device is holding the port high  and then pulse
high for 50 milliseconds. If the I/O terminal is held at +5V by another
peripheral it will wait until the I/O terminal goes low and has been low for
50 milliseconds before trying to drive it high to +5V again. The I/O line
has a drive impedance of 1Kohms.

This method of driving the I/O line allows multiple SDM-CANs and other CSL 
products that support the I/O line to be wired in parallel. One consequence of 
the above technique, though, is that there will be a gap of up to 50 milliseconds 



SDM-CAN Datalogger-to-CANbus Interface 

27 

following the end of one interrupt before the SDM-CAN will raise the port for 
another interrupt. This could be a limitation in high speed data capture 
applications, hence the need for switch 2. 

When switch 2 is set, the SDM-CAN responds immediately to data receipt and 
raises the port as soon as data has been received, filtered and processed. The 
SDM-CAN will only lower the line again permanently when the datalogger 
reads the data out of the SDM-CAN that caused the interrupt. To prevent 
problems with some events which might cause the datalogger to miss 
interrupts, the SDM-CAN will pulse the I/O port low for 1 ms after 50 ms, take 
the line high and then repeat this cycle until all the relevant data has been read. 
Using this switch setting will provide the quickest way of capturing data but 
may not work with other devices sharing the datalogger interrupt port. 

To ensure proper configuration of the SDM-CAN by the 
datalogger for interrupt driven applications, it will pulse its I/O 
port on and off at 50ms intervals for 6 seconds after power-up or 
program recompilation. 

3.4.2 Group Trigger 
The group trigger function provides a mechanism to synchronize the data 
capture by one or more SDM-CAN (and some other SDM devices too). 

This mode is enabled when an SDM-Group Trigger (P110) instruction is 
encountered. When this instruction runs, it broadcasts a special SDM message 
which causes all the SDM-CAN devices to copy the last data values captured 
from the CAN-bus into the working data buffers, and no further updates are 
allowed until P110 runs again (normally at the next execution of the program 
table). P118 instructions will read the locked values which are all sampled at 
once. 

This SDM-Group trigger command is normally positioned at the beginning of 
the program table to lock all data samples exactly to the start of the scan 
interval. It should be remembered, however, that in the case of the SDM-CAN 
it will simply lock these values to the last values captured which could already 
have been transmitted some time earlier.  

The SDM-Group trigger instruction actually broadcasts its message to SDM 
address 334   (base 4), which prevents this address being available if the SDM-
Group trigger command is to be used. This effectively reduces the number of 
SDM peripherals that support global trigger to 15 units.  

3.4.3 Frame buffers with filtering and triggering 
Operating systems V3 include the ability for the user data logger program to 
attach a buffer of 256 frames to any receiving CAN ID up to a limit of 25 
different ID’s.  

If the user program tries to allocate more than 25 buffers then the 
additional buffer allocations will be ignored. 

NOTE 

NOTE 



SDM-CAN Datalogger-to-CANbus Interface 

28 

Each buffer can be configured as a standard ring buffer with no trigger or filter 
associated with it. The buffer can also be set to start to capture data when a 
predefined trigger pattern is encountered within the CAN data, or it can filter 
and buffer only the CAN frames that have some part of the data that fits a 
pattern. 

To configure a filter or trigger two masks are used. The first is user defined as 
a 64 bit include AND mask applied to the CAN data of the CAN ID of interest. 
A second 64 bit user defined pattern is compared with the CAN data and when 
it matches the results of the previous `AND’ operation the buffer will either 
trigger or filter CAN data of a specific ID until the buffer is full. 

The buffer is a fill and stop ring buffer so if the buffer is full no more data will 
be stored until the logger reads a frame and makes room for another frame to 
be stored. With no mask and pattern bits set in trigger mode the buffer will 
trigger on any frame and behave as a normal ring buffer. This is useful for 
collecting fast back to back bursts of packets as the logger can collect them 
later in the knowledge the SDM-CAN will have captured up to 256 packets and 
stored them in its buffer. 

3.4.3.1 Setup of Mask and Filter / trigger 

To implement this buffer function the build data frame Data type (7) is used as 
follows: 

a) If “start bit number” (parameter 9) is NON-zero then data type 7 will build
a data frame as normal.

b) If (parameter 9) is zero, the number of bits (parameter 10) is set to 8 with
index (--) NOT SET and number of bytes (parameter 11) is set to 16 then
an `Include mask’ and `Filter mask’ can be set at run time. The first 8
bytes are the Include mask mapped directly as a 64 bit frame with the first
byte as the right most byte of the data frame. The second 8 bytes is the
Filter mask mapped directly as a 64 bit frame with the first byte as the
right most byte of the data frame. This instruction will also flush the
buffer. This is used to create the buffer and attach it to a particular ID.

c) If (parameter 9) is zero, the number of bits (parameter 10) is set to 8 with
the index (--) SET and number of bytes (parameter 11) is set to 16 then an
`Include mask’ and `Trigger mask’ can be set at run time. The first 8 bytes
are the Include mask mapped directly as a 64 bit frame with the first byte
as the right most byte of the data frame. The second 8 bytes is the Trigger
mask mapped directly as a 64 bit frame with the first byte as the right most
byte of the data frame. This instruction will also flush the buffer and reset
ready for trigger. This is used to create the buffer and attach it to a
particular ID.

3.4.3.2 Reading / Polling Buffer 

To implement this buffer function the read switch Data type (33) is used as 
follows:  

a) If “start bit number” (parameter 9) is zero then data type 33 will read the
internal switches as normal.



SDM-CAN Datalogger-to-CANbus Interface 

29 

b) If (parameter 9) is one, the number of bits (parameter 10) is set to 8 with
the index (--) NOT SET and number of bytes (parameter 11) is set to zero
then one CAN frame will be transferred from the buffer to the working
buffer ready for normal data collection using Data Types 1-6. Also the
number of CAN frames stored in the buffer will be stored in a logger
location specified by this instruction.

c) If (parameter 9) is one, number of bits (parameter 10) is set to 8 with the
index (--) SET and number of bytes (parameter 11) is set to zero then only
the number of CAN frames stored in the buffer will be stored in a logger
location specified by this instruction. This instruction would generally be
used for polling the buffer.

3.4.3.3 Basic Sequence of Buffer Usage: 

1. Initialize buffer and trigger event or filter using an SDM-CAN instruction
with data type 7.

2. Wait long enough or poll the buffer until enough CAN frames are
collected using an SDM-CAN instruction with data type 33.

3. Transfer a CAN frame from the buffer to the working buffer using an
SDN-CAN instruction with data type 33.

4. Parse the CAN data frame using the normal SDM-CAN data types 1-6.

5. Repeat from (3) until you have collected and parsed all the CAN frames
you require from the buffer.

6. Do other processing ……….. 

7. Repeat from (1) to collect another set of CAN frames.

3.5 Program Examples 
Examples of specific instructions which decode/encode CAN data are shown in 
Appendix C, Application of the SDM-CAN on Networks Complying with the 
J1939 SAE Standards. This section gives some general examples of program 
constructs which show the general principles of operation. 

3.5.1 Reading CAN Data 
The following example reads a 16 bit engine speed value from a CAN network 
running at 250K baud. 

;{CR23X} 
; 
*Table 1 Program
01: 1.0 Execution Interval (seconds) 

;Retrieve Data from CAN network  



SDM-CAN Datalogger-to-CANbus Interface 

30 

1:  SDM-CAN (P118) 
1: 0 SDM Address 
2: 4 Time Quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1024 ID Bits 0..10 (-- for 11-bit CAN ID) 
6: 7680 ID Bits 11..23 
7: 12 ID Bits 24..28 
8: 2 Rx, unsigned int, LSB 1st 
9: 33 Start Bit No. 
10: 16 No. of Bits 
11: 1 No. of Values 
12: 1 Loc [ Eng_Spd   ] 
13: 0.125 Mult 
14: 0.0 Offset 

*Table 2 Program
02: 0.0000 Execution Interval (seconds) 

*Table 3 Subroutines

End Program 

The above example uses the J1939 standard to define the ID 
parameter and value position in the data frame. Please refer to 
Appendix C, Application of the SDM-CAN on Networks 
Complying with the J1939 SAE Standards, for an explanation of 
the application of the SDM-CAN interface to networks complying 
to the J1939 standard. 

3.5.2 Simple CAN Data Transmission 
The following example transmits a 16 bit temperature value to a CAN network 
running at 500K baud. 

;{CR10X} 
; 
*Table 1 Program
01: 1 Execution Interval (seconds) 

;When Flag 1 is high set SDM-CAN switches to transmit mode 

1:  If Flag/Port (P91) 
1: 11 Do if Flag 1 is High 
2: 30 Then Do 

;Load input location with value for switches  

6:  Z=F (P30) 
1: 0003 F 
2: 0 Exponent of 10 
3: 3 Z Loc [ Switches  ] 

NOTE 



SDM-CAN Datalogger-to-CANbus Interface 

31 

;Send switch settings to SDM-CAN 

7:  SDM-CAN (P118) 
1: 0 SDM Address 
2: 2 Time Quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1 ID Bits 0..10 
6: 0 ID Bits 11..23 
7: 0 ID Bits 24..28 
8: 32 Set switches 
9: 00 Start Bit No. 
10: 00 No. of Bits 
11: 00 No. of Values 
12: 3 Loc [ Switches  ] 
13: 1.0 Mult 
14: 0.0 Offset 

;Set flag 1 low after sending switch settings 
8:  Do (P86) 

1: 21  Set Flag 1 Low 

9:  End (P95) 

10:  Batt Voltage (P10) 
1: 4 Loc [ Battery  ] 

11:  Internal Temperature (P17) 
1: 5 Loc [ Int_Temp  ] 

12:  Thermocouple Temp (DIFF) (P14) 
1: 6 Reps 
2: 1 2.5 mV Slow Range 
3: 1 DIFF Channel 
4: 1 Type T (Copper-Constantan) 
5: 5 Ref Temp (Deg. C) Loc [ Int_Temp  ] 
6: 6 Loc [ TC_1      ] 
7: 1.0 Mult 
8: 0.0 Offset 

;Transmit Data on to CAN network 

13:  SDM-CAN (P118) 
1: 0 SDM Address 
2: 2 Time Quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1 ID Bits 0..10 
6: 0 ID Bits 11..23 
7: 0 ID Bits 24..28 
8: 20 Tx, unsigned int, LSB 1st 
9: 1 Start Bit No. 
10: 16 No. of Bits 
11: 1 No. of Values 
12: 6 Loc [ TC_1      ] 
13: 1.0 Mult 
14: 0.0 Offset 

*Table 2 Program
02: 0.0000 Execution Interval (seconds) 

*Table 3 Subroutines

End Program 



SDM-CAN Datalogger-to-CANbus Interface 

32 

The default setting for the SDM-CAN internal software switches 
is 0. The switches must be set by using the data type 32 parameter 
to enable data transmission. Also remember to check the jumper 
settings inside the SDM-CAN if enabling transmission, as the 
default setting is for transmission to be disabled in hardware. 

3.5.3 Building and Sending Data Frames 
The following table shows the parameters used for the process of using a series 
of P118s to build a dataframe and then use a further call with data type set to 
26 to define part of the working buffer as a remote frame response: 

Input Loc  Value Data 
type 

Start Bit nbits 

Dec Hex Indexed 64 bit Frame 

Un-initialized frame>> 0x12abcdef12345678 

170 0xaa 7 5 N 8 Loaded into frame>> 0x0000000000000aa0 

1234 0x4d2 13 17 N 16 Ored into frame>> 0x0000000004d20aa0 

65535 0xffff 13 31 N 7 Ored into frame>> 0x0000001fc4d20aa0 

171 0xab 13 8 Y 8 Ored into frame>> 0xab00001fc4d20aa0 

X X 26 28 Y 32 Remote Response Frame>> 0x0ab00001 32 bit 
frame 

3.5.4 Using the Interrupt Function 
By indexing (‘--‘) the No. of bits parameter, when a new value that an 
instruction refers to is received the SDM-CAN I/O interrupt is enabled. This 
can be used to set a control port high and run an interrupt subroutine. An 
example of using the interrupt function is shown below. 

;{CR23X} 
; 
*Table 1 Program
01: 1  Execution Interval (seconds)

;Set flag 1 high to set SDM-CAN internal software switches
1:  If Flag/Port (P91)
1: 11 Do if Flag 1 is High 
2: 30 Then Do 

;Load input location with value for switches 
2:  Z=F (P30) 

1: 10 F 
2: 0 Exponent of 10 
3: 3 Z Loc [ Switches  ] 

NOTE 



SDM-CAN Datalogger-to-CANbus Interface 

33 

;Send switch settings to SDM-CAN 
3:  SDM-CAN (P118) 

1: 0 SDM Address 
2: 2 Time Quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1 ID Bits 0..10 
6: 0 ID Bits 11..23 
7: 0 ID Bits 24..28 
8: 32 Set switches 
9: 00 Start Bit No. 
10: 00 No. of Bits 
11: 00 No. of Values 
12: 3 Loc [ Switches  ] 
13: 1.0 Mult 
14: 0.0 Offset 

;Set flag 1 low after sending switch settings 
4:  Do (P86) 

1: 21  Set Flag 1 Low 

5:  End (P95) 

*Table 2 Program
02: 0.0000 Execution Interval (seconds) 

*Table 3 Subroutines

;Interrupt subroutine 98, when C8 goes high run this subroutine 
1:  Beginning of Subroutine (P85) 
1: 98  Subroutine 98 

;Read CAN value 
2:  SDM-CAN (P118) 

1: 00 SDM Address 
2: 2 Time Quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1 ID Bits 0..10 (-- for 11-bit CAN ID) 
6: 0 ID Bits 11..23 
7: 0 ID Bits 24..28 
8: 1 Rx, unsigned int, MSB 1st 
9: 1 Start Bit No. 
10: 16 -- No. of Bits 
11: 1 No. of Values 
12: 10 Loc [ RxTC_1   ] 
13: 1.0 Mult 
14: 0.0  Offset 

;end of interrupt subroutine 
3:  End (P95) 

End Program 

3.5.5 Using the Group Trigger 
The SDM-Group Trigger controls SDM devices that support the Group Trigger 
protocol, including the SDM-CAN. All Group Trigger devices are triggered to 
make simultaneous measurements, the data is then retrieved by using the 
appropriate instruction.  

For the SDM-CAN, this instruction is can be used in a vehicle where more than 
one CANbus network is present. An example of using the group trigger is 
shown below. 



SDM-CAN Datalogger-to-CANbus Interface 

34 

;{CR23X} 
; 
*Table 1 Program
01: 1 Execution Interval (seconds) 

;Initiate Group Trigger 
1:  SDM-Group Trigger (P110) 

;Retrieve Data from CAN network A 
2:  SDM-CAN (P118) 
1: 00 SDM Address 
2: 4 Time Quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 204 ID Bits 0..10 (-- for 11-bit CAN ID) 
6: 81 1 ID Bits 11..23 
7: 7 ID Bits 24..28 
8: 23 Tx, real IEEE4, MSB 1st 
9: 1 Start Bit No. 
10: 32 No. of Bits 
11: 1 No. of Values 
12: 1 Loc [ AC_Comp_1 ] 
13: 1.0 Mult 
14: 0.0 Offset 

;Retrieve Data from CAN network B 
3:  SDM-CAN (P118) 
1: 01 SDM Address 
2: 4 Time Quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1024 ID Bits 0..10 (-- for 11-bit CAN ID) 
6: 7680 ID Bits 11..23 
7: 12 ID Bits 24..28 
8: 2 Rx, unsigned int, LSB 1st 
9: 33 Start Bit No. 
10: 16 No. of Bits 
11: 1 No. of Values 
12: 2 Loc [ Eng_1     ] 
13: 0.125 Mult 
14: 0.0 Offset 

;Retrieve Data from CAN network B 
8:  SDM-CAN (P118) 
1: 01 SDM Address 
2: 4 Time Quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 768 ID Bits 0..10 (-- for 11-bit CAN ID) 
6: 7680 ID Bits 11..23 
7: 12 ID Bits 24..28 
8: 1 Rx, unsigned int, MSB 1st 
9: 49 Start Bit No. 
10: 8 No. of Bits 
11: 1 No. of Values 
12: 3 Loc [ Throttl_1 ] 
13: 0.125 Mult 
14: 0.0 Offset 

*Table 2 Program
02: 0.0000 Execution Interval (seconds) 

*Table 3 Subroutines

End Program 



SDM-CAN Datalogger-to-CANbus Interface 

35 

4. Programming CRBasic Dataloggers to use the
SDM-CAN

This chapter describes how to program the CR5000/CR9000X and older 
CR9000 dataloggers, using CRBASIC language, to control the SDM-CAN 
interface. Similar principles can be followed for newer CRX000 dataloggers 
that include the SDM-CAN instruction in their operating system. 

4.1 General Principles 
Some newer dataloggers use the CRBASIC programming language. CRBASIC 
incorporates an instruction which is virtually identical to P118, described in 
Section 3, Programming CR10X, CR7 and CR23X Dataloggers to use the 
SDM-CAN. To avoid duplication this section of the manual simply references 
the relevant paragraphs in that section. For this reason you are advised to read 
section three in its entirety to gain a full understanding of all the general 
principles and parameter settings. 

Currently neither the CR5000, CR9000X nor CR9000 support interrupt driven 
events as described above. However, with the extra speed of these dataloggers, 
a similar function can be achieved by polling a digital input and only executing 
the instructions required when the port is high. The consequences of doing this 
in either the slow or fast tables needs to be considered, especially when trying 
to synchronize this data with analogue measurements. 

4.1.1 High Speed Block Mode 
Operating system Version 3 supports a new high speed block mode for SDM 
communication that allows much faster data transfers to the logger. This was 
implemented for the CR9000 and CR5000 to allow users to run a program at 
more than 200Hz with the SDM-CAN. It gives a 5 fold improvement in 
performance over normal mode. Block mode operation is activated by using 
data types 65 to 70; these are the block mode equivalents of data type’s 1 to 6. 
When block mode is active then all CAN data is collected at  the beginning of 
the scan in parallel with analogue measurements. There are a number of 
restrictions when using block mode. There is a limit of 128 values that can be 
read in total. Other restrictions are logger specific. On a CR9000 - firstly you 
can only have one differently addressed SDM-CAN in each scan unless all 
other differently addressed SDM-CAN’s are using normal mode data types 1 to 
6. Secondly you cannot use conditional statements with SDM-CAN
instructions which are enabled for block mode. Restrictions for use with the
CR9000X/CR5000 are that you must keep all block mode instructions together
and not intermix normal mode instructions within the group of block mode
instructions. You can however put normal mode instructions in front or after
the group of block mode instructions. You cannot use conditional statements
on either normal or block mode SDM-CAN instructions.

Time to execute block mode for a CR9000 in milliseconds with maximum bus 
speed `SDMSpeed(0)’ is approximately = 1.50 + 0.1 * n bytes of data. 

Time to execute block mode for a CR9000 in milliseconds with default bus 
speed is approximately = 2.07 + 0.207 * n bytes of data. 



SDM-CAN Datalogger-to-CANbus Interface 

36 

Time to execute block mode for a CR5000 in milliseconds with maximum bus 
speed `SDMSpeed(12)’ is approximately = 1.60 + 0.108 * n bytes of data. 

Time to execute block mode for a CR5000 in milliseconds with default bus 
speed is approximately = 2.12 + 0.27 * n bytes of data. 

This timing is only for the block mode instruction and any other instructions 
within the scan will reduce the maximum possible scan rate. 

4.2 Datalogger Instruction 
The SDM-CAN is controlled by an instruction called CANBUS. Please check 
that your datalogger’s operating system includes this instruction. You may also 
require an update to your CRBASIC editor to get the full help screens. Contact 
Campbell Scientific if you need advice about upgrading your operating system. 

The CANBUS instruction takes the form: 

CANBUS(CANDATA(),ADDRESS,TIMEQUANTA,TSEG1,TSEG2,ID, 
DATATYPE,STARTBIT,NUMBITS,NUMVALS,MULT,OFFSET) 

where: 

CANDATA is a variable or array which either holds data to be transmitted or 
will hold data that is to be read from the CAN-Bus. 

ADDRESS is the SDM address of the SDM-CAN in question. 

TQUANTA, TSEG1 and TSEG2 have the same function as in P118 above. 

ID is the CAN ID, where the ID is entered as a single decimal equivalent. 
Entering the number as a negative value signifies it is an 11 bit ID, otherwise it 
is a 29-bit ID. 

Due to current system constraints the ID parameter must be 
entered directly into the CanBus instruction. 

DATATYPE is the same as in P118. 

STARTBIT is the same as in P118, except you enter a negative number 
instead of ‘indexing’ the number to signify lefthand referencing. 

NUMBITS is the same, and again a negative number is equivalent to indexing 
the value to enable an interrupt. 

NUMVALS, MULT and OFFSET all have the same function. 

4.2.1 Reading CAN Data 
The following example reads a 16 bit engine speed value from a CAN network 
running at 250K baud. 

NOTE 



SDM-CAN Datalogger-to-CANbus Interface 

37 

'Set scan rate 
Const PERIOD = 1                    'Scan interval number 
Const P_UNITS = 2                   'Scan interval units (Secs) 
'\\\\\\\\\\\\\\\\\\\\\\\\\ CANBUS CONSTANTS ////////////////////// 
'------------------- Physical Network Parameters ----------------- 
Const TQUANT = 4  ')Set SDM-CAN to 250K 
Const TSEG1 = 5   ')Network speed 
Const TSEG2 = 2   ') 
'---------------------- Data Frame Parameters -------------------- 
'___________________________CANbus Block1_________________________ 
'Collect and retrieve 16 bit data value 
'Data type 2, unsigned integer, least significant byte first 
Const CANREP1 = 1    'Repetitions 
Const ADDR1 = 0    'SDM address of SDM-CAN Module 
Const DTYPE1 = 2    'Collect and retrieve data values 
Const STBIT1 = 33    'Start position in data frame 
Const NBITS1 = 16    'Number of bits/value 
Const NVALS1 = 1    'Number of values  
Const CMULT1 = 0.4    'Multiplier 
Const COSET1 = 0    'Offset 
Dim CANBlk1(CANREP1)  'Dimensioned source 
'\\\\\\\\\\\\\\\\\\ ALIASES & OTHER VARIABLES ////////////////// 
Alias CANBlk1(1) = Engine_Speed  'Assign an alias name to CANBlk1(1) 
'\\\\\\\\\\\\\\\\\\\\\\\\\\\ PROGRAM /////////////////////////// 
BeginProg    'Program begins here 
'MainSequence 
Scan(PERIOD,P_UNITS,0,0)  'Scan once every 1 Secs, non-burst 
'__________________________ CAN Blocks __________________________ 
'Retrieve Data from CAN network  
CanBus(CANBlk1(),ADDR1,TQUANT,TSEG1,TSEG2,217056256, 
DTYPE1,STBIT1,NBITS1,NVALS1,CMULT1,COSET1) 
   Next Scan                       'Loop up for the next scan 
EndProg                             'Program ends here 

4.2.2 Simple CAN Data Transmission 
The following example transmits a 16 bit temperature value to a CAN network 
running at 250K baud. 

'Set scan rate 
Const PERIOD = 1                     'Scan interval number 
Const P_UNITS = 2                    'Scan interval units (Secs) 
\\\\\\\\\\\\\\\\\\\\ THERMOCOUPLE CONSTANTS //////////////////// 
'__________________________ Temp Block1 __________________________ 
Const TRNG1 = 17    'Block1 measurement range (50 mV) 
Const TTYPE1 = 0    'Block1 thermocouple type (T) 
Const TREP1 = 1    'Block1 repetitions 
Const TSETL1 = 30    'Block1 settling time (usecs) 
Const TINT1 = 20000  'Block1 integration time (usecs) 
Const TMULT1 = 1    'Block1 default multiplier 
Const TOSET1 = 0    'Block1 default offset 
Dim TBlk1(TREP1)    'Block1 dimensioned source 
Units TBlk1 = Deg_C  'Block1 default units (Deg_C) 
'\\\\\\\\\\\\\\\\\\\\\\\\\ CANBUS CONSTANTS ////////////////////// 
'------------------- Physical Network Parameters ----------------- 
Const TQUANT = 4  ')Set SDM-CAN to 250K 
Const TSEG1 = 5   ')Network speed 
Const TSEG2 = 2   ') 
'---------------------- Data Frame Parameters -------------------- 
'___________________________CANbus Block1_________________________ 
'Send switch value Data type 32 
Const CANREP1 = 1  'Repetitions 
Const ADDR1 = 0    'SDM address of SDM-CAN Module 
Const DTYPE1 = 32  'Send switch value 
Const STBIT1 = 0   'Start position in data frame 



SDM-CAN Datalogger-to-CANbus Interface 

38 

Const NBITS1 = 0    'Number of bits/value 
Const NVALS1 = 0    'Number of values  
Const CMULT1 = 1.0    'Multiplier 
Const COSET1 = 0    'Offset 
Dim Switches(CANREP1)  'Dimensioned source 
'___________________________CANbus Block2_________________________ 
'Transmit 16 bit data value 
'Data type 20, unsigned integer, least significant byte first 
Const CANREP2 = 1   'Repetitions 
Const ADDRESS2 = 0  'SDM address of SDM-CAN Module 
Const DTYPE2 = 20   'Tx, unsigned int, LSB 1st 
Const STBIT2 = 49   'Start position in data frame 
Const NBITS2 = 16   'Number of bits/value 
Const NVALS2 = 1  'Number of values 
Const CMULT2 = 1  'Multiplier 
Const COSET2 = 0  'Offset 
'\\\\\\\\\\\\\\\\\\ ALIASES & OTHER VARIABLES ////////////////// 
Public Flag(8)  'General Purpose Flags 
Dim TRef(1)    'Declare Reference Temp variable 
'\\\\\\\\\\\\\\\\\\\\\\\\\\\ PROGRAM /////////////////////////// 
BeginProg    'Program begins here 
'MainSequence 
Scan(PERIOD,P_UNITS,0,0)  'Scan once every 1 Secs, non-burst 
'__________________________ Temp Blocks __________________________ 
ModuleTemp(TRef(),1,5,100) 
TCSE(TBlk1(),TREP1,TRNG1,5,1,TTYPE1,TRef(1), 
TSETL1,TINT1,TMULT1,TOSET1) 
'__________________________ CAN Blocks __________________________ 
'When Flag 1 is high set SDM-CAN switches to transmit mode 
If Flag(1) Then 
'Load variable with value for switches 
Switches = 3 
'Send switch settings to SDM-CAN 
CanBus(Switches,ADDR1,TQUANT,TSEG1,TSEG2,0, 
DTYPE1,STBIT1,NBITS1,NVALS1,CMULT1,COSET1) 
'Set flag 1 low after sending switch settings 
Flag(1) = False 
EndIf 

'Transmit Data on to CAN network 
CanBus(TBlk1(),ADDR2,TQUANT,TSEG1,TSEG2,1, 
DTYPE2,STBIT2,NBITS2,NVALS2,CMULT2,COSET2) 
   Next Scan  'Loop up for the next scan 
EndProg    'Program ends here 

The default setting for the SDM-CAN internal software switches 
is 0. The switches must be set by using the data type 32 parameter 
to enable data transmission. Also remember to check the jumper 
settings inside the SDM-CAN if enabling transmission, as the 
default setting is for transmission to be disabled in hardware. 

4.2.3 Digital I/O Triggered CANbus Measurements 
Although the CR5000 and CR9000 do not have the interrupt feature that is 
available on the CR10X, CR7 and CR23X it is possible to connect the I/O line 
from the SDM-CAN to a Digital I/O port. A program control instruction can 
then be used to trigger the retrieval of new CAN data from the SDM-CAN 
when the port is high. An example of this is shown below 

NOTE 



SDM-CAN Datalogger-to-CANbus Interface 

39 

'Set scan rate 
Const PERIOD = 1   'Scan interval number 
Const P_UNITS = 2  'Scan interval units (Secs) 

'\\\\\\\\\\\\\\\\\\\\\\\\\ CANBUS CONSTANTS ////////////////////// 
'------------------- Physical Network Parameters ----------------- 
Const TQUANTA = 4  ')Set SDM-CAN to 250K 
Const TSEG1 = 5    ')Network speed 
Const TSEG2 = 2    ') 
'---------------------- Data Frame Parameters -------------------- 
'___________________________CANbus Block1_________________________ 
Const CANREP1 = 1    'Repetitions 
Const ADDRESS1 = 0    'SDM address of SDM-CAN Module 
Const DATATYPE1 = 1   'Collect and retrieve data values   
Const STARTBIT1 = 1   'Start position in data frame 
Const NUMBITS1 = -16  'Number of bits/value – for interrupt 
Const NUMVALS1 = 1    'Number of values  
Dim CANBlk1(CANREP1)  'Dimensioned source 
Dim NewData 
'\\\\\\\\\\\\\\\\\\ ALIASES & OTHER VARIABLES ////////////////// 
Alias CANBlk1(1) = Accel_Pedal  'Assign an alias name to CANBlk1(1) 
'\\\\\\\\\\\\\\\\\\\\\\\\\\\ PROGRAM /////////////////////////// 
BeginProg    'Program begins here 
'MainSequence 
Scan(PERIOD,P_UNITS,0,0)  'Scan once every 1 Secs, non-burst 
'__________________________ CAN Blocks __________________________ 
'Read status of digital I/O port, return value to NewData variable 
   ReadIO(NewData,7,&B1) 
'When digital I/O port is high retrieve data from CAN network 
   If NewData > 0 Then 
CanBus(CANBlk1(),ADDRESS1,TQUANTA,TSEG1,TSEG2, 217056000, 
DATATYPE1,STARTBIT1,NUMBITS1,NUMVALS1,1,0) 
   EndIf 
Next Scan                        'Loop up for the next scan 
EndProg                          'Program ends here 

Due to current system constraints the ID parameter must be 
entered directly into the CanBus instruction. 

4.2.4 SlowSequence Instruction 
It is also possible to have a SlowSequence Scan for low priority CANbus 
measurements that are not needed at the rate of the primary scan interval. The 
CR9000 or CR5000 tags on measurement instructions from the slow sequence 
scan to the normal scan as time allows. 

Please refer to the CR9000 or CR5000 on-line help for a more detailed 
explanation of the SlowSequence instruction. 

5. Using the RS232 Serial Diagnostics Port
5.1 Connecting to the RS232 User Port 

The user communication port is a DCE configured, 9 pin RS232 port. The port 
automatically powers up  when it detects valid RS232 signals and shuts down 
after a period of inactivity. The SDM-CAN automatically detects the incoming 
baud rates in the range from 1200 to 115200 baud. It is configured to work 

NOTE 



SDM-CAN Datalogger-to-CANbus Interface 

40 

with eight data bits, one start bit and stop bit and no parity. The pin out of the 
RS232 DCE 9 pin ‘D’ plug is shown in TABLE 5-1. 

TABLE 5-1.  RS232 Pin Out 

Pin Number RS232 function Direction of signal 

1 DCD input. 

2 RX input. 

3 TX Output. 

4 DTR Output. 

5 0V Ground. 

6 DSR input. 

7 RTS Output. 

8 CTS input. 

9 RI input. 

To connect the SDM-CAN to most computers use a NULL Modem cable. 
When you try to communicate with the SDM-CAN, first send at least three 
‘Carriage Returns’ so the SDM-CAN can recognize the baud rate at which you 
are communicating. As soon as your baud rate has been detected, the SDM-
CAN will return the prompt ‘CAN>’ to your terminal window. If you have just 
powered the SDM-CAN up, you must wait until the LED status flash has 
finished before you attempt to communicate. 

The User Command interface will accept a number of commands which allow 
the user to view CAN frames, view set-up and other debug tools. These 
commands are discussed below. 

5.2 Diagnostic Commands 
Most commands are sent in normal ASCII text. The interface is not case 
sensitive and supports backspace for correction of typing errors. Normally you 
would execute these commands from a PC which is running a terminal 
emulator such as Hyperterminal.  

Some parameters for the commands are normally entered in decimal base 10 
format, but you can also enter them in hex format if you precede the number 
with ‘0x’. For example, 12345610 can be entered ‘as it is’ or, alternatively, in 
hex format 0x1e24016.  

The diagnostic commands are listed below: 

BINS – This command will cause a hex dump of the bins configured by the 
datalogger program. The output for each line is as follows: 

Bin number, Data type, Start bit, Number of bits, Buffer pointer, Bin flags, 
Number of values, TQUANTA, TSEG1, TSEG2, SDM mode and CAN ID.  
These fields are in raw format and may contain flags to indicate modes.  This 
command is used by Campbell Scientific for diagnostic purposes only. 



SDM-CAN Datalogger-to-CANbus Interface 

41 

BUFFERS – Takes no parameters. This command will dump the buffers 
configured by the datalogger program.  

The output format is: 

On the first line after the command, the number of buffers used in shown in 
hex format, then on each successive line the buffer set-up is dumped in the 
following hex form: Buffer Number, Frame ID, Info Byte, Flags, Working 
Buffer, Read Buffer, Bin Number Pointer. This command is only normally 
used by Campbell Scientific for diagnostic purposes. 

CANBAUD nnnn – Scans the CANBUS to attempt to ascertain the current 
baud rate. Parameter 'n' is in the range of 0-255 and is the amount of time, in 
steps of 50 ms,  the SDM-CAN should dwell at each baud rate looking for 
CANBUS activity. If the 'n' parameter is omitted, two seconds dwell time will 
be used by default. 

The CANBUS is scanned for the following baud rates: 

20K, 50K, 125K, 250K, 500K, 800K and 1 Megabaud. 

As soon as the baud rate is found, the bus parameters TQUANTA, TESG1, 
TSEG2 and frames / n*50msec are reported to the user. The SDM-CAN will 
then be set to, and stay at, this baud rate until the changed by the datalogger 
following a re-compilation of the program by the user, or by a datalogger SDM 
communications error which will force the SDM-CAN to be reset. If no baud 
rate can be detected, an error is reported to the user. 

Because any communication errors cause a default back to the datalogger set 
baud rate, it is not recommended that this command is used for anything other 
than CANBUS diagnostic purposes. 

CLRERROR – Takes no parameters. This command will clear all the error 
counters Transmit, Receive, Overrun and Watch-dog to zero and clear a bus off 
condition. 

COMP – Takes no parameters. This command will force the datalogger to  re-
send all of the configuration information again. This command is used by 
Campbell Scientific for debugging purposes only. 

HELP or ? – Prints a list of valid user commands. 

HEXDUMP aaaa bbbb – The first parameter ‘aaaa’ is the start address and 
the second parameter ‘bbbb’ is the number of bytes to dump. This command 
will dump the SDM-CAN’s full memory address range in a hex format. Each 
line that is output starts with the address followed by a16 byte value and then 
the ASCII characters. Any unprintable characters are represented by a ‘.’ 
character.  

MONITOR nnnn – This command takes parameters in the range n=0 to n=2, 
where: 

0 = monitor CANBUS for IDs used by the datalogger program (this is the 
default if the parameter is missing). 



SDM-CAN Datalogger-to-CANbus Interface 

42 

1 = monitor CANBUS for IDs that are allowed to pass through the simple 
IDfilter. 

2 = monitor all CANBUS messages on the bus. 

The monitor command will output a CAN frame in hex format when received. 
This command has a ring buffer that can hold 20 frames before it overflows. 
Monitor mode will not miss frames when they come in high speed burst’s. This 
command will perform better the higher the terminal baud rate. 

The hex output format of the command is as follows:- Info byte, Frame ID, 
Frame Data. To exit this command use ‘CTRL-C’. 

SETCANBAUD nnnn  nnnn  nnnn – Sets the CANBUS baud rate. The 
parameters are in the following order: TQUANTA = 0 - 63, TSEG1 = 0 - 15 
and TSEG2 = 0 to 7. See Section 3, Programming CR10X, CR7 and CR23X 
Dataloggers to use the SDM-CAN, which gives details on how to calculate 
baud rate using these parameters. The SDM-CAN baud rate will stay set until it 
is changed by the datalogger following a program re-compilation by the user, 
or by a datalogger communications error, which will force the SDM-CAN to 
be reset.  

If parameters are omitted, the default setting is 1 Megabaud with the following 
parameters: TQUANTA=1, TSEG1=5 and TSEG2=2. 

Because any communication errors cause a default back to the datalogger set 
baud rate, it is not recommended that this command is used for anything other 
than CANBUS diagnostic purposes. 

STAT – Takes no parameters. This command will return the CAN bus status as 
follows (each value is output on a new line in decimal format): 

TQUANTA, TSEG1, TSEG2, Transmit error, Receive error, Overrun error, 
Watchdog error, Switch Settings, SDM Address, verbose mode, Bus mode and 
buffers = n n n where the first `n’ is number of bins, the 2nd `n’ is number of 
buffers and the 3rd `n’ is number of frame buffers. 

Bus mode indicates the following states: 

0 = Bus-On; the SDM-CAN is involved in bus activities. Error counters 
are less than 96. 

1 = Bus-On; the SDM-CAN is involved in bus activities. Error counters 
are equal to or greater than 96. 

2 = Bus-Off; the SDM-CAN is not involved in bus activities. Error 
counters are less than 96. 

3 = Bus-Off; the SDM-CAN is not involved in bus activities. Error 
counters are equal to or greater than 96. 

SWITCH nnnn – This command changes the internal switch settings of the 
SDM-CAN. Please refer to Data type 32, in Section 3, Programming CR10X, 
CR7 and CR23X Dataloggers to use the SDM-CAN, above, for details of the 
switch parameter. 

VERBOSE nnnn – The parameter nnnn is the verbose mode. With no 
parameter or when nnnn=0 verbose mode is off, otherwise if nnnn>0 verbose 



SDM-CAN Datalogger-to-CANbus Interface 

43 

mode is on. Currently verbose mode ‘1’ turns on compile reports – used for 
Campbell Scientific debugging purposes only.  

VERSION – Takes no parameters. This command will output the OS version 
number on the first line and the OS signature on the second line. If the 
signature is zero then the OS is corrupt and the SDM-CAN may malfunction. 
The Status is then returned (see STAT  above). 

5.3 Loading a New Operating System into the SDM-CAN 
Interface 

When new functions are added, or bugs fixed, new versions of the operating 
system for the SDM-CAN interface may become available. As with most 
newer Campbell Scientific devices, the operating system is stored in non-
volatile memory which can be re-programmed or updated by downloading a 
new operating system to the module from a PC running appropriate Campbell 
Scientific software (see below). 

For downloading software you will need the following: 

• Device Configuration Utility (DevConfig), which is bundled with 
PC400 and LoggerNet datalogger support software.  It is also 
available at no charge from www.campbellsci.eu/downloads.

• A copy of the SDM-CAN operating system (copied to your hard-disk)

• A PC running Microsoft Windows

• A null-modem cable that connects the RS-232 port on the SDM-CAN 
to a serial port on your PC 

The SDM-CAN also requires a 12V power supply, but does not have to be 
connected to a datalogger. 

To load the new operating system take the following steps: 

• Run DevConfig and select SDM-CAN for the device type.

• Follow the instructions presented in DevConfig.

• Wait until the process has completely finished and reports a successful
upgrade before removing power from the SDM-CAN or quitting
DevConfig.

6. Attributions
Microsoft and Windows are either registered trademarks or trademarks of 
Microsoft Corporation in the United States and/or other countries. 

Primary content of this manual is used by permission and is consistent with the 
publication SDM-CAN CAN-Bus Interface User Guide, Issued 26.6.07.  
Adaptations of technical content are indicted by shading. 

http://www.campbellsci.com/downloads


SDM-CAN Datalogger-to-CANbus Interface 

44 



A-1

Appendix A. Principles of Operation 

A.1 Data Collection
The SDM-CAN operation is based on a number of sequential buffers. The 
hardware has a dedicated CAN controller chip connected to a microprocessor 
which analyses and processes the raw CAN data and then transmits it to the 
datalogger.  

When the CAN-Bus controller receives a good frame first of all it uses its 
internal hardware to filter out the frames of no interest to the user. If the frame 
ID satisfies the filter requirements then it allows the frame to be transferred to a 
hardware FIFO. This FIFO can hold up to 3 CAN frames. Whenever data is in 
this FIFO an interrupt mechanism will cause the SDM-CAN processor to read 
the data from the CAN controller. 

When the processor reads the CAN frame it will do a more detailed check to 
see if the CAN frame ID is one of the ones required. This is because the 
hardware filter only matches an overall pattern and may let some CAN frames 
through that are not required. If the CAN frame ID is accepted, it will then be 
placed into the ‘Working Buffer’ of a ‘Buffer Set’, which is made up of a set of 
small buffers in memory, each set being dedicated to a specific packet ID. 

The ‘Buffer Set’ consist of ‘some configuration data’, ‘ID Buffer’, ‘Working 
Buffer’ and a ‘Read Buffer’. When the datalogger program is compiled it will 
configure the buffers with a specific ID in the ‘ID Buffer’ and also set up the 
buffer configuration. Many SDM-CAN instructions may share buffers because 
the CAN frame ID and configuration is the same. 

Each SDM-CAN instruction will create what is called a BIN within the SDM-
CAN. This BIN holds information such as which ‘data type’ to use, which 
‘Buffer Set’ it should get the data from and where its ‘New data flag’ is located 
plus a large amount of other information. 

The ‘New data’ flags are set when new data arrives into the ‘Working Buffer’ 
of the ‘Buffer Set’. Because there could be multiple BINs using one ‘Buffer 
Set’ there will be multiple ‘New data’ flags as well, so all the relevant ‘New 
data’ flags will be set at the same time. When the datalogger program reaches a 
point where it needs to read the data, the SDM-CAN will first check the ‘New 
data flag’. If this flag is clear, the datalogger will read the previous data value 
unless the switch is set to detect/prevent multiple reads (see Section 3, 
Programming CR10X, CR7 and CR23X Dataloggers to use the SDM-CAN) in 
which case an over-range value is read (-99999 on some dataloggers). The 
SDM-CAN will then clear the appropriate ‘New data’ flag relevant to the BIN 
and instruction that requested the data. Because there is effectively one ‘New 
data’ flag per call of P118 this means that you could read the same new data to 
many different locations. However, you should be aware that different data 
could be returned by the different calls of the instruction, as a new data frame 
could be captured as the datalogger works through the program table. This 
problem can be avoided by using the Global trigger function.  



Appendix A.  Principles of Operation 

A-2

A.2 Frame Transmission
When the datalogger program is first run it will set-up the SDM-CAN BINs 
and buffers. If the program has some P118 instructions that transmit to the 
CAN-Bus, then some of the Buffers will be set-up for transmission. When an 
instruction indicates that a transmission should take place, the datalogger first 
sends a BIN number. This number tells the SDM-CAN which BIN to use and, 
from the compile-time set up, what operation is required. In the case of 
transmission it would expect frame data to be sent from the datalogger.  

On receiving the frame data from the datalogger the SDM-CAN will convert 
and shift the data into the correct position and then place it into the read buffer 
which is set as a 64 bit frame. Depending on your program, you could then 
continue to build a frame or decide to transmit it onto the CAN-Bus. If you 
have completed the building of a frame then you have the choice to either 
transmit it onto the CAN-Bus or set it up as a Remote Frame Response. For the 
transmitted frames, the SDM-CAN will set a flag in the buffer to indicate new 
data is ready for transmission. The SDM-CAN will scan the buffers, checking 
this flag in each buffer that is set for transmission. When it finds a flag that is 
set, it will first check if  the transmitter is busy, and if it is will wait until it is 
free. The frame will then be transferred to the transmitter which will transmit it 
onto the bus. Finally the transmit data flag will be cleared. 

When a frame is set up for a remote frame response, the frame is transferred 
into the working buffer ready for reception of a Remote Frame Request. When 
a Remote Frame Request is received, and is accepted as a valid frame, the 
SDM-CAN will find the relevant buffer, and will then set the data transmit 
flag. From then on it will follow the normal frame transmission protocol as 
described above. 



B-1

Appendix B. A Summary of Data Types 
A summary table of the data types is given below for quick reference. 

Data 
Type Description 

1 Retrieve data; unsigned integer, MSB first 

2 Retrieve data; unsigned integer, LSB first 

3 Retrieve data; signed integer, MSB first 

4 Retrieve data; signed integer, LSB first 

5 Retrieve data; 4-byte IEEE FP; MSB first 

6 Retrieve data; 4-byte IEEE FP; LSB first 

7 Build data frame; unsigned integer, MSB first 

8 Build data frame; unsigned integer, LSB first 

9 Build data frame; signed integer, MSB first 

10 Build data frame; signed integer, LSB first 

11 Build data frame; 4-byte IEEE FP; MSB first 

12 Build data frame; 4-byte IEEE FP; LSB first 

13 Build data frame; unsigned integer, MSB first, ‘OR’ed. 

14 Build data frame; unsigned integer, LSB first, ‘OR’ed. 

15 Build data frame; signed integer, MSB first, ‘OR’ed. 

16 Build data frame; signed integer, LSB first, ‘OR’ed. 

17 Build data frame; 4-byte IEEE FP; MSB first, ‘OR’ed. 

18 Build data frame; 4-byte IEEE FP; LSB first, ‘OR’ed. 

19 Transmit data value to the CAN-Bus; unsigned integer, MSB 
first. 

20 Transmit data value to the CAN-Bus; unsigned integer, LSB 
first. 

21 Transmit data value to the CAN-Bus; signed integer, MSB first. 

22 Transmit data value to the CAN-Bus; signed integer, LSB first. 

23 Transmit data value to the CAN-Bus; 4-byte IEEE FP; MSB 
first. 

24 Transmit data value to the CAN-Bus; 4-byte IEEE FP; LSB first. 

25 Transmit previously built data frame to the CAN-Bus. 

26 Set up previously built data frame as a Remote Frame Response. 

27 Read counters 

28 Read  counters and reset. 



Appendix B.  A Summary of Data Types 

B-2

Data 
Type Description 

29 Read SDM-CAN status 

Status Description 

0000 The SDM-CAN has bus activities; error counters < 96. 

0001 The SDM-CAN has bus activities; at least one error 
counter is >= 96. 

0002 The SDM-CAN is not involved in bus activities; error 
counters < 96. 

0003 The SDM-CAN is not involved in bus activities; at 
least one error counter >=96. 

30 Read SDM-CAN operating system and version number 

31 Send Remote Frame Request. 

32 Set SDM-CAN's internal switches 

Switch Code Description 

A 0 Not used 

B 0 returns the last value captured (default) 

1 returns –99999 if value already read by 
datalogger   

C 0 Disable interrupts (default) 

1 Enable pulse interrupts 

2 Enable fast interrupts 

3-7 Not defined

8 Place the SDM-CAN into low power 
stand-by mode. 

9 Leave switch setting unchanged. 

D 0 Listen only (error passive) mode. 

1 Transmit once.  

2 Self-reception. 

3 Normal retransmission 

4 Transmit once 

5 Self-reception; self -test.  

6 Normal; self-test.  

7 Active at power-up. 

8 Not defined. 

9 Leave switch setting unchanged.  

33 Read SDM-CAN's internal switches (see above) 



C-1

Appendix C. Application of the SDM-
CAN on Networks Complying with the 
J1939 SAE Standards 
This Appendix describes the use of the SDM-CAN in applications where the CAN network 
complies to the J1939 standard, which is common in truck, bus and marine applications in 
the USA. This appendix is not intended to act as a full reference to those standards, but to 
simply describe the coding of the ID parameter and to give examples of how to decode 
some of the common, defined J1939 data packets. 

C.1 J1939 29-Bit Identifier Format
The J1939 identifier format consists of 6 predefined fields; for a 29-bit 
identifier these are: 

P - Priority Field (3 bits) 
R - Reserved Field (1 bit) 
DP - Data Page Field (1 bit) 
PF - PDU Format Field (8 bits) 
PS - PDU Specific Field (8 bits) 
SA - Source Address Field (8 bits) 

TABLE C-1.  Mapping of the J1939 Fields into a 29-Bit Identifier 

Bit 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

P 
3 

P 
2 

P 
1 

R
1 

D
P

P
F
8 

P
F
7 

P
F
6 

P
F
5 

P
F
4 

P
F
3 

P
F
2 

P
F
1 

P
S
8 

P
S
7 

P
S
6 

P
S
5 

P
S
4 

P
S
3 

P
S
2 

P
S
1 

S
A
8 

S
A
7 

S
A
6 

S
A
5 

S
A
4 

S
A
3 

S
A
2 

S
A
1 

C.2 J1939 11-Bit Identifier Format
The J1939 identifier format consists of 2 predefined fields; for an 11-bit 
identifier these are: 

P - Priority Field (3 bits) 
SA - Source Address Field (8 bits) 

TABLE C-2.  Mapping of the J1939 
Fields into a 11-Bit Identifier 

Bit 10 9 8 7 6 5 4 3 2 1 0 

P 
3 

P 
2 

P 
1 

S
A
8 

S
A
7 

S
A
6 

S
A
5 

S
A
4 

S
A
3 

S
A
2 

S
A
1 



Appendix C.  Application of the SDM-CAN on Networks Complying with the J1939 SAE Standards 

C-2

Details of identifier field values can be found in the SAE J1939 
standard. 

C.3 J1939 Data Frame Format
The Data Frame consists of 8 bytes with byte one at the left side of the frame 
and byte eight at the right side. Within each byte, bit 8, the most significant bit 
is at the left side of the byte. 

Multi-byte values are conventionally displayed with the least 
significant byte first. For example LSB of engine speed is Byte 4 
and MSB is byte 5. 

TABLE C-3.  J1939 Data Frame Format 

1 2 3 4 5 6 7 8 

87654321 87654321 87654321 87654321 87654321 87654321 87654321 87654321 

Details of specific data frame values can be found in the SAE 
J1939 standard. 

C.4 Retrieving J1939 Accelerator Pedal Position Data
using a CR9000/CR5000 (Bus Speed 250k Baud) 

C.4.1 Encoding the Identifier Field Values
The following example shows how to encode the identifier field values into the 
format for the CR9000/CR5000 ID parameter. 

The identifier field values for the CAN Data Frame are as follows: 

Priority 310 
Reserved 010 
Data Page 010 
PDU Format 24010 
PDU Specific 310 
Source Address 010 

These decimal values then need to be converted to binary and encoded into the 
29 bit identifier. 

Priority 0112 
Reserved 02 
Data Page 02 
PDU Format 111100002 
PDU Specific 000000112 
Source Address 000000002 

NOTE 

NOTE 

NOTE 



Appendix C.  Application of the SDM-CAN on Networks Complying with the J1939 SAE Standards 

C-3

TABLE C-4.  Mapping of J1939 Identifier Field values into a 29-Bit Identifier 

Bit 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
SOF P 

3 
P 
2 

P 
1 

R
1 

D
P

P
F
8 

P
F
7 

P
F
6 

P
F
5 

P
F
4 

P
F
3 

P
F
2 

P
F
1 

P
S
8 

P
S
7 

P
S
6 

P
S
5 

P
S
4 

P
S
3 

P
S
2 

P
S
1 

S
A
8 

S
A
7 

S
A
6 

S
A
5 

S
A
4 

S
A
3 

S
A
2 

S
A
1 

Value 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

This gives a binary value of 01100111100000000001100000000 that can then 
be converted to 21705600010 and used as the ID parameter. 

C.4.2 Finding the Start Bit
The byte number of the Accelerator pedal position value is 2 

TABLE C-5.  Accelerator Pedal Position Value Byte Number 

1 2 3 4 5 6 7 8 
87654321 87654321 87654321 87654321 87654321 87654321 87654321 87654321 

The start bit for this value is 49, as it is the least significant bit of the data value 
within the data frame that this parameter refers to.  

An example for Accelerator pedal position is shown below. 

'Set scan rate 
Const PERIOD = 1                  'Scan interval number 
Const P_UNITS = 2                 'Scan interval units (Secs) 
'\\\\\\\\\\\\\\\\\\\\\\\\\ CANBUS CONSTANTS ////////////////////// 
'------------------- Physical Network Parameters ----------------- 
Const TQUANT = 4  ')Set SDM-CAN to 250K 
Const TSEG1 = 5   ')Network speed 
Const TSEG2 = 2   ') 
'---------------------- Data Frame Parameters -------------------- 
'___________________________CANbus Block1_________________________ 
'Collect and retrieve 16 bit data value 
'Data type 2, unsigned integer, least significant byte first  
Const CANREP1 = 1    'Repetitions 
Const ADDRESS1 = 0    'SDM address of SDM-CAN 
Const DATATYPE1 = 2   'Collect and retrieve data values 
Const STARTBIT1 = 49  'Start position in data frame 
Const NUMBITS1 = 8    'Number of bits/value 
Const NUMVALS1 = 1    'Number of values  
Dim CANBlk1(CANREP1)  'Dimensioned source 

'\\\\\\\\\\\\\\\\\\ ALIASES & OTHER VARIABLES ////////////////// 
Alias CANBlk1(1) = Accel_Pedal  'Assign an alias name to CANBlk2(1) 
'\\\\\\\\\\\\\\\\\\\\\\\\\\\ PROGRAM /////////////////////////// 
BeginProg  'Program begins here 
 'MainSequence 
 Scan(PERIOD,P_UNITS,0,0)  'Scan once every 1 Secs, non-burst 

'__________________________ CAN Blocks __________________________ 
'Retrieve Accelerator pedal position Data from CAN network  
CanBus(CANBlk1(),ADDRESS1,TQUANTA,TSEG1,TSEG2,217056000, 
DATATYPE1,STARTBIT1,NUMBITS1,NUMVALS1,0.4,0) 
   Next Scan                    'Loop up for the next scan 
EndProg                          'Program ends here 



Appendix C.  Application of the SDM-CAN on Networks Complying with the J1939 SAE Standards 

C-4

Due to current system constraints the ID parameter must be 
entered directly into the CanBus instruction. 

C.5 Retrieving J1939 Accelerator Pedal Position Data
using a CR23X/CR10X (Bus Speed 250k Baud) 

C.5.1 Encoding the Identifier Field Values
The following example shows how to encode the identifier field values into the 
format for the CR23X/CR10X ID parameter. 

The identifier field values for the CAN Data Frame are as follows: 

Priority 310 
Reserved 010 
Data Page 010 
PDU Format 24010 
PDU Specific 310 
Source Address 010 

These decimal values then need to be converted to binary and encoded into the 
29 bit identifier. 

Priority 0112 
Reserved 02 
Data Page 02 
PDU Format 111100002 
PDU Specific 000000112 
Source Address 000000002 

TABLE C-6.  Mapping of J1939 Identifier Field Values into a 29-Bit Identifier 

Bit 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
SOF P 

3 
P 
2 

P 
1 

R
1 

D
P

P
F
8 

P
F
7 

P
F
6 

P
F
5 

P
F
4 

P
F
3 

P
F
2 

P
F
1 

P
S
8 

P
S
7 

P
S
6 

P
S
5 

P
S
4 

P
S
3 

P
S
2 

P
S
1 

S
A
8 

S
A
7 

S
A
6 

S
A
5 

S
A
4 

S
A
3 

S
A
2 

S
A
1 

Value 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

This gives a binary value of 01100111100000000001100000000 that can then 
be split into three values for use as the ID parameter. 

The first value is made up of bits 0..10 which is 011000000002 this is 
converted to 76810 and used as the first ID parameter. 

The second value is made up of bits 11..23 which is 11110000000002 this is 
converted to 768010 and used as the second ID parameter. 

The third value is made up of bits 24..28 which is 011002 this is converted to 
1210 and used as the third ID parameter. 

NOTE 



Appendix C.  Application of the SDM-CAN on Networks Complying with the J1939 SAE Standards 

C-5

C.5.2 Finding the Start Bit
The byte number of the Accelerator pedal position value is 2 

TABLE C-7.  Accelerator Pedal Position Value Byte Number 

1 2 3 4 5 6 7 8 
87654321 87654321 87654321 87654321 87654321 87654321 87654321 87654321 

The start bit for this value is 49, as it is the least significant bit of the data value 
within the data frame that this parameter refers to. 

An example for Accelerator pedal position is shown below. 

;{CR23X} 
; 
*Table 1 Program
01: 1.0  Execution Interval (seconds)

;Retrieve Accelerator pedal position Data from CAN network
8:  SDM-CAN (P118)
1: 0 SDM Address 
2: 4 Time Quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 768 ID Bits 0..10 (-- for 11-bit CAN ID) 
6: 7680 ID Bits 11..23 
7: 12 ID Bits 24..28 
8: 2 Rx, unsigned int, LSB 1st 
9: 49 Start Bit No. 
10: 8 No. of Bits 
11: 1 No. of Values 
12: 7 Loc [ Throttle   ] 
13: 0.125 Mult 
14: 0.0 Offset 

*Table 2 Program
02: 0.0000 Execution Interval (seconds) 

*Table 3 Subroutines

End Program 



Appendix C.  Application of the SDM-CAN on Networks Complying with the J1939 SAE Standards 

C-6



D-1

Appendix D. Examples of CAN Data 
Frames and Data Encoding and 
Decoding 
This Appendix gives examples of typical CAN data frames with worked examples of how to 
encode or decode such data using the SDM-CAN.  

Bits are Transmitted (Txed) or Received (Rxed) starting from the left of the data frame. 

Txed/Rxed first                                                   Txed/Rxed last 

64bit Data Frame 

Bit order within 
bytes 

87654321 87654321 87654321 87654321 87654321 87654321 87654321 87654321 

Byte order Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 

Right Hand Ref 64     57 56    49 48    41 40    33 32   25 24    17 16   9 8    1 

Left Hand Ref 1    8 9     16 17    24 25    32 33   40 41    48 49   56 57   64 

For the Left Hand Reference, some manufacturers may number the bits in the 
following order: 

Left Hand Ref 8    1 16    9 24    17 32    25 40   33 48    41 56   49 64   57 

An additional variation is that sometimes the bit numbering starts from 0 
instead of 1. 

16bit Data Frame 

Bit order within bytes 87654321 87654321 
Byte order Byte 1 Byte 2 
Right Hand Ref 16           9 8             1 
Left Hand Ref   1           8 9           16 

Data encoded/decoded from right to left in all cases. 



Appendix D.  Examples of CAN Data Frames and Data Encoding and Decoding 

D-2

Examples of values within a data-frame 

16bit data frame with a one value 16bit unsigned integer LSByte first 

Rxed Bit order within bytes 87654321 87654321 

Rxed Byte order Byte 1 Byte 2 

Values A 

Bit order within values 8             1 16           9 

Value byte order LSByte MSByte 

Start bit (parameter 09:) RH ref 16           9 8             1 

Start bit (parameter 09:) LH ref 1             8 9           16 

Start bit (parameter 09:) Right Hand reference. 
1:  SDM-CAN (P118) 
1: 0 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1000 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 2 Rx, unsigned int, LSB 1st 
9: 9 Start Bit No. 
10: 16 No. of Bits 
11: 1 No. of Values 
12: 1 Loc [ value_A   ] 
13: 1.0 Mult 
14: 0.0 Offset 

Start bit (parameter 09:) Left Hand reference. 
2:  SDM-CAN (P118) 
1: 00 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 4 Tseg2 
5: 1001 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 2 Rx, unsigned int, LSB 1st 
9: 8 -- Start Bit No. 
10: 16 No. of Bits 
11: 1 No. of Values 
12: 1 Loc [ value_A  ] 
13: 1.0 Mult 
14: 0.0 Offset 

This number is 
entered into the 
P118 DLD 
instruction 



Appendix D.  Examples of CAN Data Frames and Data Encoding and Decoding 

D-3

32bit data frame with two 16bit unsigned integer values LSByte first. 

Rxed Bit order within bytes 87654321 87654321 87654321 87654321 

Rxed Byte order Byte 1 Byte 2 Byte 3 Byte 4 

Values B A 

Bit order within values 8           1  16         9 8          1 16        9 

Value byte order LSByte MSByte LSByte MSByte 

Start bit (parameter 09:) RH ref 32       25 24       17 16         9 8          1 

Start bit (parameter 09:) LH ref 1           8 9         16 17       24 25      32 

Start bit (parameter 09:) Right Hand reference. 
1:  SDM-CAN (P118) 
1: 0 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1000 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 2 Rx, unsigned int, LSB 1st 
9: 9 Start Bit No. 
10: 16 No. of Bits 
11: 2 No. of Values 
12: 1 Loc [ value_A   ] 
13: 1.0 Mult 
14: 0.0 Offset 

Start bit (parameter 09:) Left Hand reference. 
2:  SDM-CAN (P118) 
1: 00 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 4 Tseg2 
5: 1001 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 2 Rx, unsigned int, LSB 1st 
9: 24 -- Start Bit No. 
10: 16 No. of Bits 
11: 2 No. of Values 
12: 1 Loc [ value_A  ] 
13: 1.0 Mult 
14: 0.0 Offset 



Appendix D.  Examples of CAN Data Frames and Data Encoding and Decoding 

D-4

24bit data frame with two 12bit unsigned integer values LSByte first 

Rxed Bit order within bytes 87654321 87654321 87654321 

Rxed Byte order Byte 1 Byte 2 Byte 3 

Values B A B A 

Bit order within values 8           1 4         1 12       9 12          5 

Value byte order LSByte LSNib MSNib MSByte 

Start bit (parameter 09:) RH ref 24       17 16      13 12       9  8           1      

Start bit (parameter 09:) LH ref 1           8 9        12 13     16 17        24 

Start bit (parameter 09:) Right Hand reference. 
1:  SDM-CAN (P118) 
1: 0 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1000 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 2 Rx, unsigned int, LSB 1st 
9: 13 Start Bit No. 
10: 12 No. of Bits 
11: 2 No. of Values 
12: 1 Loc [ value_A   ] 
13: 1.0 Mult 
14: 0.0 Offset 

Start bit (parameter 09:) Left Hand reference. 
2:  SDM-CAN (P118) 
1: 00 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 4 Tseg2 
5: 1001 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 2 Rx, unsigned int, LSB 1st 
9: 12 -- Start Bit No. 
10: 12 No. of Bits 
11: 2 No. of Values 
12: 1 Loc [ value_A  ] 
13: 1.0 Mult 
14: 0.0 Offset 



Appendix D.  Examples of CAN Data Frames and Data Encoding and Decoding 

D-5

16bit data frame with one 12bit signed integer value LSByte first 

Rxed Bit order within bytes 87654321 87654321 

Rxed Byte order Byte 1 Byte 2 

Values A S        A 

Bit order within values 4        1 12        5 

Value byte order LSNib MSByte 

Start bit (parameter 09:) RH ref 16    13 12     9 8          1 

Start bit (parameter 09:) LH ref 1        4   5     8 9        16 
S = sign bit which is the MSBit of the value, bit 12. 

Start bit (parameter 09:) Right Hand reference. 
1:  SDM-CAN (P118) 
1: 0 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1000 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 4 Rx, signed int, LSB 1st 
9: 13 Start Bit No. 
10: 12 No. of Bits 
11: 1 No. of Values 
12: 1 Loc [ value_A   ] 
13: 1.0 Mult 
14: 0.0 Offset 

Start bit (parameter 09:) Left Hand reference. 
2:  SDM-CAN (P118) 
1: 00 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 4 Tseg2 
5: 1001 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 4 Rx, signed int, LSB 1st 
9: 4 -- Start Bit No. 
10: 12 No. of Bits 
11: 1 No. of Values 
12: 1 Loc [ value_A   ] 
13: 1.0 Mult 
14: 0.0 Offset 



Appendix D.  Examples of CAN Data Frames and Data Encoding and Decoding 

D-6

40bit data frame with one 32bit IEEE floating point value LSByte first 

Rxed Bit order within bytes 87654321 87654321 87654321 87654321 87654321 

Rxed Byte order Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 

Values A 

Bit order within values 8           1 16         9 24       17 32         25 

Value byte order Mantisa Exponent 

Start bit (parameter 09:) RH ref 40       33 32       25 24       17 16         9 8             1 

Start bit (parameter 09:) LH ref 1           8 9         16 17       24 25       32 33         40 

Start bit (parameter 09:) Right Hand reference. 
1:  SDM-CAN (P118) 
1: 0 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1000 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 6 Rx, real IEEE4, LSB 1st 
9: 25 Start Bit No. 
10: 32 No. of Bits 
11: 1 No. of Values 
12: 1 Loc [ value_A   ] 
13: 1.0 Mult 
14: 0.0 Offset 

Start bit (parameter 09:) Left Hand reference. 
2:  SDM-CAN (P118) 
1: 00 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 4 Tseg2 
5: 1001 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 6 Rx, real IEEE4, LSB 1st 
9: 16 -- Start Bit No. 
10: 32 No. of Bits 
11: 1 No. of Values 
12: 1 Loc [ value_A   ] 
13: 1.0 Mult 
14: 0.0 Offset 



Appendix D.  Examples of CAN Data Frames and Data Encoding and Decoding 

D-7

16bit data frame with one 16bit unsigned integer value MSByte first 

Rxed Bit order within bytes 87654321 87654321 

Rxed Byte order Byte 1 Byte 2 

Values A 

Bit order within values 16         9 8             1 

Value byte order MSByte LSByte 

Start bit (parameter 09:) RH ref 16         9 8             1 

Start bit (parameter 09:) LH ref 1           8 9           16 

Start bit (parameter 09:) Right Hand reference. 
1:  SDM-CAN (P118) 
1: 0 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1000 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 1 Rx, unsigned int, MSB 1st 
9: 1 Start Bit No. 
10: 16 No. of Bits 
11: 1 No. of Values 
12: 1 Loc [ value_A   ] 
13: 1.0 Mult 
14: 0.0 Offset 

Start bit (parameter 09:) Left Hand reference. 
2:  SDM-CAN (P118) 
1: 00 SDM Address 
2: 1  Time-quanta 
3: 5 Tseg1 
4: 4 Tseg2 
5: 1001 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 1 Rx, unsigned int, MSB 1st 
9: 16 -- Start Bit No. 
10: 16 No. of Bits 
11: 1 No. of Values 
12: 1 Loc [ value_A  ] 
13: 1.0 Mult 
14: 0.0 Offset 



Appendix D.  Examples of CAN Data Frames and Data Encoding and Decoding 

D-8 

32bit data frame with two 16bit signed integer values MSByte first 

Rxed Bit order within bytes 87654321 87654321 87654321 87654321 

Rxed Byte order Byte 1 Byte 2 Byte 3 Byte 4 

Values S                B S                A 

Bit order within values 16         9 8           1 16         9 8           1 

Value byte order MSByte LSByte MSByte LSByte 

Start bit (parameter 09:) RH ref 32       25 24       17 16         9 8           1 

Start bit (parameter 09:) LH ref 1           8 9         16 17       24 25       32 
S = sign bit which is the MSBit of the values, bit 16. 

Start bit (parameter 09:) Right Hand reference. 
1:  SDM-CAN (P118) 
 1: 0  SDM Address 
 2: 1  Time-quanta 
 3: 5  Tseg1 
 4: 2  Tseg2 
 5: 1000  ID Bits 0..10 
 6: 0000  ID Bits 11..23 
 7: 00  ID Bits 24..28 
 8: 3  Rx, signed int, MSB 1st 
 9: 1  Start Bit No. 
 10: 16  No. of Bits 
 11: 2  No. of Values 
 12: 1  Loc [ value_A   ] 
 13: 1.0  Mult 
 14: 0.0  Offset 
 
Start bit (parameter 09:) Left Hand reference. 
2:  SDM-CAN (P118) 
 1: 00  SDM Address 
 2: 1  Time-quanta 
 3: 5  Tseg1 
 4: 4  Tseg2 
 5: 1001  ID Bits 0..10 
 6: 0000  ID Bits 11..23 
 7: 00  ID Bits 24..28 
 8: 3  Rx, signed int, MSB 1st 
 9: 32 -- Start Bit No. 
 10: 16  No. of Bits 
 11: 2  No. of Values 
 12: 1  Loc [ value_A   ] 
 13: 1.0  Mult 
 14: 0.0  Offset 

 



Appendix D.  Examples of CAN Data Frames and Data Encoding and Decoding 

D-9

24bit data frame with two 12bit unsigned integer values MSByte first 

Rxed Bit order within bytes 87654321 87654321 87654321 

Rxed Byte order Byte 1 Byte 2 Byte 3 

Values B A 

Bit order within values 12          5 4        1 12       9 8      1 

Value byte order MSByte LSNib MSNib LSByte 

Start bit (parameter 09:) RH ref 24        17 16    13 12       9 8          1 

Start bit (parameter 09:) LH ref 1           8  9      12 13     16 17      24 

Start bit (parameter 09:) Right Hand reference. 
1:  SDM-CAN (P118) 
1: 0 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1000 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00  ID Bits 24..28 
8: 1 Rx, unsigned int, MSB 1st 
9: 1 Start Bit No. 
10: 12 No. of Bits 
11: 2 No. of Values 
12: 1 Loc [ value_A   ] 
13: 1.0 Mult 
14: 0.0 Offset 

Start bit (parameter 09:) Left Hand reference. 
2:  SDM-CAN (P118) 
1: 00 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 4 Tseg2 
5: 1001 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 1 Rx, unsigned int, MSB 1st 
9: 24 -- Start Bit No. 
10: 12 No. of Bits 
11: 2 No. of Values 
12: 1 Loc [ value_A  ] 
13: 1.0 Mult 
14: 0.0 Offset 



Appendix D.  Examples of CAN Data Frames and Data Encoding and Decoding 

D-10 

16bit data frame with one 12bit unsigned integer value MSByte first 

Rxed Bit order within bytes 87654321 87654321 

Rxed Byte order Byte 1 Byte 2 

Values A  A 

Bit order within values 12       9  8           1 

Value byte order MSNib  LSByte 

Start bit (parameter 09:) RH ref 16    13 12     9 8           1 

Start bit (parameter 09:) LH ref 1        4 5       8 9         16 
 

Start bit (parameter 09:) Right Hand reference. 
1:  SDM-CAN (P118) 
 1: 0  SDM Address 
 2: 1  Time-quanta 
 3: 5  Tseg1 
 4: 2  Tseg2 
 5: 1000  ID Bits 0..10 
 6: 0000  ID Bits 11..23 
 7: 00  ID Bits 24..28 
 8: 1  Rx, unsigned int, MSB 1st 
 9: 1  Start Bit No. 
 10: 12  No. of Bits 
 11: 1  No. of Values 
 12: 1  Loc [ value_A   ] 
 13: 1.0  Mult 
 14: 0.0  Offset 
 
Start bit (parameter 09:) Left Hand reference. 
2:  SDM-CAN (P118) 
 1: 00  SDM Address 
 2: 1  Time-quanta 
 3: 5  Tseg1 
 4: 4  Tseg2 
 5: 1001  ID Bits 0..10 
 6: 0000  ID Bits 11..23 
 7: 00  ID Bits 24..28 
 8: 1  Rx, unsigned int, MSB 1st 
 9: 16 -- Start Bit No. 
 10: 12  No. of Bits 
 11: 1   No. of Values 
 12: 1  Loc [ value_A   ] 
 13: 1.0  Mult 
 14: 0.0  Offset 

 



Appendix D.  Examples of CAN Data Frames and Data Encoding and Decoding 

D-11

40bit data frame with one 32bit IEEE floating point value MSByte first 

Rxed Bit order within bytes 87654321 87654321 87654321 87654321 87654321 

Rxed Byte order Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 

Values A 

Bit order within values 32        25 24        17 16          9 8            1 

Value byte order Exponent Mantisa 

Start bit (parameter 09:) RH ref 40        33 32        25 24        17 16          9 8            1 

Start bit (parameter 09:) LH ref 1            8 9          16 17        24 25        32 33        40 

Start bit (parameter 09:) Right Hand reference. 
1:  SDM-CAN (P118) 
1: 0 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 2 Tseg2 
5: 1000 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 5 Rx, real IEEE4, MSB 1st 
9: 1 Start Bit No. 
10: 32 No. of Bits 
11: 1 No. of Values 
12: 1 Loc [ value_A   ] 
13: 1.0 Mult 
14: 0.0 Offset 

Start bit (parameter 09:) Left Hand reference. 
2:  SDM-CAN (P118) 
1: 00 SDM Address 
2: 1 Time-quanta 
3: 5 Tseg1 
4: 4 Tseg2 
5: 1001 ID Bits 0..10 
6: 0000 ID Bits 11..23 
7: 00 ID Bits 24..28 
8: 5 Rx, real IEEE4, MSB 1st 
9: 40 -- Start Bit No. 
10: 32 No. of Bits 
11: 1 No. of Values 
12: 1 Loc [ value_A   ] 
13: 1.0 Mult 
14: 0.0 Offset 



Appendix D.  Examples of CAN Data Frames and Data Encoding and Decoding 

D-12



 

 

 

  



Campbell Scientific Companies 

Campbell Scientific, Inc. 
815 West 1800 North 
Logan, Utah  84321 
UNITED STATES 

www.campbellsci.com • info@campbellsci.com 

Campbell Scientific Africa Pty. Ltd. 
PO Box 2450 

Somerset West 7129 
SOUTH AFRICA 

www.campbellsci.co.za • cleroux@csafrica.co.za 

Campbell Scientific Southeast Asia Co., Ltd. 
877/22 Nirvana@Work, Rama 9 Road 

Suan Luang Subdistrict, Suan Luang District 
Bangkok 10250 

THAILAND 
www.campbellsci.asia • info@campbellsci.asia 

Campbell Scientific Australia Pty. Ltd. 
PO Box 8108 

Garbutt Post Shop QLD 4814 
AUSTRALIA 

www.campbellsci.com.au • info@campbellsci.com.au 

Campbell Scientific (Beijing) Co., Ltd. 
8B16, Floor 8 Tower B, Hanwei Plaza 

7 Guanghua Road 
Chaoyang, Beijing 100004 

P.R. CHINA 
www.campbellsci.com • info@campbellsci.com.cn 

Campbell Scientific do Brasil Ltda.  
Rua Apinagés, nbr. 2018 ─ Perdizes 
CEP: 01258-00 ─ São Paulo ─ SP 

BRASIL 
www.campbellsci.com.br • vendas@campbellsci.com.br

Campbell Scientific Canada Corp. 
14532 – 131 Avenue NW 
Edmonton AB T5L 4X4 

CANADA 
www.campbellsci.ca • dataloggers@campbellsci.ca 

Campbell Scientific Centro Caribe S.A. 
300 N Cementerio, Edificio Breller 

Santo Domingo, Heredia 40305 
COSTA RICA 

www.campbellsci.cc • info@campbellsci.cc 

Campbell Scientific Ltd. 
Campbell Park 

80 Hathern Road 
Shepshed, Loughborough LE12 9GX 

UNITED KINGDOM 
www.campbellsci.co.uk • sales@campbellsci.co.uk 

Campbell Scientific Ltd. 
3 Avenue de la Division Leclerc 

92160 ANTONY 
FRANCE 

www.campbellsci.fr • info@campbellsci.fr 

Campbell Scientific Ltd. 
Fahrenheitstraße 13 

28359 Bremen 
GERMANY 

www.campbellsci.de • info@campbellsci.de 

Campbell Scientific Spain, S. L. 
Avda. Pompeu Fabra 7-9, local 1 

08024 Barcelona 
SPAIN 

www.campbellsci.es • info@campbellsci.es 

Please visit www.campbellsci.com to obtain contact information for your local US or international representative. 

http://www.campbellsci.com/
http://www.campbellsci.co.za/
http://www.campbellsci.asia/
http://www.campbellsci.com.au/
http://www.campbellsci.com/
http://www.campbellsci.com.br/
http://www.campbellsci.ca/
http://www.campbellsci.cc/
http://www.campbellsci.co.uk/
http://www.campbellsci.fr/
http://www.campbellsci.de/
http://www.campbellsci.es/
https://www.campbellsci.com/

	Revision and Copyright Information
	Guarantee
	Please Read First
	Precautions
	Table of Contents
	1. Introduction
	1.1 General Description
	1.2 Specifications
	1.2.1 General Features and Specifications
	1.2.2 Electrical Specifications
	1.2.2.1 Power Consumption

	1.2.3 Physical Specifications


	2. Installation
	2.1 Address Switch Configuration
	2.2 Internal Jumper Settings
	2.3 Connection to the Datalogger and Power Supply
	2.3.1 LED Status Indication

	2.4 Connection to CAN-Bus.

	3. Programming CR10X, CR7 and CR23X Dataloggers to use the SDM-CAN
	3.1 General Principles
	3.2 System Limitations
	3.3 The Datalogger Instruction
	3.3.1 Instruction 118: SDM-CAN
	3.3.2 SDM Address (Parameter 01:)
	3.3.3 TQUANTA, TSEG1, TSEG2 (Parameters 02:, 03:, 04:)
	3.3.4 ID (Parameters 05:, 06:, 07:)
	3.3.5 Data Type (Parameter 08:)
	3.3.5.1 Collect and retrieve a data value:
	3.3.5.2 Build a data frame for transmission:
	3.3.5.3 Transmit individual data values onto the CAN-Bus:
	3.3.5.4 Transmit a previously built data frame on to the CAN-Bus (type 25):
	3.3.5.5 Set-up previously built data frame as a Remote Frame Response (type 26):
	3.3.5.6 Read error counters (type 27):
	3.3.5.7 Read and reset the error counters (type 28):
	3.3.5.8 Read status (type 29):
	3.3.5.9 Read the signature and version number of the SDM-CAN operating system (type 30):
	3.3.5.10 Send Remote Frame Request (type 31):
	3.3.5.11 Set SDM-CAN internal software switches (type 32):
	3.3.5.12 Read SDM-CAN internal switches (type 33):

	3.3.6 Start Bit Number (Parameter 09:)
	3.3.7 Number of Bits (Parameter 10:)
	3.3.8 Number of Values (Parameter 11:)
	3.3.9 Location (Parameter 12:)
	3.3.10 Multiplier (Parameter 13:)
	3.3.11 Offset (Parameter 14:)

	3.4 Advanced Programming Techniques
	3.4.1 Interrupts Using the I/O Connection
	3.4.2 Group Trigger
	3.4.3 Frame buffers with filtering and triggering
	3.4.3.1 Setup of Mask and Filter / trigger
	3.4.3.2 Reading / Polling Buffer
	3.4.3.3 Basic Sequence of Buffer Usage:


	3.5 Program Examples
	3.5.1 Reading CAN Data
	3.5.2 Simple CAN Data Transmission
	3.5.3 Building and Sending Data Frames
	3.5.4 Using the Interrupt Function
	3.5.5 Using the Group Trigger


	4. Programming CRBasic Dataloggers to use the SDM-CAN
	4.1 General Principles
	4.1.1 High Speed Block Mode

	4.2 Datalogger Instruction
	4.2.1 Reading CAN Data
	4.2.2 Simple CAN Data Transmission
	4.2.3 Digital I/O Triggered CANbus Measurements
	4.2.4 SlowSequence Instruction


	5. Using the RS232 Serial Diagnostics Port
	5.1 Connecting to the RS232 User Port
	5.2 Diagnostic Commands
	5.3 Loading a New Operating System into the SDM-CAN Interface

	6. Attributions
	Appendix A. Principles of Operation
	A.1 Data Collection
	A.2 Frame Transmission

	Appendix B. A Summary of Data Types
	Appendix C. Application of the SDM-CAN on Networks Complying with the J1939 SAE Standards
	C.1 J1939 29-Bit Identifier Format
	C.2 J1939 11-Bit Identifier Format
	C.3 J1939 Data Frame Format
	C.4 Retrieving J1939 Accelerator Pedal Position Data using a CR9000/CR5000 (Bus Speed 250k Baud)
	C.4.1 Encoding the Identifier Field Values
	C.4.2 Finding the Start Bit

	C.5 Retrieving J1939 Accelerator Pedal Position Data using a CR23X/CR10X (Bus Speed 250k Baud)
	C.5.1 Encoding the Identifier Field Values
	C.5.2 Finding the Start Bit


	Appendix D. Examples of CAN Data Frames and Data Encoding and Decoding
	Campbell Scientific Companies



