Do not connect or disconnect the EC155 gas analyzer head or the CSAT3A sonic anemometer head from the EC100 electronics while the EC100 is powered. Doing so can result in unpredictable performance of the system or damage to the instrument head.

Grounding electrical components in the measurement system is critical. Proper earth (chassis) grounding will ensure maximum electrostatic discharge (ESD) protection and higher measurement accuracy.

Use care when connecting and disconnecting tube fittings to avoid introducing dust or other contaminants.

Do not overtighten the tube fittings. Consult the manual for information on proper connection.

The CPEC306 power source should be designed thoughtfully to ensure uninterrupted power. If needed, contact Campbell Scientific for assistance.

Retain all spare caps and plugs as these are required when shipping or storing the CPEC306 system.

IMPORTANT NOTE: This Quick Deploy Guide is meant to be a general reference to give the installer an overview of the steps required to make this system operational. The Owner's Manual is the definitive source for detailed installation instructions and information.

Caution!!

- Do not connect or disconnect the EC155 gas analyzer head or the CSAT3A sonic anemometer head from the EC100 electronics while the EC100 is powered. Doing so can result in unpredictable performance of the system or damage to the instrument head.
- Grounding electrical components in the measurement system is critical. Proper earth (chassis) grounding will ensure maximum electrostatic discharge (ESD) protection and higher measurement accuracy.
- Use care when connecting and disconnecting tube fittings to avoid introducing dust or other contaminants.
- Do not overtighten the tube fittings. Consult the manual for information on proper connection.
- The CPEC306 power source should be designed thoughtfully to ensure uninterrupted power. If needed, contact Campbell Scientific for assistance.
- Retain all spare caps and plugs as these are required when shipping or storing the CPEC306 system.

Physical Deployment

1. Set up the tripod and crossarm pole.
2. Attach the horizontal crossarm pole to the desired height on the tripod.
3. Secure the tripod to the ground.

Required Gear

1. 9/16-in, open-end wrench
2. 1/2-in, open-end wrench
3. 11/16-in, open-end wrench
4. Adjustable wrench
5. Small, flat-tip screwdriver
6. Large, flat-tip screwdriver
7. Sledgehammer (to drive grounding rod into the ground)
8. 3/16-in hex-key wrench

Using the CR1000KD keypad to configure settings and zero/span on a deployed system

When not using datalogger support software such as LoggerNet, turn on the +12 Vdc power supply and use the CR1000KD keypad to configure the settings and zero/span.

1. Press Enter to activate the display. Press Enter again to display the System Control menu.
2. On the System Control menu, select Site Var Settings to customize site specific variables.
3. Enter site-specific variables. Press Esc when complete to return to the main menu.
4. On the System Control menu, select Const Table to modify sensor information.
5. Add and remove sensors by selecting -1 for true and 0 for false. Once the changes are completed, select Apply and Restart at the bottom of the screen. Select Yes to save the changes. The device will then restart.

Sample Intake Assembly with EC155 Gas Analyzer

CPEC306 System Diagram

QUICK DEPLOY GUIDE

CPEC306

Closed-Path Eddy-Covariance System

Document Part Number: 34223

Revision Date: September 2018

INFO

Link

CPEC306

Closed-Path Eddy-Covariance System

Caution!!

- Do not connect or disconnect the EC155 gas analyzer head or the CSAT3A sonic anemometer head from the EC100 electronics while the EC100 is powered. Doing so can result in unpredictable performance of the system or damage to the instrument head.
- Grounding electrical components in the measurement system is critical. Proper earth (chassis) grounding will ensure maximum electrostatic discharge (ESD) protection and higher measurement accuracy.
- Use care when connecting and disconnecting tube fittings to avoid introducing dust or other contaminants.
- Do not overtighten the tube fittings. Consult the manual for information on proper connection.
- The CPEC306 power source should be designed thoughtfully to ensure uninterrupted power. If needed, contact Campbell Scientific for assistance.
- Retain all spare caps and plugs as these are required when shipping or storing the CPEC306 system.

IMPORTANT NOTE: This Quick Deploy Guide is meant to be a general reference to give the installer an overview of the steps required to make this system operational. The Owner's Manual is the definitive source for detailed installation instructions and information.
2. Setup and mount sensors
 Mount the EC155 bypass tube.

3. Mount the enclosures. Mount the enclosures on the legs of the tripod as shown.

4. Connect the EC155 and CSAT3A to the electronics.

5. Ground the tripod and the enclosures.

6. Connect the system plumbing.
 Connect the SDM from the main enclosure and EC100 power cables to the EC100 electronics.

7. Wiring.
 Connect the SDM from the main enclosure and EC100 power cables to the EC100 electronics.

8. Datalogger
 Insert a MicroSD card into the datalogger and connect power.
 Turn on the +12 Vdc power supply and use either LoggerNet, PC200W, or PC400 on a laptop to configure settings and zero/span. If using the CR1000KD keypad, use the instructions on the front page of this quick deploy guide.

4. Configuring with LoggerNet/PC200W or PC400
 Turn on the +12 Vdc power supply and use either LoggerNet, PC200W, or PC400 on a laptop to configure settings and zero/span. If using the CR1000KD keypad, use the instructions on the front page of this quick deploy guide.