Limited Warranty

The CS100 Barometric Pressure Sensor is warranted for three (3) years subject to this limited warranty:

“Products manufactured by CSI are warranted by CSI to be free from defects in materials and workmanship under normal use and service for twelve months from the date of shipment unless otherwise specified in the corresponding product manual. (Product manuals are available for review online at www.campbellsci.com.) Products not manufactured by CSI, but that are resold by CSI, are warranted only to the limits extended by the original manufacturer. Batteries, fine-wire thermocouples, desiccant, and other consumables have no warranty. CSI’s obligation under this warranty is limited to repairing or replacing (at CSI’s option) defective Products, which shall be the sole and exclusive remedy under this warranty. The Customer assumes all costs of removing, reinstalling, and shipping defective Products to CSI. CSI will return such Products by surface carrier prepaid within the continental United States of America. To all other locations, CSI will return such Products best way CIP (port of entry) per Incoterms ® 2010. This warranty shall not apply to any Products which have been subjected to modification, misuse, neglect, improper service, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied. The warranty for installation services performed by CSI such as programming to customer specifications, electrical connections to Products manufactured by CSI, and Product specific training, is part of CSI's product warranty. CSI EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CSI hereby disclaims, to the fullest extent allowed by applicable law, any and all warranties and conditions with respect to the Products, whether express, implied or statutory, other than those expressly provided herein.”
Products may not be returned without prior authorization. The following contact information is for US and international customers residing in countries served by Campbell Scientific, Inc. directly. Affiliate companies handle repairs for customers within their territories. Please visit www.campbellsci.com to determine which Campbell Scientific company serves your country.

To obtain a Returned Materials Authorization (RMA) number, contact CAMPBELL SCIENTIFIC, INC., phone (435) 227-9000. Please write the issued RMA number clearly on the outside of the shipping container. Campbell Scientific’s shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#____
815 West 1800 North
Logan, Utah 84321-1784

For all returns, the customer must fill out a “Statement of Product Cleanliness and Decontamination” form and comply with the requirements specified in it. The form is available from our website at www.campbellsci.com/repair. A completed form must be either emailed to repair@campbellsci.com or faxed to (435) 227-9106. Campbell Scientific is unable to process any returns until we receive this form. If the form is not received within three days of product receipt or is incomplete, the product will be returned to the customer at the customer’s expense. Campbell Scientific reserves the right to refuse service on products that were exposed to contaminants that may cause health or safety concerns for our employees.
DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING, USING, MAINTAINING, AND WORKING ON OR AROUND TRIPODS, TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC. FAILURE TO PROPERLY AND COMPLETELY ASSEMBLE, INSTALL, OPERATE, USE, AND MAINTAIN TRIPODS, TOWERS, AND ATTACHMENTS, AND FAILURE TO HEED WARNINGS, INCREASES THE RISK OF DEATH, ACCIDENT, SERIOUS INJURY, PROPERTY DAMAGE, AND PRODUCT FAILURE. TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE HAZARDS. CHECK WITH YOUR ORGANIZATION’S SAFETY COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED PROTECTIVE EQUIPMENT PRIOR TO PERFORMING ANY WORK.

Use tripods, towers, and attachments to tripods and towers only for purposes for which they are designed. Do not exceed design limits. Be familiar and comply with all instructions provided in product manuals. Manuals are available at www.campbellsci.com or by telephoning (435) 227-9000 (USA). You are responsible for conformance with governing codes and regulations, including safety regulations, and the integrity and location of structures or land to which towers, tripods, and any attachments are attached. Installation sites should be evaluated and approved by a qualified engineer. If questions or concerns arise regarding installation, use, or maintenance of tripods, towers, attachments, or electrical connections, consult with a licensed and qualified engineer or electrician.

General
- Prior to performing site or installation work, obtain required approvals and permits. Comply with all governing structure-height regulations, such as those of the FAA in the USA.
- Use only qualified personnel for installation, use, and maintenance of tripods and towers, and any attachments to tripods and towers. The use of licensed and qualified contractors is highly recommended.
- Read all applicable instructions carefully and understand procedures thoroughly before beginning work.
- Wear a hardhat and eye protection, and take other appropriate safety precautions while working on or around tripods and towers.
- Do not climb tripods or towers at any time, and prohibit climbing by other persons. Take reasonable precautions to secure tripod and tower sites from trespassers.
- Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical
- You can be killed or sustain serious bodily injury if the tripod, tower, or attachments you are installing, constructing, using, or maintaining, or a tool, stake, or anchor, come in contact with overhead or underground utility lines.
- Maintain a distance of at least one-and-one-half times structure height, 20 feet, or the distance required by applicable law, whichever is greater, between overhead utility lines and the structure (tripod, tower, attachments, or tools).
- Prior to performing site or installation work, inform all utility companies and have all underground utilities marked.
- Comply with all electrical codes. Electrical equipment and related grounding devices should be installed by a licensed and qualified electrician.

Elevated Work and Weather
- Exercise extreme caution when performing elevated work.
- Use appropriate equipment and safety practices.
- During installation and maintenance, keep tower and tripod sites clear of un-trained or non-essential personnel. Take precautions to prevent elevated tools and objects from dropping.
- Do not perform any work in inclement weather, including wind, rain, snow, lightning, etc.

Maintenance
- Periodically (at least yearly) check for wear and damage, including corrosion, stress cracks, frayed cables, loose cable clamps, cable tightness, etc. and take necessary corrective actions.
- Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS, THE CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING FROM IMPROPER INSTALLATION, USE, OR MAINTENANCE OF TRIPODS, TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.
Table of Contents

PDF viewers: These page numbers refer to the printed version of this document. Use the PDF reader bookmarks tab for links to specific sections.

1. Introduction .. 1
2. Precautions .. 1
3. Initial Inspection ... 1
4. QuickStart ... 1
5. Overview ... 4
6. Specifications... 5
 6.1 Performance .. 5
 6.1.1 Performance for “Standard” Range Option 5
 6.1.2 Performance for 500 to 1100 mb Range Option 5
 6.1.3 Performance for 800 to 1100 mb Range Option 6
6.2 Electrical ... 6
6.3 Physical .. 6
7. Installation.. 6
 7.1 Venting and Condensation ... 6
 7.2 Mounting .. 7
 7.3 Wiring .. 8
 7.3.1 Datalogger Connection ... 8
 7.3.2 5-pin Screw Terminal Plug Connector ... 9
 7.4 Programming ... 9
 7.4.1 CRBasic Instructions .. 10
8. Operations .. 10
 8.1 Conversion Factors .. 10
 8.2 Long Lead Lengths ... 11
 8.3 Output Resolution .. 11
 8.4 Correcting Pressure to Sea Level .. 11
9. Maintenance and Calibration 12
Appendices
A. Importing Short Cut Code Into CRBasic Editor ... A-1
B. Example Programs... B-1
 B.1 CR1000 Program Using Sequential Mode .. B-1
 B.2 CR1000 Program Using Pipeline Mode .. B-2
Table of Contents

Figures

5-1. CS100 Barometric Pressure Sensor ... 4
7-1. ENC100 is a very small enclosure that can house one CS100 7
7-2. CS100 as removed from the box ... 8
7-3. Connector key attached to 5-pin screw terminal plug connector 9

Tables

7-1. Signal and Ground Connectors for CS100 .. 8
7-2. Multipliers and Offsets ... 10
8-1. Conversion Factors for Alternative Pressure Units 10
B-1. Wiring for Example Programs .. B-1

CRBasic Examples

B-1. CR1000 Program Using Sequential Mode .. B-1
B-2. CR1000 Program Using Pipeline Mode .. B-2
CS100 Barometric Pressure Sensor

1. Introduction

The CS100 measures barometric pressure for the range of 600 to 1100 mb. This range equates to from below sea level (as in a mine) up to 12,000 feet above sea level. Designed for use in environmental applications, the CS100 is compatible with all Campbell Scientific dataloggers.

NOTE

This manual provides information only for CRBasic dataloggers. It is also compatible with our retired Edlog dataloggers. For Edlog datalogger support, see an older manual at www.campbellsci.com/old-manuals or contact a Campbell Scientific application engineer for assistance.

2. Precautions

- READ AND UNDERSTAND the Safety section at the front of this manual.
- Warning: Failure to protect the sensor from condensation may result in permanent damage.
- Warning: Improper wiring may damage the CS100 beyond repair.
- Care should be taken when opening the shipping package to not damage or cut the cable jacket. If damage to the cable is suspected, consult with a Campbell Scientific application engineer.
- Although the CS100 is rugged, it should be handled as a precision scientific instrument.
- The black outer jacket of the cable is Santoprene® rubber. This compound was chosen for its resistance to temperature extremes, moisture, and UV degradation. However, this jacket will support combustion in air. It is rated as slow burning when tested according to U.L. 94 H.B. and will pass FMVSS302. Local fire codes may preclude its use inside buildings.

3. Initial Inspection

- Upon receipt of the CS100, inspect the packaging and contents for damage. File damage claims with the shipping company.

4. QuickStart

Short Cut is an easy way to program your datalogger to measure the CS100 and assign datalogger wiring terminals. *Short Cut* is available as a download on www.campbellsci.com and the ResourceDVD. It is included in installations of LoggerNet, PC200W, PC400, or RTDAQ.
Use the following procedure to get started.

1. Open *Short Cut*. Click *New Program*.

2. Select *Datalogger Model* and *Scan Interval* (default of 5 seconds is *OK* for most applications). Click *Next*.
3. Under the **Available Sensors and Devices** list, select **Sensors** | **Meteorological** | **Barometric Pressure** folder. Select **CS100 Barometric Pressure Sensor**. Click to move the selection to the **Selected device** window. Enter the **Sea Level Elevation Correction**. If not using the standard range of **600 - 100 mb**, select another **Barometer Pressure Range**. The default units for the sea level elevation correction is meters; this can be changed by clicking on the **Elevation Correction Units** box and selecting **Feet**. Defaults for the barometric pressure measurement and frequency of the measurement are **mmHg** and **Hourly**, consecutively. These can be changed by clicking the **Barometric Pressure** and **Measure sensor** boxes and selecting different values.

4. After selecting the sensor, click **Wiring Diagram** to see how the sensor is to be wired to the datalogger. The wiring diagram can be printed now or after more sensors are added. Remove the yellow warning label from the pigtails before wiring.
5. **Overview**

The CS100 is a capacitive pressure transducer that uses the Setra’s electrical capacitor technology for barometric pressure measurements. The transducer is encased in a stainless steel and polyester case fitted with an 1/8-inch barbed fitting for pressure connection (FIGURE 5-1).

The compact and rugged polyester housing contains two closely-spaced, parallel, electrically-isolated metallic surfaces. One of the surfaces is essentially a diaphragm constructed of a Setra’s proprietary compound of fused glass and ceramic (Setraceram™) or a low-hysteresis material, such as 17-4 PH SS. The diaphragm is capable of detecting a slight change in the applied pressure, which is then converted to an analog voltage signal by Setra’s custom application-specific integrated circuit (ASIC). Campbell Scientific dataloggers can directly measure the analog signal generated by the barometer.

The standard measurement range is 600 to 1100 millibar. Other available measurement ranges are 500 to 1100 millibar and 800 to 1100 millibar. Please contact Campbell Scientific to order these special versions.

The CS100 is supplied in the triggered mode that allows the datalogger to switch 12 Vdc power to the barometer before the measurement. The datalogger then powers down the barometer after the measurements to conserve power.

Campbell Scientific offers the CS100-QD, a version of the CS100 that includes a connector for use with a RAWS-F or RAWS-P weather station (refer to the RAWS-F and RAWS-P manuals for more information).

If the CS100 and datalogger will be housed in different enclosures, the CABLE5CBL-L should be used instead of the cable that is shipped with the
CS100. The CABLE5CBL-L has a user-specified lead length; if pertinent, see Section 8.2, *Long Lead Lengths* (p. 11). The CABLE5CBL-L can terminate in:

- Pigtailed that connect directly to a Campbell Scientific datalogger (option –PT).
- Connector that attaches to a prewired enclosure (option –PW). Refer to www.campbellsci.com/prewired-enclosures for more information.

6. Specifications

Features:

- Integral switching circuit limits power consumption to measurement cycle
- Calibration NIST traceable
- Meets CE conformance standards
- Compatible with Campbell Scientific CRBasic dataloggers: CR200(X) series, CR300 series, CR6 series, CR800 series, CR1000, CR3000, CR5000, and CR9000(X)

6.1 Performance

6.1.1 Performance for “Standard” Range Option

<table>
<thead>
<tr>
<th>Measurement Range:</th>
<th>600 mb to 1100 mb (hPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature Range:</td>
<td>–40 to 60 °C (–40 to 140 °F)</td>
</tr>
<tr>
<td>Storage Temperature Range:</td>
<td>–60 to 120 °C (–76 to 248 °F)</td>
</tr>
<tr>
<td>Proof Pressure:</td>
<td>1500 mb</td>
</tr>
<tr>
<td>Burst Pressure:</td>
<td>2000 mb</td>
</tr>
<tr>
<td>Humidity Range:</td>
<td>non-condensing (up to 95% RH)</td>
</tr>
<tr>
<td>Media Compatibility:</td>
<td>non-corrosive, non-condensing air or gas</td>
</tr>
<tr>
<td>Resolution:</td>
<td>0.01 mb</td>
</tr>
<tr>
<td>Total Accuracy(^1):</td>
<td>±0.5 mb @ 20 °C</td>
</tr>
<tr>
<td></td>
<td>±1.0 mb @ 0 to 40 °C</td>
</tr>
<tr>
<td></td>
<td>±1.5 mb @ –20 to 50 °C</td>
</tr>
<tr>
<td></td>
<td>±2.0 mb @ –40 to 60 °C</td>
</tr>
<tr>
<td>Linearity:</td>
<td>±0.4 mb</td>
</tr>
<tr>
<td>Hysteresis:</td>
<td>±0.05 mb</td>
</tr>
<tr>
<td>Repeatability:</td>
<td>±0.03 mb</td>
</tr>
<tr>
<td>Long-term Stability:</td>
<td>±0.1 mb per year</td>
</tr>
</tbody>
</table>

\(^1\)The root sum squared (RSS) of end point non-linearity, hysteresis, non-repeatability and calibration uncertainty.

6.1.2 Performance for 500 to 1100 mb Range Option

<table>
<thead>
<tr>
<th>Measurement Range:</th>
<th>500 to 1100 mb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Accuracy(^1):</td>
<td>±0.6 mb @ 20 °C</td>
</tr>
<tr>
<td></td>
<td>±1.2 mb @ 0 to 40 °C</td>
</tr>
<tr>
<td></td>
<td>±2.0 mb @ –20 to 50 °C</td>
</tr>
<tr>
<td></td>
<td>±2.5 mb @ –40 to 60 °C</td>
</tr>
</tbody>
</table>
Linearity: ±0.5 mb
Hysteresis: ±0.06 mb
Repeatability: ±0.04 mb

1The root sum squared (RSS) of end point non-linearity, hysteresis, non-repeatability and calibration uncertainty.

6.1.3 Performance for 800 to 1100 mb Range Option

Measurement Range: 800 to 1100 mb
Total Accuracy1: ±0.3 mb @ 20 °C
±0.6 mb @ 0 to 40 °C
±1.0 mb @ –20 to 50 °C
±1.5 mb @ –40 to 60 °C

Linearity: ±0.25 mb
Hysteresis: ±0.03 mb
Repeatability: ±0.02 mb

1The root sum squared (RSS) of end point non-linearity, hysteresis, non-repeatability and calibration uncertainty.

6.2 Electrical

Supply Voltage: 9.5 to 28 Vdc
External Trigger Voltage
 Sleep Mode: 0 Vdc
 Operating Mode: 3 to 28 Vdc
Current Consumption: 3 mA nominal (operating mode)
 1 µA quiescent (sleep mode)
Signal Output: 0 to 2.5 Vdc
Warm-up Time: <1 s from shutdown mode
Response Time: <100 ms

6.3 Physical

Dimensions (Main Box): 9.1 x 6.1 x 2.5 cm (3.6 x 2.4 x 1.0 in)
Weight: 135 g (4.8 oz)
Mounting Hole Centers: 7.62 cm (3 in)
Pressure Connector: 1/8 in ID barbed fitting

7. Installation

If you are programming your datalogger with Short Cut, skip Section 7.3, Wiring (p. 8), and Section 7.4, Programming (p. 9). Short Cut does this work for you. See Section 4, QuickStart (p. 1), for a Short Cut tutorial.

7.1 Venting and Condensation

To prevent condensation, install the sensor in an environmentally protected enclosure, complete with desiccant, which should be changed at regular intervals.
Failure to protect the sensor from condensation may result in permanent damage.

The CS100 is typically mounted in a Campbell Scientific enclosure next to the datalogger. Campbell Scientific also offers the ENC100 for situations where it is desirable to house the CS100 in its own enclosure. The ENC100 is a 6.7-inch x 5.5-inch x 3.7-inch enclosure that includes a compression fitting for cable entry, a vent for equalization with the atmosphere, a backplate for mounting the CS100, and hardware for mounting the ENC100 to a tripod, tower, or pole (see FIGURE 7-1).

For the sensor to detect the external ambient pressure, the enclosure must vent to the atmosphere (not be hermetically sealed), which may require the addition of a vent hole on the outer wall. In this situation, do not make the hole on one of the vertical side walls, as wind blowing around it can cause transient changes in pressure.

7.2 Mounting

The mounting holes for the sensor are one-inch-centered (three inches apart), and will mount directly onto the holes on the backplates of the Campbell Scientific enclosures. Mount the sensor with the pneumatic connector pointing vertically downwards to prevent condensation collecting in the pressure cavity, and also to ensure that water cannot enter the sensor.
7.3 Wiring

7.3.1 Datalogger Connection

Before connecting the barometer to the datalogger, a yellow warning label must be removed from the pigtails (see FIGURE 7-2). The warning label reminds the user of the importance of properly connecting the barometer to the datalogger. Proper wiring is shown in Table 7-1.

![Yellow Warning Label]

FIGURE 7-2. CS100 as removed from the box

<table>
<thead>
<tr>
<th>Wire</th>
<th>CS100 Terminal</th>
<th>Datalogger Single-Ended Measurement</th>
<th>Datalogger Differential Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>VOUT</td>
<td>U configured for single-ended analog input(^1), SE (single-ended, analog-voltage input)</td>
<td>U configured for differential high(^1), DIFF H (differential high, analog-voltage input)</td>
</tr>
<tr>
<td>Yellow</td>
<td>AGND</td>
<td>AG or (\downarrow) (analog ground)</td>
<td>U configured for differential low(^1), DIFF L (differential low, analog-voltage input)</td>
</tr>
<tr>
<td>Black</td>
<td>GND</td>
<td>(\downarrow) or G</td>
<td>(\downarrow) or G</td>
</tr>
<tr>
<td>Green</td>
<td>EXT TRIG</td>
<td>U configured to turn power on/off(^3), C (control port)</td>
<td>U configured to turn power on/off(^3), C (control port)</td>
</tr>
<tr>
<td>Red</td>
<td>SUPPLY</td>
<td>12V</td>
<td>12V</td>
</tr>
<tr>
<td>Shield</td>
<td>Shield</td>
<td>AG or (\downarrow) (analog ground)</td>
<td>AG or (\downarrow) (analog ground)</td>
</tr>
</tbody>
</table>

\(^1\) U channels are automatically configured by the measurement instruction.

WARNING Improper wiring may damage the CS100 beyond repair.
7.3.2 5-pin Screw Terminal Plug Connector

The datalogger connects to the CS100 using a 5-pin screw terminal plug connector. This connector is removable and may be replaced. The replacement connector may come with a connector key attached to it to ensure that the connector is plugged into the CS100 right side up (see FIGURE 7-3). When the connector is right side up, it will easily plug into the barometer.

![Connector key attached to 5-pin screw terminal plug connector](image)

WARNING

A 5-pin screw terminal that is plugged in upside down will damage the sensor—perhaps beyond repair.

7.4 Programming

Short Cut is the best source for up-to-date datalogger programming code. Programming code is needed when:

- Creating a program for a new datalogger installation
- Adding sensors to an existing datalogger program

If your data acquisition requirements are simple, you can probably create and maintain a datalogger program exclusively with *Short Cut*. If your data acquisition needs are more complex, the files that *Short Cut* creates are a great source for programming code to start a new program or add to an existing custom program.

NOTE

Short Cut cannot edit programs after they are imported and edited in *CRBasic Editor*.

A *Short Cut* tutorial is available in Section 4, *QuickStart* (p. 1). If you wish to import *Short Cut* code into *CRBasic Editor* to create or add to a customized program, follow the procedure in Appendix A, *Importing Short Cut Code Into CRBasic Editor* (p. A-1). Programming basics for CRBasic dataloggers are in the following section. Complete program examples for select CRBasic dataloggers can be found in Appendix B, *Example Programs* (p. B-1). Programming basics and programming examples for Edlog dataloggers are provided at www.campbellsci.com/old-manuals.
7.4.1 CRBasic Instructions

The **VoltSE()** measurement instruction typically programs the datalogger to measure the CS100.

```
VoltSE( Dest, Reps, Range, SEChan, MeasOff, SettlingTime, Integration, Multiplier, Offset )
```

The appropriate multiplier and offset depends on the measurement range. TABLE 7-2 provides multipliers and offsets. The offset will need to be adjusted if the barometer is not at sea level (see Section 8.4, *Correcting Pressure to Sea Level* (p. 11)). If barometric pressure units other than mbar or hPA are desired, see Section 8.1, *Conversion Factors* (p. 10).

<table>
<thead>
<tr>
<th>Range Options</th>
<th>Multiplier</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 to 1100 mb</td>
<td>0.2</td>
<td>600</td>
</tr>
<tr>
<td>(standard range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 to 1100 mb</td>
<td>0.24</td>
<td>500</td>
</tr>
<tr>
<td>800 to 1100 mb</td>
<td>0.12</td>
<td>800</td>
</tr>
</tbody>
</table>

Often the **TimeIntoInterval()** instruction is used to only power the barometer while making the measurements.

Atmospheric pressure changes little with time. In most weather station applications, measuring the barometer pressure once an hour is adequate. See Appendix B, *Example Programs* (p. B-1), for more information.

8. Operations

8.1 Conversion Factors

In Appendix B, *Example Programs* (p. B-1), pressure is reported in millibars (mb). To report pressure in different units, multiply the measured pressure by the appropriate conversion factor. This is done by including an expression in the CRBasic program. See TABLE 8-1 below for conversion factors.

<table>
<thead>
<tr>
<th>To Find</th>
<th>Multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>hPa</td>
<td>1.0</td>
</tr>
<tr>
<td>kPa</td>
<td>0.1</td>
</tr>
<tr>
<td>mm of Hg</td>
<td>0.75006</td>
</tr>
<tr>
<td>in of Hg</td>
<td>0.02953</td>
</tr>
<tr>
<td>Psi</td>
<td>0.0145</td>
</tr>
<tr>
<td>Atm</td>
<td>0.00099</td>
</tr>
<tr>
<td>Torr</td>
<td>0.75006</td>
</tr>
</tbody>
</table>
8.2 Long Lead Lengths

Long lead lengths cause a voltage drop that will raise the barometric reading. Therefore, for lead lengths greater than 20 feet, use the differential instruction (VoltDiff()) to measure the CS100.

8.3 Output Resolution

When storing the values from the CS100 to a data table or to a datalogger’s final storage location, care must be taken to choose suitable scaling of the reading, or to store the value with adequate resolution to avoid losing useful resolution of the pressure measurement. The default resolution (low resolution) for Campbell Scientific dataloggers is limited to a maximum of four digits. Even then, the maximum digit value that can be displayed is 7999 for the CRBasic dataloggers. If you use this option with barometric data scaled in millibars (hPa), a reading above 799.9 mb for CRBasic dataloggers will lose one digit of resolution. For example, at 900 mb, the resolution is limited to 1 mb.

To retain 0.01 mb resolution, you either need to deduct a fixed offset from the reading before it is stored to avoid exceeding the 799.9 threshold, or output the barometric reading in high resolution format. This can be done by using the IEEE4 format.

8.4 Correcting Pressure to Sea Level

The weather service, most airports, radio stations, and television stations adjust the atmospheric pressure to a common reference (sea level). Equation 1 can be used to find the difference in pressure between the sea level and the site. That value (dP) is then added to the offset (600 mb in our example programs) in the measurement instruction. U.S. Standard Atmosphere and dry air were assumed when Equation 1 was derived (Wallace, J. M. and P. V. Hobbes, 1977: Atmospheric Science: An Introductory Survey, Academic Press, pp. 59-61).

\[
dP = 1013.25 \left\{ 1 - \left(1 - \frac{E}{44307.69231} \right)^{5.25328} \right\}
\]

(1)

The value \(dP\) is in millibars and the site elevation, \(E\), is in meters. Add \(dP\) value to the offset in the measurement instruction.

Use Equation (2) to convert feet to meters.

\[
E(m) = \frac{E(ft)}{3.281ft/m}
\]

(2)

The corrections involved can be significant. For example, at 1000 mb and 20 °C, barometric pressure will decrease by 1.1 mb for every 10 m increase in altitude.
9. Maintenance and Calibration

NOTE
All factory repairs and recalibrations require a returned material authorization (RMA) and completion of the “Declaration of Hazardous Material and Decontamination” form. Refer to the Assistance page at the beginning of this manual for more information.

Since the sensor is semi-sealed, minimum maintenance is required:

- Visually inspect the cable connection to ensure it is clean and dry.
- Visually inspect the casing for damage.
- Ensure that the pneumatic connection and pipe are secure and undamaged.

The external case can be cleaned with a damp, lint-free cloth and a mild detergent solution.

You can purchase a replacement five terminal connector (pn 16004) from Campbell Scientific.

CAUTION
The CS100 is sensitive to static when the backplate is removed. To avoid damage, take adequate anti-static measures when handling.
Appendix A. Importing Short Cut Code Into CRBasic Editor

This tutorial shows:

- How to import a Short Cut program into a program editor for additional refinement
- How to import a wiring diagram from Short Cut into the comments of a custom program

Short Cut creates files, which can be imported into CRBasic Editor. Assuming defaults were used when Short Cut was installed, these files reside in the C:\campbells\SCWin folder:

- .DEF (wiring and memory usage information)
- .CR2 (CR200(X)-series datalogger code)
- .CR300 (CR300-series datalogger code)
- .CR6 (CR6-series datalogger code)
- .CR8 (CR800-series datalogger code)
- .CR1 (CR1000 datalogger code)
- .CR3 (CR3000 datalogger code)
- .CR5 (CR5000 datalogger code)
- .CR9 (CR9000(X) datalogger code)

Use the following procedure to import Short Cut code and wiring diagram into CRBasic Editor:

1. Create the Short Cut program following the procedure in Section 4, QuickStart (p. 1). Finish the program and exit Short Cut. Make note of the file name used when saving the Short Cut program.

2. Open CRBasic Editor.

3. Click File | Open. Assuming the default paths were used when Short Cut was installed, navigate to C:\CampbellSci\SCWin folder. The file of interest has the .CR2, .CR300, .CR6, .CR8, .CR1, .CR3, .CR5, or .CR9 extension. Select the file and click Open.

4. Immediately save the file in a folder different from C:\CampbellSci\SCWin, or save the file with a different file name.

5. The program can now be edited, saved, and sent to the datalogger.

6. Import wiring information to the program by opening the associated .DEF file. Copy and paste the section beginning with heading “-Wiring for CRXXX-” into the CRBasic program, usually at the head of the file. After pasting, edit the information such that an apostrophe (‘) begins each line. This character instructs the datalogger compiler to ignore the line when compiling.

NOTE

Once the file is edited with CRBasic Editor, Short Cut can no longer be used to edit the datalogger program. Change the name of the program file or move it, or Short Cut may overwrite it next time it is used.
Appendix B. Example Programs

The CS100 wiring instructions for the example programs are shown in TABLE B-1 below.

<table>
<thead>
<tr>
<th>Wire Color</th>
<th>Description</th>
<th>CR1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>VOUT – Pressure Signal Out</td>
<td>SE15</td>
</tr>
<tr>
<td>Red</td>
<td>SUPPLY – 12 Vdc Power In</td>
<td>12V</td>
</tr>
<tr>
<td>Black</td>
<td>GND – Power Ground</td>
<td>G</td>
</tr>
<tr>
<td>Yellow</td>
<td>AGND – Signal Ground</td>
<td>↓</td>
</tr>
<tr>
<td>Green</td>
<td>EXT. TRIG. – External Trigger</td>
<td>C4</td>
</tr>
<tr>
<td>Clear</td>
<td>Shield</td>
<td>G</td>
</tr>
</tbody>
</table>

B.1 CR1000 Program Using Sequential Mode

This CR1000 program uses the sequential mode, which is the simplest mode and can be used for most meteorological applications. Although the example is for the CR1000, other CRBasic dataloggers, such as the CR200(X), CR800, CR850, CR3000, and CR9000(X) are programmed similarly. In the example, the CR1000 measures the CS100 once an hour. To do this, the CR1000 uses a control port to turn on the CS100 one minute before the top of the hour. On the hour, the datalogger measures the CS100, and then turns the CS100 off.

CRBasic Example B-1. CR1000 Program Using Sequential Mode

'CR1000
'Declare Variables and Units
Public BattV
Public PTemp_C
Public BP_mmHg

Units BattV=Volts
Units PTemp_C=Deg C
Units BP_mmHg=mmHg

'Define Data Tables
DataTable(Table1,True,-1)
 DataInterval(0,60,Min,10)
 Sample(1,BP_mmHg,FP2)
EndTable

DataTable(Table2,True,-1)
 DataInterval(0,1440,Min,10)
 Minimum(1,BattV,FP2,False,False)
EndTable

'Main Program
BeginProg
'Main Scan
Scan(5,Sec,1,0)
'Default Datalogger Battery Voltage measurement 'BattV'
Battery (BattV)
'Default Wiring Panel Temperature measurement 'PTemp_C'
PanelTemp (PTemp_C, _60Hz)
'CS100 Barometric Pressure Sensor measurement 'BP_mmHg'
 If TimeIntoInterval (59, 60, Min) Then_PORTSET (4, 1)
 If TimeIntoInterval (0, 60, Min) Then
 VoltSE (BP_mmHg, 1, mV2500, 15, 1, 0, _60Hz, 0.2, 600)
 BP_mmHg = BP_mmHg * 0.75006
 PortSet (4, 0)
EndIf
'Call Data Tables and Store Data
CallTable (Table1)
CallTable (Table2)
NextScan
EndProg

B.2 CR1000 Program Using Pipeline Mode

Although this example is for the CR1000, other CRBasic dataloggers are programmed similarly. In the example, the CR1000 measures the CS100 once an hour in a program that runs at 1 Hz. To keep the CR1000 running in a pipeline mode, the measurement instruction is placed outside the If statement. The measurement is made every scan, and the measured value is first written into a temporary variable called _CS100_temp_. One minute before the hour, the CS100 turns on and starts to make the correct pressure measurements. At the top of the hour, the correct value is stored into the _pressure_ variable, and the sensor is turned off immediately.

CRBasic Example B-2. CR1000 Program Using Pipeline Mode

'CR1000 Datalogger
Public CS100_temp
Public pressure
Units pressure = mbar
DataTable (met_data, True, _-1_)
DataInterval (0, 60, min, 10)
 Sample (1, pressure, IEEE4)
EndTable

BeginProg
PipeLineMode
Scan (1, sec, 3, 0)

'Measurement is made every scan outside the "If" statement
VoltSE (CS100_temp, 1, mV2500, 15, False, 200, 250, 0.2, 600)

'Turn on CS100 one minute before the hour
 If (TimeIntoInterval (59, 60, min)) Then WriteIO (&b1000, &b1000)

'Copy the correct value to a current variable called "pressure" at the top of the hour
'Turn off CS100 after measurement
 If (TimeIntoInterval (0, 60, min)) Then
 pressure = CS100_temp
 WriteIO (&b1000, &b0)
 EndIf

CallTable met_data
NextScan
EndProg
Please visit www.campbellsci.com to obtain contact information for your local US or international representative.