PRODUCT MANUAL

CS241

Pt-1000 Class A, Precision Back-of-Module Temperature Sensor

Please read first

About this manual

Please note that this manual was produced by Campbell Scientific Inc. primarily for the North American market. Some spellings, weights and measures may reflect this. In addition, while most of the information in the manual is correct for all countries, certain information is specific to the North American market and so may not be applicable to European users. Differences include the U.S. standard external power supply details where some information (for example the AC transformer input voltage) will not be applicable for British/European use. Please note, however, that when a power supply adapter is ordered from Campbell Scientific it will be suitable for use in your country.

Reference to some radio transmitters, digital cell phones and aerials (antennas) may also not be applicable according to your locality. Some brackets, shields and enclosure options, including wiring, are not sold as standard items in the European market; in some cases alternatives are offered.

Recycling information for countries subject to WEEE regulations 2012/19/EU

At the end of this product's life it should not be put in commercial or domestic refuse but sent for recycling. Any batteries contained within the product or used during the products life should be removed from the product and also be sent to an appropriate recycling facility, per The Waste Electrical and Electronic Equipment (WEEE) Regulations 2012/19/EU. Campbell Scientific can advise on the recycling of the equipment and in some cases arrange collection and the correct disposal of it, although charges may apply for some items or territories. For further support, please contact Campbell Scientific, or your local agent.

Table of contents

1. Introduction	1
2. Precautions	1
3. Initial inspection	1
4. QuickStart	2
5. Overview	4
6. Specifications	6
7. Installation	7
7.1 Circuit diagrams 7.2 Wiring	
7.3 Data logger programming	
7.4 Placement on a photovoltaic (PV) module	
7.5 Mounting/cable strain relief	
7.5.1 Adhesive mounting strip	
7.5.2 Cable strain relief	13
7.5.3 Extreme sealing tape	15
7.6 Cable resistance/long cable lengths	16
7.7 Electrical noisy environments	17
8. Maintenance and troubleshooting	18
8.1 Maintenance	18
8.2 Troubleshooting	18
8.3 Recalibration	18
8.4 Removal	19
Appendix A. Importing Short Cut code into CRBasic Editor	20
Appendix B. Sensor material properties	21
B.1.3M F9473PC adhesive	21

1. Introduction

The CS241 temperature sensor uses a precision 1000 ohm Class A platinum resistance thermometer (PRT) to measure temperature. It is designed for measuring the back-of-photovoltaic (PV) module temperature but also can be used to measure the surface temperature of other devices. The CS241 can be measured with a 2-wire or 4-wire configuration and is compatible with most Campbell Scientific data loggers.

NOTE:

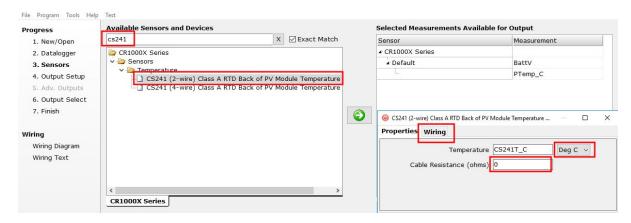
This manual provides information only for CRBasic data loggers. The sensor is also compatible with our retired Edlog data loggers. For Edlog data logger support, contact Campbell Scientific. Support for Edlog data loggers is no longer free; see www.campbellsci.com/news-edlog-retiring for more information.

2. Precautions

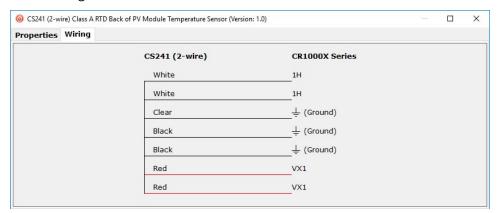
- READ AND UNDERSTAND the Safety section at the back of this manual.
- Do not use epoxy to secure the sensor head to a PV module.
- Before mounting, the installers need to wash their hands, then clean the back of the PV module or other device using the isopropyl alcohol pad shipped with the sensor.
- Prying the sensor head off will likely damage both the sensor and PV module.
- Proper strain relief of the cable is required after mounting the sensor to the measurement surface (Mounting/cable strain relief [p. 13]).
- Placement of the cable inside a rugged conduit is advisable for cable runs over 4.5 m (15 ft), especially in locations subject to digging, mowing, traffic, power tools, animals, or lightning strikes.

3. Initial inspection

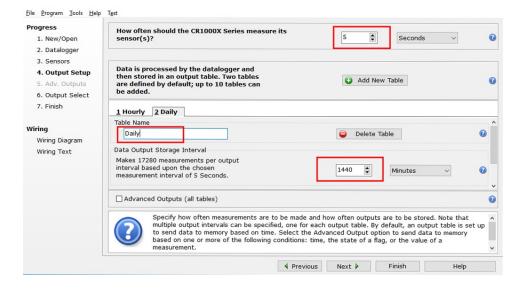
• Upon receipt of the sensor, inspect the packaging and contents for damage. File damage claims with the shipping company.

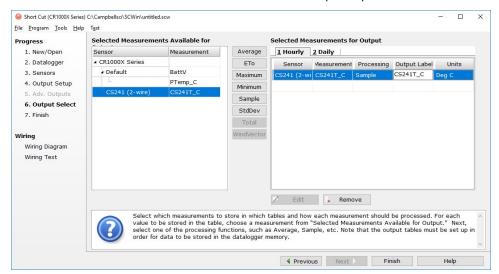

- The model number, cable length, and cable resistance are printed on a label at the connection end of the cable. Check this information against the shipping documents to ensure the expected product and cable length were received.
- The CS241 is shipped with a NIST-traceable calibration certificate. Please contact Campbell Scientific if you need an additional copy of the certificate for your records.

4. QuickStart


A video that describes data logger programming using *Short Cut* is available at: www.campbellsci.com/videos/cr1000x-data logger-getting-started-program-part-3 . *Short Cut* is an easy way to program your data logger to measure the sensor and assign data logger wiring terminals. *Short Cut* is available as a download on www.campbellsci.com . It is included in installations of *LoggerNet*, *RTDAQ*, or *PC400*.

The following procedure also shows using **Short Cut** to program the CS241.


- 1. Open *Short Cut* and click **Create New Program**.
- 2. Double-click the data logger model.
- 3. In the Available Sensors and Devices box, type CS241. You can also locate the sensor in the Sensors > Temperature folder. Double click the sensor model. The surface temperature defaults to degree C. This can be changed by clicking the Temperature box and selecting one of the other options. If using the 2-wire configuration, type the Cable Resistance. This value is unique for each sensor, and is printed on the heat shrink label attached to the sensor cable.


4. Click on the **Wiring** tab to see how the sensor is to be wired to the data logger. Click **OK** after wiring the sensor.

- 5. Repeat steps three and four for other sensors you want to measure. Click Next.
- 6. In **Output Setup**, type the scan rate, a meaningful table name, and the **Data Output Storage Interval**.

7. Select the measurement and its associated output option.

- 8. Click **Finish** and save the program. Send the program just created to the data logger if the data logger is connected to the computer.
- If the sensor is connected to the data logger, check the output of the sensor in the data logger support software data display in *LoggerNet*, *RTDAQ*, or *PC400* to make sure it is making reasonable measurements.

5. Overview

The CS241 is a surface mountable platinum resistive thermometer (PRT) that measures back-of-module temperature for solar energy applications. It uses a precision PT-1000 Class A PRT to provide the highest level of accuracy. To withstand the harsh treatment that commonly occurs with meteorological station installation, the sensing element is safely housed inside a specially designed self-adhesive aluminum disk (Figure 5-1 [p. 5]).

The disk protects the PRT, particularly during installation, and promotes heat transfer from the surface. An adhesive tab on the disk fastens the sensor to the measurement surface.

The CS241 provides PV stakeholders with highly accurate back-of-module temperature, even at long cable lengths, in power performance modeling and simulation of solar energy applications. Back-of-module temperature is critical for any evaluation of effective irradiance and power conversion.

Figure 5-1. CS241 temperature sensor

Benefits and features:

- Designed for optimal performance on bifacial PV module
- Easy installation with maximum sensor-to-module bonding strength and smaller profile
- NIST-traceable, serialized calibration certificate supplied with every sensor
- Meets or exceeds IEC 61724 Class A performance specifications
- Precision PT-1000 Class A sensing element
- Compliant with IEC 60751, DIN EN 60751 (according to IEC 751)
- Suitable for use on floating PV arrays
- Slim design to minimize sensor impact on bifaciality (<2% of full-size cell area)
- Thermal conductance greater than 600 W/(m^2 K)
- Maximum sensor-to-module bonding
- High temperature rating to 150 °C
- User-selectable and standard cable lengths offered
- 2-wire or 4-wire configurations to satisfy accuracy even at long cable lengths
- Compatible with Campbell Scientific CRBasic data loggers: CR6, CR1000X-series, CR350, CR300 series, CR3000, CR1000, CR800 series

6. Specifications

Sensor: Precision 1000 ohm Class A platinum sensing element

Class A sensor accuracy: $\pm (0.15 + 0.002t)$ °C

Operating temperature range: -40 to 150 °C

Temperature coefficient: TCR = 3850 ppm/K

Long-term stability: Maximum R_0 drift = 0.04% after 1000 hours at 400 °C

Measuring current: 0.1 to 0.3 mA

Temperature uncertainty: $\pm (0.3 \text{ to } 0.4 \text{ °C})$ for the -40 to 100 °C measurement range

when using the CR1000X data logger

Disk diameter: 2.54 cm (1.0 in)

Height: 0.419 cm (0.165 in)

Disk material: Anodized aluminum

Weight: \sim 27 g (0.06 lb) with 1 m (3 ft) cable

Approvals: Conforms with the Restriction of Hazardous Substances

Directive (RoHS2)

Compliance: View compliance documents at:

www.campbellsci.com/cs241

Meets or exceeds IEC 61724 Class A performance

specifications

Industrial standards: Compliant with IEC 60751, DIN EN 60751,

Industrial Design (IEC Class 4) (according to IEC 751)

IP rating: IP68 rating (self certified): 1 m (3 ft) submersion for 90

minutes

EMC compliance: Conforms with Electromagnetic Compatibility Directive

(EMC)

RoHS2: Conforms with Restriction of Hazardous Substances

Directive (RoHS2)

POE compliance: POE compliant (802.3af) to 100 meters when installed per

recommendations in TIA TSB-184

CAT5e: Cable will meet CAT5e channel requirements to 100 meter

length

Sensor cable (sensor head-to-M12 connector)

Cable diameter: 0.216 cm (0.085 in)

Cable length: 0.9 m (3 ft)

Jacket material: White semi-gloss perfluoroalkoxy (PFA), insulated

Jacket rating: −75 to 250 °C

Minimum bend radius: 6 mm (0.25 in) at least 6 mm (0.25 in) away

from sensor disk

Connector: Circular plastic M12, male 8-pin connector

Main cable (M12 connector to pigtail)

Cable diameter: 0.622 cm (0.245 in)

Jacket material: Black semi-gloss polyvinyl chloride (PVC), UL VW-1

sunlight resistant for outdoor use

UL: AWM 10012 1000V 105 °C

7. Installation

If you are programming your data logger with **Short Cut**, skip Wiring (p. 9) and Data logger programming (p. 11). Short Cut does this work for you. See QuickStart (p. 2) for a Short Cut tutorial. This section discusses the following:

7.1 Circuit diagrams	8
7.2 Wiring	9
7.3 Data logger programming	11
7.4 Placement on a photovoltaic (PV) module	13
7.5 Mounting/cable strain relief	13
7.6 Cable resistance/long cable lengths	16
7.7 Electrical noisy environments	17

7.1 Circuit diagrams

Figure 7-1 (p. 8) provides the circuit diagram for the 2-wire configuration. Figure 7-2 (p. 8) provides the circuit diagram for the 4-wire configuration.



Figure 7-1. 2-Wire Circuit Diagram

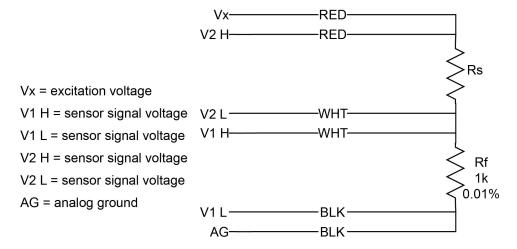


Figure 7-2. 4-Wire Circuit Diagram

7.2 Wiring

The CS241 sensor head includes a short, white cable with a circular plastic M12 type male 8-pin connector. A second cable with a mating circular plastic M12 type female 8-pin connector is used to attach the sensor to the data logger (see Figure 7-3 [p. 9]). This cable is typically a black UV resistant, semi-gloss cable purchased with the CS241. However, a user-supplied cable can be used. Table 7-1 (p. 10) and Table 7-2 (p. 11) show the pin configuration. Using connectors between the sensor head and the data logger cable allows in-field sensor head replacement without disconnecting the cable from the data logger. Detailed information about the cables are provided in the Specifications (p. 6).

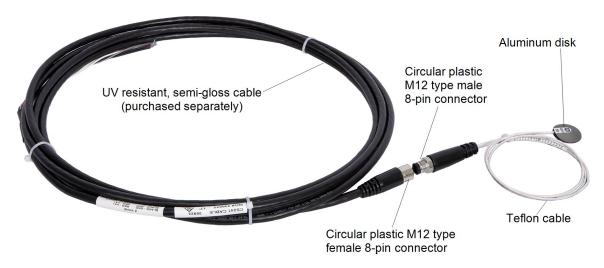


Figure 7-3. CS241 with black UV-resistant, semi-gloss cable

A fixed resistor is in the M12, male connector (see the following figure).

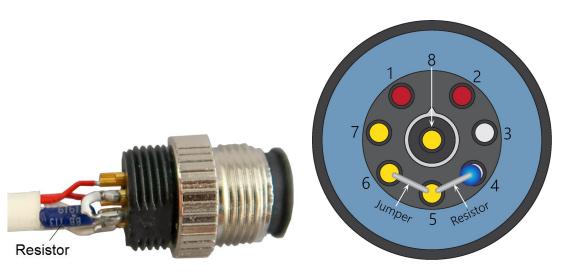


Figure 7-4. Resistor in M12 male connector. Right image shows pin numbers.

The data logger can measure the CS241 using either a 2-wire or 4-wire configuration. The 2-wire configuration accuracy decreases, relative to the 4-wire, as a function of the cable length. The 4-wire configuration eliminates resistance due to cable length and is the most accurate way to measure this sensor. The following tables provide the data logger connections for the 2-wire and 4-wire configurations.

Table 7-1: Wire color, function, and data logger connection for 2-wire configuration				
Wire color	Pin number	Wire function	Data logger connection	
Red	1	Voltage excitation	U configured for voltage excitation ¹ , EX , VX (voltage excitation)	
Red	2	Voltage excitation	U configured for voltage excitation ¹ , EX , VX (voltage excitation)	
White	3	Signal	U configured for single-ended analog input ¹ , SE (single-ended, analog-voltage input)	
White	4	Signal	U configured for single-ended analog input ¹ , SE (single-ended, analog-voltage input)	
Black	5	Signal reference	≟ (analog ground)	
Black	6	Signal reference	≟ (analog ground)	
Clear	N/C	Shield	≟ (analog ground)	
¹ U terminals are automatically configured by the measurement instruction.				

Table 7-2: Wire color, function, and data logger connection for 4-wire configuration					
Wire color	Pin number	Wire function	Data logger connection		
Red	1	Voltage excitation	U configured for voltage excitation ¹ , EX , VX (voltage excitation)		
Red	2	Signal, high	U configured for differential input ¹ , DIFF H (differential high, analog-voltage input)		
White	3	Signal reference	U configured for differential input ¹ , DIFF L (differential low, analog-voltage input)		
White	4	Signal, high	U configured for differential input ¹ , DIFF H (differential high, analog-voltage input)		
Black	5	Signal reference	U configured for differential input ¹ , DIFF L (differential low, analog-voltage input)		
Black	6	Ground	≟ (analog ground)		
Clear	N/C	Shield	≟ (analog ground)		
¹ U terminals are automatically configured by the measurement instruction.					

7.3 Data logger programming

Short Cut is the best source for up-to-date data logger programming code. If your data acquisition requirements are simple, you can probably create and maintain a data logger program exclusively with **Short Cut**. If your data acquisition needs are more complex, the files that **Short Cut** creates are a great source for programming code to start a new program or add to an existing custom program.

NOTE:

Short Cut cannot edit programs after they are imported and edited in CRBasic Editor.

A *Short Cut* tutorial is available in QuickStart (p. 2). If you wish to import *Short Cut* code into *CRBasic Editor* to create or add to a customized program, follow the procedure in Importing Short Cut code into CRBasic Editor (p. 20). Programming basics for CRBasic data loggers are provided in the following section.

If applicable, please read Electrical noisy environments (p. 17) and Cable resistance/long cable lengths (p. 16) prior to programming your data logger.

Downloadable program example is available at www.campbellsci.com/downloads/cs241example-programs 2.

7.3.1 Resistance measurement and conversion to temperature

The CS241 program needs to measure the resistance of the CS241 then convert that resistance measurement to temperature. Accurate resistance measurements require a high-precision fixed resistor with low thermal coefficient. The CS241 includes a 1000 Ohm metal film resistor with 0.05% accuracy and 10 ppm or better thermal coefficient in the connector on the sensor side.

A 4-wire measurement using two differential analog terminals provides the most accurate measurement and gets rid of resistance of the long cable lengths often needed in a field installation. The following is a typical 4-wire measurement instruction for the CR1000X data logger:

```
BrHalf4W(CS241X,1,mV200,mV200,1,VX1,1,350,True,True,0,15000,1,0)
'Convert ratio to ohms
CS241Rs=CS241X *1000 '(1000 is the value of the fixed resistor)
'Calculate temperature from resistance
'1000 is the resistance of the PRT at 0 degree C
PRTCalc(CS241T_4W,1,CS241Rs/1000,1,1,0)
```

A 2-wire measurement using only one single ended analog terminal can also measure the sensing element resistance. In this case, the sensor-cable resistance (Rw) is included in the measurement. With careful analysis of the circuit, some of this error can be removed if the cable resistance is known. The cable resistance is provided on the sensor cable for this purpose. This resistance will vary with temperature and hence the correction is only approximate. The following is a typical 2-wire instruction for the CR1000X:

```
BrHalf(CS241X,1,mV200,5,VX1,1,350,True,0,15000,1,0)
'Convert ratio to ohms and remove cable resistance
'1000 is the value of the fixed resistor
CS241Rs = 1000*((1-CS241X)/CS241X) + (Rw/2)*((1-2*CS241X)/CS241X)
'Calculate temperature from resistance
'1000 is the resistance of the PRT at 0 degree C
PRTCalc(CS241T_2W,1,CS241Rs/1000,1,1,0)
```

Where:

Rw is the cable resistance as shown on the cable

NOTE:

The CS241 is wired differently from what is shown in the help for instruction **BrHalf()**.

7.4 Placement on a photovoltaic (PV) module

The PV module may or may not have distinctive photocells. If the PV module does not have distinctive photocells, center the sensor on the back of the PV module. If the module has several distinctive photocells, center the sensor on the back of the photocell that is the middle of the PV module.

7.5 Mounting/cable strain relief

CAUTION:

Before mounting, the installers need to wash their hands, then clean the back of the PV module or other device using the isopropyl alcohol pad shipped with the sensor.

7.5.1 Adhesive mounting strip

A pressure-activated adhesive mounting strip is adhered to the flat surface of the aluminum disk. To mount the sensor, remove the paper from the mounting strip and place the disk on the back of the PV module or other device. Press the disk firmly for 2 to 3 seconds to initiate long-term bonding of the sensor to the surface. The mounting strip must be adhered to a clean surface for its adhesive to function properly.

CAUTION:

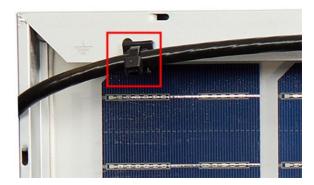
Do not use epoxy to secure the sensor head to a PV module.

7.5.2 Cable strain relief

NOTE:

Placement of the cable inside a rugged conduit is advisable for cable runs over 4.5 m (15 ft), especially in locations subject to digging, mowing, traffic, power tools, animals, or lightning strikes.

The cable must be properly strain relieved after mounting the sensor to the measurement surface. To accomplish this, the CS241 comes with three cable ties and three edge clips.


- 1. Fasten the edge clips at the top of the PV module in the following locations:
 - a. Above the sensor

b. Next to the cable connector

c. At a top corner of the PV module

2. Use the cable ties to secure the cable to the edge clips.

7.5.3 Extreme sealing tape

The CS241 was designed to minimize surface area and mass. This design minimizes the effects of installation on bifacial modules and also increases the adhesion properties of the sensor to the module surface. When back-of-module temperatures may exceed 150 °C, use extreme sealing tape for additional adhesion and cabling relief.

To ensure the sensor disk and cable are adequately fastened to the measurement surface, use three strips of tape in two places each:

- 1. For strain relief, place the first strip of tape across the cable 20 to 40 cm (8 to 16 in) from the sensor head and rub the tape surface to remove bubbles.
- 2. Place the other strips of tape perpendicular and on top of the first strip of tape and rub the tape surface to remove bubbles (see Figure 7-5 [p. 16]).
- 3. To secure the sensor to the module surface, remove the paper from the bottom of the disk and adhere the disk to the PV module (Placement on a photovoltaic (PV) module [p. 13]).
- 4. Place a strip of tape across the sensor head, perpendicular to the cable and rub the tape surface to remove bubbles. Rub as close as possible to the sensor disk.
- 5. Place the two other strips of tape on the ends of the sensor disk, perpendicular to the first piece of tape and parallel to the cable then rub the tape surface into the module surface. These strips of tape should form an H (see the following Figure).

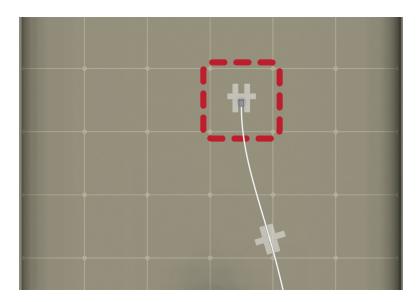


Figure 7-5. Proper tape usage

7.6 Cable resistance/long cable lengths

Placement of the cable inside a rugged conduit is advisable for cable runs over 4.5 m (15 ft), especially in locations subject to digging, mowing, traffic, power tools, animals, or lightning strikes.

Cable resistance can cause significant error (Figure 7-6 [p. 17]). The 4-wire half bridge configuration is the best configuration for long cable lengths.

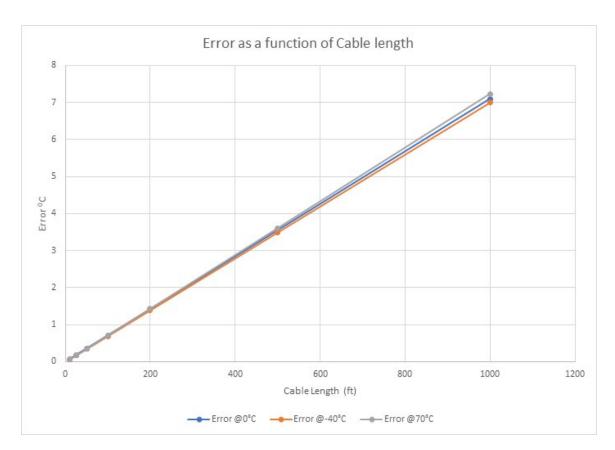


Figure 7-6. BrHalf (2-wire half bridge) measurement error as a function of cable length

The heat shrink label on the cable provides the cable resistance (ohms). When using the 2-wire configuration, subtract this cable resistance from the measured resistance value. The value included on the label is calculated with the following equation:

Cable resistance = 0.0274 ohm/feet x cable length (in feet)

Additional settling time may be required for cable lengths longer than 91 m (300 ft), where settling time is the delay before the measurement is made. The 60 and 50 Hz integration options include a 3 ms settling time; longer settling times can be typed into the **Settling Time** parameter in the **BrHalf4W()** or **BrHalf()** instruction.

7.7 Electrical noisy environments

AC power lines, pumps, power inverters, and motors can be the source of electrical noise. If the sensor or data logger is located in an electrically noisy environment, the sensor should be measured with the 60 or 50 Hz rejection option.

8. Maintenance and troubleshooting

NOTE:

For all factory repairs, customers must get an RMA number. Customers must also properly fill out a "Declaration of Hazardous Material and Decontamination" form and comply with the requirements specified in it. Refer to the Assistance page at the back of this manual for more information.

8.1 Maintenance

The CS241 sensor requires minimal maintenance. Periodically check cabling for proper connections, signs of damage, and possible moisture intrusion.

8.2 Troubleshooting

Symptom: Temperature is NAN, -INF, -9999, -273

Verify wiring of sensor to the data logger; cross-reference data logger program or the measurement system wiring diagram.

Symptom: Incorrect Temperature

Check the cable for signs of damage and possible moisture intrusion.

Check measurement instruction multiplier and offset.

Symptom: Unstable Temperature

Make sure the clear shield wire is connected to data logger ground, and the data logger is properly grounded. Try using the 60 or 50 Hz integration options and/or increasing the settling time.

8.3 Recalibration

The CS241 is shipped with a NIST-traceable calibration certificate. Please contact Campbell Scientific if you need an additional copy of the certificate for your records.

Campbell Scientific does not have any recommended schedule for recalibration due to the sensing principle used. Customers can use their own industry-specific recommendations in this

matter. Please note that due to the low cost of the sensor and nature of install, it might be more economical to replace the CS241 sensor head (keeping the existing cable in place) instead of a recalibration.

8.4 Removal

CAUTION:

Campbell Scientific does not recommend removing the CS241 because of potential damage to both the PV module and sensor, as well as the inability to reliably adhere the sensor to the surface again.

If removal is necessary, sliding a robust, but small gauge string or wire, such as fishing line, between the sensor and mounting surface has proven to be effective. Note that considerable force is needed, and hand protection is necessary.

Appendix A. Importing Short Cut code into CRBasic Editor

Short Cut creates a .DEF file that contains wiring information and a program file that can be imported into **CRBasic Editor**. By default, these files reside in the C:\campbellsci\SCWin folder.

Import *Short Cut* program file and wiring information into *CRBasic Editor*:

1. Create the *Short Cut* program, then save it. Click the *Advanced* tab then the *CRBasic Editor* button. Your program file will open in CRBasic with a generic name. Provide a meaningful name and save the CRBasic program. This program can now be edited for additional refinement.

NOTE:

Once the file is edited with *CRBasic Editor*, *Short Cut* can no longer be used to edit the program.

- 2. To add the *Short Cut* wiring information into the new CRBasic program, open the .DEF file located in the C:\campbellsci\SCWin folder. Copy the wiring information found at the beginning of the .DEF file.
- 3. Go into the CRBasic program and paste the wiring information at the beginning of the program.
- 4. In the CRBasic program, highlight the wiring information, right-click, and select **Comment Block**. This adds an apostrophe (') to the beginning of each of the highlighted lines, which instructs the data logger compiler to ignore those lines when compiling. The **Comment Block** feature is demonstrated at about 5:10 in the CRBasic | Features video .

Appendix B. Sensor material properties

The sensor consists of 6061 aluminum (hard anodized), RTD, 3M F9473PC adhesive, PFA-jacketed cable, and Santoprene® connector.

B.13M F9473PC adhesive

UV resistance: Excellent UV resistance through outdoor weathering tests.

Temperature resistance: Relatively unaffected by long-term exposure to elevated temperatures. Adhesive can tolerate periodic short-term exposures to temperatures up to 260 °C. The adhesive softens as temperature increases and gets firmer as temperature decreases. As the adhesive becomes firmer, the bond strength generally increases. However, at very low temperatures (<-40 °C), the bond strength decreases.

Solvent resistance: No apparent degradation when exposed to splash testing of many common solvents and fluids including gasoline, JP-4 fuel, mineral spirits, motor oil, ammonia cleaner, acetone and methyl ethyl ketone. Three-splash testing cycles were 20 seconds submersion and 20 seconds air dry.

Storage and shelf life: Humidity controlled storage: 16 to 27 °C (60 to 80 °F) and 40 to 60% relative humidity. If stored properly, product retains its performance and properties for 24 months from date of manufacture. If the products have been exposed to severe weather conditions, we suggest to precondition the products at the above storage conditions for at least 24 hours before using them.

Limited warranty

Covered equipment is warranted/guaranteed against defects in materials and workmanship under normal use and service for the period listed on your sales invoice or the product order information web page. The covered period begins on the date of shipment unless otherwise specified. For a repair to be covered under warranty, the following criteria must be met:

- 1. There must be a defect in materials or workmanship that affects form, fit, or function of the device.
- 2. The defect cannot be the result of misuse.
- 3. The defect must have occurred within a specified period of time; and
- 4. The determination must be made by a qualified technician at a Campbell Scientific Service Center/ repair facility.

The following is not covered:

- 1. Equipment which has been modified or altered in any way without the written permission of Campbell Scientific.
- 2. Batteries; and
- 3. Any equipment which has been subjected to misuse, neglect, acts of God or damage in transit.

Campbell Scientific regional offices handle repairs for customers within their territories. Please see the back page of the manual for a list of regional offices or visit www.campbellsci.com/contact to determine which Campbell Scientific office serves your country. For directions on how to return equipment, see Assistance.

Other manufacturer's products, that are resold by Campbell Scientific, are warranted only to the limits extended by the original manufacturer.

CAMPBELL SCIENTIFIC EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Campbell Scientific hereby disclaims, to the fullest extent allowed by applicable law, any and all warranties and conditions with respect to the products, whether express, implied, or statutory, other than those expressly provided herein.

Campbell Scientific will, as a default, return warranted equipment by surface carrier prepaid. However, the method of return shipment is at Campbell Scientific's sole discretion. Campbell Scientific will not reimburse the claimant for costs incurred in removing and/or reinstalling equipment. This warranty and the Company's obligation thereunder is in lieu of all other

warranties, expressed or implied, including those of suitability and fitness for a particular purpose. Campbell Scientific is not liable for consequential damage.

In the event of any conflict or inconsistency between the provisions of this Warranty and the provisions of Campbell Scientific's Terms, the provisions of Campbell Scientific's Terms shall prevail. Furthermore, Campbell Scientific's Terms are hereby incorporated by reference into this Warranty. To view Terms and conditions that apply to Campbell Scientific, Logan, UT, USA, see Terms and Conditions . To view terms and conditions that apply to Campbell Scientific offices outside of the United States, contact the regional office that serves your country.

Assistance

Products may not be returned without prior authorization. Please inform us before returning equipment and obtain a **return material authorization (RMA) number** whether the repair is under warranty/guarantee or not. See Limited warranty for information on covered equipment.

Campbell Scientific regional offices handle repairs for customers within their territories. Please see the back page of the manual for a list of regional offices or visit www.campbellsci.com/contact to determine which Campbell Scientific office serves your country.

When returning equipment, a RMA number must be clearly marked on the outside of the package. Please state the faults as clearly as possible. Quotations for repairs can be given on request.

It is the policy of Campbell Scientific to protect the health of its employees and provide a safe working environment. In support of this policy, when equipment is returned to Campbell Scientific, Logan, UT, USA, it is mandatory that a "Declaration of Hazardous Material and Decontamination" form be received before the return can be processed. If the form is not received within 5 working days of product receipt or is incomplete, the product will be returned to the customer at the customer's expense. For details on decontamination standards specific to your country, please reach out to your regional Campbell Scientific office.

NOTE:

All goods that cross trade boundaries may be subject to some form of fee (customs clearance, duties or import tax). Also, some regional offices require a purchase order upfront if a product is out of the warranty period. Please contact your regional Campbell Scientific office for details.

Safety

DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING, USING, MAINTAINING, AND WORKING ON OR AROUND TRIPODS, TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC. FAILURE TO PROPERLY AND COMPLETELY ASSEMBLE, INSTALL, OPERATE, USE, AND MAINTAIN TRIPODS, TOWERS, AND ATTACHMENTS, AND FAILURE TO HEED WARNINGS, INCREASES THE RISK OF DEATH, ACCIDENT, SERIOUS INJURY, PROPERTY DAMAGE, AND PRODUCT FAILURE. TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE HAZARDS. CHECK WITH YOUR ORGANIZATION'S SAFETY COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED PROTECTIVE EQUIPMENT PRIOR TO PERFORMING ANY WORK.

Use tripods, towers, and attachments to tripods and towers only for purposes for which they are designed. Do not exceed design limits. Be familiar and comply with all instructions provided in product manuals. Manuals are available at www.campbellsci.com You are responsible for conformance with governing codes and regulations, including safety regulations, and the integrity and location of structures or land to which towers, tripods, and any attachments are attached. Installation sites should be evaluated and approved by a qualified engineer. If questions or concerns arise regarding installation, use, or maintenance of tripods, towers, attachments, or electrical connections, consult with a licensed and qualified engineer or electrician.

General

- Protect from over-voltage.
- Protect electrical equipment from water.
- Protect from electrostatic discharge (ESD).
- · Protect from lightning.
- Prior to performing site or installation work, obtain required approvals and permits. Comply with all governing structure-height regulations, such as those of the FAA in the USA.
- Use only qualified personnel for installation, use, and maintenance of tripods and towers, and any attachments to tripods and towers. The use of licensed and qualified contractors is highly recommended.
- · Read all applicable instructions carefully and understand procedures thoroughly before beginning work.
- Wear a hardhat and eye protection, and take other appropriate safety precautions while working on or around tripods and towers
- Do not climb tripods or towers at any time, and prohibit climbing by other persons. Take reasonable precautions to secure tripod and tower sites from trespassers.
- Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical

- You can be killed or sustain serious bodily injury if the tripod, tower, or attachments you are installing, constructing, using, or maintaining, or a tool, stake, or anchor, come in contact with overhead or underground utility lines.
- Maintain a distance of at least one-and-one-half times structure height, 6 meters (20 feet), or the distance required by applicable law, whichever is greater, between overhead utility lines and the structure (tripod, tower, attachments, or tools).
- Prior to performing site or installation work, inform all utility companies and have all underground utilities marked.
- Comply with all electrical codes. Electrical equipment and related grounding devices should be installed by a licensed and qualified electrician.
- Only use power sources approved for use in the country of installation to power Campbell Scientific devices.

Elevated Work and Weather

- Exercise extreme caution when performing elevated work.
- Use appropriate equipment and safety practices.
- During installation and maintenance, keep tower and tripod sites clear of un-trained or non-essential personnel. Take precautions to prevent elevated tools and objects from dropping.
- Do not perform any work in inclement weather, including wind, rain, snow, lightning, etc.

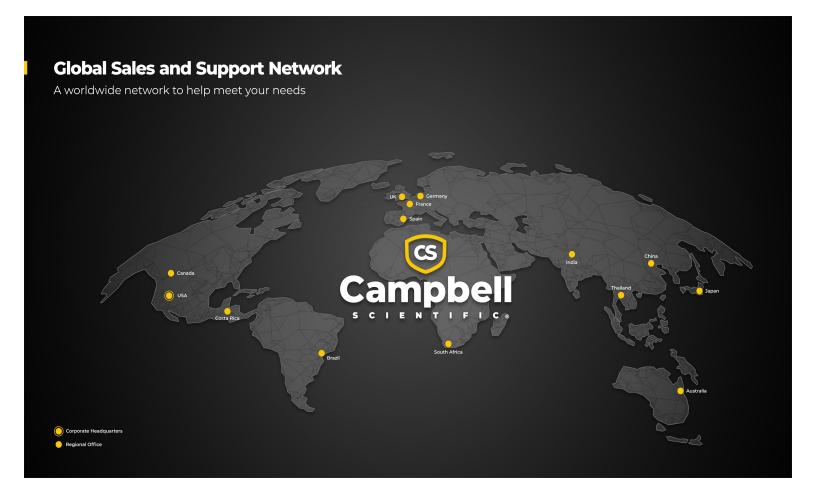
Internal Battery

- Be aware of fire, explosion, and severe-burn hazards.
- Misuse or improper installation of the internal lithium battery can cause severe injury.

• Do not recharge, disassemble, heat above 100 °C (212 °F), solder directly to the cell, incinerate, or expose contents to water. Dispose of spent batteries properly.

Use and disposal of batteries

- Where batteries need to be transported to the installation site, ensure they are packed to prevent the battery terminals shorting which could cause a fire or explosion. Especially in the case of lithium batteries, ensure they are packed and transported in a way that complies with local shipping regulations and the safety requirements of the carriers involved.
- When installing the batteries follow the installation instructions very carefully. This is to avoid risk of damage to the equipment caused by installing the wrong type of battery or reverse connections.
- When disposing of used batteries, it is still important to avoid the risk of shorting. Do not dispose of the batteries in a fire as there is risk of explosion and leakage of harmful chemicals into the environment. Batteries should be disposed of at registered recycling facilities.


Avoiding unnecessary exposure to radio transmitter radiation

• Where the equipment includes a radio transmitter, precautions should be taken to avoid unnecessary exposure to radiation from the antenna. The degree of caution required varies with the power of the transmitter, but as a rule it is best to avoid getting closer to the antenna than 20 cm (8 inches) when the antenna is active. In particular keep your head away from the antenna. For higher power radios (in excess of 1 W ERP) turn the radio off when servicing the system, unless the antenna is installed away from the station, e.g. it is mounted above the system on an arm or pole.

Maintenance

- Periodically (at least yearly) check for wear and damage, including corrosion, stress cracks, frayed cables, loose cable clamps, cable tightness, etc. and take necessary corrective actions.
- Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS, THE CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING FROM IMPROPER INSTALLATION, USE, OR MAINTENANCE OF TRIPODS, TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.

Campbell Scientific Regional Offices

Australia

Location: Garbutt, QLD Australia Phone: 61.7.4401.7700

Email: info@campbellsci.com.au Website: www.campbellsci.com.au

Brazil

Location: São Paulo, SP Brazil Phone: 11.3732.3399

Email: vendas@campbellsci.com.br Website: www.campbellsci.com.br

Canada

Location: Edmonton, AB Canada

Phone: 780.454.2505

Email: dataloggers@campbellsci.ca Website: www.campbellsci.ca

China

Location: Beijing, P. R. China Phone: 86.10.6561.0080

Email: info@campbellsci.com.cn Website: www.campbellsci.com.cn

Costa Rica

Location: San Pedro, Costa Rica Phone: 506.2280.1564 Email: info@campbellsci.cc Website: www.campbellsci.cc

France

Location: Montrouge, France
Phone: 0033.0.1.56.45.15.20
Email: info@campbellsci.fr
Website: www.campbellsci.fr

Germany

Location:Bremen, GermanyPhone:49.0.421.460974.0Email:info@campbellsci.deWebsite:www.campbellsci.de

India

Location: New Delhi, DL India Phone: 91.11.46500481.482 Email: info@campbellsci.in Website: www.campbellsci.in

Japan

Location: Kawagishi, Toda City, Japan 048.400.5001

Email: jp-info@campbellsci.com
Website: www.campbellsci.co.jp

South Africa

Location: Stellenbosch, South Africa

Phone: 27.21.8809960

Email: sales@campbellsci.co.za
Website: www.campbellsci.co.za

Spain

Location:Barcelona, SpainPhone:34.93.2323938Email:info@campbellsci.esWebsite:www.campbellsci.es

Thailand

Location:Bangkok, ThailandPhone:66.2.719.3399Email:info@campbellsci.asiaWebsite:www.campbellsci.asia

UK

Location: Shepshed, Loughborough, UK
Phone: 44.0.1509.601141
Email: sales@campbellsci.co.uk
Website: www.campbellsci.co.uk

USA

Location: Logan, UT USA
Phone: 435.227.9120
Email: info@campbellsci.com

Website: www.campbellsci.com