
DLDMOD Software Manual

-za
F;
F
eo
Fl
-o
z

=z
l-1
\-{

F
Campbell Scientific, Inc

CAMPBELL SCIENTIFIC, INC.

DLDMOD
PRELIMINARY MANUAL

February 8, 1996

o

o

o

o

o

o

Preliminary DLDMOD Manual

INTRODUCTION TO THE DLDMOD MANUAL

This manual is supplied with the preliminary release of DLDMOD.

There are two parts to this manual. The first part is intended to provide an overuiew of DLDMOD. The
second part describes the procedures required to develop a working DLDMOD application. All of the
available commands are listed with several examples of how to use them. As with most computer
languages, much can be learned by studying programs previously written by software developers familiar
with the language. For this reason, some sample programs have been included on the floppy disk
supplied to you.

Throughout this manual, "develope/' is used to describe the person that will write the DLDMOD
application. This is most likely the person reading this manual. The word "use/' describes the person
running the application created by the "develope/'.

It is important that you read the agreement included with the package you received and that you comply
with the provisions stated.

As a developer, you are responsible for supporting your DLDMOD applications and the datalogger
programs created with your applications. Campbell Scientific, Inc. cannot assume any responsibility for
the support of applications you create. You should not distribute your application (or allow your application
to be distributed) to users that you will not support.

Comments and suggestions are welcome and should be relayed to the person that supplied your copy of
DLDMOD.

LIMITED WARRANTY
Campbell Scientific, Inc. warrants that the magnetic diskette on which the accompanying computer soft-
ware is recorded and the documentation provided with it are free from physical defects in materials and
workmanship under normal use. Campbell Scientific, Inc. warrants the computer software itself will
perform substantially in accordance with the specifications set forth in the Operator's Manual published by
Campbell Scientific, Inc. Campbell Scientific, Inc. warrants the software is compatible with IBM PC/XT/AT
and PS/2 microcomputers and 100% compatible computers only. Campbell Scientific, Inc. is not
responsible lor incompatibility of this software running under any operating system other than those
specified in accompanying data sheets or operator's manuals.

The above warranties are made for ninety (90) days from the date of original shipment.

Campbell Scientific, Inc. will replace any magnetic diskette or documentation which proves defective in
materials or workmanship without charge.

Campbell Scientific, Inc. will either replace or correct any software that does not pedorm substantially
according to the specifications set forth in the Operator's Manual with a corrected copy of the software or
corrective code. In the case of a significant error in the documentation, Campbell Scientific, Inc. will cor-
rect errors in the documentation without charge by providing addenda or substitute pages.

lf Campbell Scientific, Inc. is unable to replace defective documentation or a defective diskette, or if
Campbell Scientific, Inc. is unable to provide corrected software or corrected documentation within a
reasonable time, Campbell Scientific, Inc. will either replace the software with a functionally similar
program or refund the purchase price paid for the software.

Campbell Scientific, lnc. does not warrant that the software will meet licensee's requirements or that the
software or documentation are error free or that the operation of the software will be uninterrupted. The
warranty does not cover any diskette or documentation which has been damaged or abused. The soft-
ware warranty does not cover any software which has been altered or changed in any way by anyone
other than Campbell Scientific, Inc. Campbell Scientific, Inc. is not responsible for problems caused by

Page 2 of 19 February8,1996

Preliminary DLDMOD Manual

computer hardware, computer operating systems or the use of Campbell Scientific, Inc.'s software with
non-Campbell Scientific, Inc. software.

ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED AND EXCLUDED. CAMPBELL SCIENTIFIC, INC. SHALL NOT IN ANY CASE BE LIABLE
FOR SPECIAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT, OR OTHER SIMILAR DAMAGES EVEN
IF CAMPBELL SCIENTIFIC, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Campbell Scientific, Inc. is not responsible for any costs incurred as a result of lost profits or revenue, loss
of use of the software, loss of data, cost of re-creating lost data, the cost of any substitute program, claims
by any party other than the licensee, or for other similar costs.

LICENSEE'S SOLE AND EXCLUSIVE REMEDY IS SET FORTH IN THIS LIMITED WARRANTY.
CAMPBELL SCIENTIFIC, INC.'S AGGREGATE LIABILITY ARISING FROM OR RELATING TO THIS
AGREEMENT OR THE SOFTWARE OR DOCUMENTATION (REGARDLESS OF THE FORM OF
ACTTON - E.G. CONTRACT, TORT, COMPUTER MALPRACTTCE, FRAUD AND/OR OTHERWISE) lS
LIMITED TO THE PURCHASE PRICE PAID BY THE LICENSEE

LICENSE FOR USE
This software is protected by both United States copyright law and international copyright treaty provisions.
You may copy it onto a computer to be used and you may make archival copies of the software for the
sole purpose of backing-up Campbell Scientific, Inc. software and protecting your investment from loss.
All copyright notices and labeling must be left intact.

This software may be used by any number of people, and may be freely moved from one computer loca-
tion to another, so long as there is no possibility of it being used at one location while it's being used at
another. The software, under the terms of this license, cannot be used by two different people in two dif-
ferent places at the same time.

RELATIONSHIP

Campbell Scientific, Inc. hereby grants license to use DLDMOD in accordance with license statement
above.

No ownership in Campbell Scientific, Inc. patents, copyright, trade secrets, trademarks, or trade names is
translerred by this Agreement.

Developer may create as many different applications as desired and freely distribute them. Campbell
Scientific, lnc. expects no royalties or any other compensation outside of the DLDMOD purchase price.

Developer is responsible for supporting DLDMOD applications created by the developer.

RESPONSIBILITIES OF DEVELOPER

The developer agrees:

To provide a competent programmer familiar with Campbell Scientific, Inc. datalogger programming to
write the DLDMOD applications.

Not to sell or distribute "COMPILE.EXE" or "DLDMOD.EXE" in any form.

Not to freely distribute any other Campbell Scientific, Inc. Software (i.e. PC208) in any form.

Applications developed with DLDMOD will be solely for the support of Campbell Scientific, Inc.
dataloggers. No attempt will be made to support non-Campbell Scientific, Inc. dataloggers with DLDMOD
applications.

To assure that each application developed with DLDMOD clearly states the name of the person or entity
that developed the application. This information should appear on the first window the user will see.

February 8, 1996 Page 3 of 19

Preliminary DLDMOD Manual

WARRANTY

There is no written or implied warranty provided with DLDMOD software other than as stated herein.

TERMINATION

Any license violation or breach of Agreement will result in immediate termination of the developer rights
herein and the recovery of all DLDMOD materials supplied by Campbell Scientific, Inc.

MISCELLANEOUS

Notices required hereunder shall be in writing and shall be given by telegram, telex, or similar
communication or by certified or registered air mail, return receipt requested. Such notice shall be
deemed given in the case ol telegrams or similar communication when sent and in the case of certified or
registered mail on the date of receipt.

This Agreement shall be governed and construed in accordance with the laws of the State of Utah, U.S.A.
Any dispute resulting from this Agreement will be settled in arbitration.

This Agreement sets forth the entire understanding of the parties and supersedes all prior agreements,
arrangements and communications, whether oral or written pertaining to the subject matter hereof. This
Agreement shall not be modified or amended except by the mutual written agreement of the parties. The
failure of either party to enforce any of the previsions of this Agreement shall not be construed as a waiver
of such provisions or of the right of such party thereafter to enforce each and every provision contained
herein. lf any term, clause, or provision contained in this Agreement is declared or held invalid by a court
of competent jurisdiction, such declaration or holding shall not affect the validity of any other term, clause,
or provision herein contained. Neither the rights nor the obligations arising under this Agreement are
assignable or transferable.

Page 4 of 19 February 8, 1996

Preliminary DLDMOD Manual

OVERVIEW OF DLDMOD

USER

The user has measurements to make with a
datalogger and a DLDMOD application created
by a developer for the user's application or a
similar application. The user does not need any
knowledge of datalogger programming.
DLDMOD provides an easy way to set up the
datalogger for the supported application. The
user runs the DLDMOD application, fills in the
blanks, and selects options from menus. There
may also be appropriate help prompts for each
blank and option. As the answers are entered,
they are checked against a list of acceptable
answers. The user is asked to reenter any
values that fail. When this is done, a
FILENAME.DLD file has been created and is
ready to download to the datalogger. This
manual has been written for the developer rather
than the user.

DEVELOPER

The developer creates the DLDMOD application
the user will run. The developer has knowledge
of the types of measurement and control the
user wants to do. While the developer may not
know each user's exact datalogger configuration,
the developer does understand what variations
the users might have. The developer also
knows how to program a datalogger. The
developer could program the FILENAME.DLD
file for the user directly if it was known exactly
what the user needed to do.

DLDMOD is a programming language designed
to allow the developer to ask the user questions
and thereby change or create a FILENAME.DLD
file based on the user's answers. DLDMOD
programming consists of two parts: getting
information from the user, and creating a data-
logger program lor the user. As part of creating
a datalogger program, wiring diagrams can be
generated, input location usage shown, etc.
DLDMOD does not do these things, but
DLDMOD provides the tools for the developer to
do them.

INSTALLATION

You should make a backup copy of the original
DLDMOD disk. To use DLDMOD, simply copy

the files from the backup copy of the original disk
to the directory of your choice. DLDMOD works
best from a hard disk.

The following example shows the DOS
commands to installthe DLDMOD software in a
subdirectory named C:\DLDMOD on the C:
drive. lt assumes the floppy containing
DLDMOD is in the A: drive.

CD\

MD DLDMOD

CD DLDMOD

COPY A:*.*

SAMPLE PROGRAMS

This section will help explain the ten sample
overuiew programs (OVERVWI.FMT through
OVERVW9.FMT and DEMO.FMT) included with
DLDMOD. The steps to compile and run these
.FMT source files are described so you can try
them. For example, to run OVERVW1.FMT, you
would type the following at a DOS prompt (after
changing to the sub directory where DLDMOD
was installed) :

Compile overvwl
Makeexe overvwl
overvwl

Repeat these steps, with the appropriate file
name, to run the other examples. While running
an example, press F1 for a list of keys that can
be used. Go ahead and try some of the
examples now.

When you run any example the second time, you
will see a screen asking if you want to use the
default answers or those you selected last time
you ran the application. Experiment with both
options. DLDMOD saves all of the variables in a
file when program execution moves to the
Compile section. When a DLDMOD application
is run, it checks for the file containing the
variables and will optionally use the values as
the defaults. This is built into DLDMOD. You
can select the default answers without being
asked by typing a "D" after the example name.
For example, to run the first example you could
type:

overvwl d

This would use the default answers.

February8,1996 Page 5 of 19

Preliminary DLDMOD Manual

Sensor A

01:P1

01:1

O2:2

03:3

04:4

Sensor B

O1:P2

01 :3

02:2

03:1

Sensor C

01:P3

0114

02:5

03:6

O4:7

05:8

All these examples are DLDMOD programs that
allow the end-user to make a measurement with
one of three sensors: SENSOR A, SENSOR B,
and SENSOR C. A NO SENSOR selection is
also provided. The user's selection will be used
to create a datalogger program named
OVERVIEW.DLD. Note that the sensors,
datalogger instructions, and the
OVERVIEW.DLD program are examples only.
All of the examples create a file named
OVERVIEW.DLD, overwriting any existing files
with the same name. The example datalogger
instructions needed to measure each of the
three sensors are as follows:

All DLDMOD programs have two main sections;
Declarations and Compile. In the Declaration
section, the developer sets up what the user will
see and do. In the Compile section the
developer actually makes changes to the .DLD
file. When a DLDMOD program is run, it starts
by displaying the first windows, as declared in
the Declarations section.

From this point, the user navigates through the
windows with the cursor keys or the mouse,
making selections (Menu options or options) and
filling in prompts (variables). DLDMOD provides
two ways to get information from the user:
variables and menu options. Variables provide a
prompt and the user types in the appropriate
information. Try OVERVW1 to see an example
of a variable. Menu options allow the user to
press ENTER and select an option after moving

the highlight cursor to the option he wants. Try
OVERVW2 to see an example using options.

The Declaration section describes how the
windows are displayed and what options and
variables are used. When the user has finished
all the declared windows or when the user
presses the F4 key, DLDMOD program flow
moves to the Compile section. Usually at this
point, the user's answers are committed and are
used to actually create the FILENAME.DLD file
(OVERVIEW.DLD in these examples).

Prior to moving to the Compile section, it is good
practice to allow the user to change answers and
responses as needed. Program execution
before moving to the Compile section is not se-
quential, but is event driven in nature. Windows
are displayed and removed based on the user's
selections and key presses. The sequence of
the main windows and the response to each
menu option is described in the Declarations
section, but within these constraints the user is
free to navigate as desired.

Program execution in the Compile section is
sequential and it is easy to trace program flow.
The following is the Compile section from the
first few examples. Remember this is the code
that actually changes OVERVIEW.DLD.

COMPILE

DLDFILE=New'overview',' CR1 0'

CHANGETO 10 at 1

lF (sensor ='A) THEN

INSERT 1:1,2,3,4 at 'l :1

ENDIF

lF (Sensor ='B') THEN

INSERT 2:3,2,1 at1:1

ENDIF

lF (Sensor ='C') THEN

INSERT 3:4,5,6,7,8 at 1:1

endif

INSERT 28 at 10:1

INSERT 64 at 10:2

RENUM

SAVE

END

lf the user selected SENSOR B the created
OVERVIEW.DLD file would be:

]cR1o
;overview
MODE 1

SCAN RATE 10
1:P2

Page 6 of 19 February 8, 1996

Preliminary DLDMOD Manual

1:3
2:2
3:1

MODE 10
1:28
2:64

^E^E

Compile and run OVERVW1 if you have not
already done so. Notice how OVERVW1 ends
as soon as you type a correct response? when
you type enough characters to fill a variable's
box, DLDMOD automatically advances to the
next variable or option. lf there are no more on
the current window, DLDMOD will advance to
the next window. lf there are no more windows,
DLDMOD advances to the Compile section.
Run OVERVW1 again. Notice how typing
ENTER accepts the default answer. Try an
incorrect response to see how DLDMOD checks
the answers. One disadvantage of variables is
the user can always Vpe in an incorrect
response. DLDMOD will check the answers, but
it can be frustrating for a user.

Now compile and run OVERVW2. OVERVW1
and OVERVW2 get the same information from
the user and create the same OVERVIEW.DLD
file. This gives a comparison of variables and
menu options. Menu options provide a simple
way to let a user see all the choices and select
one without typing. Notice that OVERVW2 also
ends when a selection is made. This is similar to
what OVERVW1 did but for a different reason.
The following fragment is from the Declaration
section. Notice the Clearback attribute on the
main window declaration:

WINDOWS

Main

full

dialogbox, clearback, f rame

The Clearback attribute causes a window to be
removed after the first menu option is selected.
lf it were not present, the window would remain
until the user pressed ESC or F4. Compile and
run OVERVW3. Notice it has no Clearback
declaration so the window is not removed until
you select the DONE option. The following is the
window declaration from OVERVW3:

wrNDows
Main

full

dialogbox, Frame
readonly(sensor)+

The other difference is the addition of a
READONLY command. This allows you to
display a variable without allowing the user to
move the cursor to it or edit it. Remember the
last line of a window declaration is a single
command (using multiple command will be
discussed later) executed just before the window
is displayed. This command marks the
SENSOR variable as READONLY. We can still
change the variable's value under program
control, but a user cannot edit it while it is
READONLY. READONLY variables are a handy
way a to give users feedback when they make a
selection using menu options. Any variable can
be marked READONLY, and they are entered in
the TEXT section just like any other variable.

The other change of interest is the DONE menu
option. Looking at the Declaration shows how it
works:

Done

removewin
' Done making selections'

When DONE is selected, the current window is
removed. Since there are no more windows
DLDMOD moves through the Compile section
and the program ends.

Window declarations allow a single executable
statement, executed just before the window is
displayed. Menu options also allow a single
executable statement. lf you require more than
one command, there are two ways to accomplish
it. You could put multiple commands in a
subroutine and then call the subroutine as the
single statement. Subroutines are most useful if
there is a need to execute the same code in
multiple places. DLDMOD treats an entire lF
THEN ELSE ENDIF block as one statement.
You can group multiple statements into a single
lF block and it will compile as a single statement.
OVERVW4 is the same as OVERVW3 except it

changes the display color of the READONLY
variable. lt uses the lF block technique to group
two statements into the window declaration as
follows:
WINDOWS

Main

full

dialogbox, Frame

if (1 =1) then ; Use lf statement to combine

;multiple statements where

February8,1996 Page 7 of 19

Preliminary DLDMOD Manual

rocolo(light cyan) ; only one is expected!
endif

Notice that lF (1=1) will always be true, so the
two statements are always executed. Also
notice the comments at the end of the line.
Everything after the semicolon is ignored.
Compile and run OVERVW4.

OVERVWS introduces several new concepts.
Compile and run it. OVERVWS uses a
subwindow. Subwindows are displayed only
when the DISPLAY command is used. A
subwindow is removed by:

o Selecting an option when the Clearback
attribute is set.

. Pressing the ESC key.

. Filling in a variable box when that
variable is the last item on the window.

o Execution of the Removewin command.

When a subwindow is removed, the previously
displayed window is restored. Notice the use of
the SELECT LOGGER menu option to display
the subwindow. Subwindows are useful for
grouping and reducing complexity.

The new information about what datalogger is
being used is put to use in the first line of the
Compile section:

DLDFILE=New' overview', dtype

This differs from our previous DLDFILE
instruction by using the new variable DTYPE
instead of the a constant type CR10 as in the
previous examples:

DLDFILE=New'overview','CR1 0'

Run OVERVWS and select the 21X datalogger
type. Type the OVERVIEW.DLD file and see the
difference.

When you run OVERVWS, notice it is somewhat
awkward to enter in the datalogger type. Also
notice once you leave the LOGGERS
subwindow, you have no indication of which
datalogger you selected. OVERVWO fixes both
of these problems. No new techniques are
used, just menu options and READONLY
variables. Compile and run OVERVW6. Even
with a small DLDMOD program, it is important
to give visual indication of what a user has
selected.

The DLDMOD License agreement requires that
you indicate who created the DLDMOD
application. OVERVWT adds an introduction
window to do just that. Notice the difference

between windows and subwindows. Windows
are displayed in sequence until they have all
been displayed. Subwindows are only displayed
with the DISPLAY command. Once the INTRO
window has been displayed there is no way to
return to it. The LOGGERS subwindow can be
displayed as many times a needed. Notice how
the INTRO window uses the DONE option to
move to the next window. lf INTRO had no
variables or menu options the user would have
to press RETURN to continue. Also notice that
the DONE menu option is used in two different
places. Menu options and variables can be used
on multiple windows.

Compile and run OVERVWT to get a feel for
windows and subwindows. While running
OVERVWT, press F1 and look at the help
screen. DLDMOD provides this as a default help
screen, but you can create your own. Compile
and run OVERVWS. Notice how pressing the Fl
key displays a customized HELP window. The
HELP attribute, as part of window declaration,
makes that window become the HELP window.
The following are the window declarations from
OVERVWs:

WINDOWS

Intro

full

frame

nothing

Main

f ull

dialogbox, Frame

if (1=1) then; Use lf statement to combine

readonly(senso0+ ; multiple statements
readonly(dtype)+ ; where only one is expected

rocolor(light cyan)

endif

SUBWINDOWS

loggers

5,5,30,12

dialogbox,clearback,f rame

nothing

myhelp

7,7,45,15

help,frame

nothing

Two rules apply when creating your own HELP
window. Only one window should have the
HELP declaration. lf two or more are declared,
only one of them will be displayed. Also, do not
display the HELP window with a DISPLAY
command. This might violate the more general

Page 8 of 19 February 8, 1996

Preliminary DLDMOD Manual

rule of never allowing a window to be displayed
twice at the same time.

Compile and run OVERVW9. OVERVW9 adds
an additional subwindow to organize things a
little better.

Also included on the DLDMOD disk is
DEMO.FMT. Compile and run this program. lt
is an example using many of the techniques
described here. Examine the source code for
explanations on what was done. Many editors
allow the special line drawing characters used in
the DEMO.FMT file. To add these characters,
press and hold the ALT key while you type the
three digit code for the character you wish to
draw. Consult an ASCII table (found in many
DOS manuals) {or the appropriate codes.

When modifying these examples or writing your
own .FMT files, be sure to use an ASCII text
editor. Most word processors do not store in
plain ASC|l, although some will optionally export
to ASCll. The EDIT program that comes with
DOS 5 or DOS 6 is a good ASCII editor.

PROGRAMMING HINTS

o lt is important to observe the difference
between an opening and a closing single
quote when writing a FILENAME.FMT file.
The opening quote is an accent mark,
usually found on the upper left corner of the
computer keyboard. The closing quote is an
apostrophe.

r DLDMOD is not case sensitive A = a.
. EveMhing must be declared before you use

it. For example, a variable must be declared
before it can appear in a SET command. A
window must be declared before it can be
used in a DISPLAY command. You can
rearrange the order of declarations to help
accomplish this (i.e., subroutines can be
after the variable declarations).

o Never allow a window to be displayed twice
at the same time.

. The following lists the maximum number of
variables, menu options, and windows that
can be used:

Windows 90
Menu Options 140
Variables 320

CREATING AN APPLICATION

The process of getting the final questions and
FILENAME.DLD file to the user requires four
operations by the Developer.

1. Writing a FILENAME.BSE file - A .BSE is a
FILENAME.DLD file that will be modified to
fit the user's answers, if needed. This is
optional since DLDMOD is also capable of
generating a new FILENAME.DLD file.

2" Writing a FILENAME.FMT file - The .FMT file
contains all the information the user will see
and the actions to be taken depending on
the answers.

3. Compiling the FILENAME.FMT file to a
FILENAME.MEN file - A debugged .FMT file
filled with numbers and parameters.
Creating the FILENAME.MEN file involves
compiling the FILENAME.FMT file.

4. Once the .MEN file is created, it is combined
with DLDMOD.EXE to make a stand-alone
FILENAME.EXE file to distribute to the
customer. A batch file, MAKEEXE.BAT,
does this. You shouldn't distribute the .MEN
file, COMPILE.EXE, or DLDMOD.EXE. Only
the FILENAME.EXE file and the .BSE file (if
one is necessary) should be distributed.

For example, if the application created was to be
named SAMPLE, the steps would be as follows:

1. Use EDLOG to create the base file. EDLOG
creates SAMPLE.DLD which is copied and
renamed to SAMPLE.BSE. (.BSE files are
optional depending on the application)

2. Use a text editor to create the SAMPLE.FMT
file based on the DLDMOD syntax as
described in this manual.

3. Compile the .FMT file to a .MEN file with the
following COMPILE SAMPLE. lf there are
no errors, SAMPLE.MEN will be created.

4. Use the MAKEEXE.BAT file to create
SAMPLE.EXE by typing MAKEEXE
SAMPLE. The resulting SAMPLE.EXE and
SAMPLE.BSE (created with EDLOG) are
distributed to the customer. No other files
should be distributed. The MAKEEXE.BAT
does the following:

COPY iB DLDMOD.EXE + SAMPLE.MEN
SAMPLE.EXE

When the customer runs SAMPLE.EXE it will
use the responses and the SAMPLE.BSE file to
create SAMPLE.DLD. This is used to program
the datalogger.

February8,1996 Page 9 of 19

Preliminary DLDMOD Manual

THE FILENAME.FMT FILE

The structure of a FILENAME.FMT file is broken
down into seven parts:

1. Subroutines used in the program
2. Variables declaration
3. Menus declaration
4. Windows Attributes
5. Text to go in each window
6. Compile section
7. Comments

1. SUBROUTINES act as they do with other
programming languages. When the
subroutine is called, program control is
transferred to the subroutine. When the
subroutine is finished, control is transferred
back to the instruction following the call.

2. All variables must be declared in the
FILENAME.FMT program before they are
actually used. The declaration includes a
variety of information, including what will
appear in the dialog box, and what
responses are acceptable for this option.

3. The MENUS declaration includes parameters
to be put in the dialog box and what action is
to be taken when this selection is chosen.

4. The WINDOWS attributes describe the basic
layout of the window, such as where to
place it, whether to frame it, etc.

5. The Window TEXT is the exact text that will
appear in the window when the program is
run. lt also describes where the menu
options, variables, and the dialog box are to
be placed.

6. COMPILE SECTION uses the user's
answers and generates or modifies the
FILENAME.DLD code. DLDMOD can:

a) change the Program Table
Intervalof Modes.
b) change any parameter in any
FILENAME.DLD program.
c) change, insert or delete any
program at any given entry number.
d) change and insert labels.

7. COMMENT makes reading a FILENAME
.FMT file a little easier. They are spread
throughout the program between window
text definitions and following a semicolon in
declarations and executable instructions.

1. SUBROUTINES
SYNTAX:

SUBROUTINE name
instruction
END name

DESCRIPTION:

To call the subroutine, use the command
GOSUB Name. After the subroutine is
executed, controlwill be switched to the line after
the line that called it.

D(AMPLE:

SUBROUTINE Colors
TextOolor (yellow)
TextBackground (blue)

END Colors:

2. VARIABLE DECLARATIONS

SYNTAX:

VARS
name

vartype
size of box
choices
dialog box message
default

name2

::n'0"

DESCRIPTION:

Variable Name The name must be a unique
string of letters ['A'..'z'1. lt can
be up to eight characters long.
Anything after that is ignored.

Vartype May be one of the following:

CHR,...........{single character}
STR {string}
INT {-327 68..327 67}
REA1 {1 .5e-45..3.4e38}

Page 10 of 19 February 8, 1996

l

Preliminary DLDMOD Manual

Size of Box

Choices

Dialog Box
Message

Default

When the program is actually
run, and if the user types in
something that doesn't correlate
with the variable type expected,
an error message is shown
describing what expression is
expected. The user is asked to
input the answer again. lf there
is a default given, then it is
displayed.

Must be in the range of 1 Max
Size. This is the size ol the box
where the user is expected to
input an answer.

A list of choices the user must
choose from. As with the
vartype, if the user doesn't enter
something from this list, he is
shown an error message. Enter
"ALL" to allow any response of
the correct type.

When the program gets to this
variable, the message on this
line will appear in the dialog box.
The message will automatically
be word-wrapped to fit in the
box. Enter the message on one
line. To put a hard return in the
message, break the two lines
into two string literals separated
by commas. Two commas in a
row means a double return. See
example AM32 below.

The answer automatically
shown on screen. lf the
FILENAME.FMT file was used
before, the user is asked if the
responses that were last given
would like be used, or begin
again with the default answers
the FILENAME.FMT program
supplied. The word "none" on
this line means the box will
originally show up blank.

VARS
DataloggerType

STR

'21x','cr10','cr7'
'TMS supports either a 21x, CR10, or CR7
datalogger'
none

AM32
INT
b

February 8, 1996

SensorB

Page 11 of 19

1..4
'Enter the number of AM32 multiplexors to be
used in this test.',,'No more than four AM32s
multiplexors can be used.'
none

DSP4
CHR
6
'Y"'N'
'TMS will support a DSP4 with any datalogger.'
'Y'

3. MENU DECLARATION

SYNTAX:

OPTIONS
option_name
instruction to execute if selected
dialog box message
option2
instruction to execute if selected

DESCRIPTION:

Name
of Option Write in the exact text you want

highlighted if the user is ready to
select this option.

Executable
lnstruction Instruction to execute when

menu is selected. Same as
compiling instruction. Usually
either DISPLAY or GOSUB
instruction.

Dialog Box
Message Same as variable dialog box

message. Appears in dialog box
when user highlights this option.

D(AMPLE:

OPTIONS
Select Hardware
DISPLAY Hardware_Selection
'First thing you must do to run TMS.'

lShow Measurements
Display Measurements
'Second thing you must do when running TMS.'

Show Parameters
DISPLAY Test_Parameters
'Third thing you must do when running TMS.'

Create ReportsDl SPLAY Reports
'Fourth thing you must do when running TMS.'

sensor A

.Display SensorA

sensor B

Preliminary DLDMOD Manual

name_4
size

SYNTAX:

Windows
name
size
attribute
executable instr

name_2

::"
Subwindows
name_3
size
attribute
executable instr

DESCRIPTION:

The SIZE of the window may be declared as
'full" (takes up the whole screen) or in the
following format:

left marg, top marg, right marg, bottom marg

Any of the following attributes may be selected
by including it on the line.

Frame A double frame will appear
around the window when active.

Dialogbox Draw a dialog box in this
window.

Clearback Determines how long the win-
dow will remain visible. With
clearback enabled, the window
will be removed after the first
menu option is selected, as if
the user pressed the ESC key.
This option is normally used on
subwindows. When clearback
is used on a main window, that
window is removed and the next
window is displayed. lf no more
main windows exist, execution
passes to the compile section.
Pressing ESC will show the
aborted window on any of the
main windows.

lf enabled, it will prevent the
user from editing any of the

Rdonly

Executable
lnstruction

Help

variables or selecting any menu
bars within the window. This
option is useful for summary
screens, etc.

This declaration will cause the
window to be displayed when
the user presses F1. Normally
this will be a HELP window.
Only one window should use the
HELP declaration" A default
HELP window is provided if no
window uses the HELP
declaration. See the section on
HELP.

Instruction to execute before the
window is displayed. Enter
"Nothing" if an instruction is not
needed.

EXAMPLE:

WINDOWS

Start

Full

Jirstwindow

Frame, Clearlcack

nothing

Main ;main window

1,1,80,24

Frame, Dialogbox

GOSUB Colors

SUBWINDOWS

Userhelp ;User defined help screen

10,5,70, 15

Help, Frame

nothing

Summary ;summary window

1, 1,80,24
Clearback, Rdonly

Windows in the window section will be displayed
in the order listed. Windows in the subwindow
section are not displayed unless a "DISPLAY
window_name" command is used. The
exception to this is a window declared with the
HELP attribute set, which is displayed when F1
is pressed.

Page 12 of 19 February 8, '1996

Preliminary DLDMOD Manual

5. WINDOW TEXT SECTION

SYNTAX:

TEXT window name
text to appear in window
.STOP

TEXT window name2
text to appear in window
.STOP

DESCRIPTION:

Windows must be declared before the TEXT is
declared. All declared windows must have a
TEXT section. Within the text, type a carat mark
(^) and the name of the variable everywhere you
want to use a variable (must be previously
declared). Everywhere you want a menu option
to appear, type in a tilde mark (-) followed with
the name of the menu option and another tilde
mark. Mark the two corners of the dialog box
with @DB.

EXAMPLE:

6. THE COMPILE SECTION

SYNTAX:

Compile
instruction :comment
instructionl

Eno

DESCRIPTION:

Execution of the instructions in the Compile
section begins when the user presses the F4 key
or when the last main window is finished. Before
these instructions are executed, all of the
variables (answers) are stored in a file. On
subsequent executions of the application,
DLDMOD presents a window giving the user the
option of using the last answers as defaults. The
user may also choose to use the original default
answers. Only the last set of answers are saved
and any changes to variables in the Compile
section are not saved. The variables are saved
in a file with the same name as the .EXE file but
using a .ANS extension.

The executable instructions are described on the
following pages. The Compiler is case
insensitive, so it doesn't matter whether upper
case or lower case letters are used. Commands.
unless otherwise noted in the following pages,
are expected to be one line each. Anything
following a semicolon (outside of string literals)
on a command line is ignored. The semicolon is
optional.

Executable Commands:

Instruction Structure or Example

File
DldFile .'................ DLDFILE =' example';
Save.......... SAVE

Entries/proorams
ChangeTo CHANGETO 5 Af 1:4:2;
De|ete.................. DELETE 1 :3;
I nsert I NSERT 2:5,2,1 AT 1 :3;
Renum................. RENUM:

Labels
Inslabe|............... INSLABEL' measure' AT 4:
Labe1.................... LABEL lbl1,,lbl2 AT 235;

Comments
Comment... COMMENT'Versionl'AT4:

Prooram Control
lf Then E|se.........lF (Reps = 1) THEN

ELSE
ENDIF

Variables
lnc INC (number, step)
Dec...................... DEC (number, step)
Set............. SET: variable = v
Readonly READONLY (variable)+

TEXT lnitialize

* Before going out to collect data, the user defines
the following:

1. -Select Datalogger-
2. -Select Hardware-
3. -Select Measurements-
4. -Defining Reports-

HELP
@DB

.STOP

TEXT Hardware_Selection

@DB

HELP
@DB

AM32: ^AM32
AM416: ^AM416

SM192f/16: ^SM

DSP4: ^DSP4

SDM-lNT8: ^SDM

@DB

February8,1996 Page 13 of 19

Preliminary DLDMOD Manual

Windows
Disp|ay................. DISPLAY Window 5
Print PRI NT' PRN': Hookupl,A

Colors
TextOolor.............TextColor (yellow)
TextBackg round .. TextBackground (blue)
BorderOolor BorderColor (black)
RespOolor.. RespOolo(blue)
RespBackGrnd RespBackGrnd (yellow)
FrameColor FrameOolor (red)
HelpText HelpText (red)
HelpBack HelpBack (white)
HelpFrame........... HelpFrame (blue)
MenuOolor........... MenuOolor (red)
MenuBack............ MenuBack (blue)
VarOolor VarOolor (black)
VarBack............... VarBack (white)
RoOolor RoOolor (cyan)
RoBack................ RoBack (green)

Misc.
C|rWin.................. ClrWin
RemoveWin......... RemoveWin
Type..................... Type' Please wait'
Typeln Typeln' system is working'

FILE

DLDFILE defines which FILENAME.DLD file to
use. To have DLDMOD edit an already existing
FILENAME.DLD file, use the expression:

DLDFILE = filename

To have DLDMOD create a new
FILENAME.DLD file, use the expression:

DLDFILE = NEW dldname, datalogger type

DAMPLE:

lf no datalogger type is specified when creating a
new FILENAME.DLD file, it defaults to CR10.
Note that it is unnecessary to specify the
datalogger type when editing an existing file,

DLDMOD will attempt to load a file with the
extension .BSE if no extension is specified.

A runtime error (NOT a compile error) will occur
if a lile specified for editing (i.e. not as NEW) is
not found. For this reason, it is good practice to

DldFile ='example';*------*-{will edit the file
example.bse file);

DldFile = new'example','21x'; -{will create a new file called
example.dld for the 21X);

DldFile = new name, dtalggr;---{will create a new file using
the string stored in name
with the datalogger type
stored in dtalgg4;

use the DLDFILE command as the executable
instruction for the first window displayed (or as
soon as possible). Otherwise, the user may
complete the entire windows section only to have
the program abort with an error because the
specified file was not found.

SAVE When the DLDFILE is finished being
editing, use the SAVE command to save the
changes.

EXAMPLE:

Save; ---------------- {Saves the file as the name given
with the DldFile = command. lf no
extension was specified with
dldfile= then .dld is used.)

Save 'Rain2'; ----------- {Saves the file as Rain2.Dld. };

Save'Rain2.ddd'; -----{Saves the file as Rain2.ddd};

Save rain2;-----------{Saves the file as the name given
to the variable rain2);

The default extension for saving is .DLD.
DLDMOD will overwrite any existing files without
prompting when told to do so.

It is good practice to NOT ovenrrite the original
file, but to save the changed file under a different
name. This allows the user to start over at any
time.

PROGRAMS / ENTRIES

CHANGETO To change a specified mode,
parameter, program, or table interual, use the
expression:

CHANG ETO xxxx AT mode#:entry#: parameter#;

DGMPLE:

Changeto 45 at 1;------- {changes the first program
table interval to 45 sec-
onds);

Changeto95atl:6; {changes the 6th program
of table 1 to 95);

Changeto -16 at 1 :5:4;-- {changes the fourth
parameter of the fifth entry
of table 1 to 16--. lf the
fourth parameter had not
already existed in the fifth
entry, then it is inserted at
the correct place with the
correct parameter.);

Changeto tc1 at wh:wh2:wh3; -- {numeric variables can also
be used

DELETE xx:yy : deletes
xxth mode. No other
changed.

the yyth entry in
entry numbers

the
are

Page 14 of 19 February 8, 1996

Preliminary DLDMOD Manual

D(AMPLE:

Delete 1:5: {will delete the fifth entry in
th6 first mode);

INSERT xx AT y:zz : inserts xx program at the
zz entry in mode y.

EXAMPLE:

RENUM This is used for cleaning up the
FILENAME.DLD program after you're done
changing it. lt renumbers the entries by integers.
Programs don't necessarily need to be
renumbered in order to run. Rather, the Renum
program makes the program easier to read.

EXAMPLE:

Renum:

LABELS

INSLABEL Insefts label(s) at a specific location.
lf there is already a non-blank label at the given
location, then it and the non-blank labels
following it are moved over until there are
enough blank labels to compensate for the
inseded label(s).

EXAMPLE:

command as far as inserting more than one
label at a time, insefting repetitive labels, using
variables, and inserting at which locations. The
only exception is:

Label 'Cntr',,'Pulsechl'at3;--{will change the 3rd 5th la-
bels, leaving the 4th label

Insert 5 at 1:3; ------------- {will insert program 5 at the
third entry of table one. lf
there is already a program in
that spot, then DLDMOD will
insert it as the 2.001 entry. lf
there is already a 2.001 entry,
then it will insert the program
as 2.002 and so forth.);

INSERT15:2,3AT2:36;----{inserts P15 (with 2 as the
first parameter and 3 as the
second) as the 36th spot of
table 2.);

|NSERTtcl ATtc2:tc3;---- {make sure these variables
hold

INSLABEL 'NewLabel' AT 4;---{will take the tirst set of la-
bels and change it to the
second set of labels);

;:Cntr :DF2 mV:Vx
..D..t^^ ^h{ .

mV:Batt V :Pulse ch2
;:Pulse ch1:_: #1 :Fixed #2

;:Cntr :DF2 mV:Vx mV:NewLabel :Batt V
;:Pulse ch2:Pulse ch1:_:Fixed #1 :Fixed #2

Label follows the same rules as the lnsLabel

InsLabel 'Cntr',,'Pulse ch1'at 3; {will NOT work, and
flash an error

will
when

Otherwise:

InsLabel 'Cntr' at 236; ------- {inserts the label Cntr at
236 and moves the follow-
ing labels over as needed];

InsLabel 'Cntr';------ {inserts Cntr as the first la-
bel);

InsLabel 'Cntr',varLabel,'' at5;-{inserts the label Cntr as
the fifth label, value in
varLabel as the sixth, and
a blank label in the
seventh. The eighth label
on down are moved over
as needed);

InsLabel 'tesf #[5..236] at 10; -- {inserts test#s to test#236
starting at the 10th
location. All following
labels are moved forward
as needed);

LABEL Changes a label or labels at a given
location.

DAMPLE:

7. COMMENTS

COMMENT Adds comments to the .DLD file.
Useful for documentation purposes. Comments
within a .DLD file are always preceded by a (;).
The COMMENT command also adds a (-)
character to differentiate comments it adds from
other comments (e.9., labels). When modifying
comments, only those with the (-) character are
counted or replaced. This instruction will
overwrite an existing comment at the specified
location.

Label 'Cntr'at 236;---------- {changes the 236th label
to cntr);

Label 'Cntr';-- ---{changes the first label to
Cntr);

Label 'Cnt/,'DF2 mV',,'Vx mV'; {changes the first,
second. and fourth labels
to labels indicated. The
third label is ignored);

Label 'Cnt/,varlabel,'' at5; ---{changes the fifth label to
Cntr, the sixth label to the
value stored in varLabel.
and deletes the seventh la-
bel, replacing it with a
blank label);

Label'Fixed'#[1..5],varlabel#[1..10]at5; {changes
the first 15 labels. the first 5
being Fixed #1 to Fixed #5
and the next 10 being the
value of varLabel
numbered one to 10);

February 8, 1996 Page 15 of 19

Preliminary DLDMOD Manual

EXAMPLE:

COMMENT'Version 1.2' AT 1

COMMENT Name AT 2 ; {name is a string variable)

PROGRAM CONTROL

lF THEN ELSE The lf Then Else works similarly
to other high-level languages, looking like:

lF (boolean expression) THEN
executable instruction(s)

ELSE
executable instruction(s)

ENDIF

EXAMPLE

lf (TcTemP ='S') then
Display SingleEnded;

endif;

lf (TemP ='C') then
set: mult = 1;
set: offset = 0;

else
set: mult - 1.8;
set: offset = 32;

endif;

lf (Reps > 14) then
Print Hookupl;

etse
lF (reps < 5) then

Print Hookup2;
endif;
endif;

VARIABLES

INC and DEC Increment and decrement
(respectively) any variable, v, by step counts.
Step is an optional parameter, and if not speci-
fied, the variable will be incremented or decre-
mented by one.

SYNTAX:

INC (v, step) or INC (v)
DEC (v, step) or DEC (v)

EXAMPLE:

inc (number, 2); ---------------- {number := number + 2};

inc (number);- {number := number + 1};

dec (number, 3); --------------- {number:= number - 3};

oec := number - 1);

SET Sets a variable equal to another variable, a
constant, or expression.

SET: variable = expression

EXAMPLE:

Set: reps = 12; {sets the variable reps
to 12.1;

Set: reps = rcp2',--------------- {sets the variable reps
equal to the value stored in
rep2I;

Set: name ='Bob'

Math is also allowed in the numeric expressions.
Concatenation is allowed with string variables.
The following operators are allowed:

addition for numeric,
concatenation for string.
subtraction (unary minus
also allowed)
multiply
divide
modulo
exponential
parentheses (used to alter
precedence)

EXAMPLE

Set: loc = loc * reps
Set: temp = otfset * (val3 + val2)
Set: lastname = name + 'Smith'

READONLY Marks a variable as READONLY
or as NOT READONLY. A variable marked as
READONLY will be displayed normally on the
screen except it can't be highlighted or edited by
the user (i.e. no edit box, and the cursor will skip
the atfected variable when cursor is moved). All
variables default to NOT READONLY.

SYNTAX:

Readonly (variable) option

Valid options are:

(+) makes the variable READONLY.
(-) makes the variable NOT READONLY.

The READONLY attribute of variables has no
effect on the SET command. Only the window
display and editing are affected.

WINDOWS

DISPLAY This command displays a window on
the screen for the user. Once the user is
finished with the window, the window is removed
and the previous window is restored.

SYNTAX:

DISPLAY windowname

EXAMPLE

PRINT This command prints windows to either
a text file or directly to the printer. The file can

o//o

0

W1:

Page 16 of 19 February 8, 1996

Preliminary DLDMOD Manual

be appended to or newly created. The
command structure is:

PRINT'filename' : windowname, option;

lf you want to print directly to the printer, type
PRN as the file name.

Valid options are:

A Append to existing file, create
file if it does not exist.

O Overwrite any existing file,
create file if it does not exist.

Either option can be used for direct printer
output.

EXAMPLE:

lf the printer (PRN) is selected but is not ready, a
run time warning is given and the program
continues. Nothing is printed, but otherwise
execution is normal.

COLORS

TEXTCOLOR through HELPFRAME The writer
of the FILENAME.FMT program may change the
various colors the user will see via these
instructions. Each of these instructions requires
a color as its parameter. Possible colors are:

black
blue
green
cyan
red
magenta
brown
light gray

CLRWIN Clears the active window or clears the
screen if no windows are displayed. The active
window is not removed; it is only cleared.

REMOVEWIN Removes the active window. lf
the active window is the last window (not a
SUBWINDOW) then the windows section is left
as if F4 had been pressed.

dark gray
light blue
light green
light cyan
light red
light magenta
yellow
white

Print PRN : lntro,A ;----------{prints the windows Intro,
SessionA, and Hookupl to
the printer);

Print'HookUp.Prn' : SessionA, O ; {prints the window
SessionA to the text lile
'hookup.prn' overwriting
'hookup.prn if it exist.);

Print CustmrName : SessionA,A; {appends the
window SessionA to a text
file named the value stored
in variable

TYPE Writes the quoted string to the active
window. Writes to the screen if no windows are
active. No carriage return is sent at the end of
the line so subsequent writes will be on the same
line.

TYPELN Same as Type, only it places a
carriage return at the end of the line.

HELP

The default pop-up HELP window tells the user
about the following keys:

F1 Display help screen.

F3 Leaves the program, abandon-
ing all of the changes that were
made unless the program is
already in the Compile section.
lf in the Compile section,
changes may or may not be
saved. The program asks if the
user would like to quit.

F4 Leaves the window section and
begins the Compile section.

Cursor
Movements The arrow keys, HOME, END,

PAGE UP, and PAGE DOWN
keys will move the cursor to the
different responses. The ESC
key removes the current
window.

HELP window can be changed by the developer.
lf a window is declared with the HELP attribute
set, the text in it will be displayed instead of the
default message. See the section on window
declarations.

February 8, 1996 Page 17 of 19

