

LoggerNet Server
Software Development Kit

Version 4.1
Programmer’s Reference

Revision: 12/11

C o p y r i g h t © 2 0 0 4 - 2 0 1 1
C a m p b e l l S c i e n t i f i c , I n c .

All rights reserved; no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronics, mechanical, photocopying, recording, or otherwise without either the prior written permission of
the Publisher. This book may not be lent, resold, hired out or otherwise disposed of by way of trade in any form of binding or
cover other than that in which it is published, without the prior written consent of the Publisher. The programs in this manual
have been included for their instructional value. The Publisher does not offer any warranties or representations in respect of
their fitness for a particular purpose, nor does the Publisher accept any liability for any loss or damage arising from their use.

Campbell Scientific, Inc.
Software SDK End User License
Agreement (EULA)

NOTICE OF AGREEMENT: Please carefully read this EULA. By installing or
using this software, you are agreeing to comply with the terms and conditions
herein. If you do not want to be bound by this EULA, you must promptly
return the software, any copies, and accompanying documentation in its
original packaging to Campbell Scientific or its representative.

By accepting this agreement you acknowledge and agree that Campbell
Scientific may from time-to-time, and without notice, make changes to one or
more components of the LoggerNet Server SDK or make changes to one or
more components of other software on which the LoggerNet Server SDK
relies. In no instance will Campbell Scientific be responsible for any costs or
liabilities incurred by you or other third parties as a result of these changes.

This LoggerNet Server Software Development Kit software is hereinafter
referred to as the LoggerNet Server SDK. The term "developer" herein refers to
anyone using this LoggerNet Server SDK.

LICENSE FOR USE: Campbell Scientific grants you a non-exclusive, non-
transferable, royalty-free license to use this software in accordance with the
following:

1) The purchase of this software allows you to install and use the software on
one computer only.

2) This software cannot be loaded on a network server for the purposes of
distribution or for access to the software by multiple operators. If the
software can be used from any computer other than the computer on which
it is installed, you must license a copy of the software for each additional
computer from which the software may be accessed.

3) If this copy of the software is an upgrade from a previous version, you
must possess a valid license for the earlier version of software. You may
continue to use the earlier copy of software only if the upgrade copy and
earlier version are installed and used on the same computer. The earlier
version of software may not be installed and used on a separate computer
or transferred to another party.

4) This software package is licensed as a single product. Its component parts
may not be separated for use on more than one computer.

5) You may make one (1) backup copy of this software onto media similar to
the original distribution, to protect your investment in the software in case
of damage or loss. This backup copy can be used only to replace an
unusable copy of the original installation media.

6) You may not use Campbell Scientific’s name, trademarks, or service
marks in connection with any program you develop with the LoggerNet
Server SDK. You may not state or infer in any way that Campbell
Scientific endorses any program you develop, unless prior written
approval is received from Campbell Scientific.

7) If the software program you develop requires you, your customer, or a
third party to use additional licensable software from Campbell Scientific,
that software must be purchased from Campbell Scientific or its
representative under the terms of its separate EULA.

8) This license allows you to redistribute the ActiveX (dll) controls and the
communication DLL with the software developed using the LoggerNet
Server SDK. No other Campbell Scientific examples, documentation, or
source code may be distributed with your application.

9) The LoggerNet Server SDK may not be used to develop and publicly sell
or distribute any product that directly competes with Campbell Scientific’s
datalogger support software.

10) This Agreement does not give Developer the right to sell or distribute any
other Campbell Scientific, Inc. Software (e.g., PC200W, VisualWeather,
LoggerNet or any of their components, files, documentation, etc.) as part
of Developer's application. Distribution of any other Campbell Scientific,
Inc. software requires a separate distribution agreement.

The ActiveX® controls provided with this LoggerNet Server SDK
("LoggerNet Server SDK Controls") include the files: CsiBrokerMap.dll,
CsiCoraScript.dll, CsiDatalogger.dll, CsiDataSource.dll, CsiLogMonitor.dll
and CsiServer.dll. In addition, the LoggerNet server DLL, CORALIB3.DLL,
is included with the LoggerNet Server SDK.

RELATIONSHIP: Campbell Scientific, Inc. hereby grants a license to use
LoggerNet Server SDK Controls in accordance with the license statement
above. No ownership in Campbell Scientific, Inc. patents, copyrights, trade
secrets, trademarks, or trade names is transferred by this Agreement.
Developer may use these LoggerNet Server SDK controls to create as many
applications as desired and freely distribute those applications. Campbell
Scientific, Inc. expects no royalties or any other compensation outside of the
LoggerNet Server SDK purchase price. Developer is responsible for
supporting applications created using the LoggerNet Server SDK Controls.

RESPONSIBILITIES OF DEVELOPER

The Developer agrees:

• To provide a competent programmer familiar with Campbell Scientific,
Inc. datalogger programming and software to write the applications.

• Not to sell or distribute documentation on use of LoggerNet Server SDK
Controls.

• Not to sell or distribute the applications that are provided as examples in
the LoggerNet Server SDK.

• To develop original works. Developers may copy and paste portions of the
code into their own applications, but their applications are expected to be
unique creations.

• Not to sell or distribute applications that compete directly with any
application developed by Campbell Scientific, Inc. or its affiliates.

• To assure that each application developed with LoggerNet Server SDK
Controls clearly states the name of the person or entity that developed the

application. This information should appear on the first window the user
will see.

WARRANTIES: The following warranties are in effect for ninety (90) days
from the date of shipment of the original purchase. These warranties are not
extended by the installation of upgrades or patches offered free of charge:

Campbell Scientific warrants that the installation media on which the software
is recorded and the documentation provided with it are free from physical
defects in materials and workmanship under normal use. The warranty does not
cover any installation media that has been damaged, lost, or abused. You are
urged to make a backup copy (as set forth above) to protect your investment.
Damaged or lost media is the sole responsibility of the licensee and will not be
replaced by Campbell Scientific.

Campbell Scientific warrants that the software itself will perform substantially
in accordance with the specifications set forth in the instruction manual when
properly installed and used in a manner consistent with the published
recommendations, including recommended system requirements. Campbell
Scientific does not warrant that the software will meet licensee’s requirements
for use, or that the software or documentation are error free, or that the
operation of the software will be uninterrupted.

Campbell Scientific will either replace or correct any software that does not
perform substantially according to the specifications set forth in the instruction
manual with a corrected copy of the software or corrective code. In the case of
significant error in the installation media or documentation, Campbell
Scientific will correct errors without charge by providing new media, addenda,
or substitute pages. If Campbell Scientific is unable to replace defective media
or documentation, or if it is unable to provide corrected software or corrected
documentation within a reasonable time, it will either replace the software with
a functionally similar program or refund the purchase price paid for the
software.

All warranties of merchantability and fitness for a particular purpose are
disclaimed and excluded. Campbell Scientific shall not in any case be liable for
special, incidental, consequential, indirect, or other similar damages even if
Campbell Scientific has been advised of the possibility of such damages.
Campbell Scientific is not responsible for any costs incurred as a result of lost
profits or revenue, loss of use of the software, loss of data, cost of re-creating
lost data, the cost of any substitute program, telecommunication access costs,
claims by any party other than licensee, or for other similar costs.

This warranty does not cover any software that has been altered or changed in
any way by anyone other than Campbell Scientific. Campbell Scientific is not
responsible for problems caused by computer hardware, computer operating
systems, or the use of Campbell Scientific’s software with non-Campbell
Scientific software.

Licensee’s sole and exclusive remedy is set forth in this limited warranty.
Campbell Scientific’s aggregate liability arising from or relating to this
agreement or the software or documentation (regardless of the form of action;
e.g., contract, tort, computer malpractice, fraud and/or otherwise) is limited to
the purchase price paid by the licensee.

There is no written or implied warranty provided with the LoggerNet Server
SDK software other than as stated herein. Developer agrees to bear all
warranty responsibility of any derivative products distributed by Developer.

TERMINATION: Any license violation or breach of Agreement will result in
immediate termination of the developer's rights herein and the return of all
LoggerNet Server SDK materials to Campbell Scientific, Inc.

MISCELLANEOUS: Notices required hereunder shall be in writing and shall
be given by certified or registered mail, return receipt requested. Such notice
shall be deemed given in the case of certified or registered mail on the date of
receipt. This Agreement shall be governed and construed in accordance with
the laws of the State of Utah, USA. Any dispute resulting from this Agreement
will be settled in arbitration.

This Agreement sets forth the entire understanding of the parties and
supersedes all prior agreements, arrangements and communications, whether
oral or written pertaining to the subject matter hereof. This agreement shall not
be modified or amended except by the mutual written agreement of the parties.
The failure of either party to enforce any of the provisions of this Agreement
shall not be construed as a waiver of such provisions or of the right of such
party thereafter to enforce each and every provision contained herein. If any
term, clause, or provision contained in this Agreement is declared or held
invalid by a court of competent jurisdiction, such declaration or holding shall
not affect the validity of any other term, clause, or provision herein contained.
Neither the rights nor the obligations arising under this Agreement are
assignable or transferable.

If within 30 days of receiving the LoggerNet Server SDK product developer
does not agree to the terms of license, developer shall return all materials
without retaining any copies of the product and shall remove any use of the
LoggerNet Server SDK Controls in any applications developed or distributed
by Developer. CSI shall refund 1/2 of the purchase price within 30 days of
receipt of the materials. In the absence of such return, CSI shall consider
developer in agreement with the herein stated license terms and conditions.

COPYRIGHT: This software is protected by United States copyright law and
international copyright treaty provisions. This software may not be altered in
any way without prior written permission from Campbell Scientific. All
copyright notices and labeling must be left intact.

LoggerNet Server Software
Development Kit Table of Contents
PDF viewers note: These page numbers refer to the printed version of this document. Use
the Adobe Acrobat® bookmarks tab for links to specific sections.

1. LoggerNet Server SDK Overview1-1
1.1 Purpose of the LoggerNet Server SDK... 1-1
1.2 Requirements .. 1-1

1.2.1 Required Campbell Scientific, Inc. Software.............................. 1-1
1.2.2 Development Tools Requirements .. 1-1

1.3 Included Components ... 1-2
1.3.1 Files Included in the LoggerNet Server SDK 1-2

1.3.1.1 ActiveX® Controls (DLLs)... 1-2
1.3.1.2 LoggerNet Server (CORALIB3.DLL)............................... 1-2
1.3.1.3 Manuals ... 1-2
1.3.1.4 Example Projects ... 1-2

1.3.2 Adding Controls to a Project... 1-2
1.3.2.1 Adding a Control to a Visual Basic Project....................... 1-3
1.3.2.2 Adding a Control to a Delphi Project 1-3
1.3.2.3 Adding a Control to a .NET Project 1-4

2. CsiServer Control ...2-1
2.1 Purpose of the CsiServer Control ... 2-1
2.2 CsiServer Interface ... 2-1

2.2.1 Properties .. 2-2
2.2.2 Methods... 2-2
2.2.3 Events.. 2-2

3. Developing an Application Using the CsiServer
Control..3-1

3.1 Purpose ... 3-1
3.2 Using the CsiServer Control ... 3-1

3.2.1 Getting Started with the CsiServer Control................................. 3-1
3.2.2 CsiServer Control Application Example..................................... 3-2

4. CsiCoraScript Control ..4-1
4.1 Purpose of the CsiCoraScript Control... 4-1
4.2 Connecting to the Server... 4-1
4.3 Using CoraScript Commands ... 4-1

4.3.1 Setting up a Network... 4-2
4.3.2 Real-Time Data Display.. 4-2

4.3.2.1 Table-Data Dataloggers... 4-3
4.3.2.2 Mixed-Array Dataloggers.. 4-3

i

LoggerNet Software Development Kit Table of Contents

4.4 CsiCoraScript Interface... 4-4
4.4.1 Properties... 4-4
4.4.2 Methods... 4-4
4.4.3 Events .. 4-4

5. Developing an Application Using the
CsiCoraScript Control .. 5-1

5.1 Purpose.. 5-1
5.2 Using the CsiCoraScript Control... 5-1

5.2.1 Getting Started with the CsiCoraScript Control 5-1
5.2.2 CsiCoraScript Control Application Example 5-2

6. CsiBrokerMap Control ... 6-1
6.1 Purpose of the CsiBrokerMap Control.. 6-1
6.2 Connecting to the LoggerNet Server... 6-1
6.3 How Collections Work.. 6-2

6.3.1 Visual Basic View of Collections.. 6-2
6.3.1.1 Accessing Collections with For Each 6-2
6.3.1.2 Accessing Collections with Indexes and Names................ 6-2

6.3.2 Delphi/Visual C++ View of Collections 6-2
6.4 CsiBrokerMap Interfaces .. 6-3

6.4.1 BrokerMap Interface ... 6-3
6.4.1.1 Properties ... 6-3
6.4.1.2 Methods ... 6-3
6.4.1.3 Events .. 6-3

6.4.2 BrokerCollection Interface .. 6-3
6.4.2.1 Properties ... 6-3
6.4.2.2 Methods ... 6-4

6.4.3 Broker Interface... 6-4
6.4.3.1 Properties ... 6-4
6.4.3.2 Methods ... 6-4

6.4.4 Table Collection Interface ... 6-4
6.4.4.1 Properties ... 6-4
6.4.4.2 Methods ... 6-4

6.4.5 Table Interface... 6-4
6.4.5.1 Properties ... 6-4
6.4.5.2 Methods ... 6-4

6.4.6 ColumnCollection Interface .. 6-5
6.4.6.1 Properties ... 6-5
6.4.6.2 Methods ... 6-5

6.4.7 Column Interface... 6-5
6.4.7.1 Properties ... 6-5

7. Developing an Application Using the
CsiBrokerMap Control.. 7-1

7.1 Purpose.. 7-1
7.2 Using the CsiBrokerMap Control ... 7-1

7.2.1 Getting Started with the CsiBrokerMap Control 7-1
7.2.2 CsiBrokerMap Control Application Example 7-2

ii

LoggerNet Software Development Kit Table of Contents

8. CsiDatalogger ...8-1
8.1 Purpose of the CsiDatalogger Control .. 8-1
8.2 Connecting to the Server... 8-1
8.3 Datalogger Interface ... 8-1

8.3.1 Properties .. 8-1
8.3.2 Methods... 8-2
8.3.3 Events.. 8-2

9. Developing an Application Using the
Datalogger Control ..9-1

9.1 Purpose ... 9-1
9.2 Using the CsiDatalogger Control.. 9-1

9.2.1 Getting Started with the CsiDatalogger Control 9-1
9.2.2 CsiDatalogger Control Application Example.............................. 9-2

10. CsiDataSource Control ..10-1
10.1 Purpose of the CsiDataSource Control ... 10-1
10.2 Connecting to the Server... 10-1
10.3 CsiDataSource Interfaces.. 10-2

10.3.1 Dsource Interface .. 10-2
10.3.1.1 Properties... 10-2
10.3.1.2 Methods... 10-2
10.3.1.3 Events .. 10-2

10.3.2 Advisor Interface... 10-2
10.3.2.1 Properties... 10-3
10.3.2.2 Methods... 10-3

10.3.3 DataColumnCollection Interface... 10-3
10.3.3.1 Properties... 10-3
10.3.3.2 Methods... 10-3

10.3.4 DataColumn Interface ... 10-3
10.3.4.1 Properties... 10-3

10.3.5 Record ... 10-4
10.3.5.1 Properties... 10-4
10.3.5.2 Methods... 10-4

10.3.6 RecordCollection .. 10-4
10.3.6.1 Properties... 10-4
10.3.6.2 Methods .. 10-4

10.3.7 Value Interface.. 10-4
10.3.7.1 Properties... 10-4

11. Developing an Application Using the
CsiDataSource Control11-1

11.1 Purpose ... 11-1
11.2 Using the CsiDataSource Control ... 11-1

11.2.1 Getting Started with the CsiDataSource Control..................... 11-1
11.2.2 CsiDataSource Control Application Example......................... 11-2

iii

LoggerNet Software Development Kit Table of Contents

12. CsiLogMonitor Control .. 12-1
12.1 Purpose of the CsiLogMonitor Control... 12-1
12.2 CsiLogMonitor Interface... 12-2

12.2.1 Properties... 12-2
12.2.2 Methods... 12-2
12.2.3 Events .. 12-2

13. Developing an Application Using the
CsiLogMonitor Control 13-1

13.1 Purpose.. 13-1
13.2 Using the CsiLogMonitor Control .. 13-1

13.2.1 Getting Started with the CsiLogMonitor Control 13-1
13.2.2 CsiLogMonitor Control Application Example 13-2

14. CsiServer Control Reference 14-1
14.1 Server Interface ... 14-1

14.1.1 Properties... 14-1
14.1.2 Methods... 14-4
14.1.3 Events .. 14-5

15. CsiCoraScript Control Reference 15-1
15.1 CoraScript Interface .. 15-1

15.1.1 Properties... 15-1
15.1.2 Methods... 15-3
15.1.3 Events .. 15-4

16. CsiBrokerMap Control Reference 16-1
16.1 BrokerMap Interface ... 16-1

16.1.1 Properties... 16-1
16.1.2 Methods... 16-4
16.1.3 Events .. 16-5

16.2 BrokerCollection Interface.. 16-7
16.2.1 Properties... 16-7
16.2.2 Methods... 16-8

16.3 Broker Interface .. 16-9
16.3.1 Properties... 16-9
16.3.2 Methods... 16-11

16.4 TableCollection Interface.. 16-12
16.4.1 Properties... 16-12
16.4.2 Methods... 16-12

16.5 Table Interface .. 16-14
16.5.1 Properties... 16-14
16.5.2 Methods... 16-15

16.6 ColumnCollection Interface .. 16-16
16.6.1 Properties... 16-16
16.6.2 Methods... 16-16

16.7 Column Interface... 16-18
16.7.1 Properties... 16-18

iv

LoggerNet Software Development Kit Table of Contents

17. CsiDatalogger Control Reference17-1
17.1 Datalogger Interface ... 17-1

17.1.1 Properties .. 17-1
17.1.2 Methods... 17-6
17.1.3 Events.. 17-13

18. CsiDataSource Control Reference18-1
18.1 DSource Interface ... 18-1

18.1.1 Properties .. 18-1
18.1.2 Methods... 18-4
18.1.3 Events.. 18-5

18.2 Advisor Interface .. 18-11
18.2.1 Properties .. 18-11
18.2.2 Methods... 18-19

18.3 DataColumnCollection Interface .. 18-22
18.3.1 Properties .. 18-22
18.3.2 Methods... 18-22

18.4 DataColumn Interface... 18-25
18.4.1 Properties .. 18-25

18.5 Record Interface.. 18-25
18.5.1 Properties .. 18-25
18.5.2 Methods... 18-27

18.6 RecordCollection .. 18-29
18.6.1 Properties .. 18-29
18.6.2 Methods... 18-29

18.7 Value Interface.. 18-30
18.7.1 Properties .. 18-30

19. CsiLogMonitor Control Reference19-1
19.1 LogMonitor Interface.. 19-1

19.1.1 Properties .. 19-1
19.1.2 Methods... 19-5
19.1.3 Events.. 19-8

Appendix

A. Server and Device Operational Statistics Tables. A-1
A.1 Device History Statistics... A-1

A.1.1 Attempts .. A-1
A.1.2 Failures.. A-1
A.1.3 Retries ... A-1

A.2 Device Standard Statistics... A-2
A.2.1 Communication Enabled ... A-2
A.2.2 Average Error Rate.. A-2
A.2.3 Total Retries .. A-2
A.2.4 Total Failures .. A-2
A.2.5 Total Attempts... A-2
A.2.6 Communication Status .. A-3
A.2.7 Last Clock Check .. A-3
A.2.8 Last Clock Set ... A-3
A.2.9 Last Clock Difference ... A-3

v

LoggerNet Software Development Kit Table of Contents

vi

A.2.10 Collection Enabled .. A-4
A.2.11 Last Data Collection .. A-4
A.2.12 Next Data Collection ... A-4
A.2.13 Last Collect Attempt.. A-4
A.2.14 Collection State ... A-4
A.2.15 Values in Last Collection .. A-5
A.2.16 Values to Collect ... A-5
A.2.17 Values in Holes.. A-5
A.2.18 Values in Uncollectable Holes .. A-6
A.2.19 Line State... A-6
A.2.20 Polling Active.. A-7
A.2.21 FS1 to Collect .. A-7
A.2.22 FS1 Collected ... A-7
A.2.23 FS2 to Collect .. A-7
A.2.24 FS2 Collected .. A-7
A.2.25 Logger Ver .. A-7
A.2.26 Watchdog Err... A-8
A.2.27 Prog Overrun ... A-8
A.2.28 Mem Code ... A-8
A.2.29 Collect Retries ... A-8
A.2.30 Low Voltage Stopped Count ... A-8
A.2.31 Low Five Volts Error Count.. A-9
A.2.32 Lithium Battery Voltage.. A-9
A.2.33 Table Definitions State .. A-9

A.3 Server Statistics ... A-9
A.3.1 Disc Space Available... A-10
A.3.2 Available Virtual Memory... A-10
A.3.3 Used Virtual Memory.. A-10

Figures
3-1 CsiServer Example ... 3-2
5-1 CsiCoraScript Example... 5-2
7-1 CsiBrokerMap Example ... 7-2
9-1 CsiDatalogger Example .. 9-2
11-1 CsiDataSource Example ... 11-2
13-1 CsiLogMonitor Example .. 13-2

Tables
1-1. Supported Development Tools .. 1-1

Section 1. LoggerNet Server SDK
Overview

1.1 Purpose of the LoggerNet Server SDK
The LoggerNet Server Software Development Kit (SDK) provides a method to
communicate with a datalogger network through ActiveX® controls. These
controls provide an abstraction to the server messaging and datalogger
communication protocols. Together these controls encapsulate all of the
messaging between client applications and the LoggerNet server whether the
client resides on a local machine or accesses the LoggerNet server over a
network.

Without these controls, creating custom client applications that communicate
with Campbell Scientific dataloggers would require an implementation of all
the protocol details when sending messages to dataloggers and reading
messages from dataloggers. By using the SDK, developers not only reduce
development time but also insulate their application from future changes with
datalogger communication protocols.

1.2 Requirements
1.2.1 Required Campbell Scientific, Inc. Software

SDK communication requires access to a functioning LoggerNet server. Client
applications use the SDK controls to create connections with dataloggers
through the LoggerNet server DLL. This version of the SDK still allows the
creation of custom software applications that can communicate to an existing
installation of LoggerNet. Alternately, custom software can be created that
starts, stops, and communicates through the included LoggerNet server DLL
(CORALIB3.DLL). The SDK controls communicate with CSI dataloggers
using LoggerNet server version 1.1 or higher.

1.2.2 Development Tools Requirements
The SDK's ActiveX® controls have been tested with the following
development tools for Microsoft Windows:

TABLE 1-1. Supported Development Tools

Development Tool Examples Available

Visual Basic 6.0 Yes

Delphi 2007 Yes

Visual C++ VS-2010 MFC Yes

C#.NET Yes

VB.NET Yes

1-1

Section 1. LoggerNet Server SDK Overview

The C#.NET and VB.NET example code targets the x86
compilation platform to facilitate proper functionality on 64-bit
versions of Windows®. Any new projects created on 64-bit
platforms should use this compiler directive, since the ActiveX®
controls in the SDK must run in a 32-bit process on 64-bit
machines to work properly.

NOTE

1.3 Included Components
1.3.1 Files Included in the LoggerNet Server SDK

The files included with the LoggerNet Server SDK installation are: ActiveX ®
SDK controls, the LoggerNet server DLL, working examples for several
development controls, licensing information, and the SDK Beginner’s Guide
and Programmer’s Reference. Please note that although simple examples are
provide for reference, the SDK does not contain a complete user interface
software package for creating connections and manipulating data within
datalogger networks. The SDK merely provides all the controls necessary for
development of the user interface software.

1.3.1.1 ActiveX® Controls (DLLs)
The six included ActiveX controls are DLL files that are registered and must
be added to your project. For help adding these controls to your project, see
the next section "Adding the Controls to a Project".

1.3.1.2 LoggerNet Server (CORALIB3.DLL)
The LoggerNet server DLL available in the installed Controls folder can be
started, stopped, and accessed with the included ActiveX Controls. This DLL
does not need to be registered but must be placed in the application folder, in
the PATH environmental variable, or in the Windows system directory.

1.3.1.3 Manuals
The SDK Beginner’s Guide contains information comparing available
Campbell Scientific SDK products. The LoggerNet Server SDK Programmer’s
Reference contains detailed information regarding the use of the LoggerNet
Server SDK. Both manuals are in PDF format.

1.3.1.4 Example Projects
Example projects are included with the SDK. These projects collectively use
all of the controls to demonstrate simple functionality. The example projects
have been written in various development environments.

1.3.2 Adding Controls to a Project
This section describes how to add controls to a project in Visual Basic 6.0,
Delphi, or .NET. Before trying to add any of the SDK controls to your
development project, make sure that the installation program has installed all of

1-2

Section 1. LoggerNet Server SDK Overview

the controls. The standard installation program will register the SDK control
DLLs.

1.3.2.1 Adding a Control to a Visual Basic Project
1. Start Visual Basic.

2. Create a new project (File -> New Project) and select the project of
your choice. "Standard EXE" would be a good choice.

3. Add "Components" to your project (Project -> Components...).
Check the controls that you would like to add to the project and click
"OK".

4. Select a control on the toolbar by clicking it and draw the control onto the
form by clicking and dragging (creating a rectangle or square).

1.3.2.2 Adding a Control to a Delphi Project
1. Start Delphi.

2. Delphi Main menu -> Component -> Import ActiveX Control…

3. Select a SDK component (e.g., CsiBrokerMap 1.0 Type Library (Version
1.0)) from the Import Active X window and click on the Install button.

4. Select the tab Into New Package in the Install window and click on the
Browse button. Locate the directory where you would like this new
package to reside and assign a name to this new package, e.g.,
CsiBrokerMap. Click on OK button.

1-3

Section 1. LoggerNet Server SDK Overview

5. A confirmation message similar to one below will appear. Click on Yes.

6. A new window titled Information (not shown) will appear informing you
that the package has been installed.

7. Finally you will be asked to save the changes. Click on Yes.

8. Follow the same procedure to obtain the other two ActiveX controls as
icons on the ActiveX palette in Delphi.

1.3.2.3 Adding a Control to a .NET Project
ActiveX controls are imported using the COM Interop wrapper capability in
the .NET development environment. This importing should happen
automatically when the ActiveX DLL is referenced in the project.

1. From the Project menu item choose "Add Reference".

2. Find and select the SDK component to import (e.g. CsiBrokerMap 1.0
Type Library) under the COM tab.

3. Add the component to the project form.

1-4

Section 2. CsiServer Control

2.1 Purpose of the CsiServer Control
The CsiServer Control allows the user to start and stop the included,
LoggerNet server DLL (CORALIB3.DLL). All SDK controls must connect to
and use a LoggerNet server to communicate with Campbell Scientific
dataloggers. Therefore, a LoggerNet server must be running on the network
before the included examples or any custom SDK software will function.

Campbell Scientific sells a complete LoggerNet software package that includes
the LoggerNet server and many complex software clients. This version of
LoggerNet may already be installed and in use on the network where the
custom SDK application will reside. If the LoggerNet software is already
installed and running on the network, it is not necessary to use the CsiServer
control to start another LoggerNet server. However, if a separate version of
LoggerNet has not been started or installed on the network, use the CsiServer
control to start the included CORALIB3.DLL. The included CORALIB3.DLL
must be located in the same folder as the created application, the PATH
environmental variable, or in the Windows system directory before it can be
started.

All of the configuration information and data for the datalogger network will
be stored in the LoggerNet working directory described in the CsiServer
control properties. Only one LoggerNet server at a time can use the network
configuration information contained in the working directory. If a previous
installation of LoggerNet created the network map and configuration
information, the LoggerNet server included in the SDK can point to and use
this configuration information. However, avoid file conflict issues by making
sure only one LoggerNet server accesses the same working directory at a time.

Careful consideration should be given before beginning a project using the
SDK. Consider the type of software application needed. Many developers
merely want to create custom software interfaces that extend a previous
installation of LoggerNet. The CsiServer control won’t be needed for this type
of application. However, if you are interested in creating a complete software
solution that will replace or be used instead of Campbell Scientific’s
LoggerNet software package, make sure a LoggerNet server is not running and
then start the included LoggerNet server DLL with the CsiServer control.
Moreover, an understanding of CoraScript commands, which are discussed in
the next section, is required to set up and manipulate the datalogger network.

2.2 CsiServer Interface
See the Reference section in this manual for detailed descriptions of these
properties, methods, and events.

2-1

Section 2. CsiServer Control

2-2

2.2.1 Properties
• applicationWorkDir As String
• buildDate As String (read-only)
• logFileDir As String
• serverStarted As Boolean (read-only)
• serverVersion As String (read-only)
• serverWorkDir As String (Required)
• tcpPort As Integer
• tcpPortEx As Long

2.2.2 Methods
• startServer()
• stopServer()

2.2.3 Events
• onServerFailure(String Reason)

Section 3. Developing an Application
Using the CsiServer Control

3.1 Purpose
This section shows by example how to build an application using the SDK
CsiServer control. The application’s functions are:

1. Start the LoggerNet server (CORALIB3.DLL).

2. Stop the LoggerNet server (CORALIB3.DLL).

3.2 Using the CsiServer Control
3.2.1 Getting Started with the CsiServer Control

The CsiServer SDK control (an ActiveX object) starts and stops the LoggerNet
server (CORALIB3.DLL).

This example assumes that:

• you have registered the CsiServer control correctly

• you will develop the application with Visual Basic 6.0

• the CORALIB3.DLL exists in the folder with the created application, the
PATH environmental variable, or the Windows system directory

• both the CORALIB3.DLL and application you are developing reside on
the same computer

Complete the following steps first:

1. Start Visual Basic 6.0 (Start | Programs | Microsoft Visual Basic 6.0 |
Microsoft Visual Basic 6)

2. Start a new project (File | New Project | Standard EXE | OK) opening a
new, blank form.

3. View the toolbox for this new project (VB 6 Main Menu | View |
Toolbox).

4. Right click on the toolbox area and select Components. A component
window will open and the following SDK controls will appear within the
list if they are registered properly:

CsiBrokerMap 1.0 Type Library
CsiCoraScript 1.0 Type Library
CsiDatalogger 1.0 Type Library
CsiDataSource 1.0 Type Library

3-1

Section 3. Developing an Application Using the CsiServer Control

CsiLogMonitor 1.0 Type Library
CsiServer 1.0 Type Library

Check the box next to the CsiServer 1.0 Type Library, click Apply, and then
close the window. Now an icon for the CsiServer control and other common
controls will appear in the toolbox.

3.2.2 CsiServer Control Application Example
Begin creating an application that will start and stop the LoggerNet server. An
example of a user interface that accomplishes this task is shown in Figure 3-1.
This interface includes the CsiServer control and other objects on the form to
create a functional application that will start and stop the LoggerNet server.

FIGURE 3-1. CsiServer Example

Now that the interface has been designed, the code can be organized to
accomplish the requirements of the application. Initially, the one required
parameter, serverWorkDir, must be set and then the startServer() method can
be called to start the LoggerNet server. A basic example of code used to start
the LoggerNet server is listed in the table below:

Private Sub cmdStart_Click()

 'Set the required properties for the LoggerNet Server
 CsiServer.serverWorkDir = "c:\campbellsci\loggernet\sys\bin"

 'Start the LoggerNet Server
 If CsiServer.serverStarted Then
 txtServer.Text = "Server Already Started"
 Else
 CsiServer.startServer
 txtServer.Text = "Server Started"
 cmdStart.Enabled = False
 cmdStop.Enabled = True
 End If

End Sub

3-2

Section 3. Developing an Application Using the CsiServer Control

In order to stop the LoggerNet server, use the method stopServer(). A basic
example of code used to stop the LoggerNet server is found in the following
table:

Private Sub cmdStop_Click()
 'Stop the LoggerNet Server
 If CsiServer.serverStarted Then
 CsiServer.stopServer
 txtServer.Text = "Server Stopped"
 cmdStop.Enabled = False
 cmdStart.Enabled = True
 Else
 txtServer.Text = "Server Already Stopped"
 End If
End Sub

Add additional functionality and objects as necessary to meet the specific
requirements of your application. Complete examples using the CsiServer
control are included with the LoggerNet Server SDK installation.

3-3

Section 3. Developing an Application Using the CsiServer Control

3-4

Section 4. CsiCoraScript Control

4.1 Purpose of the CsiCoraScript Control
The CsiCoraScript control provides the power to administer the LoggerNet
server. There are many different settings and commands available with this
control.

Specific LoggerNet server functions and tasks are set by passing CoraScript
commands to the LoggerNet server. CoraScript commands execute LoggerNet
server operations that include adding devices to the network map, data
collection, listing table and datalogger information, and changing settings in
the LoggerNet server and attached devices. CoraScript commands and their
purposes can be found in the Quick Reference help file installed with the
LoggerNet Server SDK.

The following CoraScript commands are currently unsupported
in the SDK: connect, disconnect, help, exit, bye, quit, and list-
commands.

NOTE

4.2 Connecting to the Server
There are two basic actions required for this control to connect to the
LoggerNet server:

1. Set server properties:

• serverName - The name or IP address of the LoggerNet server . The
default value is localhost.

• serverPort - The port on which the LoggerNet server is running. The
default value is 6789.

• serverLogonName (Optional) - If security has been enabled on the
server, a valid logon name is required.

• serverLogonPassword (Optional) - If security has been enabled on the
server, a valid password that corresponds with a valid logon name is
required.

2. Invoke the serverConnect() method.

4.3 Using CoraScript Commands
CoraScript commands are used to setup and manipulate the LoggerNet server.
A complete listing of these commands can be found in the LoggerNet Server
SDK Quick Reference. A thorough knowledge of these powerful commands is
recommended before attempting to make changes to settings or devices in the
LoggerNet server. The following sections outline some basic commands that
can be used to quickly set up devices and collect data from the network.

4-1

Section 4. CsiCoraScript Control

4.3.1 Setting up a Network
Some of the commands that can be used when initially setting up a datalogger
network on the LoggerNet server include:

• add-device – used to add root ports, dataloggers, and telecommunication
devices to the network map.

• set-device-setting – used to change settings of specific devices in the
network map.

• delete-branch – used to remove a device and any children of a device from
the network map.

• list-devices – shows the devices in the network map

The following example shows the basic CoraScript commands used to set up a
CR10X connected directly to the LoggerNet server via RS232:

add-device com-port COM1 as-child “”;
add-device cr10x CR10X as-child “COM1”;

The following example shows basic CoraScript commands used to set up a
CR9000 connected to the LoggerNet server via Ethernet:

add-device tcp-com-port IPPort as-child “”;
set-device-setting IPPort 5 192.168.1.1:6781;
add-device cr9000 CR9000 as-child “IPPort”;

4.3.2 Real-Time Data Display
Some developers want to display data values as quickly as they change in the
datalogger. Each time a datalogger program executes, new values are written
as input locations. Collecting these input locations provides a snapshot of the
most recent values contained in the datalogger. The DataSource control of the
SDK can be used to set up an advisor that will watch the LoggerNet data cache
and display new or existing data values that are collected. CoraScript
commands are used to set up the collect areas of LoggerNet and to enable
scheduled collection of specific datalogger tables to automate the collection
process.

Please note that although the commands below will enable collection of input
locations from a datalogger, using input locations for real-time comparison of
values can be problematic. When input locations are collected, the collection is
merely a snapshot of the current values that exist in each location. If, for
example, the datalogger program has not completely executed, some of the
values collected may be new while other values may have not changed from
the previous program execution. Please keep this information in mind if input
locations are used in real-time data display or calculations. If correlating
values are necessary, a better approach writes values to Final Storage every
program execution and collects those values as quickly as possible.

4-2

Section 4. CsiCoraScript Control

4.3.2.1 Table-Data Dataloggers
The LoggerNet server, by default, creates a collect area for the Public or
InLocs table of table-data dataloggers such as the CR9000 or CR10X-TD. The
basic CoraScript commands that are used to enable collection and establish
scheduled collection are:

• set-collect-area-setting – used to enable a device for collection

• set-device-setting – used to activate scheduled collection for a device

If you have added a CR9000 to the datalogger network and you have a program
running on that device, the following command will enable the public table for
collection by activating the collect-area-setting scheduleEnabled (id = 2):

set-collect-area-setting CR9000 public 2 1;

Every time a manual poll or any other collection occurs, data will be collected
for the public table of the CR9000. If a DataSource advisor has been created, it
will trigger and display the new values. If you want to automate the data
collection process, set the device's scheduled collection interval through the
device setting collectSched (id = 5):

set-device-setting CR9000 5 {1 19900101 300000 120000 3 86400000};

With the above setting, the LoggerNet server will automatically collect all
tables enabled for collection from the CR9000 every 300000 milliseconds.
Once this setting is in place, the activated DataSource advisor will display
updates as they are automatically collected.

4.3.2.2 Mixed-Array Dataloggers
Although the DataSource control can create a temporary data cache to watch
all input locations, mixed-array dataloggers, like the CR7 and CR10X, require
additional commands to create a permanent collect area for input locations.
Input Locations (InLocs) contain values that are usually stored every time the
program executes. However, the LoggerNet server does not create a permanent
data cache by default containing data from InLocs for a mixed-array
datalogger. If a permanent collect area for InLocs is desired or only specific
InLocs are needed, the collect area must be created manually in the LoggerNet
server. The following commands are used to set up a permanent InLocs collect
area for a mixed-array datalogger:

• create-inlocs-area – create a collect area containing specified input
locations

• set-collect-area-setting – used to enable a device for collection

• set-device-setting – used to activate scheduled collection for a device

The following example sets up collection for two input locations of a CR10X
by identifying the station, declaring a name for the collect area, and listing the
input locations to include:

create-inlocs-area CR10X InLocsArea {1 "inlocs1"} {2 {inlocs2}};

4-3

Section 4. CsiCoraScript Control

4-4

Collect area names must always be unique. Therefore, if an attempt is made to
create a collect area with exactly the same name as a collect area that already
exists, the LoggerNet server will automatically index the name of the collect
area being created. For example, if collect area InLocsArea already exists and
an attempt is made to create another collect area with the same name, the
LoggerNet server will automatically name the new collect area InLocsArea1.

To activate a collect area for collection and to automate the collection process
use the following commands:

set-collect-area-setting CR10X InLocsArea 2 1;
set-device-setting CR10X 5 {1 19900101 300000 120000 3 86400000};

With the above setting, the LoggerNet server will automatically collect all
tables enabled for collection from the CR10X every 300000 milliseconds.
Once this setting is in place, the activated DataSource advisor will display new
data values as they are collected.

4.4 CsiCoraScript Interface
See the Reference section for descriptions of these properties, methods, and
events.

4.4.1 Properties
• serverConnected As Boolean (read-only)
• serverLogonName As String
• serverLogonPassword As String
• serverName As String
• serverPort As Long

4.4.2 Methods
• executeScript(String script, Long asyncID) As String
• serverConnect()
• serverDisconnect()

4.4.3 Events
• onScriptComplete(Long asyncID, String result)
• onServerConnectStarted()
• onServerConnectFailure(server_failure_type server_failure)

Section 5. Developing an Application
Using the CsiCoraScript Control

5.1 Purpose
This section shows an example of how to build an application using the
CsiCoraScript control. The application’s functions are:

1. Connect to a running LoggerNet server

2. Execute CoraScript commands to administer the LoggerNet server.

5.2 Using the CsiCoraScript Control
5.2.1 Getting Started with the CsiCoraScript Control

The CsiCoraScript SDK control (an ActiveX object) administers the datalogger
network by passing CoraScript commands to the LoggerNet server.

This example assumes that:

• you have registered the CsiCoraScript control correctly

• you are developing the application in Visual Basic 6.0

• a LoggerNet server is running and accessible on the network

Complete the following steps first:

1. Start Visual Basic 6.0 (Start | Programs | Microsoft Visual Basic 6.0 |
Microsoft Visual Basic 6)

2. Start a new project (File | New Project | Standard EXE | OK) opening a
new, blank form.

3. View the toolbox for this new project (VB 6 Main Menu | View |
Toolbox).

4. Right click on the toolbox area and select Components. A component
window will open and the following SDK controls will appear within the
list if they are registered properly:

CsiBrokerMap 1.0 Type Library
CsiCoraScript 1.0 Type Library
CsiDatalogger 1.0 Type Library
CsiDataSource 1.0 Type Library
CsiLogMonitor 1.0 Type Library
CsiServer 1.0 Type Library

5-1

Section 5. Developing an Application Using the CsiCoraScript Control

Check the box next to the CsiCoraScript 1.0 Type Library, click Apply, and
then close the window. Now an icon for the CsiCoraScript control and other
common controls will appear in the toolbox.

5.2.2 CsiCoraScript Control Application Example
You are now ready to begin creating an application that executes CoraScript
commands with the LoggerNet server. An example of a user interface that
accomplishes this task is shown in Figure 5-1. This interface includes the
CsiCoraScript control and other objects on the form to create a functional
application.

FIGURE 5-1. CsiCoraScript Example

Now that the interface has been designed, the code can be organized to
accomplish the requirements of the application. Initially, the application must
connect to the LoggerNet server using the serverConnect() method. A basic
example of code used to accomplish this task is shown in the table that follows:

5-2

Section 5. Developing an Application Using the CsiCoraScript Control

Private Sub cmdConnect_Click()

'Connect using the default logon settings.
CsiCoraScript.serverName = txtServerAddress
CsiCoraScript.serverPort = txtServerPort
CsiCoraScript.serverLogonName = txtUsername
CsiCoraScript.serverLogonPassword = txtPassword

'The following attempts to connect to the LoggerNet server
'and calls the event onServerConnectStarted()if the connection
'starts or the event onServerConnectFailure()if it fails.

CsiCoraScript.serverConnect

End Sub

If the connection succeeds, the onServerConnectStarted() event gets triggered.
Otherwise, the onServerConnectFailure() event gets called if the connection
fails.

In order to execute CoraScript commands on the LoggerNet server, use the
method executeScript(). A basic example of code using this method to execute
CoraScript commands and displaying the results in the interface follows:

Private Sub cmdCoraScript_Click()

Dim corascript As String

'Send CoraScript commands to the LoggerNet Server
'Sample CoraScript commands include:
'list-devices;
'add-device com-port Com1 before "";
'add-device CR10x CR10X_Test as-child Com1;
corascript = CsiCoraScript.executeScript(txtCoraScript.Text, 0)
txtCoraResult.Text = corascript

End Sub

Add additional functionality, error handling, and objects as necessary beyond
the example interface and code listed above to meet the specific requirements
of your application. Complete examples using the CsiCoraScript control are
included in the LoggerNet SDK installation.

5-3

Section 5. Developing an Application Using the CsiCoraScript Control

5-4

Section 6. CsiBrokerMap Control

6.1 Purpose of the CsiBrokerMap Control
The CsiBrokerMap control gives developers access to the broker map, which is
the list of brokers or dataloggers known by the LoggerNet server. This control
also keeps track of all tables on each of the brokers including the table
definitions or columns. This table information is derived from the collect
areas that are known by the LoggerNet server. Collect areas are known by the
LoggerNet server after a datalogger program has been associated or table
definitions have been retrieved. The user may also create collect areas
manually in the LoggerNet server.

The information given by the CsiBrokerMap control can be used as parameters
for other controls in the SDK. For example, the CsiDataLogger control can use
the name of a datalogger that was displayed to the user through the
CsiBrokerMap control. Similarly, the CsiBrokerMap control can display
specific brokers, tables, and columns that the CsiDataSource control can use to
create an advisor that monitors acquired data.

This control can also be used in combination with the CsiDatalogger control to
set a value within a datalogger table. With information about the names of a
broker, a table, and a column provided by the CsiBrokerMap control, the
variableSetStart method of the CsiDatalogger control could be used to set
the value of that column.

The CsiBrokerMap can be a useful tool to display the dataloggers, tables and
columns that exist in the LoggerNet server datalogger network.

6.2 Connecting to the LoggerNet Server
There are two basic actions required to connect to the LoggerNet server:

1) Set server properties:

a) serverName - The name of the LoggerNet server or IP address. The
default value is localhost.

b) serverPort - The port on which the LoggerNet server is running. The
default value is 6789.

c) serverLogonName (Optional) - If security has been enabled on the
server, a valid logon name is required.

d) serverLogonPassword (Optional) - If security has been enabled on
the server, a valid password that corresponds with a valid logon name
is required.

2) Invoke the start() method.

6-1

Section 6. CsiBrokerMap Control

6.3 How Collections Work
The CsiBrokerMap uses the concept of collections in its implementation.
Collections provide layers of objects and a standard way to access those
objects. There are two basic ways to look at collections. The Visual Basic
(VB) view describes how a VB programmer would view a collection, which is
simpler than for Delphi or Visual C++.

6.3.1 Visual Basic View of Collections
The CsiBrokerMap collections are simply three levels of grouped items.
Brokers exist at the top-most level. Then within Brokers are Tables, and
within Tables are Columns. Each of these levels can be accessed with the dot
operator in Visual Basic. The following example illustrates how to access all
of the Brokers in the BrokerMap:

6.3.1.1 Accessing Collections with For Each
For Each b in BrokerMap.Brokers
 Debug.Print b.name
Next

This simplistic code allows you to iterate through the BrokerMap simply
without having to worry about indexes and going out of bounds. In the code
above, it would be possible to access all of the tables in each broker by nesting
a similar loop inside the existing one stating For Each t in
BrokerMap.Brokers(b).Tables. By repeating similar code for the
columns the whole broker map could be displayed.

6.3.1.2 Accessing Collections with Indexes and Names
The brokers, tables, and columns can be accessed not only with the “For
Each” loop, but also by index and name. Consider the following examples:

BrokerMap.Brokers("CR9000").Tables("minute").Columns("temp").size
For i = 0 to BrokerMap.Brokers.Count – 1
 Debug.Print BrokerMap.Brokers(i)
Next

The first line of code assumes that a datalogger named CR9000 with a table
named minute exists in the broker map. The code also assumes a column
named temp exists in the table named minute. These names could also be
String variables instead of literal strings.

6.3.2 Delphi/Visual C++ View of Collections
Delphi and Visual C++ require a little more work to capture the information
provided by this control, but not much more than Visual Basic's iterative
method using indexes. Please refer to the code in the Delphi and Visual C++
examples included with the LoggerNet SDK installation.

6-2

Section 6. CsiBrokerMap Control

6.4 CsiBrokerMap Interfaces
The following interfaces are included in the CsiBrokerMap control:

• Broker
• BrokerMap
• BrokerCollection
• Column
• ColumnCollection
• Table
• TableCollection

6.4.1 BrokerMap Interface
See the Reference Section for detailed descriptions of these properties,
methods, and events.

6.4.1.1 Properties
• serverName As String
• serverLogonName As String
• serverLogonPassword As String
• serverPort As Long
• autoExpand As Boolean
• serverConnected As Boolean

6.4.1.2 Methods
• brokers() As Object
• finish()
• start()

6.4.1.3 Events
• onAllStarted()
• onBrokerAdded(Object Broker)
• onBrokerDeleted(Object Broker)
• onFailure(BrokerMapFailureType failure_code)
• onTableAdded(Object Broker, Object Table)
• onTableDeleted(Object Broker, Object Table)
• onTableChanged(Object Broker, Object Table)
• onBrokerStarted(Object Broker)

6.4.2 BrokerCollection Interface
See the Reference Section for descriptions of these properties and methods.

6.4.2.1 Properties
• count As Long

6-3

Section 6. CsiBrokerMap Control

6.4.2.2 Methods
• item(id) As Broker
• _NewEnum() (GetEnumerator() in .NET)

6.4.3 Broker Interface
See the Reference Section for descriptions of these properties and methods.

6.4.3.1 Properties
• id As Long
• name As String
• type As BrokerType
• datalogger_type as String
• allStarted as Boolean

6.4.3.2 Methods
• tables() As Object
• start_expansion()

6.4.4 Table Collection Interface
See the Reference Section for descriptions of these properties and methods.

6.4.4.1 Properties
• count As Long

6.4.4.2 Methods
• item(id) As Table
• _NewEnum() (GetEnumerator() in .NET)

6.4.5 Table Interface
See the Reference Section for descriptions of these properties and methods.

6.4.5.1 Properties
• interval As Long
• name As String
• originalSize As Long
• size As Long

6.4.5.2 Methods
• columns() As Object
• start_expansion()

6-4

Section 6. CsiBrokerMap Control

6.4.6 ColumnCollection Interface
See the Reference Section for descriptions of these properties and methods.

6.4.6.1 Properties
• count As Long

6.4.6.2 Methods
• item(id) As Column
• _NewEnum() (GetEnumerator() in .NET)

6.4.7 Column Interface
See the Reference Section for descriptions of these properties.

6.4.7.1 Properties
• description As String
• name As String
• process As String
• type As CsiDataTypeCode
• units As String
• writable As Long

6-5

Section 6. CsiBrokerMap Control

6-6

Section 7. Developing an Application
Using the CsiBrokerMap Control

7.1 Purpose
This section shows by example how to build an application using the
CsiBrokerMap SDK control. The application’s stated functions are:

1. Display names of all stations in the current network.

2. Upon selection of any single station, display tables associated with that
station's currently running program.

3. Upon selection of any single table, display all fields (columns) included in
that table.

The following section illustrates how to build an application that can perform
these tasks using SDK controls and the LoggerNet server.

7.2 Using the CsiBrokerMap Control
7.2.1 Getting Started with the CsiBrokerMap Control

The CsiBrokerMap is an SDK control (an ActiveX object) designed to display
names of dataloggers in the current network. This control can also display
names of all tables belonging to the selected datalogger and columns in the
selected table. This information is derived from collect area information
created when a program is associated with a datalogger or when table
definitions are retrieved from the datalogger. Since the BrokerMap control
does not list devices if collect areas are not known, use the CoraScript control
to associate the program or to retrieve table definitions.

This example assumes that:

• you have registered the SDK controls correctly

• you are developing the application with Visual Basic 6.0

• a LoggerNet server is currently running and accessible on the network

• at least one station already exists in the LoggerNet server's network map

• the datalogger program has been associated or table definitions have been
retrieved

Complete the following steps first:

1. Start Visual Basic 6.0 (Start | Programs | Microsoft Visual Basic 6.0 |
Microsoft Visual Basic 6)

7-1

Section 7. Developing an Application Using the CsiBrokerMap Control

2. Start a new project (File | New Project | Standard EXE | OK). This will
open a new, blank form.

3. View the toolbox for this new project (VB 6 Main Menu | View |
Toolbox).

4. Right click on the toolbox area and then on the word Components to open
the component window. If the SDK controls are registered on your PC,
the following CSI components will appear:

CsiBrokerMap 1.0 Type Library
CsiCoraScript 1.0 Type Library
CsiDatalogger 1.0 Type Library
CsiDataSource 1.0 Type Library
CsiLogMonitor 1.0 Type Library
CsiServer 1.0 Type Library

Check the box next to CsiBrokerMap 1.0 Type Library, click on Apply, and
then close the window. An icon for the CsiBrokerMap control will appear in
the toolbox.

7.2.2 CsiBrokerMap Control Application Example
Begin creating an application that displays the stations, tables, and columns
that exist in the LoggerNet server. Design the interface and change properties
to meet the requirements of your application. An example for a user interface
that accomplishes the tasks outlined in the previous section is shown in Figure
7-1. This interface includes the CsiBrokerMap control and other objects to
create a functional application.

FIGURE 7-1. CsiBrokerMap Example

7-2

Section 7. Developing an Application Using the CsiBrokerMap Control

Now that the interface has been designed, the code can be organized to
accomplish the requirements of the application. The control must be started
using the correct parameters to connect with a LoggerNet server. A basic
example of code used to accomplish this task is listed in the table below:

Private Sub cmdConnect_Click()

'Assign the connection parameters
BrokerMap.serverName = txtServerAddress.Text
BrokerMap.serverPort = txtServerPort.Text
BrokerMap.serverLogonName = txtUsername.Text
BrokerMap.serverLogonPassword = txtPassword.Text

'Start the BrokerMap control using the variables above
'The onAllStarted() event will be activated if a connection
'occurs or the onFailure() event will be activated if the
'connection fails
BrokerMap.start

End Sub

If the connection succeeds, the onAllStarted() event gets triggered.
Otherwise, the onFailure() event gets called. The onAllStarted() event
should contain code that iterates through the stations and displays the
appropriate values in a window on the user interface. Example code for the
onAllStarted() event is listed in the table below:

Private Sub BrokerMap_onAllStarted()

Dim n As Node
Dim b As Broker
Dim t As Table
Dim c As Column

'After the broker map starts, ignore any changes such as additions
'or deletions of brokers or tables from the broker map.
BrokerMap.finish

'Clear out the tree view for a fresh network map
tvwDisplay.Nodes.Clear

'Set the root node
Set n = tvwDisplay.Nodes.Add(, , "Root", "Broker Map")

'Read in the checkboxes to determine the names of the stations,
'tables and columns that will populate the TreeView object.
If chkStations.Value = 1 Then
 For Each b In BrokerMap.Brokers
 Debug.Print b.Name & " " & b.Type

 'Display the Broker Names if checked
 Set n = tvwDisplay.Nodes.Add("Root", tvwChild, b.Name, b.Name)

 'If Tables are checked, get all of the tables in that Broker
 If chkTables.Value = 1 Then
 For Each t In b.Tables
 'Display the table names
 Set n = tvwDisplay.Nodes.Add(b.Name, tvwChild, b.Name & "." & t.Name, t.Name)
'If Columns checked, get all of the columns in the tables
 If chkColumns.Value = 1 Then
 For Each c In t.Columns
 'Display the column names
 Set n = tvwDisplay.Nodes.Add(b.Name & "." & t.Name, tvwChild, b.Name & _

7-3

Section 7. Developing an Application Using the CsiBrokerMap Control

7-4

"." & t.Name & "." & c.Name, c.Name)
 Next
 End If
 Next
 End If
 Next

 Else
 MsgBox "You must first select to display the Stations."
End If

End Sub

Add additional functionality, error handling, and objects as necessary to meet
the specific requirements of your application. Complete examples using the
CsiBrokerMap control are included in the LoggerNet SDK installation.

Section 8. CsiDatalogger

8.1 Purpose of the CsiDatalogger Control
The CsiDatalogger control allows the developer to manage datalogger
functions through the LoggerNet server. The basic managerial functions of this
control include: sending a program to the datalogger, retrieving a program from
the datalogger, checking the clock on the datalogger as well as setting it to the
current time, setting variable values, and performing manual polls of the
datalogger. Another important function creates an active connection between
the server and the datalogger, to eliminate connection and disconnection
overhead on slower connections.

8.2 Connecting to the Server
There are two basic actions required for this control to connect to the
LoggerNet server:

1. Set server properties:

• serverName - The name or IP address of the LoggerNet server . The
default value is localhost.

• serverPort - The port on which the LoggerNet server is running.
The default value is 6789

• serverLogonName (Optional) - If security has been enabled on the
server, a valid logon name is required.

• serverLogonPassword (Optional) - If security has been enabled on
the server, a valid password that corresponds with a valid logon name
is required.

2. Invoke the serverConnect() method.

8.3 Datalogger Interface
8.3.1 Properties

• clockBusy As Boolean
• loggerConnected As Boolean
• loggerName As String
• manualPollBusy As Boolean
• programReceiveBusy As Boolean
• programSendBusy As Boolean
• serverConnected As Boolean
• selectiveManualPollBusy As Boolean
• serverLogonName As String
• serverLogonPassword As String
• serverName As String
• serverPort As Long

8-1

Section 8. CsiDatalogger

8-2

8.3.2 Methods
• clockCancel()
• clockCheckStart()
• clockSetStart()
• loggerConnectCancel()
• loggerConnectStart(logger_priority_type priority)
• manualPollCancel()
• manualPollStart()
• programReceiveCancel()
• programReceiveStart(String fileName)
• programSendCancel()
• programSendStart(String file_name, String program_name)
• selectiveManualPollCancel()
• selectiveManualPollStart()
• serverConnect()
• serverDisconnect()

8.3.3 Events
• onClockComplete(Boolean successful, clock_outcome_type respose_code,

Date current_date)
• onLoggerConnectFailure(logger_failure_type fail_code)
• onLoggerConnectStarted()
• onManualPollComplete(Boolean successful, manual_poll_outcome_type

response_code)
• onProgramCompiled()
• onProgramReceiveComplete(Boolean successful,

prog_receive_outcome_type response_code)
• onProgramReceiveProgress(Long received_bytes)
• onProgramSendComplete(Boolean successful, prog_send_outcome_type

response_code, String compile_result)
• onProgramSendProgress(Long sent_bytes, Long total_bytes)
• onProgramSent()
• onSelectiveManualPollComplete(Boolean successful,

selective_manual_poll_outcome_type response_code)
• onServerConnectFailure(server_failure_type failure_code,)
• onServerConnectStarted()

Section 9. Developing an Application
Using the Datalogger Control

9.1 Purpose
This section illustrates the use of the CsiDatalogger control. This control
interacts with dataloggers through the LoggerNet server to perform managerial
tasks. These tasks require a connection with the specified datalogger. The
user-interface we are about to develop will:

• Connect to the LoggerNet server

• Enter a datalogger to manage

• Establish an active connection with the datalogger

• Check and display time at the datalogger

• Send/Receive datalogger programs

• Retrieve data collected by a datalogger

The following section illustrates how to build an application that can perform
these tasks using the CsiDatalogger control and the LoggerNet server.

9.2 Using the CsiDatalogger Control
9.2.1 Getting Started with the CsiDatalogger Control

CsiDatalogger is an SDK control (an ActiveX object) designed to display
names of dataloggers in the current network. This control can also display
names of all tables belonging to the selected datalogger and columns in the
selected table.

This example assumes that:

• you have registered the SDK controls correctly

• you are developing the application with Visual Basic 6.0

• a LoggerNet server is currently running and accessible on the network

• at least one station already exists in the LoggerNet server's network map

Complete the following steps first:

1. Start Visual Basic 6.0 (Start | Programs | Microsoft Visual Basic 6.0 |
Microsoft Visual Basic 6)

9-1

Section 9. Developing an Application Using the Datalogger Control

2. Start a new project (File | New Project | Standard EXE | OK). This will
open a new, blank form.

3. View the toolbox for this new project (VB 6 Main Menu | View |
Toolbox).

4. Right click on the toolbox area and then on the word Components to open
a component window. If the SDK controls are registered on your PC, the
following CSI components will appear:

CsiBrokerMap 1.0 Type Library
CsiCoraScript 1.0 Type Library
CsiDatalogger 1.0 Type Library
CsiDataSource 1.0 Type Library
CsiLogMonitor 1.0 Type Library
CsiServer 1.0 Type Library

Check the box next to the CsiDatalogger 1.0 Type Library, click Apply, and
then close the window. An icon for the CsiDatalogger control will appear in
the toolbox.

9.2.2 CsiDatalogger Control Application Example
Begin creating an application that manages an existing datalogger in the
LoggerNet server network map. Design the interface and change properties to
meet the requirements of your application. An example for a user interface that
accomplishes the tasks outlined in the previous section is shown in Figure 9-1.
This interface includes the CsiDatalogger control and other objects to create a
functional application.

FIGURE 9-1. CsiDatalogger Example

9-2

Section 9. Developing an Application Using the Datalogger Control

Now that the interface has been designed, the code can be organized to
accomplish the requirements of the application. The control must connect with
the LoggerNet server using the correct parameters and the serverConnect()
method. A basic example of code used to accomplish this task is listed in the
table below:

Private Sub cmdConnect_Click()

 'Set the connection parameters
 DataLogger.serverName = txtServerAddress
 DataLogger.serverPort = txtServerPort
 DataLogger.serverLogonName = txtUsername
 DataLogger.serverLogonPassword = txtPassword

 'Connect to the LoggerNet server
 DataLogger.serverConnect

End Sub

If the connection succeeds, the onServerConnectStarted() event is
triggered. Otherwise, the onServerConnectFailure() event is called.
Next, set the name of the specific datalogger to be managed. An application
can use the CsiBrokerMap control to display all stations and allow the user to
select a specific datalogger from the network map. However, in this example,
the user merely enters the name of a datalogger known to exist in the
LoggerNet server network map. In this example, the user changes the
datalogger to manage by entering a new datalogger name. However, if
communication is in progress between the LoggerNet server and the
datalogger, the user will not be able to change the datalogger name. An
example of the code used to set the datalogger name can be found in the table
below:

Private Sub txtDataloggerName_Change()

 'Make sure a datalogger connection is not active
 If DataLogger.loggerConnected Then
 MsgBox "Connection Active. Can't change datalogger
name."
 TxtDataloggerName = DataLogger.loggerName
 Else
 DataLogger.loggerName = txtDataloggerName
 End If

End Sub

After setting the datalogger name, the managerial functions can be called to
access the datalogger. The loggerConnectStart() method can be used to
create a persistent connection between the LoggerNet server and the
datalogger. The onLoggerConnnectStarted() event gets called if the
connection succeeds. Otherwise, the onLoggerConnectFailed() event gets
called if the connection fails. A persistent connection allows multiple
transactions to occur without the need to connect and disconnect across the
network to the datalogger. The following code illustrates the use of the
loggerConnectStart() method:

9-3

Section 9. Developing an Application Using the Datalogger Control

Private Sub cmdDataloggerConnect_Click()

 'Create an active connection to the datalogger so that a
 'new connection isn't required for every transaction
 If DataLogger.serverConnected Then
 If DataLogger.loggerConnected Then
 WriteMessage "Already connected to datalogger"
 CmdDataloggerConnect.Enabled = False
 cmdDataloggerDisconnect.Enabled = True
 Else
 DataLogger.loggerConnectStart lp_priority_normal
 WriteMessage "Datalogger Connection Active"
 End If
 Else
 WriteMessage "Not connected to the LoggerNet server"
 End If

End Sub

The loggerConnectCancel() method cancels the managerial connection
between the LoggerNet server and the datalogger. After running this method,
the server will be returned to the default behavior of connecting and
disconnecting from the datalogger for each transaction. The example code in
the table below shows this method:

Private Sub cmdDataloggerDisconnect_Click()

 'Stop the active connection to the datalogger.
 If DataLogger.serverConnected Then
 If DataLogger.loggerConnected Then
 DataLogger.loggerConnectCancel
 WriteMessage "Active Datalogger Connection Stopped."
 Else
 WriteMessage "No Active Connection"
 End If
 Else
 WriteMessage "Not connected to the LoggerNet server"
 End If

End Sub

The clockCheckStart() method will check the clock on the datalogger
while the clockSetStart() method sets the clock on the datalogger to the
time on the LoggerNet server. Both of these methods call the
onClockComplete() event that returns the current time of the datalogger
clock. Example code for the clock check, clock set, and clock complete
methods and event can be found in the following tables:

9-4

Section 9. Developing an Application Using the Datalogger Control

Private Sub cmdCheck_Click()

 'Check the clock on the datalogger.
 If DataLogger.clockBusy Then
 WriteMessage "Clock check already in progress"
 Else
 If DataLogger.serverConnected Then
 DataLogger.clockCheckStart
 WriteMessage "Clock Check Started"
 Else
 WriteMessage "Not connected to the LoggerNet server"
 End If
 End If

End Sub

Private Sub cmdSet_Click()

 'Set the clock on the
 If DataLogger.clockBusy Then
 WriteMessage "Clock set already in progress"
 Else
 If DataLogger.serverConnected Then
 DataLogger.clockSetStart
 WriteMessage "Clock Set Started"
 Else
 WriteMessage "Not connected to the LoggerNet server"
 End If
 End If

End Sub

Private Sub DataLogger_onClockComplete(ByVal successful _
As Boolean, ByVal response_code As _
CSIDATALOGGERLibCtl.clock_outcome_type, ByVal _
current_date As Date)

 'Clock check complete
 If successful Then
 WriteMessage "Current Datalogger Clock: " & _
current_date
 Else
 WriteMessage "Clock Check/Set failed. Code: " & _
response_code
 End If

End Sub

The manualPollStart() method connects to the datalogger and retrieves
data. The manualPollCancel() method can be called to cancel a polling
event in progress. Both of these methods trigger the
onManualPollComplete() event, which returns the appropriate response
code if the poll succeeded, failed, or was cancelled. The following tables
contain code illustrating the use of these methods and event:

9-5

Section 9. Developing an Application Using the Datalogger Control

Private Sub cmdDataStart_Click()

 'Begin a manual poll to retrieve data
 If DataLogger.serverConnected Then
 DataLogger.manualPollStart
 WriteMessage "Manual Poll Started"
 Else
 WriteMessage "Not connected to the LoggerNet server"
 End If

End Sub

Private Sub cmdDataStop_Click()

 'Try to cancel a manual poll that is in progress.
 If DataLogger.serverConnected Then
 DataLogger.manualPollCancel
 WriteMessage "Trying to Cancel Manual Poll"
 Else
 WriteMessage "Not connected to the LoggerNet server"
 End If

End Sub

Private Sub DataLogger_onManualPollComplete(ByVal _
successful As Boolean, ByVal response_code As _
CSIDATALOGGERLibCtl.manual_poll_outcome_type)

 If successful Then
 WriteMessage "Manual Poll Complete"
 Else
 If response_code = mp_outcome_aborted Then
 WriteMessage "Manual Poll Aborted Successfully"
 Else
 WriteMessage "Manual Poll Failed. Code: " & _
response_code
 End If
 End If

End Sub

The programReceiveStart() method retrieves the current program from a
datalogger and saves it as a specified filename. The
onProgramReceiveProgress() event is triggered and provides information
regarding the progress of the program retrieval. The
onProgramReceiveComplete() event also runs when the file retrieval
process either completes or fails. The following table shows example code for
the programReceiveStart() method:

9-6

Section 9. Developing an Application Using the Datalogger Control

Private Sub cmdRetrieve_Click()

 'Get the current program from the datalogger
 If DataLogger.serverConnected Then
 DataLogger.programReceiveStart txtRetrieve
 WriteMessage "Retrieving Program from the Datalogger"
 Else
 WriteMessage "Not connected to the LoggerNet server"
 End If

End Sub

The programSendStart() method sends a program to the specified datalogger
and calls the onProgramSendProgress() event, the onProgramSent() event, and
the onProgramSendComplete() event respectively. The following table
contains example code for the programSendStart() method:

Private Sub cmdSend_Click()

 'Send a program to the datalogger
 If DataLogger.serverConnected Then
 If txtSend = "" Then
 WriteMessage "Enter a Program to Send"
 Else
 DataLogger.programSendStart txtSend, ""
 WriteMessage "Sending Program " & txtSend
 End If
 Else
 WriteMessage "Not connected to the LoggerNet server"
 End If

End Sub

Additional functionality, error handling, and objects should be added as
necessary beyond the example interface and code listed above to meet the
specific requirements of your application. Complete examples using the
CsiDatalogger control are included in the LoggerNet SDK installation.

9-7

Section 9. Developing an Application Using the Datalogger Control

9-8

Section 10. CsiDataSource Control

10.1 Purpose of the CsiDataSource Control
The CsiDataSource control allows an application to monitor data collected
through the LoggerNet server. These sessions that monitor data are know as
Advisors. Advisors display data collected in the LoggerNet server data cache.
This control can have multiple advisor sessions with a single server connection.

This control requires that the LoggerNet server collect data for the same tables
or final storage areas that are being monitored. If you start an advisor on a
table that is not being collected by the LoggerNet server, you will not receive
any onAdviseRecord events. An exception to this rule occurs if you are
monitoring input locations on a mixed-array datalogger. When you create an
advisor for an input location on a mixed-array datalogger, a temporary data
cache is created. Then, with the advisor ready, enabling scheduled collection
with the datalogger will return records to the advisor.

The CsiBrokerMap control is often used in conjunction with this control to
display what tables and columns can be monitored. Additionally, the
CsiDatalogger control can also be used to issue a manual data poll and collect
records from the datalogger.

10.2 Connecting to the Server
There are two basic actions required to connect to the LoggerNet server:

1. Set server properties:

• serverName - The name or IP address of the LoggerNet server. The
default value is localhost.

• serverPort - The port on which the LoggerNet server is running. The
default value is 6789

• logonName (Optional) - If security has been enabled on the server, a
valid logon name is required.

• logonPassword (Optional) - If security has been enabled on the
server, the correct password for a valid logon name is required.

2. Invoke the connect() method.

10-1

Section 10. CsiDataSource Control

10.3 CsiDataSource Interfaces
The following interfaces are used in the CsiDataSource control:

• DSource – the controlling interface

• Advisor - created through the DSource interface to monitor certain data
columns on a specified station and table.

• Record - received in the event onAdviseRecord. A record is a collection
of values that contain data.

• Value - contains the name and value of a single column.

10.3.1 Dsource Interface
See the Reference Section for descriptions of these properties, methods, and
events.

10.3.1.1 Properties
• logonName As String
• logonPassword As String
• serverName As String
• serverPort As Long
• state As data_source_state
• sendRecordBlocks as Boolean

10.3.1.2 Methods
• connect()
• createAdvisor() As Object
• disconnect()

10.3.1.3 Events
• onAdviseReady(Object myAdvisor)
• onAdviseRecord(Object myAdvisor, Object myRecord)
• onAdvisorFailure(csiAdvisorFailureCode failure, Object myAdvisor)
• onControlFailure(csidsFailureCode failureCode)
• onControlReady()
• onVariableSetComplete(Long tran_id, Object myAdvisor, Boolean

successful, variable_outcome_type response_code)
• onAdviseRecords(Object myAdvisor, object record_collection)

10.3.2 Advisor Interface
See the Reference Section for descriptions of these properties, methods, and
events.

10-2

Section 10. CsiDataSource Control

10.3.2.1 Properties
• advisorName As String
• orderOption As csidsOrderOptionType
• startDate As Date
• startFileMarkNo As Long
• startIntervalSeconds As Long
• startOption As csidsStartOptionType
• startRecordNo As Long
• startRecordNoString As String
• state As advisor_state
• stationName As String
• tableName As String
• startDateNanoSeconds As Long
• maxRecordsPerBlock As Long

10.3.2.2 Methods
• columns() As Object
• start()
• stop()
• variableSetCancel(Long tran_id)
• variableSetStart(String column_name, String value) as Long

10.3.3 DataColumnCollection Interface
See the Reference Section for descriptions of these properties and methods.

10.3.3.1 Properties
• count As Long

10.3.3.2 Methods
• add(String columnName)
• addAll()
• find(String column_name) As Long
• Item(id) As DataColumn
• remove(String columnName)
• removeAll()
• _NewEnum() (GetEnumerator() in .NET)

10.3.4 DataColumn Interface
See the Reference Section for descriptions of these properties.

10.3.4.1 Properties
• name As String

10-3

Section 10. CsiDataSource Control

10-4

10.3.5 Record
See the Reference Section for descriptions of these properties, methods, and
events.

10.3.5.1 Properties
• fileMarkNo As Long
• recordNo As Long
• timeStamp As Date
• valuesCount As Long
• nanoSeconds as Long

10.3.5.2 Methods
• item(id) as value
• _NewEnum() (GetEnumerator() in .NET)

10.3.6 RecordCollection

10.3.6.1 Properties
• Count As Long

10.3.6.2 Methods
• Item(id, record)
• _NewEnum() (GetEnumerator() in .NET)

10.3.7 Value Interface
See the Reference Section for descriptions of these properties, methods, and
events.

10.3.7.1 Properties
• columnName As String
• value As Variant

Section 11. Developing an Application
Using the CsiDataSource Control

11.1 Purpose
The CsiDataSource control primarily monitors data residing in the LoggerNet
server data cache. The LoggerNet server data cache is a location where the
server stores collected datalogger records. The control can also be used to see
measurements performed in real-time; for example, values being recorded for
input locations in mixed-array dataloggers. The BrokerMap control often
accompanies this control to display the names of tables and columns in each
table so they can be selected for data monitoring. However, the example
illustrated in this section requires that the user enter a station and table that are
known to exist on the LoggerNet server and all columns will be monitored
within that table. The application we develop will:

• Connect to a LoggerNet server

• Allow the user to enter a known station and table

• Monitor data in all columns of the table

The following section illustrates how to build an application that can perform
these tasks using the CsiDataSource control and the LoggerNet server.

11.2 Using the CsiDataSource Control
11.2.1 Getting Started with the CsiDataSource Control

CsiDataSource is an SDK control (an ActiveX object) designed to monitor data
collected from the dataloggers in the LoggerNet network. This example
assumes that:

• you have registered the SDK controls correctly

• you are developing the application with Visual Basic 6.0

• a LoggerNet server is currently running and accessible on the network

• at least one station already exists in the LoggerNet server's network map

Complete the following steps first:

1. Start Visual Basic 6.0 (Start | Programs | Microsoft Visual Basic 6.0 |
Microsoft Visual Basic 6)

2. Start a new project (File | New Project | Standard EXE | OK). This will
open a new, blank form.

11-1

Section 11. Developing an Application Using the CsiDataSource Control

3. View the toolbox for this new project (VB 6 Main Menu | View |
Toolbox).

4. Right click on the toolbox area and then on the word Components to open
a component window. If the SDK controls are registered on your PC, the
following CSI components will appear:

CsiBrokerMap 1.0 Type Library
CsiCoraScript 1.0 Type Library
CsiDatalogger 1.0 Type Library
CsiDataSource 1.0 Type Library
CsiLogMonitor 1.0 Type Library
CsiServer 1.0 Type Library

Check the box next to the CsiDataSource 1.0 Type Library, click Apply, and
then close the window. An icon for the CsiDataSource control will appear in
the toolbox.

11.2.2 CsiDataSource Control Application Example
You are now ready to begin creating an application that monitors data from an
existing datalogger table in the LoggerNet server network map. Design the
interface and change properties to meet the requirements of your application.
An example interface that accomplishes the tasks outlined previously in this
section is shown in Figure 11-1. This interface includes the CsiDataSource
control and other objects to create a functional application.

FIGURE 11-1. CsiDataSource Example

11-2

Section 11. Developing an Application Using the CsiDataSource Control

Now that the interface has been designed, the code can be organized to
accomplish the requirements of the application. The control must connect with
the LoggerNet server using the correct parameters and the connect() method.
If the connection succeeds, the onControlReady() event will be called. A basic
example of code used to accomplish this task is listed in the table below:

Private Sub cmdConnect_Click()

'Set connection parameters
DSource.serverName = txtServerAddress
DSource.serverPort = txtServerPort
DSource.logonName = txtUsername
DSource.logonPassword = txtPassword

'Connect to the LoggerNet server. Successful connections will be
'handled by the onControlReady() function. If the control fails,
'the onControlFailure() function will handle these failures
DSource.Connect

End Sub

Once connected to the LoggerNet server, the Advisor can be created by
entering a known datalogger and table in the text fields and calling the
createAdvisor() method. An application may use the CsiBrokerMap to display
all stations and allow the user to select a specific datalogger, table, and column.
However, in this example, the user merely enters the name of a datalogger and
table known to exist in the LoggerNet server network map. An example of the
code used to start an Advisor that will monitor data in all columns of a specific
datalogger and table can be found in the table below:

Private Sub cmdStartAdvisor_Click()
Dim CurrentAdvisor as Advisor
Dim dcc as DataColumnCollection

 'Create a new advisor. Make sure a connection is active to the
 'LoggerNet server before attempting to start the Advisor.
 'Add all columns to the Advisor to simplify the example.
 Set CurrentAdvisor = Dsource.createAdvisor

 'Set some properties for the advisor
 CurrentAdvisor.advisorName = "NewAdvisor"
 CurrentAdvisor.stationName = txtDatalogger
 CurrentAdvisor.tableName = txtTable

 'Add all columns to the advisor.
 Set dcc = CurrentAdvisor.columns
 dcc.addAll

 'Start the Advisor. When started, onAdviseReady and
 'onAdviseRecord will activate. If an advisor fails, the
 'onAdvisorFailure event will be called.
 CurrentAdvisor.start
 End If

End Sub

After starting the Advisor, the onAdviseReady() event will run and begin
watching the specified table and columns for new data. The onAdviseRecord()
event gets called when new records appear in the LoggerNet server data cache
from the specified datalogger table and columns. The following code
illustrates how records are received:

11-3

Section 11. Developing an Application Using the CsiDataSource Control

11-4

Private Sub DSource_onAdviseRecord(ByVal myAdvisor As Object, _
ByVal myRecord As Object)

 'Declare Variables
 Dim val As Value
 Dim rec As Record

 Set rec = myRecord

 'Display the Advisor and record information to the user
 WriteMessage ""
 WriteMessage "OnAdvise ready event occurred"
 WriteMessage "Advisor Name: " & CurrentAdvisor.advisorName
 WriteMessage "FileMarkNo. " & rec.fileMarkNo
 WriteMessage "RecordNo. " & rec.recordNo
 WriteMessage "TimeStamp. " & rec.TimeStamp

 'Display the values for all columns in the record
 For Each val In rec
 WriteMessage val.columnName & ": " & val.Value
 Next

End Sub

The Advisor will continue displaying new records as they are received until the
stopAdvisor() method is called to stop the Advisor. The following code
illustrates the use of this method:

Private Sub cmdStopAdvisor_Click()

 'Stop the Advisor.
 CurrentAdvisor.stop
 WriteMessage "Advisor Stopped"

End Sub

Additional functionality, error handling, and objects should be added as
necessary beyond the example interface and code listed above to meet the
specific requirements of your application. Complete examples using the
CsiDataSource control are included in the LoggerNet SDK installation.

Section 12. CsiLogMonitor Control

12.1 Purpose of the CsiLogMonitor Control
The CsiLogMonitor Control provides access to log message from the
LoggerNet server. The log messages stream to this control as a text string.
Use this control to display log messages or to monitor events as they occur on
the server and call other operations or programs based on these LoggerNet
server events.

The types of log files that can be retrieved from the LoggerNet server with the
CsiLogMonitor control include the transaction log and the communication log.
The transaction log messages use the following basic format:

“StationName”, “MessageNumber”, “Message”

The developer can create a program using the CsiLogMonitor control to filter
each message by station name and watch for message numbers and messages
that indicate a specific event. By parsing the transaction log text string and
looking for the triggering messages listed below, the declared station event can
be monitored.

Some station events require a preceding message. In these cases, look for the
preceding message and then for the triggering message to appear later in the
log messages. The preceding message will not necessarily appear in the logs
immediately prior to the triggering log message.

Station Event Triggering Log Message
“MessageNumber”, “Message”

Preceding Log Message
“MessageNumber”, “Message”

On Call-Back “114”, “Call-back Started” N/A

After Call-Back “116”, “Call-back Stopped” N/A

The communication log messages use the following basic format:

“StationName”, “MessageType”, “Message”

The message types in the communication log are “S” for a status message, “W”
for a warning message, and “F” for a failure message. Status messages are
general communication messages, warning messages declare a possible
problem and communication retries, and failure messages appear when all
retries have been exhausted and communication will no longer be attempted by
the LoggerNet server for a specific transaction.

12-1

Section 12. CsiLogMonitor Control

12-2

12.2 CsiLogMonitor Interface
See the Reference section in this manual for detailed descriptions of these
properties, methods, and events.

12.2.1 Properties
• commLogMonitorBusy As Boolean
• commLogRecordsBack As Long
• serverConnected As Boolean
• serverLogonName As String
• serverLogonPassword As String
• serverName As String
• serverPort As Long
• tranLogMonitorBusy As Boolean
• tranLogRecordsBack As Long

12.2.2 Methods
• commLogMonitorStart()
• commLogMonitorStop()
• serverConnect()
• serverDisconnect()
• tranLogMonitorStart()
• tranLogMonitorStop()

12.2.3 Events
• onCommLogFailure(log_monitor_failure_type failure_code)
• onCommLogRecord(Date timestamp, String comm_log_record)
• onServerConnectFailure(server_failure_type failure_code)
• onServerConnectStarted()
• onTranLogFailure(log_monitor_failure_type failure_code)
• onTranLogRecord(Date timestatmp, String tran_log_record)

Section 13. Developing an Application
Using the CsiLogMonitor Control

13.1 Purpose
This section shows an example of how to build an application using the
CsiLogMonitor control. The application’s functions are:

1. Connect to a running LoggerNet server

2. Monitor the LoggerNet server transaction and communication logs.

13.2 Using the CsiLogMonitor Control
13.2.1 Getting Started with the CsiLogMonitor Control

The CsiLogMonitor SDK control (an ActiveX object) connects to the
LoggerNet server and monitors transaction and communication logs.

This example assumes that:

• you have registered the CsiLogMonitor control correctly

• you are developing the application in Visual Basic 6.0

• a LoggerNet server is running and accessible on the network

Complete the following steps first:

1. Start Visual Basic 6.0 (Start | Programs | Microsoft Visual Basic 6.0 |
Microsoft Visual Basic 6)

2. Start a new project (File | New Project | Standard EXE | OK) opening a
new, blank form.

3. View the toolbox for this new project (VB 6 Main Menu | View |
Toolbox).

4. Right click on the toolbox area and select Components. A component
window will open and the following SDK controls will appear within the
list if they are registered properly:

CsiBrokerMap 1.0 Type Library
CsiCoraScript 1.0 Type Library
CsiDatalogger 1.0 Type Library
CsiDataSource 1.0 Type Library
CsiLogMonitor 1.0 Type Library
CsiServer 1.0 Type Library

13-1

Section 13. Developing an Application Using the CsiLogMonitor Control

Check the box next to the CsiLogMonitor 1.0 Type Library, click Apply, and
close the window. An icon for the CsiLogMonitor control will appear in the
toolbox.

13.2.2 CsiLogMonitor Control Application Example
You are now ready to begin creating an application that monitors log messages
from the LoggerNet server. An example of a user interface that accomplishes
this task is shown in Figure 13-1. This interface includes the CsiLogMonitor
control and other objects on the form to create a functional application.

FIGURE 13-1. CsiLogMonitor Example

Now that the interface has been designed, the code can be organized to
accomplish the requirements of the application. Initially, the application must
connect to the LoggerNet server using the serverConnect() method. A basic
example of code used to accomplish this task is shown in the table that follows:

13-2

Section 13. Developing an Application Using the CsiLogMonitor Control

Private Sub cmdConnect_Click()
'Connect using the default logon settings.
CsiLogMonitor.serverName = txtServerAddress
CsiLogMonitor.serverPort = txtServerPort
CsiLogMonitor.serverLogonName = txtUsername
CsiLogMonitor.serverLogonPassword = txtPassword

'Start the connection to the LoggerNet server
CsiLogMonitor.serverConnect

Exit Sub

If the connection succeeds, the onServerConnectStarted() event gets triggered.
Otherwise, the onServerConnectFailure() event gets called if the connection
fails.

In order to start monitoring the transaction log, the tranLogMonitorStart()
method must be called. To monitor communication log messages, call the
commLogMonitorStart() method.

The LoggerNet server maintains a buffer of historical log messages. By
default, the last 100 log file messages will be retrieved when log monitoring
first starts. To change the number of historical log messages that are retrieved,
set the commLogRecordsBack and tranLogRecordsBack properties before
starting log monitoring. A basic example of code using these methods to set the
number of historical records received and to start collecting both types of log
messages follows:

Private Sub cmdStart_Click()
'Set the number of historical log messages to retrieve from the
'LoggerNet server when monitoring starts
CsiLogMonitor.commLogRecordsBack = 5
CsiLogMonitor.tranLogRecordsBack = 5

'Start Monitoring the Tranaction Log and the Communications Log
'on the LoggerNet server
CsiLogMonitor.commLogMonitorStart
CsiLogMonitor.tranLogMonitorStart

End Sub

Log messages will be passed as Strings to the onCommLogRecord() and
onTranLogRecord() events respectively as they are generated by the LoggerNet
server. A timestamp for when the log message is generated is also passed to
these events. The String can be displayed or parsed and manipulated by station
name and message type.

Private Sub CsiLogMonitor_onCommLogRecord(ByVal timestamp As Date,
ByVal comm_log_record As String)

lstCommLog.AddItem timestamp & " : " & comm_log_record
If lstCommLog.ListCount = 10 Then
 lstCommLog.Clear
End If

End Sub

13-3

Section 13. Developing an Application Using the CsiLogMonitor Control

13-4

Stop monitoring logs with the commLogMonitorStop() and
tranLogMonitorStop() events. You can check for active log monitoring by
checking the commLogMonitorBusy and tranLogMonitorBusy properties or
this control.

Private Sub cmdStop_Click()
If CsiLogMonitor.commLogMonitorBusy Then
 CsiLogMonitor.commLogMonitorStop
End If

If CsiLogMonitor.tranLogMonitorBusy Then
 CsiLogMonitor.tranLogMonitorStop
End If

End Sub

Add additional functionality, error handling, and objects as necessary beyond
the example interface and code listed above to meet the specific requirements
of your application. Complete examples using the CsiLogMonitor control are
included in the LoggerNet SDK installation.

Section 14. CsiServer Control
Reference

14.1 Server Interface
14.1.1 Properties

Server.applicationWorkDir

Name
Server.applicationWorkDir As String

Description
This property gives the location where the LoggerNet server data files are
stored and must be set before starting the LoggerNet. If this property needs to
be changed after the LoggerNet server has been started, call stopServer(), set
the new location, and then call startServer().

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

Server.buildDate

Name
Server.buildDate As String

Description
This read-only property displays the build date of the LoggerNet server.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_STARTED Error: The LoggerNet server is not started

14-1

Section 14. CsiServer Control Reference

Server.logFileDir

Name
Server.logFileDir As String

Description
This property specifies the location where the LoggerNet server writes log files
and must be set before starting the LoggerNet server. If this property needs to
be changed after the LoggerNet server has been started, call stopServer(), set
the new location, and then call startServer(). By default the log file directory
will be placed in the LoggerNet server working directory.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

Server.serverStarted

Name
Server.serverStarted As Boolean

Description
This read-only value displays the current state of a LoggerNet server that has
been started by the Server control. If the LoggerNet server is running, this
value will be TRUE. Otherwise, this value will be FALSE.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Server.serverVersion

Name
Server.serverVersion As String

Description
This property is a read-only value that displays the version of the LoggerNet
server.

14-2

Section 14. CsiServer Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_STARTED Error: The LoggerNet server is not started

Server.serverWorkDir

Name
Server.serverWorkDir As String (Required)

Description
This required property must be specified before starting the LoggerNet server
and describes the location of the LoggerNet server configuration files. This
property must be set before starting the LoggerNet server or the startServer()
event will fail. If this location needs to be changed after the LoggerNet server
has been started, call stopServer(), set the new location, and then call
startServer().

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

Server.tcpPort

Name
Server.tcpPort As Integer

Description
This property sets the TCP port that the LoggerNet server will use when
listening for client connections and must be set before starting the LoggerNet
server. LoggerNet uses the TCP port 6789 by default. This property accepts
1 - 32767 as valid values.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

14-3

Section 14. CsiServer Control Reference

Server.tcpPortEx

Name
Server.tcpPortEx As Long

Description
This property sets the TCP port that the LoggerNet server will use when
listening for client connections and must be set before starting the LoggerNet
server. LoggerNet uses TCP port 6789 by default This property accepts the
full range of valid TCP port numbers 1 – 65535.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

14.1.2 Methods

Server.startServer()

Name
Server.startServer()

Description
This method starts the limited LoggerNet server (CORALIB3.DLL). The
CORALIB3.DLL must exist in the application folder, the PATH environmental
variable, or the Windows directory or this method will fail.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ALREADY_STARTED Error: This error is returned if the
Server control has already started
the LoggerNet server

E_CSI_INVALIDARG Error: No working directory set

E_CSI_FAIL Error: Another LoggerNet server
not started by the Server control is
already running or an unexpected
error has occurred

14-4

Section 14. CsiServer Control Reference

Server.stopServer()

Name
Server.stopServer()

Description
This method will stop the limited LoggerNet server (CORALIB3.DLL).

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

14.1.3 Events

Server_onServerFailure()

Name
onServerFailure(String reason)

Description
This event gets triggered when the LoggerNet server started by the Server
control fails.

14-5

Section 14. CsiServer Control Reference

14-6

Section 15. CsiCoraScript Control
Reference
15.1 CoraScript Interface

15.1.1 Properties
CoraScript.serverConnected

Name
CoraScript.serverConnected As Boolean (read-only)

Description
This Boolean property describes the state of the connection between the
CoraScript control and the LoggerNet server. The property returns TRUE if
the connection exists. Otherwise, the property returns FALSE.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

CoraScript.serverLogonName

Name
CoraScript.serverLogonName As String

Valid Values
If security is enabled on the target LoggerNet server, this string must be one of
the account names recognized by the LoggerNet server.

Default Value
The default value for this property is an empty string. This property will only
affect the operation of the control if security is enabled on the LoggerNet
server.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

15-1

Section 15. CsiCoraScript Control Reference

CoraScript.serverLogonPassword

Name
CoraScript.serverLogonPassword As String

Valid Values
If security is enabled on the target LoggerNet server, this string must be the
password associated with the account named by CoraScript.serverLogonName.

Default Value
The default value for this property is an empty string. This property will only
affect the operation of the control if security is enabled on the LoggerNet
server.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to the
LoggerNet server is present

CoraScript.serverName

Name
CoraScript.serverName As String

Description
Specifies the TCP/IP interface address for the computer hosting the LoggerNet
server. This string must be formatted either as a qualified Internet machine
domain name or as an Internet address string. An example of a valid machine
domain name address is www.campbellsci.com. An example of a valid
Internet address string is 63.255.173.183.

The default value for this property is the string localhost.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverName while connected to the
LoggerNet server

15-2

Section 15. CsiCoraScript Control Reference

CoraScript.serverPort

Name
CoraScript.serverPort As Long

Description
Specifies the TCP port number that the LoggerNet server is using on the
hosting computer. The valid range for this property is port 1 to port 65535.

The default value for this property is port 6789, which is the default port
number assigned for the LoggerNet server. The default value for this property
will connect to a LoggerNet server port in most cases.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: The port value is out of range or invalid

E_CSI_BUSY Error: Attempt to set serverPort while connected
to the LoggerNet server

15.1.2 Methods
CoraScript.executeScript()

Name
CoraScript.executeScript(String script, Long asychID)
As String

Description
This method allows CoraScript commands to be executed by the LoggerNet
server. Pass the CoraScript command in as the first parameter and use the
second parameter to determine whether the method performs asynchronously
or synchronously. If you want this command to execute synchronously, pass in
a zero (0) for the asyncID. If an asyncID other than zero (0) is specified, the
onScriptComplete() event will be triggered with the result and the asyncID that
was specified.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected Error

15-3

Section 15. CsiCoraScript Control Reference

CoraScript.serverConnect()

Name
CoraScript.serverConnect()

Description
This method attempts to connect to the LoggerNet server using the values in
the previously set properties: serverName, serverPort, serverLogonName, and
serverLogonPassword. This method triggers onServerConnectStarted() if
the connection is successful, or onServerConnectFailure() if the connection
fails.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

CoraScript.serverDisconnect()

Name
CoraScript.serverDisconnect()

Description
This method will disconnect from the LoggerNet server and will set the
serverConnected state to FALSE. This method should only be called when
the value of serverConnected, is TRUE. Otherwise, this method will return
E_CSI_NOT_CONNECTED.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

15.1.3 Events
CoraScript_onScriptComplete()

Name
onScriptComplete(Long asyncID, String result)

Description
This event displays the results from the method CoraScript.executeScript().
However, this event is only activated when an asyncID other than “0” is passed
to that method.

15-4

Section 15. CsiCoraScript Control Reference

CoraScript_onServerConnectStarted()

Name
onServerConnectStarted()

Description
The control has connected to the LoggerNet server.

CoraScript_onServerConnectFailure()

Name
onServerConnectFailure(server_failure_type
server_failure)

Description
An error has occurred that caused the connection to the LoggerNet server to
fail for this control.

Table of Possible failure codes.

Enumeration Name Value Description

server_failure_unknown 0 Indicates that an error has occurred
but its nature is unknown

server_failure_logon 1 Indicates that this control was unable
to logon to the LoggerNet server
because either the logonName or
logonPassword property is incorrect

server_failure_session 2 Indicates that the communication
session with the LoggerNet server
failed resulting in a failed transaction

server_failure_unsupported 3 The version of the LoggerNet server
does not support this transaction

server_failure_security 4 Indicates that the account specified
by logonName does not have
sufficient privileges to start this
transaction with the LoggerNet
server

server_failure_bad_host_or_port 5 Indicates that either the serverName
or the serverPort property is
incorrect

15-5

Section 15. CsiCoraScript Control Reference

15-6

Section 16. CsiBrokerMap Control
Reference
16.1 BrokerMap Interface

16.1.1 Properties
BrokerMap.serverName

Name
BrokerMap.serverName As String

Description
Specifies the TCP/IP interface address for the computer that is hosting the
LoggerNet server. This string must be formatted either as a fully qualified
Internet machine domain name or as an IP address string. An example of a
valid machine domain name address is www.campbellsci.com. An example of
a valid IP address string is 63.255.173.183.

Default Value

The default value for this property is the string localhost.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverName while connected to the
server

BrokerMap.serverLogonName

Name
BrokerMap.serverLogonName As String

Valid Values
If security is enabled on the target LoggerNet server, this string must be an
account name recognized by the LoggerNet server. These accounts can be set
up using the Security Manager that is part of the LoggerNet Admin software
suite or through the CsiCoraScript control.

Default Value
The default value for this property is an empty string.

Notes
This property is only used if security is enabled on the LoggerNet server.

16-1

Section 16. CsiBrokerMap Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverLogonName while connected
to the LoggerNet server

BrokerMap.serverLogonPassword

Name
BrokerMap.serverLogonPassword As String

Valid Values
If security is enabled on the target LoggerNet server, this string must be a valid
password associated with the account described in the serverLogonName
property.

Default Value
The default value for this property is an empty string.

Notes
This property is only used if security is enabled on the LoggerNet server.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverLogonPassword while
connected to the LoggerNet server

BrokerMap.serverPort

Name
BrokerMap.serverPort As Long

Description
Specifies the TCP port number that the LoggerNet server is using on the
hosting computer. The valid range for this property is 1 to 65535.

Default Value
The default value for this property, assigned to the LoggerNet server, is 6789.
In most cases, the default value for this property is acceptable.

16-2

Section 16. CsiBrokerMap Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverPort while connected
to the LoggerNet server

E_CSI_INVALIDARG Error: The port value is invalid (out of range)

BrokerMap.autoExpand

Name
BrokerMap.autoExpand As Boolean

Description
This setting determines if the broker will automatically expand to include all
brokers and tables or if the Broker.start_expansion() method must be called to
list all the brokers and Table.start_expansion() method to list all tables for each
broker. If the list of brokers and tables is extensive, it may be quicker to list
the brokers and expand the tables for each broker separately. The default
setting is true, which means that all brokers and tables will be expanded
automatically.

Default Value
The default value for this property is true

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

BrokerMap.serverConnected

Name
BrokerMap.serverConnected As Boolean

Description
This property describes the state of the connection between the BrokerMap
control and the LoggerNet server. If the connection is active, the property is
TRUE. Otherwise, the property is FALSE.

16-3

Section 16. CsiBrokerMap Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal Return

16.1.2 Methods
BrokerMap.Brokers()

Name
BrokerMap.Brokers() As Object

Description
Use this method to iterate through the Brokers and return a Broker Collection.

BrokerMap.finish()

Name
BrokerMap.finish()

Description
This method tells the control to discontinue sending events or changes to the
brokers, which holds the current broker map in a static format for your
application. This method should only be called after the start() method has
been invoked.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

BrokerMap.start()

Name
BrokerMap.start()

Description
This method starts the broker map query to get the brokers, tables, and
columns. Immediately following the invocation of this method, the events
onBrokerAdded() and onTableAdded() will follow to describe the brokers
and tables currently in the broker map.

If there is already a connection to the server, this method will return the error
E_CSI_ALREADY_CONNECTED. If an error occurs while trying to connect, this
method will return the error E_CSI_BAD_HOST_OR_PORT.

16-4

Section 16. CsiBrokerMap Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ALREADY_CONNECTED Error: Already connected to the
LoggerNet server

E_CSI_BAD_HOST_OR_PORT Error: Cannot connect. Property
serverName or serverPort possibly
wrong

16.1.3 Events
BrokerMap_onAllStarted()

Name
onAllStarted()

Description

This event is a result of invoking the start() method. This event gets called
after all of the initial onBrokerAdded() and onTableAdded() events have
been called from the start() method and the broker map is known.

BrokerMap_onBrokerAdded()

Name
onBrokerAdded(Object Broker)

Description
This event gets called as new brokers are added to the broker map.
Information about the new broker can be accessed with the broker object
returned with this event.

BrokerMap_onBrokerDeleted()

Name
onBrokerDeleted(Object Broker)

Description
This event gets called as brokers are deleted from the broker map. Information
about the broker deleted from the broker map can be accessed with the broker
object returned with this event. After the broker object returned by this event
goes out of scope, the referenced object in the control will be permanently
deleted. The broker is kept alive for this event so that its properties can be
referenced by the client application one last time.

16-5

Section 16. CsiBrokerMap Control Reference

BrokerMap_onFailure()

Name
onFailure(BrokerMapFailureType failure_code)

Description
When the BrokerMap control fails, an error from the following table will be
returned with this event:

Table of Failure Codes

Name Value Description

failure_unknown 0 The cause of the failure
could not be determined

failure_connection_failed 1 The connection has failed.
Check the serverName and
serverPort

failure_invalid_logon 2 The LoggerNet server has
security enabled and the
logon is invalid. Check
serverLogonName and
serverLogonPassword

failure_server_security 3 The LoggerNet server has
security enabled and you do
not have sufficient privileges
to complete this transaction

failure_table_browser 4 There has been an error
while getting table
information

BrokerMap_onTableAdded()

Name
onTableAdded(Object Broker, Object Table)

Description
This event gets called when a new table is added to a broker in the broker map.
Information about the table added to the broker in the broker map can be
accessed with the table object and broker object returned by this event.

16-6

Section 16. CsiBrokerMap Control Reference

BrokerMap_onTableDeleted()

Name
onTableDeleted(Object Broker, Object Table)

Description
This event gets called when a table is deleted from a broker in the broker map.
The table that was deleted will be returned as a broker object and table object
with this event.

BrokerMap_onTableChanged()

Name
onTableChanged(Object Broker, Object Table)

Description
This event executes when a Table in a Broker changes. Information about the
Broker and Table that changed are returned with this event.

BrokerMap_onBrokerStarted()

Name
onBrokerStarted(Object Broker)

Description
An event that indicates a Broker is in a started state. Information about the
Broker is returned with this event.

16.2 BrokerCollection Interface
16.2.1 Properties
BrokerCollection.Count

Name
BrokerCollection.Count As Long

Description
This property returns the number of brokers in the network map

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

16-7

Section 16. CsiBrokerMap Control Reference

16.2.2 Methods
BrokerCollection.Item()

Name
BrokerCollection.Item(id) As Broker

Description
A Broker can be referenced by an integer, a long, or by the name of the Broker
(a string). If the number is less than zero or is greater than the number of
brokers minus one, then the COM error E_CSI_ARRAY_OUT_OF_BOUNDS
will be returned. If the broker cannot be found by name, then the COM error
E_CSI_NOT_FOUND will be returned.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ARRAY_OUT_OF_BOUNDS Error: Array out of bounds

E_CSI_NOT_FOUND Error: Couldn't find the broker by
name in the broker map

E_CSI_FAIL Error: Wrong variant type passed to
this method or unexpected error

Visual Basic

Return Type
Broker

Example
Referencing the broker by a number value
Dim iterator As Long
For iterator = 0 to BrokerMap.Broker.Count – 1
 Debug.Print
 BrokerMap.Brokers(iterator).ID
Next iterator

Referencing the broker by name:
Dim brokerName as String
Dim myid as long
brokerName = "cr10x"
myid = BrokerMap.Brokers(brokerName).id

16-8

Section 16. CsiBrokerMap Control Reference

BrokerCollection._NewEnum()

Name

BrokerCollection._NewEnum() — Return the next broker in the
broker map sequence.

Important
This method is only intended for use with the Visual Basic programming
language. Visual Basic programmers do not need to access this method
directly but can use it indirectly with the For Each loop. This method is
included in the documentation to explain why the method exists, but, again, it
is not accessed directly.

Visual Basic

Example
Dim b As Broker
For Each b in BrokerMap.Brokers
 Debug.print b.name
Next

16.3 Broker Interface
16.3.1 Properties
Broker.ID

Name
Broker.id As Long

Description
This is a read-only property describing the unique ID of each broker.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Broker.name

Name
Broker.name As String

Description
This read-only property returns the name of a broker.

16-9

Section 16. CsiBrokerMap Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

Broker.type

Name

Broker.type As BrokerType — The type of the broker (read only).

Description
This read-only property returns the type of the broker.

Possible Values

Table of Broker Type Enumeration

Name Value Description

broker_active 1 The data broker associated with the
current configuration of a device
object

broker_backup 2 A data broker associated with a
previous configuration of a device
object

broker_client 3 A data broker created at the request
of a client

broker_statistics 4 A data broker created by the
LoggerNet server to report operating
statistics

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Broker.datalogger_type

Name
Broker.datalogger_type As String

Description
The read-only device type of the Broker

16-10

Section 16. CsiBrokerMap Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Broker.allStarted

Name
Broker.allStarted As Boolean

Description
Set to TRUE when all the tables for the broker have been reported.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

16.3.2 Methods
Broker.Tables()

Name
Broker.Tables() As Object

Description
This method returns a reference to a TableCollection, which can be used to
iterate through the tables in a broker.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Broker.start_expansion()

Name
Broker.start_expansion()

Description
If the BrokerMap autoExpand property has been set to FALSE, use this method
to access the list of tables for a Broker.

16-11

Section 16. CsiBrokerMap Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal Return

16.4 TableCollection Interface
16.4.1 Properties
TableCollection.Count

Name
TableCollection.Count As Long

Description
This property returns the number of tables in a TableCollection

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

16.4.2 Methods
TableCollection.Item()

Name
TableCollection.Item(id) As Table

Description
Returns the requested table if it exists. A table can be referenced by a number
(like an index), or by a string (the name of the table). If the number is less than
zero or is greater than the number of tables, then the error
E_CSI_ARRAY_OUT_OF_BOUNDS will be returned. If the table cannot be found
by name, then the error E_CSI_NOT_FOUND will be returned.

Prototypes
TableCollection.Item(Number) - Array index.
TableCollection.Item(String) - Table name.

16-12

Section 16. CsiBrokerMap Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ARRAY_OUT_OF_BOUNDS Error: Array subscript out of bounds

E_CSI_NOT_FOUND Error: Table not found by name in the
broker map

E_CSI_FAIL Error: Wrong variant type passed or
unexpected error

Visual Basic

Return Type
Table

Example
By number:
long iterator
For iterator = 0 to BrokerMap.Broker("cr9000").Tables.Count – 1
 Debug.Print BrokerMap.Brokers("cr9000").Tables.ID
Next iterator

By string:
Dim tableName as String
Dim myid as long
tableName = "cr10x"
myid = BrokerMap.Broker("cr9000").Tables(tableName).id

TableCollection._NewEnum()

Name

TableCollection._NewEnum() — Return the next Table in the
sequence.

This method is only intended for use with Visual Basic. Visual
Basic programmers do not need to access this method directly.
They use it indirectly by using the collections with the For
Each loop. This method is included in the documentation to
explain why the method exists, but, again, it is not accessed
directly.

Important

16-13

Section 16. CsiBrokerMap Control Reference

16.5 Table Interface
16.5.1 Properties
Table.interval

Name
Table.interval As Long

Description
The time interval between records. If the table is event-driven, a value of zero
will be used.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Table.name

Name
Table.name As String

Description
This read-only property returns the name of the table.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Table.originalSize

Name
Table.originalSize As Long

Description
This property returns the number of records that can be stored in the original
datalogger table.

16-14

Section 16. CsiBrokerMap Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Table.size

Name
Table.size As Long

Description
 This property returns the number of records that can be stored in this table.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

16.5.2 Methods
Table.Columns()

Name
Table.Columns() As Object

Description
This method is used as a reference for a ColumnCollection to get the columns
of a table.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Visual Basic

Example
Dim cc As ColumnCollection
Set cc = BrokerMap.Brokers("cr9000").Tables("public").Columns

16-15

Section 16. CsiBrokerMap Control Reference

Table.start_expansion

Name
Table.start_expansion()

Description
If the BrokerMap autoExpand property has been set to FALSE, use this method
to access the list of Columns for a Table within a Broker.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal Return

16.6 ColumnCollection Interface
16.6.1 Properties
ColumnCollection.Count

Name
ColumnCollection.Count As Long

Description
This property returns the number of columns in the ColumnCollection.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

16.6.2 Methods
ColumnCollection.Item()

Name
ColumnCollection.Item(id) As Column

Description
This method returns the reference id for a Column. If the number is less than
zero or is greater than the number of columns, then the error
E_CSI_ARRAY_OUT_OF_BOUNDS will be returned. If the column cannot
be found by name, then the error E_CSI_NOT_FOUND will be returned.

16-16

Section 16. CsiBrokerMap Control Reference

Prototypes
ColumnCollection.Item(Number) - Array index.
ColumnCollection.Item(String) - Table name.

COM Return Values

Table of Possible Values

Code Meaning
S_OK Success: Normal return
E_CSI_ARRAY_OUT_OF_BOUNDS Error: Array out of bounds
E_CSI_NOT_FOUND Error: Column not found in broker

map by name
E_CSI_FAIL Error: Wrong variant type passed or

unexpected error

Visual Basic

Return Type
Column

Examples
(1)
Dim myColumn as Column
BrokerMap.Brokers("cr9000").Tables("public").Columns.Item(0)

(2)
Dim myColumn as Column
BrokerMap.Brokers("cr9000").Tables("public").Columns(0)

(3)
Dim myColumn as Column
BrokerMap.Brokers("cr9000").Tables("public").Columns.Item("speed")

(4)
Dim myColumn as Column
BrokerMap.Brokers("cr9000").Tables("public").Columns("speed")

Examples (1) and (2) are equivalent, as well as examples
(3) and (4). The default method for collection interfaces
is Item().

ColumnCollection._NewEnum()

Name

ColumnCollection._NewEnum() — Return the next Column in the
sequence.

This method is only intended for use with Visual Basic. Visual
Basic programmers do not need to access this method directly.
They use it indirectly by using the collections with the For
Each loop. This method is included in the documentation to
explain why the method exists, but, again, there is no need to
access this method directly.

Important

16-17

Section 16. CsiBrokerMap Control Reference

16.7 Column Interface
16.7.1 Properties
Column.description

Name
Column.description As String

Description
This read-only property returns a description of the column.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Column.name

Name

Column.name As String

Description
This read-only property returns the name of the column.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Column.process

Name
Column.process As String

Description
A read-only property that identifies the processing performed on the data. For
data coming from table-data and mixed-array dataloggers, this value will be an
empty string.

16-18

Section 16. CsiBrokerMap Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Column.type

Name
Column.type As CsiDataTypeCode

Description
This read-only property identifies the type of data for the column.Following are
the possible values for this enumerated property:

Table of Data Type Enumeration

Name Value Description

dt_CsiUInt1 1 1 byte unsigned int

dt_CsiUInt2 2 2 byte unsigned int

dt_CsiUInt4 3 4 byte unsigned int

dt_CsiInt1 4 1 byte signed int

dt_CsiInt2 5 2 byte signed int

dt_CsiInt4 6 4 byte signed int

dt_CsiInt8 32 8 byte signed integer

dt_CsiFs2 7 2 byte final storage (also known as FP2)

dt_CsiFs3 15 3 byte final storage (also known as FP3)

dt_CsiFs4 26 4 byte final storage

dt_CsiFsf 27 allows storage of either CsiFs2 or CsiFs4.
Requires 4 bytes

dt_CsiFp4 8 4 byte CSI float

dt_CsiIeee4 9 4 byte IEEE float

dt_CsiIeee8 18 8 byte IEEE float

dt_CsiBool 10 1 byte Boolean (0 or 1)

dt_CsiBool8 17 1 byte bit field

dt_CsiSec 12 4 byte sec since 1 Jan 1990

dt_CsiUSec 13 6 byte 10s of Usec since 1 Jan 1990

dt_CsiNSec 14 4 byte sec since 1 Jan 1990 + 4 byte Nsec

16-19

Section 16. CsiBrokerMap Control Reference

Name Value Description

dt_CsiAscii 11 fixed-length string

dt_CsiAsciiZ 16 null-terminated variable-length string

dt_CsiInt4Lsf 20 4 byte signed int (LSB first)

dt_CsiUInt2Lsf 21 2 byte signed int (LSB first)

dt_CsiUInt4Lsf 22 4 byte signed int (LSB first)

dt_CsiNSecLsf 23 same as NSec with the components in LSB

dt_CsiIeee4Lsf 24 4 byte IEEE float (LSB first)

dt_CsiIeee8Lsf 25 8 byte IEEE float (LSB first)

dt_CsiInt8Lsf 33 8 byte signed integer (LSB first)

dt_CsiBool2 30 2 byte Boolean (non-zero = true)

dt_CsiBool4 31 4 byte Boolean (non-zero = true)

dt_CsiInt2Lsf 19 2 byte signed int (LSB first)

dt_CsiLgrDate 29 8 bytes of nanoseconds since 1990

dt_CsiLgrDateLsf 28 8 bytes of nanoseconds since 1990 (LSB
first)

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Column.units

Name
Column.units As String

Description
 This read-only property identifies the data engineering units.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

16-20

Section 16. CsiBrokerMap Control Reference

Column.writable

Name
Column.writable As Long

Description
This property is read-only and describes whether or not this column can be
changed or set by using the variableSet() method as described in the
CsiDatalogger Control.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

16-21

Section 16. CsiBrokerMap Control Reference

16-22

Section 17. CsiDatalogger Control
Reference
17.1 Datalogger Interface

17.1.1 Properties
Datalogger.clockBusy

Name
Datalogger.clockBusy As Boolean

Description
This property describes the state of the control concerning clock transactions.
If a clock check or a clock set is currently executing, clockBusy returns TRUE,
and any attempt to execute another clock check or clock set will return an
error.

COM Return Values
Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.loggerConnected

Name
Datalogger.loggerConnected As Boolean

Description
This Boolean property describes the state of the LoggerNet server connection
management invoked from loggerConnectStart(). This property only describes
the state of connection management not the state of the physical connection to
the datalogger. To monitor the physical line state, start an advisor with the
DataSource control and monitor the statistics table for that device. For
information on devices statistics tables, look in the appendix of this document.

If connection management is active, then a persistent connection between the
server and the datalogger is present or in process. This type of connection can
be very useful if you must make requests to the datalogger on a frequent basis
because you avoid reconnection overhead for each request. To turn off active
connection management, see loggerConnectCancel.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

17-1

Section 17. CsiDatalogger Control Reference

Datalogger.loggerName

Name
Datalogger.loggerName As String

Valid Values
Specifies the datalogger or station name that will be accessed. This property
must match one of the actual datalogger device names in the LoggerNet server
network map.

Default Value
The default value for this property is an empty string.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the datalogger is present

Datalogger.manualPollBusy

Name
Datalogger.manualPollBusy As Boolean

Description
This Boolean property describes the state of the control concerning a manual
poll. If a manual poll is currently executing then manualPollBusy will return
TRUE, and any attempt to execute another manual poll will return an error.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.programReceiveBusy

Name
Datalogger.programReceiveBusy As Boolean

Description
This read-only, Boolean property describes the state of the LoggerNet server in
relation to the method programReceiveStart(). If the LoggerNet server is
currently retrieving a program from the datalogger, then this property will
return TRUE.

17-2

Section 17. CsiDatalogger Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.programSendBusy

Name
Datalogger.programSendBusy As Boolean

Description
This Boolean property describes the state of the LoggerNet server in relation to
the method programSendStart(). If the LoggerNet server is currently sending a
program to the datalogger, then this property will return TRUE.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.selectiveManualPollBusy

Name
Datalogger.selectiveManualPollBusy As Boolean

Description
This Boolean property describes the state of the control concerning a selective
manual poll. If a selective manual poll is currently in process, this property
will return TRUE.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.serverConnected

Name
Datalogger.serverConnected As Boolean

Description
This Boolean property describes the state of the connection between the client
application and the LoggerNet server. If the connection is successful, the
property is returned as TRUE. Otherwise, the property is returned as FALSE.

17-3

Section 17. CsiDatalogger Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.serverLogonName

Name
Datalogger.serverLogonName As String

Valid Values
If security is enabled on the target LoggerNet server, this property must be one
of the account names recognized by the LoggerNet server. These accounts can
be set up using the LoggerNet Security Administration Client that is part of the
LoggerNet software suite or the CsiCoraScript control that is part of the SDK.

Default Value
The default value for this property is an empty string. This property is only
used if security is enabled on the LoggerNet server.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

Datalogger.serverLogonPassword

Name
Datalogger.serverLogonPassword As String

Valid Values
If security is enabled on the target LoggerNet server, this property must be the
password associated with the account described by serverLogonName.

Default Value
The default value for this property is an empty string. This property is only
used if security is enabled on the LoggerNet server.

17-4

Section 17. CsiDatalogger Control Reference

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

Datalogger.serverName

Name
Datalogger.serverName As String

Description
This property specifies the TCP/IP interface address for the computer hosting
the LoggerNet server. This string must be formatted either as a fully qualified
Internet machine domain name or as an IP address string. An example of a
valid machine domain name address is www.campbellsci.com. An example of
a valid IP address string is 207.201.118.35. The default value for this
property is the string, localhost.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverName while connected to the
LoggerNet server

Datalogger.serverPort

Name
Datalogger.serverPort As Long

Description
Specifies the TCP port number that the LoggerNet server is using on the
hosting computer. The valid range for this property is 1 to 65535.

Default Value
The default value for this property, assigned to the LoggerNet server during
install, is 6789. In most cases, the default value for this property is acceptable.

17-5

Section 17. CsiDatalogger Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: The port value is invalid

E_CSI_BUSY Error: Attempt to set serverPort while connected
to the LoggerNet server

17.1.2 Methods
Datalogger.clockCancel()

Name
Datalogger.clockCancel()

Description
This method should be called to cancel either a clockCheckStart(), or a
clockSetStart(). If the clock set or clock check was successfully cancelled,
then the event onClockComplete(), will return a cancellation code. If the
clockCancel() was called too late in the process, then the event
onClockComplete(), will return either a success or failure code instead. This
method should only be called when the clockCheckStart() method or the
clockSetStart() method is in process.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.clockCheckStart()

Name
Datalogger.clockCheckStart()

Description
This method should be called to check the date and time on a specified
datalogger. This method should only be called when the value of
serverConnected, is true. If not, this method will return
E_CSI_NOT_CONNECTED. Upon completion, this method will fire the event
onClockComplete.

17-6

Section 17. CsiDatalogger Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Clock communication is busy servicing
a request

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

Datalogger.clockSetStart()

Name
Datalogger.clockSetStart()

Description
This method should be called to set the date and time on the specified
datalogger to the date and time of the LoggerNet server. This method should
only be called when the value of serverConnected is true. If not, this method
will return E_CSI_NOT_CONNECTED. Upon completion, this method calls
the event onClockComplete.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Clock communication is busy servicing
a request

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

Datalogger.loggerConnectCancel()

Name
Datalogger.loggerConnectCancel()

Description
This method cancels an active connection between the LoggerNet server and
the specified datalogger. When a persistent connection is cancelled, the
LoggerNet server returns to the default behavior of connecting to the
datalogger for each transaction and disconnecting from the datalogger after
each transaction finishes.

17-7

Section 17. CsiDatalogger Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.loggerConnectStart()

Name
Datalogger.loggerConnectStart(logger_priority_type
priority)

Parameters
The following values indicate the priority of maintaining the connection when
other devices might need the resources:

Table of 'priority' values:

priority_high = 0

priority_normal = 1

priority_low = 2

Description

This method will open a persistent connection to the specified datalogger.
Keeping the connection open will allow the LoggerNet server to handle
multiple transactions without disconnecting. The default behavior of the server
is to disconnect from the datalogger after finishing each task, such as a
clockCheckStart. Keeping the connection open is very helpful if it takes a
considerable amount of time for the server to connect to a datalogger, such as
on a dialup connection.

This method should only be called when the value of serverConnected, is true.
If not, this method will return E_CSI_NOT_CONNECTED. This method triggers
onLoggerConnectStarted, or onLoggerConnectFailure, depending on its
success or failure.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: A persistent communications link has
already been started with this datalogger

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

17-8

Section 17. CsiDatalogger Control Reference

Datalogger.manualPollCancel()

Name
Datalogger.manualPollCancel()

Description
This method should be called to cancel a manualPollStart() command. If the
manual poll was successfully cancelled, then the event
onManualPollComplete(), will return a cancellation code. If the
manualPollCancel() was called too late in the manual poll process, then the
event onManualPollComplete(), will return either a success or failure code
instead. This method should only be called when a manual poll is in process.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.manualPollStart()

Name
Datalogger.manualPollStart()

Description
This method should be called when the client desires to perform a manual poll
of the specified datalogger. This method should only be called when the value
of serverConnected, is TRUE. If not, this method will return
E_CSI_NOT_CONNECTED. Upon completion, this method calls the event
onManualPollComplete().

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Manual poll communication is busy
servicing a request

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

17-9

Section 17. CsiDatalogger Control Reference

Datalogger.programReceiveCancel()

Name
Datalogger.programReceiveCancel()

Description
This method attempts to cancel the programReceiveStart() command. Mixed-
array dataloggers will not recognize this request and will continue to transfer
their program even though the datalogger control is no longer receiving it.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.programReceiveStart()

Name
Datalogger.programReceiveStart(String fileName)

Description
This method retrieves the current program from the connected datalogger and
saves that file as the specified filename. This event triggers
onProgramReceiveProgress(), and onProgramReceiveComplete(), during the
programReceive() and after the programReceive() respectively.

This method should only be called when the value of serverConnected, is true.
If not, this method will return E_CSI_NOT_CONNECTED.

Parameters
FileName: This location is the full path and name where the file will be saved.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: A previous call to
programReceiveStart() has not completed

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

17-10

Section 17. CsiDatalogger Control Reference

Datalogger.programSendCancel()

Name
Datalogger.programSendCancel()

Description
This method attempts to cancel the programSendStart() method. The program
send process can be cancelled if it has not already begun. Otherwise, the
method will be ignored.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.programSendStart()

Name
Datalogger.programSendStart(String file_name, String
program_name)

Description
This method starts to transfer a file designated by file_name to the specified
datalogger. It also calls the events: onProgramSendProgress(),
onProgramSent(), and onProgramSendComplete(). This method should only
be called when the value of serverConnected, is TRUE. Otherwise, this
method will return E_CSI_NOT_CONNECTED.

Parameters
file_name: The full path on the local machine designating the location of the
program that will be sent.

program_name: Designates the name of the program that will be sent to the
specified datalogger. If this setting is specified as an empty string, the name
will be derived from the file_name property when this method gets called.
This parameter string should have the following syntax:

program_name := [device-name ":"] file-name.

The device name optionally indicates the datalogger storage device on Crx000
dataloggers. If omitted for Crx000 dataloggers, the default device will be the
"CPU" device. The file name that follows should not have any path
specification but should merely be the name of the file. The server may
truncate the file name on Crx000 dataloggers in order to make it fit the file
system on those devices.

17-11

Section 17. CsiDatalogger Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: A previous call to programSendStart()
has not completed

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

Datalogger.selectiveManualPollCancel

Name
Datalogger.selectiveManualPollCancel()

Description
This method should be called to cancel a selectiveManualPollStart() command.
If the selective manual poll is successfully cancelled, the event
onManualPollComplete() will return a cancellation code.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger.selectiveManualPollStart

Name
Datalogger.selectiveManualPollStart(table_name As
String)

Description
Use this method to poll a specific table in a datalogger. Upon completion, this
method calls the event onSelectiveManualPollComplete().

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: A previous call has not completed

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet server

17-12

Section 17. CsiDatalogger Control Reference

Datalogger.serverConnect()

Name
Datalogger.serverConnect()

Description
This method attempts to connect to the LoggerNet server using the previously
set properties: serverName, serverPort, serverLogonName, and
serverLogonPassword. This method triggers onServerConnectStarted or
onServerConnectFailure depending on its success or failure.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BAD_HOST_OR_PORT Error: Server name or port is invalid or
unreachable

E_CSI_ALREADY_CONNECTED Error: Already connected to the
LoggerNet server

Datalogger.serverDisconnect()

Name
Datalogger.serverDisconnect()

Description
This method will disconnect from the LoggerNet server. This method will set
serverConnected to FALSE and should only be called when the value of
serverConnected is TRUE.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

17.1.3 Events
Datalogger_onClockComplete()

Name
onClockComplete(Boolean successful,
clock_outcome_type response_code, Date current_date)

17-13

Section 17. CsiDatalogger Control Reference

Parameters
successful: Describes whether a clock set or clock check succeeded.
response_code: The following list describes the possible response codes from
a clock transaction:

Table of response code values.

Enumeration Name Value Description

co_outcome_unknown 0 Indicates that an error has occurred but
its nature is unknown

co_outcome_success_clock_checked 1 Indicates that the clock was successfully
checked on the specified datalogger (see
loggerName)

co_outcome_success_clock_set 2 Indicates that the clock was successfully
set on the specified datalogger (see
loggerName)

co_outcome_session_failed 3 Indicates that the communication session
with the LoggerNet server failed
resulting in the clock check/set
transaction failing

co_outcome_invalid_logon 4 Indicates that this control was unable to
logon to the LoggerNet server because
either the serverLogonName or
serverLogonPassword property is
incorrect

co_outcome_server_security_blocked 5 Indicates that the account specified by
serverLogonName does not have
sufficient privileges assigned to start the
transaction with the LoggerNet server

co_outcome_communication_failed 6 Indicates that there was a communication
failure between the LoggerNet server
and the datalogger. If this happens, retry
the transaction

co_outcome_communication_disabled 7 Indicates that LoggerNet has not been set
up to communicate with this datalogger.
You will need to enable communications
before you will be able to successfully
communicate with the datalogger

co_outcome_logger_security_blocked 8 Indicates that security has been enabled
on the LoggerNet server and that the
account specified by serverLogonName
does not have sufficient privileges to
communicate with the datalogger

17-14

Section 17. CsiDatalogger Control Reference

Enumeration Name Value Description

co_outcome_invalid_device_name 9 Indicates that the device named by
loggerName was not found in the broker
map

co_outcome_unsupported 10 Indicates that the device “loggerName”
does not support this transaction

co_outcome_cancelled 11 Indicates that a previous clock check or
set command was cancelled successfully

co_outcome_device_busy 12 Indicates the datalogger is busy with
another transaction

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onLoggerConnectFailure()

Name
onLoggerConnectFailure(logger_failure_type fail_code)

Description
This event indicates there was an error when making an persistent connection
with the specified datalogger.

Parameter

Table of fail_code values.

Enumeration Name Value Description

lf_failure_unknown 0 Indicates that an error has occurred but its
nature is unknown

lf_failure_unexpected 1 Indicates than an unexpected error has
occurred

lf_failure_connection_failed 2 Indicates that the connection failed. This
can happen if a connection has been
successfully established but then lost or an
invalid serverName or serverHostPort
property value was specified. This type of
failure can also occur if the IP stack on the
server host or on the host for this
application is not configured correctly.

17-15

Section 17. CsiDatalogger Control Reference

Enumeration Name Value Description

lf_failure_invalid_logon 3 Indicates that this control was unable to
logon to the LoggerNet server because
either the serverLogonName or
serverLogonPassword property is incorrect

lf_failure_server_security_blocked 4 Indicates that security has been enabled on
the server and that the serverLogonName
does not have sufficient privileges or
serverLogonPassword is incorrect

lf_failure_device_name_invalid 5 Indicates that the device "loggerName" was
not found in the network map

lf_failure_server_terminated_transaction 6 Indicates that the server has terminated the
transaction

lf_failure_device_does_not_support 7 Indicates that the device “loggerName”
does not support this transaction

lf_failure_path_does_not_support 8 This transaction is not supported for this
network path. The name of the blocking
device will be supplied as the next
parameter

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

Datalogger_onLoggerConnectStarted()

Name
onLoggerConnectStarted()

Description
This event gets called when a connection to the datalogger has been established
and is a result of invoking the method loggerConnectStart().

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

17-16

Section 17. CsiDatalogger Control Reference

Datalogger_onManualPollComplete()

Name
onManualPollComplete(Boolean successful,
manual_poll_outcome_type response_code) — A response from
the server upon the completion of a manual poll transaction.

Description
A response from the LoggerNet server upon the completion of a manual poll.

Parameters
success: Describes whether the manual poll was successful.

response_code:The following list describes the possible response codes from a
manual poll transaction.

Table of response_code values.

Enumeration Name Value Description

mp_outcome_unknown 0 Indicates that an error has occurred but its
nature is unknown

mp_outcome_success 1 Indicates that the manual poll was successful
on the specified datalogger

mp_outcome_invalid_logon 2 Indicates that this control was unable to
logon to the LoggerNet server because either
the serverLogonName or
serverLogonPassword property is incorrect

mp_outcome_server_session_failed 3 Indicates that the communication session
with the server failed resulting in the manual
poll transaction failing

mp_outcome_invalid_device_name 4 Indicates that the datalogger device
“loggerName” was not found in the broker
map

mp_outcome_unsupported 5 Indicates that the device does not support the
manual poll transaction

mp_outcome_server_security_blocked 6 Indicates that the account specified by
serverLogonName does not have sufficient
privileges assigned to start the transaction
with the LoggerNet server

mp_outcome_logger_security_blocked 7 Indicates that security is set on the datalogger
blocking this transaction

mp_outcome_comm_failure 8 Indicates that there was a communication
failure between the LoggerNet server and the
datalogger. If this happens, retry the
transaction

17-17

Section 17. CsiDatalogger Control Reference

Enumeration Name Value Description

mp_outcome_communication_disabled 9 Indicates that LoggerNet has been set up not
to communicate with this datalogger. Enable
communications before attempting
communication with the datalogger.

mp_outcome_table_defs_invalid 10 Indicates that the table definitions in the
LoggerNet server do not match those in the
datalogger

mp_outcome_aborted 11 Indicates that a previous manual poll
command was cancelled successfully

mp_outcome_logger_locked 12 Indicates that the datalogger is locked

mp_outcome_file_io_failed 13 Indicates that the LoggerNet server could not
write to the data cache

mp_outcome_no_table_defs 14 Indicates that table definitions have not been
downloaded by the LoggerNet server

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onProgramCompiled()

Name
onProgramCompiled()

Description
This event returns notification when the program has compiled successfully on
the datalogger, and table definitions are being retrieved.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

17-18

Section 17. CsiDatalogger Control Reference

Datalogger_onProgramReceiveComplete()

Name
onProgramReceiveComplete(Boolean successful,
prog_receive_outcome_type response_code)

Description
This event gets called when the method programReceiveStart() has completed.

Parameters
successful: Describes if the program was retrieved successfully.

response_code:

Table of possible response codes.

Enumeration Name Value Description

pr_success 0 Indicates that the program was received
successfully

pr_failure_unknown 1 Indicates that an unknown failure has
occurred

pr_failure_no_cached_file 2 Indicates that the datalogger does not have a
file to receive

pr_failure_logger_communication_error 3 Indicates that the connection failed. This
can happen if a connection has been
successfully established but then lost or
because an invalid serverName or
serverPort property value was specified.
This type of failure can also occur if the IP
stack on the server host or on the host for
this application is not configured correctly.

pr_failure_disabled_communication 4 Indicates that LoggerNet has not been set up
to communicate with this datalogger

pr_failure_logger_security 5 Indicates that the LoggerNet server can not
communicate with the datalogger because
the datalogger security code is incorrect

pr_failure_invalid_server_logon 6 Indicates that the serverLogonName or the
serverLogonPassword is incorrect

pr_failure_server_connection_failure 7 Indicates that the control could not connect
to the server

pr_failure_invalid_device_name 8 Indicates that the device set in the property
loggerName could not be found in the
network map

17-19

Section 17. CsiDatalogger Control Reference

Enumeration Name Value Description

pr_failure_cannot_open_file 9 Indicates that the file could not be opened
for writing. You may not have permissions
to write in that directory or the file may be
in use

pr_failure_server_security 10 Indicates that security has been enabled on
the LoggerNet server and that you do not
have sufficient privileges to connect

pr_failure_not_supported 11 Indicates that this transaction is not
supported

pr_aborted_by_client 12 Indicates that this transaction was cancelled

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onProgramReceiveProgress()

Name
onProgramReceiveProgress(Long Received_bytes)

Description
This event periodically returns notification of how many bytes have been
received from the datalogger during the retrieval of a program. This event gets
called after the programReceiveStart() method has been called.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

Datalogger_onProgramSendComplete()

Name
onProgramSendComplete(Boolean successful,
prog_send_outcome_type response_code, String
compile_result)

Description
This event gets called when the program sending process has finished

17-20

Section 17. CsiDatalogger Control Reference

Parameters
successful: Describes if the programSendStart was successful.
response_code: Found in the table of possible response codes.
compile_result: Result string from the datalogger.

Table of possible response codes.

Enumeration Name Value Description

ps_outcome_unknown 0 Indicates that an error has occurred but its
nature is unknown

ps_outcome_success 1 Indicates that the program was sent
successfully

ps_outcome_in_progress 2 Indicates that another program file send
transaction is already in progress

ps_outcome_invalid_program_name 3 Indicates that the program specified to send is
invalid or non-existent

ps_outcome_server_resource_error 4 Indicates that the LoggerNet server has
encountered a resource error

ps_outcome_communication_failed 5 Indicates that the connection failed. This can
happen if a connection has been successfully
established but then lost or because an invalid
serverName or serverPort property value was
specified. This type of failure can also occur if
the IP stack on the server host or on the host
for this application is not configured correctly.

ps_outcome_communication_disabled 6 Indicates that LoggerNet has not been set up
to communicate with this datalogger

ps_outcome_logger_compile_error 7 Indicates that the datalogger was unable to
compile the program. The program should be
reviewed for errors and resent to the
datalogger

ps_outcome_logger_security_failed 8 Indicates that the LoggerNet server can not
communicate with the datalogger because the
datalogger security code is incorrect

ps_outcome_invalid_logon 9 Indicates that the property serverLogonName
or serverLogonPassword is invalid

ps_outcome_session_failed 10 Indicates that the communication session with
the server failed causing the program send
transaction to fail

ps_outcome_invalid_device_name 11 Indicates that the device named by
loggerName was not found in the network
map

17-21

Section 17. CsiDatalogger Control Reference

Enumeration Name Value Description

ps_outcome_cannot_open_file 12 Indicates that the program to send could not
be opened to read

ps_outcome_server_security_failed 13 Indicates that the LoggerNet server has
security enabled and that the
serverLogonName or serverLogonPassword is
incorrect

ps_outcome_logger_buffer_full 14 Indicates that the datalogger's storage buffer is
full

ps_outcome_network_locked 15 Indicates that the network is locked by another
transaction

ps_outcome_aborted_by_client 16 Indicates that this transaction has been
cancelled

ps_outcome_table_defs_failed 17 Indicates that the table definitions were not
obtained from the datalogger

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onProgramSendProgress()

Name
onProgramSendProgress(Long sent_bytes, Long
total_bytes)

Description

This event periodically returns notification of how many sent_bytes out of a
program’s total_bytes have been sent to the datalogger. This event could
be helpful in a progress bar and gets called periodically after invoking the
method programSendStart().

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

17-22

Section 17. CsiDatalogger Control Reference

Datalogger_onProgramSent()

Name
onProgramSent()

Description
This event returns notification when the program has been sent but gets called
before the program has been compiled on the datalogger and table definitions
have been retrieved.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Datalogger_onSelectiveManualPollComplete()

Name
onSelectiveManualPollComplete(Boolean successful,
selective_manual_poll_outcome_type response_code)

Description
The response from the LoggerNet server when the selective manual poll
completes

Parameters

Table of response_code values

Enumeration Name Value Description

smp_outcome_unknown 0 Indicates that an unknown error as occurred

smp_outcome_success 1 Indicates that the selective manual poll was
successful

smp_outcome_invalid_logon 2 Indicates that this control was unable to logon
to the LoggerNet server because either the
serverLogonName or serverLogonPassword
property is incorrect

smp_outcome_server_session_failed 3 Indicates that the communication session with
the server failed causing the selective manual
poll transaction to fail

smp_outcome_invalid_device_name 4 Indicates that the datalogger device
“loggerName” was not found in the broker
map

smp_outcome_unsupported 5 Indicates that the device does not support the
selective manual poll process

17-23

Section 17. CsiDatalogger Control Reference

Enumeration Name Value Description

smp_outcome_server_security_blocked 6 Indicates that the account specified by
serverLogonName does not have sufficient
privileges assigned to start the transaction
with the LoggerNet server

smp_outcome_logger_security_blocked 7 Indicates that security is set on the datalogger
blocking this transaction

smp_outcome_comm_failure 8 Indicates that there was a communication
failure between the LoggerNet server and the
datalogger

smp_outcome_communication_disabled 9 Indicates that communication to this
datalogger has been disabled in the LoggerNet
server

smp_outcome_table_defs_invalid 10 Indicates that the table definitions in the
LoggerNet server do not match those in the
datalogger

smp_outcome_table_name_invalid 11 Indicates that the table specified was not
found

smp_outcome_file_io_failure 12 Indicates that the LoggerNet server could not
write to the data cache table

Datalogger_onServerConnectFailure()

Name
onServerConnectFailure(server_failure_type
failure_code)

Description
This event gets called if a connection cannot be established with the LoggerNet
server using the serverConnect() method.

Parameters
failure_code: The following are possible values for failure_code.

Table of possible failure codes

Enumeration Name Value Description

server_failure_unknown 0 Indicates that an unknown failure has occurred

server_failure_logon 1 Indicates that there was a failure connecting to the
LoggerNet server because either serverLogonName
or serverLogonPassword is incorrect

17-24

Section 17. CsiDatalogger Control Reference

Enumeration Name Value Description

server_failure_session 2 Indicates that the communication session with the
server failed resulting in the serverConnect
transaction failing

server_failure_unsupported 3 Indicates that the datalogger defined in the property
loggerName could not support this transaction

server_failure_security 4 Indicates that the server has security enabled and
that the serverLogonName or the
serverLogonPassword properties did not have
sufficient privileges to perform this method

server_failure_bad_host_or_port 5 Indicates that either the serverName or the
serverPort property is incorrect

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

Datalogger_onServerConnectStarted()

Name
onServerConnectStarted()

Description
This event gets called once a connection has been established with the
LoggerNet server using the serverConnect() method.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

17-25

Section 17. CsiDatalogger Control Reference

17-26

Section 18. CsiDataSource Control
Reference
18.1 DSource Interface

18.1.1 Properties
DSource.logonName

Name
DSource.logonName As String

Description
Specifies the account name that should be used to when connecting to the
LoggerNet server. If security is enabled on the target LoggerNet server, this
string must be one of the account names recognized by the LoggerNet server.
These accounts can be set up using the LoggerNet Security Administration
Client that is part of the LoggerNet software suite or the CsiCoraScript control
in the LoggerNet SDK.

Default Value
The default value for this property is an empty string. This property is only
used if security is enabled on the LoggerNet server.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal Return

E_CSI_BUSY Error: Attempt to set serverLogonPassword while
connected to the LoggerNet server.

DSource.logonPassword

Name
DSource.logonPassword As String

Description
This property specifies the password that should be when connecting to the
LoggerNet server. If security is enabled on the target LoggerNet server, this
password string must be associated with the account described in the
logonName property.

Default Value
The default value for this property is an empty string. This property is only
used if security is enabled on the LoggerNet server.

18-1

Section 18. CsiDataSource Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

E_CSI_BUSY Error: Attempt to set serverLogonPassword while
connected to the LoggerNet server.

DSource.serverName

Name
DSource.serverName As String

Description
This property specifies the TCP/IP interface address for the computer hosting
the LoggerNet server. This string must be formatted either as a fully qualified
Internet machine domain name or as an IP address string. An example of a
valid machine domain name address is www.campbellsci.com. An example of
a valid IP address string is 207.201.118.35

Default Value

The default value for this property is the string, localhost.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

E_CSI_BUSY Error: Attempt to set serverName while connected to
the LoggerNet server.

DSource.serverPort

Name
DSource.serverPort As Long

Description
This property specifies the TCP port number that the LoggerNet server is using
on the hosting computer.The valid range for this property is 1 to 65535.

Default Value
The default value for this property, assigned to the LoggerNet server during
install, is 6789. In most cases, the default value for this property is acceptable.

18-2

Section 18. CsiDataSource Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

E_CSI_BUSY Error: Cannot write to this property because
there is a connection to the LoggerNet server.

E_CSI_INVALIDARG Error: Value out of range.

DSource.state

Name
DSource.state As data_source_state

Description
This property describes the state of the control in regards to a connection with
the LoggerNet server. The following are the possible values of this property:

Table of Possible values.

Enumeration Name Value Description

dataSourceDisconnected 1 The control is currently disconnected and its read/write
properties are accessible

dataSourceConnecting 2 The connect method has been invoked and the control is
attempting to connect to the LoggerNet server.
Properties are read-only at this time

dataSourceConnected 3 The connect method has been successfully invoked and
the control has a connection to the server. It is
appropriate at this time to create advisors and start them.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

DSource.sendRecordBlocks

Name
DSource.sendRecordBlocks As Boolean

Description
When set to TRUE, records will be sent back from LoggerNet to an Advisor in
blocks rather than one at a time. This is a more efficient method of receiving
records if a large number of records are being collected.

18-3

Section 18. CsiDataSource Control Reference

Default Value
This property is set to FALSE by default.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

18.1.2 Methods
DSource.connect()

Name
DSource.connect()

Description
This method allows you to connect to the LoggerNet server. When you invoke
this method, the control will attempt to connect to the specified LoggerNet
server. If it succeeds, you will receive the event onControlReady. If you are
already connected, you will receive the COM error
E_CSI_ALREADY_CONNECTED. If the serverName and/or serverPort
properties cannot be resolved or are incorrect, then you will receive the error
code E_CSI_BAD_HOST_OR_PORT.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ALREADY_CONNECTED Error: Already connected to the server

E_CSI_BAD_HOST_OR_PORT Error: Server hostname or port is
incorrect

DSource.createAdvisor()

Name
DSource.createAdvisor()As Object

Description
This method creates a new advisor object. Keep a reference to the advisor so
that it will not go out of scope. If you create and start an advisor but don't get
any data, then you are probably letting the advisor go out of scope. When
handling multiple advisors, use a collection or list. The property advisorName
is provided for convenience when using a collection to hold names of the
advisors you create.

18-4

Section 18. CsiDataSource Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_NOT_CONNECTED Error: The control is not connected to the
LoggerNet server and therefore cannot create
any advisors. Connect to the LoggerNet
server first

E_FAIL Error: An unexpected error has occurred

Visual Basic

Example
Dim myAdvisor As new advisor
Set myAdvisor = DSource.createAdvisor

DSource.disconnect()

Name
DSource.disconnect()

Description
This method attempts to disconnect from the current LoggerNet server.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

18.1.3 Events
DSource_onAdviseReady()

Name

onAdviseReady(Object myAdvisor) — Notification that an advisor
has been started and will send onAdviseRecord() events.

Description
This event returns notification that an advisor has be started and will send
onAdviseRecord() events when records are collected by the LoggerNet server.

18-5

Section 18. CsiDataSource Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

DSource_onAdviseRecord()

Name
onAdviseRecord(Object myAdvisor, Object myRecord)

Description
This event returns notification of newly acquired data from an advisor. If
records are not being acquired, the advisor will not display them. Please make
sure the tables specified in the advisor are enabled for collection through the
use of CoraScript commands (set-collect-area-setting setting ID 2). Once the
tables are enabled for collection, use the Datalogger control to manually collect
records or use the CoraScript control to enable scheduled collection.

COM Return Values

Table of Possible Values

Code Meaning

 S_OK Success: Normal return

DSource_onAdvisorFailure()

Name
onAdvisorFailure(csiAdvisorFailureCode failure,
Advisor myAdvisor)

Description
Indicates there was a failure with the advisor specified in myAdvisor.

Parameters

Table of Possible response codes.

Enumeration Name Value Description

csiAdvisorFailureUnknown 0 Indicates that an error has occurred but its
nature is unknown

csiAdvisorFailureConnectionFailed 1 Indicates that the connection failed. This can
happen if a connection has been successfully
established but then lost or because an invalid
serverName or serverPort property value was
specified. This type of failure can also occur if
the IP stack on the server host or on the host
for this application is not configured correctly.

18-6

Section 18. CsiDataSource Control Reference

Enumeration Name Value Description

csiAdvisorFailureInvalidLogon 2 Indicates that this control was unable to logon
to the LoggerNet server because either the
logonName or logonPassword property is
incorrect

csiAdvisorFailureInvalidStationName 3 Indicates that the datalogger device named by
stationName is not found in the server's
network map at the time the Advisor is started.
Changes made to the station name after the
Advisor is started are triggered with code
value 9 – csiAdvisorFailureStationShutDown
(see below).

csiAdvisorFailureInvalidTableName 4 Indicates that the table specified by tableName
does not exist for the specified station at the
time the Advisor is started. A table name
change that occurs after the Advisor is
activated will trigger code value 8 –
csiAdvisorFailureTableDeleted (see below).

csiAdvisorFailureServerSecurity 5 Indicates that the account specified by
logonName does not have sufficient privileges
assigned to start the data advise transaction
with the LoggerNet server

csiAdvisorFailureInvalidStartOption 6 Indicates that the startOption is either invalid
or not supported by the LoggerNet server

csiAdvisorFailureInvalidOrderOption 7 Indicates that the orderOption is either invalid
or not supported by the LoggerNet server

csiAdvisorFailureTableDeleted 8 Indicates that the table has been deleted (or
renamed) while the data advise transaction is
in progress. This can happen if table
definitions are refreshed on the device or if a
new program file is sent to the datalogger.

csiAdvisorFailureStationShutDown 9 Indicates that the station that owns the table
has been shut down while the data advise
transaction is in progress. This can happen if
the device is deleted, renamed, or if the
LoggerNet server is shut down.

csiAdvisorFailureUnsupported 10 The version of the LoggerNet server doesn't
support this transaction

csiAdvisorFailureInvalidColumnName 11 Indicates that the column name is invalid

csiAdvisorFailureInvalidArrayAddress 12 Indicates that the array address is invalid

18-7

Section 18. CsiDataSource Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

DSource_onControlFailure()

Name
onControlFailure(csidsFailureCode failure_code)

Description
This event is triggered when an error has occurred that affects the control as a
whole.

Table of possible failure codes.

Enumeration Name Value Description

csidsFailureUnknown 0 Indicates that an error has occurred but its nature is
unknown

csidsFailureLogon 1 Indicates that this control was unable to logon to the
LoggerNet server because either the logonName or
logonPassword property is incorrect

csidsFailureSession 2 Indicates that the communication session with the
server failed resulting in failed transactions

csidsFailureUnsupported 3 The version of the LoggerNet server doesn't support
this transaction

csidsFailureSecurity 4 Indicates that the account specified by logonName
does not have sufficient privileges to start the
transaction with the LoggerNet server

Other codes besides those shown above are included in the
enumeration of the DataSource control’s interface, but they are
never triggered.

NOTE

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

18-8

Section 18. CsiDataSource Control Reference

DSource_onControlReady()

Name
onControlReady()

Description
This event is triggered when a connection to the server has been established
and is a result of invoking the connect() method. Once this event has been
called, advisors can be created and started.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

DSource_onVariableSetComplete()

Name
onVariableSetComplete(Long tran_id, Object myAdvisor,
Boolean successful, variable_outcome_code
response_code)

Description
This event gets called when the method variableSetStart() has completed.

Parameters
tran_id: The transaction ID used to track this event
myAdvisor: References the advisor that started the variable set transaction.
successful: Indicates whether the transaction succeeded.
response_code: Values from the following table:

Table of possible response_code outcomes.

Enumeration Name Value Description

vo_outcome_unknown 0 Indicates that the outcome could not
be determined

vo_outcome_succeeded 1 Indicates that the setting of the
variable was set successfully

vo_outcome_connection_failed 2 Indicates that the control could not
connect to the LoggerNet server

vo_outcome_invalid_logon 3 Indicates that the logonName or
logonPassword was incorrect

vo_outcome_server_security_blocked 4 Indicates that security has been
enabled on the LoggerNet server and
that you do not have sufficient
privileges to connect

18-9

Section 18. CsiDataSource Control Reference

Enumeration Name Value Description

vo_outcome_column_read_only 5 Indicates that the column sent is read-
only

vo_outcome_invalid_table_name 6 Indicates that the table name was not
found on the datalogger

vo_outcome_invalid_column_name 7 Indicates that the column name was
not found on the datalogger

vo_outcome_invalid_subscript 8 Indicates that the index of the variable
was invalid. For array values,
subscripts start at "1"

vo_outcome_invalid_data_type 9 Indicates that the type of the data sent
for this variable does not match the
variable type

vo_outcome_communication_failed 10 Indicates that communication has
failed during this transaction

vo_outcome_communication_disabled 11 Indicates that LoggerNet has not been
set up to communicate with this
datalogger

vo_outcome_logger_security_blocked 12 Indicates that the datalogger's security
has been enabled, and you do not have
sufficient privileges to set a variable

vo_outcome_unmatched_logger_table_definition 13 Indicates that the LoggerNet server's
table definitions are not the same as
the datalogger's table definitions

vo_outcome_invalid_device_name 14 Indicates that the device named by
stationName could not be found in the
network map

vo_outcome_aborted_by_user 15 Indicates that a VariableSetCancel
command successfully prevented the
variable change from occurring

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

DSource_onAdviseRecords()

Name
onAdviseRecords(Object myAdvisor, Object
record_collection)

18-10

Section 18. CsiDataSource Control Reference

Description
This event notification returns a block of records delivered by LoggerNet to an
active advisor. The sendRecordBlocks property must be set to TRUE and the
table specified in the advisor must be enabled for collection for this event to
work.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

18.2 Advisor Interface
18.2.1 Properties
Advisor.advisorName

Name
Advisor.advisorName As String

Description
A user-defined field used to distinguish between advisors.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Advisor.orderOption

Name
Advisor.orderOption As csidsOrderOptionType

Description
This property specifies the order in which the LoggerNet server will send
records to the advisor. This property must use one of the following values:

Table of possible csidsOrderOptionType values.

Enumeration Name Value Description

csidsOrderCollected 1 The records will be sent in the same order that the
LoggerNet server collects them. This option can
send the records out of sequence particularly with
Campbell Scientific table-data dataloggers but all
collected records will be sent.

18-11

Section 18. CsiDataSource Control Reference

Enumeration Name Value Description

csidsOrderLoggedWithHoles 2 The records will be sent in the order they were
logged in the datalogger. This order is determined
by the record number (which is assigned by the
datalogger) and the file mark number (which is
assigned by the server) to create a unique key for
each record. If a record has not yet been collected
but the LoggerNet server judges (by datalogger
table size) that the record can still be collected, no
record will be sent until the missing record (hole)
has either been collected or the LoggerNet server
decides that the record can no longer be collected.

csidsOrderLoggedWithoutHoles 3 The records will be sent in the order that they were
logged by the datalogger. This option is similar to
the csidsOrderLoggedWithHoles only uncollected
records (holes) will be skipped.

csidsOrderRealTime 4 The records will be sent in the order they were
logged in the datalogger but if more than one record
is collected at a time, all other records except for the
most recent of the collection will be ignored.

Default Value

The default value for this property is csidsOrderRealTime (4)

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The Advisor is started and already accessing the
LoggerNet server data

Advisor.startDate

Name
Advisor.startDate As Date

Description
This property specifies the timestamp for the earliest record to be selected
when the value of the startOption property is csidsStartAtTimeStamp.

18-12

Section 18. CsiDataSource Control Reference

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped.

COM Return Values

Table of Possible Values

Code Meaning
S_OK Success: Normal return.
E_CSI_BUSY Error: The Advisor is started and already accessing the

LoggerNet server data

Advisor.startFileMarkNo

Name
Advisor.startFileMarkNo As Long

Description
In conjunction with startRecordNo, this property specifies the first record to be
sent when the value of startOption is equal to csidsStartAtRecordId. The file
mark number in an internal tag used by LoggerNet that is applied to each
record. The file mark number is assigned to each record by the LoggerNet
server and used in combination with the record ID to create a unique key for
each record.

Valid Values
Any integer from 0 to 2147483647 inclusive is a valid value.

Default Value
The default value for this property is 0.

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

E_CSI_BUSY Error: Cannot write to property. Advisor is running.
Disconnect first with stop

18-13

Section 18. CsiDataSource Control Reference

Advisor.startIntervalSeconds

Name
Advisor.startIntervalSeconds As Long

Description
This property specifies the number of seconds back from the newest record in
the table to collect when the value of startOption is set to
csidsStartRelativeToNewest.

Valid Values
A valid value must either be zero or a positive integer.

Default Value
The default value for this property is 0 (meaning select the newest record).

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The Advisor is started and already accessing the
LoggerNet server data

Advisor.startOption

Name
Advisor.startOption As csidsStartOptionType

Description
This property specifies how to select the first record when retrieving collected
data from the LoggerNet server data cache.

Valid Values
This property must take on one of the following values:

18-14

Section 18. CsiDataSource Control Reference

Table of possible csidsStartOptionType values

Enumeration Name Value Description

csidsStartAtRecordId 1 The first record will be the record identified by
startFileMarkNo and startRecordNo. If no such record
exists in the table, the record that is closest and newer
than the specified record will be selected.

csidsStartAtTimeStamp 2 The first record that has a time stamp equal to the time
stamp specified by the startDate will be selected. If no
such record exists in the table, the record that has the
closest time stamp that is newer than the one specified
will be selected.

csidsStartAtNewest 3 The newest record (determined by the combination of
record number and file mark number) will be selected.

csidsStartAfterNewest 4 The next new record to be logged in the table will be the
first record sent.

csidsStartRelativeToNewest 5 The first record selected will be the one that has a time
stamp closest to the time stamp of the newest record less
the value of startIntervalSeconds.

csidsStartAtRecordOffset 6 The first record selected will be a specified number of
records back from the newest in the data cache.

Default Value

The default value for this property is csidsStartAtNewest (3)

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The Advisor is started and already accessing the
LoggerNet server data

18-15

Section 18. CsiDataSource Control Reference

Advisor.startRecordNo

Name
Advisor.startRecordNo As Long

Description
This property, in conjunction with the property startFileMarkNo, specifies the
first record to be sent when the value of startOption is equal to
csidsStartAtRecordId. Any value can be assigned to this property.

Default Value
The default value for this property is 0.

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped. Internally the control and the LoggerNet server
treat this property as an unsigned 32-bit integer. Visual Basic and other
container environments, however, do not have the capability of formatting and
properly manipulating unsigned integers. Developers in these environments
should consider using the startRecordNoString property instead.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

E_CSI_BUSY Error: Cannot write to property. Advisor has already
started. Stop the advisor first.

Advisor.startRecordNoString

Name
Advisor.startRecordNoString As String

Description
This property, in conjunction with startFileMarkNo, is used to specify the first
record to be sent when the value of startOption is equal to
csidsStartAtRecordId. This string should be formatted as an unsigned integer
with a range of 0 to 4294967295.

Default Value
The default value for this property is 0.

Notes
This property can be read at any time but can only be set when the state of the
property is advisorStopped.

18-16

Section 18. CsiDataSource Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The Advisor is started and already accessing the
LoggerNet server data

Advisor.state

Name
Advisor.state As advisor_state

Description
This property returns the current state of the advisor. The following table
describes the states that might be returned:

Table of possible advisor_state values

Enumeration Name Value Description

advisorStopped 1 The advisor is stopped and its properties can be modified. This
is the default state when an advisor is created.

advisorStarting 2 The control is starting but is not yet in a state to listen for data.
No properties can be set at this point. The control is in a state
where none of its properties can be set.

advisorStarted 3 The advisor is waiting for data from the server and will notify
the client through onAdviseRecord when new data arrives.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Advisor.stationName

Name
Advisor.stationName As String

Description
This property describes the name of the station that will be monitored for data.
Whenever this property is set, the DataColumns in the DataColumnCollection
for this advisor are removed in order to avoid having invalid columns in the
collection for a station and table.

18-17

Section 18. CsiDataSource Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The Advisor is started and already accessing the
LoggerNet server data

Advisor.tableName

Name
Advisor.tableName As String

Description
This property describes the name of the table in the LoggerNet server being
monitored by the advisor. Whenever this property is set, the DataColumns in
the DataColumnCollection for this advisor are removed in order to avoid
having invalid columns in the collection for a station and table.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The Advisor is started and already accessing the
LoggerNet server data

Advisor.startDateNanoSeconds

Name
Advisor.startDateNanoSeconds As Long

Description
This property specifies the sub-second resolution to associate with the start
date.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The Advisor is started and already accessing the
LoggerNet server data

18-18

Section 18. CsiDataSource Control Reference

Advisor.maxRecordsPerBlock

Name
Advisor.maxRecordsPerBlock As Long

Description
This property sets the maximum number of records that will be included in a
block of records received from LoggerNet if the sendRecordBlocks property is
set to TRUE.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The Advisor is started and already accessing the
LoggerNet server data

18.2.2 Methods
Advisor.columns

Name
Advisor.columns() As Object

Description
This method returns a reference to the DataColumnCollection for this advisor,
which can be used to iterate through the DataColumns.

Visual Basic

Return Value
DataColumnCollection

Example
Dim dcc As DataColumnCollection
dcc = myAdvisor.Columns

Advisor.start()

Name
Advisor.start()

Description
This method starts the advisor to monitor data for a specified station, table, and
column. This is an asynchronous event that calls onAdvisorRecord(). If the
advisor fails the onAdvisorFailure() event will get called.

18-19

Section 18. CsiDataSource Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ALREADY_CONNECTED Error: This advisor has already been
started

E_FAIL Error: An unexpected error has
occurred

Advisor.stop()

Name
Advisor.stop()

Description
This method will stop the advisor from monitoring the LoggerNet data cache
for transactions. When an advisor is stopped, its properties can be modified.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

Advisor.variableSetCancel()

Name
Advisor.variableSetCancel(Long tran_id)

Description
This method attempts to cancel a variableSetStart() transaction. The event
onVariableSetComplete() will notify you if the cancellation was successful.
This method should only be called when the state of advisorStarted is TRUE.

Parameter
tran_id: The unique transaction ID given by variableSetStart()

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

18-20

Section 18. CsiDataSource Control Reference

Advisor.variableSetStart()

Name
Advisor.variableSetStart(String column_name, String
value) As Long

Description
This method sets a variable in the specified datalogger. The event
onVariableSetComplete() will be called upon the completion of
variableSetStart(). This method should only be called when the state
dataSourceConnected is TRUE and an advisor has been started. If not, this
method will return E_CSI_NOT_CONNECTED.

Parameters
columnName: The name of the column that is being changed. If this is an
array value, then use the CRBasic Editor syntax for arrays. Parentheses are
used with element subscripts separated by commas.

myArray(3) or,

myArray(2,4,1)

If the column is not an array value, then the brackets for the index are not
needed.

value: The value of the variable as a String.

Return value
The transaction ID associated with this command can be used to cancel a
specific variable set command with variableSetCancel() or to keep track of the
variables displayed in a form that were set successfully.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not connected to the LoggerNet
server or no current advisor started

18-21

Section 18. CsiDataSource Control Reference

18.3 DataColumnCollection Interface
18.3.1 Properties
DataColumnCollection.count

Name
DataColumnCollection.count As Long

Description
This property returns the number of DataColumns in the collection.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

18.3.2 Methods
DataColumnCollection.add()

Name
DataColumnCollection.add(String column_name)

Description
This method adds a column name to the collection of DataColumns. By adding
a column name to this collection, you tell the advisor to retrieve values in the
record for that column. The column name added must be valid for the station
and table specified in the advisor. If no column names are added to this
collection, data records will only contain file mark numbers, record numbers,
and timestamps.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_FAIL Error: The column name is not a valid column for this station
and table

18-22

Section 18. CsiDataSource Control Reference

DataColumnCollection.addAll()

Name
DataColumnCollection.addAll()

Description
This method adds all of the columns for the defined station and table to the
DataColumnCollection. If any previous columns existed in the collection for
this advisor, they will be cleared out before the new DataColumns are added.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

DataColumnCollection.find()

Name
DataColumnCollection.find(String column_name) As
Boolean

Description
This property returns whether the specified column exists in the DataColumn
Collection.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

DataColumnCollection.Item()

Name
DataColumnCollection.Item(id) As DataColumn

Description
A DataColumn can be referenced by a numeric type such as an integer or a
long. If the number is less than zero or is greater than the number of brokers -
1, then the COM error E_CSI_ARRAY_OUT_OF_BOUNDS will be returned.

18-23

Section 18. CsiDataSource Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: An incorrect Variant type was
passed. Expecting a numerical value

E_CSI_ARRAY_OUT_OF_BOUNDS Error: The numerical index was out of
the bounds of the array. Please specify
a value from zero (0) to Count - 1

E_CSI_FAIL Error: An unexpected error has
occurred

DataColumnCollection.remove()

Name
DataColumnCollection.remove(String columnName)

Description
This method removes the specified column from the DataColumnCollection. If
the column does not exist in the collection, then an error will be returned.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: Cannot remove. The column specified
does not exist in the collection

DataColumnCollection.removeAll()

Name
DataColumnCollection.removeAll()

Description
This method removes all of the DataColumns that are presently a part of the
DataColumnCollection. This method does not return an error if the collection is
already empty.

18-24

Section 18. CsiDataSource Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

DataColumnCollection._NewEnum()

Name
DataColumnCollection._NewEnum()

Important
This method is only intended for use with the Visual Basic programming
language. Visual Basic programmers do not need to access this method
directly. They use it indirectly by using the collections with the For Each
loop. This method is included in the documentation to explain why the method
exists, but, again, there is no need to access this method directly.

18.4 DataColumn Interface
18.4.1 Properties
DataColumn.name

Name
DataColumn.name As String

Description
This read-only property gives the name of the DataColumn added to the
DataColumnCollection.

Table of Possible Values

Code Meaning

S_OK Success: Normal return

18.5 Record Interface
18.5.1 Properties
Record.fileMarkNo

Name
Record.fileMarkNo As Long

Description
This read-only property returns the file mark number associated with the
current record. The file mark number is assigned to each record by the
LoggerNet server and used in combination with the record ID to create a

18-25

Section 18. CsiDataSource Control Reference

unique key for each record. This property can take on any value from 0 to
2147483647.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Record.nanoSeconds

Name
Record.nanoSeconds As Long

Description
This read-only property returns the sub-second resolutions of the timestamp
associated with the current record. This property can take on any value from 0
to 2147483647.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Record.recordNo

Name
Record.recordNo As Long

Description
This read-only property returns the record number associated with the current
record. This property can take on any value from 0 to 2147483647.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Record.timeStamp

Name
Record.timeStamp As Date

Description
This read-only property returns the time stamp associated with the current
record.

18-26

Section 18. CsiDataSource Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

Record.valuesCount

Name
Record.valuesCount As Long

Description
 This read-only property returns the number of values in this record.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

18.5.2 Methods
Record.Item()

Name
Record.Item(id) As Value

Description
This method returns a reference to a value found by the specified ID. A broker
can be referenced by an integer (a Long) or by the name of the broker (a
String). If the number is less than zero or is greater than the number of
brokers, then the COM error E_CSI_ARRAY_OUT_OF_BOUNDS will be
returned. If the broker cannot be found by name, then the COM error
E_CSI_NOT_FOUND will be returned.

18-27

Section 18. CsiDataSource Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ARRAY_OUT_OF_BOUNDS Error: Array out of bounds

E_CSI_NOT_FOUND Error: Couldn't find the broker by name
in the broker map

E_CSI_FAIL Error: Wrong variant type passed to this
method or unexpected error

Visual Basic

Return Type
value

Example
Number value (like an array):
Long iterator
For iterator = 0 to myRecord.Count – 1
 ... = myRecord(iterator).value
Next iterator

Referencing the Broker by name:
DIM valueName as String
valueName = "battTemp"
DIM value as long
value = myRecord("battTemp").value
 OR
value = myRecord(valueName).value

Record._NewEnum()

Name
Record._NewEnum()

Important
This method is only intended for use with the Visual Basic programming
language. Visual Basic programmers do not need to access this method
directly. They use it indirectly by using the collections with the For Each loop.
This method is included in the documentation to explain why the method
exists, but, again, there is no need to access this method directly.

Visual Basic

Example
Dim v As value
For Each v in myRecord
 ... = v.value
Next

18-28

Section 18. CsiDataSource Control Reference

18.6 RecordCollection
18.6.1 Properties
RecordCollection.Count

Name
RecordCollection.Count As Long

Description
The number of values in the collection

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal Return

18.6.2 Methods
RecordCollection.Item()

Name
RecordCollection.Item(Value id, Record ppIRecord)

Description
This method is used to iterate through the values by the specified index ID.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_ARRAY_OUT_OF_BOUNDS Error: Array out of bounds

E_CSI_FAIL Error: An unexpected error has
occurred

RecordCollection._NewEnum()

Name
RecordCollection._NewEnum()

Important
This method is not accessed directly. It is used indirectly with the use of a For
Each loop.

18-29

Section 18. CsiDataSource Control Reference

18-30

18.7 Value Interface
18.7.1 Properties
Value.columnName

Name
Value.columnName As String

Description
 This property returns the name of the column.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

Value.value

Name
Value.value As Variant

Description
 This property returns the actual data value.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return.

Section 19. CsiLogMonitor Control
Reference
19.1 LogMonitor Interface

19.1.1 Properties
LogMonitor.commLogMonitorBusy

Name
LogMonitor.commLogMonitorBusy As Boolean

Description
This Boolean property describes the state of the LogMonitor control accessing
communication logs on the LoggerNet server. The property returns TRUE if
the communication logs are being accessed. Otherwise, the property returns
FALSE.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

LogMonitor.commLogRecordsBack

Name
LogMonitor.commLogRecordsBack As Long

Description
The LoggerNet server maintains a communication log history buffer that can
be accessed using this property. When the commLogMonitorStart()
method is called, by default 100 historical log files will be retrieved from the
LoggerNet server. If a different number of historical log entries are desired, set
this property to the exact number of entries to initially retrieve from the
LoggerNet server. This number must be one or greater.

19-1

Section 19. CsiLogMonitor Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: The number must be one or greater

E_CSI_BUSY Error: Attempting to set this property while
the logs are being actively monitored

LogMonitor.serverConnected

Name
LogMonitor.serverConnected As Boolean

Description
This Boolean property describes the state of the connection between the
LogMonitor control and the LoggerNet server. The property returns TRUE if
the connection exists. Otherwise, the property returns FALSE.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

LogMonitor.serverLogonName

Name
LogMonitor.serverLogonName As String

Description
This property specifies the account name that should be used when connecting
to the LoggerNet server. If security is enabled on the target LoggerNet server,
this string must be one of the account names recognized by the LoggerNet
server.

Default Value
The default value for this property is an empty string. This property will only
affect the operation of the control if security is enabled on the LoggerNet
server.

19-2

Section 19. CsiLogMonitor Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to
the LoggerNet server is present

LogMonitor.serverLogonPassword

Name
LogMonitor.serverLogonPassword As String

Description
This property specifies the password that should be used when connecting to
the LoggerNet server. If security is enabled on the target LoggerNet server,
this string must be the password associated with the account named by
LogMonitor.serverLogonName.

Default Value
The default value for this property is an empty string. This property will only
affect the operation of the control if security is enabled on the LoggerNet
server.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: The property cannot be set while a connection to the
LoggerNet server is present

LogMonitor.serverName

Name
LogMonitor.serverName As String

Description
This property specifies the TCP/IP interface address for the computer hosting
the LoggerNet server. This string must be formatted either as a qualified
Internet machine domain name or as an Internet address string. An example of
a valid machine domain name address is www.campbellsci.com. An
example of a valid Internet address string is 63.255.173.183.

Default Value

The default value for this property is the string localhost.

19-3

Section 19. CsiLogMonitor Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_BUSY Error: Attempt to set serverName while connected to the
LoggerNet server

LogMonitor.serverPort

Name
LogMonitor.serverPort As Long

Description
This property specifies the TCP port number that the LoggerNet server is using
on the hosting computer. The valid range for this property is port 1 to port
65535.

Default Value
The default value for this property is port 6789, which is the default port
number assigned for the LoggerNet server. Therefore, the default value for this
property will connect to a LoggerNet server port in most cases.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: The port value is out of range or invalid

E_CSI_BUSY Error: Attempt to set serverPort while connected
to the LoggerNet server

LogMonitor.tranLogMonitorBusy

Name
LogMonitor.tranLogMonitorBusy As Boolean

Description
This Boolean property describes the state of the LogMonitor control accessing
transaction logs on the LoggerNet server. The property returns TRUE if the
communication logs are being accessed. Otherwise, the property returns
FALSE.

19-4

Section 19. CsiLogMonitor Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

LogMonitor.tranLogRecordsBack

Name
LogMonitor.tranLogRecordsBack As Long

Description
The LoggerNet server maintains a transaction log history buffer that can be
accessed using this property. When the tranLogMonitorStart()
method is called, by default 100 historical log files will be retrieved from the
LoggerNet server. If a different number of historical log entries are desired, set
this property to the exact number of entries to initially retrieve from the
LoggerNet server. This number must be one or greater.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_INVALIDARG Error: The number must be one or greater

E_CSI_BUSY Error: Attempting to set this property while
the logs are being actively monitored

19.1.2 Methods
LogMonitor.commLogMonitorStart()

Name
LogMonitor.commLogMonitorStart()

Description
This method starts monitoring the communication log entries on the LoggerNet
server. This method triggers onCommLogRecord() as log entries are retrieved
or onCommLogFailure() if the method fails.

19-5

Section 19. CsiLogMonitor Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

E_CSI_NOT_CONNECTED Error: Not Connected to the LoggerNet
server

E_CSI_BUSY Error: Log monitoring is already active

LogMonitor.commLogMonitorStop()

Name
LogMonitor.commLogMonitorStop()

Description
This method will stop active monitoring of the communication logs on the
LoggerNet server.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

LogMonitor.serverConnect()

Name
LogMonitor.serverConnect()

Description
This method attempts to connect to the LoggerNet server using the values in
the previously set properties: serverName, serverPort, serverLogonName, and
serverLogonPassword. This method triggers onServerConnectStarted() if
the connection is successful, or onServerConnectFailure() if the connection
fails.

19-6

Section 19. CsiLogMonitor Control Reference

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

LogMonitor.serverDisconnect()

Name
LogMonitor.serverDisconnect()

Description
This method will disconnect from the LoggerNet server and will set the
serverConnected state to FALSE.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

LogMonitor.tranLogMonitorStart()

Name
LogMonitor.tranLogMonitorStart()

Description
This method starts monitoring the transaction log entries on the LoggerNet
server. This method triggers onTranLogRecord() as log entries are retrieved
or onTranLogFailure() if the method fails.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

E_CSI_FAIL Error: Unexpected error

19-7

Section 19. CsiLogMonitor Control Reference

LogMonitor.tranLogMonitorStop()

Name
LogMonitor.tranLogMonitorStop()

Description
This method will stop active monitoring of the transaction logs on the
LoggerNet server.

COM Return Values

Table of Possible Values

Code Meaning

S_OK Success: Normal return

19.1.3 Events
LogMonitor_onCommLogFailure()

Name
onCommLogFailure(log_monitor_failure_type
failure_code)

Description
This event indicates an error has occurred while trying to retrieve
communication log entries from the LoggerNet server. This failure codes are
in the following table:

19-8

Section 19. CsiLogMonitor Control Reference

Table of Possible failure codes.

Enumeration Name Value Description

lm_failure_unknown 0 Indicates that an error has occurred
but its nature is unknown

lm_failure_session_failure 1 Indicates that communication with
the LoggerNet server failed resulting
in a failed session

lm_failure_invalid_logon 2 Indicates that this control was unable
to logon to the LoggerNet server
because either the logonName or
logonPassword property is incorrect

lm_failure_server_security_
blocked

3 Indicates that the account specified
by logonName does not have
sufficient privileges to start this
transaction with the LoggerNet
server

lm_failure_unsupported_tran
saction

4 This version of the LoggerNet server
does not support this transaction

lm_invalid_log_id 5 The log ID is not valid.
Note: this ID is only used internally
by the LogMonitor control

lm_failure_server_cancelled 6 The LoggerNet server is shutting
down the connection

LogMonitor_onCommLogRecord()

Name
onCommLogRecord(Date timestamp, String
comm_log_record)

Description
When actively monitoring the communication log, this event is triggered when
a new log record is passed from the LoggerNet server. The communication log
entry is a string that contains the station name, message type, and message.
Possible message types include “S” for Status, “W” for Warning, and “F” for
failure.

LogMonitor_onServerConnectFailure()

Name
onServerConnectFailure(server_failure_type
failure_code)

19-9

Section 19. CsiLogMonitor Control Reference

Description
This event indicates there was an error with the connection to the LoggerNet
server. This event triggers when an error has occurred that affects the control
as a whole.

Table of Possible failure codes.

Enumeration Name Value Description

server_failure_unknown 0 Indicates that an error has occurred
but its nature is unknown

server_failure_logon 1 Indicates that this control was unable
to logon to the LoggerNet server
because either the logonName or
logonPassword property is incorrect

server_failure_session 2 Indicates that the communication
session with the LoggerNet server
failed resulting in a failed transaction

server_failure_unsupported 3 The version of the LoggerNet server
does not support this transaction

server_failure_security 4 Indicates that the account specified
by logonName does not have
sufficient privileges to start this
transaction with the LoggerNet
server

server_failure_bad_host_or_
port

5 Indicates that either the serverName
or the serverPort property is
incorrect

LogMonitor_onServerConnectStarted()

Name
onServerConnectStarted()

Description
This event triggers when the LogMonitor control has connected to the
LoggerNet server.

LogMonitor_onTranLogFailure()

Name
onTranLogFailure(log_monitor_failure_type
failure_code)

19-10

Section 19. CsiLogMonitor Control Reference

Description
This event indicates an error has occurred while trying to retrieve transaction
log entries from the LoggerNet server. This event triggers when an error has
occurred that affects the method that monitors the transaction logs on the
LoggerNet server.

Table of Possible failure codes.

Enumeration Name Value Description

lm_failure_unknown 0 Indicates that an error has occurred
but its nature is unknown

lm_failure_session_failure 1 Indicates that communication with
the LoggerNet server failed resulting
in a failed session

lm_failure_invalid_logon 2 Indicates that this control was unable
to logon to the LoggerNet server
because either the logonName or
logonPassword property is incorrect

lm_failure_server_security_
blocked

3 Indicates that the account specified
by logonName does not have
sufficient privileges to start this
transaction with the LoggerNet
server

lm_failure_unsupported_tran
saction

4 This version of the LoggerNet server
does not support this transaction

lm_invalid_log_id 5 The log ID is not valid.
Note: this ID is only used internally
by the LogMonitor control

lm_failure_server_cancelled 6 The LoggerNet server is shutting
down the connection

LogMonitor_onTranLogRecord()

Name
onTranLogRecord(Date timestatmp, String
tran_log_record)

Description
When actively monitoring the transaction log, this event is triggered when a
new log record is passed from the LoggerNet server. The transaction log entry
is a string that contains the station name, message number, and message.

19-11

Section 19. CsiLogMonitor Control Reference

19-12

Appendix A. Server and Device
Operational Statistics Tables

The LoggerNet server and devices in the network map maintain statistics that
help to describe their operation. These statistics are made available to the
clients in a collection of tables associated with a special data broker of type
“__Statistics__”. The LoggerNet server guarantees that there is only one data
broker of this type available.

Each device in the network map is represented by two tables in the Statistics
data broker. The names of the tables are the result of appending the strings
“_hist” and “_std” to the device name. The network controller also maintains
statistics regarding the operation of the server in general. The statistics are
available in the “__LgrNet___controller__” table.

A.1 Device History Statistics
The name of a history table for a device is the result of appending the string
“_hist” to the device name. This table consists of three columns and has a row
size of seventy-two. A new record of the table is generated every ten minutes.
This allows the table to describe the operation of the datalogger over the last
24 hours if the LoggerNet server version is 1.3.6.8 or greater. If the
LoggerNet server version is less than 1.3.6.8, only the last 12 hours will be
stored. The counters for this table are set to zero at the beginning of each ten-
minute interval. The columns of the table are as follows:

A.1.1 Attempts
Column Name: “Attempts”
Column Definition Description: “Attempts”
Type: uint4
Description: Records the total number of communication attempts the device
made during the ten-minute interval. This counter is incremented by on for
every entry that appears in the communication status log and is associated with
the device.

A.1.2 Failures
Column Name: “Failures”
Column Definition Description: “Failures”
Type: uint4
Description: Records the total number of communication failures that the
device experienced during the ten-minute interval. This counter is
incremented by one for every “F” record that appears in the communication
status log and is associated with the device.

A.1.3 Retries
Column Name: “Retries”
Column Definition Description: “Retries”
Type: uint4

A-1

Appendix A. Server and Device Operational Statistics Tables

Description: Records the total number of retires that the device experienced
during the ten-minute interval. This counter is incremented by one for every
“W” record that appears in the communication status log and is associated
with the device.

A.2 Device Standard Statistics
The name of the standard statistics table associated with a device is the result
of appending the string “_std” to the device name. The number of columns in
the table is variable depending on the device type although there are statistics
that are common to all device types.

A.2.1 Communication Enabled
Column Name: “Communication Enabled”
Column Definition Description: “Comm Enabled”
Type: Boolean
Applies To: All Device Types
Description: Relays whether communication is enabled for this device.

A.2.2 Average Error Rate
Column Name: “Avg Error Rate”
Column Definition Description: “Avg Err %”
Type: Float
Applies To: All Device Types
Description: A running average of the number of “W” or “F” messages that
are logged in the communication status log for the device versus the total
number of messages logged.

A.2.3 Total Retries
Column Name: “Total Retries”
Column Definition Description: “Total Retries”
Type: uint4
Applies To: All Device Types
Description: A running total of the number of communication retry events that
have been logged since the device was started or the statistic was last reset.

A.2.4 Total Failures
Column Name: “Total Failures”
Column Definition Description: “Total Failures”
Type: uint4
Applies To: All Device Types
Description: A running total of the number of communication failure events
that have been logged since the device was stared or the statistic was last reset.

A.2.5 Total Attempts
Column Name: “Total Attempts”
Column Definition Description: “Total Attempts”
Type: uint4

A-2

Appendix A. Server and Device Operational Statistics Tables

Applies To: All Device Types
Description: A running total of the number of communication attempts that
have been made for the device since the device was stared or the statistic was
last reset.

A.2.6 Communication Status
Column Name: “Communication Status”
Column Definition Description: “Comm Status”
Type: Byte Enumeration
Applies To: All Device Types
Description: Describes the current communication state of the device. The
following values are defined:

1. Normal (last communication succeeded)

2. Marginal (last communication needs to be retried)

3. Critical (last communication failed)

4. Unknown (No communication attempt occurred during the interval)

A.2.7 Last Clock Check
Column Name: “Last Clock Check”
Column Definition Description: “Last Clk Chk”
Type: TimeStamp
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-
PB, CR23X-TP, CR205, CR210, CR215, CR1000, CR3000, CR800, CR850,
and RF95T.
Description: Relays the server time when the clock was last checked.

A.2.8 Last Clock Set
Column Name: “Last Clock Set”
Column Definition Description: “Last Clk Set”
Type: TimeStamp
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-
PB, CR23X-TP, CR205, CR210, CR215, CR1000, CR3000, CR800, CR850,
and RF95T.
Description: Relays the server time when the clock was last set.

A.2.9 Last Clock Difference
Column Name: “Last Clock Diff”
Column Definition Description: “Last Clk Diff”
Type: Interval (int8)
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-
PB, CR23X-TP, CR205, CR210, CR215, CR1000, CR3000, CR800, CR850,
and RF95T.
Description: Relays the difference between the server clock and the datalogger
clock at the last time the clock was checked or set.

A-3

Appendix A. Server and Device Operational Statistics Tables

A.2.10 Collection Enabled
Column Name: “Collection Enabled”
Column Definition Description: “Coll Enabled”
Type: Boolean
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-
PB, CR23X-TP, CR205, CR210, CR215, CR1000, CR3000, CR800, and
CR850.
Description: Set to true to indicate that the scheduled collection is enabled for
the datalogger.

A.2.11 Last Data Collection
Column Name: “Last Data Collection”
Column Definition Description: “Last Data Coll”
Type: TimeStamp
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-
PB, CR23X-TP, CR205, CR210, CR215, CR1000, CR3000, CR800, and
CR850.
Description: The server time when the last data collection took place for the
datalogger. This statistic will be updated after a manual poll or scheduled data
collection succeeds or partially succeeds (brings in some data from some areas
but not all data from all selected areas).

A.2.12 Next Data Collection
Column Name: “Next Data Collection”
Column Definition Description: “Next Data Coll”
Type: TimeStamp
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-
PB, CR23X-TP, CR205, CR210, CR215, CR1000, CR3000, CR800, and
CR850.
Description: The server time when the next polling event will take place for
the datalogger with the currently active schedule.

A.2.13 Last Collect Attempt
Column Name: “Last_Collect_Attempt”
Column Definition Description: “Last Coll Attempt”
Type: TimeStamp
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-
PB, CR23X-TP, CR205, CR210, CR215, CR1000, CR3000, CR800, and
CR850.
Description: Describes the last time data collection (manual poll or scheduled
collection) was started for this device.

A.2.14 Collection State
Column Name: “Collection State”
Column Definition Description: “Coll State”
Type: Enumeration

A-4

Appendix A. Server and Device Operational Statistics Tables

Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-
PB, CR23X-TP, CR205, CR210, CR215, CR1000, CR3000, CR800, and
CR850.
Description: The current state of scheduled collection for the datalogger. The
following values are defined:

1. Normal – The normal collection schedule is active

2. Primary – The primary retry schedule is active

3. Secondary – The secondary retry schedule is active

4. Schedule Off – The collection schedule is disabled

5. Comm Disabled – Communication for this device, one of its parents,
or for the entire network is disabled

6. Invalid Table Defs – Collection for this station is disabled until the
table definitions are refreshed

7. Network Paused – Automated operations are paused for the network

8. Unreachable – The device cannot be reached through the network

A.2.15 Values in Last Collection
Column Name: “Vals in Last Collect”
Column Definition Description: “Vals Last Coll”
Type: uint4
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-
PB, CR23X-TP, CR205, CR210, CR215, CR1000, CR3000, CR800, and
CR850.
Description: The number of scalar values that have been collected from the
datalogger since the last poll began

A.2.16 Values to Collect
Column Name: “Values to Collect”
Column Definition Description: “Vals to Coll”
Type: uint4
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-
PB, CR23X-TP, CR205, CR210, CR215, CR1000, CR3000, CR800, and
CR850.
Description: The number of scalar values expected in the current or last poll.

A.2.17 Values in Holes
Column Name: “Values in Holes”
Column Definition Description: “Holes”
Type: uint4

A-5

Appendix A. Server and Device Operational Statistics Tables

Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-
PB, CR23X-TP, CR205, CR210, CR215, CR1000, CR3000, CR800, and
CR850.
Description: The number of values in holes that need to be collected from the
datalogger.

A.2.18 Values in Uncollectable Holes
Column Name: “Values in Uncollectable Holes”
Column Definition Description: “Uncoll Holes”
Type: uint4
Applies To: CR10T, CR0X-TD, CR510-TD, CR23X-TD
Description: The total number of values that have been in uncollectable holes
since the device was started or the statistic was reset.

A.2.19 Line State
Column Name: “Line State”
Column Definition Description: “Line State”
Type: Enumeration
Applies To: All Devices
Description: The current line state for this device. The following values are
defined:

1. Not Applicable – In its current configuration, this device will not
communicate directly with the server. This value will appear in
association with BMP1 dataloggers connected to the server through
an RF95T.

2. Off-Line – The server has no communication resources open for this
device.

3. On-Line – The server has communication resources open for this
device.

4. Transparent – This device has been dialed to reach a child device.

5. Undialing – The child devices have gone off-line and this device is
cleaning up the link so that it can go to an off-line state.

6. Comm-Disabled – Communications are disabled for either this
device, its parent, or for the whole network.

7. Unreachable – This device cannot be reached through the network.

8. Pending – The device has requested the link from its parent but that
request is still pending.

9. Targeted – The device has requested the link from its parent and its
parents are being dialed to open the link.

A-6

Appendix A. Server and Device Operational Statistics Tables

A.2.20 Polling Active
Column Name: “Polling Active”
Column Definition Description: “Polling Active”
Type: Boolean
Applies To: All datalogger devices
Description: Reflects whether there is presently a polling operation that is
active for the device. A value of true indicates that some sort of polling is
taking place.

A.2.21 FS1 to Collect
Column Name: “FS1_Values_to_Collect”
Column Definition Description: “FS1 to Collect”
Type: uint4
Applies To: 21X, CR7, CR10, CR10X, CR500, CR510, CR23X
Description: Reflects the total number of final storage values that need to be
collected from final storage area one of a mixed-array datalogger if collect is
active for that area. If collection is not active for that area, this statistic
reflects the last count that should have been collected.

A.2.22 FS1 Collected
Column Name: “FS1_Values_Collected”
Column Definition Description: “FS1 Collected”
Type: uint4
Applies To: 21X, CR7, CR10, CR10X, CR500, CR510, CR23X
Description: Reflects the total number of final storage values that have been
collected from a mixed-array datalogger’s final storage area one.

A.2.23 FS2 to Collect
Column Name: “FS2_Values_to_Collect”
Column Definition Description: “FS2 to Collect”
Type: uint4
Applies To: CR10, CR10X, CR510, CR23X
Description: Reflects the total number of final storage values that need to be
collected from final storage area two of a mixed-array datalogger if collect is
active for that area. If collection is not active for that area, this statistic
reflects the last count that should have been collected.

A.2.24 FS2 Collected
Column Name: “FS2_Values_Collected”
Column Definition Description: “FS2 Collected”
Type: uint4
Applies To: CR10, CR10X, CR510, CR23X
Description: Reflects the total number of final storage values that have been
collected from a mixed-array datalogger’s final storage area two.

A.2.25 Logger Ver
Column Name: “Logger_Interface_Version”
Column Definition Description: “Logger Ver”

A-7

Appendix A. Server and Device Operational Statistics Tables

Type: uint4
Applies To: 21X, CR7, CR10, CR10X, CR500, CR510, CR23X
Description: Relays the datalogger interface version as given in the
datalogger’s response to the “A” command.

A.2.26 Watchdog Err
Column Name: “Watchdog_Timer_Reset Count”
Column Definition Description: “Watchdog Err”
Type: uint4
Applies To: 21X, CR7, CR10, CR10X, CR500, CR510, CR23X
Description: Relays the datalogger watchdog error count as given in the
mixed-array datalogger’s response to the “A” command.

A.2.27 Prog Overrun
Column Name: “Program_Table_Overruns_Count”
Column Definition Description: “Prog Overrun”
Type: uint4
Applies To: 21X, CR7, CR10, CR10X, CR500, CR510, CR23X
Description: Relays the number of datalogger program overruns that have
occurred since the last reset as given in the mixed-array datalogger’s response
to the “A” command.

A.2.28 Mem Code
Column Name: “Memory_Size_Code”
Column Definition Description: “Mem Code”
Type: uint4
Applies To: 21X, CR7, CR10, CR10X, CR500, CR510, CR23X
Description: Relays the memory size code as given by the mixed-array
datalogger’s response to the “A” command.

A.2.29 Collect Retries
Column Name: “Collect_Retries”
Column Definition Description: “Coll Retries”
Type: uint4
Applies To: 21X, CR7X, CR10, CR10X, CR500, CR510, CR23X, CR10T,
CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000, CR10X-PB, CR510-
PB, CR23X-TP, CR205, CR210, CR215, CR1000, CR3000, CR800, and
CR850.
Description: Reports the number of collection retries that the datalogger device
has had since the first collection error occurred. This statistic is reset to zero
when the logger returns to a normal collection state.

A.2.30 Low Voltage Stopped Count
Column Name: “Low_Volt_Stopped”
Column Definition Description: “Low Volt Stopped”
Type: uint4
Applies To: CR10X, CR500, CR510, CR23X
Description: Reports the number of times that a mixed-array datalogger has

A-8

Appendix A. Server and Device Operational Statistics Tables

shut itself down because its supply voltage has been to low. This information
is read from the “A” command.

A.2.31 Low Five Volts Error Count
Column Name: “Low_5v”
Column Definition Description: “Low 5v”
Type: uint4
Applies To: CR23X
Description: Reports the number of times the CR23X +5 volt supply has been
reported below five volts. This information is read from the “A” command
result.

A.2.32 Lithium Battery Voltage
Column Name: “Lith_Batt_Volt”
Column Definition Description: “Lith Batt Volt”
Type: Float
Applies To: CR10X, CR500, CR510, CR23X
Description: Reports the lithium battery voltage on mixed-array dataloggers.
This value is extracted from the results of the “A” command.

A.2.33 Table Definitions State
Column Name: “TableDefState”
Column Definition Description: “Table Defs State”
Type: Enumeration
Applies To: CR10T, CR10X-TD, CR510-TD, CR23X-TD, CR9000, CR5000,
CR10X-PB, CR510-PB, CR23X-TP, CR205, CR210, CR215, CR1000,
CR3000, CR800, and CR850.
Description: Relays the current state of cached table definitions for a table-
based datalogger. The following values are defined:

1. None – No table definitions have been received from the datalogger.

2. Current – The LoggerNet server’s table definitions are believed to be
current for the datalogger.

3. Suspect – A collection attempt has returned an invalid table
definitions code. The LoggerNet server needs to verify the table
definitions for the datalogger.

4. Getting – Indicates that the LoggerNet server is currently trying to get
the table definitions from the datalogger.

5. Invalid – The table definitions are known to be invalid and the need
to be refreshed before collection can continue.

A.3 Server Statistics
The statistics relating to the host machine for the LoggerNet server or to the
operation of the LoggerNet sever as a whole can be found in the table name
“__LgrNet____controller__”. These statistics are updated every ten seconds.

A-9

Appendix A. Server and Device Operational Statistics Tables

A-10

There is only one row defined for the table. The statistics available in this
table are as follows:

A.3.1 Disc Space Available
Column Name: “DiscSpaceAvail”
Column Definition Description: “Disc Space Avail”
Type: int8
Description: Relays how many bytes are free on the volume where the server’s
working directory resides.

A.3.2 Available Virtual Memory
Column Name: “AvailVirtMem”
Column Definition Description: “Avail Virt Mem”
Type: uint4
Description: Relays the amount of virtual memory that is available to the
server process.

A.3.3 Used Virtual Memory
Column Name: “UsedVirtMem”
Column Definition Description: “Used Virt Mem”
Type: uint4
Description: Relays the amount of virtual memory that is being used by the
server process. This value is derived from the AvailVirtMem by subtracting
the value of that statistic from the maximum win32 memory size.

The table structure of a PakBus datalogger is given in the example below. This
example shows a datalogger with two user defined tables plus the Status table
and Public or Inlocs table. The second table in the example below contains
three records and the third table contains four records. Both the Status table
and Public or Inlocs table will always return the most recent records and will
not contain any historical data records.

The first table is the Status table, which shows the status of the datalogger.
The Public or Inlocs table contains all public variables or input locations. All
other tables found in the datalogger are created and defined by the user in the
datalogger program. The tables in a PakBus datalogger will always contain a
record number and timestamp followed by the data fields.

Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES

www.campbellsci.com • info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)
PO Box 2450

Somerset West 7129
SOUTH AFRICA

www.csafrica.co.za • cleroux@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 444

Thuringowa Central
QLD 4812 AUSTRALIA

www.campbellsci.com.au • info@campbellsci.com.au

Campbell Scientific do Brazil Ltda. (CSB)
Rua Luisa Crapsi Orsi, 15 Butantã

CEP: 005543-000 São Paulo SP BRAZIL
www.campbellsci.com.br • suporte@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)

11564 - 149th Street NW
Edmonton, Alberta T5M 1W7

CANADA
www.campbellsci.ca • dataloggers@campbellsci.ca

Campbell Scientific Centro Caribe S.A. (CSCC)

300 N Cementerio, Edificio Breller
Santo Domingo, Heredia 40305

COSTA RICA
www.campbellsci.cc • info@campbellsci.cc

Campbell Scientific Ltd. (CSL)

Campbell Park
80 Hathern Road

Shepshed, Loughborough LE12 9GX
UNITED KINGDOM

www.campbellsci.co.uk • sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)
3 Avenue de la Division Leclerc

92160 ANTONY
FRANCE

www.campbellsci.fr • info@campbellsci.fr

Campbell Scientific Spain, S. L.
Avda. Pompeu Fabra 7-9, local 1

08024 Barcelona
SPAIN

www.campbellsci.es • info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or International representative.

mailto:suporte@campbellsci.com.br

	Revision and Copyright Information

	Campbell Scientific, Inc.
Software SDK End User License
Agreement (EULA)

	Table of Contents

	Section 1. LoggerNet Server SDK
Overview

	1.1 Purpose of the LoggerNet Server SDK
	1.2 Requirements
	1.2.1 Required Campbell Scientific, Inc. Software
	1.2.2 Development Tools Requirements

	1.3 Included Components
	1.3.1 Files Included in the LoggerNet Server SDK
	1.3.1.1 ActiveX® Controls (DLLs)
	1.3.1.2 LoggerNet Server (CORALIB3.DLL)
	1.3.1.3 Manuals
	1.3.1.4 Example Projects

	1.3.2 Adding Controls to a Project
	1.3.2.1 Adding a Control to a Visual Basic Project
	1.3.2.2 Adding a Control to a Delphi Project
	1.3.2.3 Adding a Control to a .NET Project

	Section 2. CsiServer Control

	2.1 Purpose of the CsiServer Control
	2.2 CsiServer Interface
	2.2.1 Properties
	2.2.2 Methods
	2.2.3 Events

	Section 3. Developing an Application
Using the CsiServer Control

	3.1 Purpose
	3.2 Using the CsiServer Control
	3.2.1 Getting Started with the CsiServer Control
	3.2.2 CsiServer Control Application Example

	Section 4. CsiCoraScript Control

	4.1 Purpose of the CsiCoraScript Control
	4.2 Connecting to the Server
	4.3 Using CoraScript Commands
	4.3.1 Setting up a Network
	4.3.2 Real-Time Data Display
	4.3.2.1 Table-Data Dataloggers
	4.3.2.2 Mixed-Array Dataloggers

	4.4 CsiCoraScript Interface
	4.4.1 Properties
	4.4.2 Methods
	4.4.3 Events

	Section 5. Developing an Application
Using the CsiCoraScript Control

	5.1 Purpose
	5.2 Using the CsiCoraScript Control
	5.2.1 Getting Started with the CsiCoraScript Control
	5.2.2 CsiCoraScript Control Application Example

	Section 6. CsiBrokerMap Control

	6.1 Purpose of the CsiBrokerMap Control
	6.2 Connecting to the LoggerNet Server
	6.3 How Collections Work
	6.3.1 Visual Basic View of Collections
	6.3.1.1 Accessing Collections with For Each
	6.3.1.2 Accessing Collections with Indexes and Names

	6.3.2 Delphi/Visual C++ View of Collections
	6.4 CsiBrokerMap Interfaces
	6.4.1 BrokerMap Interface
	6.4.1.1 Properties
	6.4.1.2 Methods
	6.4.1.3 Events

	6.4.2 BrokerCollection Interface
	6.4.2.1 Properties
	6.4.2.2 Methods

	6.4.3 Broker Interface
	6.4.3.1 Properties
	6.4.3.2 Methods

	6.4.4 Table Collection Interface
	6.4.4.1 Properties
	6.4.4.2 Methods

	6.4.5 Table Interface
	6.4.5.1 Properties
	6.4.5.2 Methods

	6.4.6 ColumnCollection Interface
	6.4.6.1 Properties
	6.4.6.2 Methods

	6.4.7 Column Interface
	6.4.7.1 Properties

	Section 7. Developing an Application
Using the CsiBrokerMap Control

	7.1 Purpose
	7.2 Using the CsiBrokerMap Control
	7.2.1 Getting Started with the CsiBrokerMap Control
	7.2.2 CsiBrokerMap Control Application Example

	Section 8. CsiDatalogger

	8.1 Purpose of the CsiDatalogger Control
	8.2 Connecting to the Server
	8.3 Datalogger Interface
	8.3.1 Properties
	8.3.2 Methods
	8.3.3 Events

	Section 9. Developing an Application
Using the Datalogger Control

	9.1 Purpose
	9.2 Using the CsiDatalogger Control
	9.2.1 Getting Started with the CsiDatalogger Control
	9.2.2 CsiDatalogger Control Application Example

	Section 10. CsiDataSource Control

	10.1 Purpose of the CsiDataSource Control
	10.2 Connecting to the Server
	10.3 CsiDataSource Interfaces
	10.3.1 Dsource Interface
	10.3.1.1 Properties
	10.3.1.2 Methods
	10.3.1.3 Events

	10.3.2 Advisor Interface
	10.3.2.1 Properties
	10.3.2.2 Methods

	10.3.3 DataColumnCollection Interface
	10.3.3.1 Properties
	10.3.3.2 Methods

	10.3.4 DataColumn Interface
	10.3.4.1 Properties

	10.3.5 Record
	10.3.5.1 Properties
	10.3.5.2 Methods

	10.3.6 RecordCollection
	10.3.6.1 Properties
	10.3.6.2 Methods

	10.3.7 Value Interface
	10.3.7.1 Properties

	Section 11. Developing an Application
Using the CsiDataSource Control

	11.1 Purpose
	11.2 Using the CsiDataSource Control
	11.2.1 Getting Started with the CsiDataSource Control
	11.2.2 CsiDataSource Control Application Example

	Section 12. CsiLogMonitor Control

	12.1 Purpose of the CsiLogMonitor Control
	12.2 CsiLogMonitor Interface
	12.2.1 Properties
	12.2.2 Methods
	12.2.3 Events

	Section 13. Developing an Application
Using the CsiLogMonitor Control

	13.1 Purpose
	13.2 Using the CsiLogMonitor Control
	13.2.1 Getting Started with the CsiLogMonitor Control
	13.2.2 CsiLogMonitor Control Application Example

	Section 14. CsiServer Control
Reference

	14.1 Server Interface
	14.1.1 Properties
	Server.applicationWorkDir
	Name
	Description
	COM Return Values
	Server.buildDate
	Name
	Description
	COM Return Values

	Server.logFileDir
	Name
	Description
	COM Return Values

	Server.serverStarted
	Name
	Description
	COM Return Values

	Server.serverVersion
	Name
	Description
	COM Return Values

	Server.serverWorkDir
	Name
	Description
	COM Return Values

	Server.tcpPort
	Name
	Description
	COM Return Values

	Server.tcpPortEx
	Name
	Description
	COM Return Values

	14.1.2 Methods
	Server.startServer()
	Name
	Description
	COM Return Values
	Server.stopServer()
	Name
	Description
	COM Return Values

	14.1.3 Events
	Server_onServerFailure()
	Name
	Description

	Section 15. CsiCoraScript Control
Reference

	15.1 CoraScript Interface
	15.1.1 Properties
	CoraScript.serverConnected
	Name
	Description
	COM Return Values
	CoraScript.serverLogonName
	Name
	Valid Values
	Default Value
	COM Return Values

	CoraScript.serverLogonPassword
	Name
	Valid Values
	Default Value
	COM Return Values

	CoraScript.serverName
	Name
	Description
	COM Return Values

	CoraScript.serverPort
	Name
	Description
	COM Return Values

	15.1.2 Methods
	CoraScript.executeScript()
	Name
	Description
	COM Return Values
	CoraScript.serverConnect()
	Name
	Description
	COM Return Values

	CoraScript.serverDisconnect()
	Name
	Description
	COM Return Values

	15.1.3 Events
	CoraScript_onScriptComplete()
	Name
	Description
	CoraScript_onServerConnectStarted()
	Name
	Description

	CoraScript_onServerConnectFailure()
	Name
	Description

	Section 16. CsiBrokerMap Control
Reference

	16.1 BrokerMap Interface
	16.1.1 Properties
	BrokerMap.serverName
	Name
	Description
	Default Value
	COM Return Values
	BrokerMap.serverLogonName
	Name
	Valid Values
	Default Value
	Notes
	COM Return Values

	BrokerMap.serverLogonPassword
	Name
	Valid Values
	Default Value
	Notes
	COM Return Values

	BrokerMap.serverPort
	Name
	Description
	Default Value
	COM Return Values

	BrokerMap.autoExpand
	Name
	Description
	Default Value
	COM Return Values

	BrokerMap.serverConnected
	Name
	Description
	COM Return Values

	16.1.2 Methods
	BrokerMap.Brokers()
	Name
	Description
	BrokerMap.finish()
	Name
	Description
	COM Return Values

	BrokerMap.start()
	Name
	Description
	COM Return Values

	16.1.3 Events
	BrokerMap_onAllStarted()
	Name
	Description
	BrokerMap_onBrokerAdded()
	Name
	Description

	BrokerMap_onBrokerDeleted()
	Name
	Description

	BrokerMap_onFailure()
	Name
	Description

	BrokerMap_onTableAdded()
	Name
	Description

	BrokerMap_onTableDeleted()
	Name
	Description

	BrokerMap_onTableChanged()
	Name
	Description

	BrokerMap_onBrokerStarted()
	Name
	Description

	16.2 BrokerCollection Interface
	16.2.1 Properties
	BrokerCollection.Count
	Name
	Description
	COM Return Values

	16.2.2 Methods
	BrokerCollection.Item()
	Name
	Description
	COM Return Values
	Visual Basic
	BrokerCollection._NewEnum()
	Name
	Important
	Visual Basic

	16.3 Broker Interface
	16.3.1 Properties
	Broker.ID
	Name
	Description
	COM Return Values
	Broker.name
	Name
	Description
	COM Return Values

	Broker.type
	Name
	Description
	Possible Values
	COM Return Values

	Broker.datalogger_type
	Name
	Description
	COM Return Values

	Broker.allStarted
	Name
	Description
	COM Return Values

	16.3.2 Methods
	Broker.Tables()
	Name
	Description
	COM Return Values
	Broker.start_expansion()
	Name
	Description
	COM Return Values

	16.4 TableCollection Interface
	16.4.1 Properties
	TableCollection.Count
	Name
	Description
	COM Return Values

	16.4.2 Methods
	TableCollection.Item()
	Name
	Description
	Prototypes
	COM Return Values
	Visual Basic
	TableCollection._NewEnum()
	Name

	16.5 Table Interface
	16.5.1 Properties
	Table.interval
	Name
	Description
	COM Return Values
	Table.name
	Name
	Description
	COM Return Values

	Table.originalSize
	Name
	Description
	COM Return Values

	Table.size
	Name
	Description
	COM Return Values

	16.5.2 Methods
	Table.Columns()
	Name
	Description
	COM Return Values
	Visual Basic
	Table.start_expansion
	Name
	Description
	COM Return Values

	16.6 ColumnCollection Interface
	16.6.1 Properties
	ColumnCollection.Count
	Name
	Description
	COM Return Values

	16.6.2 Methods
	ColumnCollection.Item()
	Name
	Description
	Prototypes
	COM Return Values
	Visual Basic
	ColumnCollection._NewEnum()
	Name

	16.7 Column Interface
	16.7.1 Properties
	Column.description
	Name
	Description
	COM Return Values
	Column.name
	Name
	Description
	COM Return Values

	Column.process
	Name
	Description
	COM Return Values

	Column.type
	Name
	Description
	COM Return Values

	Column.units
	Name
	Description
	COM Return Values

	Column.writable
	Name
	Description
	COM Return Values

	Section 17. CsiDatalogger Control
Reference

	17.1 Datalogger Interface
	17.1.1 Properties
	Datalogger.clockBusy
	Name
	Description
	COM Return Values
	Datalogger.loggerConnected
	Name
	Description
	COM Return Values

	Datalogger.loggerName
	Name
	Valid Values
	Default Value
	COM Return Values

	Datalogger.manualPollBusy
	Name
	Description
	COM Return Values

	Datalogger.programReceiveBusy
	Name
	Description
	COM Return Values

	Datalogger.programSendBusy
	Name
	Description
	COM Return Values

	Datalogger.selectiveManualPollBusy
	Name
	Description
	COM Return Values

	Datalogger.serverConnected
	Name
	Description
	COM Return Values

	Datalogger.serverLogonName
	Name
	Valid Values
	Default Value
	COM Return Values

	Datalogger.serverLogonPassword
	Name
	Valid Values
	Default Value

	Datalogger.serverName
	Name
	Description
	COM Return Values

	Datalogger.serverPort
	Name
	Description
	Default Value
	COM Return Values

	17.1.2 Methods
	Datalogger.clockCancel()
	Name
	Description
	COM Return Values
	Datalogger.clockCheckStart()
	Name
	Description
	COM Return Values

	Datalogger.clockSetStart()
	Name
	Description
	COM Return Values

	Datalogger.loggerConnectCancel()
	Name
	Description
	COM Return Values

	Datalogger.loggerConnectStart()
	Name
	Parameters
	Description
	COM Return Values

	Datalogger.manualPollCancel()
	Name
	Description
	COM Return Values

	Datalogger.manualPollStart()
	Name
	Description
	COM Return Values

	Datalogger.programReceiveCancel()
	Name
	Description
	COM Return Values

	Datalogger.programReceiveStart()
	Name
	Description
	Parameters
	COM Return Values

	Datalogger.programSendCancel()
	Name
	Description
	COM Return Values

	Datalogger.programSendStart()
	Name
	Description
	Parameters
	COM Return Values

	Datalogger.selectiveManualPollCancel
	Name
	Description
	COM Return Values

	Datalogger.selectiveManualPollStart
	Name
	Description
	COM Return Values

	Datalogger.serverConnect()
	Name
	Description
	COM Return Values

	Datalogger.serverDisconnect()
	Name
	Description
	COM Return Values

	17.1.3 Events
	Datalogger_onClockComplete()
	Name
	Parameters
	COM Return Values
	Datalogger_onLoggerConnectFailure()
	Name
	Description
	Parameter
	COM Return Values

	Datalogger_onLoggerConnectStarted()
	Name
	Description
	COM Return Values

	Datalogger_onManualPollComplete()
	Name
	Description
	Parameters
	COM Return Values

	Datalogger_onProgramCompiled()
	Name
	Description
	COM Return Values

	Datalogger_onProgramReceiveComplete()
	Name
	Description
	Parameters
	COM Return Values

	Datalogger_onProgramReceiveProgress()
	Name
	Description
	COM Return Values

	Datalogger_onProgramSendComplete()
	Name
	Description
	Parameters
	COM Return Values

	Datalogger_onProgramSendProgress()
	Name
	Description
	COM Return Values

	Datalogger_onProgramSent()
	Name
	Description
	COM Return Values

	Datalogger_onSelectiveManualPollComplete()
	Name
	Description
	Parameters

	Datalogger_onServerConnectFailure()
	Name
	Description
	Parameters
	COM Return Values

	Datalogger_onServerConnectStarted()
	Name
	Description
	COM Return Values

	Section 18. CsiDataSource Control
Reference

	18.1 DSource Interface
	18.1.1 Properties
	DSource.logonName
	Name
	Description
	Default Value
	COM Return Values
	DSource.logonPassword
	Name
	Description
	Default Value
	COM Return Values

	DSource.serverName
	Name
	Description
	Default Value
	COM Return Values

	DSource.serverPort
	Name
	Description
	Default Value
	COM Return Values

	DSource.state
	Name
	Description
	COM Return Values

	DSource.sendRecordBlocks
	Name
	Description
	Default Value
	COM Return Values

	18.1.2 Methods
	DSource.connect()
	Name
	Description
	COM Return Values
	DSource.createAdvisor()
	Name
	Description
	COM Return Values
	Visual Basic

	DSource.disconnect()
	Name
	Description
	COM Return Values

	18.1.3 Events
	DSource_onAdviseReady()
	Name
	Description
	COM Return Values
	DSource_onAdviseRecord()
	Name
	Description
	COM Return Values

	DSource_onAdvisorFailure()
	Name
	Description
	Parameters
	COM Return Values

	DSource_onControlFailure()
	Name
	Description
	COM Return Values

	DSource_onControlReady()
	Name
	Description
	COM Return Values

	DSource_onVariableSetComplete()
	Name
	Description
	Parameters
	COM Return Values

	DSource_onAdviseRecords()
	Name
	Description
	COM Return Values

	18.2 Advisor Interface
	18.2.1 Properties
	Advisor.advisorName
	Name
	Description
	COM Return Values
	Advisor.orderOption
	Name
	Description
	Default Value
	Notes
	COM Return Values

	Advisor.startDate
	Name
	Description
	Notes
	COM Return Values

	Advisor.startFileMarkNo
	Name
	Description
	Valid Values
	Default Value
	Notes
	COM Return Values

	Advisor.startIntervalSeconds
	Name
	Description
	Valid Values
	Default Value
	Notes
	COM Return Values

	Advisor.startOption
	Name
	Description
	Valid Values
	Default Value
	Notes
	COM Return Values

	Advisor.startRecordNo
	Name
	Description
	Default Value
	Notes
	COM Return Values

	Advisor.startRecordNoString
	Name
	Description
	Default Value
	Notes
	COM Return Values

	Advisor.state
	Name
	Description
	COM Return Values

	Advisor.stationName
	Name
	Description
	COM Return Values

	Advisor.tableName
	Name
	Description
	COM Return Values

	Advisor.startDateNanoSeconds
	Name
	Description
	COM Return Values

	Advisor.maxRecordsPerBlock
	Name
	Description
	COM Return Values

	18.2.2 Methods
	Advisor.columns
	Name
	Description
	Visual Basic
	Advisor.start()
	Name
	Description
	COM Return Values

	Advisor.stop()
	Name
	Description
	COM Return Values

	Advisor.variableSetCancel()
	Name
	Description
	Parameter
	COM Return Values

	Advisor.variableSetStart()
	Name
	Description
	Parameters
	Return value
	COM Return Values

	18.3 DataColumnCollection Interface
	18.3.1 Properties
	DataColumnCollection.count
	Name
	Description
	COM Return Values

	18.3.2 Methods
	DataColumnCollection.add()
	Name
	Description
	COM Return Values
	DataColumnCollection.addAll()
	Name
	Description
	COM Return Values

	DataColumnCollection.find()
	Name
	Description
	COM Return Values

	DataColumnCollection.Item()
	Name
	Description
	COM Return Values

	DataColumnCollection.remove()
	Name
	Description
	COM Return Values

	DataColumnCollection.removeAll()
	Name
	Description
	COM Return Values

	DataColumnCollection._NewEnum()
	Name
	Important

	18.4 DataColumn Interface
	18.4.1 Properties
	DataColumn.name
	Name
	Description

	18.5 Record Interface
	18.5.1 Properties
	Record.fileMarkNo
	Name
	Description
	COM Return Values
	Record.nanoSeconds
	Name
	Description
	COM Return Values

	Record.recordNo
	Name
	Description
	COM Return Values

	Record.timeStamp
	Name
	Description
	COM Return Values

	Record.valuesCount
	Name
	Description
	COM Return Values

	18.5.2 Methods
	Record.Item()
	Name
	Description
	COM Return Values
	Visual Basic
	Record._NewEnum()
	Name
	Important
	Visual Basic

	18.6 RecordCollection
	18.6.1 Properties
	RecordCollection.Count
	Name
	Description
	COM Return Values

	18.6.2 Methods
	RecordCollection.Item()
	Name
	Description
	COM Return Values
	RecordCollection._NewEnum()
	Name
	Important

	18.7 Value Interface
	18.7.1 Properties
	Value.columnName
	Name
	Description
	COM Return Values
	Value.value
	Name
	Description
	COM Return Values

	Section 19. CsiLogMonitor Control
Reference

	19.1 LogMonitor Interface
	19.1.1 Properties
	LogMonitor.commLogMonitorBusy
	Name
	Description
	COM Return Values
	LogMonitor.commLogRecordsBack
	Name
	Description
	COM Return Values

	LogMonitor.serverConnected
	Name
	Description
	COM Return Values

	LogMonitor.serverLogonName
	Name
	Description
	Default Value
	COM Return Values

	LogMonitor.serverLogonPassword
	Name
	Description
	Default Value
	COM Return Values

	LogMonitor.serverName
	Name
	Description
	Default Value
	COM Return Values

	LogMonitor.serverPort
	Name
	Description
	Default Value
	COM Return Values

	LogMonitor.tranLogMonitorBusy
	Name
	Description
	COM Return Values

	LogMonitor.tranLogRecordsBack
	Name
	Description
	COM Return Values

	19.1.2 Methods
	LogMonitor.commLogMonitorStart()
	Name
	Description
	COM Return Values
	LogMonitor.commLogMonitorStop()
	Name
	Description
	COM Return Values

	LogMonitor.serverConnect()
	Name
	Description
	COM Return Values

	LogMonitor.serverDisconnect()
	Name
	Description
	COM Return Values

	LogMonitor.tranLogMonitorStart()
	Name
	Description
	COM Return Values

	LogMonitor.tranLogMonitorStop()
	Name
	Description
	COM Return Values

	19.1.3 Events
	LogMonitor_onCommLogFailure()
	Name
	Description
	LogMonitor_onCommLogRecord()
	Name
	Description

	LogMonitor_onServerConnectFailure()
	Name
	Description

	LogMonitor_onServerConnectStarted()
	Name
	Description

	LogMonitor_onTranLogFailure()
	Name
	Description

	LogMonitor_onTranLogRecord()
	Name
	Description

	Appendix A. Server and Device
Operational Statistics Tables

	A.1 Device History Statistics
	A.1.1 Attempts
	A.1.2 Failures
	A.1.3 Retries

	A.2 Device Standard Statistics
	A.2.1 Communication Enabled
	A.2.2 Average Error Rate
	A.2.3 Total Retries
	A.2.4 Total Failures
	A.2.5 Total Attempts
	A.2.6 Communication Status
	A.2.7 Last Clock Check
	A.2.8 Last Clock Set
	A.2.9 Last Clock Difference
	A.2.10 Collection Enabled
	A.2.11 Last Data Collection
	A.2.12 Next Data Collection
	A.2.13 Last Collect Attempt
	A.2.14 Collection State
	A.2.15 Values in Last Collection
	A.2.16 Values to Collect
	A.2.17 Values in Holes
	A.2.18 Values in Uncollectable Holes
	A.2.19 Line State
	A.2.20 Polling Active
	A.2.21 FS1 to Collect
	A.2.22 FS1 Collected
	A.2.23 FS2 to Collect
	A.2.24 FS2 Collected
	A.2.25 Logger Ver
	A.2.26 Watchdog Err
	A.2.27 Prog Overrun
	A.2.28 Mem Code
	A.2.29 Collect Retries
	A.2.30 Low Voltage Stopped Count
	A.2.31 Low Five Volts Error Count
	A.2.32 Lithium Battery Voltage
	A.2.33 Table Definitions State

	A.3 Server Statistics
	A.3.1 Disc Space Available
	A.3.2 Available Virtual Memory
	A.3.3 Used Virtual Memory

	Campbell Scientific Contact Information

