

- Use care when connecting and disconnecting tube fittings to avoid introducing dust or other contaminants.
- The OPEC power source should be designed thoughtfully to ensure uninterrupted power. If needed, contact Campbell Scientific for assistance.

Software

EasyFlux® DL is a free CRBasic program that enables a data logger to report fully corrected fluxes of CO2, latent heat (H2O), sensible heat, and momentum from a Campbell Scientific open-path and closedpath eddy-covariance (EC) system.

https://www.campbellsci.com/easyflux-dl

EasyFlux® PC is a free computer program that processes high-frequency time-series data, collected using a Campbell Scientific eddy-covariance flux system, into fluxes following community accepted practices.

https://www.campbellsci.com/easyflux-pc

EASY FLUX° Web

EasyFlux® Web is a web-based software tool for monitoring CR6 and CR3000based Campbell Scientific eddy-covariance systems.

https://www.campbellsci.com/easyflux-web

Required Tools

The following tools are required to install the OPEC system in the field. Additional tools may be required for a user-supplied tripod or tower.

- 1. 9/16-in, open-end wrench
- 2. 1/2-in, open-end wrench
- 3. 7/16-in, open-end wrench
- 4. Adjustable wrench
- 5. Small, flat-tip screwdriver
- 6. Large, flat-tip screwdriver
- Sledgehammer (to drive grounding rod into the ground)
- 8. 3/16-in hex-key wrench

Physical Deployment

1. Set up the tripod and mount enclosure.

2. Ground the tripod and enclosures.

3. Attach the CM20X crossarm to the tripod mast.

4. Mount the IRGASON or EC150/CSAT3A to the crossarm and point it into the prevailing wind.

5. Mount the radiation shield and IRGASON or EC150/CSAT3A temperature probe.

6. Connect the gas analyzer, sonic anememeter, and temperature probe cables to the EC100 electronics.

7. Connect the system wiring.

Terminal	Connection
CR6 BAT +	Positive of 12 VDC battery or external power supply
CR6 BAT – Negative of 12 VDC battery or external powe	
CR6 CHG +	Positive of charger (used only if CR6 charger will charge battery)
CR6 CHG -	Negative of charger (used only if CR6 charger will charge battery)
CR6 C1	EC100 SDM C1
CR6 C2	EC100 SDM C2
CR6 C3	EC100 SDM C3
CR6 G	EC100 SDM G

8. Insert a MicroSD card into the datalogger and connect power.

Configuring with LoggerNet, PC200W, PC400, or CR1000KD

Turn on the +12 VDC power supply and use either LoggerNet, PC200W, or PC400 on your computer to configure settings, either within the Connect screen (Part A) or in the datalogger program itself in CRBasic Editor (Part B). The CR1000KD can also be used to configure these settings as shown in Part C.

- A: LoggerNet, PC200W or PC400 Connect screen
- 1. Connect to the data logger.

	Main	Setup
	Program	Connect
	Data	Status Monitor
loggerNet	Tools	Tack Macter
	Utilities	
	Database	
	Favorites	
		GCAMPBELL SCI

2. Go to the Const_Table within the Easyflux[™] DL program.

Connect Se ile Edit Vie	reen: CR6 (SN72 w Datalogger	57) (CR6Series) Help							- (2
Disconnect	Su <u>b</u> net •	Collect Now	Custom	Station Status	File Control	Num Di	splay	Graphs	Ports &	Flags
Stations		Table	Monitor: Real 1	Time Monitoring	_		Clock	u		
111 CR3000	CPEC200	Cor	nst_Table		V Show U	nits	Adju	sted Server D	late/Time	
21 CR3000	EaslyFlux		1.4	Mahua				6/17/2019	12:08:59 PM	4
CR6_CP	EC300(SN900)	FI	HG	value		^	Statio	on Date/Tim		
CR6 (SN	7259)	SE	NSOR_SN500	true				6/17/2019	12:08:59 PM	4
CR1000	K(SNP358)	Sh	1500SDI_ADR	0						
CR6 (SN	17257)	SE	NSOR_TCAV	false				Check	S	et
211 CR3000	Kansas Field Stat	tion SE	NSOR_CS616	false						
CR6_OP	EC(SN930)	SE	NSOR_CS65X	true			D Pi	ause Clock U	pdate	
CR6 CP	EC200(SN8196)	N	IBR_CS6xx	3						

3. Set all the sensors that are used in the system to TRUE and declare their address, quantity, and calibration information. Select the cell to be changed, right-click on the cell, then select View/Modify Value to change the setting.

4. Once all of the sensors and constant settings are correct, scroll to the bottom and set ApplyAndRestart to true.

5. Review the Public table and confirm that site specific variables are set appropriately. Note: Setting these variables does not require an ApplyAndRestart.

onnect Subnet Colle	t Now Custom Si	tation Status File Control	Nu <u>m</u> Displ	lay <u>G</u> raphs	Ports & Flags	
ations	Table Monitor: Real Time	Monitoring		Clocks		
E CR2000CREC200	Public	Show Un	its	Adjusted Server Da	ste/Time	
CR3000East/Elux	- uone			6/17/2019	12:16:47 PM	
CR6 CPEC300(SN900)	Field	Value	^	Station Date/Time		
CR6 (SN 7259)	RecNum	14,756		6/17/2019 12:16:47 PM		
CR1000X(SNP358)	TimeStamp	6/17/2019 12:16:47 PM				
CR6 (SN7257)	card_bytes_free	1.917407E09		Check	Set	
CR3000 Kansas Field Station	LastFileName_Time_	LastFileName_Time_Se_NAN				
CR6_OPEC(SN930)	LastFileName_flux_C		Pause Clock Update			
CR6_CPEC200(SN8196)	LastFileName_flux_C	SF				
	card_storage_available_ 26.51692 days			Current Program		
	TIMESTAMP_START	201906171130		EasyFlux_DL_CR	6OP_V00.17d.cr6	
	TIMESTAMP_END					
	sonic_azimuth	0 Decimal degrees		Sand New	Patriava	
	latitude	41.766 Decimal degrees		Jenu Henn	THE REPORT	
	hemisphere_NS	1 adimensional		Notes		
	longitude	-111.855 Decimal degre				
	hemisphere_EW	-1 adimensional				
_	altitude	1356 m				
List Alphabetically	height_measurement	2 m	~			
CD . 0.00.00.17	Stop	Interval 00 m 01 s	101			

B: CRBasic Editor

1. Open the program using the CRBasic Editor.

2. Within the program you can search for the word "Unique" to customize all the values within the constant table as well as get definitions of what each constant means.

'Start of Constants Customizat	ion Section	
ConstTable (Const_Table)		
'*PROGRAM FUNCTION CONSTANTS		
Const SCN_INTV	= 100	'Unique:
Const SLW_SCN_INTV	= 5000	'Unique:
Const OUTPUT_INTV	= 30	'Unique:
Const DAY_FLUX_CRD	= 30	'Unique:
Const DAY_TSRS_CRD	= 1	'Unique:
Const NTCH_FRQ_SLW As Long	= 60	'Unique:
Const ONE_FL_TABLE As Boolean	= FALSE	'Unique:

C: CR100KD

- 1. The CR1000KD may be used to set constants and site specific variables as well.
- 2. Press Esc to activate the display.

- 3. Press Enter to display the System Control menu.
- 4. Use the arrow keys to select Site Var Settings to access the site specific variables. Use the keypad to enter the new values.

System Control Site Var Settings > Instrument Settings > On-Site Zero & Span > Const Table >