INSTRUCTION MANUAL

SDM-CD16D 16 Channel Digital Control Port Expansion Module

Revision: 8/07

Copyright © 2000-2007 Campbell Scientific, Inc.
Warranty and Assistance

The SDM-CD16D 16 CHANNEL DIGITAL CONTROL PORT EXPANSION MODULE is warranted by CAMPBELL SCIENTIFIC, INC. to be free from defects in materials and workmanship under normal use and service for twelve (12) months from date of shipment unless specified otherwise. Batteries have no warranty. CAMPBELL SCIENTIFIC, INC.’s obligation under this warranty is limited to repairing or replacing (at CAMPBELL SCIENTIFIC, INC.’s option) defective products. The customer shall assume all costs of removing, reinstalling, and shipping defective products to CAMPBELL SCIENTIFIC, INC. CAMPBELL SCIENTIFIC, INC. will return such products by surface carrier prepaid. This warranty shall not apply to any CAMPBELL SCIENTIFIC, INC. products which have been subjected to modification, misuse, neglect, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied, including warranties of merchantability or fitness for a particular purpose. CAMPBELL SCIENTIFIC, INC. is not liable for special, indirect, incidental, or consequential damages.

Products may not be returned without prior authorization. The following contact information is for US and International customers residing in countries served by Campbell Scientific, Inc. directly. Affiliate companies handle repairs for customers within their territories. Please visit www.campbellsci.com to determine which Campbell Scientific company serves your country. To obtain a Returned Materials Authorization (RMA), contact CAMPBELL SCIENTIFIC, INC., phone (435) 753-2342. After an applications engineer determines the nature of the problem, an RMA number will be issued. Please write this number clearly on the outside of the shipping container. CAMPBELL SCIENTIFIC’s shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#_____
815 West 1800 North
Logan, Utah 84321-1784

CAMPBELL SCIENTIFIC, INC. does not accept collect calls.
1. Introduction ...1

2. Control Specifications ...2
 2.1 General ...2
 2.2 Output Specifications ..2

3. Power Considerations ..3

4. Installation ...4
 4.1 Controlled Device Connections ..4

5. Address Selection Switches ..5

6. Datalogger Instructions ..7
 6.1 CRBasic ..7
 6.2 Edlog ..7

7. Theory of Operation ..8

8. Program Examples ..8
 8.1 CRBasic Example ...9
 8.2 Edlog Example ...9

Figures

1. SDM-CD16D ..1
2. Equivalent Output Driver Circuit ..2
3. Connection Block Diagrams ...3
4. Use of Terminal Blocks ...5
5. Address Selection Switch ..6

Tables

1. Datalogger to SDM-CD16D Connections4
2. Switch Position and Addresses ...6
The SDM-CD16D (see Figure 1) is a synchronously addressed peripheral. It has 16 control ports.

1. Introduction

The SDM-CD16D expands the digital output capability of Campbell Scientific dataloggers. The outputs can be set to 0 or 5 V by the datalogger. In addition to being able to drive normal logic level inputs, when an output is set HI a ‘boost’ circuit allows it to source a current of up to 100 mA, allowing direct control of low voltage valves, relays etc.

The SDM-CD16D is a synchronously addressed datalogger peripheral. Three ports on the datalogger are used to address the SDM-CD16D then clock out the desired state of each of the 16 control ports. Up to sixteen SDM-CD16Ds may be addressed, making it possible to control a maximum of 256 ports from three datalogger SDM ports.

In CRBasic, instruction SDMCD16AC is used to control the SDM-CD16D. In Edlog, Instruction 104 is typically used; older CR7 dataloggers use Instruction 29.

NOTE

Older CR7 dataloggers with pre-OS7.1 software may not have the necessary instruction. Ensure that your datalogger contains the appropriate instruction before using.
2. Control Specifications

2.1 General

Compatible dataloggers: CR800, CR850, CR1000, CR3000, CR5000, CR10(X), CR23X, CR7 and 21X

Operating voltage: 12 VDC nominal (9 to 18 V)

Current drain at 12V DC: 100 µA typical (All ports HI, no load)

Total cable length: 6 m (CR10/10X, CR23X, 21X), 180 m (CR7)

2.2 Output Specifications

Output Voltage (no load): Output ON/HI, Nominal 5 V (Minimum 4.5 V)
Output OFF/LO, Nominal 0 V (Maximum 0.1 V)

Output Sink Current: Output will sink 8.6 mA from a 5 V source*

Output Source Current: Output will source 36 mA @ 3 V,
115 mA short-circuited to ground*

Max. Output Current: 400 mA at 50°C and 12 V supply (see NOTE below)

(The maximum current should be derated under the following conditions: 50 mA for every 10°C above 50°C and/or 50 mA for every volt above 12 V.)

NOTE

Operating temp.: -25°C to +70°C standard

Size: 230 mm wide x 100 mm high x 24 mm deep

Weight: 350 g

EMC Status: Complies with EN55022-1:1998 and EN50082-1:1998

* If more detailed output characteristics are required, experienced users should consult the equivalent circuit diagrams shown in Figure 2, below.

![Figure 2. Equivalent Output Driver Circuit](image-url)
3. Power Considerations

The SDM-CD16D power requirements are large compared to most Campbell Scientific products when driving significant loads. For many applications an external power supply, as shown in Figure 3, is recommended to power the SDM-CD16D.

For some applications it may be convenient to use the datalogger supply to power the SDM-CD16D, as shown in Figure 3. For long-term applications, the lead-acid power supply available with Campbell Scientific dataloggers should be used, allowing the batteries to be float charged. Alkaline batteries are not recommended for long term applications.

FIGURE 3. Connection Block Diagrams

NOTE

If the 21X power supply is used to power the SDM-CD16D, all low level analog measurements (thermocouples, pyranometers, thermopiles, etc.) must be made differentially. This is a result of slight ground potentials created along the 21X analog terminal strip when the 12 V supply is used to power peripherals. This limitation reduces the number of available analog input channels and may make an external supply for the SDM-CD16D essential.
4. Installation

For correct operation the SDM-CD16D must be installed where there is no risk of water ingress or condensation.

CAUTION

The order in which connections are made is critical. Always connect 12 V first, followed by ground, then the control ports.

For datalogger connections, see Table 1, below. Please refer to Figure 4 for details of how to use the spring-loaded terminals.

<table>
<thead>
<tr>
<th>Connection Order</th>
<th>SDM-CD16D</th>
<th>CR800, CR850, CR1000, CR7, CR10(X), CR23X, 21X</th>
<th>CR3000, CR5000</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>12 V</td>
<td>12 V on datalogger or external supply</td>
<td>12 V on datalogger or external supply</td>
<td>Power</td>
</tr>
<tr>
<td>Second</td>
<td>±</td>
<td>± or G</td>
<td>G</td>
<td>Common Ground</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>C1</td>
<td>SDM-C1</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>C2</td>
<td>SDM-C2</td>
<td>Clock</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>C3</td>
<td>SDM-C3</td>
<td>Enable</td>
</tr>
</tbody>
</table>

NOTE On a CR7, SDMs connect to the ports at the upper right corner of the 700X control module.

Multiple SDM-CD16Ds may be wired in parallel by connecting the datalogger side of one SDM-CD16D to the next. The transient protection of the SDM-CD16D relies on a low resistance path to earth. Ensure that the ground return wire has as low a resistance as possible. Where long cable runs are likely, or where lightning damage is a possibility, the SDM-CD16D can be fitted with gas discharge tubes. Please contact Campbell Scientific for details.

NOTE For CR7 dataloggers, the total cable length can be up to 180 m. For our other dataloggers, the total cable length connecting SDM-CD16Ds to SDM-CD16Ds and the datalogger should not exceed 6 m. Total cable lengths in excess of 6m will adversely affect communication performance.

4.1 Controlled Device Connections

The SDM-CD16D uses spring-loaded terminal blocks, which provide quick, vibration resistant, connections. The output terminals are labeled 1 to 16. A common ground connector is provided between each pair of terminals.
Use a screwdriver in either the top or front slot, as appropriate, to open the terminal spring. Strip any insulation from the wire to give 7 to 9 mm bare wire. Push the wire into the opening, and, while holding it in position, withdraw the screwdriver to release the spring. The wire will now be firmly held in place. See Figure 4, below.

NOTE

You cannot reliably insert more than one solid-core wire into one terminal connector unless the wires are soldered or clamped together. When inserting more than one stranded wire, twist the bare ends together before insertion.

![Figure 4. Use of Terminal Blocks](image)

5. Address Selection Switches

Each SDM-CD16D can have 1 of 16 addresses. The factory-set address is 00. Table 2 shows switch position and the corresponding address. Figures 1 and 5 show the position of the switch. Note that you will have to remove the mounting bracket to gain access to this switch.
TABLE 2. Switch Position and Addresses

<table>
<thead>
<tr>
<th>Switch Setting</th>
<th>Base 4 Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
</tr>
<tr>
<td>3</td>
<td>03</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>A</td>
<td>22</td>
</tr>
<tr>
<td>B</td>
<td>23</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
</tr>
<tr>
<td>D</td>
<td>31</td>
</tr>
<tr>
<td>E</td>
<td>32</td>
</tr>
<tr>
<td>F</td>
<td>33</td>
</tr>
</tbody>
</table>

Use a screwdriver to select address

FIGURE 5. Address Selection Switch
6. Datalogger Instructions

6.1 CRBasic

The SDMCD16AC instruction in CRBasic is used by our CR800, CR850, CR1000, CR3000, and CR5000 dataloggers. With this instruction, a port on an SDM-CD16D is enabled/disabled (turned on or off) by sending a value to it. A non-zero value will enable the port; a zero value disables it. The values to be sent to the SDM-CD16D are held in the Source array.

Syntax

SDMCD16AC (Source, Reps, SDMAddress)

Remarks

The SDMCD16AC instruction has the following parameters:

Source The Source parameter is an array which holds the values that will be sent to the SDM-CD16D to enable/disable its ports. An SDM-CD16D has 16 ports; therefore, the source array must be dimensioned to 16 times the number of Repetitions (the number of SDM-CD16D devices to be controlled). As an example, with the array CDCtrl(32), the value held in CDCtrl(1) will be sent to port 1, the value held in CDCtrl(2) will be sent to port 2, etc. The value held in CDCtrl(32) would be sent to port 16 on the second SDM-CD16D.

Reps The Reps parameter is the number of SDM-CD16D devices that will be controlled with this instruction.

SDMAddress The SDMAddress parameter is used to define the address of the SDM-CD16D that will be controlled with this instruction. Valid SDM addresses are 0 through 14. Address 15 is reserved for the SDMTrigger instruction. If the Reps parameter is greater than 1, the datalogger will increment the SDM address for each subsequent device that it communicates with.

6.2 Edlog

Instruction 104 is used by the CR10/10X, CR23X, CR7 and 21X to control the SDM-CD16D, and Instruction 29 is used by older CR7s. The Instruction descriptions are shown below.
Instruction 104 – SDM-CD16D used with CR10/10X, CR23X, CR7 and 21X dataloggers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Reps (No. of modules sequentially addressed)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Starting Address (base 4: 00..33)</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Starting Input Location</td>
</tr>
</tbody>
</table>

Execution Time =
- 2 ms per Rep for the CR10/10X and CR23X
- 3.5 ms per Rep for the 21X and CR7

Instruction 29 – SDM-CD16D used with older CR7s

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Reps (No. of modules sequentially addressed)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Device (2 = SDM-CD16D)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Starting Address (base 4: 00..33)</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Card (Excitation card No.)</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Starting Input Location</td>
</tr>
</tbody>
</table>

Execution Time = 150 ms to 190 ms per Rep

The number of SDM-CD16Ds to be addressed is defined by the Reps (repetitions) parameter. Each Rep sequentially addresses (00, 01, 02,...32, 33) SDM-CD16Ds, starting with the address specified in parameter 2 (parameter 3 for Instruction 29).

For each repetition, the 16 ports of the addressed SDM-CD16D are set according to 16 sequential input locations starting at the input location specified in parameter 3 (parameter 5 for Instruction 29). Any non-zero value stored in an input location activates (sets HI 5 V) the associated SDM-CD16D port. A value of zero (0) de-activates the port (sets LO 0 V). For example, assuming two repetitions and a starting input location of 33, outputs 1 to 16 of the first SDM-CD16D are set according to input locations 33 to 48, and outputs 1 to 16 of the second SDM-CD16D are set according to input locations 49 to 64.

For older CR7s with Instruction 29, the Device (parameter 2) specifies what type of synchronously addressed peripheral is to be addressed. The Device code for an SDM-CD16D is 2.

For Instruction 29 only (older CR7s), the Card parameter (parameter 4) specifies which 725 Excitation Card is being used for the control port signals. The Reps parameter does not advance beyond the specified Card, requiring another Instruction 29 for each 725 Excitation Card used.

7. Theory of Operation

On power-up, all SDM-CD16D outputs are off /LO.

The SDM-CD16D is a synchronously addressed peripheral. C2 and C3, driven high by the datalogger, initiate a cycle. While holding C3 high, the datalogger drives C2 as a clock line and C1 as a serial data line. The datalogger shifts out
a data bit on C1 (LSB first) on the falling edge of the C2 clock. The SDM-
CD16D shifts in the C1 data bit on the rising edge of the C2 clock.

The first eight bits clocked out represent the SDM-CD16D address. If the
address matches the SDM-CD16D’s address, the SDM-CD16D is enabled. If
enabled, the next 16 bits are shifted into the SDM-CD16D, each bit controlling
one port, the first of which controls output 1.

When the 16 control bits are clocked in, C2 is held high while C3 is pulsed low
then high to latch the control bits. The datalogger then lowers both C3 and C2
to complete the cycle.

8. Program Examples

8.1 CRBasic Example

In the following CR1000 program example, a counter is used to fill an array
called Src() that will control two SDM-CD16Ds.

```
'Dimension Variables
Public src(32)
Dim i, count, mask(16)

'Program
BeginProg
for i=1 to 16
   mask(i) = 2^(i-1)
next i
Scan(20,msec,2,0)
   count = count + 1
   for i=1 to 32
      src(i) = count AND mask(((i-1) MOD 16) +1)
   next i
SDMCD16AC(src(),2,1)
NextScan
EndProg
```

8.2 Edlog Example

The example is written for the CR10(X) Measurement and Control Module.
The program concepts presented are the same for the CR23X, 21X and CR7
dataloggers with minor changes in the program code.

In this example, the SDM-CD16D is used to control the temperature between
23°C and 28°C in each of five greenhouses. In each greenhouse the SDM-
CD16D controls a heating unit, a refrigerating unit and an air mixing fan
according to the following conditions:

Heating unit:
Activate when temperature <23.5°C.
Deactivate when temperature >25.5°C.
Cooling unit:
Activate when temperature >27.5°C.
Deactivate when temperature <24.5°C.

Mixing fan:
Activate whenever the heating or cooling units are activated.
Activate for 5 minutes out of every 15 minutes.

The program assumes that the temperature measurements have been made, and that the average temperature for each greenhouse is computed and stored in input locations 1 to 5. For further information on loops and input location indexing, please refer to your datalogger manual.

Input location assignments are as follows:

<table>
<thead>
<tr>
<th>Input Location</th>
<th>Input Location Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1..5</td>
<td>Temp #1..#5</td>
<td>Avg. temp. greenhouse 1..5</td>
</tr>
<tr>
<td>10..14</td>
<td>Heat #1..#5</td>
<td>Heater control, greenhouse 1..5</td>
</tr>
<tr>
<td>15..19</td>
<td>Cool #1..#5</td>
<td>Cooler control, greenhouse 1..5</td>
</tr>
<tr>
<td>20..24</td>
<td>Fan #1..#5</td>
<td>Fan control, greenhouse 1..5</td>
</tr>
</tbody>
</table>

`;{CR10X}
*Table 1 Program
01: 5 Execution Interval (seconds)
1: Beginning of Loop (P87)
 1: 0 Delay
 2: 5 Loop Count

Start heater control logic

2: If (X<=>F) (P89) if temperature is below heater threshold
 1: 1 -- X Loc [Temp_1]
 2: 4 <
 3: 23.5 F
 4: 30 Then Do then

3: Z=F (P30) put a ‘1’ into heater control location
 1: 1 F
 2: 0 Exponent of 10
 3: 10 -- Z Loc [Heat_1]

4: End (P95) end ‘then do’
5: If (X<=>F) (P89) then
1: 10 -- X Loc [Heat_1] if the heater is on (heater control location <>0)
2: 2 <=
3: 0 F
4: 30 Then Do then

6: If (X<=>F) (P89) check upper threshold
1: 1 -- X Loc [Temp_1] to see if heater should be turned off
2: 3 >=
3: 25.5 F
4: 30 Then Do

7: Z=F (P30) if heater should be turned off, enter a ‘0’ into heater control location
1: 0 F
2: 0 Exponent of 10
3: 10 -- Z Loc [Heat_1]

8: End (P95) end 'then do'

9: Else (P94) else, if the heater is off
10: Z=F (P30) enter a ‘0’ into heater control location
1: 0 F
2: 0 Exponent of 10
3: 10 -- Z Loc [Heat_1]

11: End (P95) end 'then do/else’

End heater control logic

Start cooler control logic

12: If (X<=>F) (P89) if ‘cooler on’ threshold is exceeded
1: 1 -- X Loc [Temp_1]
2: 3 >=
3: 27.5 F
4: 30 Then Do then

13: Z=F (P30) put a ‘1’ into cooler control location
1: 1 F
2: 0 Exponent of 10
3: 15 -- Z Loc [Cool_1]

14: End (P95) end 'then do’

15: If (X<=>F) (P89) if cooler is on (cooler control location <>0)
1: 15 -- X Loc [Cool_1]
2: 2 <=
3: 0 F
4: 30 Then Do then
16: If (X<>F) (P89)
 1: 1 -- X Loc [Temp_1]
 2: 4 <
 3: 24.5 F
 4: 30 Then Do

17: Z=F (P30)
 1: 0 F
 2: 0 Exponent of 1
 3: 15 -- Z Loc [Cool_1]

18: End (P95)

19: Else (P94)

20: Z=F (P30)
 1: 0 F
 2: 0 Exponent of 1
 3: 15 -- Z Loc [Cool_1]

21: End (P95)

End cooler control logic

Start fan control logic based on heater/cooler

22: If (X<>F) (P89)
 1: 10 -- X Loc [Heat_1]
 2: 2 <>
 3: 0 F
 4: 11 Set Flag 1 High

23: If (X<>F) (P89)
 1: 15 -- X Loc [Cool_1]
 2: 2 <>
 3: 0 F
 4: 11 Set Flag 1 High

24: If Flag/Port (P91)
 1: 11 Do if Flag 1 is High
 2: 30 Then Do

25: Z=F (P30)
 1: 1 F
 2: 0 Exponent of 10
 3: 20 -- Z Loc [Fan_1]

26: Else (P94)

27: Z=F (P30)
 1: 0 F
 2: 0 Exponent of 10
 3: 20 -- Z Loc [Fan_1]
<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28:</td>
<td>End (P95) end ‘then do/else’</td>
</tr>
<tr>
<td>29:</td>
<td>Do (P86) reset flag 1</td>
</tr>
<tr>
<td>1: 21</td>
<td>Set Flag 1 Low</td>
</tr>
<tr>
<td>30:</td>
<td>End (P95) end master loop</td>
</tr>
<tr>
<td></td>
<td>End fan control logic based on heater/cooler</td>
</tr>
<tr>
<td></td>
<td>Start fan control logic based on time</td>
</tr>
<tr>
<td>31:</td>
<td>If time is (P92) if 5 minutes remain</td>
</tr>
<tr>
<td>1: 10</td>
<td>Minutes (Seconds --) into a out of 15 minute</td>
</tr>
<tr>
<td>2: 15</td>
<td>Interval (same units as above) interval</td>
</tr>
<tr>
<td>3: 12</td>
<td>Set Flag 2 High set flag 2</td>
</tr>
<tr>
<td>32:</td>
<td>If Flag/Port (P91) if flag 2 is set</td>
</tr>
<tr>
<td>1: 12</td>
<td>Do if Flag 2 is High</td>
</tr>
<tr>
<td>2: 30</td>
<td>Then Do then</td>
</tr>
<tr>
<td>33:</td>
<td>Beginning of Loop (P87) start fan loop</td>
</tr>
<tr>
<td>1: 0</td>
<td>Delay</td>
</tr>
<tr>
<td>2: 5</td>
<td>Loop Count</td>
</tr>
<tr>
<td>34:</td>
<td>Z=F (P30) put a ‘1’ into fan control location</td>
</tr>
<tr>
<td>1: 1</td>
<td>F</td>
</tr>
<tr>
<td>2: 0</td>
<td>Exponent of 10</td>
</tr>
<tr>
<td>3: 20</td>
<td>-- Z Loc [Fan_1]</td>
</tr>
<tr>
<td>35:</td>
<td>End (P95) end fan loop</td>
</tr>
<tr>
<td>36:</td>
<td>End (P95) end ‘then do’</td>
</tr>
<tr>
<td>37:</td>
<td>If time is (P92) reset flag 2 at the end of the 15 minutes</td>
</tr>
<tr>
<td>1: 0</td>
<td>Minutes (Seconds --) into a end of the 15 minutes</td>
</tr>
<tr>
<td>2: 15</td>
<td>Interval (same units as above)</td>
</tr>
<tr>
<td>3: 22</td>
<td>Set Flag 2 Low</td>
</tr>
<tr>
<td></td>
<td>End fan control logic based on time</td>
</tr>
<tr>
<td></td>
<td>Input locations 10 to 24 are now loaded with a ‘1’ or ‘0’ to set ports on the SDM-CD16D</td>
</tr>
<tr>
<td>38:</td>
<td>SDM-CD16 / SDM-CD16D (P104) send instructions to the SDM-CD16D with address 00</td>
</tr>
<tr>
<td>1: 1</td>
<td>Reps</td>
</tr>
<tr>
<td>2: 00</td>
<td>Address</td>
</tr>
<tr>
<td>3: 10</td>
<td>Loc [Heat_1]</td>
</tr>
<tr>
<td>*Table 2 Program</td>
<td>02: 0.0000 Execution Interval (seconds)</td>
</tr>
</tbody>
</table>
Table 3 Subroutines

End Program

-Input Locations-

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Temp_1</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Temp_2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Temp_3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Temp_4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Temp_5</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Heat_1</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Heat_2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Heat_3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Heat_4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Heat_5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>Cool_1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>Cool_2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Cool_3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Cool_4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Cool_5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>Fan_1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>Fan_2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Fan_3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Fan_4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Fan_5</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES
www.campbellsci.com
info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)
PO Box 2450
Somerset West 7129
SOUTH AFRICA
www.csafrica.co.za
cleroux@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 444
Thuringowa Central
QLD 4812 AUSTRALIA
www.campbellsci.com.au
info@campbellsci.com.au

Campbell Scientific do Brazil Ltda. (CSB)
Rua Luisa Crapsi Orsi, 15 Butantã
CEP: 005543-000 São Paulo SP BRAZIL
www.campbellsci.com.br
suporte@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)
11564 - 149th Street NW
Edmonton, Alberta T5M 1W7
CANADA
www.campbellsci.ca
dataloggers@campbellsci.ca

Campbell Scientific Ltd. (CSL)
Campbell Park
80 Hathern Road
Shepshed, Loughborough LE12 9GX
UNITED KINGDOM
www.campbellsci.co.uk
sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)
Miniparc du Verger - Bat. H
1, rue de Terre Neuve - Les Ulis
91967 COURTABOEUF CEDEX
FRANCE
www.campbellsci.fr
info@campbellsci.fr

Campbell Scientific Spain, S. L.
Psg. Font 14, local 8
08013 Barcelona
SPAIN
www.campbellsci.es
info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or International representative.