Limited warranty

“Products manufactured by CSI are warranted by CSI to be free from defects in materials and workmanship under normal use and service for twelve months from the date of shipment unless otherwise specified in the corresponding product manual. (Product manuals are available for review online at www.campbellsci.com.) Products not manufactured by CSI, but that are resold by CSI, are warranted only to the limits extended by the original manufacturer. Batteries, fine-wire thermocouples, desiccant, and other consumables have no warranty. CSI’s obligation under this warranty is limited to repairing or replacing (at CSI’s option) defective Products, which shall be the sole and exclusive remedy under this warranty. The Customer assumes all costs of removing, reinstalling, and shipping defective Products to CSI. CSI will return such Products by surface carrier prepaid within the continental United States of America. To all other locations, CSI will return such Products best way CIP (port of entry) per Incoterms ® 2010. This warranty shall not apply to any Products which have been subjected to modification, misuse, neglect, improper service, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied. The warranty for installation services performed by CSI such as programming to customer specifications, electrical connections to Products manufactured by CSI, and Product specific training, is part of CSI’s product warranty. CSI EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CSI hereby disclaims, to the fullest extent allowed by applicable law, any and all warranties and conditions with respect to the Products, whether express, implied or statutory, other than those expressly provided herein.”
Assistance

Products may not be returned without prior authorization. The following contact information is for US and international customers residing in countries served by Campbell Scientific, Inc. directly. Affiliate companies handle repairs for customers within their territories. Please visit www.campbellsci.com to determine which Campbell Scientific company serves your country.

To obtain a Returned Materials Authorization (RMA) number, contact CAMPBELL SCIENTIFIC, INC., phone (435) 227-9000. Please write the issued RMA number clearly on the outside of the shipping container. Campbell Scientific’s shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#____
815 West 1800 North
Logan, Utah 84321-1784

For all returns, the customer must fill out a “Statement of Product Cleanliness and Decontamination” form and comply with the requirements specified in it. The form is available from our website at www.campbellsci.com/repair. A completed form must be either emailed to repair@campbellsci.com or faxed to (435) 227-9106. Campbell Scientific is unable to process any returns until we receive this form. If the form is not received within three days of product receipt or is incomplete, the product will be returned to the customer at the customer’s expense. Campbell Scientific reserves the right to refuse service on products that were exposed to contaminants that may cause health or safety concerns for our employees.
DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING, USING, MAINTAINING, AND WORKING ON OR AROUND TRIPODS, TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC. FAILURE TO PROPERLY AND COMPLETELY ASSEMBLE, INSTALL, OPERATE, USE, AND MAINTAIN TRIPODS, TOWERS, AND ATTACHMENTS, AND FAILURE TO HEED WARNINGS, INCREASES THE RISK OF DEATH, ACCIDENT, SERIOUS INJURY, PROPERTY DAMAGE, AND PRODUCT FAILURE. TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE HAZARDS. CHECK WITH YOUR ORGANIZATION'S SAFETY COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED PROTECTIVE EQUIPMENT PRIOR TO PERFORMING ANY WORK.

Use tripods, towers, and attachments to tripods and towers only for purposes for which they are designed. Do not exceed design limits. Be familiar and comply with all instructions provided in product manuals. Manuals are available at www.campbellsci.com or by telephoning (435) 227-9000 (USA). You are responsible for conformance with governing codes and regulations, including safety regulations, and the integrity and location of structures or land to which towers, tripods, and any attachments are attached. Installation sites should be evaluated and approved by a qualified engineer. If questions or concerns arise regarding installation, use, or maintenance of tripods, towers, attachments, or electrical connections, consult with a licensed and qualified engineer or electrician.

General

- Prior to performing site or installation work, obtain required approvals and permits. Comply with all governing structure-height regulations, such as those of the FAA in the USA.
- Use only qualified personnel for installation, use, and maintenance of tripods and towers, and any attachments to tripods and towers. The use of licensed and qualified contractors is highly recommended.
- Read all applicable instructions carefully and understand procedures thoroughly before beginning work.
- Wear a **hardhat** and **eye protection**, and take other appropriate safety precautions while working on or around tripods and towers.
- **Do not climb** tripods or towers at any time, and prohibit climbing by other persons. Take reasonable precautions to secure tripod and tower sites from trespassers.
- Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical

- **You can be killed** or sustain serious bodily injury if the tripod, tower, or attachments you are installing, constructing, using, or maintaining, or a tool, stake, or anchor, come in contact with overhead or underground utility lines.
- Maintain a distance of at least one-and-one-half times structure height, 20 feet, or the distance required by applicable law, **whichever is greater**, between overhead utility lines and the structure (tripod, tower, attachments, or tools).
- Prior to performing site or installation work, inform all utility companies and have all underground utilities marked.
- Comply with all electrical codes. Electrical equipment and related grounding devices should be installed by a licensed and qualified electrician.

Elevated Work and Weather

- Exercise extreme caution when performing elevated work.
- Use appropriate equipment and safety practices.
- During installation and maintenance, keep tower and tripod sites clear of un-trained or non-essential personnel. Take precautions to prevent elevated tools and objects from dropping.
- **Do not perform** any work in inclement weather, including wind, rain, snow, lightning, etc.

Maintenance

- Periodically (at least yearly) check for wear and damage, including corrosion, stress cracks, frayed cables, loose cable clamps, cable tightness, etc. and take necessary corrective actions.
- Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS, THE CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING FROM IMPROPER INSTALLATION, USE, OR MAINTENANCE OF TRIPODS, TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.
Table of contents

1. Introduction ... 1
2. Specifications ... 1
3. Siting ... 2
4. Mounting procedure ... 2
5. Wiring ... 4
6. Register map ... 5
7. RS-485 programming ... 6
8. Analog programming ... 6
9. Example programs .. 7
10. Maintenance and troubleshooting .. 10
1. Introduction

The SMP10 pyranometer, manufactured by Kipp & Zonen and cabled by Campbell Scientific, measures solar radiation with a high-quality blackened thermopile protected by two glass domes. Its flat spectral sensitivity makes it ideal for applications in natural sunlight, under plant canopies, and in greenhouses or buildings. Communications to on-site RTUs, SCADA systems, or other data acquisition systems are simplified with the industry-standard Modbus RTU communications protocol. Typical uses include environmental monitoring, solar resource assessment, and solar power performance applications.

Typically, this pyranometer is oriented perpendicular to the Earth’s surface to measure global horizontal irradiance (GH). Diffuse sky radiation can also be measured with the use of a shade mechanism.

2. Specifications

ISO 9060:2018 classification: class A (secondary standard)
Output: Modbus over 2-wire RS-485 or 0 to 1 V
Analog output range: 0 to 1600 W/m²
Modbus output range: –400 to 4000 W/m²
Zero offset A: < 7 W/m²
Zero offset B: < 2 W/m²
Spectral range: 285 to 2800 nm
Operating temperature range: –40 to 80 °C
Temperature response: < 1% (–20 to 50 °C); < 2% (–40 to 70 °C)
Operating voltage range: 5 to 30 VDC
Power consumption: <55 mW at 12 VDC
Weight without cable: 0.6 kg (1.3 lb)
3. Siting

The solar radiation sensor is usually installed horizontally, but can also be installed at any angle including an inverted position. Site the sensor to allow easy access for maintenance while ideally avoiding any obstructions or reflections above the plane of the sensing element. It is important to mount the sensor such that a shadow or a reflection will not be cast on it at any time. If this is not possible, try to choose a site where any obstruction over the azimuth range between earliest sunrise and latest sunset has an elevation not exceeding 5°. Diffuse solar radiation is less influenced by obstructions near the horizon. The sensor should be mounted with the cable pointing towards the nearest magnetic pole. For example, in the northern hemisphere, point the cable toward the North Pole.

4. Mounting procedure

Required tools:

- Diopter
- Solar compass
- 8 mm (5/16-inch) open-end wrench for U-bolt nuts

1. On a level surface, level the solar radiation sensor using the leveling feet on the sensor. Alternatively, remove the sensor leveling feet to allow it to be mounted directly to the mounting bracket.

2. Secure the solar radiation sensor to the mounting bracket. The blue dots in the following figure indicate the mounting holes used for this pyranometer.
3. Using a diopter in combination with a solar compass, install and orient the crossarm on the tripod or the mast. If installing the mounting bracket on a vertical pole, ensure the pole is truly vertical.

4. Secure the mounting bracket to the crossarm or vertical pole using the hardware included with the mounting bracket. The CM255 uses one U-bolt, nuts, flat washers, and lock washers to mount the bracket, as shown in the following figure.

5. For the CM255LS bracket, use the two set screws to secure the bracket to the crossarm or pole as shown in the following figure. For pyranometers mounted horizontally, ensure the mounting bracket is horizontal in two dimensions. For pyranometers mounted at an angle, set the mounting bracket angle to the desired angle prior to tightening the mounting hardware.
6. Verify mounting hardware is firmly tightened, and that the mounting bracket is at the desired angle. The CM255LS includes leveling bolts for additional adjustment.

5. Wiring

Table 5-1 (p. 4) provides RS-485 wiring and Table 5-2 (p. 5) provides analog wiring.

<table>
<thead>
<tr>
<th>Wire color</th>
<th>Pin-out</th>
<th>Function</th>
<th>Data logger connection¹</th>
<th>MeteoPV connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grey</td>
<td>5</td>
<td>RS485A+</td>
<td>C (odd)</td>
<td>A-</td>
</tr>
<tr>
<td>Yellow</td>
<td>4</td>
<td>RS485B-</td>
<td>C (even)</td>
<td>B+</td>
</tr>
<tr>
<td>White</td>
<td>7</td>
<td>Power in (12 V)</td>
<td>12V</td>
<td>12V</td>
</tr>
<tr>
<td>Black</td>
<td>8</td>
<td>Power ground</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Blue</td>
<td>2</td>
<td>Ground</td>
<td>☯ (analog ground)</td>
<td>☯ (analog ground)</td>
</tr>
</tbody>
</table>

¹ Assumes the sensor directly connects to the data logger.
Table 5-2: Analog pin-out, wire color, function, and data logger connection

<table>
<thead>
<tr>
<th>Wire color</th>
<th>Pin-out</th>
<th>Function</th>
<th>Differential data logger connection</th>
<th>Single-ended data logger connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>3</td>
<td>Pyranometer Signal High</td>
<td>(U) configured for differential input(^1), DIFF H (differential high, analog-voltage input)</td>
<td>(U) configured for single-ended analog input(^1), SE (single-ended, analog-voltage input)</td>
</tr>
<tr>
<td>Brown</td>
<td>6</td>
<td>Pyranometer Signal Reference</td>
<td>(U) configured for differential input(^1), DIFF L (differential low, analog-voltage input)</td>
<td>☏ (analogue ground)</td>
</tr>
<tr>
<td>Blue</td>
<td>2</td>
<td>Ground</td>
<td>☏ (analogue ground)</td>
<td>☏ (analogue ground)</td>
</tr>
</tbody>
</table>

\(^1\) U channels are automatically configured by the measurement instruction.

6. Register map

RS-485 Register Map (p. 5) provides the register map for the most commonly used values. A comprehensive register map is available in the Kipp and Zonen manual.

Table 6-1: RS-485 Register Map

<table>
<thead>
<tr>
<th>Starting register number</th>
<th>Register count</th>
<th>Data format</th>
<th>Label</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>unsigned integer</td>
<td>Status</td>
<td></td>
<td>Device Status flags</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>signed integer</td>
<td>Range</td>
<td></td>
<td>Range and scale factor sensor data (determines number of decimal places)</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>signed integer</td>
<td>Sensor1</td>
<td>W/m(^2)</td>
<td>Temperature compensated net radiation</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>signed integer</td>
<td>RawData1</td>
<td>W/m(^2)</td>
<td>Net radiation</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>signed integer</td>
<td>StDev1</td>
<td>W/m(^2)</td>
<td>Standard deviation of temperature compensated radiation</td>
</tr>
</tbody>
</table>
Table 6-1: RS-485 Register Map

<table>
<thead>
<tr>
<th>Starting register number</th>
<th>Register count</th>
<th>Data format</th>
<th>Label</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1</td>
<td>signed integer</td>
<td>BodyTemp</td>
<td>0.1 °C</td>
<td>Body temperature</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>signed integer</td>
<td>VSupply</td>
<td>VDC</td>
<td>External power voltage</td>
</tr>
</tbody>
</table>

7. RS-485 programming

The RS-485 output can be directly read by a MeteoPV, CR6-series, CR1000X-series, or Modbus RTU RS-485 network. Other Campbell Scientific data loggers can use an MD485 multidrop interface to read the RS-485 output (refer to the MD485 manual).

A CR6 or CR1000X data logger programmed as a Modbus Master can retrieve the values stored in the Input Registers. To do this, the CRBasic program requires a SerialOpen() instruction followed by the ModbusMaster() instruction.

The SerialOpen instruction has the following syntax:

```
SerialOpen (ComPort, Baud, Format, TXDelay, BufferSize, Mode)
```

The Format is typically set to logic 1 low; even parity, one stop bit, 8 data bits. The Mode parameter should configure the ComPort as RS-485 half-duplex, transparent. The ModbusMaster() instruction has the following syntax:

```
ModbusMaster (Result, ComPort, Baud, Addr, Function, Variable, Start, Length, Tries, TimeOut, [ModbusOption])
```

The Addr parameter must match the sensor Modbus address. To collect all of the values, the Start parameter needs to be 1 and the Length parameter needs to correspond with the register count (see Register map (p. 5)). ModbusOption is an optional parameter described in the CRBasic Editor Help. Refer to Example programs (p. 7) for more information.

8. Analog programming

The pyranometer outputs a low level voltage that is measured using either the VolTDiff() CRBasic instruction or VolTSE() CRBasic instruction.
CAUTION:
Nearby AC power lines, electric pumps, or motors can be a source of electrical noise. If the sensor or data logger is located in an electrically noisy environment, the measurement should be made with the 60 or 50 Hz rejection integration option as shown in the example programs.

If measurement time is not critical, the autorange option can be used in the `VoltDiff()` or `VoltSE()` instruction; the autorange adds a few milliseconds to the measurement time. Otherwise, select the input range as follows:

1. Estimate the maximum expected input voltage by multiplying the maximum expected irradiance (in W·m⁻²) by the calibration factor (in μV / W·m⁻²). Divide the answer by 1000 to give the maximum in millivolt units.

2. Select the smallest input range that is greater than the maximum expected input voltage.

If electromagnetic radiation can be a problem, use an fₙ₁ of 50 or 60 Hz. The multiplier converts the millivolt reading to engineering units. Table 8-1 (p. 7) provides the calculations required for the various units. The offset will normally be fixed at zero (see Example programs (p. 7)).

<table>
<thead>
<tr>
<th>Units</th>
<th>Multiplier</th>
<th>Output processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>W·m⁻²</td>
<td>M</td>
<td>Average</td>
</tr>
<tr>
<td>MJ·m⁻²</td>
<td>M · t · 0.000001</td>
<td>Totalize</td>
</tr>
<tr>
<td>kJ·m⁻²</td>
<td>M · t · 0.001</td>
<td>Totalize</td>
</tr>
<tr>
<td>cal·cm⁻²</td>
<td>M · t · 0.0239 · 0.001</td>
<td>Totalize</td>
</tr>
<tr>
<td>cal · cm⁻² · min⁻¹</td>
<td>M · 1.434 · 0.001</td>
<td>Average</td>
</tr>
<tr>
<td>W · hr · m⁻²</td>
<td>M · t / 3600</td>
<td>Totalize</td>
</tr>
</tbody>
</table>

M = 1000/c, where c is the sensor output in μV / W·m⁻²

t = data logger program execution interval in seconds

9. Example programs

Table 9-1 (p. 8) provides wiring for the example programs. CRBasic Example 1 (p. 8) uses Modbus over RS-485 and CRBasic Example 2 (p. 9).
Table 9-1: Example programs connections

<table>
<thead>
<tr>
<th>Wire color</th>
<th>Function</th>
<th>RS-485 program CR1000X connections</th>
<th>Analog program CR1000X connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grey</td>
<td>RS485A</td>
<td>C7</td>
<td>N/C</td>
</tr>
<tr>
<td>Yellow</td>
<td>RS485B</td>
<td>C8</td>
<td>N/C</td>
</tr>
<tr>
<td>White</td>
<td>Power in (12 V)</td>
<td>12V</td>
<td>N/C</td>
</tr>
<tr>
<td>Black</td>
<td>Power ground</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>Green</td>
<td>Pyranometer signal high</td>
<td>N/C</td>
<td>1H</td>
</tr>
<tr>
<td>Brown</td>
<td>Pyranometer signal reference</td>
<td>N/C</td>
<td>1L</td>
</tr>
<tr>
<td>Blue</td>
<td>Ground</td>
<td>☩ (analog ground)</td>
<td>☩ (analog ground)</td>
</tr>
</tbody>
</table>

CRBasic Example 1: CR1000X program using Modbus over RS-485 to measure the SMP10

`'CR1000X Series Datalogger`

`'SMP10 Pyranometer 19200 BAUD, 8 data bits, 1 stop bit, no parity`

`'Modbus Address Set to 51`

```crbasic
Public PTemp : Units PTemp = DegC
Public Batt_volt : Units Batt_volt = VDC
Dim Input_Reg(10) As Long
Public SMP10_ResultCode

Alias Input_Reg(1)=Dev_Type
Alias Input_Reg(2)=Version
Alias Input_Reg(3)=Mode
Alias Input_Reg(4)=Dev_Flags
Alias Input_Reg(5)=R_S_Factor
Alias Input_Reg(6)=TC_SRad
Alias Input_Reg(7)=Raw_SRad
Alias Input_Reg(8)=Stan_Dev
Alias Input_Reg(9)=Body_Temp
Alias Input_Reg(10)=Ext_Pwr

Public SMP10_NetRadiation : Units SMP10_NetRadiation = W/m^2
Public SMP10_NetRadTempCor : Units SMP10_NetRadTempCor = W/m^2
Public SMP10_BodyTemp : Units SMP10_BodyTemp = DegC

DataTable (Hourly,1,-1)
    DataTableInterval (0,60,Min,10)
    Minimum (1,Batt_volt,FP2,False,False)
    Sample (1,PTemp,FP2)
```
CRBasic Example 1: CR1000X program using Modbus over RS-485 to measure the SMP10

- **Average** (1, SMP10_NetRadTempCor, IEEE4, False)
- **StdDev** (1, SMP10_NetRadTempCor, IEEE4, False)
- **Average** (1, SMP10_BodyTemp, IEEE4, False)
- **StdDev** (1, SMP10_BodyTemp, IEEE4, False)
- **Maximum** (1, SMP10_ResultCode, FP2, False, False)

EndTable

BeginProg

SerialOpen (ComC7, 19200, 18, 0, 300, 4)

- **Scan** (5, Sec, 0, 0)
 - **PanelTemp** (PTemp, 60)
 - **Battery** (Batt_volt)

 'Modbus RS485

 ModbusMaster (SMP10_ResultCode, ComC7, 19200, 51, 3, Input_Reg(), 1, 10, 1, 100, 3)

 If SMP10_ResultCode = 0 **Then**

 - SMP10_NetRadiation = Raw_SRad
 - SMP10_NetRadTempCor = TC_SRad
 - SMP10_BodyTemp = Body_Temp * 0.1

 Else

 - SMP10_NetRadiation = NAN
 - SMP10_NetRadTempCor = NAN
 - SMP10_BodyTemp = NAN

 EndIf

 CallTable Hourly
 NextScan

EndProg

CRBasic Example 2: CR1000X program using analog voltage to measure the SMP10

'CR1000X Series Datalogger

Public PTemp : **Units** PTemp = DegC
Public Batt_volt : **Units** Batt_volt = VDC
Public SMP10_NetRadAnalog : **Units** SMP10_NetRadAnalog = W/m^2

DataTable (Hourly, 1, -1)
- **DataInterval** (0, 60, Min, 10)
- **Minimum** (1, Batt_volt, FP2, False, False)
- **Sample** (1, PTemp, FP2)
- **Average** (1, SMP10_NetRadAnalog, IEEE4, False)
- **StdDev** (1, SMP10_NetRadAnalog, IEEE4, False)

EndTable
CRBasic Example 2: CR1000X program using analog voltage to measure the SMP10

```crbasic
BeginProg
  Scan (5,Sec,0,0)
    PanelTemp (PTemp,60)
    Battery (Batt_volt)
    VoltDiff(SMP10_NetRadAnalog,1,mV1000,1,True,0,60,2.2,-200)
  CallTable Hourly
NextScan
EndProg
```

10. Maintenance and troubleshooting

The SMP10 has no service items requiring scheduled replacement. There is no accessible desiccant cartridge to maintain. Use pure alcohol or distilled water and a lint-free cloth to clean the dome, removing smears and deposits. Local conditions and application dictate cleaning interval. Sophisticated research applications require daily cleaning. For typical PV applications, clean once per week, bi-monthly, or monthly. The SMP10 should be recalibrated following industry standard best practices such as ASTM G167, ISO 9846, ASTM E824 or ASTM G207 by an accredited lab. The recommended recalibration interval is two years. Contact Campbell Scientific for more information.

Unexpected results typically occur because of improper wiring or programming, electromagnetic radiation, or damaged cables. Ensure that the data logger program includes the correct parameters for the measurement instructions. Check for the presence of strong sources of electromagnetic radiation and use the 50 or 60 Hz integration option in the data logger program if electromagnetic radiation can be a problem. Check the cable for damage and ensure that it is properly connected to the data logger.
Global Sales & Support Network
A worldwide network of companies to help meet your needs

Australia
Location: Garbutt, QLD Australia
Phone: 61.7.4401.7700
Email: info@campbellsci.com.au
Website: www.campbellsci.com.au

Brazil
Location: São Paulo, SP Brazil
Phone: 11.3732.3399
Email: vendas@campbellsci.com.br
Website: www.campbellsci.com.br

Canada
Location: Edmonton, AB Canada
Phone: 780.454.2505
Email: dataloggers@campbellsci.ca
Website: www.campbellsci.ca

China
Location: Beijing, P. R. China
Phone: 86.10.6561.0080
Email: info@campbellsci.com.cn
Website: www.campbellsci.com

Costa Rica
Location: San Pedro, Costa Rica
Phone: 506.2280.1564
Email: info@campbellsci.cc
Website: www.campbellsci.cc

France
Location: Vincennes, France
Phone: 0033.0.1.56.45.15.20
Email: info@campbellsci.fr
Website: www.campbellsci.fr

Germany
Location: Bremen, Germany
Phone: 49.0.421.460974.0
Email: info@campbellsci.de
Website: www.campbellsci.de

South Africa
Location: Stellenbosch, South Africa
Phone: 27.21.8809960
Email: sales@campbellsci.co.za
Website: www.campbellsci.co.za

Southeast Asia
Location: Bangkok, Thailand
Phone: 66.2.719.3399
Email: thitipongc@campbellsci.asia
Website: www.campbellsci.asia

Spain
Location: Barcelona, Spain
Phone: 34.93.2323938
Email: info@campbellsci.es
Website: www.campbellsci.es

UK
Location: Shepshed, Loughborough, UK
Phone: 44.0.1509.601141
Email: sales@campbellsci.co.uk
Website: www.campbellsci.co.uk

USA
Location: Logan, UT USA
Phone: 435.227.9120
Email: info@campbellsci.com
Website: www.campbellsci.com