Warranty

“PRODUCTS MANUFACTURED BY CAMPBELL SCIENTIFIC, INC. are warranted by Campbell Scientific, Inc. (“Campbell”) to be free from defects in materials and workmanship under normal use and service for twelve (12) months from date of shipment unless otherwise specified in the corresponding Campbell pricelist or product manual. Products not manufactured, but that are re-sold by Campbell, are warranted only to the limits extended by the original manufacturer. Batteries, fine-wire thermocouples, desiccant, and other consumables have no warranty. Campbell’s obligation under this warranty is limited to repairing or replacing (at Campbell’s option) defective products, which shall be the sole and exclusive remedy under this warranty. The customer shall assume all costs of removing, reinstalling, and shipping defective products to Campbell. Campbell will return such products by surface carrier prepaid within the continental United States of America. To all other locations, Campbell will return such products best way CIP (Port of Entry) INCOTERM® 2010, prepaid. This warranty shall not apply to any products which have been subjected to modification, misuse, neglect, improper service, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied. The warranty for installation services performed by Campbell such as programming to customer specifications, electrical connections to products manufactured by Campbell, and product specific training, is part of Campbell’s product warranty. CAMPBELL EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Campbell is not liable for any special, indirect, incidental, and/or consequential damages.”
Assistance

Products may not be returned without prior authorization. The following contact information is for US and international customers residing in countries served by Campbell Scientific, Inc. directly. Affiliate companies handle repairs for customers within their territories. Please visit www.campbellsci.com to determine which Campbell Scientific company serves your country.

To obtain a Returned Materials Authorization (RMA), contact CAMPBELL SCIENTIFIC, INC., phone (435) 227-9000. After an applications engineer determines the nature of the problem, an RMA number will be issued. Please write this number clearly on the outside of the shipping container. Campbell Scientific’s shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#_____
815 West 1800 North
Logan, Utah 84321-1784

For all returns, the customer must fill out a “Statement of Product Cleanliness and Decontamination” form and comply with the requirements specified in it. The form is available from our web site at www.campbellsci.com/repair. A completed form must be either emailed to repair@campbellsci.com or faxed to (435) 227-9106. Campbell Scientific is unable to process any returns until we receive this form. If the form is not received within three days of product receipt or is incomplete, the product will be returned to the customer at the customer’s expense. Campbell Scientific reserves the right to refuse service on products that were exposed to contaminants that may cause health or safety concerns for our employees.
Table of Contents

PDF viewers: These page numbers refer to the printed version of this document. Use the PDF reader bookmarks tab for links to specific sections.

1. General ..1

2. Specifications ..1

3. Installation ..3
 3.1 Parts List ..3
 3.2 Mounting ..5
 3.3 Orientation ...11
 3.4 Installation of CH200 Regulator ...13
 3.5 Installation of Morningstar SunSaver SS-10-12V Regulator14

4. Maintenance ...16

5. Power Considerations ..17
 5.1 Proper Solar Power and Lead Acid Battery Sizes17
 5.2 Voltage Regulator ..17

Figures

2-1. Wiring two solar panels to one controller ...2
3-1. Solar panel with 16 AWG cable ...3
3-2. Mounting brackets included with the solar panel3
3-3. Mounting hardware included with the solar panel4
3-4. Attach the arm brackets to the back of the solar panel5
3-5. Use appropriate lock washers and flat washers to mount the arm brackets to the solar panel ...5
3-6. Right and left arm brackets are attached to the back of the solar panel ...6
3-7. Attach the mount to the back of the solar panel between right and left arm brackets ...6
3-8. Use appropriate lock washers and flat washers. Two flat washers, one on each side, are used for each Hex bolt ..6
3-9. Two 5/16-18 x 2.0 u-bolts are used for pole or tripod mounting7
3-10. Lock washers and flat washers are used to secure the two 5/16-18 x 2.0 u-bolts to the solar panel mount ...7
3-11. The solar panel is ready for pole or tripod mounting8
3-12. The solar panel is mounted to a pole using two 5/16-18 x 2.0 u-bolts8
3-13. Solar panel mounted on a tripod. Panel can be mounted to the tripod leg ...9
3-14. Two 5/16-18 x 1.5 u-bolts are attached to each side of the solar panel mount for triangular tower mounting ..10
3-15. Backside view of FIGURE 3-14 ...10
3-16. Angle settings on right and left arm brackets .. 12
3-17. CH200 wired to solar panel, CR1000, and battery 14
3-18. Morningstar’s SunSaver SS-10-12V Regulator mounted on
an enclosure backplate ... 15
3-19. Battery terminal strip adapters for power connection to external
battery .. 16

Tables

3-1. Parts List .. 4
3-2. Solar Panel Tilt Angle* .. 11
3-3. Configurations for Desired Angles ... 12
1. General

Solar panels are a photovoltaic power source used for providing power to the system, as well as charging lead acid batteries. The solar panel is supplied with a user-specified 16 AWG cable with two leads terminated with spade lugs. This cable connects to the external voltage regulator. The voltage regulator is not supplied with the solar panel, and must be purchased separately.

Campbell Scientific’s CH200 voltage regulator is recommended for use with the BP12 and BP24 batteries. The CH200 with software version 5.00 or higher can easily be used with the PB84/PS84 battery (Concorde Sun Xtender PVX-840T) when configured through DevConfig version 2.01 or higher. EnerSys Cyclon batteries can also be used with the CH200.

NOTE
CH200 OS version 4.0 can also be used with the PB84/PS84, but requires each charging parameter to be set individually. See the CH200 documentation for more information on setting charging parameters.

The SunSaver SS-10-12V voltage regulator (CSI p/n 18529) is another option for these solar panels, and it can be purchased from Campbell Scientific, Inc.

2. Specifications

<table>
<thead>
<tr>
<th></th>
<th>SP50-L</th>
<th>SP85-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical peak power (Pp):</td>
<td>50 W</td>
<td>85 W</td>
</tr>
<tr>
<td>Voltage at peak power (Vpp): (voltage from solar panel before regulator)</td>
<td>17.5 V</td>
<td>17.8 V</td>
</tr>
<tr>
<td>Current at peak power (Ipp):</td>
<td>2.9 A</td>
<td>4.8 A</td>
</tr>
<tr>
<td>Temperature coefficient of power:</td>
<td>–0.45% / °C</td>
<td>–(0.5 ± 0.05)% / K</td>
</tr>
<tr>
<td>Length:</td>
<td>83.9 cm (33.0 in)</td>
<td>120.9 cm (47.6 in)</td>
</tr>
<tr>
<td>Width:</td>
<td>53.7 cm (21.1 in)</td>
<td>53.7 cm (21.1 in)</td>
</tr>
<tr>
<td>Depth:</td>
<td>5.0 cm (2.0 in)</td>
<td>5.0 cm (1.97 in)</td>
</tr>
<tr>
<td>Weight:</td>
<td>6 kg (13.2 lb)</td>
<td>7.7 kg (17.0 lb)</td>
</tr>
<tr>
<td>Max. wind speed @ angles greater than 35°:</td>
<td>29 m/s (65 mph)</td>
<td>24 m/s (55 mph)</td>
</tr>
</tbody>
</table>

NOTE
The above solar panel characteristics assume a 1 kilowatt per square meter illumination and a solar panel temperature of 25°C. Individual panels may vary up to 5%. The output panel voltage increases as the panel temperature decreases.
Regulator Specifications (purchased and shipped separately)

<table>
<thead>
<tr>
<th>Model</th>
<th>CH200</th>
<th>Morningstar SunSaver SS-10-12V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature compensation:</td>
<td>Variable, depending on battery manufacturer. Selectable in DevConfig.</td>
<td>–28 mV/°C</td>
</tr>
<tr>
<td>Self consumption:</td>
<td>300 µA to 2 mA</td>
<td>6 mA to 10 mA</td>
</tr>
<tr>
<td>Operating temperature:</td>
<td>–40º to +60ºC</td>
<td>–40º to +85ºC</td>
</tr>
<tr>
<td>Useable solar current:</td>
<td>2.8 A to 4.3 A</td>
<td>10 A</td>
</tr>
</tbody>
</table>

Even though a solar panel’s “current at peak power” may exceed the CH200’s “useable solar current” at noon, the higher output will be utilized during the off-peak hours.

NOTE

A second solar panel can be connected to the Morningstar regulator when additional power is required. One Morningstar SunSaver SS-10-12V regulator can handle two SP50 or SP85 solar panels.

FIGURE 2-1. Wiring two solar panels to one controller
3. Installation

3.1 Parts List

The solar panel ships with two items: one watt solar panel and one mounting hardware package. The solar panel has a user-specified length of 16 AWG cable wired into the junction box on the back of the panel as shown in FIGURE 3-1. The mounting hardware package contains the mounting brackets and other parts necessary to mount the solar panel to a tripod or tower as shown in FIGURE 3-2 and FIGURE 3-3.

FIGURE 3-1. Solar panel with 16 AWG cable

FIGURE 3-2. Mounting brackets included with the solar panel
FIGURE 3-3. Mounting hardware included with the solar panel

TABLE 3-1 shows the list of parts included in the mounting hardware package.

<table>
<thead>
<tr>
<th>Item #</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solar Panel</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Right Arm Bracket</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Left Arm Bracket</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Mount</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5/16-18 x 1.5 U-Bolt with lock washers, flat washers, nuts</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5/16-18 x 2.0 U-Bolt with lock washers, flat washers, nuts</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1/4-20 x 0.75 Hex bolt</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1/4-20 Nut</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Locke washer</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>Flat washer</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>5/16-18 x 0.75 Hex bolt</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>5/16-18 Nut</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Locke washer</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Flat washer</td>
<td>8</td>
</tr>
</tbody>
</table>
3.2 Mounting

The solar panel ships with mounting brackets. These brackets can be found in the mounting hardware package. Remove the right and left arm brackets, as well as the mount from the package. Attach the right and left arm brackets, using 1/4-20 x 0.75 Hex bolt and nuts as shown in FIGURE 3-4. Use the matching lock washers and flat washers as shown in FIGURE 3-5.

FIGURE 3-4. Attach the arm brackets to the back of the solar panel

FIGURE 3-5. Use appropriate lock washers and flat washers to mount the arm brackets to the solar panel
Attach the mount to the back of the solar panel between the right and left brackets already in place as shown in FIGURE 3-7. Hint: jump to Section 3.3, Orientation, to determine which holes to use in order to mount the panel at the optimum angle for the site’s latitude. Use the 5/16-18 x 0.75 Hex bolt and nuts along with the matching lock washers and flat washers. Use two flat washers, one on each side, for each bolt as shown in FIGURE 3-8.

FIGURE 3-6. Right and left arm brackets are attached to the back of the solar panel

FIGURE 3-7. Attach the mount to the back of the solar panel between right and left arm brackets

FIGURE 3-8. Use appropriate lock washers and flat washers. Two flat washers, one on each side, are used for each Hex bolt.
For pole or tripod mounting, use the two 5/16-18 x 2.0 u-bolts included in the package as shown in FIGURE 3-9, FIGURE 3-10, and FIGURE 3-11. It is recommended that two people mount the solar panel.

FIGURE 3-9. Two 5/16-18 x 2.0 u-bolts are used for pole or tripod mounting

FIGURE 3-10. Lock washers and flat washers are used to secure the two 5/16-18 x 2.0 u-bolts to the solar panel mount
FIGURE 3-11. The solar panel is ready for pole or tripod mounting

The panel should be mounted facing the equator. The nuts fastening the solar panel mount to the pole or the tripod mast should be as tight as possible without bending the mount. See FIGURE 3-12 and FIGURE 3-13.

FIGURE 3-12. The solar panel is mounted to a pole using two 5/16-18 x 2.0 u-bolts
FIGURE 3-13. Solar panel mounted on a tripod. Panel can be mounted to the tripod leg.
Alternatively, you can use four 5/16-18 x 1.5 u-bolts to mount the solar panels to two legs of a triangular tower. Select the appropriate sets of holes in the mount to match the width of the tower. See FIGURE 3-14 and FIGURE 3-15.

FIGURE 3-14. Two 5/16-18 x 1.5 u-bolts are attached to each side of the solar panel mount for triangular tower mounting

FIGURE 3-15. Backside view of FIGURE 3-14
3.3 Orientation

The solar panel should be oriented to receive maximum insolation (incident solar radiation) over the course of a year. Suggested tilt angles of the solar panel are given in TABLE 3-2.

After determining the tilt angle, loosen the 5/16” nuts on each side of the solar panel, and reposition the Hex bolt locations according to the hole location settings shown in TABLE 3-3 to adjust the panel. Tighten the two nuts to secure the position. See FIGURE 3-16.

<table>
<thead>
<tr>
<th>Site Latitude (N or S)</th>
<th>Tilt Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 10°</td>
<td>10°</td>
</tr>
<tr>
<td>11 – 20°</td>
<td>Latitude +5°</td>
</tr>
<tr>
<td>21 – 45</td>
<td>Latitude +10°</td>
</tr>
<tr>
<td>46 – 65</td>
<td>Latitude +15°</td>
</tr>
<tr>
<td>> 65</td>
<td>80°</td>
</tr>
</tbody>
</table>

* From “Design Aids for Small PV Power Systems”, Solorex Corp.
TABLE 3-3. Configurations for Desired Angles

<table>
<thead>
<tr>
<th>Hole Locations</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holes P and A Aligned with Holes 1 and Y</td>
<td>90</td>
</tr>
<tr>
<td>Holes P and A Aligned with Holes 1 and Z</td>
<td>80</td>
</tr>
<tr>
<td>Holes P and B Aligned with Holes 1 and Y</td>
<td>70</td>
</tr>
<tr>
<td>Holes P and B Aligned with Holes 1 and Z</td>
<td>60</td>
</tr>
<tr>
<td>Holes P and C Aligned with Holes 1 and Y</td>
<td>50</td>
</tr>
<tr>
<td>Holes P and C Aligned with Holes 1 and Z</td>
<td>40</td>
</tr>
<tr>
<td>Holes P and C Aligned with Holes 2 and Y</td>
<td>30</td>
</tr>
<tr>
<td>Holes P and C Aligned with Holes 2 and Z</td>
<td>20</td>
</tr>
</tbody>
</table>

FIGURE 3-16. Angle settings on right and left arm brackets
3.4 Installation of CH200 Regulator

NOTE For safety reasons, completely cover the solar panel to limit output current and voltage. If nothing is available to cover the panel, be careful not to short solar panel (+) and (–) leads together.

1. Using the supplied mounting hardware, install the CH200 on the mounting plate of an environmental enclosure (see FIGURE 3-17). Verify the On/Off switch is in the ‘Off’ position.

2a. Using the red and black power cable that ships with the BP12 or BP24, plug the end with the two-pin connector into the receptacle on the CH200. Attach the RED wire to the positive (+) terminal on the battery. Attach the BLACK wire to the negative (–) terminal on the battery.

The LED on the regulator labeled ‘CHG’ **SHOULD NOT** be on.

2b. If using a deep cycle marine battery, install Battery Terminal Strip Adapters (CSI p/n 4386) to each terminal of the battery as shown in FIGURE 3-19. Using the red and black power cable that ships with the CH200, plug the end with the two-pin connector into the receptacle on the CH200. Connect the black cable to the “charge” terminal on the Battery Terminal Strip Adapter installed on the battery’s negative terminal. Connect the red cable to the “charge” terminal on the Battery Terminal Strip Adapter installed on the battery’s positive terminal.

The LED on the regulator labeled ‘CHG’ **SHOULD NOT** be on.

4. Connect the BLACK (–) wire from the solar panel power cable to the G terminal on the regulator located between the CHG and SOLAR terminals. Connect the red (+) wire from the solar panel power cable to the terminal labeled SOLAR on the regulator.

5. If charge current is available from the solar panel, the LED on the CH200 marked CHG will begin to **flash GREEN**. This indicates the battery is charging and verifies proper operation and wiring of the regulator.

6. To supply power to the system, connect the RED power lead from a datalogger to either 12V terminal on the CH200. Attach the BLACK power lead from the datalogger to one of the two G terminals next to the 12V terminals.
3.5 Installation of Morningstar SunSaver SS-10-12V Regulator

1. Using the supplied mounting hardware, install the Morningstar SunSaver SS-10-12V regulator (CSI p/n 18529) on the mounting plate of an environmental enclosure (see FIGURE 3-18).

2. If using deep cycle marine battery along with the SP50 or SP85 solar panels, install Battery Terminal Strip Adapters (CSI p/n 4386) to each terminal of the user-supplied deep cycle battery as shown in FIGURE 3-19.

3. Using the spade terminated ends of the supplied red and black power cables, secure the black wire to terminal lug #1 marked battery (–) on the regulator. Connect the pigtailed end of the black cable to the “charge” terminal on the Battery Terminal Strip Adapter installed on the battery’s negative terminal. Secure the red wire to terminal lug #2 marked battery (+) on the regulator. Connect the pigtailed end of the red cable to the “charge” terminal on the Battery Terminal Strip Adapter installed on the battery’s positive terminal. With the battery connected and no solar panel input, the green LED on the regulator marked CHARGING SHOULD NOT be on.

4. Connect the black (–) wire from the solar panel power cable to terminal lug #3 marked solar (–) on the regulator. Connect the red (+) wire from
the solar panel power cable to terminal lug #4 marked solar (+) on the regulator. If using a sealed rechargeable battery, such as our BP24, BP84, or PS84, then verify that the metal **jumper is installed** to configure the regulator to recharge sealed rechargeable batteries (see FIGURE 3-18). If using a flooded battery (e.g., deep cycle marine battery), then **remove the jumper**. Also note that no connections are made on the load terminals of the regulator for this application (see FIGURE 3-18).

5. If charge current is available from the solar panel, the green LED on the regulator marked **CHARGING WILL LIGHT UP**. This will verify proper operation and wiring of the regulator.

6. To supply power to the system, connect the power leads from dataloggers and sensors to the “load” terminals on the Terminal Strip Adapters installed on the battery terminals, positive leads to positive terminal, and negative leads to negative terminal of the battery.

NOTE

The Morningstar SunSaver SS-10-12V regulator is shipped with the jumper **INSTALLED**. If you are using flooded batteries, such as a deep cycle marine battery, **REMOVE** the jumper before installing the regulator.
4. **Maintenance**

An occasional cleaning of the glass improves the solar panel’s efficiency. If a problem with the solar panel is suspected, the panel may be checked by measuring the voltage output. Check the voltage with a voltmeter connected between the two leads of the solar panel. There must be solar radiation incident on the panel and there must be a load connected to the solar panel. The load can be the datalogger, other equipment, or a 75 ohm resistor capable of dissipating solar panel power between the two leads. No voltage output...
implies a bad solar panel, regulator, or cable. The magnitude of the voltage output depends on the incident solar radiation.

For help in troubleshooting the solar panels, please contact Campbell Scientific, Inc. applications engineers.

5. Power Considerations

5.1 Proper Solar Power and Lead Acid Battery Sizes

The solar panel converts light energy to electricity, or specifically to direct current. The direct current produced is used to provide power to the system and to charge lead acid batteries.

The solar panel operates in both direct and diffuse light (cloudy days), but not at night.

The minimum battery size and solar panel output required depend on 1) the average current drain of the system, 2) the maximum time the battery must supply power to the system without being charged, and 3) the location of the site. When some batteries are discharged below a specified voltage, the battery becomes damaged and cannot be recharged.

On the average, the solar panel must be able to provide at least the amount of power necessary to operate the system for 24 hours. This means that the solar panels should not only be able to supply power to the system during the day, but it should also be able to provide power necessary to charge the battery for the power lost during the night. In addition, the battery must have enough capacity to power the system during times of no charging (night) and a few days of low charging (cloudy and stormy days). For additional help in computing power budget for a specific system, please contact Campbell Scientific, Inc. applications engineers.

5.2 Voltage Regulator

The regulator has two basic functions: 1) blocks any current flow from the battery to the solar panel, and 2) limits the source current to the battery.

Campbell Scientific’s CH200 is microcontroller-based smart charge controller that is ideal for an external rechargeable 12 Vdc VRLA battery such as Campbell Scientific’s BP12 or BP24. The controller manages amperage and voltage for safe, optimized battery charging from a solar panel or AC power sources. It also measures various input, output, and status parameters to allow close monitoring of the battery.

The Morningstar SunSaver SS-10-12V regulator can also be purchased from CSI, and it is not shipped with a solar panel. The regulator connects to the battery via the 15’ long 16AWG cable shipped with the regulator.

The regulator and battery should be housed in an environmental enclosure. Mounting brackets are included with the regulator for attachment to an enclosure backplate.
Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES
www.campbellsci.com • info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)
PO Box 2450
Somerset West 7129
SOUTH AFRICA
www.csafrica.co.za • cleroux@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 8108
Garbutt Post Shop QLD 4814
AUSTRALIA
www.campbellsci.com.au • info@campbellsci.com.au

Campbell Scientific do Brasil Ltda. (CSB)
Rua Apinagés, nbr. 2018 — Perdizes
CEP: 01258-00 — São Paulo — SP
BRASIL
www.campbellsci.com.br • vendas@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)
11564 - 149th Street NW
Edmonton, Alberta T5M 1W7
CANADA
www.campbellsci.ca • dataloggers@campbellsci.ca

Campbell Scientific Centro Caribe S.A. (CSCC)
300 N Cementerio, Edificio Breller
Santo Domingo, Heredia 40305
COSTA RICA
www.campbellsci.cc • info@campbellsci.cc

Campbell Scientific Ltd. (CSL)
Campbell Park
80 Hathern Road
Shepshed, Loughborough LE12 9GX
UNITED KINGDOM
www.campbellsci.co.uk • sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)
3 Avenue de la Division Leclerc
92160 ANTONY
FRANCE
www.campbellsci.fr • info@campbellsci.fr

Campbell Scientific Spain, S. L.
Avda. Pompeu Fabra 7-9, local 1
08024 Barcelona
SPAIN
www.campbellsci.es • info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or international representative.