
IN
ST

R
U

C
T

IO
N

 M
A

N
U

A
L

TDRSDK Software
Development Kit for TDR100

8/05

C o p y r i g h t (c) 2 0 0 5
C a m p b e l l S c i e n t i f i c , I n c .

i

TDRSDK Table of Contents
PDF viewers note: These page numbers refer to the printed version of this document. Use
the Adobe Acrobat® bookmarks tab for links to specific sections.

1. Overview...1
1.1 Purpose of TDRSDK..1
1.2 Requirements ..1
1.3 Description of TDRSDK package ..1

2. TDRSDK Description ...2
2.1 Description of TDRCOM.DLL ..2
2.2 Task complete or data available notification after command issued2

2.2.1 Using the Call-back method..2
2.2.2 Using the State Machine method...2

3. TDR100 Command Set ..2
3.1 Commands for error odes, serial port control, call-back and

state machine queries ...3
3.2 Commands to retrieve TDR100 waveform parameter values...................5
3.3 Commands for setting TDR100 parameters ...5
3.4 Commands to execute TDR100 measurements and to retrieve data.........8

4. Sample Programs ..15

Appendices

A. TDR100 Command Protocol................................... A-1

B. TDR100 Response Protocol B-1

This is a blank page.

1

TDRSDK Software Development Kit for
TDR100

1. Overview

1.1 Purpose of TDRSDK
TDR100 Software Development Kit, TDRSDK, allows users to create custom
applications that communicate directly with the TDR100. This is
accomplished by using a dynamically linked library (DLL). The DLL
functions as a transparent interface between a 32-bit personal computer (PC)
and the TDR100. The DLL allows access to the entire TDR100 command set.
Applications can be written using C++, Delphi (Pascal) and Visual Basic
including Microsoft Excel.

1.2 Requirements
The TDRCOM.DLL is designed to run in the Microsoft 32-bit Windows
environment, which presently includes Windows97, Windows98, WindowsNT,
Windows2000 and WindowsXP. The TDRCOM.DLL is designed solely for
the purpose of communicating with Campbell Scientific, Inc. TDR100 Time
Domain Reflectometer over direct connect RS232 serial communications at
one of three baud rates, 9600bps, 19.2kbps, 57.6kbps (default).

1.3 Description of TDRSDK package
The TDRSDK software package includes the following on a compact disk:

1. Executable install program for installing TDRSDK on the computer to be
used.

2. Dynamically Linked Library (DLL) file that is installed when the setup
application is run. The DLL contains calls TDR100 command set
functions for setting parameter, retrieving data and control functions.

3. Operating manual

4. Example programs in C++, Delphi (Pascal) and Visual Basic including
Microsoft Excel.

TDRSDK Software Development Kit for TDR100

2

2. TDRSDK Description

2.1 Description of TDRCOM.DLL
TDRCOM.DLL is a dynamically linked library, DLL, comprised of functions
that allow control and monitoring of a TDR100 using PC serial
communications. The DLL functions are called by a program written by the
user, and the TDR100 communication protocol is transparent. Each DLL
function is defined with a name and a number. The functions perform a range
of TDR100 tasks including setting measurement parameters and collecting
waveform data.

2.2 Task complete or data available notification after command
issued

To enhance PC performance, query methods are used to determine if
information is available from the TDR100. Many of the TDRCOM.DLL API
functions only initiate commands to the TDR100 and do not continue to
execute while the TDR100 is running the assigned task. The Call-back and
State Machine methods are used to determine when the TDR100 has completed
a task.

2.2.1 Using the Call-back method

When programming in C++ or Pascal, a call-back procedure can be used to
notify the user program that data is available from the TDR100. The call-back
procedure uses 2 two parameters, (1) DLL command number and (2) error
code, to determine which command to execute and which part of the user
program to notify when data is available from TDR100. DLL function
RegCallBack is used to pass the address of the procedure in the user program
that will be notified when data available.

2.2.2 Using the State Machine method

The State Machine method is used in Visual Basic (including Excel). The
main part of the DLL will be implemented as a state machine, incrementally
stepping through short blocks of functionality (states). At regular time
intervals an Application Program Interface (API) function queries the state
machine to determine if data is available from the TDR100. When the data is
signaled to be available, a separate command is issued to retrieve the data from
the DLL to the user program

3. TDR100 Command Set
The TDR100 command set is also called the TDR100COM Application
Program Interface (API). Each command has an associated command number
that is used in DLL execution.

TDRSDK Software Development Kit for TDR100

3

3.1 Commands for error codes, serial port control, call-back
and state machine queries

1. ReadErrorCode

Allows the calling application to get an error string by specifying the API
function number, and error code. This is used to determine reason for error on
failure of a DLL command.

int ReadErrorCode(int apiNumber, int errCode, char errStr, int strSiz)

Parameters: apiNumber: API function number

 errCode: return non-zero value from each API function

 errStr: describes Error in a string

 strSiz: buffer size for errStr.

Return Codes: 0 = Success

 1 = Unknown Error Code

2. SetCommPort

Allows the calling application to specify the communications port and the
communication baud rate. The comm port values are limited to those available
on the machine. The baud rate is limited to 9600bps, 19200bps, or 57600bps.
The default baud rate value is 57600bps. Changing baud rate requires
repositioning jumpers inside TDR100. See TDR100 Operating Manual.

int SetCommPort(short portNbr, int baudRate)

Parameters: portNbr: Communications port number, i.e. 1 for Com1

 baudRate: Communications baud rate, i.e. 57600

Return Codes: 0 = Success

 1 = Parameter out of Range

3. CloseCommPort

Allows the calling application to close the current communications port
previously opened using ‘SetCommPort’;

int CloseCommPort

Parameters: None

Return Codes: 0 = Success

 1 = Failure

4. RegCallBack

Allows the calling application to register a call-back procedure with the DLL.
This call-back procedure will allow the DLL to notify the calling application
when a command response is received from the TDR100. The call-back
procedure will have parameters to report command type and success/failure.
The procedure cannot be an object method. This method does not work with
VB or VBA. See examples.

int RegCallBack (int cmdType, int errCode))

TDRSDK Software Development Kit for TDR100

4

Parameters: CBfunc: Pointer to procedure that will be called (if
required), upon receipt of a TDR100 command response.

 cmdType: API function numbers

 errCode: error code for the cmdType.

Return Codes: 0 = Success

 1 = Failure

5. GetDLLver

Allows the calling application to obtain the DLL version.

int GetDLLver(char Ver, int iStrSize)

Parameters: Ver: Pointer to a string buffer. Upon successful return, will
contain the version in the form ‘1.0’.

 iStrSize: Integer, size of pVer string buffer

Return Codes: 0 = Success

 1 = String buffer too small

6. QuerySM

Allows the calling application to check the current state of the state machine in
the DLL. This function returns immediately. An application is required to
make the request according to the current state; otherwise, an error code will be
returned. See the VBA examples.

int QuerySM(int FuncNbr)

Parameters: FuncNbr: pointer to integer value, returns function number
being processed or data available from.

Return Codes: 0 = Idle

 n = still processing request

 100 = Get data successfully

 101 = CRC16 check error

 102 = Wrong response

7. ReadSM_State

Allows the calling application to translate state number to a state string.

int ReadSM_State(int stateNbr, char stateStr, int strSiz)

Parameters: stateNbr: state numbers.

 stateStr: state described in a string.

 strSiz: buffer size for stateStr.

Return Codes: 0 = Success

 1 = Failure

TDRSDK Software Development Kit for TDR100

5

3.2 Commands to retrieve TDR100 waveform parameter values
The waveform parameter values are (1) relative propagation velocity, Vp, (2)
waveform averaging, (3) number of data points in waveform, (4) distance to
beginning of waveform, (5) length of waveform window, (6) probe rod length,
(7) probe offset, and (8) cell constant or Kp.

When a ‘request’ command is issued, Callback or State Machine is used to
determine if requested data is available. When Callback or State Machine is
satisfied the data is written to the DLL. A ‘get’ command is then used to get
the data from the DLL to the API.

8. ReqSettings

Allows calling application to request current TDR100 parameter settings. If no
error occurred, current settings will be available from the DLL, and can be
retrieved using the GetSetting (#9) API call after you receive a call back or get
a state 100. Result: Settings values are sent by the TDR100 to the DLL.

int ReqSettings

Parameters: None

Return Codes: 0 = Success

 1 = Failure

9. GetSetting

Allows calling application to get TDR100 parameter settings stored in DLL.
This command, if successful, will return a record containing a setting. This
command must be called repeatedly to get all 9 settings.

int GetSetting(int recNbr, float Fval)

Parameters: recNbr: number counting from 1 in a data structure.

 Fval: Pointer to a floating point value.

Return Codes: 0 = Success

 1 = Failure

3.3 Commands for setting TDR100 parameters
10. SetVpSetting

Allows calling application to set the TDR100 relative propagation velocity, Vp.
When transaction is complete, the call-back procedure will be called (if
required), or the state machine can be queried until non-zero state is obtained.

int SetVpSetting(float fValue)

Parameters: fValue: Float, value with which to set TDR100 Vp setting.

Return Code: 0 = Success

 1 = Failure

TDRSDK Software Development Kit for TDR100

6

11. SetAvgSetting

Allows calling application to set the number of waveforms to be averaged for
final waveform. When transaction is complete, the call-back procedure will be
called (if required), or the state machine can be queried until non-zero state is
obtained.

int SetAvgSetting(float fValue)

Parameters: fValue: Float, value with which to set TDR100 ‘Average’
setting.

Return Code 0 = Success

 1 = Failure

12. SetPointsSetting

Allows calling application to set the TDR100 number of points in waveform.
When transaction is complete, the call-back procedure will be called (if
required), or the state machine can be queried until non-zero state is obtained.

int SetPointsSetting(float fValue)

Parameters: fValue: Float, value with which to set TDR100 ‘Points’
setting.

Return Code: 0 = Success

 1 = Failure

13. SetDistanceSetting

Allows calling application to set the TDR100 distance to beginning of
waveform. When transaction is complete, the call-back procedure will be
called (if required), or the state machine can be queried until non-zero state is
obtained.

int SetDistanceSetting(float fValue)

Parameters: fValue: Float, value with which to set TDR100 ‘Distance’
setting.

Return Code: 0 = Success

 1 = Failure

14. SetWndLgtSetting

Allows calling application to set the TDR100 waveform window length. When
transaction is complete, the call-back procedure will be called (if required), or
the state machine can be queried until non-zero state is obtained.

int SetWndLgtSetting(float fValue)

Parameters: fValue: Float, value with which to set TDR100 ‘Window
Length’ setting.

Return Code: 0 = Success

 1 = Failure

TDRSDK Software Development Kit for TDR100

7

15. SetProbeLgtSetting

Allows calling application to set the TDR100 probe rod length. When
transaction is complete, the call-back procedure will be called (if required), or
the state machine can be queried until non-zero state is obtained.

int SetProbeLgtSetting(float fValue)
Parameters:fValue: Float, value with which to set TDR100 ‘ProbeLength’

setting.

Return Code: 0 = Success

 1 = Failure

16. SetProbeOffSetting

Allows calling application to set the current TDR100 ‘ProbeOffset’ setting
using the ‘:SPRO’ type-1 command. When transaction is complete, the call-
back procedure will be called (if required) with success reported.

int SetProbeOffSetting(float fValue)
Parameters: fValue: Float, value with which to set TDR100

‘ProbeOffset’ setting.

Return Code: 0 = Success

 1 = Failure

17. SetCellConstSetting

Allows calling application to set the TDR100 Probe Cell Constant or Kp.
When transaction is complete, the call-back procedure will be called (if
required), or the state machine can be queried until non-zero state is obtained.

int SetCellConstSetting(float fValue)
Parameters: fValue: Float, value with which to set TDR100 ‘Cell

Constant’ setting.

Return Code: 0 = Success

 1 = Failure

18. This function is not available

19. SetMuxSetting

Allows calling application to set the SDMX50 multiplexer channel. When
transaction is complete, the call-back procedure will be called (if required), or
the state machine can be queried until non-zero state is obtained.

The format is a two digit floating point value with the first digit the multiplexer
level (1, 2 or 3) and the second digit the channel (1 – 8).

int SetMuxSetting(float fValue)
Parameters:

fValue: Float, value with which to set TDR100 ‘SDMX50 channel’
setting.

Return Code: 0 = Success

 1 = Failure

TDRSDK Software Development Kit for TDR100

8

3.4 Commands to execute TDR100 measurements and to
retrieve data

When a ‘request’ command is issued, Callback or State Machine is used to
determine if requested data is available. When Callback or State Machine is
satisfied the data is written to the DLL. A ‘get’ command is then used to get
the data from the DLL to the API.

20. ReqCalcCellConst

Allows calling application to request the TDR100 to calculate the probe cell
constant or Kp. When transaction is complete, the call-back procedure will be
called (if required), or the state machine can be monitored to detect completion.
If no error occurred, cell constant will be available from the DLL and can be
retrieved using the GetCalcCellConst (#21) API call. Result: TDR100 sends
calculated cell constant to the DLL.

int ReqCalcCellConst(float WaterTemp)

Parameters: WaterTemp: Floating point value, Temperature of DI water
surrounding probe.

Return Code: 0 = Success

 1 = Failure

21. GetCalcCellConst

Allows calling application to get TDR100 cell constant (Kp) value stored in
DLL. This command, if successful, will return a floating point variable
containing the value.

int GetCalcCellConst(float pValue)

Parameters: pValue: Pointer to a floating point variable containing cell
const

Return Codes: 0 = Success

 1 = Failure

22. ReqCalVoltage

Allows calling application to request the current TDR100 calibration voltage.
When transaction is complete, the call-back procedure will be called (if
required), or the state machine can be monitored to detect completion. If no
error occurred, current ‘Calibration Voltage’ will be available from the DLL
and can be retrieved using the GetCalVoltage (#23) API call. Result: TDR100
send the calibration voltage to the DLL.

int ReqCalVoltage

Parameters: None

Return Code: 0 = Success

 1 = Failure

TDRSDK Software Development Kit for TDR100

9

23. GetCalVoltage

Allows calling application to get TDR100 calibration voltage value stored in
DLL. This command, if successful will return a floating point variable
containing the value.

int GetCalVoltage(float pValue)

Parameters: pValue: Pointer to a floating point variable.

Return Codes: 0 = Success

 1 = Failure

24. ReqConductivity

Allows calling application to request the TDR100 bulk electrical conductivity
measurement. When transaction is complete, the call-back procedure will be
called (if required), or the state machine can be monitored to detect completion.
If no error occurred, current ‘Conductivity’ value will be available from the
DLL and can be retrieved using the GetConductivity (#25) API call. Result:
TDR100 sends the conductivity value to the DLL.

int ReqConductivity

Parameters: None

Return Code: 0 = Success

 1 = Failure

25. GetConductivity

Allows calling application to get TDR100 measured bulk electrical
conductivity value stored in DLL. This command, if successful will return a
floating point variable containing the value.

int GetConductivity(float pValue)

Parameters: pValue: Pointer to floating point variable

Return Codes: 0 = Success

 1 = Failure

28. ReqLastDeri

Allows calling application to request the most recently calculated derivative
waveform stored in TDR100. This derivative is calculated from the most
recent waveform data. When transaction is complete, the call-back procedure
will be called (if required), or the state machine can be monitored to detect
completion. If no error occurred, the last derivative’ will be available from the
DLL and can be retrieved using the GetDeriWF (#29) API call. Result: The
last derivative acquired by the TDR100 will be sent to the DLL.

int ReqLastDeri

Parameters: None

Return Code: 0 = Success

 1 = Failure

TDRSDK Software Development Kit for TDR100

10

29. GetDeriWF

Allows calling application to get a single TDR100 derivative waveform data
point from an array of values stored in DLL. The index parameter specifies
which value in the derivative waveform array to retrieve. This command, if
successful will return a floating point variable containing the value. The DLL
must be called as many times as there are waveform data points (value set in
API #12). Result: One value of the Derivative Waveform (array of values) will
be passed from the DLL to the Application. Note: This command is identical
to command 35, GetNewDeri.

int GetLastDeri(float pValue, int Index)

Parameters: pValue: Pointer to floating point variable

 Index: Integer, index into 1-based derivative array

Return Codes: 0 = Success

 1 = Failure

30. ReqLastWaveform

Allows calling application to request the waveform currently stored in
TDR100. New waveform acquisition is not performed by TDR100. When
transaction is complete, the call-back procedure will be called (if required), or
the state machine can be monitored to detect completion. If no error occurred,
current ‘Last Waveform’ will be written to the DLL and can be retrieved using
the GetWaveform (#31) API call. Result: The TDR100 will send the stored
waveform to the DLL.

int ReqLastWaveform

Parameters: None

Return Code: 0 = Success

 1 = Failure

31. GetWaveform

Allows calling application to get a single TDR100 waveform value from an
array of values stored in DLL. Index parameter specifies which value in the
Waveform array to retrieve. This command, if successful will return a floating
point variable containing the value. Result: One value of the Waveform (array
of values) will be passed from the DLL to the Application.

int GetWaveform(float pValue, int Index)

Parameters: pValue: Pointer to floating point variable

 Index: Integer, index into 1-based waveform array

Return Codes: 0 = Success

 1 = Failure

32. ReqMoisture

This command might better be called ReqLaL instead of ReqMoisture. It
allows the calling application to request the TDR100 to compute the ratio of
the apparent rod length to the actual rod length and correct the ratio for probe
offset. When transaction is complete, the call-back procedure will be called (if
required), or the state machine can be monitored to detect completion. If no

TDRSDK Software Development Kit for TDR100

11

error occurred, La/L corrected for probe offset will be written to the DLL and
can be retrieved using the GetMoisture (#33) API call. Result: The TDR100
sends the moisture value to the DLL.

int ReqMoisture

Parameters: None

Return Code: 0 = Success

 1 = Failure

33. GetMoisture

This command might better be called GetLaL instead of GetMoisture. Allows
calling application to get TDR100 La/L corrected for probe offset stored in
DLL. This command, if successful, will return a floating point variable
containing the value. Result: The moisture value is passed from the DLL to the
Application.

int GetMoisture(float pValue)

Parameters: pValue: Pointer to floating point variable

Return Codes: 0 = Success

 1 = Failure

34. ReqNewDeri

Allows calling application to request that the TDR100 acquire a new waveform
and calculate the derivative waveform and return it to the DLL. When
transaction is complete, the call-back procedure will be called (if required), or
the state machine can be monitored to detect completion. If no error occurred,
current ‘New Derivative’ value will be available from the DLL and can be
retrieved using the GetDeriWF (#29) API call. Result: The TDR100 will
acquire a new derivative waveform and send it to the DLL.

int ReqNewDeri

Parameters: None

Return Code: 0 = Success

 1 = Failure

35. GetNewDeri

Allows calling application to get a single TDR100 derivative waveform data
point from an array of values stored in DLL. The index parameter specifies
which value in the derivative waveform array to retrieve. This command, if
successful will return a floating point variable containing the value Result:
One value of the Derivative Waveform (array of values) will be passed from
the DLL to the Application. Note: This command is identical to command 29,
GetDeriWF.

int GetLastDeri(float pValue, int Index)

Parameters: pValue: Pointer to floating point variable

 Index: Integer, index into 1-based derivative array

Return Codes: 0 = Success

 1 = Failure

TDRSDK Software Development Kit for TDR100

12

36. ReqWFnocal

Allows calling application to request that the TDR100 acquire a new waveform
without performing a calibration first. When transaction is complete, the call-
back procedure will be called (if required), or the state machine can be
monitored to detect completion. If no error occurred, waveform values (not
calibrated) will be available from the DLL and can be retrieved using the
GetWaveform (#31) API call. Result: TDR100 will acquire a new waveform
without calibration and then send the waveform to the DLL.

int ReqWFnocal

Parameters: None

Return Code: 0 = Success

 1 = Failure

37. ReqWaveform

Allows calling application to request that the TDR100 acquire a new waveform
and make available to the DLL. When transaction is complete, the call-back
procedure will be called (if required), or the state machine can be monitored to
detect completion. If no error occurred, current waveform values will be
available from the DLL and can be retrieved using the GetWaveform (#31)
API call. Result: Tdr100 will acquire a new waveform and then send the
waveform to the DLL.

int ReqWaveform

Parameters: None

Return Code: 0 = Success

 1 = Failure

Commands 38 through 41 are not currently used

42. ReqVariables

Allows calling application to request the TDR100 values derived from the
algorithm for determining (1) start, (2) end, and (3) RMS value. When
transaction is complete, the call-back procedure will be called (if required), or
the state machine can be monitored to detect completion. If no error occurred,
values will be available from the DLL and can be retrieved using the
GetVariables API call. Result: TDR100 sends the three variables to the DLL.

int ReqVariables

Parameters: None

Return Code: 0 = Success

 1 = Failure

TDRSDK Software Development Kit for TDR100

13

43. GetVariables

Allows calling application to get TDR100 values from algorithms that are
stored in DLL. This command, if successful will return a floating point
variable containing the value. Result: Variables are passed form DLL to
Application.

int GetVariables(float pStart, float pEnd, float pRMS)

Parameters: pStart: Pointer to floating point variable, Start

 pEnd: Pointer to floating point variable, End

 pRMS: Pointer to floating point variable, RMS

Return Codes: 0 = Success

 1 = Failure

44. ReqVerSig

Allows calling application to request the current TDR100 versions and
signatures for BootCode and Operating System’. When transaction is
complete, the call-back procedure will be called (if required), or the state
machine can be monitored to detect completion. If no error occurred, current
version and signature values will be available from the DLL and can be
retrieved using the GetVerSig API call. Result: TDR100 sends the two version
values and the two signature values to the DLL.

int ReqVerSig

Parameters: None

Return Code: 0 = Success

 1 = Failure

45. GetVerSig

Allows calling application to get TDR100 version and signature values stored
in DLL. This command, if successful will return a floating point variable
containing the value. Result: Version & Signature values are passed from DLL
to Application

int GetVerSig(flaot pBCver, float pBCsig,float pOSver, float pOSsig)

Parameters: pBCver: Pointer to floating point variable, Boot Code
version

 pBCsig: Pointer to floating point variable, Boot Code
signature

 pOSver: Pointer to floating point variable, OS version

 pOSsig: Pointer to floating point variable, OS signature

Return Codes: 0 = Success

 1 = Failure

TDRSDK Software Development Kit for TDR100

14

46. AcqWFnocal

Allows calling application to initiate the acquisition of a new waveform
without first doing calibration. When transaction is complete, the call-back
procedure will be called (if required), or the state machine can be monitored to
detect completion. If no error occurred, the waveform is not immediately
available but can be retrieved using ‘ReqLastWaveForm’ (#30) to get the
waveform sent to the DLL. Then use ‘GetWaveform’ (#31) to move the
waveform from the DLL to the Application. Result: Waveform is acquired,
without calibration, but is NOT sent to the DLL.

int AcqWFnocal

Parameters: None

Return Code: 0 = Success

 1 = Failure

47. AcqWaveform

Allows calling application to initiate the acquisition of a new waveform with
calibration. When transaction is complete, the call-back procedure will be
called (if required), or the state machine can be monitored to detect completion.
If no error occurred, the waveform is not immediately available but can be
retrieved using ‘ReqLastWaveForm’ (#30) to get the waveform sent to the
DLL. Then use ‘GetWaveform’ (#31) to move the waveform from the DLL to
the Application. Result: Waveform is acquired but is NOT sent to the DLL.

int AcqWaveform

Parameters: None

Return Code: 0 = Success

 1 = Failure

48. SetPwrOff

Allows calling application to set the analog power in the TDR100 to the off
state. After this function is called the analog section of the TDR100 is in a low
power state. When transaction is complete, the call-back procedure will be
called (if required), or state machine status is monitored for reporting of any
error code. Result: TDR100 puts its analog section in a low power state.

int AcqWFnocal

Parameters: None

Return Code: 0 = Success

 1 = Failure

50. ReqCancel

Allows calling application cancel its last command. When the cancellation
transaction is complete, the application can continue its next command.

int ReqCancel

Parameters: None

Return Code: 0 = Success

 1 = Failure

TDRSDK Software Development Kit for TDR100

15

4. Sample Programs
Directory example applications contain four subdirectories with examples in
the four languages currently supported by TDRSDK. The examples are
designed to help make the initial connection between the API and the TDR100.
Code for typical tasks is included in the examples and can help get the API get
the best measurements and save startup time.

TDRSDK Software Development Kit for TDR100

16

This is a blank page.

A-1

Appendix A. TDR100 Command
Protocol

:XXXX ffffffffHLcr Type 1 commands to set a variable (space between
command and value)

:XXXXHLcr Type 2 & 3 commands

: Start of Command

XXXX Command ASCII Characters

ffffffff Floating point number in ASCII characters preceded by a
space. No maximum number of characters, a single
floating point value.

HL Hexadecimal representation of 8 bit Checksum which
includes all characters after ‘:’ and before the checksum.
Computed by summing each character and discarding any
carries.

 H = high order bits, L = low order bits.

cr Carriage Return

:XXXX One of the following 4 character commands.

Type 1 Commands (Set a variable)
:S_VP n Set Vp value

:SDIS n Set Distance (Cable Length)

:SMAX n Set maximum display value

:SMIN n Set minimum display value

:SMUX n Set SDMX50 channel

:SNAV n Set Number of Averages

:SPCC n Set Probe Cell Constant

:SPNT n Set Number of Points

:SPRL n Set Probe Length

:SPRO n Set Probe Offset

:SSMO n Set Smooth Value

:SWLN n Set Window Length

:CCCC n Calculate Cell Constant (special type-1 cmd that returns
value like type-2 cmd)

Appendix A. TDR100 Command Protocol

A-2

Type 2 Commands (Gets Values)
CMD HL Results

:DUMP 36 Get Vp, Average, Points, Distance, Window Length, Probe
Length, Probe Offset,

 Cell Constant, Smooth Factor.

:GCAL 17 Get Calibration Voltage Value

:GCON 27 Get Conductivity Value

:GDTS 32 Get Distance to Short Value

:GLDR 29 Get Last Derivative Value

:GLWF 30 Get Last Waveform (no new acquisition)

:GMOS 36 Get Moisture Value

:GNDR 28 Get New Derivative waveform

:GNWA 20 Get Waveform, no calibration

:GRLN 33 Get last calculated Cable Reference Length Value

:GTIM 31 Get Time Values (Power Delay, Acq. Waveform, Moisture
Result)

:GVAR 30 Get Variables (Start, End, RMS)

:GVER 34 Get Boot Code (version, signature), Operating
System(version, signature)

:GWAV 35 Acquire and return Waveform

Type 3 Commands (No values set or returned)
CMD HL Results

:ABRT 29 A NOP instruction which can be used to Abort the current
command.

:ANWA 27 Acquire Waveform with Calibration

:AWAV 2F Acquire Waveform

:RSET 3E Retrieve Setup

:SOFF 2E Set Analog Power Off

:SRLN 3F Set Cable Reference Length - for liquid level measurements

:SSET 3F Save Setup

Commands are aborted if the start of a new command is received before the
finish of current command.

B-1

Appendix B. TDR100 Response
Protocol

|S| quoted data |E|

S Start Character 0x3A : (colon)

E End Character 0x0D (carriage return)

“ Quote Character 0x22 “ (double quote)

Quoted Data includes

 Unquoted Data

 CRC-16

Quoted data is the same as unquoted data except that it doesn’t allow the bytes
(characters) colon, carriage return or double quote. When those values are
encountered in the data they are replaced with the quote character <”> followed
by the 2’s complement of the data. i.e.

 unsigned char data;

 data = -data;

Quoted Replacements

: 0x22C6

cr 0x22F3

“ 0x22DE

Unquoted Formats

Unquoted data adheres to the following formats with a maximum of 8200 bytes
followed by the CRC-16.. The first byte of unquoted data is “:”, and the last
byte is “cr”. The CRC is computed on the unquoted data without the first byte
, the last byte, and CRC16. CRC16 is in the Big-Endian format. Since the CRC
might have quoted characters, the CRC cannot be compared until the unquoted
data is retrieved.

Appendix B. TDR100 Response Protocol

B-2

Error Response
|!|NN|

 ! ASCII ‘!’ to indicate an Error Packet

 NN Error Numbers in ASCII

 ‘01’ Bad Checksum

 ‘02’ Illegal Cmd Format, Not Defined

 ‘03’ No Valid Letters Or Numbers

 ‘04’ Could Not be Parsed

 ‘05’ Command Not Identified

 ‘06’ Command Not Recognized

 `07’ Calibration Unsuccessful

 ‘08’ Extra Period (terminal mode)

 ‘09’ No Reference Cable Length

 ‘10’ Value Out of Range

 ‘11’ Timeout - Cable Short Not Found

 ‘12’ Timeout Waiting for Data

 ‘13’ Exponent Not Defined

 ‘14’ No Command Defined for Output

 ‘15’ Bad Data

 ‘16’ Bad Moisture Calculation

 ‘17’ Could Not Detect Liquid Level

 ‘18’ Incorrect Mux Address or Channel

 ‘19’ Unable to Locate Pulse

 ‘20’ Could Not Measure Baseline

 ‘21’ Couldn’t Measure Top of Pulse

 ‘22’ Unknown Internal Error

 ‘69’ Command Decode Error

 ‘70’ Unknown Error

 ‘71’ Device Write not accepted

 ‘72’ Unknown Error

 ‘73’ IOPOLL: Timeout

 ’74’ WRITE: Data not written

 ‘75’ WRITE: Address not accepted

 ‘76’ WRITE: Write not accepted

 ‘77’ Unknown Error

 ‘78’ READ: Read not accepted

 ’79’ READ: Address not accepted

 ‘80’ Unknown Error

Appendix B. TDR100 Response Protocol

B-3

Acknowledge Response (Response to Type 1 and Type 3 Commands)

|$|CCCC|

 $ ASCII ‘$’ to indicate Acknowledgment

 C The Four ASCII command characters that followed the ‘:’

Value Response (Response to Type 2 Commands)

|#|CCCC|0xXXXX|data bytes up to 8192

 # ASCII ‘#’ to indicate a value response

 C The four ASCII command characters that followed the ‘:’

 X data in 4 byte IEEE floating point in the Big-Endian format

Appendix B. TDR100 Response Protocol

B-4

This is a blank page.

This is a blank page.

Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES

www.campbellsci.com
info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)
PO Box 2450

Somerset West 7129
SOUTH AFRICA

www.csafrica.co.za
sales@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 444

Thuringowa Central
QLD 4812 AUSTRALIA
www.campbellsci.com.au
info@campbellsci.com.au

Campbell Scientific do Brazil Ltda. (CSB)
Rua Luisa Crapsi Orsi, 15 Butantã

CEP: 005543-000 São Paulo SP BRAZIL
www.campbellsci.com.br

suporte@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)
11564 - 149th Street NW

Edmonton, Alberta T5M 1W7
CANADA

www.campbellsci.ca
dataloggers@campbellsci.ca

Campbell Scientific Ltd. (CSL)
Campbell Park

80 Hathern Road
Shepshed, Loughborough LE12 9GX

UNITED KINGDOM
www.campbellsci.co.uk
sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)
Miniparc du Verger - Bat. H

1, rue de Terre Neuve - Les Ulis
91967 COURTABOEUF CEDEX

FRANCE
www.campbellsci.fr

campbell.scientific@wanadoo.fr

Campbell Scientific Spain, S. L.
Psg. Font 14, local 8

08013 Barcelona
SPAIN

www.campbellsci.es
info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or International representative.

mailto:suporte@campbellsci.com.br

	Revision and Copyright Information
	Table of Contents
	TDRSDK Software Development Kit for TDR100
	1. Overview
	1.1 Purpose of TDRSDK
	1.2 Requirements
	1.3 Description of TDRSDK package

	2. TDRSDK Description
	2.1 Description of TDRCOM.DLL
	2.2 Task complete or data available notification after comm
	2.2.1 Using the Call-back method
	2.2.2 Using the State Machine method

	3. TDR100 Command Set
	3.1 Commands for error codes, serial port control, call-bac
	3.2 Commands to retrieve TDR100 waveform parameter values
	3.3 Commands for setting TDR100 parameters
	3.4 Commands to execute TDR100 measurements and to retrieve

	4. Sample Programs

	Appendix A. TDR100 Command Protocol
	Type 1 Commands (Set a variable)
	Type 2 Commands (Gets Values)
	Type 3 Commands (No values set or returned)

	Appendix B. TDR100 Response Protocol
	|S| quoted data |E|
	Quoted Data includes
	Unquoted Formats
	Error Response

	Campbell Scientific Contact Information

