



# ZephIR 300 OFFSHORE CREDENTIALS

Accepted for wind resource assessment onshore and offshore by leading Banks Engineers, globally





### ZEPHIR OFFSHORE CREDENTIALS

Accepted for wind resource assessment onshore and offshore by leading Banks Engineers, globally





## The Need for offshore wind measurements

## OFFSHORE WIND MEASUREMENTS

### Site prospecting - Energy Yield Assessment

- Wind resource assessment
  - Wind speed and direction profile
  - Vertical wind shear profile

### **Project design**

- Layout and wake considerations
  - Turbulence intensity

### **Foundation & Structural Design**

- Turbine Loadings
  - Vertical wind shear profile

Hub height measurements are required to reduce uncertainty

Turbine full rotor measurements further reduce uncertainty





## **OFFSHORE MET-Mast challenges**

### TURBINE HUB HEIGHTS ARE INCREASING, CHALLENGES ARE INCREASING:

- Structure & Logistics
- Health & Safety
- Flow distortion
- COST







## **OFFSHORE MET-Mast challenges**

Structure & Logistics

## > STRUCTURE

- Massive foundations required to support the structure
- More steel/structure required
- Increased maintenance of the structure
- Increased maintenance of the anemometry and support booms
- Boom alignment and stability is critical

## > DEPLOYMENT LOGISTICS

- Large crane vessel required to install
  - More expensive vessel
  - Availability constrained
  - Increased risk of weather delay









## OFFSHORE MET-Mast challenges H&S

## > HEALTH & SAFETY

- Working at height risks and large support teams required
- Anemometry requires regular maintenance
- Human free installations are being promoted in Europe
- Large structure vulnerable to extreme wind events & fatigue











## **OFFSHORE MET-Mast challenges**

### Flow distortion

- Offshore met-masts are large structures and produce significant flow distortion and consequently increased uncertainty. Error due to distortion on laminar flow up to 3%, even in optimised layouts. The graphs to the right show in each simulated wind direction the flow distortion as would be seen by the cup anemometers at the end of the booms
- Mast prone to motion; affects boom alignment and creates up to 1% additional error
- Boom lengths need to be long enough to allow for measurements outside of the flow distorted area, hence structure increases further
- Cup anemometers can in part be calibrated to reduce the effect of flow distortion but this is not ideal
- Based on clutter surrounding the top-mounted cup anemometers, which is the less distorted area, an additional 1% uncertainty is generally applied to the data



"Computational and Experimental Study on the effect of flow field distortion on the accuracy of the measurements made by anemometers on the Fino3 Meteorological mast": M Stickland, T Scanlon, S Fabre, A Oldroyd, T Mikkelsen, D Kindler, Poster 334, EWEA 2012





## Data accuracy and availability

#### 170+ ZephIRs verified – the single largest batch of lidars verified against an IEC mast, globally

| Combined results from >170 ZephIR 300 performance verifications<br>Horizontal Wind Speed |          |       |                |       |           |      |  |
|------------------------------------------------------------------------------------------|----------|-------|----------------|-------|-----------|------|--|
| Height (m)                                                                               | Gradient |       | R <sup>2</sup> |       | Avail (%) |      |  |
|                                                                                          | Mean     | Std   | Mean           | Std   | Mean      | Std  |  |
| 91                                                                                       | 1.004    | 0.007 | 0.988          | 0.007 | 96.66     | 2.61 |  |
| 70                                                                                       | 1.002    | 0.005 | 0.991          | 0.008 | 97.20     | 2.22 |  |
| 45                                                                                       | 1.002    | 0.004 | 0.991          | 0.006 | 97.37     | 2.10 |  |
| 20                                                                                       | 0.999    | 0.005 | 0.992          | 0.005 | 97.15     | 2.66 |  |





ZephIR Lidar



'Double trials' represent validations against the mast pre- and postdeployment.

Results demonstrate long-term calibration stability.



## Data accuracy and availability

#### 170+ ZephIRs verified – the single largest batch of lidars verified against an IEC mast, globally

| Combined results from >170 ZephIR 300 performance verifications<br>Horizontal Wind Speed |          |       |                |       |           |      |
|------------------------------------------------------------------------------------------|----------|-------|----------------|-------|-----------|------|
| Height (m)                                                                               | Gradient |       | R <sup>2</sup> |       | Avail (%) |      |
|                                                                                          | Mean     | Std   | Mean           | Std   | Mean      | Std  |
| 91                                                                                       | 1.004    | 0.007 | 0.988          | 0.007 | 96.66     | 2.61 |
| 70                                                                                       | 1.002    | 0.005 | 0.991          | 0.008 | 97.20     | 2.22 |
| 45                                                                                       | 1.002    | 0.004 | 0.991          | 0.006 | 97.37     | 2.10 |
| 20                                                                                       | 0.999    | 0.005 | 0.992          | 0.005 | 97.15     | 2.66 |







'Double trials' represent validations against the mast pre- and postdeployment.

Results demonstrate long-term calibration stability.





## Long term system availability

- 40 months continuous operation of a single zephir
- > Operational evidence of long term system availability
- Drifts in performance would require recalibration which would be a disadvantage to the operator in terms of inconvenience, cost and time
- > Evidence of a 40 month operational deployment, during which time no maintenance or servicing conducted on the ZephIR (due to operational constraints associated with the specific deployment, it was not possible to recover the device for inspection and service within the recommended service interval)
- Changes in accuracy of the ZephIR over the period were insignificant and much less than 1% in wind speed
- Accuracy remained well within the industry standard (IEC) requirement for accuracy which is of the order of 1.5% to 2.0% depending on wind speed for a first class, calibrated, well-mounted cup anemometer (this includes the possible contributions from differing atmospheric conditions during the two test periods, which took place at different times of the year. In addition, during this period, the mast was re-instrumented in accordance with IEC guidelines).

#### PRE-DEPLOYMENT

| Height[m] | Gradient | R <sup>2</sup> |
|-----------|----------|----------------|
| 91        | 1.0108   | 0.9918         |
| 70        | 1.0122   | 0.9917         |
| 45        | 1.0084   | 0.9877         |
| 20        | 1.0027   | 0.9768         |

#### POST-DEPLOYMENT 40 MONTHS LATER

| Height | Gradient | R <sup>2</sup> |
|--------|----------|----------------|
| 91     | 1.0124   | 0.9943         |
| 70     | 1.0112   | 0.9956         |
| 45     | 1.0114   | 0.993          |
| 20     | 1.0079   | 0.9893         |





## Acceptance offshore - bankability



"DNV GL considers ZephIR 300 to be at Stage 3 under "benign" conditions accepted for use in bankable / financegrade wind speed and energy assessments with either no or limited onsite met mast comparisons"

Note - offshore is considered benign

natural power

"Natural Power considers that ZephIR can be recommended as a primary wind measurement system for offshore wind farms. There is a significant and consistent body of evidence to support the use of ZephIR in offshore conditions as the sole data capture system"



"ZephIR is very capable of providing high quality, 10 minute average wind speed and direction data at all heights well above traditional tall mast heights. Correlation is excellent to our IEC compliant mast and site. ZephIR can therefore be considered, in our initial opinion, to be used in a standalone application for wind resource measurements."

#### ZEPHIR IS 'BANKABLE'

#### PRODUCING FINANCE GRADE DATA IN THE BENIGN ENVIRONMENT OF AN OFFSHORE FIXED PLATFORM





## Offshore operations - examples

### ZephIR lidar has been used in over 40 offshore campaigns around the world, including:

| Beatrice platform, North Sea | 2005 | ECN Fixed Mast platform, North Sea        | 2011 |
|------------------------------|------|-------------------------------------------|------|
| Horns Rev, North Sea         | 2006 | Fugro Floating Buoy, Norway, North Sea    | 2011 |
| Fino 1, North Sea            | 2006 | RWE, NSO platform, North Sea              | 2011 |
| NaiKun, Hecate Strait        | 2006 | Forewind Cavendish Platform, North Sea    | 2011 |
| TME, Italy                   | 2008 | ECN Fixed Mast platform, North Sea        | 2012 |
| Cleveland Crib, Great Lakes  | 2009 | Energia2020 Gas Platform, Med Sea         | 2012 |
| DWW, US                      | 2009 | BNET, China                               | 2012 |
| Fino 3, North Sea            | 2010 | RWE, NSO platform, North Sea              | 2013 |
| Robin Rigg, Solway Firth     | 2010 | Babcock Spar Buoy, Gwynt y Mor, Irish Sea | 2013 |
| RWE (ECN/SSC), Germany       | 2010 | SSC Fixed Platform, North Sea             | 2013 |
| EDF, Teeside                 | 2010 | Firth of Forth                            | 2013 |
| Oriel, Ireland               | 2010 | Fugro Floating Buoy, Norway, North Sea    | 2013 |
| Saorgus, Dublin Array        | 2011 | RWE Mast, Gwynt y Mor, Irish Sea          | 2014 |
| NaRec, UK                    | 2011 | NaRec Fixed Platform, North Sea           | 2014 |
| CLP, Hong Kong               | 2011 | Fugro Floating Buoy, Norway, North Sea    | 2014 |
| Fugro, Norway                | 2011 | SeaRoc Fixed Buoy, New Jersey             | 2014 |
| BNET, China                  | 2011 | Bell Rock Lighthouse, Dundee              | 2014 |



## Offshore operations - examples







## Offshore operations - examples













# Offshore data availability and accuracy

#### ) Ijmuiden – ECN – NORTH SEA

- > 6 months continuous data
- > ZephIR System Availability = 99.2%
- > ZephIR Data Availability = 96%
- Mast data Availability = 91%
- Accuracy: y = 0.9983x
- Correlation:  $R^2 = 0.998$







## ZephIR Turbulence Measurements

#### **Benign Terrain**

- ZephIR 300 TI measurements at the Pershore test site. Over 5,000 hours of data presented at 91.5m and 70.5m.
- ZephIR TI measurements near typical hub height are shown to be in good agreement with traditional anemometry, with regression slopes less than 5% from unity and relatively high R<sup>2</sup> (near 0.75).
- Results in the order of reported accuracy for industrystandard cup anemometry
- Demonstrates the ability of ZephIR to measure TI to an accuracy suitable for use in wind energy applications:
  - Wind farm design
  - Turbine selection

ZephIR

Lidar

Reference : Barker et al. *Lidar measurements for wind turbine selection studies: design turbulence,* EWEA, 2014



0.2

0.5

TI : Vector A100LM : 70.5m



0.8

Data Points = 30876

0.5

2.4

## Summary of ZephIR Benefits Offshore

### **OFFSHORE**:

- > ZephIR delivers 'finance grade/bankable' wind data offshore
- > ZephIR offers a reduced cost solution for offshore wind data
- > ZephIR is flexible; deployable on fixed or floating platforms
- > ZephIR reduces risks financial, data uncertainty and H&S
- > ZephIR increases the return on investment



- ZephIR induces zero 'flow distortion' due to there being no infrastructure at or near measurement height
- ZephIR enables accurate measurement of wind resource and shear profiles across ranges between 10m and 200m above platform height
- Extensive proven accuracy and confidence of ZephIR onshore measured wind resource is maintained offshore due to the benign wind flow conditions



