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Abstract. Ecosystem CO2–H2O data measured by infrared
gas analyzers in open-path eddy-covariance (OPEC) systems
have numerous applications, such as estimations of CO2 and
H2O fluxes in the atmospheric boundary layer. To assess the
applicability of the data for these estimations, data uncertain-
ties from analyzer measurements are needed. The uncertain-
ties are sourced from the analyzers in zero drift, gain drift,
cross-sensitivity, and precision variability. These four uncer-
tainty sources are individually specified for analyzer perfor-
mance, but so far no methodology exists yet to combine these
individual sources into a composite uncertainty for the spec-
ification of an overall accuracy, which is ultimately needed.
Using the methodology for closed-path eddy-covariance sys-
tems, this overall accuracy for OPEC systems is determined
from all individual uncertainties via an accuracy model and
further formulated into CO2 and H2O accuracy equations.
Based on atmospheric physics and the biological environ-
ment, for EC150 infrared CO2–H2O analyzers, these equa-
tions are used to evaluate CO2 accuracy (±1.22 mgCO2 m−3,
relatively ±0.19 %) and H2O accuracy (±0.10 gH2O m−3,
relatively±0.18 % in saturated air at 35 ◦C and 101.325 kPa).
Both accuracies are applied to conceptual models addressing
their roles in uncertainty analyses for CO2 and H2O fluxes.
For the high-frequency air temperature derived from H2O
density along with sonic temperature and atmospheric pres-
sure, the role of H2O accuracy in its uncertainty is simi-

larly addressed. Among the four uncertainty sources, cross-
sensitivity and precision variability are minor, although un-
avoidable, uncertainties, whereas zero drift and gain drift are
major uncertainties but are minimizable via corresponding
zero and span procedures during field maintenance. The ac-
curacy equations provide rationales to assess and guide the
procedures. For the atmospheric background CO2 concentra-
tion, CO2 zero and CO2 span procedures can narrow the CO2
accuracy range by 40 %, from ±1.22 to ±0.72 mgCO2 m−3.
In hot and humid weather, H2O gain drift potentially adds
more to the H2O measurement uncertainty, which requires
more attention. If H2O zero and H2O span procedures can
be performed practically from 5 to 35 ◦C, the H2O accu-
racy can be improved by at least 30 %: from ±0.10 to
±0.07 gH2O m−3. Under freezing conditions, the H2O span
procedure is impractical but can be neglected because of its
trivial contributions to the overall uncertainty. However, the
zero procedure for H2O, along with CO2, is imperative as
an operational and efficient option under these conditions to
minimize H2O measurement uncertainty.
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1 Introduction

Open-path eddy-covariance (OPEC) systems are used most
in quantity to measure boundary-layer CO2, H2O, heat, and
momentum fluxes between ecosystems and the atmosphere
(Lee and Massman, 2011). For flux measurements, an OPEC
system is equipped with a fast-response three-dimensional
(3-D) sonic anemometer, to measure 3-D wind velocities and
sonic temperature (Ts), and a fast-response infrared CO2–
H2O analyzer (hereafter referred to as an infrared analyzer
or analyzer) to measure CO2 and H2O concentrations or den-
sities (Fig. 1). In this system, the analyzer is adjacent to
the sonic measurement volume. Both anemometer and an-
alyzer together provide synchronized high-frequency (e.g.,
10 to 20 Hz) measurements, which are used to compute the
fluxes at a location represented by the measurement volume
(Aubinet et al., 2012). Given that the measurement condi-
tions, which are spatially homogenous in flux sources/sinks
and temporally steady in turbulent flows without advection,
satisfy the underlying theory for eddy-covariance flux tech-
niques (Katul et al., 2004; Finnigan, 2008), the quality of
each flux data point primarily depends on the exactness of
field measurements of the variables, such as CO2, H2O, Ts,
and 3-D wind, at the sensor sensing scales (Foken et al.,
2012; Richardson et al., 2012), although the quality may
also be degraded by other biases if not fully corrected. In
an OPEC system, other biases are commonly sourced from
the tilt of the vertical axis of the sonic anemometer away
from the vertical vector of natural wind (Kaimal and Hau-
gen, 1969), the spatial separation between the anemometer
and the analyzer (Laubach and McNaughton, 1998), the line
and/or volume averaging of measurements (Wyngaard, 1971;
Andreas, 1981), the response delay of sensors to fluctuations
in measured variables (Horst, 2000), the air density fluctua-
tions due to heat and water vapor transfer (Webb et al., 1980),
and the filtering in data processing (Rannik and Vesala,
1999). These biases are theoretically correctable through co-
ordinate rotation corrections for the tilt (Tanner and Thurtell,
1969; Wilczak et al., 2001); covariance lag maximization for
the separation (Moncrieff et al., 1997; Ibrom et al., 2007);
low- and high-frequency corrections for the data filtering,
line and/or volume averaging, and response delay (Moore,
1986; Lenschow et al., 1994; Massman, 2000; van Dijk,
2002); and Webb–Pearman–Leuning (WPL) corrections for
the air density fluctuations (Webb et al., 1980). Even though
these corrections are thorough for corresponding biases, er-
rors in the ultimate flux data still exist due to uncertainties
related to measurement exactness at the sensor sensing scales
(Fratini et al., 2014; Zhou et al., 2018). These uncertain-
ties are not only unavoidable because of actual or apparent
instrumental drifts due to the thermal sensitivity of sensor
path lengths, long-term aging of sensor detection compo-
nents, and unexpected factors in field operations (Fratini et
al., 2014), but they are also not mathematically correctable
because their sign and magnitude are unknown (Richardson

Figure 1. Integration of an EC150 infrared CO2–H2O analyzer for
CO2 density (ρCO2 ) and H2O density (ρH2O) with a CSAT3A sonic
anemometer for three-dimensional (3-D) wind velocities and sonic
temperature (Ts) in an open-path eddy-covariance flux system (Im-
age credit: Campbell Scientific Inc., UT, USA).

et al., 2012). The overall measurement exactness related to
these uncertainties would be a valuable addition to flux data
analysis (Goulden et al., 1996; Anthoni et al., 2004).

In addition to flux computations, the data for individual
variables from these field measurements can be important in
numerous applications. Knowledge of measurement exact-
ness is also required for an accurate assessment of data appli-
cability (Csavina et al., 2017; Hill et al., 2017). The infrared
analyzer in an OPEC system outputs CO2 density (ρCO2 in
mgCO2 m−3) and H2O density (ρH2O in gH2O m−3). For in-
stance, ρH2O, along with Ts and atmospheric pressure (P ),
can be used to derive ambient high-frequency air tempera-
ture (Ta) (Swiatek, 2018). In this case, given an exact equa-
tion of Ta in terms of the three independent variables ρH2O,
Ts, and P , the applicability of this equation to the OPEC
systems for Ta depends wholly on the measurement exact-
ness of the three independent variables. The higher the de-
gree of exactness, the less uncertain the Ta. The assessment
of the applicability necessitates the knowledge of the mea-
surement exactness. In reality, to the best of our knowl-
edge, neither the overall measurement exactness of ρH2O
from the infrared analyzers nor the exactness of Ts from
the sonic anemometers (Larry Jecobsen, personal commu-
nication, 2022) is available. This study defines and estimates
the measurement exactness of ρH2O including ρCO2 from in-
frared analyzers through the consolidation of the measure-
ment uncertainties, which are not practically avoidable or
mathematically correctable, although they can be minimized
through analyzer maintenance.
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As comprehensively reviewed by Richardson et al. (2012),
numerous previous studies including Goulden et al. (1996),
Lee et al. (1999), Anthoni et al. (1999, 2004), and Flana-
gan and Johnson (2005) have quantified various sources of
flux measurement errors and have attempted to attach con-
fidence intervals to the annual sums of net ecosystem ex-
change. These sources include measurement methods (e.g.,
sensor separation and site homogeneity; Munger et al.,
2012), data processing algorithms (e.g., data filtering, Ran-
nik and Vesala, 1999, and data gap filling, Richardson and
Hollinger, 2007), measurement conditions (e.g., advection;
Finnigan, 2008), energy closure (Foken, 2008), and sensor
body heating effects (Burba et al., 2008). Instead of quan-
tifying the flux errors, Foken et al. (2004, 2012) assessed
the flux data quality and divided it into nine grades (1 to 9)
based on steady state, turbulence conditions, and wind direc-
tion in the sonic anemometer coordinate system. The lower
the grade, the smaller the error in flux data (i.e., higher flux
data quality); the higher grade, the greater the error in flux
data (i.e., lower flux data quality). This grade matrix (Foken
et al., 2004, 2012) has been adopted by AmeriFlux (2018) for
their flux data quality assessments. To correct the measure-
ment biases from infrared analyzers, Burba et al. (2008) de-
veloped a correction method for sensor body heating effects
on CO2 and H2O fluxes, whereas Fratini et al. (2014) devel-
oped a method for correcting the raw high-frequency CO2
and H2O data using the interpolated zero and span coeffi-
cients of an infrared analyzer from the analyzer maintenance
such as zero and span procedures under the same conditions
but at the beginning and ending of each maintenance period.
The corrected data were then used to re-estimate the fluxes.
Nevertheless, no study so far has addressed the overall mea-
surement exactness of ρH2O or ρCO2 , which are related to the
unavoidable and uncorrectable measurement uncertainties in
the CO2 and H2O data from the infrared analyzers in OPEC
systems, even though this overall measurement exactness is
fundamental for data analysis in applications (Richardson et
al., 2012). Therefore, instead for the overall exactness of an
individual field CO2 or H2O measurement, the infrared an-
alyzers are specified only for their individual CO2 and H2O
measurement uncertainties sourced from their zero and gain
drifts, cross-sensitivity to background H2O/CO2, and mea-
surement precision variability (LI-COR Biosciences, 2021c;
Campbell Scientific Inc., 2021b).

For any sensor, the measurement exactness depends on its
performance as commonly specified in terms of accuracy,
precision, and other uncertainty descriptors such as sensor
hysteresis. Conventionally, accuracy is defined as a system-
atic uncertainty, while precision is defined as a random mea-
surement error (ISO, 2012, where ISO is the acronym of In-
ternational Organization for Standardization). Other uncer-
tainty descriptors are also defined for specific reliabilities in
instrumental performance. For example, CO2 zero drift is
one of the descriptors specified for the performance of in-
frared analyzers in CO2 measurements (Campbell Scientific

Inc., 2021b). Both accuracy and precision are universally ap-
plicable to any sensor for the specification of its performance
in measurement exactness. Other uncertainty descriptors are
more sensor-specific (e.g., cross-sensitivity to CO2/H2O is
used for infrared analyzers in OPEC and CPEC systems,
where CPEC is an acronym for closed-path eddy covariance).

Conventionally, sensor accuracy is the degree of closeness
to which its measurements are to the true value in the mea-
sured variable; sensor precision, related to repeatability, is
the degree to which repeated measurements under unchanged
conditions produce the same values (Joint Committee for
Guides in Metrology, 2008). Another definition advanced by
the ISO (2012), revising the conventional definition of accu-
racy as trueness originally representing only systematic un-
certainty, specifies accuracy as a combination of both true-
ness and precision. An advantage of this definition for accu-
racy is the consolidation of all measurement uncertainties.
According to this definition, the accuracy is the range of
composited uncertainty from all uncertainty sources in field
measurements. For CPEC systems, Zhou et al. (2021) devel-
oped a method and derived a model to assess the accuracy of
CO2/H2O mixing ratio measurements of infrared analyzers.
Their model was further formulated as a set of equations to
evaluate the defined accuracies for CO2 and H2O mixing ra-
tio data from CPEC systems. Although the CPEC systems are
very different from OPEC systems in their structural designs
(e.g., measurements take place inside a closed cuvette vs. in
an open space) and in output variables (e.g., CO2/H2O mix-
ing ratio vs. CO2/H2O density), similarities exist between
the two systems in measurement uncertainties as specified
by their manufacturers (Campbell Scientific Inc., 2021a, b)
because the infrared analyzers in both systems use the same
physics theories and similar optical techniques for their mea-
surements (LI-COR Biosciences, 2021b, c). Accordingly, the
method developed by Zhou et al. (2021) for CPEC systems
can be reasonably applied to their OPEC counterparts with
rederivation of the model and reformulation of equations.
Following the methodology of Zhou et al. (2021) and using
the specifications of EC150 infrared analyzers in OPEC sys-
tems as an example (Campbell Scientific Inc., 2021b), we can
derive the model and formulate equations to assess the accu-
racies of CO2 and H2O measurements by infrared analyz-
ers in OPEC systems; discuss the usage of accuracies in flux
analysis, data applications, and analyzer field maintenance;
and ultimately provide a reference for the flux measurement
community in order to specify the overall accuracy of field
CO2/H2O measurements by infrared analyzers in OPEC sys-
tems.

2 Specification implications

An OPEC system for this study includes, but is not limited
to, a CSAT3A sonic anemometer and an EC150 infrared an-
alyzer (Fig. 1). The system operates in a Ta range from −30
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to 50 ◦C and in a P range from 70 to 106 kPa. Within these
operational ranges, the specifications for CO2 and H2O mea-
surements (Campbell Scientific Inc., 2021b) are given in Ta-
ble 1.

In Table 1, the top limit of 1553 mgCO2 m−3 in the
calibration range for CO2 density in dry air is more
than double the atmospheric background CO2 density of
767 mgCO2 m−3, or 419 µmolCO2 mol−1, where mol is the
unit for dry air, reported by the Global Monitoring Labora-
tory (2022) with a Ta of 20 ◦C under a P of 101.325 kPa (i.e.,
normal temperature and pressure, Wright et al., 2003). The
top limit of 44 gH2O m−3 in the calibration range for H2O
density is equivalent to a 37 ◦C dew point, higher than the
highest 35 ◦C dew point ever recorded under natural condi-
tions on Earth (National Weather Service, 2022).

The measurement uncertainties from infrared analyzers
for CO2 and H2O in Table 1 are specified by individual
uncertainty components along with their magnitudes: zero
drift, gain drift, cross-sensitivity to CO2/H2O, and precision
variability. Zero drift uncertainty is an analyzer non-zero re-
sponse to zero air/gas (i.e., air/gas free of CO2 and H2O).
Gain drift uncertainty is an analyzer trend-deviation response
to a measured gas species away from its true value in propor-
tion (Campbell Scientific Inc., 2021b). Cross-sensitivity is an
analyzer response to either background CO2 if H2O is mea-
sured or background H2O if CO2 is measured. Precision vari-
ability is an analyzer random response to minor unexpected
factors. For CO2 and H2O, these four components should be
composited as an overall uncertainty in order to evaluate the
accuracy, which is ultimately needed in practice.

Precision variability is a random error, and the other spec-
ifications can be regarded as trueness. Zero drifts are primar-
ily impacted by Ta, and so are gain drifts (see the “Note”
column in Table 1 and also Fratini et al., 2014). Addition-
ally, each gain drift is also positively proportional to the true
magnitude of CO2/H2O density (i.e., true ρCO2 or true ρH2O)
under measurements. Lastly, cross-sensitivity to H2O/CO2 is
related to the background amount of H2O/CO2 as indicated
by its units: mgCO2 m−3 (gH2O m−3)−1 for CO2 measure-
ments and gH2O m−3 (mgCO2 m−3)−1 for H2O measure-
ments.

Accordingly, beyond statistical analysis, the accuracy of
CO2/H2O measurements should be evaluated over a Ta range
of −30 to 50 ◦C, a ρH2O range of up to 44 gH2O m−3, and a
ρCO2 range of up to 1553 mgCO2 m−3.

3 Accuracy model

The measurement accuracy of infrared analyzers is the possi-
ble maximum range of overall measurement uncertainty from
the four uncertainty sources as specified in Table 1: zero
drift, gain drift, cross-sensitivity, and precision variability.
The four uncertainties interactionally or independently con-
tribute to the overall uncertainty in a measured value. Given

the true α density (ραT, where subscript α can be either CO2
or H2O) and measured α density (ρα), the difference between
the true and measured α densities (1ρα) is given by

1ρα = ρα − ραT. (1)

The analyzer overestimates the true value if 1ρα > 0, ex-
actly estimates the true value if1ρα = 0, and underestimates
the true value if 1ρα < 0. The measurement accuracy is the
maximum range of1ρα (i.e., an accuracy range). According
to the analyses of Zhou et al. (2021) for CPEC infrared ana-
lyzers, as mathematically shown in Appendix A, this range
is interactionally contributed by the zero drift uncertainty
(1ρz

α), gain drift uncertainty (1ρg
α), and cross-sensitivity un-

certainty (1ρs
α) along with an independent addition from the

precision uncertainty (1ρs
α). However, any interactional con-

tribution from a pair of uncertainties is 3 orders smaller in
magnitude than each individual contribution in the pair. The
contribution to the accuracy range due to interactions can be
reasonably neglected. Therefore, the accuracy range can be
simply modeled as a sum of the absolute values of the four
component uncertainties. From Eq. (A7) in Appendix A, the
measurement accuracy of α density from OPEC systems by
infrared analyzers is defined in an accuracy model as

1ρα ≡±
(∣∣1ρz

α

∣∣+ ∣∣1ρg
α

∣∣+ ∣∣1ρs
α

∣∣+ ∣∣1ρp
α

∣∣) . (2)

Assessment of the accuracy of field CO2 or H2O measure-
ments is, by the use of known and/or estimable variables, the
formulation and evaluation of the four terms on the right side
of this accuracy model.

4 Accuracy of CO2 density measurements

Based on accuracy Model (2), we define the accuracy of field
CO2 measurements from OPEC systems by infrared analyz-
ers (1ρCO2 ) as

1ρCO2 ≡±

(∣∣1ρz
CO2

∣∣+ ∣∣∣1ρg
CO2

∣∣∣+ ∣∣∣1ρs
CO2

∣∣∣
+

∣∣∣1ρp
CO2

∣∣∣), (3)

where 1ρz
CO2

is CO2 zero drift uncertainty, 1ρg
CO2

is CO2
gain drift uncertainty, 1ρs

CO2
is cross-sensitivity-to-H2O un-

certainty, and 1ρp
CO2

is CO2 precision uncertainty.
CO2 precision (σCO2 ) is the standard deviation of ρCO2

random errors among repeated measurements under the same
conditions (Joint Committee for Guides in Metrology, 2008).
The random errors generally have a normal statistical distri-
bution (Hoel, 1984). Therefore, using this deviation, the pre-
cision uncertainty for an individual CO2 measurement at a
95 % confidence interval (P value of 0.05) can be statisti-
cally formulated as

1ρ
p
CO2
=±1.96× σCO2 . (4)
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Table 1. Measurement specifications for EC150 infrared CO2–H2O analyzers (Campbell Scientific Inc., UT, USA).

CO2 H2O Note

Notation Value Unit Notation Value Unit

Calibration
range

0–1553 mgCO2 m−3 0–44 gH2O m−3 For CO2 up to 4500 mgCO2 m−3

if specially needed.

Zero drift dcz ±0.55 mgCO2 m−3 dwz ±0.04 gH2O m−3
Zero/gain drift is the possible
maximum range within the sys-
tem operational ranges in ambi-
ent air temperature (Ta) and at-
mospheric pressure. The actual
drift depends more on Ta.

Gain drift dcg ±0.10 %a mgCO2 m−3 dwg ±0.30 %b gH2O m−3

true ρCO2 true ρH2O

Cross-
sensitivity
to H2O

sH2O ±2.69×
10−7

mgCO2 m−3

(gH2O m−3)−1
n/a

Cross-
sensitivity
to CO2

n/a sCO2 ±4.09×
10−5

gH2O m−3

(mgCO2 m−3)−1

Precision σCO2 0.200 mgCO2 m−3 σH2O 0.004 gH2O m−3

a 0.10 % is the CO2 gain drift percentage denoted by δCO2_g in the text, and ρCO2 is CO2 density. b 0.30 % is the H2O gain drift percentage denoted by δH2O_g in the text,
and ρH2O is H2O density. n/a denotes “not applicable”.

The other uncertainties, due to CO2 zero drift, CO2 gain drift,
and cross-sensitivity to H2O, are caused by the inability of
the working equation inside the analyzer operating system
(OS) to adapt to the changes in analyzer-internal and ambi-
ent environmental conditions, such as internal housing CO2
and/or H2O levels and ambient air temperature. From the
derivations in the “Theory and operation” section in LI-COR
Biosciences (2001, 2021b, c), a general model of the working
equation for ρCO2 is given by

ρCO2 = P

5∑
i=1

aci

{
1−

[
Ac

Acs

+ Sw

(
1−

Aw

Aws

)]
Zc

}i{
Gc

P

}i
, (5)

where subscripts c and w indicate CO2 and H2O, respec-
tively; aci (i = 1, 2, 3, 4, or 5) is a coefficient of the 5-order
polynomial for the terms inside curly brackets; Acs and Aws
are the power values of analyzer source lights at the chosen
wavelengths for CO2 and H2O measurements, respectively;
Ac and Aw are their respective remaining power values after
the source lights pass through the measured air sample; Sw is
cross-sensitivity of the detector to H2O while detecting CO2,
at the wavelength for CO2 measurements (hereafter referred
to as sensitivity to H2O); Zc is the CO2 zero adjustment (i.e.,
CO2 zero coefficient); and Gc is the CO2 gain adjustment
(i.e., commonly known as the CO2 span coefficient). For an
individual analyzer, the parameters aci , Zc, Gc, and Sw in
Model (5) are statistically estimated in the production cal-
ibration against a series of standard CO2 gases at different

concentration levels over the ranges of ρH2O and P (hereafter
referred to as calibration). Since the estimated parameters are
specific for the analyzer, Model (5) with these estimated pa-
rameters becomes an analyzer-specific CO2 working equa-
tion. The working equation is used internally by the infrared
analyzer to compute ρCO2 as the closet proxy for true ρCO2

from field measurements of Ac, Acs, Aw, Aws, and P .
The analyzer-specific working equation is deemed to be

accurate immediately after the calibration through estima-
tions of aci , Zc, Gc, and Sw in production, while Zc and
Gc can be re-estimated in the field (LI-COR Biosciences,
2021c). However, as used internally by an optical instrument
under changing environments vastly different from its cal-
ibration conditions by its manufacturer, the working equa-
tion may not be fully adaptable to the changes, which might
be reflected through CO2 zero and/or gain drifts of the de-
ployed infrared analyzer. In the working equation for ρCO2

from Model (5), the parameter Zc is related to CO2 zero
drift; Gc to CO2 gain drift; and Sw to sensitivity to H2O.
Therefore, the analyses of Zc and Gc, along with Sw, aid in
understanding the causes of CO2 zero drift, CO2 gain drift,
and sensitivity to H2O. Such understanding is necessary to
formulate 1ρz

CO2
, 1ρg

CO2
, and 1ρs

CO2
in Model (3).

4.1 Zc and 1ρz
CO2

(CO2 zero drift uncertainty)

In production, an infrared analyzer is calibrated for zero
air/gas to report zero ρCO2 plus an unavoidable random error.
However, when using the analyzer in measurement environ-
ments that are different from calibration conditions, the ana-
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lyzer often reports this zero ρCO2 , while exposed to zero air,
as a value that migrates gradually away from zero and possi-
bly beyond±1ρp

CO2
, which is known as CO2 zero drift. This

drift is primarily affected by a combination of three factors:
(i) the temperature surrounding the analyzer away from the
calibration temperature, (ii) traceable CO2 and H2O accu-
mulations, such as during use, inside the analyzer light hous-
ing due to an inevitable, although small, leaking exchange
of housing air with the ambient air (hereafter referred to as
housing CO2–H2O accumulation), and (iii) aging of analyzer
components (Richardson et al., 2012).

Firstly, the dependency of analyzer CO2 zero drift on am-
bient air temperature arises due to a thermal expansion/con-
traction of analyzer components that slightly changes the an-
alyzer geometry (Fratini et al., 2014). This change in ge-
ometry can deviate the light path length for measurement
a little away from the length under manufacturer calibra-
tion, contributing to the drift. Additionally, inside an ana-
lyzer, the performance of the light source and absorption
detector for measurement, as well as the electronic compo-
nents for measurement control, can vary slightly with tem-
perature. In production, an analyzer is calibrated to compen-
sate for the ensemble of such dependencies as assessed in
a calibration chamber. The compensation algorithms are im-
plemented in the analyzer OS, which is kept as proprietary
by the analyzer manufacturer. However, the response of an
analyzer to a temperature varies as conditions change over
time (Fratini et al., 2014). Therefore, manufacturers typi-
cally specify an expected range of typical or maximal drift
per ◦C (see Table 1 and also see the section for analyzer
specifications in Campbell Scientific Inc., 2021b). Secondly,
the housing CO2–H2O accumulation is caused by unavoid-
able small leaks in the light housing of an infrared analyzer.
The housing is technically sealed to keep housing air close to
zero air by introducing scrubber chemicals into the housing
to absorb any CO2 and H2O that may sneak into the hous-
ing through an exchange with any ambient air (LI-COR Bio-
sciences, 2021c). Over time, the scrubber chemicals may be
saturated by CO2 and/or H2O or lose their active absorbing
effectiveness, which can result in housing CO2–H2O accu-
mulations. Thirdly, as optical components, the light source
may gradually become dim, and the absorption detector may
gradually become less sensitive. The accumulation and aging
develop slowly and less obviously in the relatively long term
(e.g., months or longer), whereas the dependencies of drift on
ambient air temperature can occur quickly and more clearly
as soon as an analyzer is deployed in the field (Richardson et
al., 2012). Apparently, the drift with ambient air temperature
is a major concern if an analyzer is maintained as scheduled
by its manufacturer for the replacement of scrubber chemi-
cals (Campbell Scientific Inc., 2021b).

Due to the CO2 zero drift, the working equation needs
to be adjusted through its parameter re-estimation to adapt
the ambient air temperature near which the system is run-
ning, housing CO2–H2O accumulation, and analyzer compo-

nent aging. This adjustment technique is the zero procedure,
which brings the ρCO2 and ρH2O in zero air/gas measurement
back to zero as closely as possible. In this section, our discus-
sion focuses on CO2, and the same application to H2O will
be described in the following sections. In the field, the zero
procedure should be feasibly operational using one air/gas
benchmark to re-estimate one parameter in the working equa-
tion. This parameter must be adjustable to output zero ρCO2

from the zero air/gas benchmark. By setting the left side of
Model (5) to zero and rearranging it, it is clear that Zc is such
a parameter that can be adjusted to result in a zero ρCO2 value
for zero air/gas:

Zc =

[
Ac0

Acs
+ Sw

(
1−

Aw0

Aws

)]−1

, (6)

where Ac0 and Aw0 are the counterparts of Ac and Aw for
zero air/gas, respectively. For an analyzer, the zero procedure
for CO2 is thus to re-estimate Zc in balance of Eq. (6).

If Zc could continually balance Eq. (6) after the zero pro-
cedure, the CO2 zero drift would not be significant; how-
ever, this is not the case. Similar to its performance after
the manufacturer calibration, an analyzer may still drift af-
ter the zero procedures due to frequent changes in ambient
air temperature, housing CO2–H2O accumulation, and/or an-
alyzer component age. Nevertheless, the Zc value needed for
an analyzer to be punctually adaptable for these changes is
unpredictable because these changes are not foreseeable. As-
suming on-schedule maintenance (i.e., the scrubber chemi-
cals inside the analyzer light housing are replaced following
the manufacturer’s guidelines), the housing CO2–H2O accu-
mulation should not be a concern. While the ambient temper-
ature surrounding the infrared analyzer is not controlled, the
CO2 zero drift is therefore mainly influenced by Ta and can
be ±0.55 mgCO2 m−3 at most within the operational ranges
in Ta and P for the EC150 infrared analyzers in OPEC sys-
tems (Table 1).

Given that an analyzer performs best almost without zero
drift at the ambient air temperature for the calibration/zero-
ing procedure (Tc) and that it possibly drifts while Ta gradu-
ally changes away from Tc, then the further away Ta is from
Tc, the more it possibly drifts in the CO2 zero. Over the op-
erational range in P of the EC150 infrared analyzers used
for OPEC systems, this drift is more proportional to the dif-
ference between Ta and Tc but is still within the specifica-
tions (Campbell Scientific Inc., 2021b). Accordingly, CO2
zero drift uncertainty at Ta can be formulated as

1ρz
CO2
=

dcz

Trh− Trl
×

{
Ta− Tc Tc < Ta < Trh
Tc− Ta Tc > Ta > Trl

, (7)

where, over the operational range in Ta of EC150 infrared an-
alyzers used for OPEC systems, Trh is the highest-end value
(50 ◦C) and Trl is the lowest-end value (−30 ◦C, Table 1).
1ρz

CO2
from this equation has the maximum range, as spec-

ified in Table 1, equal to dcz in magnitude as if Ta and Tc
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were separately at the two ends of operational range in Ta of
OPEC systems.

4.2 Gc and 1ρg
CO2

(CO2 gain drift uncertainty)

An infrared analyzer was also calibrated against a series of
standard CO2 gases. The calibration sets the working equa-
tion from Model (5) to closely follow the gain trend of
change in ρCO2 . As was determined with the zero drift, the
analyzer, with changes in housing CO2–H2O accumulation,
ambient conditions, and age during its deployment, could re-
port CO2 gradually drifting away from the real gain trend of
the change in ρCO2 , which is specifically termed CO2 gain
drift. This drift is affected by almost the same factors as the
CO2 zero drift (Richardson et al., 2012; Fratini et al., 2014;
LI-COR Biosciences, 2021c).

Due to the gain drift, the infrared analyzer needs to be fur-
ther adjusted, after the zero procedure, to tune its working
equation back to the real gain trend in ρCO2 of measured air
as closely as possible. This is done with the CO2 span proce-
dure. This procedure can be performed through use of either
one or two span gases (LI-COR Biosciences, 2021c). If two
are used, one span gas is slightly below the ambient CO2
density and the other is at a much higher density to fully
cover the CO2 density range by the working equation. How-
ever, commonly, like the zero procedure, this procedure is
simplified by the use of one CO2 span gas, as a benchmark,
with a known CO2 density (ρ̃CO2 ) around the typical CO2
density values in the measurement environment. If one CO2
span gas is used, only one parameter in the working equation
is available for adjustment. Weighing the gain of the working
equation more than any other parameter, this parameter is the
CO2 span coefficient (Gc) (see Model 5). The CO2 span gas
is used to re-estimate Gc to satisfy the following equation
(for details, see LI-COR Biosciences, 2021c):∣∣ρ̃CO2 − ρCO2 (Gc)

∣∣≤min
∣∣ρ̃CO2 − ρCO2

∣∣ . (8)

Similar to the zero drift, the CO2 gain drift continues af-
ter the CO2 span procedure. Based on a similar considera-
tion for the specifications of CO2 zero drift, the CO2 gain
drift is specified by the maximum CO2 gain drift percentage
(δCO2_g = 0.10 %) associated with ρCO2 as ±0.10 %× (true
ρCO2 ) (Table 1). This specification is the maximum range
of CO2 measurement uncertainty due to the CO2 gain drift
within the operational ranges in Ta and P of the EC150 in-
frared analyzers in OPEC systems.

Given that an analyzer performs best, almost without gain
drift, at the ambient air temperature for calibration/span pro-
cedures (also denoted by Tc because zero and span proce-
dures should be performed under similar ambient air temper-
ature conditions) but also drifts while Ta gradually changes
away from Tc, then the further away Ta is from Tc, the greater
potential that the analyzer drifts. Accordingly, the same ap-
proach to the formulation of CO2 zero drift uncertainty can
be applied to the formulation of the approximate equation for

CO2 gain drift uncertainty at Ta as

1ρ
g
CO2
=±

δCO2_gρCO2T

Trh− Trl

×

{
Ta− Tc Tc < Ta < Trh
Tc− Ta Tc > Ta > Trl

, (9)

where ρCO2T is the true CO2 density unknown in measure-
ment. Given that the measured value of CO2 density is rep-
resented by ρCO2 , by referencing Eq. (1), ρCO2T can be ex-
pressed as

ρCO2T = ρCO2− (1ρ
z
CO2
+1ρ

g
CO2
+1ρs

CO2
+1ρ

p
CO2

). (10)

The terms inside the parentheses in this equation are the mea-
surement uncertainties for ρCO2T that are smaller in magni-
tude, by at least 2 orders, than ρCO2T, whose magnitude in
atmospheric background under the normal temperature and
pressure as used by Wright et al. (2003) is 767 mgCO2 m−3

(Global Monitoring Laboratory, 2022). Therefore, ρCO2 in
Eq. (10) is the best alternative, with the greatest likelihood,
to ρCO2T for the application of Eq. (9). As such, ρCO2T in
Eq. (9) can be reasonably approximated by ρCO2 for equa-
tion applications. Using this approximation, Eq. (9) becomes

1ρ
g
CO2
=±

δCO2_gρCO2

Trh− Trl

×

{
Ta− Tc Tc < Ta < Trh
Tc− Ta Tc > Ta > Trl

. (11)

With ρCO2 being measured, this equation is applicable in es-
timating the CO2 gain drift uncertainty. The gain drift uncer-
tainty (1ρg

CO2
) from this equation has the maximum range

of ±δCO2_gρCO2 , as if Ta and Tc were separately at the two
ends of operational range in Ta of OPEC systems. With the
greatest likelihood, this maximum range is the closest to
±δCO2_g× (true ρCO2 ) as specified in Table 1.

4.3 Sw and 1ρs
CO2

(sensitivity-to-H2O uncertainty)

The infrared wavelength of 4.3 µm for CO2 measurements
is minorly absorbed by H2O (LI-COR Biosciences, 2021c;
Campbell Scientific Inc., 2021b). This minor absorption
slightly interferes with the absorption by CO2 in the wave-
length (McDermitt et al., 1993). The power of the same mea-
surement light (i.e.,Acs as a steady value in the CO2 working
equation from Model 5) through several gas samples with the
same CO2 density, but different backgrounds of H2O den-
sities, is detected with different values of Ac in the work-
ing equation from Model (5). Without parameter Sw and its
joined term in the working equation, differentAc values must
result in significantly different ρCO2 values, although they
are actually the same. In case of the same CO2 density in
the airflows under different H2O backgrounds, the different
values of Ac to report similar ρCO2 are accounted for by Sw
associated with Aw and Aws in the working equation from
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Model (5). Similar to Zc and Gc in the CO2 working equa-
tion, Sw is not perfectly accurate and can have uncertainty
in the determination of ρCO2 . This uncertainty for EC150 in-
frared analyzers is specified by sensitivity to H2O (sH2O) as
±2.69× 10−7 mgCO2 m−3 (gH2O m−3)−1 (Table 1). As in-
dicated by its unit, this uncertainty is linearly related to ρH2O.
Assuming the analyzer for CO2 works best, without this un-
certainty, in dry air, 1ρs

CO2
could be formulated as

1ρs
CO2
= sH2OρH2O 0≤ ρH2O ≤ 44gH2Om−3, (12)

where 44 gH2O m−3, as addressed in Sect. 2, is the top limit
of H2O density measurements. Accordingly, 1ρs

CO2
can be

in the range of

1ρs
CO2
≤ 44

∣∣sH2O
∣∣ . (13)

4.4 1ρCO2 (CO2 measurement accuracy)

Substituting Eqs. (4), (7), (11), and (13) into Model (3),
1ρCO2 for an individual CO2 measurement from OPEC sys-
tems by infrared analyzers can be expressed as

1ρCO2 =±

[
1.96σCO2 + 44

∣∣sH2O
∣∣

+
|dcz| + δCO2_gρCO2

Trh− Trl

×

{
Ta− Tc Tc < Ta < Trh
Tc− Ta Tc > Ta > Trl

]
. (14)

This is the CO2 accuracy equation for the infrared analyz-
ers within OPEC systems. It expresses the accuracy of a
field CO2 measurement from the OPEC systems in terms
of the analyzer specifications σCO2 , sH2O, dcz, δCO2_g, and
the OPEC system operational range in Ta as indicated by Trh
and Trl, measured variables ρCO2 and Ta, and a known vari-
able Tc. Given the specifications and the known variable, this
equation can be used to evaluate the CO2 accuracy as a range
in relation to Ta and ρCO2 .

4.5 Evaluation of 1ρCO2

Given the analyzer specifications, the accuracy of field CO2
measurements from an infrared analyzer after calibration,
zero, and/or span at Tc can be evaluated using the CO2 ac-
curacy Eq. (14) over a domain of Ta and ρCO2 . To visualize
the relationship of accuracy with Ta and ρCO2 , the accuracy
is presented better as the ordinate along the abscissa of Ta for
ρCO2 at different levels and must be evaluated within possible
maximum ranges of Ta and ρCO2 in ecosystems. In evalua-
tion, the Ta is limited to the−30 to 50 ◦C range within which
EC150 infrared analyzers used for OPEC systems operate, Tc
can be assumed to be 20 ◦C (i.e., standard air temperature as
used by Wright et al., 2003), and ρCO2 can range according
to its variation in ecosystems.

4.5.1 ρCO2 range

The upper measurement limit of CO2 density by the in-
frared analyzers can reach up to 1553 mgCO2 m−3. In the
atmosphere, its background CO2 mixing ratio is currently
419 µmolCO2 mol−1 (Global Monitoring Laboratory, 2022).
Under normal temperature and pressure conditions (Wright
et al., 2003), this background mixing ratio is equivalent
to 767 mgCO2 m−3 in dry air. The CO2 density in ecosys-
tems commonly ranges from 650 to 1500 mgCO2 m−3 (LI-
COR Biosciences, 2021c), depending on biological pro-
cesses (Wang et al., 2016), aerodynamic regimes (Yang
et al., 2007), and thermodynamic states (Ohkubo et al.,
2008). In this study, this range is extended from 600 to
1600 mgCO2 m−3 as a common range within which 1ρCO2

is evaluated. Because of the dependence of 1ρCO2 on ρCO2

(Eq. 14), to show the accuracy at different CO2 levels, the
range is further divided into five grades of 600, 767 (atmo-
spheric background), 1000, 1300, and 1600 mgCO2 m−3 for
evaluation presentations as in Fig. 2.

According to a brief review by Zhou et al. (2021) on the
plant physiological threshold in air temperature for growth
and development and the soil temperature dynamic related
to CO2 from microorganism respiration and/or wildlife ac-
tivities in terrestrial ecosystems, ρCO2 at any grade of 1000,
1300, or 1600 mgCO2 m−3 should, at 5 ◦C, start to con-
verge asymptotically to the atmospheric CO2 background
(767 mgCO2 m−3 at −30 ◦C, Fig. 2). Without an asymptot-
ical function for the convergence curve, conservatively as-
suming the convergence has a simple linear trend with Ta
from 5 to −30 ◦C, 1ρCO2 is evaluated up to the magnitude
of ρCO2 along the trend (Fig. 2).

4.5.2 1ρCO2 range

At Ta = Tc, the CO2 accuracy is best at its narrowest range
to be the sum of precision and sensitivity-to-H2O uncertain-
ties (±0.39 mgCO2 m−3). However, away from Tc, its range
near-linearly becomes wider. The 1ρCO2 range can be sum-
marized as ±0.40 to ±1.22 mgCO2 m−3 over the domain of
Ta and ρCO2 (Fig. 2a and CO2 columns in Table 2). The max-
imum CO2 relative accuracy at the different levels of ρCO2

is in a range of ±0.07 % at 1600 mgCO2 m−3 to 0.19 % at
600 mgCO2 m−3 (from data for Fig. 2b).

5 Accuracy of H2O density measurements

Model (2) defines the accuracy of field H2O measurements
from OPEC systems by infrared analyzers (1ρH2O) as

1ρH2O ≡±

(∣∣1ρz
H2O

∣∣+ ∣∣∣1ρg
H2O

∣∣∣+ ∣∣∣1ρs
H2O

∣∣∣
+

∣∣∣1ρp
H2O

∣∣∣), (15)
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Table 2. Accuracies of field CO2 and H2O measurements from open-path eddy-covariance systems by EC150 infrared CO2–H2O analyzers
(Campbell Scientific Inc., UT, USA) on the major background values of ambient air temperature, CO2, and H2O in ecosystems. (Atmospheric
pressure: 101.325 kPa. Calibration ambient air temperature: 20 ◦C.)

A
m

bi
en

ta
ir

te
m

pe
ra

tu
re CO2 H2O

767 mgCO2 m−3,a 1600 mgCO2 m−3,b 60 % Relative humidity Saturated

Accuracy ± Relative Accuracy ± Relative Accuracy ± Relative Accuracy ± Relative
◦C mgCO2 m−3 accuracy ± % mgCO2 m−3 accuracy ± % gH2O m−3 accuracy ± % gH2O m−3 accuracy ± %

−30 1.215 0.16 n/ac 0.065 32.00 0.066 19.27

−25 1.133 0.15 0.063 18.92 0.063 11.42

−20 1.051 0.14 0.061 11.41 0.061 6.90

−15 0.968 0.13 0.059 7.00 0.059 4.26

−10 0.886 0.12 0.056 4.38 0.057 2.67

−5 0.804 0.10 0.054 2.78 0.056 1.70

0 0.721 0.09 0.052 1.78 0.054 1.10

5 0.639 0.08 0.795 0.05 0.049 1.22 0.051 0.75

10 0.557 0.07 0.661 0.04 0.047 0.83 0.049 0.51

15 0.474 0.06 0.526 0.03 0.044 0.57 0.045 0.35

20 0.392 0.05 0.392 0.02 0.040 0.38 0.040 0.23

25 0.474 0.06 0.526 0.03 0.045 0.33 0.047 0.20

30 0.557 0.07 0.661 0.04 0.052 0.28 0.056 0.19

35 0.639 0.08 0.795 0.05 0.061 0.26 0.070 0.18

37 0.672 0.09 0.849 0.05 0.065 0.25 0.077 0.17

40 0.721 0.09 0.930 0.06 0.073 0.24 n/ad

45 0.804 0.10 1.064 0.07 0.089 0.23

48 0.853 0.11 1.145 0.07 0.099 0.23

50 0.886 0.12 1.198 0.07 n/ae

a 767 mgCO2 m−3 is the atmospheric background CO2 density (Global Monitoring Laboratory, 2022). b 1600 mgCO2 m−3 is assumed to be the maximum CO2 density in
ecosystems. c CO2 density in ecosystems is assumed to be lower than 1600 mgCO2 m−3 when ambient air temperature is below 5 ◦C. d H2O density in saturated air above 37 ◦C is
out of the measurement range of EC150 infrared CO2–H2O analyzers (0–44 gH2O m−3). e H2O density in air of 60 % relative humidity above 48 ◦C is out of the measurement range
of EC150 infrared CO2–H2O analyzers (0–44 gH2O m−3). n/a denotes “not applicable”.

where1ρz
H2O is H2O zero drift uncertainty, 1ρg

H2O is H2O
gain drift uncertainty, 1ρs

H2O is cross-sensitivity-to-CO2 un-
certainty, and1ρp

H2O is H2O precision uncertainty. Using the
same approach as for 1ρp

CO2
, 1ρp

H2O is formulated as

1ρPH2O =±1.96× σH2O, (16)

where σH2O, as defined in Table 1, is the precision of the
infrared analyzers for H2O measurements. The other uncer-
tainty terms in Model (15) can be understood and formulated
using a similar approach for their counterparts in Model (3).

5.1 1ρz
H2O (H2O zero drift uncertainty) and 1ρg

H2O
(H2O gain drift uncertainty)

The model of the analyzer working equation for ρH2O is sim-
ilar to Model (5) for ρCO2 in formulation, given also by the
derivations in the “Theory and operation” section in LI-COR
Biosciences (2001, 2021b, c):

ρH2O = P

3∑
i=1

awi

{
1−

[
Aw

Aws

+ Sc

(
1−

Ac

Acs

)]
Zw

}i{
Gw

P

}i
, (17)
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Figure 2. Accuracy of field CO2 measurements from open-path
eddy-covariance flux systems by EC150 infrared CO2–H2O ana-
lyzers (Campbell Scientific Inc., UT, USA) over their operational
range in Ta at atmospheric pressure of 101.325 kPa. The vertical
dashed line represents ambient air temperature Tc at which an ana-
lyzer was calibrated, zeroed, and/or spanned. Above 5 ◦C, accuracy
is evaluated up to the possible maximum CO2 density in ecosystems
(black curves). Assume that this maximum CO2 density starts lin-
early decreasing at 5 ◦C to the atmospheric CO2 background value
767 mgCO2 m−3 at−30 ◦C. Accordingly, below 5 ◦C, the accuracy
for CO2 density at a level above the background value (green, blue,
or black curves) is evaluated up to this decreasing trend of CO2 den-
sities. Relative accuracy of CO2 measurements is the ratio of CO2
accuracy to CO2 density.

where awi (i = 1, 2, or 3) is a coefficient of the 3-order poly-
nomial in the terms inside curly brackets; Sc is the cross-
sensitivity of a detector to CO2, while detecting H2O, at the
wavelength for H2O measurements (hereafter referred to as
sensitivity to CO2);Zw is the H2O zero adjustment (i.e., H2O
zero coefficient); Gw is the H2O gain adjustment (i.e., com-
monly referred as to H2O span coefficient); and Aw, Aws,
Ac, and Acs represent the same things as in Model (5). The
parameters of awi , Zw,Gw, and Sc in Model (17) are statisti-
cally estimated to establish an H2O working equation in the
production calibration against a series of air standards with
different H2O contents under ranges of ρCO2 and P (i.e., cal-
ibration). The H2O working equation (i.e., Model 17 with
estimated parameters) is used inside the analyzer OS to com-
pute ρH2O as the closest proxy for true ρH2O from field mea-
surements of Aw, Aws, Ac, Acs, and P .

Because of the similarities in model principles and pa-
rameter implications between Models (5) and (17), following
the same analyses and rationales as for 1ρz

CO2
and 1ρg

CO2
,

1ρz
H2O is formulated as

1ρz
H2O =

dwz

Trh− Trl
×

{
Ta− Tc Tc < Ta < Trh
Tc− Ta Tc > Ta > Trl

, (18)

and 1ρg
H2O is formulated as

1ρ
g
H2O =±

δH2O_gρH2O

Trh− Trl

×

{
Ta− Tc Tc < Ta < Trh
Tc− Ta Tc > Ta > Trl

. (19)

5.2 1ρs
H2O (sensitivity-to-CO2 uncertainty)

The infrared light at wavelength of 2.7 µm for H2O measure-
ment is traceably absorbed by CO2 (see Fig. 4.7 in Wallace
and Hobbs, 2006). This absorption interferes slightly with
the H2O absorption at this wavelength (McDermitt et al.,
1993). As such, the power of identical measurement lights
(i.e.,Aws as a steady value in the H2O working equation from
Model 17) through several air standards with the same H2O
density but different backgrounds of CO2 amounts would
result in different values of Aw in the H2O working equa-
tion from Model (17). In this equation, without parameter
Sc and its joined term, different Aw values will result in
significantly different ρH2O values, although ρH2O is essen-
tially the same. In case of the same H2O amount in the air-
flows under different CO2 backgrounds, different values of
Aw reporting the same ρH2O are accounted for by Sc asso-
ciated with Ac and Acs in the H2O working equation from
Model (17). However, Sc is not perfectly accurate either,
having uncertainty in the determination of ρH2O. This un-
certainty in the EC150 infrared analyzer is specified by the
sensitivity to CO2 (sCO2 ) as the maximum range of ±4.09×
10−5 gH2O m−3 (mgCO2 m−3)−1 (Table 1). Assuming the
infrared analyzers for H2O have the lowest sensitivity-to-
CO2 uncertainty for airflow with an atmospheric background
CO2 amount (i.e., 767 mgCO2 m−3),1ρs

H2O could be formu-
lated as

1ρs
H2O = sCO2

(
ρCO2 − 767

)
ρCO2 ≤ 1553mgCO2 m−3. (20)

Accordingly, 1ρs
H2O can be reasonably expressed as∣∣∣1ρs

H2O

∣∣∣≤ 786 sCO2 . (21)

5.3 1ρH2O (H2O measurement accuracy)

Substituting Eqs. (16), (18), (19), and (21) into Model (15),
1ρH2O for an individual H2O measurement from OPEC sys-
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tems by infrared analyzers can be expressed as

1ρH2O =±

[
1.96σH2O+ 786

∣∣sCO2

∣∣
+
|dwz| + δH2O_gρH2O

Trh− Trl

×

{
Ta− Tc Tc < Ta < Trh
Tc− Ta Tc > Ta > Trl

]
. (22)

This equation is the H2O accuracy equation for the OPEC
systems with infrared analyzers. It expresses the accuracy
of H2O measurements from the OPEC systems in terms of
the analyzer specifications σH2O, sCO2 , dwz, δH2O_g, Trh, and
Trl; measured variables ρH2O and Ta; and a known variable
Tc. Using this equation and the specification values as in
Table 1 for EC150 infrared analyzers, the accuracy of field
H2O measurements can be evaluated as a range for OPEC
systems with such analyzers. For an OPEC system with an-
other model of open-path infrared analyzer, such as the LI-
7500 series (LI-COR Biosciences, NE, USA) or IRGASON
(Campbell Scientific Inc., UT, USA), its corresponding spec-
ification values are used.

5.4 Evaluation of 1ρH2O

H2O accuracy (1ρH2O) can be evaluated using the H2O ac-
curacy equation over a domain of Ta and ρH2O. Similar to
the CO2 accuracy equation in Fig. 2, 1ρH2O is presented as
the ordinate along the abscissa of Ta at different ρH2O lev-
els within the ranges of Ta and ρH2O in ecosystems (Fig. 3).
As with the evaluation of 1ρCO2 , Ta is limited from −30
to 50 ◦C and Tc can be assumed to be 20 ◦C. The range of
ρH2O at Ta needs to be determined using atmospheric physics
(Buck, 1981).

5.4.1 ρH2O range

The EC150 analyzers were calibrated for H2O density from
0 to 44 gH2O m−3 due to the reason addressed in Sect. 2.
The highest limit of measurement range for H2O density by
other models of analyzers also should be near 44 gH2O m−3.
However, due to the positive exponential dependence of air
water vapor saturation on Ta (Wallace and Hobbs, 2006),
ρH2O has a range that is wider at higher Ta and narrower at
lower Ta. Below 37 ◦C at 101.325 kPa, ρH2O is lower than
44 gH2O m−3, and its range becomes narrower and narrower,
reaching 0.34 gH2O m−3 at −30 ◦C. To determine the H2O
accuracy over the same relative range of air moisture, even
at different Ta, the saturation water vapor density is used to
scale air moisture to 20 %, 40 %, 60 %, 80 %, and 100 % (i.e.,
relative humidity or RH). For each scaled RH value, ρH2O
can be calculated at different Ta and P (Appendix B) for use
in the H2O accuracy equation. In this way, over the range
of Ta, H2O accuracy can be shown as curves, along each of
which RH is equal (Fig. 3).

5.4.2 1ρH2O range

In the same way as with CO2 accuracy, the H2O accuracy
at Ta = Tc is best at its narrowest as the sum of precision
and sensitivity-to-CO2 uncertainties (< 0.040 gH2O m−3 in
magnitude). However, away from Tc, its range non-linearly
becomes wider, very gradually below this Tc value but more
abruptly above because, as Ta increases, ρH2O at the same
RH increases exponentially (Eqs. B1 and B2 in Appendix B),
while 1ρH2O increases linearly with ρH2O in the H2O accu-
racy Eq. (22). This range can be summarized as the widest
at 48 ◦C as ±0.099 gH2O m−3 for air with 60 % RH (Fig. 3a
and H2O columns in Table 2). The number can be rounded
up to ±0.10 gH2O m−3 for the overall accuracy of field H2O
measurements from OPEC systems by the EC150 infrared
analyzers.

Figure 3b shows an interesting trend of H2O relative accu-
racy with Ta. Given the RH range, as shown in Fig. 3b, the
relative accuracy diverges with a Ta decrease and converges
with a Ta increase. The H2O relative accuracy varies from
0.17 % for saturated air at 37 ◦C to 96 % for 20 % RH air at
−30 ◦C (data for Fig. 3b) and, at this low Ta, can be much
greater if RH goes further lower. The H2O relative accuracy
in magnitude is < 1 % while ρH2O > 5.00 gH2O m−3, < 5 %
while ρH2O > 1.20 gH2O m−3, and > 10 % while ρH2O <

0.60 gH2O m−3.

6 Application

The primary objective of this study is to develop an assess-
ment methodology to evaluate the overall accuracies of field
CO2 and H2O measurements from the infrared analyzers in
OPEC systems by compositing their individual measurement
uncertainties as specified with four uncertainty descriptors:
zero drift, gain drift, sensitivity to CO2/H2O, and precision
variability (Table 1). Ultimately, the overall accuracies (i.e.,
1ρCO2 and 1ρH2O) make uncertainty analyses possible for
the various applications of CO2 and H2O data, and the com-
posited accuracy equations (i.e., Eqs. 14 and 22) make the
field maintenance rationale for infrared analyzers.

6.1 Application of 1ρCO2 and 1ρH2O to the
uncertainty analyses for CO2 and H2O flux data

As discussed in Introduction, the uncertainty in each flux
data point is contributed by numerous sub-uncertainties in
the processes of measurements and computations, among
which 1ρCO2 and 1ρH2O are two fundamental uncertainties
in the measurements from infrared analyzers. For this study
topic, assuming 3-D wind speeds are accurately measured by
a sonic anemometer, Appendix C demonstrates that neither
1ρCO2 nor 1ρH2O brings an uncertainty into the covariance
of vertical wind speed (w) with ρCO2 , ρH2O, or Ta even after
coordinate rotations, lag maximization, and low- and high-
frequency corrections, given by Eqs. (C8) and (C9) in Ap-
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Figure 3. Accuracy of field H2O measurements from open-path
eddy-covariance systems by EC150 infrared CO2–H2O analyzers
(Campbell Scientific Inc., UT, USA) over their operational range in
Ta under atmospheric pressure of 101.325 kPa. The vertical dashed
line represents the ambient air temperature (Tc) at which an ana-
lyzer was calibrated, zeroed, and/or spanned. Relative accuracy of
H2O measurements is the ratio of H2O accuracy to H2O density.

pendix C as(
w′ρ′CO2

)
rmf
=

(
w′ρ′CO2T

)
rmf
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w′ρ′H2O

)
rmf
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(
w′ρ′H2OT

)
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w′T ′a
)
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where the overbar is a Reynolds’ averaging operator, prime
denotes the fluctuations in a variable away from its mean
(e.g., w′i = wi −w), subscript T indicates “true” value (see
Appendix C for the implication of true value), and subscript
rmf indicates that the covariance was corrected through coor-
dinate rotations (r), lag maximization (m), and low- and high-
frequency corrections (f). The three equalities in Eq. (23) that
are proved in Appendix C prove that the measured covariance
of w with ρCO2 , ρH2O, or Ta is not affected by corresponding
1ρCO2 , 1ρH2O, or 1Ta (i.e., accuracy of Ta), being equal to
the true covariance. Further, through WPL corrections, the
three terms on the left side of Eq. (23) can be used to de-
rive an analytical equation for measured CO2 or H2O flux,
whereas the three terms on the right side of this equation
can be used to derive an analytical equation for true CO2 or
H2O flux. The comparison of both analytical equations can

demonstrate the partial effects of 1ρCO2 and 1ρH2O on the
uncertainty in CO2 or H2O flux data.

6.1.1 Roles of 1ρCO2 and 1ρH2O in the uncertainty in
CO2 flux data

Using the terms on the left side of Eq. (23), through the WPL

corrections for CO2 flux from
(
w′ρ′CO2

)
rmf

(Webb et al.,
1980), the measured CO2 flux (FCO2 ) is given by
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]
, (24)

where µ is the ratio of dry air to water molecular weight,
ρd is dry air density, and TaK is air temperature in kelvin.
According to Eqs. (C1) and (23), this equation can be written
as
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, (25)

where 1T a is the accuracy of T aK. 1T a is well defined
as ±0.20 K in compliance with the WMO standard (WMO,

2018). According to Eqs. (23) and (24), from
(
w′ρ′CO2T

)
rmf

,
the nominal true CO2 flux (FCO2T) can be given by
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From Eqs. (25) and (26), the uncertainty in CO2 flux
(1FCO2 ) can be expressed as

1FCO2 = FCO2 −FCO2T

= µ

(
ρCO2T+1ρCO2
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−
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This derivation provides a conceptual model for the partial
effects of 1ρCO2 and 1ρH2O on the uncertainty in CO2 flux
data. This uncertainty is added by 1ρCO2 and 1ρH2O inter-
actively with the density effect due to H2O flux (i.e., the term

with
(
w′ρ′H2O

)
rmf

in Eq. 27) and temperature flux (i.e., the

term with
(
w′T ′a

)
rmf in Eq. 27).
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6.1.2 1ρH2O on uncertainty in H2O flux data

Using the same approach to Eq. (27), the uncertainty in H2O
flux (1FH2O) can be expressed as

1FH2O = µ

(
ρH2OT+1ρH2O

ρdT−1ρH2O
−
ρH2OT
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)(
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+
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](
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rmf. (28)

This formulation provides a conceptual model for the par-
tial effects of 1ρH2O on the uncertainty in H2O flux data.
This uncertainty is added only by 1ρH2O also interactively
with the density effect due to H2O flux (i.e., the term with(
w′ρ′H2O

)
rmf

in Eq. 28) and temperature flux (the term with(
w′T ′a

)
rmf in Eq. 28). Further analysis and more discussion

about Eqs. (27) and (28) go beyond the scope of this study.

6.2 Application of 1ρH2O to the uncertainty analysis
for high-frequency air temperature

The measured variables ρH2O, along with Ts and P , can
be used to compute high-frequency Ta in OPEC systems
(Swiatek, 2018). If Ta(ρH2O,Ts,P ) were an exact function
from the theoretical principles, it would not have any er-
ror itself. However, in our applications, variables ρH2O, Ts,
and P are measured from the OPEC systems experiencing
seasonal climates. As addressed in this study, the measured
values of these variables have measurement uncertainty in
ρH2O (1ρH2O, i.e., accuracy of field H2O measurement), in
Ts (1Ts, i.e., accuracy of field Ts measurement), and in P
(1P , i.e., accuracy of field P measurement). The uncertain-
ties from the measurements propagate to the computed Ta as
an uncertainty (1Ta, i.e., accuracy of Ta(ρH2O,Ts,P )). This
accuracy is a reference by any application of Ta. It should
be specified through the relationship of 1Ta to 1ρH2O, 1Ts,
and 1P .

As field measurement uncertainties, 1ρH2O, 1Ts, or 1P
are reasonably small increments in numerical analysis (Bur-
den et al., 2016). As such, depending on all the small incre-
ments, 1Ta is a total differential of Ta(ρH2O,Ts,P ) with re-
spect to ρH2O, Ts, and P , which are measured independently
by three sensors, given by

1Ta =
∂Ta

∂ρH2O
1ρH2O+

∂Ta

∂Ts
1Ts+

∂Ta

∂P
1P. (29)

In this equation, 1ρH2O from the application of Eq. (22) is a
necessary term to acquire1Ta,1Ts can be acquired from the
specifications for 3-D sonic anemometers (Zhou et al., 2018),
1P can be acquired from the specifications for the barome-
ter used in the OPEC systems (Vaisala, 2020), and the three
partial derivatives can be derived from the explicit function

Ta(ρH2O,Ts,P ). With 1ρH2O, 1Ts, 1P , and the three par-
tial derivatives,1Ta can be ranged as a function of ρH2O, Ts,
and P .

6.3 Application of accuracy equations in analyzer field
maintenance

An infrared analyzer performs better if the field environment
is near its manufacturing conditions (e.g., Ta at 20 ◦C), which
is demonstrated in Figs. 2a and 3a for measurement accu-
racies associated with Tc. As indicated by the accuracies in
both figures, the closer to Tc at 20 ◦C Ta is, the better the an-
alyzers perform. However, the analyzers are used in OPEC
systems mostly for long-term field campaigns through four-
seasonal climates vastly different from those in the manufac-
turing processes. Over time, an analyzer gradually drifts in
some ways and needs field maintenance, although within its
specifications.

The field maintenance cannot improve the sensitivity-to-
CO2/H2O uncertainty and precision variability, but both are
minor (their sum < 0.392 mgCO2 m−3 for CO2, Eqs. 4 and
13; < 0.045 gH2O m−3 for H2O, Eqs. 16 and 21) as com-
pared to the zero or gain drift uncertainties. However, the
zero and gain drift uncertainties are major in the determina-
tion of field CO2/H2O measurement accuracy (Figs. 2 to 4
and Eqs. 14 and 22), but they are adjustable, through the zero
and/or span procedures, and can be minimized. Therefore,
manufacturers of infrared analyzers have provided software
and hardware tools for the procedures (Campbell Scientific
Inc., 2021b) and scheduled the procedures using those tools
(LI-COR Biosciences, 2021c). Fratini et al. (2014) provided
a technique implemented into the EddyPro® Eddy Covari-
ance Software (LI-COR Biosciences, 2021a) to correct the
drift biases from a raw time series of CO2 and H2O data
through post-processing. This study provides rationales for
how to assess, schedule, and perform the zero and span pro-
cedures (Figs. 2a, 3a, and 4).

6.3.1 CO2 zero and span procedures

Figure 4a shows that the CO2 zero drift uncertainty linearly
increases with Ta away from Tc over the full Ta range within
which OPEC systems operate; so, too, does CO2 gain drift
uncertainty increase for a given CO2 concentration. As sug-
gested by Zhou et al. (2021), both drifts should be adjusted
near the Ta value around which the system runs. The zero and
gain drifts should be adjusted, through zero and span proce-
dures, at a Ta close to its daily mean around which the system
runs. Based on the range of Ta daily cycle, the procedures are
set at a moderate instead of the highest or lowest moment in
Ta. Given the daily cycle range is much narrower than 40 ◦C,
an OPEC system could run at Ta within ±20 of Tc if the pro-
cedures are performed at a right moment of Ta. For our case
study on atmospheric CO2 background (left CO2 column in
Table 2), the procedures can narrow the widest possible range
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Figure 4. Component measurement uncertainties due to the zero
and gain drifts of EC150 infrared CO2–H2O analyzers (Campbell
Scientific Inc, UT, USA) in open-path eddy-covariance flux systems
over their operational range in Ta under an atmospheric pressure
of 101.325 kPa. The vertical dashed line represents the ambient air
temperature (Tc) at which an analyzer was calibrated, zeroed, and/or
spanned.

of ±1.22 mgCO2 m−3 for field CO2 measurement by at least
40 % to±0.72 mgCO2 m−3 (i.e., accuracy at 0 or 40 ◦C when
Tc = 20 ◦C), which would be a significant improvement to
ensure field CO2 measurement accuracy through CO2 zero
and span procedures.

6.3.2 H2O zero and span procedures

Figure 4b shows that the H2O zero drift uncertainty in-
creases as Ta moves away from Tc in the same trend as
CO2 zero drift uncertainty. Therefore, an H2O zero proce-
dure can be performed by the same technique as for the CO2
zero procedure. H2O gain drift uncertainty has a different
trend. It exponentially diverges, as Ta increases away from
Tc, to±5.0×10−2 gH2O m−3 near 50 ◦C and gradually con-
verges to 2 orders smaller as Ta decreases away from Tc, to
±6.38× 10−4 gH2O m−3 at −30 ◦C (data for Fig. 4b). The
exponential divergence results from the linear relationship of
H2O gain drift uncertainty (Eq. 19) with ρH2O, which expo-
nentially increases (Eq. B1) with a Ta increase away from Tc
for the same RH (Buck, 1981). The convergence results from
the linear relationship offset by the exponential decrease in
ρH2O with a Ta decrease for the same RH. This trend of H2O

gain drift uncertainty with Ta is a rationale to guide the H2O
span procedure, which adjusts the H2O gain drift.

The H2O span procedure needs standard moist air with
known H2O density from a dew point generator. The gener-
ator is not operational near or below freezing conditions (LI-
COR Biosciences, 2004), which limits the span procedure to
be performed only under non-freezing conditions. This con-
dition, from 5 to 35 ◦C, may be considered for the generator
to be conveniently operational in the field. Accordingly, the
zero and span procedures for H2O should be discussed sepa-
rately for a Ta above and below 5 ◦C.

Ta above 5 ◦C

Looking at the right portion with Ta above 5 ◦C in Fig. 4b,
H2O gain drift has a more obvious impact on measurement
uncertainty in a higher Ta range (e.g., above Tc), within
which the H2O span procedure is most needed. In this range,
the maximum accuracy range of ±0.10 gH2O m−3 can be
narrowed by 30 % to ±0.07 (assessed from data for Fig. 3a)
if the zero and span procedures for H2O can be sequentially
performed as necessary in a Ta range from 5 to 35 ◦C.

Ta below 5 ◦C

Looking at the left portion with Ta below 5 ◦C in Fig. 4b,
H2O gain drift has a less obvious contribution to the mea-
surement uncertainty in a lower Ta range (e.g., below 5 ◦C),
within which the H2O span procedure may be unnecessary.
An H2O gain drift uncertainty at 5 ◦C is 50 % of the H2O
zero drift uncertainty (dotted curve in Fig. 5). This percent-
age decreases to 3 % at −30 ◦C. On average, this percentage
over a range of −30 to 5 ◦C is 18 % (assessed from data for
the dotted curve in Fig. 5). Thus, for H2O measurements over
the lower Ta range, it can be concluded that H2O zero drift
is a major uncertainty source, and H2O gain drift is a minor
uncertainty source.

A close examination of the other curves in Fig. 5 for the
portion in the accuracy range from H2O zero/gain drift makes
this conclusion more convincing. Given Tc = 20, in the ac-
curacy range, the portion from H2O zero drift uncertainty
is much greater (maximum 38 % at −30 ◦C) than that from
H2O gain drift uncertainty (maximum only 7 % at 5 ◦C). On
average over the lower Ta range, the former is 27 % and
the latter only 4 %. Further, given Tc = 5 ◦C, in the accu-
racy range, the portion from H2O gain drift uncertainty is
even smaller (maximum only 3 % at −5 ◦C); in contrast,
the portion from zero drift uncertainty is more major (1 or-
der higher, 30 % at −30 ◦C). On average over the lower Ta
range, the minor gain drift uncertainty is 1.7 %, and the ma-
jor zero drift uncertainty is 17 %. Both percentages under-
score that the H2O span procedure is reasonably unneces-
sary under cold/dry conditions, and, under such conditions,
the H2O zero procedure is the only necessary option to ef-
ficiently minimize H2O measurement uncertainty from the
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Figure 5. For a range of low Ta, the portion in the accuracy range
from zero/gain drift uncertainty (left ordinate) and the ratio of gain
to zero drift uncertainty (right ordinate). The curves are evaluated
by Eqs. (18), (19), and (22) from measurement specifications for
EC150 infrared CO2–H2O analyzers (Campbell Scientific Inc, UT,
USA) in open-path eddy-covariance flux systems over the Ta range
from −30 to 5 ◦C under atmospheric pressure of 101.325 kPa. Tc
is the ambient air temperature at which an analyzer was calibrated,
zeroed, and/or spanned.

infrared analyzers in OPEC systems. This finding gives con-
fidence in H2O measurement accuracy to users who are wor-
ried about H2O span procedures for infrared analyzers in the
cold seasons when a dew point generator is not operational
in the field (LI-COR Biosciences, 2004).

6.3.3 H2O zero procedure in cold and/or dry
environments

In cold environments, although the non-operational H2O
span procedure is unnecessary, the H2O zero procedure is
asserted to be a prominently important option for minimiz-
ing the H2O measurement uncertainty from the infrared an-
alyzers in OPEC systems. This procedure, although oper-
ational under freezing conditions, is still inconvenient for
users when the weather is very cold (e.g., when Ta is be-
low −15 ◦C). If the field H2O zero procedure is performed
as needed above this Ta value, while an OPEC system
runs at Ta within ±20 ◦C of Tc, the poorest H2O accuracy
of ±0.066 gH2O m−3 below 5 ◦C in Table 2 can be nar-
rowed, through the H2O zero procedure, by at least 22 %
to 0.051 gH2O m−3 (assessed from data for Fig. 3a). Corre-
spondingly, the relative accuracy range can be narrowed by
the same percentage. The H2O zero procedure can ensure
both accuracy and relative accuracy of H2O measurements
in a cold environment (Fratini et al., 2014). In a dry envi-
ronment, it plays the same role as in a cold environment, but
it would be more convenient for users to perform the zero
procedure if warmer.

In a cold and/or dry environment, H2O zero procedures on
a regular schedule would best minimize the impact of zero
drifts on measurements. Under such an environment, the au-
tomatic zero procedure for CO2 and H2O together in CPEC
systems is an operational and efficient option to ensure and
improve field CO2 and H2O measurement accuracies (Camp-
bell Scientific Inc., 2021a; Zhou et al., 2021).

7 Discussion

An assessment methodology to evaluate the overall accura-
cies of field CO2 and H2O measurements from the infrared
analyzers in OPEC systems is developed using individual
analyzer measurement uncertainties as specified using four
uncertainty descriptors: zero drift, gain drift, sensitivity to
CO2/H2O, and precision variability (Table 1). For the eval-
uation, these uncertainty descriptors are comprehensively
composited into the accuracy Model (2) and then formulated
as a CO2 accuracy Eq. (14) and an H2O accuracy Eq. (22)
(Sects. 3 to 5 and Appendix A). The assessment methodol-
ogy, along with the model and the equations, presents our
development for the objective (Sects. 4.5 and 5.4).

7.1 Accuracy model

Accuracy Model (2) composites the four measurement un-
certainties (zero drift, gain drift, sensitivity to CO2/H2O, and
precision variability), specified for analyzer performance, as
an accuracy range. This range is modeled as a simple addi-
tion of the four uncertainties. The simple addition is derived
from our analysis assertion that the four measurement un-
certainties interactionally or independently contribute to the
accuracy range, but the contributions from the interactions
inside any pair of uncertainties are negligible since they are
3 orders smaller in magnitude than an individual contribution
in the pair (Appendix A). This derived model is simple and
applicable, paving an approach to the formulation of accu-
racy equations that are computable for evaluating the overall
accuracies of field CO2 and H2O measurements from the in-
frared analyzers in OPEC systems.

Additionally, included in the accuracy model, the four
types of measurement uncertainty sources (i.e., zero drift,
gain drift, sensitivity to CO2/H2O, and precision variabil-
ity) to specify the performance of infrared CO2–H2O ana-
lyzers for OPEC systems have been consistently used over
last 2 decades (LI-COR Biosciences, 2001, 2021b, c; Camp-
bell Scientific Inc., 2021a, b). With the advancement of op-
tical technologies, the number of these uncertainty sources
for analyzer specifications is not expected to increase; rather
some current uncertainty sources could be eliminated from
the current specification list, even if not in the near future. If
eliminated, in Models (3) and (15) and Eqs. (14) and (22),
the parameters and variables related to the eliminated uncer-
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tainty sources could be easily removed for the adoption of the
new set of specifications for infrared CO2–H2O analyzers.

7.2 Formulation of uncertainty terms in Model (2) for
accuracy equations

In Sects. 4 and 5, each of the four uncertainty terms in accu-
racy Model (2) is formulated as a computable sub-equation
for CO2 (Eqs. 4, 7, 11, and 13) and H2O (Eqs. 16, 18, 19, and
21), respectively. The accuracy model, whose terms are re-
placed with the formulated sub-equations for CO2, becomes
a CO2 accuracy Eq. (14) and, for H2O, becomes an H2O ac-
curacy Eq. (22). In the formulation, approximation is used
for zero drift, gain drift, and sensitivity to CO2/H2O, while
statistics are applied for precision variability.

For the zero/gain drift, although it is well known that the
drift is influenced more by Ta if housing CO2–H2O accumu-
lation is assumed to be minimized as insignificant under nor-
mal field maintenance (LI-COR Biosciences, 2021c; Camp-
bell Scientific Inc., 2021b), the exact relationship of drift to
Ta does not exist. Alternatively, the zero/gain drift uncer-
tainty is formulated by an approximation of drifts away from
Tc linearly in proportion to the difference between Ta and Tc
but within its maximum range over the operational range in
Ta of OPEC systems (Eqs. 7, 11, 18, and 19). A drift uncer-
tainty equation formulated through such an approximation is
not an exact relationship of drift to Ta, but it does represent
the drift trend, as influenced by Ta, to be understood by users.
The accuracy from this equation at a given Ta is not exact ei-
ther, but the maximum range over the full range, which is the
greatest-likelihood estimation, is most needed by users.

In fact, the H2O accuracy as influenced by the linear trend
of zero and gain drifts with the difference between Ta and Tc
is overshadowed by the exponential trend of saturated H2O
density with Ta (Fig. 4b). Similarly, the CO2 accuracy as in-
fluenced by the linear trend of zero and gain drifts with this
difference is dominated by the CO2 density of the ecosys-
tem background with Ta, particularly in the low temperature
range (Fig. 2). Ultimately, the assumed linear trend does not
play a dominant role in the accuracy trends of CO2 and H2O,
which shows the merits of our methodology in the uses of at-
mospheric physics and biological environment principles for
the field data.

The sensitivity-to-CO2/H2O uncertainty can be formally
formulated as Eqs. (20) or (12), but, if directly used, this for-
mulation would add an additional variable to the CO2/H2O
accuracy equation. Equation (12) would add H2O density
(ρH2O) to the CO2 accuracy Eq. (14), and Eq. (20) would add
CO2 density (ρCO2 ) to the H2O accuracy Eq. (22). For either
accuracy equation, the additional variable would complicate
the uncertainty analysis. According to the ecosystem envi-
ronment background, the maximum range of sensitivity-to-
CO2/H2O uncertainty is known, and as compared to the ma-
jor uncertainty in zero/gain drift (Table 1), this range is nar-
row (Table 1 and Eqs. 13 and 21). Therefore, the sensitivity-

to-CO2/H2O uncertainty is approximated as Eq. (21) or (13).
This approximation widens the accuracy range slightly, in a
magnitude smaller than each of major uncertainties from the
drifts by at least 1 order; however, it eliminates the need for
ρH2O in the CO2 accuracy Eq. (14) and for ρCO2 in the H2O
accuracy Eq. (22), which makes the equations easily applica-
ble.

Precision uncertainty is statistically formulated as Eq. (4)
for CO2 and Eq. (16) for H2O. This formulation is common
practice based on statistical methods (Hoel, 1984).

7.3 Use of relative accuracy for infrared analyzer
specifications

Relative accuracy is often used concurrently with accuracy
to specify sensor measurement performance. The accuracy
is the numerator of relative accuracy whose denominator is
the true value of a measured variable. When evaluated for
the applications of OPEC systems in ecosystems, CO2 accu-
racy in magnitude is small in a range within 1 order (0.39–
1.22 mgCO2 m−3, data for Fig. 2a), and so is H2O accuracy
(0.04–0.10 gH2O m−3, data for Fig. 3a). In ecosystems, CO2
is naturally high, as compared to its accuracy magnitude,
and does not change much in terms of a magnitude order
(e.g., no more than 1 order from 600 to 1600 mgCO2 m−3,
assumed in this study). However, unlike CO2, H2O natu-
rally changes dramatically in its amount across at least 3 or-
ders in magnitude (e.g., at 101.325 kPa, from 0.03 gH2O m−3

when RH is 10 % at −30 ◦C to 40 gH2O m−3 when dew
point temperature is 35 ◦C at the highest as reported by the
National Weather Service, 2022; under drier conditions, the
H2O amount could be even lower). Because, in ecosystems,
CO2 changes differently from H2O in amount across mag-
nitude orders, the relative accuracy behaviors in CO2 differ
from H2O (Figs. 2b and 3b).

7.3.1 CO2 relative accuracy

Because of the small CO2 accuracy magnitude relative to the
natural CO2 amount in ecosystems, the CO2 relative accu-
racy magnitude varies within a narrow range of ±0.07 to
±0.19 % (Sect. 4.5.2). If the relative accuracy is used, either
a range of ±0.07 to ±0.19 % or an inequality of ≤ 0.19 % in
magnitude can be specified as the CO2 relative accuracy for
field CO2 measurements. Both range and inequality would
be equivalently perceived by users to be a fair performance
of the infrared analyzers in OPEC systems. For simplicity,
our study specifies the CO2 relative accuracy for the EC150
infrared analyzers to be ±0.19 % after a manufacturing cali-
bration (data shown in Fig. 2b).

7.3.2 H2O relative accuracy

Although the H2O accuracy magnitude is also small, the “rel-
atively” great change in natural-air H2O across several mag-
nitude orders in ecosystems results in a much wider range of
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the H2O relative accuracy magnitude, from±0.23 % at max-
imum air moisture to ±96 % when RH is 20 % at −30 ◦C
(Fig. 3b and Sect. 5.4.2). H2O relative accuracy can be much
greater under dry conditions at low Ta (e.g., ±192 % for air
when RH is 10 % at −30 ◦C). Accordingly, if the relative ac-
curacy is used, either a range of ±0.23 % to ±192 % or an
inequality of ≤ 192 % in magnitude can be specified as the
H2O relative accuracy for field H2O measurements. Either
the range or the inequality could be perceived by users intrin-
sically as a poor measurement performance of the infrared
analyzers in OPEC systems, although either specification is
conditionally right for fair H2O measurement.

Apparently, the relative accuracy for H2O measurements
in ecosystems is not intrinsically interpretable by users to
correctly perceive the performance of the infrared analyz-
ers in OPEC systems. Instead, if H2O relative accuracy is
unconditionally specified just in an inequality of ≤ 192 % in
magnitude, it could easily mislead users to wrongly assess
the performance as unacceptable for H2O measurements, al-
though this performance of the infrared analyzers in OPEC
systems is fair for air when RH is 10 % at −30 ◦C. There-
fore, H2O relative accuracy is not recommended to be used
for specification of infrared analyzers for H2O measurement
performance. If this descriptor is used, the H2O relative ac-
curacy under a standard condition should be specified. This
condition may be defined as saturated air at 35 ◦C (i.e., the
highest natural dew point; National Weather Service, 2022)
under normal P of 101.325 kPa (Wright et al., 2003). For our
case study, under such a standard condition, the H2O relative
accuracy can be specified within ±0.18 % after a manufac-
turing calibration (data for Fig. 3b).

8 Conclusions

The accuracy of field CO2/H2O measurements from the in-
frared analyzers in OPEC systems can be defined as a maxi-
mum range of composited measurement uncertainty (Eqs. 14
and 22) from the specified sources: zero drift, gain drift,
sensitivity to CO2/H2O, and precision variability (Table 1),
all of which are included in the system specifications for
infrared CO2–H2O analyzers currently used in field OPEC
systems. The specified uncertainties interactionally or inde-
pendently contribute to the overall uncertainty. Fortunately,
the interactions between component uncertainties in each
pair is 3 orders smaller than either component individu-
ally (Appendix A). Therefore, these specified uncertainties
can be simply added together as the accuracy range in a
general CO2/H2O accuracy model for the infrared analyz-
ers in OPEC systems (Model 2). Based on statistics, bio-
environment, and approximation, the specification descrip-
tors of the infrared analyzers in OPEC systems are incorpo-
rated into the model terms to formulate the CO2 accuracy
Eq. (14) and the H2O accuracy Eq. (22), both of which are
computable to evaluate corresponding CO2 and H2O accu-

racies. For the EC150 infrared analyzers used in the OPEC
systems over their operational range in Ta at the standard P
of 101.325 kPa (Figs. 2 and 3 and Table 2), the CO2 accu-
racy can be specified as±1.22 mgCO2 m−3 (relatively within
±0.19 %, Fig. 2) and H2O accuracy as ±0.10 gH2O m−3

(relatively within ±0.18 % for saturated air at 35 ◦C at the
standard P , Fig. 3).

Both accuracy equations are not only applicable for fur-
ther uncertainty estimation for CO2 and H2O fluxes due to
CO2 and H2O measurement uncertainties (Eqs. 27 and 28)
and the error/uncertainty analyses in CO2 and H2O data ap-
plications (e.g., Eq. 29); they may also be used as a ratio-
nale to assess and guide field maintenance on infrared ana-
lyzers. Equation (14) as shown in Fig. 2a, along with Eqs. (7)
and (11) as shown in Fig. 4a, guides users to adjust the CO2
zero and CO2 gain drifts, through the corresponding zero and
span procedures, near a Ta value that minimizes the Ta de-
partures, on average, during the period of interest if this pe-
riod were not under extreme and hazard conditions (Fratini et
al., 2014). As assessed on atmospheric CO2 background, the
procedures can narrow the maximum CO2 accuracy range by
40 %, from ±1.22 to ±0.72 mgCO2 m−3 and thereby greatly
improve the CO2 measurement accuracies with these regular
zero and span procedures for CO2.

Equation (22) as shown in Fig. 3a, along with Eqs. (18)
and (19) as shown in Fig. 4b, presents users with a ratio-
nale to adjust the H2O zero drift of infrared analyzers in the
same technique as for CO2, but the H2O gain drift under hot
and humid environments needs more attention (see the right
portion above Tc in Figs. 3a and 4b); under cold and/or dry
environments, it does not merit further concern (see the left
portion below 0 ◦C in Fig. 4b). In a Ta range above 5 ◦C,
the maximum H2O accuracy range of ±0.10 gH2O m−3 can
be narrowed by 30 % to ±0.07 gH2O m−3 if both zero and
span procedures for H2O are performed as necessary. In a Ta
range below 5 ◦C, the H2O zero procedure alone can narrow
the maximum H2O accuracy range of ±0.066 gH2O m−3 by
22 % to ±0.051 gH2O m−3. Under cold environmental con-
ditions, the H2O span procedure is found to be unnecessary
(Fig. 5), and the H2O zero procedure is proposed as the only,
and prominently efficient, option to minimize H2O measure-
ment uncertainty from the infrared analyzers in OPEC sys-
tems. This procedure plays the same role under dry condi-
tions. Under cold and/or dry environments, the zero proce-
dure for CO2 and H2O together would be a practical and ef-
ficient option not only to warrant but also to improve mea-
surement accuracy. In a cold environment, adjusting the H2O
gain drift is impractical because of the failure of a dew point
generator under freezing conditions.

Additionally, as a specification descriptor for OPEC sys-
tems used in ecosystems, relative accuracy is applicable for
CO2 instead of H2O measurements. A small range in the
CO2 relative accuracy can be perceived intuitively by users
as normal. In contrast, without specifying the condition of air
moisture, a large range in H2O relative accuracy under cold
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and/or dry conditions (e.g., 100 %) can easily mislead users
to an incorrect conclusion in interpretation of H2O measure-
ment reliability, although it is the best achievement of the
modern infrared analyzers under such conditions. If the H2O
relative accuracy is used, the authors suggest conditionally
defining it for saturated air at 35 ◦C (i.e., 39.66 gH2O m−3

at 101.352 kPa). Ultimately, this study provides some scien-
tific bases for the flux community to specify the accuracy
of CO2–H2O measurements from the infrared analyzers in
OPEC systems, although only one model of infrared analyz-
ers (i.e., EC150) is used for this study.

Appendix A: Derivation of the accuracy model for
infrared CO2–H2O analyzers

As defined in the Introduction, the measurement accuracy of
infrared CO2–H2O analyzers is a range of the difference be-
tween the true α density (ραT, where α can be either CO2
or H2O) and α density (ρα) measured by the analyzers. The
difference is denoted by 1ρα , given by Eq. (1) in Sect. 3.
The range of this difference is contributed from the analyzer
performance uncertainties, as specified by the use of the four
descriptors: zero drift, gain drift, cross-sensitivity, and preci-
sion (LI-COR Biosciences, 2021c; Campbell Scientific Inc.,
2021b).

According to the definitions in Sect. 2, zero drift uncer-
tainty (1ρz

α) is independent of ραT value and gain trend re-
lated to analyzer response; so, too, is cross-sensitivity uncer-
tainty (1ρs

α), which depends upon the amount of background
H2O in the measured air if α is CO2 and upon the amount of
background CO2 in the measured air if α is H2O. In the case
that both gain drift and precision uncertainties are zero, 1ρz

α

and 1ρs
α are simply additive to any true value as a measured

value, including zero drift and cross-sensitivity uncertainties
(ρα_zs):

ρα_zs = ραT+1ρ
z
α +1ρ

s
α, (A1)

where subscript z indicates zero drift uncertainty included in
the measured value and subscript s indicates cross-sensitivity
uncertainty included in the measured value. During the mea-
surement process, while zero is drifting and cross-sensitivity
is active, if gain also drifts, then the gain drift interacts with
the zero drift and the cross-sensitivity. This is because ρα_zs
is a linear factor for this gain drift (see the cells along the
gain drift row in the value columns in Table 1) that is added
to ρα_zs as a measured value additionally including gain drift
uncertainty (ρα_zsg, where subscript g indicates gain drift un-
certainty included in the measured value), given by

ρα_zsg = ρα_zs+ δα_gρα_zs, (A2)

where δα_g is gain drift percentage (e.g., in the case of this
study, δCO2_g = 0.10 % and δH2O_g = 0.30 %, Table 1). Sub-
stituting ρα_zs, as expressed in Eq. (A1), into this equation

leads to

ρα_zsg = ραT+1ρ
z
α +1ρ

s
α + δα_gραT

+ δα_g1ρ
z
α + δα_g1ρ

s
α. (A3)

In this equation, δα_g1ρ
z
α is the zero–gain interaction and

δα_g1ρ
s
α is the cross-sensitivity–gain interaction. In magni-

tude, the former is 3 orders smaller than either zero drift un-
certainty (1ρz

α) or gain drift uncertainty (δα_gραT), and the
latter is 3 orders smaller than either cross-sensitivity uncer-
tainty (1ρs

α) or gain drift uncertainty. Therefore, both inter-
actions are relatively small and can be reasonably dropped.
As a result, Eq. (A3) can be approximated and rearranged as

ρα_zsg ≈ ραT+1ρ
z
α + δα_gραT+1ρ

s
α

= ραT+1ρ
z
α +1ρ

g
α +1ρ

s
α, (A4)

where 1ρg
α is a gain drift uncertainty. Any measured value

has a random error (i.e., precision uncertainty) independent
of ραT in value (ISO, 2012). Therefore, ρα_zsg plus precision
uncertainty (1ρp

α) is the measured value including all uncer-
tainties (ρα), given by

ρα = ρα_zsg+1ρ
p
α. (A5)

The insertion of Eq. (A4) into this equation leads to

ρα − ραT =1ρ
z
α +1ρ

g
α +1ρ

s
α +1ρ

p
α. (A6)

This equation holds true for

1ρα ≤
∣∣1ρz

α

∣∣+ ∣∣1ρg
α

∣∣+ ∣∣1ρs
α

∣∣+ ∣∣1ρp
α

∣∣ . (A7)

The range of the right side of this equation is wider than the
measurement uncertainty from all measurement uncertainty
sources, as shown on the right side of Eq. (A6), and the dif-
ference of ρα minus ραT (i.e., 1ρα). Using this range, the
measurement accuracy is defined in Model (2) in Sect. 3.

Appendix B: Water vapor density from ambient air
temperature, relative humidity, and atmospheric
pressure

Given ambient air temperature (Ta in ◦C) and atmospheric
pressure (P in kPa), air has a limited capacity to hold an
amount of water vapor (Wallace and Hobbs, 2006). This lim-
ited capacity is described in terms of saturation water vapor
density (ρs in gH2O m−3) for moist air, given through the
Clausius–Clapeyron equation (Sonntag, 1990; Wallace and
Hobbs, 2006):

ρs (Ta,P )=

0.6112f (P )
Rv(273.15+ Ta)


exp

(
17.62Ta
Ta+243.12

)
Ta ≥ 0

exp
(

22.46Ta
Ta+272.62

)
Ta < 0,

(B1)
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where Rv is the gas constant for water vapor (4.61495×
10−4 kPa m3 K−1 gH2O−1) and f (P ) is an enhancement fac-
tor for moist air, being a function of P as f (P )= 1.0016+
3.15×10−5P −0.0074P−1. At relative humidity (RH in %),
the water vapor density [ρRH

H2O (Ta,P ) in gH2O m−3] is

ρRH
H2O (Ta,P )= RHρs (Ta,P ) . (B2)

This equation, along with Eq. (B1), is used to calculate ρRH
H2O

used in Fig. 3 in Sect. 5.4 and Figs. 4b and 5 in Sect. 6.3.

Appendix C: The relationship of measured to true
covariance of vertical wind speed with CO2, H2O, or air
temperature

For open-path eddy-covariance systems, the computation
of CO2/H2O flux between ecosystems and the atmosphere
starts from covariance of an individual 3-D wind component
with a CO2/H2O density. To express the covariance, as sim-
ilarly used in Eqs. (1), α is used as a subscript of ρ to repre-
sent either CO2 or H2O and subscript T is used to indicate a
measurement free of uncertainty as if it were true. According
to Eq. (1), a measured α density (ρα) with a measurement
uncertainty (1ρα) can be expressed as

ρα = ραT+1ρα, (C1)

where ραT is an assumed α density free of measurement un-
certainty as if measured by an accurate sensor with the same
frequency response as the one measuring ρα . This assumed α
density (ραT) is also referred to as “true α density” although
it is not. The covariance of vertical wind speed (w) with ρα
is given by

w′ρ′α =
1
n

∑n

i=1
(wi −w)

(
ραi − ρα

)
, (C2)

where n is the sample number over an averaging interval
(e.g., 36 000 over a 1 h interval if wi and ραi are measured
at 10 Hz), subscript i indexes the sequential numbers for wi
and ραi , the overbar is the Reynolds’ averaging operator,
and prime denotes the fluctuation in a variable away from
its mean (e.g., w′i = wi −w). Without considering the mea-
surement error of w for this study topic, submitting Eq. (C1)
into Eq. (C2) leads to

w′ρ′α =
1
n

∑n

i=1
(wi −w)

[
ραTi +1ραi

− (ραT+1ρα)

]
=

1
n

∑n

i=1
(wi −w)

(
ραTi − ραT

)
+

1
n

∑n

i=1
(wi −w)

(
1ραi −1ρα

)
. (C3)

Within an averaging interval (e.g., 1 h), the systematic error
components inside terms 1ραi and 1ρα are not only con-
stant but also equal. Accordingly, the systematic errors in-
side the term 1ραi −1ρα are canceled out (Richardson et
al., 2012). In essence, this term is a random error whose sta-
tistical distribution is generally assumed to be normal with
a zero mean (i.e., 1ραi −1ρα is expected to be zero; Hoel,
1984). The correlation of w with a random variable normally
distributed with an expected zero mean tends to be zero, par-
ticularly for a large sample of 36 000 under discussion, even
18 000 for half hours (Snedecor and Cochran, 1989), which
is the shortest period commonly used for flux computations.
Accordingly, the term in the fourth line of Eq. (C3) can be
regarded as zero. Therefore, the covariance of w with mea-
sured α density is equal to the covariance of w with the true
α density, given by

w′ρ′α = w
′ρ′αT. (C4)

If w from a sonic anemometer and ρα from an infrared ana-
lyzer are not measured through spatial and temporal synchro-
nization, the values of covariance of w with ρα in the differ-
ent lags of measurement (hereafter referred to as the lagged
covariance) are computed for use in the lag maximization to
find their maximum covariance as if w and ρα were mea-
sured at the same time in the same space (Moncrieff et al.,
1997; Ibrom et al., 2007). Each lagged covariance from field
measurements can be expressed as w′ρ′αl , where subscript l
is the index for a lag number. If l = i, wi and ραl were mea-
sured at the same time. If l = i− 1, wi was measured one
measurement interval (i.e., 100 ms for 10 Hz measurements)
later than ραl , whereas wi was measured one measurement
interval earlier than ραl if l = i+1. The index l can be−k to
k where k is a positive integer, including 0, to represent the
maximum number of the lags that is optional to users. There-
fore, given l from −k to k, the number of w′ρ′αl values is
2k+1. Using the same approach to Eq. (C4),w′ρ′αl = w

′ρ′αTl
can be proved.

The lagged covariance values for u′ρ′αl and v′ρ′αl (l is −k,
−k+1, . . . , 0, . . . , or k) are also computed for each lag where,
in the sonic anemometer coordinate system, u is the wind
speed in the x direction and v is the wind speed in the y di-
rection. Both u′ρ′αl = u

′ρ′αTl and v′ρ′αl = v
′ρ′αTl can also be

proved in the same way for Eq. (C4). Given the rotation an-
gles from u, v, w, u2, v2, w2, u′v′, u′w′, and v′w′ (Tanner
and Thurtell, 1969), each set of u′ρ′αl , v

′ρ′αl , and w′ρ′αl is

rotated to be
(
u′ρ′αl

)
r,
(
v′ρ′αl

)
r, and

(
w′ρ′αl

)
r, respectively,

where u, v, and w through the rotations are transformed
into the natural wind coordinate system correspondingly as
stream-wise, lateral, and vertical wind speeds. In the rotation
process, ρα is not additionally involved. Because ρ′αl inside
the covariance is a scalar rather than a vector variable, the
rotation would not be influenced by ραl and ρ2

αl in the same
way as by the three means and three variance values of 3-D
wind components (Tanner and Thurtell, 1969). Because the
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same set of rotation angles also should be used for the ro-
tations of u′ρ′αTl,v

′ρ′αTl , and w′ρ′αTl , the covariance values
rotated from these three covariance values are correspond-
ingly equal to those rotated from u′ρ′αl , v

′ρ′αl , and w′ρ′αl , for
the covariance values related to w, given by(
w′ρ′αl

)
r =

(
w′ρ′αTl

)
r. (C5)

Therefore, from the lag maximization (Moncrieff et al., 1997;
Ibrom et al., 2007), the maximum covariance in magnitude
among

(
w′ρ′αl

)
r (l from −k to k) is equal to the maximum in

magnitude among
(
w′ρ′αTl

)
r. Denoting the former maximum

covariance by
(
w′ρ′α

)
rm, where subscript m indicates the lag

maximization, and the latter one by
(
w′ρ′αT

)
rm, this equality

leads to(
w′ρ′α

)
rm =

(
w′ρ′αT

)
rm. (C6)

For flux computations, both covariance values in this equa-
tion need further corrections for their low- and high-
frequency loss (Moore, 1986). The correction factor for(
w′ρ′α

)
rm can be denoted by fcα and for

(
w′ρ′αT

)
rm can be

denoted by fcαT. Both fcα and fcαT are integrated in the
same way from the cospectrum of w with a scalar as rep-
resented by Ta (air temperature) and the transfer functions of
high-frequency loss separately for w and α density (Moore,
1986; van Dijk, 2002) and low-frequency loss for Reynolds’
averaging w′ρ′α (Massman, 2000). Although depending on
the structure of boundary-layer turbulent flows (Kaimal and
Finnigan, 1994), under the same boundary-layer turbulent
flows, the cospectrum forw with ρα is the same as forw with
ραT. Because the sensor for ραT is assumed to have the same
frequency response as the sensor for ρα , both sensors have
the same high-frequency loss, sharing the same transfer func-
tion (Moore, 1986). The transfer function for low-frequency
loss due to Reynolds’ averaging either side of Eq. (C6) is
also used for its other side (Massman, 2000). Therefore, fcα
is equal to fcαT, which, from Eq. (C6), leads to

fcα
(
w′ρ′α

)
rm = fcαT

(
w′ρ′αT

)
rm. (C7)

In this equation, the left term is the frequency-corrected(
w′ρ′α

)
rm, which can be denoted by

(
w′ρ′α

)
rmf where sub-

script f indicates this covariance to be corrected for fre-
quency loss, and the right term is the frequency-corrected(
w′ρ′αT

)
rm, which can be denoted by

(
w′ρ′αT

)
rmf (Moore,

1986; Massman, 2000; van Dijk, 2002). Accordingly,
Eq. (C7) becomes(
w′ρ′α

)
rmf =

(
w′ρ′αT

)
rmf, (C8)

where subscript rmf indicates the covariance was corrected
through coordinate rotations (r), lag maximization (m),
and low- and high-frequency corrections (f). Equation (C8)
shows the covariance of w with measured ρα is equal to its

counterpart of w with true ρα even after a series of correc-
tions before being used to calculate α flux through Webb–
Pearman–Leuning (WPL) corrections (Webb et al., 1980).

For the covariance of w with Ta, the same conclusion can
be derived, given by(
w′T ′a

)
rmf =

(
w′T ′aT

)
rmf. (C9)

Assuming w to be an accurate value for this study topic,
through WPL corrections,

(
w′ρ′α

)
rmf and

(
w′T ′α

)
rmf can be

used to derive an analytical equation for a measured α flux
from ρα and Ta, each of which includes a measurement error,
whereas

(
w′ρ′αT

)
rmf and

(
w′T ′αT

)
rmf can be used to derive an

analytical equation for a true α flux from ραT and TaT, each
of which is assumed not to include an error. The comparison
of both analytical equations can demonstrate the partial ef-
fects of1ρα on the uncertainty in α flux data (see Sect. 6.1).
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