

Introduction

- Early 1960s: silicon-cell pyranometers introduced
- > Much lower price, but less accurate than traditional thermopile pyranometers
- > Narrow spectral response (360-1120 nm) means they require a clear view of the sky and over-estimate solar radiation on cloudy days
- Low price greatly increases their use in environmental research projects
- 2017: low-cost, digital thermopile pyranometers introduced by
- Campbell Scientific and Apogee Instruments (CS320)
- Broad spectral response (385-2105 nm)
- Correctly measure solar radiation on cloudy days > Affordable to environmental research and mesonets without sacrificing accuracy and flexibility
- Not all pyranometers are of the same quality.
- Three pyranometer categories established by the World Meteorological Organization (WMO) and the International Organization for Standardization (ISO)
- The ISO categories named "secondary standard," "first class," and "second class" closely correspond to the WMO categories named "High quality," "Good quality," and "Moderate quality" (Jarraud 2014). (Table 1).

Comparison Method

- Solar radiation data were collected with a Campbell Scientific CR1000 datalogger with an AM16/32B multiplexer and the following co-located pyranometers:
- CS320 digital thermopile pyranometers (n=10)
- CS300 silicon-cell pyranometers (n=20)
- SP Lite2 silicon-cell pyranometers (n=5)
- LI200 silicon-cell pyranometers (n=5)
- LI200R silicon-cell pyranometers (n=5)
- 4 ISO secondary standard pyranometers
 - Kipp & Zonen CM 11
 - Kipp & Zonen CMP 11 Hukseflux SR20
 - EKO MS-80

Table 1. ISO and WMO pyranometer standards compared to CS320 specifications

ISO-9060	Secondary	First Class	Second Class	CS320
	Standard			Thermopile
WMO	High Quality	Good Quality	Moderate Quality	Pyranometer
Response time (95%)	< 15 s	< 30 s	< 60 s	< 2 s
Zero Offset A	± 7 W/m²	± 15 W/m²	± 30 W/m ²	8 W/m ²
due to 200 W/m ² net thermal radiation				
(ventilated)				
Zero offset B	± 2 W/m ²	± 4 W/m²	± 8 W/m ²	< 5 W/m ²
response to 5 K/hr change in ambient				
temperature				
Stability (Change per year, % full scale)	± 0.8 %	± 1.5 %	± 3 %	< 2 %
Linearity	± 0.5 %	±1%	± 3 %	< 1 %
Directional response (up to 90°)	± 10 W/m ²	± 20 W/m ²	± 30 W/m ²	< ± 20 W/m ²
				(up to 80°)
Percent deviation due to temperature	2%	4%	8%	< 5% from -15°
change within an interval of 50 K				to 45°C
Tilt Response	0.5%	2%	5%	1%
Uncertainty (95% confidence level)	3%	8%	20%	8%
Hourly totals				
Uncertainty (95% confidence level)	2%	5%	10%	5%
Daily totals				
Spectral range	300 to 3000	300 to 3000	300 to 3000	385 to 2105
	nm	nm	nm	nm
Resolution	1 W/m ²	5 W/m ²	10 W/m ²	1 W/m ²

671 Data from a New, Low-Cost Thermopile Pyranometer Compare Well with High-End Pyranometers Alan L. Hinckley¹, M. Blonquist², G. B. Wheeler¹, and D. V. Baker¹

1. Campbell Scientific, Inc., Logan, UT. 2. Apogee Instruments, Inc.

Figure 1. Time series plots of the mean of four secondary standard pyranometers (black), CS320 thermopile pyranometer (blue), silicon-cell pyranometer (red). The first 4 days in the series were cloudy to partly-cloudy, the other 3 were sunny to mostly-sunny. **a**. Raw solar (W/m²) with mean daily deviations (%) from secondary standard sensors displayed. **b**. Deviations (%) from secondary standard sensors of CS320 and silicon-cell pyranometers. c. Cumulative solar radiation (MJ/m²) with daily deviations from secondary standard sensors displayed (%).

References:

- *Switzerland* (2014): 233.
- . ISO 9060:1990 Solar energy Specification and classification of instruments for measuring hemispherical solar and direct solar radiation, International Organization for Standardization, Geneva, Switzerland: 3-4.
- . Tanner, Bertrand D. "Automated weather stations." *Remote Sensing Reviews* 5, no. 1 (1990): 73-98.

Results

Summary and Additional Features

- cell pyranometers • Priced similarly to silicon-cell (Table 2)
- Internal heater to reduce errors from dew, frost, rain, and snow
- Dome shape head allows sensor to shed dew and rain
- SDI-12 digital output, compatible with all current Campbell Scientific dataloggers and other dataloggers compliant with the SDI-12 standard routine re-calibrations
- Calibration data stored in sensor no changes to program required after
- Detachable cable from sensor head for fast easy sensor swap / servicing • Built-in tilt sensor that simplifies installation, diagnostics, and remote troubleshooting
- Designed for long-term stability

. Jarraud, M. "Guide to meteorological instruments and methods of observation (WMO-No. 8)." World Meteorological Organisation: Geneva,

• Overall, data from the recently introduced CS320 showed strong agreement with secondary standard pyranometers and a marked improvement over silicon-cell pyranometers (Figs. 1-3)

• As expected, the greatest differences were during cloudy to partlycloudy days where differences between silicon-cell and secondary standard pyranometers were often 10-20% whereas the CS320 data were most often within 2% (Figs. 1, 2)

• The relatively large differences as expressed in percentages (Fig. 1b) at low solar angle (morning and evening) are of small absolute magnitude • The relationship between data from secondary standard versus the CS320 is virtually 1:1 with small variance (Fig. 3)

Pyranometer	Price Range
Silicon-cell	\$300 - \$500
Second Class	\$900 - \$1,000
First Class	\$2,000 - \$2,100
Secondary Standard	\$3,000 - \$4,000
CS320	\$400

• Data from the CS320 compare favorably with high-end pyranometers (Figs 1-3), offering a strong improvement in measurements over silicon-

Not intended for markets that require ISO certification