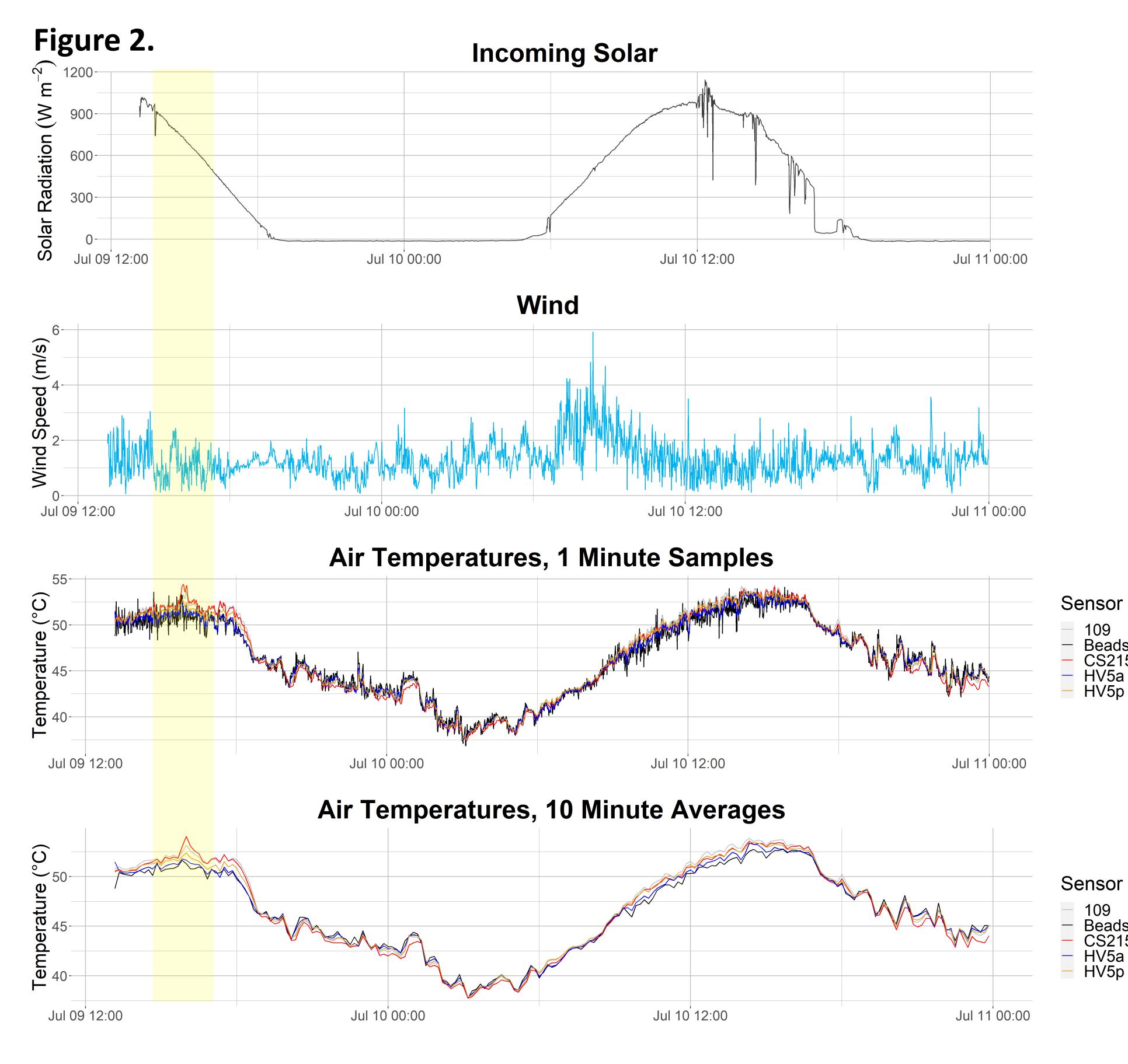


Measurement and Uncertainty in Death Valley Temperatures

Figure 1.


Background In August 2020 and again in July 2021, the official National Weather Service (NWS) weather station at Death Valley NP reported 130 °F (55.4 °C) • If confirmed, this would set a record high temperature at the site for automated measurements The sensor model on this station is a Campbell Scientific CS215, which measures temperature and relative humidity, installed in a passive radiation shield In a collaboration between the NWS, National Park Service (NPS), and Campbell Scientific (CS), an additional station with several sensors was installed in May 2021 for comparison

Instrumentation

- The temperature sensors installed on the CS station (Figure 1) include:
- Thermistor beads (3x)
- 109 temperature sensor (thermistor)
- HygroVUE[™]5 temperature & relative humidity sensor (2x)
- The beads and one HygroVUE[™] 5 were installed in aspirated shields (Apogee TS-100), the 109 and second HygroVUETM 5 were in passive shields
- Table 1 shows key specifications of the temperature sensors
- A pyranometer (CS320) and sonic anemometer (ClimaVUE[™] 50) were also included
- The triplicate thermistor beads and 109 were compared with a high-accuracy standard in a liquid bath prior to deployment and showed agreement within a few hundredths °C¹ The NWS station (Figure 1) measures the
- sensors once per minute

Dirk V. Baker¹, Todd Lericos², Richard Friese³, Shannon Mazzei³

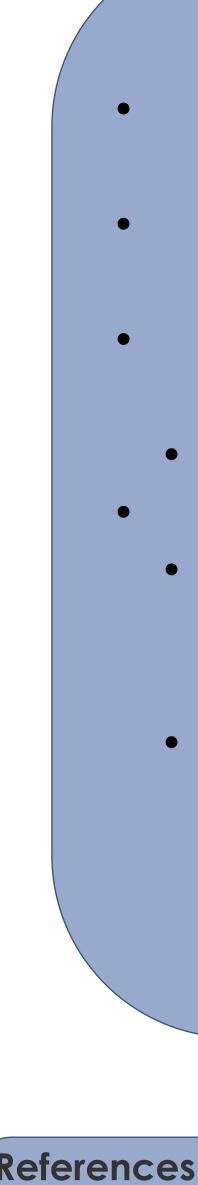
- 1. Campbell Scientific, Inc. Logan, UT USA
- 2. US National Weather Service*, Las Vegas, NV USA
- 3. US National Park Service*, Death Valley NP, CA USA

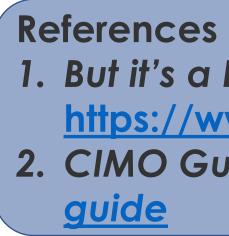
Figure 1 Key

- CS320 pyranometer
- ClimaVUE™ 50 All-in-one
- 3. TS-100 aspirated shield with triplicate thermistor beads
 - Passive shield with 109 sensor
 - Passive shield with HygroVUE[™] 5
 - TS-100 aspirated shield with HygroVUE™ 5
 - Passive shield with CS215
 - 05103 Wind Monitor

Table 1.

Sensor	Time Constant	Conditions	Uncertainty (at 50-60 °C)
CS215	<120 s	63%, 1 m/s	±0.9°C
HygroVUE™ 5	<130 s	63%, 1 m/s	±0.4°C
109	30 to 60 s	63%, 5 m/s	~±0.05°C ¹
Beads	7 s	63%, 1 m/s	~±0.05°C ¹


Key sensor specifications.


Beads CS215 HV5a HV5p

Beads CS215

	1		Mean	SD	Mean	SD
terval	CS215 vs	CS215 vs	HV5 _p vs	HV5 _p vs	HV5 _a vs	HV5 _a vs
ninutes)	HV5 _p	HV5 _p	HV5 _a	HV5 _a	Beads	Beads
1	-0.0446	0.3432	0.3123	0.3515	0.1436	0.4790
1	-0.2866	0.1866	0.0480	0.1598	-0.0445	0.3307
10	-0.0441	0.3233	0.3130	0.3220	0.1439	0.1838
10	-0.2877	0.1714	0.0476	0.1316	-0.0451	0.1523
	inutes) 1 1 10	inutes) HV5 _p 1 -0.0446 1 -0.2866 10 -0.0441	inutes) HV5 _p HV5 _p 1 -0.0446 0.3432 1 -0.2866 0.1866 10 -0.0441 0.3233	inutes)HV5pHV5pHV5a1-0.04460.34320.31231-0.28660.18660.048010-0.04410.32330.3130	inutes)HV5pHV5 HV5 HV5 HV5 HV5 HV51-0.04460.34320.31230.35151-0.28660.18660.04800.159810-0.04410.32330.31300.3220	inutes) HV5 _p HV5 _p HV5 ^r HV5 ^r Beads 1 -0.0446 0.3432 0.3123 0.3515 0.1436 1 -0.2866 0.1866 0.0480 0.1598 -0.0445 10 -0.0441 0.3233 0.3130 0.3220 0.1439

Summary comparison statistics for the period from May through November, 2021. SD = standard deviation, HV5 = HygroVUE[™] 5, p = passive shield, a = aspirated shield, Beads = average of three thermistor beads

	Processing & Results
•	The long time constants of the CS215
	and HygroVUE™ 5 (Table 1) indicate
	that it would take 6 to 7 minutes to
	equilibrate to 95% of a step change
•	10-minute averages were used for
	numerical comparisons, but 1-minute
	comparisons are shown for reference
	(Table 2)
•	A spike in air temperature on the
	afternoon of July 9, 2021 was shown by
	all sensors, but not as high as the CS215 (Figure 2)
•	The CS215 and HygroVUE TM 5 in passive
	shields agreed well, though with
	discrepancies at night (Table 2)
•	The two HygroVUE [™] 5 sensors showed
	expected differences due to an
	aspirated shield (Table 2)
•	The aspirated HygroVUE [™] 5 agreed
	well with the thermistor beads (Table 2)

Summary & Key Points

- July 2021 CS215 high not supported by other sensors
- Time constants should be considered in comparisons in general
- This focuses only on the differences between the sensors & shielding
- Numerous other sources of uncertainty How should extremes be recorded?
- There does not seem to be a standard for how extremes are recorded – single measurement vs smoothing or averaging WMO² provides guidance on measurement intervals based on sensor time constant, but does not explicitly
- address extremes

1. But it's a Dry Heat... like a Furnace. Blog article. https://www.campbellsci.com/blog/death-valley-collaboration 2. CIMO Guide 8. <u>https://community.wmo.int/activity-areas/imop/cimo-</u>