

P2546A-L Three-Cup Anemometer with MEASNET Calibration

IEC 61400-12 Class 1 Performance

Ideal for wind-energy applications

Overview

The P2546A, manufactured by WINDSENSOR, is a Class 1 anemometer often used for wind speed resource assessment and wind turbine power performance monitoring. Wind speed is sensed by a three-cup rotor assembly. Magnets mounted on the shaft cause a switch to close and open two times per revolution. Our data loggers measure the switch closure and convert the signal to engineering units (mph, m/s, knots). The anemometer is mounted using the 27739 30-inch mounting pole. The P2546A comes with a MEASNET calibration certificate.

The P2546C (coil version) and P2546D (electronic version) are also available.

Note: The P2546A, which includes a mercury reed switch and is not CE- or RoHS-compliant, has been replaced for most applications by the P2546D.

Benefits and Features

- > IEC Class 1 performance
- Constructed from only durable materials such as anodized aluminum and stainless steel
- > No bounce switch

Detailed Description

The P2546A is constructed with durable anodized aluminum and stainless steel. Its switch has no bounce and has a

- > Mechanism reduces the variation in operating time over the frequency range
- Compatible with many Campbell Scientific data loggers

mechanism that reduces the variation in operating time over the frequency range.

Specifications

Sensor

3-cup anemometer

Measurement Description Wind speed

For comprehensive details, visit: www.campbellsci.com/p2546a

Contact closure (pulse)
0 to 70 m/s
< 0.4 m/s
0.27 m/s
0.6201 m
$\lambda_0 = 1.81 \pm 0.04 \text{ m}$
et0.014 m/s
0.027 m
±1%
< 0.04 m/s
< 0.05 m/s (-15° to +60°C)
The specifications are based on 80 wind tunnel calibrations performed according to the Measnet Cup Anemometer Calibration Procedure. The specified offset and gain figures represent the mean values of these calibrations. Variation among units designates the maximum deviation of any unit from the straight line representing these mean values. All units are run-in for 225 hours at 9 ms ⁻¹ , in order to reduce the initial bearing

friction to a level close to the steady state value. After run-in, bearing friction is tested at -15°C and at room temperature. The allowed limits for this test assure that the temperature influence on the calibration is within the specified limit.

Calibration

Standard	$U=A_0+B_0\times f$
Wind Speed	U [m/s]
Offset	A ₀ =0.27 m/s ("starting speed")
Gain	B ₀ =0.620 m
Output Frequency	f[Hz]

Switching Characteristics

Signal Type	Potential free contact closure
Duty Cycle	40% to 60%
Maximum Switching Voltage	30 V
Maximum Recommended Switching Current	10 mA
Series Resistance	330 Ω, 1 W
Operating Temperature Range	-35° to +60°C

For comprehensive details, visit: www.campbellsci.com/p2546a

Campbell Scientific, Inc. | 815 W 1800 N | Logan, UT 84321-1784 | (435) 227-9120 | www.campbellsci.com
AUSTRALIA | BRAZIL | CANADA | CHINA | COSTA RICA | FRANCE | GERMANY | INDIA | SOUTH AFRICA | SPAIN | THAILAND | UK | USA