

Overview

The SR20-D2, manufactured by Hukseflux Thermal Sensors, is an ISO 9060:2018 spectrally flat Class A (secondary standard) digital pyranometer that measures solar short-wave radiation in a full hemisphere of the sky. It connects directly to a Campbell Scientific data logger and is designed for Modbus

RTU applications that require high measurement accuracy in demanding applications such as scientific meteorological observation networks and utility scale solar-energy-power production sites.

Benefits and Features

- **)** Low temperature dependence
- Onboard digital temperature sensor
- Ultra robust connector, desiccant holder, and sun screen
- Temperature dependence characterized and supplied for each instrument
- Directional response tested on each instrument
- Digital output (Modbus RTU)

Specifications

Sensor	Hlgh-quality blackened thermopile protected by two glass domes
Measurement Description	Monitors solar radiation for the full solar spectrum range
ISO Classification	Spectrally flat Class A (secondary standard) pyranometer (ISO 9060:2018)
WMO Performance Level	High-quality pyranometer
Response Time	4.5 s
Zero Offset A	5 W/m ² (unventilated), 2.5 W/m ² (ventilated)

	(response to 200 W/m² net thermal radiation)
Zero Offset B	\leq ± 2 W/m ² (response to 5 K/h change in ambient temperature)
Non-Stability	≤ ± 0.5% change per year
Non-Linearity	$\leq \pm 0.2\%$ (100 to 1000 W/m ²)
Directional Response	$< \pm 10 \text{ W/m}^2$
Spectral Selectivity	$< \pm 3\%$ (0.35 to 1.5 x 10^{-6} m)
Temperature Response	< ± 0.4% (-30° to +50°C)

Tilt Response	$< \pm 0.2\%$ (0 to 90° at 1000 W/m ²)
Heater	No heater available
Steady-state Zero Offset	$> < \pm 0.8 \text{ W/m}^2 \text{ (-40° to +80°C)}$ $> < \pm 0.5 \text{ W/m}^2 \text{ (at +20°C)}$
Calibration Uncertainty	< 1.2% (k=2)
Level Accuracy	< 0.1° (bubble entirely in ring)
Operating Temperature Range	-40° to +80°C

Field of View (FOV)	180°
Measurement Range	-400 to 4000 W/m ²
Spectral Range	285 to 3000 x 10 ⁻⁹ m (20% transmission points)
Sensitivity	Digital output
Output Definition	Running average over 4 measurements (refreshed every 0.1 s)

