

SR20-T2-L

ISO Class A Pyranometer with 10K Thermistor

High Measurement Accuracy

Ideal for PV system performance monitoring

Overview

The SR20-T2, manufactured by Hukseflux Thermal Sensors, is an ISO 9060:2018 spectrally flat Class A (secondary standard) pyranometer that measures solar short-wave radiation in a full hemisphere of the sky. It has a built-in case temperature sensor and embedded heater for removing dew and light rain. It connects directly to a Campbell Scientific data logger and is

designed for applications that require high measurement accuracy in demanding applications such as scientific meteorological observation networks and utility scale solar-energy-power production sites.

Benefits and Features

- Low temperature dependence
- Embedded 1.5 W heater to reduce effects of dew deposition
- > Embedded 10K temperature sensor

- Ultra robust connector, desiccant holder, and sun screen
- Temperature dependence characterized and supplied for each instrument
- Directional response tested on each instrument

Detailed Description

The SR20-T2 pyranometer measures the hemispherical solar radiation received by a plane surface, in W/m², from a 180° field of view. The SR20 can be deployed indoors with lamp-based solar simulators or more commonly outdoors under the sun. Its orientation depends on the application and may be installed horizontally, tilted for plane or array irradiance, positioned on a sun tracker with shadow-ring for diffuse measurements, or inverted for reflected radiation.

The SR20-T2's low temperature dependence makes it an ideal candidate for use under very cold and very hot conditions. The temperature dependence of each instrument is tested and

supplied as a second-degree polynomial. This information can be used for further reduction of temperature dependence during post-processing.

The SR20 is equipped with an internal temperature sensor. Campbell Scientific supplies the T2 version, which has a 10 kohm thermistor. The T1 version, in contrast, has a PT100 and is available upon request.

The embedded heater reduces measurement errors caused by early-morning dew deposition. Campbell Scientific

The output of the SR20-T2 is analog. The SR20-D2-L model, in contrast, offers two other types of commonly used irradiance outputs: digital via Modbus RTU over 2-wire RS-485, and analog 4 to 20 mA output (current loop).

Specifications

_	
Sensor	High-quality blackened thermopile protected by two glass domes
Measurement Description	Measures hemispherical solar radiation
ISO Classification	Spectrally flat Class A (secondary standard) pyranometer (ISO 9060:2018)
WMO Performance Level	High-quality pyranometer
Response Time	3 s (95%)
Zero Offset A	5 W/m² (unventilated), 2.5 W/m² (ventilated) (response to 200 W/m² net thermal radiation)
Zero Offset B	≤ -2 W/m² (response to 5 K/h change in ambient temperature)
Non-Stability	≤ -0.5% change per year
Non-Linearity	\leq -0.2% (100 to 1000 W/m ²)
Directional Response	$<\pm10 \text{ W/m}^2$

Spectral Selectivity	$< \pm 3\%$ (0.35 to 1.5 x 10 ⁻⁶ m)
Temperature Response	$<\pm1\%$ (-10° to +40°C), $<$ 0.4% (-30° to +50°C) with correction in data processing
Tilt Response	< ±0.2% (0 to 90° at 1000 W/m ²)
Heater	1.5 W (at 12 Vdc)
Steady-state Zero Offset	0 to -8 W/m ² (caused by heating)
Calibration Uncertainty	< 1.2% (k=2)
Level Accuracy	< 0.1° (bubble entirely in ring)
Sensor Resistance Range	100 to 200 ohm
Operating Temperature Range	-40° to +80°C
Field of View (FOV)	180°
Measurement Range	0 to 4000 W/m ²
Sensitivity	7 to $25 \times 10^{-6} \text{ V/(W/m}^2)$
Spectral Range	285 to 3000 x 10 ⁻⁹ m (20% transmission points)