CR300-Series Specifications

Electrical specifications are valid over a -40 to +70 °C, non-condensing environment, unless otherwise specified. Recalibration is recommended every three years. Critical specifications and system configuration should be confirmed with Campbell Scientific before purchase.

System specifications
- Processor: ARM Cortex M4 running at 144 MHz
- Memory:
 - CPU Drive: 80 MB serial flash
 - Data Storage: 30 MB serial flash
 - Operating System: 2 MB flash
 - Settings, Calibration, TLS Certificates and Key, System Information: 3 MB serial flash
 - Background Tasks, Buffers, System Memory, Table Memory, Program Variables: 756 KB RAM

Physical specifications
- Dimensions (additional clearance required for cables, wires and antennas):
 - CR300: 13.97 x 7.62 x 4.56 cm (5.5 x 3.0 x 1.8 in)
 - CR310: 16.3 x 8.4 x 5.6 cm (6.4 x 3.3 x 2.2 in)
- Weight/Mass:
 - CR300: 242 g (0.53 lb)
 - CR300-WIFI/RF407/RF412/RF422: 250 g (0.55 lb)
 - CR310: 288 g (0.64 lb)
 - CR310-WIFI/RF407/RF412/RF422: 306 g (0.68 lb)
- Case Material: Powder-coated aluminum

Power requirements
- Power specifications for a communications option are shown within the specifications section for that option.
- Protection: Power inputs are protected against surge, over-voltage, over-current, and reverse power. IEC 61000-4 Class 4 level.
- Charger Input (CHG+ and CHG- terminals):
 - 16 to 32 VDC
 - Current limited to 0.9 A maximum
 - Power converter or solar panel input
- External Batteries (BAT+ and BAT- terminals):
 - 10 to 18 VDC input
 - 12 VDC, lead-acid 7 Ah battery, typical
- Internal Lithium Battery: 3 V coin cell CR2016 for battery-backed clock. 6-year life with no external power source.
- Average Current Drain:
 - Assumes 12 VDC on BAT terminals — add 2 mA if using CHG terminals.
 - Idle: 1.5 mA
 - Active 1 Hz Scan with One Analog Measurement: 5 mA
 - Serial (RS-232): Active + 25 mA
 - Active (Processor Always On): 23 mA
 - Ethernet Power Requirements (CR310 Only):
 - Ethernet Idle: 32 mA
 - Ethernet Link: Active + 51 mA

NOTE:
CR300-Series dataloggers with serial numbers 2812 and older have a 5 MB CPU drive and 10 MB serial flash storage. CR300-Series dataloggers with serial numbers 2813 and newer, and all CR310 dataloggers have an 80 MB CPU drive and 30 MB serial flash storage.

Program Execution Period: 100 ms to 1 day
- Real-Time Clock:
 - Battery backed while external power is disconnected
 - Resolution: 1 ms
 - Accuracy: ±1 minute per month

Wiring Panel Temperature: Measured using a thermistor, located on the processor board.

NOTE: CR300-Series dataloggers with serial numbers 2812 and older have a 5 MB CPU drive and 10 MB serial flash storage. CR300-Series dataloggers with serial numbers 2813 and newer, and all CR310 dataloggers have an 80 MB CPU drive and 30 MB serial flash storage.
USB Power: Functions that will be active with USB 5 VDC include sending programs, adjusting data logger settings, and making some measurements. If USB is the only power source, then the VX1 – VX2 range is reduced to 150 to 2500 mV, the SW12V terminal will not be operational, voltage output for the control terminals (C1, C2) is limited to 4.75 V, and current output for the control terminals (C1, C2) is limited to 8 mA.

Cellular Average Additional Current Contribution at 12 VDC:
- **Idle**: Connected to network, no data transfer.
 - CELL200 minimum = 2 mA, average = 10 mA
 - CELL205 minimum = 2 mA, average = 14 mA
 - CELL210 minimum = 2 mA, average = 28 mA
 - CELL215 minimum = 2 mA, average = 14 mA
 - CELL220 minimum = 2 mA, average = 14 mA
 - CELL225 minimum = 2 mA, average = 14 mA
- **Transfer/Receive**:
 - CELL200 minimum = 20 mA, average = 105 mA
 - CELL205 minimum = 20 mA, average = 75 mA
 - CELL210 minimum = 20 mA, average = 90 mA
 - CELL215 minimum = 20 mA, average = 75 mA
 - CELL220 minimum = 20 mA, average = 75 mA
 - CELL225 minimum = 20 mA, average = 75 mA

Wi-Fi Additional Current Contribution at 12 VDC:
- **Client mode communicating**: 70 mA typical
- **Client mode idle**: 7 mA typical
- **Access point mode communicating**: 70 mA
- **Access point mode idle**: 62 mA typical
- **Sleep**: <0.1 mA

RF Average Additional Current Contribution at 12 VDC

<table>
<thead>
<tr>
<th></th>
<th>-RF407, -RF412, -RF427</th>
<th>-RF422</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit</td>
<td>< 80 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td>Idle On</td>
<td>12 mA</td>
<td>9.5 mA</td>
</tr>
<tr>
<td>Idle 0.5 s Power Mode</td>
<td>4 mA</td>
<td>3.5 mA</td>
</tr>
<tr>
<td>Idle 1 s Power Mode</td>
<td>3 mA</td>
<td>2 mA</td>
</tr>
<tr>
<td>Idle 4 s Power Mode</td>
<td>1.5 mA</td>
<td>1.5 mA</td>
</tr>
</tbody>
</table>

Power output specifications

System power out limits (when powered with 12 VDC). Current is limited by a self-resetting thermal fuse.
- 5.8 A @ -40 °C
- 3.7 A @ 20 °C
- 2.0 A @ 70 °C

VX: Two independently configurable voltage terminals (VX1-VX2). When providing voltage excitation, a single 12-bit DAC is shared by all VX outputs produces a user-specified voltage during measurement only. VX terminals can also be used to supply a switched, regulated 5 VDC power source to power digital sensors and toggle control lines.

Analog measurements specifications

6 single-ended (SE) or 3 differential (DIFF) terminals individually configurable for voltage, thermocouple, current loop, ratiometric, and period average measurements, using a 24-bit ADC. One channel at a time is measured.

Voltage measurements

Terminals:
- **Differential Configuration**: DIFF 1H/1L – 3H/3L
- **Single-Ended Configuration**: SE1 – SE6

Input Resistance:
- 5 GΩ typical (f_{NI} = 50/60 Hz)
- 300 MΩ typical (f_{NI} = 4000 Hz)

Input Voltage Limits: -100 to +2500 mV

Sustained Input Voltage without Damage:
- SE 1-2: –6 V, +9 V
- SE 3-6: ±17 V

DC Common Mode Rejection:
- >120 dB with input reversal
- ≥90 dB without input reversal

Normal Mode Rejection:
- >71 dB at 50 Hz
- >74 dB at 60 Hz

Input Current @ 25 °C:
- ±0.8 mA typical (f_{NI} = 50/60 Hz)
- ±13 mA typical (f_{NI} = 4000 Hz)

Filter First Notch Frequency (f_{NI}) Range: 50/60, 400, 4000 Hz (user specified)
Analog Range and Resolution:

<table>
<thead>
<tr>
<th>Notch Frequency ((f_{N1})) (Hz)</th>
<th>Range(^1) (mV)</th>
<th>RMS (\mu V)</th>
<th>Bits(^2)</th>
<th>RMS (\mu V)</th>
<th>Bits(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>−100 to +2500</td>
<td>23</td>
<td>16.8</td>
<td>33</td>
<td>16.3</td>
</tr>
<tr>
<td></td>
<td>−34 to +34</td>
<td>3.0</td>
<td>14.5</td>
<td>4.2</td>
<td>14.0</td>
</tr>
<tr>
<td>400</td>
<td>−100 to +2500</td>
<td>3.8</td>
<td>19.4</td>
<td>5.4</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td>−34 to +34</td>
<td>0.58</td>
<td>16.8</td>
<td>0.82</td>
<td>16.3</td>
</tr>
<tr>
<td>50/60(^3)</td>
<td>−100 to +2500</td>
<td>1.6</td>
<td>20.6</td>
<td>2.3</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>−34 to +34</td>
<td>0.23</td>
<td>18.2</td>
<td>0.33</td>
<td>17.7</td>
</tr>
</tbody>
</table>

\(^1\) Range overhead of ~10% on all ranges guarantees that full-scale values will not cause over range
\(^2\) Typical effective resolution (ER) in bits; computed from ratio of full-scale range to RMS resolution.
\(^3\) 50/60 corresponds to rejection of 50 and 60 Hz ac power mains noise.

Accuracy (does not include sensor or measurement noise):
- 0 to 40 °C: ±(0.04% of measurement + offset)
- −40 to 70 °C: ±(0.1% of measurement + offset)

Voltage Measurement Accuracy Offsets:

<table>
<thead>
<tr>
<th>Range (mV)</th>
<th>Typical Offset ((\mu V) RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential with Input Reversal</td>
<td>Differential without Input Reversal</td>
</tr>
<tr>
<td>−100 to +2500</td>
<td>±20</td>
</tr>
<tr>
<td>−34 to +34</td>
<td>±6</td>
</tr>
</tbody>
</table>

Measurement Settling Time: 20 \(\mu\)s to 600 ms; 500 \(\mu\)s default

Multiplexed Measurement Time:
Measurement time = (multiplexed measurement time + settling time) \(\times\) reps + 0.8 ms

Resistance measurements specifications

The data logger makes ratiometric-resistance measurements for four- and six-wire full-bridge circuits and two-, three-, and four-wire half-bridge circuits using voltage excitation.

Accuracy

Assumes input reversal for differential measurements

RevDi ff. Does not include bridge resistor errors or sensor and measurement noise.
- 0 to 40 °C: ±(0.05% of voltage measurement + offset)
- −40 to 70 °C: ±(0.06% of voltage measurement + offset)

Period-averaging measurement specifications

Terminals: SE terminals 1-4

Accuracy: ±(0.01% of measurement + resolution), where resolution is 0.13 \(\mu\)s divided by the number of cycles to be measured

Voltage Range: 0 to 3.3 V

Minimum Pulse Width: 2.5 \(\mu\)s

Voltage Threshold: Counts cycles on transition from <0.9 VDC to >2.1 VDC

Current-loop measurement specifications

Two analog inputs terminals may be configured as independent, non-isolated 0-20 mA or 4-to-20 mA current-loop inputs. One channel at a time is measured. Current is measured using a 24-bit ADC\(^1\).

Terminals: SE1 and SE2

Range: 0 to 25 mA

Accuracy
- 0 to 40 °C: ±0.14% of reading
- −40 to 70 °C: ±0.26% of reading

Pulse measurement specifications

Terminals are individually configurable for switch closure, high-frequency pulse, or low-level AC measurements.

<table>
<thead>
<tr>
<th>Example fN1(^1) (Hz)</th>
<th>Time(^2) (ms)</th>
<th>Time(^2) (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>2.9</td>
<td>1.4</td>
</tr>
<tr>
<td>400</td>
<td>14.6</td>
<td>7.3</td>
</tr>
</tbody>
</table>

\(^1\) Analog to digital conversion. The process that translates analog voltage levels to digital values.
Switch-closure input

Terminals:
- P_SW
- C1-C2 (Requires an external 100 kΩ resistor connected from the terminal to BAT+)

Maximum Input Frequency: 150 Hz
Minimum Switch Closed Time: 3 ms
Minimum Switch Open Time: 3 ms
Maximum Bounce Time: 1 ms open without being counted

High-frequency input

Terminals:
- SE1-SE4
- P_LL
- P_SW
- C1-C2

Maximum Input Frequency:
- SE1-SE4: 35 kHz
- P_LL: 20 kHz
- P_SW: 35 kHz
- C1-C2: 3 kHz

Low-level AC input

Terminal: P_LL
Maximum Input Voltage: ±20 VDC
DC-offset Rejection: Internal AC coupling eliminates DC-offset voltages up to ±0.05 VDC
Input Hysteresis: 12 mV at 1 Hz
Low-Level AC Pulse Input Ranges:

<table>
<thead>
<tr>
<th>Sine wave (mV RMS)</th>
<th>Range (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.0 to 20</td>
</tr>
<tr>
<td>200</td>
<td>0.5 to 200</td>
</tr>
<tr>
<td>2000</td>
<td>0.3 to 10,000</td>
</tr>
<tr>
<td>5000</td>
<td>0.3 to 20,000</td>
</tr>
</tbody>
</table>

Quadrature input

Terminals: SE1 and SE2 or C1 and C2 can be configured as digital terminal pairs to monitor the two sensing channels of an encoder.

Maximum Frequency: 2.5 kHz

Digital input/output specifications

Up to seven terminals may be configured for digital input or output (I/O).

Terminals:
- SE terminals 1-4
- P_SW
- C1-C2

Digital I/O Voltage Levels:

<table>
<thead>
<tr>
<th>Terminal</th>
<th>High State</th>
<th>Low State</th>
<th>Current Source</th>
<th>Maximum Input Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 C2</td>
<td>5.0 V output 3.3V input</td>
<td>0 V</td>
<td>10 mA at 3.5 V</td>
<td>–10 V, +15 V</td>
</tr>
<tr>
<td>SE1 SE2</td>
<td>3.3 V</td>
<td>0 V</td>
<td>100 µA at 3.0 V</td>
<td>–6 V, +9 V</td>
</tr>
<tr>
<td>SE3 SE4</td>
<td>3.3 V</td>
<td>0 V</td>
<td>100 µA at 3.0 V</td>
<td>±17 V</td>
</tr>
</tbody>
</table>

Pulse-width modulation specifications

Terminals: SE1-SE4
Period Maximum: 2047 ms
Resolution:
- 0 – 5 ms: 83.33 ns or 12 MHz
- 5 – 325 ms: 5.00 µs or 200 kHz
- > 325 ms: 31.25 µs or 32 kHz

Communications specifications

Ethernet Port (CR310 Only): RJ45 jack, 10/100Base Mbps, full and half duplex, Auto-MDIX, magnetic isolation, and TVS surge protection.

Internet Protocols: Ethernet, PPP, RNDIS, ICMP/Ping, Auto-IP (APIPA), IPv4, IPv6, UDP, TCP, TLS, DNS, DHCP, SLAAC, Telnet, HTTP(S), FTP(S), POP3/TLS, NTP, SMTP/TLS

Additional Protocols: PakBus, PakBus Encryption, SDI-12, Modbus RTU / ASCII / TCP, DNP3, custom user definable over serial, UDP

USB Device: Micro-B device for computer connectivity

SDI-12 (C1, C2): Two independent SDI-12 compliant terminals are individually configured and meet SDI-12 Standard v 1.4.

RS-232: Female RS-232, 9-pin interface, 1200 to 115.2 kbps

Cellular option specifications

<table>
<thead>
<tr>
<th>Option</th>
<th>Cellular Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>-CELL200</td>
<td>3G, 2G</td>
</tr>
<tr>
<td>-CELL205</td>
<td>4G LTE with automatic 3G fallback</td>
</tr>
<tr>
<td>-CELL210</td>
<td>4G LTE CAT-1</td>
</tr>
<tr>
<td>-CELL215</td>
<td>4G LTE with automatic 3G fallback</td>
</tr>
<tr>
<td>-CELL220</td>
<td>4G LTE with automatic 3G fallback</td>
</tr>
<tr>
<td>-CELL225</td>
<td>4G LTE</td>
</tr>
</tbody>
</table>

Antenna Terminal: SMA

SIM Slot: Industry standard 3FF micro-SIM (6 position / contacts)

Wi-Fi option specifications

- **WLAN (Wi-Fi):** (CR300-WiFi only)
- **Maximum Possible Over-the-Air Data Rates:** <11 Mbps over 802.11b, <54 Mbps over 802.11g, <72 Mbps over 802.11n
- **Operating Frequency:** 2.4 GHz, 20 MHz bandwidth

Antenna Connector: Reverse Polarity SMA (RPSMA)

Antenna (shipped with data logger): Unity gain (0 dBd), 1/2 wave whip, omnidirectional. Features an articulating knuckle joint that can be oriented vertically or at right angles

Supported Technologies: 802.11b/g/n, WPA/WPA2-Personal, WPA/WPA2-Enterprise Security, WEP

Client Mode: WPA/WPA2-Personal and Enterprise, WEP

Access Point Mode: WPA2-Personal

Receive Sensitivity: -97 dBm

RF radio option specifications

Antenna Terminal: Reverse Polarity SMA (RPSMA)

Radio Type

- **RF407, RF412, and RF427:** Frequency Hopping Spread Spectrum (FHSS)
- **RF422:** SRD860 Radio with Listen before Talk (LBT) and Automatic Frequency Agility (AFA)

Frequency

- **RF407:** 902 to 928 MHz (US, Canada)
- **RF412:** 915 to 928 MHz (Australia, New Zealand)
- **RF422:** 863 to 870 MHz (European Union)
- **RF427:** 902 to 907.5 MHz/915 to 928 MHz (Brazil)

Transmit Power Output (software selectable)

- **RF407 and RF412:** 5 to 250 mW
- **RF422:** 2 to 25 mW
- **RF427:** 5 to 250 mW

Channel Capacity

- **RF407:** Eight 25-channel hop sequences sharing 64 available channels.
- **RF412:** Eight 25-channel hop sequences sharing 31 available channels.
- **RF422:** Ten 30-channel hop sequences (default), software configurable to meet local regulations; 10 sequences for reducing interference through channel hop.
- **RF427:** Eight 25-channel hop sequences sharing 43 available channels.

Receive Sensitivity

- **RF407, RF412, and RF427:** –101 dBm
- **RF422:** –106 dBm

RF Data Rate

- **RF407, RF412, and RF427:** 200 kbps
- **RF422:** 10 kbps

Standards compliance specifications

Shock and Vibration: ASTM D4169-09

Protection: IP30

EMI and ESD protection

- **Immunity:** Meets or exceeds following standards:
 - **ESD:** per IEC 61000-4-2; ±15 kV air, ±8 kV contact discharge
 - **Radiated RF:** per IEC 61000-4-3; 10 V/m, 80-1000 MHz
 - **EFT:** per IEC 61000-4-4; 4 kV power, 4 kV I/O
 - **Surge:** per IEC 61000-4-5; 4 kV power, 4kV I/O
 - **Conducted RF:** per IEC 61000-4-6; 10 V power, 10 V I/O
- **Emissions and immunity performance criteria available on request.**

RF407 Option

- United States FCC Part 15.247: MCQ-X8900HP
- Industry Canada (IC): 1846A-XB900HP
- Mexico ID: RCPDIXB15-0672-A1

RF412 Option

- ACMA RCM
- United States FCC Part 15.247:
 - MCO-XB900HP
 - Industry Canada (IC): 1846A-XB900HP

RF422 Option

RF427 Option

WIFI Option

- United States FCC ID: XF6-RS91135B
- Industry Canada (IC): 8407A-RS91135B

Cellular Option

- Industry Canada (IC): 10224A-201611EC2A

NOTE:

The user is responsible for emissions if changing the antenna type or increasing the gain.

Warranty

Standard: Three years against defects in materials and workmanship.
Terminal functions

<table>
<thead>
<tr>
<th>Analog input terminal functions</th>
<th>SE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DIFF</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Single-Ended Voltage</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Differential Voltage</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Ratiometric/Bridge</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Thermocouple</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Current Loop</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period Average</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pulse counting terminal functions

<table>
<thead>
<tr>
<th>Pulse Counting</th>
<th>C1</th>
<th>C2</th>
<th>P_SW</th>
<th>P_LL</th>
<th>SE1</th>
<th>SE2</th>
<th>SE3</th>
<th>SE4</th>
<th>SE5</th>
<th>SE6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch-Closure</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Frequency</td>
<td>✓</td>
</tr>
<tr>
<td>Low-level AC</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadrature</td>
<td>✓</td>
</tr>
</tbody>
</table>

Analog output terminal functions

<table>
<thead>
<tr>
<th>VX1</th>
<th>VX2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage output terminal functions

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>SE1-4</th>
<th>VX1</th>
<th>VX2</th>
<th>P_SW</th>
<th>SW12V</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 VDC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5 VDC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12 VDC</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Communications terminal functions

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>SE1-3</th>
<th>RS-232</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDI-12</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>RS-232</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>RS-232 0-5V</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>GPS Time Sync</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GPS NMEA Sentences</td>
<td>Rx</td>
<td>Rx</td>
<td>Rx</td>
</tr>
</tbody>
</table>

Communication functions also include Ethernet (CR310 only) and USB

Digital I/O terminal functions

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>P_SW</th>
<th>SE1</th>
<th>SE2</th>
<th>SE3</th>
<th>SE4</th>
<th>SE5</th>
<th>SE6</th>
</tr>
</thead>
<tbody>
<tr>
<td>General I/O</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pulse-Width Modulation Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interrupt</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>