GRANITE 9 Specifications

Electrical specifications are valid over a -40 to +70 °C, non-condensing environment, unless otherwise specified. Extended electrical specifications (noted as XD in specifications) are valid over a -55 to +85 °C non-condensing environment. Recalibration is recommended every three years. Critical specifications and system configuration should be confirmed with Campbell Scientific before purchase.

- **System specifications**
 - Processor: NXP iMX6 Quad core running at 1 GHz
- **Physical specifications**
- **Power requirements**
- **Power output specifications**
- **Pulse measurement specifications**
- **Digital input/output specifications**
- **Communications specifications**
- **Standards compliance specifications**
- **Warranty**

System specifications

Processor: NXP iMX6 Quad core running at 1 GHz

Memory:
- 2 GB DDR SDRAM
- 8 GB eMMC NAND OS storage
- 128 MB NOR FLASH
- 4 MB SRAM battery backed
- Data storage expansion: Removable microSD flash memory, up to 16 GB
- USB host provides for portable data storage on a mass storage device (MSD) formatted as FAT32. Not intended for long term unattended data storage other than what is available with TableFile().

GRANITE 9 Solid State Drive (SSD):

- SSD: Enhanced MLC
- SSD (XD): SLC
- Total onboard: 64 GB
- Humidity: 8% to 95%, non-condensing
- JEsd2'19A client work load: 86 terabytes written (TBW) (standard)
- Random write: 914 TBW (XD)
- Sequential write: 5333 TBW (XD)
- Block PE cycle: 100000 (XD)
- Data Retention at 40 °C: 10 years with 10% PE cycle (XD)

- **MTBF (hours) at 25 °C:** 1,500,000 (standard); 2,000,000 (XD)
- **Typical power consumption at 12 VDC:** 120.8 mA (standard); 191.7 mA (XD)
- **Maximum sustained write power consumption at 12 VDC:** 295.8 mA (XD only)

Real-Time Clock:

- Battery backed while external power is disconnected
- Resolution: 1 ms
- Accuracy: ±3 min. per year
- GPS Phase Lock to within 200 nS if used

GPS:

- SMA Female 50 Ω input impedance
- Active antenna design, 3.3 Vdc
- 25 dBm maximum input
- Integrated SAW filtering and jam resistance
- 1 S time-to-fix during normal operation
- 35 S time-to-fix on power up or reboot
- 13 min. for leap second, once per day auto
- PPS ± 1 µS to full UTC second
- Receive sensitivity –161 dBm

Wiring Panel Temperature: Measured using a thermistor, located on the main processor board.

Physical specifications

Case Material: Stainless Steel 304 and Aluminum 6061

Dimensions: 21.4 x 12.0 x 5.0 cm (8.4 x 4.7 x 2.0 in); additional clearance required for cables, wires, and antennas.

Weight/Mass: 1.0 kg (2.2 lb)

Power requirements

Protection: Power inputs are protected against surge, over-voltage, over-current, and reverse power. IEC 61000-4 Class 4 level.

Power In Terminal:

- Voltage Input: 9.6 to 32 VDC
- Input Current Limit at 12 VDC:
 - Total system current is fused at 5 A with replaceable automotive mini-blade fuse

Internal Lithium Battery: 1/2AA, 1.2 Ah, 3.6 VDC (Tadiran L5902S) for battery-backed memory and clock. 5-year life with no external power source.
Average Current Drain:
- **Active:** ~6 Watts
 - 24 V input: 255 mA input
 - 12 V input: 495 mA input

Vehicle Power Connection: When primary power is pulled from the vehicle power system, a second power supply OR charge regulator may be required to overcome the voltage drop at vehicle start-up.

Wi-Fi Additional Current Contribution at 12 VDC:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Wi-Fi Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Mode</td>
<td>7 mA idle, 70 mA communicating</td>
</tr>
<tr>
<td>Access Point Mode</td>
<td>62 mA idle, 70 mA communicating</td>
</tr>
<tr>
<td>Sleep</td>
<td><1 mA</td>
</tr>
</tbody>
</table>

Power output specifications

System power out limits (when powered with 12 VDC)

Total system current is fused at 5 A with replaceable automotive mini-blade fuse

12 V and SW12 power output terminals

12V, SW12-1, and SW12-2: Provide 12 VDC power ±10% when the power input supply voltage is ≥ 13.7 VDC. When the supply voltage is < 13.7 V the output voltage will be at least the supply voltage minus 1.7 volts.

SW12-1 and SW12-2 can be independently set to a regulated 12 V under program control.

SW12 current limit: 1100 mA

12 VDC outputs limited to 3300 mA, which is shared by all 12 V outputs including 12V, SW12-1, SW12-2 and CS I/O pin 8.

5 V fixed output

5V: One regulated 5 V output. Supply is shared between the 5V terminal and CS I/O pin 1.

- **Voltage Output:** Regulated 5 V output (±5%)
- **Current Limit:** 250 mA

C as power output

- **C Terminals:**
 - **Output Resistance (R):** 150 Ω
 - **5 V Logic Level Drive Capacity:** 10 mA @ 3.5 VDC
 - **3.3 V Logic Level Drive Capacity:** 10 mA @ 1.8 VDC

CS I/O pin 1

- **5 V Current Limit:** 250 mA
- **CS I/O pin 8**
- **12 V Current Limit:** 1100 mA

Pulse measurement specifications

NOTE: Conflicts can occur when a control port pair is used for different instructions (TimerInput(), PulseCount(), SDI12Recorder(), WaitDigTrig()). For example, if C1 is used for SDI12Recorder() and C2 cannot be used for TimerInput(), PulseCount(), or WaitDigTrig().

Maximum Input Voltage: ±20 VDC

Maximum Counts Per Channel: 2³²

Input Resistance: 5 kΩ

Accuracy: ±(6 ppm of reading + 0.00001)

Switch closure input

- **Terminals:** C1-C8
 - **Pull-Down Resistance:** Configurable in terminal pairs with 100 kΩ
 - **Pull-Up Resistance:** Configurable in terminal pairs with 100 kΩ (weak) or 2.2 kΩ (strong)
 - **Maximum Input Frequency:** 250 Hz
 - **Minimum Switch Closed Time:** 1 ms
 - **Minimum Switch Open Time:** 1 ms
 - **Maximum Bounce Time:** 1 ms open without being counted
 - **Software Debounce Time:** 1 ms

High-frequency input

- **Terminals:** C1-C8
 - **Pull-Down Resistance:** Configurable in terminal pairs with 100 kΩ
 - **Pull-Up Resistance:** Configurable in terminal pairs with 100 kΩ (weak) or 2.2 kΩ (strong)

Maximum Input Frequency: 1 MHz

Low-level AC input

- **DC-offset rejection:** Internal AC coupling eliminates DC-offset voltages up to ±0.05 VDC
- **Input Hysteresis:** 12 mV at 1 Hz

Low-Level AC Pulse Input Ranges:

<table>
<thead>
<tr>
<th>Sine wave (mV RMS)</th>
<th>Range (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.0 to 20</td>
</tr>
<tr>
<td>200</td>
<td>0.5 to 200</td>
</tr>
<tr>
<td>2000</td>
<td>0.3 to 10,000</td>
</tr>
<tr>
<td>5000</td>
<td>0.3 to 20,000</td>
</tr>
</tbody>
</table>

Digital input/output specifications

Terminals configurable for digital input and output (I/O) including status high/low, pulse width modulation, external
interrupt, edge timing, switch closure pulse counting, high-frequency pulse counting, UART1, RS-2322, RS-4223, RS-4854, SDM5, SDI-126, I2C7, and SPI8 function. Terminals are configurable in pairs for 5 V or 3.3 V logic for some functions.

NOTE: Conflicts can occur when a control port pair is used for different instructions (TimerInput(), PulseCount(), SDI12Recorder(), WaitDigTrig()). For example, if C1 is used for SDI12Recorder(), C2 cannot be used for TimerInput(), PulseCount(), or WaitDigTrig().

Terminals: C1-C8
Maximum Input Voltage: ±20 V
Logic Levels and Drive Current:

<table>
<thead>
<tr>
<th>Terminal Pair Configuration</th>
<th>5 V Source</th>
<th>3.3 V Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic low</td>
<td>≤ 1.5 V</td>
<td>≤ 0.8 V</td>
</tr>
<tr>
<td>Logic high</td>
<td>≥ 3.5 V</td>
<td>≥ 2.5 V</td>
</tr>
</tbody>
</table>

Edge timing
Terminals: C1-C8
Maximum Input Frequency: 1 MHz
Resolution: 20 ns

Edge counting
Terminals: C1-C8
Maximum Input Frequency: 1 MHz

Quadrature input
Terminals: C1-C8 can be configured as digital pairs to monitor the two sensing channels of an encoder.
Maximum Frequency: 500 kHz
Resolution: 20 ns or 50 MHz

Pulse-width modulation
Modulation Voltage: Logic high

1Universal Asynchronous Receiver/Transmitter for asynchronous serial communications.
2Recommended Standard 232. A loose standard defining how two computing devices can communicate with each other. The implementation of RS-232 in Campbell Scientific data loggers to computer communications is quite rigid, but transparent to most users. Features in the data logger that implement RS-232 communication with smart sensors are flexible.
3Communications protocol similar to RS-485. Most RS-422 sensors will work with RS-485 protocol.
4Recommended Standard 485. A standard defining how two computing devices can communicate with each other.
5Synchronous Device for Measurement. A processor-based peripheral device or sensor that communicates with the data logger via hardware over a short distance using a protocol proprietary to Campbell Scientific.
6Serial Data Interface at 1200 baud. Communication protocol for transferring data between the data logger and SDI-12 compatible smart sensors.
7Inter-Integrated Circuit is a multi-master, multi-slave, packet switched, single-ended, serial computer bus.
8Serial Peripheral Interface - a clocked synchronous interface, used for short distance communications, generally between embedded devices.

Maximum Period: 43 seconds
Resolution: 10 ns
Maximum time between counter or timer instructions
- 86 seconds

Communications specifications
Ethernet Port: RJ45 jack, 10/100/1000 Base Mbps, full and half duplex, Auto-MDIx, magnetic isolation, and TVS surge protection, IEEE 802.3 compliant.
Internet Protocols: Ethernet, PPP, RNDIS, ICMP/Ping, Auto-IP (APIPA), IPv4, IPv6, UDP, TCP, TLS (v1.2), DNS, DHCP, SLAAC, Telnet, HTTP(S), SFTP, FTP(S), POP3/TLS, NTP, SMTP/TLS, SNMPv3, CS I/O IP
Additional Protocols: CPI, EPI, PakBus, PakBus Encryption, SDM, SDI-12, Modbus RTU / ASCII / TCP, DNP3, custom user definable over serial, UDP, NTCIP, NMEA 0183, I2C, SPI
USB Device: Micro-B device for computer connectivity
USB Host: USB 2.0 full speed host 12 Mbps, Type-A for mass storage devices
CS I/O: 9-pin D-sub connector to interface with Campbell Scientific CS I/O peripherals.
0 – 5 V Serial: (C1 to C8): Eight independent TX/RX pairs
SDI-12: (C1, C3, C5, C7): Four independent SDI-12 compliant terminals are individually configured and meet SDI-12 Standard v 1.4.
RS-485: (C1 to C8): Two full duplex or four half duplex. Optional 120 Ohm termination resistor between pairs.
RS-422: (C1 to C8): Two full duplex or four half duplex. Use RS-485 configuration.
RS-232: (C1 to C8): Four independent Tx/Rx pairs.
CPI A/B and RS-232 A/B: Two RJ45 module ports that can operate in one of two modes: CPI or RS-232. CPI interfaces with Campbell Scientific CDM measurement peripherals and sensors. RS-232 connects, with an adapter cable, to computer, sensor, or communications devices serially.

EPI: One EPI bus. 100 Mbps data rate. IEEE 1588 synchronization to 50 nS. 100 m (330 ft) maximum cable length per network connection. Up to 15 devices. EPI is a proprietary interface for communications between Campbell Scientific data loggers and Campbell Scientific CDM peripheral devices. It is based on Ethernet and IEEE 1588 Precision Time Protocol. It consists of a physical layer definition and a data protocol.

CPI: Two independent CPI buses. Up to 1 Mbps data rate each. Synchronization of devices to 5 μS. Total cable length up to 610 m (2000 ft). Up to 20 devices per bus. CPI is a proprietary interface for communications between Campbell Scientific data loggers and Campbell Scientific CDM peripheral devices. It consists of a physical layer definition and a data protocol.

Wireless: Wi-Fi
Hardwired: Multi-drop, short haul, RS-232, fiber optic
Satellite: GOES, Argos, Inmarsat Hughes, Iridium

Wi-Fi specifications

WLAN (Wi-Fi)

Maximum Possible Over-the-Air Data Rates: <11 Mbps over 802.11b, <54 Mbps over 802.11g, <72 Mbps over 802.11n

Operating Frequency: 2.4 GHz, 20 MHz bandwidth

Antenna Connector: Reverse Polarity SMA (RPSMA)

Antenna (shipped with data logger): Unity gain (0 dBD), 1/2 wave whip, omnidirectional. Features an articulating knuckle joint that can be oriented vertically or at right angles

Supported Technologies: 802.11 b/g/n, WPA/WPA2-Personal, WPA/WPA2-Enterprise Security, WEP

Client Mode: WPA/WPA2-Personal and Enterprise, WEP

Access Point Mode: WPA2-Personal

Receive Sensitivity: -97 dBm

Standards compliance specifications

EMI and ESD protection:

- **Immunity:** Meets or exceeds following standards:
 - **ESD:** per IEC 61000-4-2; ±15 kV air, ±8 kV contact discharge
 - **Radiated RF:** per IEC 61000-4-3; 10 V/m, 80-1000 MHz
 - **EFT:** per IEC 61000-4-4; 4 kV power, 4 kV I/O
 - **Surge:** per IEC 61000-4-5; 4 kV power, 4 kV I/O
 - **Conducted RF:** per IEC 61000-4-6; 10 V power, 10 V I/O

- Emissions and immunity performance criteria available on request.

- United States FCC ID: XF6-RS9113SB
- Industry Canada (IC): 8407A-RS9113SB

NOTE:
The user is responsible for emissions if changing the antenna type or increasing the gain.

Warranty

Standard: Three years against defects in materials and workmanship.

Extended (optional): An additional two years. against defects in materials and workmanship, bringing the total to 5 years.