# **Spectrum Specifications**



# 1. Specifications

All Spectrum units meet electrical specifications in a temperature range of –40 to 70 °C, non-condensing environment. Specifications given are assumed to be valid over this full temperature range unless otherwise noted. Recommended calibration interval is every three years.

### 1.1 Measurements

### 1.1.1 Analog inputs

Terminals

**SPECTRUM103:** 3 Differential V in, 3

Excitation

**SPECTRUM109:** ±9 Differential V in, 9

Excitation

Common-mode input voltage ±10000, ±5000, ±1000,

(**mV**): ±200

Common-mode input voltage: ±15 VDC

Absolute max input voltage: ±16 VDC

A/D converters: 32-bit SAR-ADCs

Measurement accuracy @ 20 °C ±(0.04% of Reading

 $\pm 130 \,\mu V)^{1}$ 

Input resistance:  $80 \text{ M}\Omega$  Input time constant: 230 ns

**Input offset current:** 5 nA typical, max @ 50 °C

# 1.1.2 Analog range and resolution

Table 1-1: Sample ratio 20: signal to noise ratio (SNR) and effective resolution (ER)

| Sample<br>ratio =<br>20 | 200 mV    |            | 1000 mV   |            | 500 mV    |            | 1000 mV   |            |
|-------------------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|
| Sample rate             | SNR<br>dB | ER<br>bits | SNR<br>dB | ER<br>bits | SNR<br>dB | ER<br>bits | SNR<br>dB | ER<br>bits |
| 1                       | 132.6     | 22.0       | 133.6     | 22.2       | 135.1     | 22.4       | 141.2     | 23.4       |
| 10                      | 130.7     | 21.7       | 134.2     | 23.3       | 134.5     | 22.3       | 140.3     | 23.3       |
| 100                     | 131.5     | 21.8       | 135.3     | 22.5       | 135.6     | 22.5       | 139.2     | 23.1       |
| 1000                    | 129.1     | 21.4       | 132.8     | 22.1       | 133.7     | 22.2       | 136.9     | 22.7       |
| 10000                   | 121.6     | 20.2       | 127.3     | 21.2       | 128.4     | 21.3       | 130.6     | 21.7       |

Table 1-2: Sample ratio 4: signal to noise ratio (SNR) and effective resolution (ER)

| Sample ratio = 4 | 200 mV    |            | 1000 mV   |            | 500 mV    |            | 1000 mV   |            |
|------------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|
| Sample rate      | SNR<br>dB | ER<br>bits | SNR<br>dB | ER<br>bits | SNR<br>dB | ER<br>bits | SNR<br>dB | ER<br>bits |
| 1                | 126.9     | 21.1       | 134.1     | 22.3       | 136.2     | 22.6       | 140.4     | 23.3       |
| 10               | 127.6     | 21.2       | 133.7     | 22.2       | 136.0     | 22.6       | 139.9     | 23.2       |
| 100              | 129.0     | 21.4       | 133.7     | 22.2       | 135.4     | 22.5       | 138.3     | 23.0       |
| 1000             | 126.0     | 20.9       | 131.6     | 21.9       | 132.5     | 22.0       | 135.0     | 22.4       |
| 10000            | 118.1     | 19.6       | 124.8     | 20.7       | 125.8     | 20.9       | 127.6     | 21.2       |



<sup>&</sup>lt;sup>1</sup> Accuracy specification does not include sensor error or measurement noise.

# 1.1.3 Anti-aliasing filters

| Output sample rate (f samp):                     | 1 to 10,000 sps                                |
|--------------------------------------------------|------------------------------------------------|
| Sample ratio (f_samp/f_pass):                    | 4 or 20 (user selected)                        |
| End of the pass band (f_pass):                   | (f_samp/4) or (f_samp/20)                      |
| Beginning of the pass band (f_stop):             | (f_samp/2) or (f_samp/3.3)                     |
| Pass band ripple:                                | <0.01 dB                                       |
| Digital filter stop band attenuation:            | -90 dB or (1/32000)                            |
| Digital filter group delay:                      | 12/f_samp seconds                              |
| Analog filter pass band flatness:                | <0.005 dB ( direct current (0 to 3 kHz)        |
| Analog filter group delay:                       | 66 ±1 µs (0 to 3 kHz)                          |
| Linear phase response:                           | group delay is independent of signal frequency |
| Ch-Ch sampling simultaneity:                     | ± 10 ns                                        |
| Module to Module sampling simultaneity over EPI: | ± 100 ns                                       |

### 1.1.4 Excitations

**10V excitation:** Nominal output:  $10,000 \pm 5 \text{ mV}$  (1 k $\Omega$  load)

Load regulation:  $(350 \Omega)$ : 0.005% typical

(@25°C relative to  $1 k\Omega$  load)

Load regulation: (120  $\Omega$ ): 0.02% typical

(@25°C relative to 1 k $\Omega$  load) Max output current: > 100 mA

**5V excitation:** Nominal output:  $5000 \pm 5 \text{ mV}$  (1 k $\Omega$  load)

Load regulation: 0.005% typical (@25°C

relative to  $1 k\Omega$  load)

Load regulation: 0.02% typical (@25°C

relative to  $1 k\Omega load$ )

*Max output current:* > 100 mA

**10 mA excitation:** Nominal output:  $10\pm0.05$  mA (1 k $\Omega$  load)

Load regulation: 0.1% typical (@25°C

relative to  $1 k\Omega load$ )

Load regulation: (120  $\Omega$ ): 0.02% typical

(@25°C relative to 1 k $\Omega$  load) Max output voltage: > 12 V

#### NOTE:

For bridge measurements, excitation error is canceled out due to the internal ratiometric relationship between the excitation and the input measurement and is corrected with internal calibration. This advantage is realized when the excitation is utilized as part of the integrated CRBasic bridge measurement process. Consequently, excitation accuracy error can be disregarded and should not be included in the calculation of total error alongside input

measurement accuracy error. Instead, refer only to the specified input measurement accuracy when performing bridge measurements.

# 1.2 System

### 1.2.1 Communications

**USB:** USB micro-B device only, 2.0 full-speed 12 Mbps, for computer connection.

EPI: Campbell Scientific proprietary interface based on Ethernet and the IEEE 1588 Precision Time Protocol. Provides data communications and device synchronization between Campbell Scientific data

loggers, sensors, and GRANITE Modules. *Data logger compatibility:* GRANITE 9, 10

EPI max number of Spectrum devices: 10 EPI max measurement sample rate: 10k sample/sec

(using subscans)

*EPI max sampling synchronization*: 50 ηs

*EPI max data bit rate:* 100 Mbps

EPI max cable length: 100 meters (328 feet) between

modules

**CPI:** CPI works well for slower measurements ( < 1,000 Hz) with a single Spectrum module.

Campbell Scientific proprietary interface based on the

CAN 2.0 and RS-485 standards.

Data logger compatibility: GRANITE 9, GRANITE 10,

GRANITE 6, CR6, CR1000X CPI max number of devices: 1

CPI max measurement sample rate: 1000 samples/sec

(no subscan option)

CPI max data bit rate: 1000 kbps

CPI max total cable length: 850 meters (2800 feet)<sup>1</sup>
<sup>1</sup>See Designing Physical Network Layouts for the CPI

Bus \□.

#### 1.2.2 Hardware

**Processor:** Digital Signal Processor 32-bit

with floating point units

Processor speed: 400 MHz

Memory: 128 MB SRAM

Onboard oscillator accuracy:  $\pm$  50 ppm (-10 to 60°C), active

when module is not connected to EPI

**EPI master clock accuracy:**  $\pm$  25 ppm (-40 to 85°C), active

when module is connected to

EPI

### 1.2.3 Power requirements

Voltage: 10 to 30 VDC

| Table 1-3: Typical current drain |                               |                                     |                               |                                     |  |  |  |
|----------------------------------|-------------------------------|-------------------------------------|-------------------------------|-------------------------------------|--|--|--|
| Model                            | Power supply                  |                                     |                               |                                     |  |  |  |
|                                  | @12V<br>without<br>excitation | @12V with excitation                | @24V<br>without<br>excitation | @24V with excitation                |  |  |  |
| 103                              | 310 mA<br>typical             | 310 mA + 3.3<br>*sensor_<br>current | 190 mA                        | 190 mA + 1.7<br>*sensor_<br>current |  |  |  |
| 109                              | 680 mA<br>typical             | 680 mA + 3.3<br>*sensor_<br>current | 360 mA                        | 360 mA +<br>1.7 *sensor_<br>current |  |  |  |

# NOTE:

Power consumption is independent of measurement speed.

# 1.2.4 Compliance

View EU Declarations of Conformity at www.campbellsci.com/spectrum  $\square$ .

# 1.2.5 Physical attributes

**Dimensions:** 21.6 x 13.7 x 7.6 cm (8.5 x 5.4 x 3.0 in);

additional clearance required for

cables and wires

**Weight:** 1.6 kg (3.53 lb)

Operating

temperature: -40 to 70 °C

Storage

temperature: -55 to 85 °C

Passive heat sink

thermal resistance w/o air gap: Max 0.35 °C/W

Air gap clearance for

operation w/o

heatsink: Min 4 inches

**IP rating:** IP20

**Humidity:** 0 to 99% Non-condensing

Sensor terminal wire

gage: 16-28 AWG

Power terminal wire

gage: 2-24 AWG