

Met-Ocean Measurements for Wind Energy

Wave Radar, Visibility, Cloud Height, and Structural Monitoring Equipment

Campbell Scientific has a long history of delivering met-ocean measurement solutions used for characterizing atmospheric and ocean conditions. Our meteorological observation solutions also provide critical information used for offshore wind energy resource assessment, plant design, and operational assessment. Ocean atmosphere interactions, structural condition observation, and wind measurement and characterization are common initiatives that use Campbell Scientific Met-Ocean equipment.

Weather and Climate Monitoring

Met-Ocean equipment designed for marine environments provides operational and research grade accuracy and reliability in any weather and climate scenario. The equipment listed below are easily integrated into any Campbell Scientific dataloggerbased data collection platform (DCP) or meteorological tower. A list of complimentary wind monitoring station is available at:

www.campbellsci.com/wind-energy

SENSORS		Measurement Description	Accuracy	Operating Temperature	
CS475A Radar Water Level Sensor FCC Approved		Distance for the range of 0.5 to 35 m (1.64 to 114.8 ft)	±2 mm (±0.0065 ft)	-40° to 80°C	
CS120A Visibility Sensor High Performance Visibility Measurements		Meteorological observable range (MOR) for fog and snow in the range 10 to 30,000 m.	0 to 10,000 m: ±10% 10,000 to 20,000 m: ±20%	-25° to 60°C	
CS125 Present Weather Sensor Combines visibility and present weather technology		MOR for fog and snow in the range 10 to 30,000 m and identifies weather type	0 to 10,000 m: ±10% 10,000 to 20,000 m: ±20%	-25° to +60°C	
CS135 LIDAR Ceilometer Sensitive, Long Range Cloud Measurement	L	Cloud height and vertical visibility. Maximum reporting range is 10 km (32,800 ft)	Hard Target Range Accuracy: ±0.25%, ±4.6 m	-40° to 60°C	
CS110 Electric Field Meter Sensor Lifesaving warning before lightning strike		Vertical component of the atmospheric electric field at the earth's surface used to assess the local lightning hazard	Parallel-Plate Configuration: ±1% of reading + 60 V m ⁻¹ offset 2 m Tripod Configuration: ±5% of reading + 8 V m ⁻¹ offset	-25° to 50°C standard, -40° to +85°C extended	

Structural Health Monitoring

Campbell Scientific data acquisition system's versatile capabilities make them ideal for structural health monitoring.

VSPECT Spectral Analysis Technology

Our VSPECT spectral analysis technology is ideal for monitoring applications ranging from simple beam fatigue analysis, to structural mechanics research, to continuous monitoring of large, complex structures. Structural

measurement equipment can be deployed as a stand-alone system or integrated into any existing Campbell Scientific datalogger based weather observations system.

VSPECT is an innovative patented technology that delivers the most accurate measurement (0.001 Hz resolution) for vibrating wire sensors. VSPECT observes the incoming sensor signal, performs a Fourier transform and a spectral analysis (transforming the Time Series into individual sinusoidal components in the frequency Spectrum), and determines the sensor frequency by identifying the largest signal in the acceptable range and disregarding unwanted noise.

VSPECT PRODUCTS	Static VW	Dynamic VW	Channel Count	USB Configuration	Ethernet	Multiplexer Capable	Wireless Communications
CR6 Fully Functional Datalogger with Onboard Vibrating-Wire Measurements	Yes	with CDM- VW300 Series	12 universal	Yes	Yes	Yes	Wi-Fi and radio options available soon
CRVW3 3-Channel Stand-Alone Vibrating- Wire Datalogger	Yes	No	3 vibrating wire	Yes	No	No	Radio options
VWAnalyzer Vibrating-Wire Analyzer	Yes	No	1 vibrating wire	Yes	No	No	No
CDM-VW300-Series Dynamic Vibrating- Wire Interface	Yes	Yes	2 or 8 vibrating- wire (depends on the model)	Yes	No	Other CDMs	No
AVW200-Series Vibrating-Wire Interface	Yes	No	2 vibrating- wire	No	No	Yes	Radio options

Structural and Health Monitoring Sensors

- > Vibrating-wire strain gauges
- > Foil strain gauges
- Crack and joint sensors
- > Tilt sensors
- Carlson strain meters
- > Piezoresistive accelerometers
- > Piezoelectric accelerometers
- Capacitive accelerometers
- > Borehole accelerometer
- > Servo force balance accelerometers

Surface-Atmosphere Conditions Observation

Campbell Scientific eddy-covariance and energy balance solutions observe surface-atmosphere conditions. High precision instrumentation is compact and easy to install on any met-ocean tower or platform. They can be customized with additional sensors or communication peripherals. They use little power and are reliable, requiring little maintenance. Open and closed path systems for sensible heat flux, momentum flux, and the flux of other scalars between the atmosphere and surface, as well as complete, integrated atmospheric profile systems and core components are listed.

SYSTEMS

SYSTEMS		Measurements	Datalogger	Communication		
OPEC Open-Path Eddy-Covariance System Customizable, Integrated System		CO ₂ flux, H ₂ O -vapor flux, momentum flux, turbulence intensity, sensible heat flux, 3D wind velocity, sonic temperature, air temperature, barometric pressure	CR3000	CompactFlash cards, remote data collection, includ- ing direct (Ethernet, RS-232, shorthaul modem, landline) and wireless (RF, cellular, satellite)		
CPEC200 Closed-Path Eddy-Covariance System State of the Art		Long-term monitoring of atmosphere- biosphere exchanges of carbon dioxide, water vapor, heat, and momentum	CR3000	CompactFlash cards, remote data collection, includ- ing direct (Ethernet, RS-232, shorthaul modem, landline) and wireless (RF, cellular, satellite)		
AP200 CO ₂ /H ₂ O Atmospheric Profile System Complete, Integrated System with program		Primary: CO ₂ concentration at each intake, H ₂ O concentration at each intake, system diagnostic word Secondary: sample flow rate, sample cell pressure, sample cell temperature, other control variables	CR1000	CR1000KD keyboard display, CompactFlash cards, remote data collection, including direct (Ethernet, RS-232, shorthaul modem, landline) and wireless (RF, cellular, satellite)		

CORE COMPONENTS -				
	Signal Type/Output	Measurement Description	Operating Temperature	
CSAT3A 3D Sonic Anemometer, Head Only Used with EC150 and CPEC200	RS-232, analog, SDM	u _x , u _y , u _z , c	-50° to 70°C	
EC155 $ CO_2/H_2O$ Closed-Path Gas Analyzer	SDM, RS-485, USB, analog	absolute CO ₂ and H ₂ O vapor mixing ratio, sample cell temperature and pressure, 3D wind speed and sonic air temperature (requires CSAT3A)	-30° to +50°C	
IRGASON Integrated CO ₂ and H ₂ O Open-Path Gas Analyzer and 3D Sonic Anemometer	SDM, RS-485, USB, analog	absolute CO ₂ and H ₂ O vapor mixing ratio, sample cell temperature and pressure, and 3D wind speed and sonic air temperature	-30° to +50°C	
NR-LITE2 Net Radiometer PTFE-coated absorbers instead of fragile dome	±25 mV	energy balance between incoming short- wave and long-wave infrared radiation relative to surface-reflected short-wave and outgoing long-wave infrared radiation	-30° to 70°C	

Offshore Wind Resource Assessment and Power

The ZephIR300 is an ideal solution for characterizing offshore wind conditions. It can be used effectively at every stage of project development. Wind measurements are performed down to 10 m, across the entire turbine rotor diameter, and above to 200 m, providing the necessary observations for performing wind shear verification, wind resource assessment, site classification, micro-siting, and wind model verification.

The ZephIR300 is designed for harsh environments, including marine locations. Marine-grade components and a sealed, IP67 rated enclosure to prevent moisture and ingress, make the ZephIR300 ideal for not only pre-planning and development but for permanent operations as the fixed reference.

Measurement

Samplina

LIDAR WIND SENSOR

ZephIR300 | Remote Sensing Lidar Accurate and reliable

Measurements	Integration	Temperature	Height Range	Rate	Accuracy (variation)	
horizontal wind speed, vertical wind speed, wind veer, wind shear, turbulence intensity, tem- perature, relative humidity, barometric pressure, gps location and time	Integrates into any SCADA network and Campbell Scientific datalog- ger. Same data format options as our datalogger.	-40° to 50°C	10 m to 200 m (10 user configu- rable heights)	50 Hz	Wind Speed: <0.5% Wind Direction: < 0.5°	

Operatina

Svstem

815 W 1800 N | Logan, UT 84321-1784 | 435.227.9120 | www.campbellsci.com usa | australia | brazil | canada | china | costa rica | france | germany | se asia | south Africa | spain | uk © 2014, 2017 Campbell Scientific, Inc. October 2, 2017