
Revision: 03/2025
Copyright © 2025
Campbell Scientific, Inc.

HTTP
Troubleshooting

HTTPGet(), HTTPPost(), and HTTPPut()

APPLICATION NOTE



Table of Contents
1. Introduction 1

2. Verify Internet/network connectivity 1

3. Set DNS information if necessary 2

4. Validating your CRBasic code for HTTPGet() 3

5. Validating your CRBasic code for HTTPPost() and HTTPPut() 6

6. Verify result and response codes 10

7. Starting your header for different authentication types 11
7.1 Plain text authentication 11
7.2 Basic authentication 12
7.3 Digest authentication 13
7.4 Bearer (token) authentication 13

8. Framing your header in the HTTPHeader parameter 14

9. Managing string length in a header 15

10. Testing a request on a generic HTTP server 16

11. Instructions for sniffing HTTPPost(), HTTPPut(), and HTTPGet() from the 
terminal mode in Device Configuration Utility 17

12. Instructions for sniffing DNS from the terminal mode in Device 
Configuration Utility 18

12.1 Interpreting DNS Sniff file results: 19

13. Troubleshooting DNS resolution failures 19

14. Quick reference for HTTPPost(), HTTPPut(), and HTTPGet() errors 20

Appendix A. Example programs 25
A.1 HTTPPost() basic authentication (Base64) example 25
A.2 HTTPPost() digest authentication example 26
A.3 HTTPPost() with an API using an API Key 31
A.4 HTTPGet() bearer (token) authentication example 34

Table of Contents - i



A.5 HTTPPut() bearer (token) authentication example for Microsoft Azure Blob 
Storage 36

Table of Contents - ii



1. Introduction
This troubleshooting guide provides detailed instructions for setting up and diagnosing issues 
with HTTPGet(), HTTPPost(), and HTTPPut() functions in CRBasic. These functions 
enable Campbell Scientific data loggers to interact with HTTP-based web services, allowing for 
data retrieval and submission over the internet.

The guide is designed to help users overcome common challenges, including ensuring proper 
network connectivity, configuring DNS settings, and writing accurate CRBasic code. Whether you 
are sending a simple HTTP GET request or constructing complex HTTP POST or PUT requests 
with authentication headers, this document walks you through each step of the process.

2. Verify Internet/network 
connectivity
Ensure your data logger has an Internet or network connection and can reach the HTTP server 
where you will be sending your HTTPGet(), HTTPPost(), or HTTPPut().

To verify connectivity, perform a ping from the data logger to the target IP address or domain 
using one of these methods:

 1. For all Campbell Scientific data loggers, you can use the PingIP() instruction in your 
CRBasic program to check if an address is available. To implement this, declare the 
PingResult variable as Public at the top of your program and assign it the result of 
PingIP() within the scan.

Example:

Public PingResult
 
PingResult = PingIP ("8.8.8.8",1000)
 

 2. The CR300 Series data loggers have the added ability to ping from the terminal. To check 
connectivity for CR300 Series data loggers, connect a computer to the data logger and 
open the terminal emulator in Campbell Scientific support software, such as LoggerNet or 
PC400. In the terminal, press Enter until the CR3XX> prompt appears. Then, type: ping 

HTTP Troubleshooting     1



x.x.x.x. Replace X.X.X.X with the IP address or  name of the HTTP server you are sending data 
to.

 3. Enable  Ping (ICMP) Enabled in the data logger settings using the Device Configuration 
Utility under the Network Services tab, then click Apply. Connect a laptop to the same 
network as the data logger  and ping the IP address of the data logger over the network 
from the command prompt to verify the data logger is responding.

Sending a ping from your data logger to the gateway address your data logger is using will 
help you verify network connectivity of the data logger. Likewise, performing another ping 
to an IP address on the Internet, like 8.8.8.8, will help you confirm Internet connectivity.

 4. If these methods are successful, and you are going to be sending HTTP data data to a 
server using a domain name (e.g. myhttpserver.com), be sure to send a test ping to that 
server address. If the ping is unsuccessful, your data logger may not have a DNS server to 
resolve the server address to an IP address, or your network connection may not be 
functioning properly.

To verify if you're experiencing a DNS issue, refer to the Troubleshooting DNS resolution 
failures (p. 19) section in this document.

3. Set DNS information if 
necessary
If you can ping the data logger's network gateway and an IP address on the Internet, such as 
8.8.8.8 (Google DNS), but cannot ping the server, you may need to specify DNS servers to resolve 
the server address. You can set these in the data logger using the Device Configuration Utility 
under Settings Editor > Advanced, in the DNS Server Address fields.

Settings Editor > Advanced

Two common DNS addresses that are often used are:

208.67.222.222 – Open DNS

8.8.8.8 – Google DNS

HTTP Troubleshooting     2



4. Validating your CRBasic code 
for HTTPGet()

NOTE:
If you are using HTTPPost() or HTTPPut(), skip this section and go to Validating your 
CRBasic code for HTTPPost() and HTTPPut() (p. 6).

 1. Instruction Placement – While you may choose to put the HTTPGet() instruction in the 
main Scan loop, it is more common to put the HTTPGet() in a Slow Sequence Scan after 
the Main Scan:

HTTP Troubleshooting     3



 
SlowSequence 
Scan (1,Hr,3,0)

 
HTTPResult = HTTPGet("https://posttestserver.dev",Response,httpHeader,7500)

 
NextScan

EndProg
 

 2. Ensure your HTTPGet()instruction includes a result variable to monitor the transaction's 
success. Declare the HTTPResult variable at the top of the program under Public 
variables:
 
Public HTTPResult As Long
 

Then, prepend it to the HTTPGet() instruction with an equal sign, as shown below:
 
HTTPResult = HTTPGet("https://posttestserver.dev",Response,HttpHeader,7500)
 

 3. Set or Confirm the address in the URI/URL is correct:
 
HTTPResult = HTTPGet("https://posttestserver.dev",Response,HttpHeader,7500)
 

 4. Ensure a variable has been declared at the top of your program and is used as the 
HTTPResponse parameter. This variable needs to be set as a Type String in your 
Public statement and should be large enough to store a full success response or error 
message from the HTTP server you are querying:
 
Public Response As String * 200
 
 
HTTPResult = HTTPGet("https://posttestserver.dev",Response,HttpHeader,7500)
 

 5. Set or Confirm the HTTPHeader parameter. If your request doesn’t require a header, use 
empty double quotes, e.g.: HTTPResult = HTTPGet ("https://posttestserver.dev", 
Response,"",7500):
 
HTTPResult = HTTPGet("https://posttestserver.dev",Response,"",7500)
 

If you need to specify a particularly long header, declare a string variable to hold the 
header in the Public variables section of your data logger program. The example below 
uses the httpHeader variable as the header parameter:

HTTP Troubleshooting     4



 
Public httpHeader As String * 2500
 
 
HTTPResult = HTTPGet("https://posttestserver.dev",Response,HttpHeader,7500)
 

NOTE:
It is generally best to set the header in your CRBasic program just before sending the 
HTTP request. This is because useful information from the server can be stored there as 
part of a server’s response. That information can be parsed in your data logger 
program for further use.

For help framing your header, see Basic authentication (p. 12) in this document.

 6. Check the Timeout parameter. This parameter is optional. The Timeout parameter is the 
amount of time the data logger will wait for a response before considering the connection 
attempt a failure and incrementing the result parameter from step 1. The time is specified in 
.01 second intervals. If you have not specified a timeout, then the default of 7500 (75 
seconds) is used.  

If your Timeout parameter is too short, the HTTPGet() instruction may not have enough 
time to get a response before the data logger stops listening for a response from the 
server. This is particularly applicable if your server is using a HTTPS or TLS connection, as 
those will take a little longer. The default of 7500 is generally sufficient for most  HTTPGet() 
transactions.
 
HTTPResult = HTTPGet("https://posttestserver.dev",Response,HttpHeader,7500)
 

CAUTION:
Placing an HTTP instruction with a long timeout in the main Scan can result in skipped 
scans. If the timeout exceeds the Scan interval,  reduce the timeout to avoid skipped 
scans in case of failure, or place the HTTP instruction in a SlowSequence. This 
prevents the data logger from waiting for a response and missing a scheduled 
measurement.

HTTP Troubleshooting     5



5. Validating your CRBasic code 
for HTTPPost() and 
HTTPPut()
What’s the difference between HTTPPost and HTTPPut?

The HTTP POST method sends data in the request body to a web server, typically for storage. It is 
commonly used for file uploads and web form submissions. POST helps keep data private and 
allows the transmission of large amounts of data when needed.

In essence, HTTP Post says, "Here’s the data."

The HTTP PUT method requests the enclosed entity be stored at the supplied URI/URL. If the 
URI/URL refers to an already existing resource, it modifies it, and if the URI/URL does not point to 
an existing resource, then the server can create the resource or object with that URI/URL. Unlike 
HTTPPost(), PUT can create new resources. The data sent represents the complete entity itself. 
PUT allows multiple resource creations and eliminates the need to check for duplicate 
submissions.

In essence, HTTP Put says, "Here’s the resource. Create it, or I’m updating the resource you 
already have."

NOTE:
The parameters for the HTTPPost() and HTTPPut() instructions in CRBasic are identical. 
This document uses HTTPPost() in its examples.

 
HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwyp8rev73x/post", 
ContentsString,HTTPResponse,HTTPHeader,0,0,Min,8,7500)
 
 
HTTPResult=HTTPPut ("https://posttestserver.dev/p/4p73smwvyp8rev73x/post", 
ContentsString,HTTPResponse,HTTPHeader,0,0,Min,8,7500)
 

 1. Instruction placement – There are reasons you might want to put the HTTPPost() or 
HTTPPut() instruction in the main Scan loop, but it is more common to put them in a 
SlowSequence scan after the main Scan:

HTTP Troubleshooting     6



NOTE:
You can also put these instructions in a subroutine.

Example: 

SlowSequence
Scan (1,Hr,3,0)

 
HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwvyp8rev73x/post", 
ContentsString,HTTPResponse,HTTPHeader,0,0,Min,8,7500)

 
NextScan

EndProg
 

 2. Ensure the HTTPPost() or HTTPPut() has a Result variable you can monitor to verify 
the transaction was executed successfully. Declare the  HTTPResult value at the top of 
your program in your Public variables:
 
Public HTTPResult As Long
 

Then include it on the front of the HTTPPost() instruction, followed by an equal sign:
 
HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwvyp8rev73x/post", 
"Test",HTTPResponse,HTTPHeader,0,0,Min,8,7500)
 

The response codes are listed in this document under step 2 in Verify result and response 
codes (p. 10).

 3. Set or confirm the address in the URI/URL is correct:
 
HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwyp8rev73x/post", 
"Test",HTTPResponse,HTTPHeader,0,0,Min,8,7500)
 

 4. Define the Contents you will send to the HTTP server. You can specify a table name in 
quotes to send the data from that table, or you can enter a string variable (not in quotes)  to 
include the information you want to Post or Put to the server. You can also send files from 
the CPU:, CRD:, USB:, or USR: drive by preceding the file name with the drive.

HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwvyp8rev73x/post", 
"Test",HTTPResponse,HTTPHeader,0,0,Min,8,7500) 

HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwvyp8rev73x/post", 
ContentsString,HTTPResponse,HTTPHeader,0,0,Min,8,7500) 

HTTPResult=HTTPPost 
("https://posttestserver.dev/p/4p73smwvyp8rev73x/post","CPU:Batt_
Volt.csv",HTTPResponse,HTTPHeader,+ CHR(13)+ CHR(10) + http_header_content)

HTTP Troubleshooting     7



 5. Set or Confirm a variable has been declared at the top of your program and is used as the 
HTTPResponse parameter. This variable needs to be set as a Type String under 
Public variables and should be large enough to store a full success response or error 
message from the HTTP server you are querying:
 
Public Response As String * 200
 
 
HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwvyp8rev73x/post", 
"Test",HTTPResponse,HTTPHeader,0,0,Min,8,7500)
 

A quick reference for the most common Response codes is contained in this document in 
Verify result and response codes (p. 10). For a more complete reference go to Quick 
reference for HTTPPost(), HTTPPut(), and HTTPGet() errors (p. 20).

 6. Set or Confirm the HTTPHeader parameter. If your request doesn’t require a header, use 
empty quotes for this parameter. For long headers, declare a string variable in the Public 
variables section of your data logger program, ensuring it is large enough to hold the 
entire header. The example below uses a string variable named HTTPHeader as the 
header parameter:
 
Public HTTPHeader As String * 2500
 
 
HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwvyp8rev73x/post", 
"Test",HTTPResponse,HTTPHeader,0,0,Min,8,7500)
 

NOTE:
It is generally best to set the header in your CRBasic program just before sending the 
HTTP request. This allows useful information from the server’s response to be stored in 
the header, which can then be parsed in your data logger program for further use.

 7. If you are streaming data from a data table, you need to specify the NumRecsStream, 
IntervalStream, and UnitsStream parameters. If you are sending a file (e.g., 
USR:myfile.dat), then you do not need to specify those parameters.

NOTE:
The NumRecsStream, IntervalStream, and UnitsStream are only used when 
streaming data directly from a data table or data table field.

HTTP Troubleshooting     8



 
HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwvyp8rev73x/post", 
"Test",HTTPResponse,HTTPHeader,0,0,Min,8,7500)
 
 
HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwvyp8rev73x/post", 
"Test",HTTPResponse,HTTPHeader,0,0,Min,8,7500)
 

If you POST or PUT data from a table based on the number of unsent records, ensure you 
specify the number of records in the NumRecsStream field and set the 
IntervalStream value to 0. 

If you POST or PUT data from a table based on a time interval, the NumRecsStream 
parameter functions as a TimeIntoInterval parameter and must be specified. For 
example, setting NumRecsStream to 0, IntervalStream to 60, and UnitsStream to 
Min means the HTTPPost() or HTTPPut() instruction will execute at the start of each 
60-minute interval.

Using a NumRecsStream of 0 and a IntervalStream of 0 will tell the data logger to 
send all previously unsent data when the HTTPPost() or HTTPPut() is called.

Ensure you specify the time units for the NumRecsStream and IntervalStream 
parameters in the UnitsStream variable. Sec, Min, Hr, and other options are available.
 
HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwvyp8rev73x/post", 
"Test",HTTPResponse,HTTPHeader,0,0,Min,8,7500)
 

 8. Specify the FileOption parameter. This parameter is only needed if you are streaming a 
file. It lets you choose the file format of your HTTPPost() or HTTPPut() request. A 
number of options are available including Binary, ASCII, XML, and JSON. 

NOTE:
Option 8 is the standard Campbell Scientific data file format created by LoggerNet.

 
HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwvyp8rev73x/post", 
"Test",HTTPResponse,HTTPHeader,0,0,Min,8,7500)
 

 9. Check the Timeout parameter. This parameter is optional and measured in 0.01-second 
intervals. If not specified, the default value of 7500 (75 seconds) is used.

The Timeout parameter determines how long the data logger will wait for a response 
before marking the connection attempt as a failure and incrementing the result parameter 
from Step 1.

HTTP Troubleshooting     9



If the Timeout is too short, the HTTPGet() instruction may not receive a response 
before the data logger stops listening, especially when using HTTPS or TLS, which require 
additional processing time. The default value of 7500 is generally sufficient for most 
HTTPGet() transactions.
 
HTTPResult=HTTPPost ("https://posttestserver.dev/p/4p73smwvyp8rev73x/post", 
"Test",HTTPResponse,HTTPHeader,0,0,Min,8,7500)

6. Verify result and response 
codes

 1. After confirming all parameters and testing your HTTPGet(), HTTPPost(), or HTTPPut() 
request, check the Public table for the HTTPResult code, which indicates the success of 
the transaction.

 l A successful request returns a value of 100 or greater, representing the TCP socket 
used.

 l A return value of 0 indicates a failure.
 l A return value of -2 means the instruction wasn’t executed because the data source 

wasn’t ready with new records in time.

 2. To find more details, check the HTTPResponse parameter. Below are some common 
abbreviated response codes to provide additional information. For more details and codes, 
see the Quick reference for HTTPPost(), HTTPPut(), and HTTPGet() errors (p. 20) section of 
this document.

200 – HTTP Request was successful.

400 Bad Request – The server cannot or will not process the request due to an apparent 
client error. For example: a malformed request syntax, excessive size, or invalid request 
message framing.

401 Unauthorized – You haven't authenticated with the server correctly. It's likely a problem 
in your header. You may need to specify and engage in the correct authentication type. 
The error message returned will specify the type of authentication you need to use. Types 
include Basic, Digest, and Bearer. Alternatively, if using Bearer authentication, this could 
mean the token or session has expired.

HTTP Troubleshooting     10



403 Forbidden – Assuming you are making the request correctly, you might not have 
permissions.

404 Not Found – The requested resource could not be found. Check your address to 
ensure you are using the right one.

7. Starting your header for 
different authentication types
Many HTTP devices and servers support basic authentication for executing HTTPGet(), 
HTTPPost(), or HTTPPut() requests. However, many also require additional parameters for 
proper server authentication. If you receive a 401 error with your request, you must provide 
credentials such as a username and password, hash, or token to authenticate with the server 
before sending or receiving data. The 401 error message often provides additional information 
about the authentication method you should use.

NOTE:
Regardless of the authentication mode, Campbell Scientific data loggers do not support 
caching with a cookie.

NOTE:
It is generally best to set the header in your CRBasic program just before sending the HTTP 
request. This allows useful information from the server to be stored as part of a server, which 
can then be parsed in your data logger program for further use.

Authentication methods are discussed in the following sections:

7.1 Plain text authentication
 1. Your data logger sends the username and password in the URI/URL request.

 2. The server accepts the request.

Example URI/URL:

http://username:password@http.server.address

HTTP Troubleshooting     11



7.2 Basic authentication
 1. Your data logger connects to the web server and sends its username and password 

encoded as Base64.

 2. The server then processes the request.

Use this format:

“Authorization: Basic QWRtaW4=:UGFzc3dvcmQ=”

Avoid this format: 

“Authorization: Basic Admin:Password”

To easily convert your username and password into Base64, you can use online tools like Base64 
Guru.

https://base64.guru/converter/encode/text  

To convert, enter your username or password, then click Encode. For example, encoding "Admin" 
results in QWRtaW4=. When using Basic Authentication with Base64, always separate the 
username and password with a colon (:).

HTTP Troubleshooting     12

https://base64.guru/converter/encode/text


7.3 Digest authentication
(See example code in HTTPPost() digest authentication example [p. 26].)

Digest Process Summary:

If you are using this method, start with our sample code and modify it for use with the HTTP 
server you are communicating with.

 1. The client asks for the HTTP resource and returns a 401 error with the authentication realm 
and a nonce (a "number used once").

 2. The data logger reads the error message and parses out the realm and nonce.

 3. The data logger creates a hash using the username, password, realm, and nonce.

 4. The data logger sends another HTTPGet() to the server with the hash in the request's 
header.

 5. The server validates the hash and grants access.

Example Header:

"Authorization: Digest xx-XXXXXX"

See HTTPPost() digest authentication example (p. 26) for example code.

7.4 Bearer (token) authentication
(See example code in HTTPGet() bearer (token) authentication example [p. 34].)

 1. The data logger makes the HTTP Request specifying Bearer in the Header, followed by a 
token (a hash).

 2. The Server accepts the request.

Example Header:

"Authorization: Bearer xx-XXXXXX"

HTTP Troubleshooting     13



8. Framing your header in the 
HTTPHeader parameter
Guidelines for framing your header:

 l If using a header variable, it must be declared as a string and be large enough to hold the 
contents.

 l The contents of the header variable must be enclosed in quotes.
 l Your header must match exactly what the server expects; don’t take shortcuts.
 l A long header, like an authorization header, will need to be split up on multiple lines and 

concatenated together into a single variable.
 l If your header needs to include characters, like double quotes or the “-“ minus symbol, they 

may need to be inserted into the header using the CHR() instruction. Here is a reference:

Decimal
#

ASCII
Char   Decimal

#
ASCII
Char   Decimal

#
ASCII
Char 

10 LF   42 *   64 @

13 CR   43 +   91 [

32 Space (SP)   44 ,   92 \

33 !   45 -   93 ]

34 "   46 .   94 ^

35 #   47 /   95 _

36 $   58 :   96 `

37 %   59 ;   123 {

38 &   60 <   124 |

39  ‘   61 =   125 }

40 (   62 >   126 ~

41 )   63 ?      

HTTP Troubleshooting     14



NOTE:
Most characters, such as ":", can be inserted into your header or any string without 
using CHR(). However, characters like double quotes (") and the negative sign (–) must 
be concatenated. The full list of decimal to ASCII characters is also available in the 
CRBasic Editor help under “ASCII Codes and Characters.”

Example:

The server requires a string of:

"Authorization: Bearer CjBbMUr0-MUQfNzIyRtn"

When entered in CRBasic it appears as follows:
 

httpHeader = "Authorization: Bearer CjBbMUr0-MUQfNzIyRtn"
 

*Notice the - minus character between CjBbMUr0 and MUQfNzIyRt is blue instead of 
pink. This indicates a problem in the string.

To correctly set the minus character as a string, use the following code:

"Authorization: Bearer CjBbMUr0" & CHR(45) & "MUQfNzIyRtn"

NOTE:
The & character is used to concatenate the three pieces together to form the complete 
string.

9. Managing string length in a 
header
CRBasic has a 512-character limit per line. If your string exceeds this limit, you must split it into 
multiple lines and concatenate them.

If your line exceeds 512 characters, you’ll encounter this CRBasic compiler error:
 
line 34: Line exceeds max characters of 512.
Error(s) detected in the program. Double-click an error above to navigate to it.
 

HTTP Troubleshooting     15



Here is an example of splitting a long header string and concatenating it back together:
 
httpHeaderl = "Authorization: Bearer" & CHR(45) & "ONkU5RERFMjBBMUQONURFNzIONkU5 
httpHeader2 = httpHeader & "0NkU5RERFMjBBMUQ0NURFNzIyRTM0NjAlMMtY0NkU5RERFMjBBMUQ 
httpHeader3 = httpHeader & "0NkU5RERFMjBBMUQ0NURFNzIyRTM0NjA1M" & CHR(45) & "ONkU
 
FullhttpHeader = httpHeaderl & httpHeader2 & httpHeader3

10. Testing a request on a 
generic HTTP server
Testing  HTTPGet(), HTTPPost(), or HTTPPut() requests on a generic HTTP test server can 
help verify your request is formatted correctly. Two commonly used test servers include:

 1. https://posttestserver.dev/ – Free, no login currently required.

 2. https://pipedream.com/ – Request Bin is accessible with a free account.

NOTE:
Post Test Server works for HTTPGet, Post, and Put.

Using Post Test Server:

 1. Open the Post Test Server URL

 2. Click the Open Random Box to generate a test environment.

 3. Copy the Post URL to use in your Get, Post, or Put tests in CRBasic.

NOTE:
Keep the web window open—closing it will delete your test box and results.

 4. Test your code and monitor the results in the web window.

NOTE:
Click Details to view the request headers, parameters, and body of your transaction.

HTTP Troubleshooting     16

https://posttestserver.dev/
https://pipedream.com/


 5. Once your test is successful, run your code on the real HTTP server and adjust it based on 
the server's documentation.

11. Instructions for sniffing 
HTTPPost(), HTTPPut(), 
and HTTPGet() from the 
terminal mode in Device 
Configuration Utility
One way to catch errors such as "Is my header formatted correctly?" and "Does it contain the 
right type of information?" is to monitor your traffic using a terminal or a terminal emulator.

 1. Launch Device Configuration Utility and connect to your data logger.

 2. Click the Terminal tab.

 3. Type capital letter W, and press Enter.

HTTP Troubleshooting     17



 4. Enter the number that corresponds to IP Trace (for the CR1000X, it’s 23), then press Enter.

 5. Enter the number that corresponds to HTTP (800), then press Enter.

 6. You should now see the press ESC to exit, any other key to renew 
timeout message. To create an export of the results, click the Start Export button.

 7. On the Choose an export file window, select a location where you can find the file and give 
it a name (For example, “mysniff.txt”). Click Save.

 8. Wait for your HTTPPost() instruction to trigger in your data logger program, or trigger it 
manually. For best results, let the HTTPPost() instruction complete or fail twice for 
redundancy before clicking the End Export button. If the HTTPPost() instruction only 
runs once per day at midnight, testing may be difficult without a way to trigger it manually.

12. Instructions for sniffing DNS 
from the terminal mode in 
Device Configuration Utility

 1. Launch Device Configuration Utility and connect to your data logger.

 2. Click the Terminal tab.

 3. Type capital letter W, and press Enter.

 4. Enter the number that corresponds to IP Trace (for the CR1000X, it’s 23), then press Enter.

 5. Enter the number that corresponds to DNS (e.g., 1000), then press Enter.

 6. You should now see the press ESC to exit, any other key to renew 
timeout message. To create an export of the results, click the Start Export button.

 7. On the Choose an export file window, select a location where you can find the file and give 
it a name (For example, “mysniff.txt”). Click Save.

 8. Capture the results for a few minutes while the data logger attempts the HTTP operation. 
The data logger must complete a DNS lookup as part of this process. Then, wait a few more 
minutes. For best results, let the HTTPPost() instruction complete or fail twice for 
redundancy. Once done, click the End Export button. If the HTTPPost()instruction only 
runs once per day at midnight, testing may be difficult without a way to trigger it manually.

HTTP Troubleshooting     18



12.1 Interpreting DNS Sniff file results: 
In the resulting file, the following message indicates that the data logger is attempting a 
DNS lookup on the network::

11:21:00.003 sending DNS request ID 65130 for name "google.com" to server 0

A message like the one below indicates a successful DNS lookup of the target server:

10:27:00.003 dns_lookup: "google.com": found = 142.250.176.14

If you see a message like the following, the DNS lookup has failed:

11:21:00.028 dns_recv: "afakeURL.com": error 3 in flags

NOTE:
Your results will likely include lots of TTL messages, like the following. This is normal.

10:26:59.358 dns_check_entry: "google.com": ttl 60

13. Troubleshooting DNS 
resolution failures
If DNS resolution is failing, do the following:

 1. Verify the HTTP server address is correct.

 2. Verify the data logger is configured with DNS servers.

 3. If applicable, verify the data logger is connected to the same private network as the server 
address to which you are attempting to connect .

 4. If applicable, verify the data logger is connected to the Internet.

 5. Verify if the data logger is connected to multiple network interfaces and the traffic is being 
sent to the correct interface. See Instructions for sniffing HTTPPost(), HTTPPut(), and 
HTTPGet() from the terminal mode in Device Configuration Utility [p. 17].

 6. Obtain alternative DNS servers from your local IT department and switch the data logger to 
those DNS server(s).

HTTP Troubleshooting     19



 7. Work with your local IT department to obtain the IP address associated with the server 
name. Use this IP address  in your CRBasic program as a workaround instead of the server 
name.

14. Quick reference for 
HTTPPost(), HTTPPut(), 
and HTTPGet() errors
2XX Success Messages

This class of code indicates a Success message.

200 OK

Standard response for successful HTTP requests. The actual response will depend on the request 
method (see https://en.wikipedia.org/wiki/HTTP#Request_methods ) used. In a GET request, 
the response will contain an entity corresponding to the requested resource. In a POST request, 
the response will contain an entity describing or containing the result of the action.

201 Created

The request has been fulfilled, resulting in the creation of a new resource.

202 Accepted

The request has been accepted for processing, but the processing has not been completed. The 
request may or may not be eventually acted upon, and might be disallowed when processing 
occurs.

3XX Redirection Messages

This class of return indicates the transaction needs to be, or is being, redirected.

300 Multiple Choices

Indicates multiple options for the resource from which the client may choose (via agent-driven 
content negotiation).

301 Moved Permanently

This and all future requests should be directed to the given URI.

HTTP Troubleshooting     20

https://en.wikipedia.org/wiki/HTTP#Request_methods


302 Found (Previously "Moved temporarily")

Tells the client to look at (browse to) another URL. The HTTP/1.0 specification required the client 
to perform a temporary redirect with the same method (the original describing phrase was 
"Moved Temporarily"), but popular browsers implemented 302 redirects by changing the 
method to GET. Therefore, HTTP/1.1 added status codes 303 and 307 to distinguish between the 
two behaviors. 

NOTE:
A 302 can indicate cookies need to be used in authentication with the server. *This is not 
supported by Campbell Scientific data loggers.

4XX Client Side Error Messages

This class of status code is intended for situations in which the error seems to have been caused 
by the client. Except when responding to a HEAD request, the server should include an entity 
containing an explanation of the error situation, and whether it is a temporary or permanent 
condition.

400 Bad Request

The server cannot or will not process the request due to an apparent client error (e.g., malformed 
request syntax, size too large, invalid request message framing, or deceptive request routing).

401 Unauthorized

Similar to 403 Forbidden, but specifically for use when authentication is required and has failed 
or has not been provided. The response must include a WWW-Authenticate header field 
containing a challenge applicable to the requested resource. This could be with either Basic or 
Digest Authentication. 401 semantically means "unauthenticated", meaning the user does not 
have valid authentication credentials for the target resource.

403 Forbidden

The request contained valid data and was understood by the server, but the server is refusing 
action. This may be due to the user not having the necessary permissions for a resource,  needing 
an account of some sort, or attempting a prohibited action (e.g. creating a duplicate record 
where only one is allowed). This code is also typically used if the request provided authentication 
by answering the WWW-Authenticate header field challenge, but the server did not accept that 
authentication. The request should not be repeated.

404 Not Found

The requested resource could not be found but may be available in the future. Subsequent 
requests by the client are permissible.

HTTP Troubleshooting     21



405 Method Not Allowed

A request method is not supported for the requested resource; for example, a GET request on a 
form that requires data to be presented via POST, or a PUT request on a read-only resource.

406 Not Acceptable

The requested resource is capable of generating only content not acceptable, according to the 
Accept headers sent in the request.

407 Proxy Authentication Required

The client must first authenticate itself with the proxy.

408 Request Timeout

The server timed out waiting for the request. According to HTTP specifications, "The client did 
not produce a request within the time the server was prepared to wait. The client MAY repeat the 
request without modifications at any later time."

409 Conflict

Indicates the request could not be processed because of conflict in the current state of the 
resource, such as an edit conflict between multiple simultaneous updates.

410 Gone

Indicates the resource requested was previously in use, but it is no longer available and will not 
be available again. This should be used when a resource has been intentionally removed, and the 
resource should be purged. Upon receiving a 410 status code, the client should not request the 
resource in the future. Clients, such as search engines, should remove the resource from their 
indices. Most use cases do not require clients and search engines to purge the resource, and a 
"404 Not Found" may be used instead.

411 Length Required

The request did not specify the length of its content, which is required by the requested resource.

412 Precondition Failed

The server does not meet one of the preconditions the requester put on the request header 
fields.

413 Payload Too Large

The request is larger than the server is willing or able to process. Previously called "Request Entity 
Too Large".

HTTP Troubleshooting     22



414 URI Too Long

The URI provided was too long for the server to process. This is often the result of too much data 
being encoded as a query-string of a GET request, in which case it should be converted to a 
POST request. Previously called "Request-URI Too Long".

415 Unsupported Media Type

The request entity has a media type that the server or resource does not support. For example, 
the client uploads an image as image/svg+xml, but the server requires images use a different 
format.

416 Range Not Satisfiable

The client has asked for a portion of the file (byte serving), but the server cannot supply that 
portion. For example, if the client asked for a part of the file that lies beyond the end of the file. 
Previously called "Requested Range Not Satisfiable".

417 Expectation Failed

The server cannot meet the requirements of the Expect request-header field.

421 Misdirected Request

The request was directed at a server that is not able to produce a response (for example, a 
connection reuse).

422 Unprocessable Content

The request was well-formed (i.e., syntactically correct) but could not be processed.

423 Locked (WebDAV; RFC 4918)

The resource  being accessed is locked.

424 Failed Dependency (WebDAV; RFC 4918)

The request failed because it depended on another request and that request failed (e.g., a 
PROPPATCH).

425 Too Early (RFC 8470)

Indicates the server is unwilling to risk processing a request that might be replayed.

426 Upgrade Required

The client should switch to a different protocol, such as TLS/1.3, in the Upgrade header field.

428 Precondition Required (RFC 6585)

The origin server requires the request to be conditional. Intended to prevent the 'lost update' 
problem, where a client GETs a resource's state, modifies it, and PUTs it back to the server, but a 
third party has also modified the state on the server,  and results in a conflict.

HTTP Troubleshooting     23



429 Too Many Requests (RFC 6585)

The user has sent too many requests in a given amount of time. Intended for use with rate-
limiting schemes.

431 Request Header Fields Too Large (RFC 6585)

The server is unwilling to process the request because an individual header field, or all the header 
fields collectively, is too large.

Modified from Wikipedia: https://en.wikipedia.org/wiki/List_of_HTTP_status_codes .

HTTP Troubleshooting     24

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes


Appendix A. Example programs
A.1 HTTPPost() basic authentication (Base64) 
example

CRBasic Example 1: Basic authentication (Base64)

Public PanelTempC, Battvolt
 
Public TestFileSize As Long
Public HTTPHeader As String *100
Public HTTPResponse As String * 180
Public HTTPResult
 
DataTable (Test,True,-1)
DataInterval (0,1,Min,10)
Sample(1,Battvolt,FP2)
Sample(1,PanelTempC,FP2)

EndTable
 
BeginProg
Scan (1,Sec,3,0)
Battery (Battvolt)
PanelTemp (PanelTempC,60)
 
CallTable Test

NextScan
 
SlowSequence
Scan(1,Min,0,0)
 
If TimeIntoInterval(0,60,Min) Then
HTTPHeader="Authorization: Basic QWRtaW4=:UGFzc3dvcmQ="
HTTPResult = HTTPPost("QWRtaW4:QWRtaW4@www.myurl.com/data","Test", _
HTTPResponse,HTTPHeader)

EndIf
 
NextScan

HTTP Troubleshooting     25



A.2 HTTPPost() digest authentication example
CRBasic Example 2: HTTPPost() digest authentication

Const CR = CHR(13)
Const LF = CHR(10)
 
'HTTPServerIP
Const HTTP_URI = "InsertHTTPURIhere"
Const HTTP_USERNAME = "httpusername"
Const HTTP_PASSWORD = "httppassword"
 
Dim _ptrDigest As Long
 
Public i_http As Long
 
Public PTemp
Public Batt_Volt
 
Public Auth_Complete As Boolean
 
Public HTTP_Request_Status As String *50
Public HTTPResponse As String *200
 
Public HTTP_AuthType As String *10 = "Digest"
Public HTTP_Result As Long = 0
Const HTTP_LineSize As Long = 8
Public HTTP_Lines(HTTP_LineSize) As String *208
Const HTTP_AuthSize As Long = 10
Public HTTP_Auth(HTTP_AuthSize) As String *112
Public HTTP_Header As String *512 = ""
Public HTTP_AuthRealm As String *32 = ""
Public HTTP_AuthNonce As String *64 = ""
Public HTTP_AuthQoP As String *5 = ""
 
Public MD5_Success(3) As Long
Public MD5_String(3) As String *256
Public Digest_Auth_HA1 As String *48 = ""
Public Digest_Auth_HA2 As String *48 = ""
Public Digest_Auth_Resp As String *48 = ""
Public Digest_HA1_little(4) As Long
Public Digest_HA2_little(4) As Long
Public Digest_Resp_little(4) As Long
Public Digest_HA1(4) As Long
Public Digest_HA2(4) As Long
Public Digest_Resp(4) As Long
Public Digest_NonceCount As Long = 1
Public Digest_nc As String = ""
Public Digest_cnonce_gen(2) As Long

HTTP Troubleshooting     26



CRBasic Example 2: HTTPPost() digest authentication

Public Digest_cnonce As String = ""
 
'Data Tables
'----------------------------
DataTable (Test,1,-1)
DataInterval (0,2,Min,10)
Minimum (1,Batt_Volt,FP2,False,False)
Sample (1,PTemp,FP2)

EndTable
 
'Subroutines
'----------------------------
'== Generate digest authentication strings
Function _HTTP__DigestStr(_method As String, _uri As String) As Long
Dim Digest_AuthStr As String *500 = ""
'Initiate identifier
Digest_NonceCount += 1
Digest_nc = FormatLong (Digest_NonceCount,"%8.8x")
'Generate a unique client identifier
Digest_cnonce_gen(1) = INT(RND * 2^31)
Digest_cnonce_gen(2) = INT(RND * 2^31)
Sprintf(Digest_cnonce,"%8.8x%8.8x",Digest_cnonce_gen(1),Digest_cnonce_gen(2))
'Generate MD5 checksums for credentials
'MD5(username:realm:password)
MD5_String(1)  = HTTP_USERNAME+CHR(58)+HTTP_AuthRealm+CHR(58)+HTTP_PASSWORD 
MD5_String(2)  = _method+CHR(58)+_uri 'MD5(HTTP_method:digestURI)
MD5_Success(1) = CheckSum (MD5_String(1),29,0,Digest_HA1_little())
MD5_Success(2) = CheckSum (MD5_String(2),29,0,Digest_HA2_little())
MoveBytes(Digest_HA1(),0,Digest_HA1_little(),0,16,4) 'Convert from 
'little-endian to big-endian before printing
MoveBytes(Digest_HA2(),0,Digest_HA2_little(),0,16,4)
Sprintf(Digest_Auth_HA1,"%8.8x%8.8x%8.8x%8.8x",Digest_HA1(1),Digest_HA1(2), _
Digest_HA1(3),Digest_HA1(4))
Sprintf(Digest_Auth_HA2,"%8.8x%8.8x%8.8x%8.8x",Digest_HA2(1),Digest_HA2(2), _
Digest_HA2(3),Digest_HA2(4))
'Generate MD5 checksums for response
'MD5 (HA1:nonce:nc:cnonce:qop:HA2)
MD5_String(3)  = Digest_Auth_HA1+CHR(58)+HTTP_AuthNonce+CHR(58)+Digest_nc+ _
CHR(58)+Digest_cnonce+CHR(58)+HTTP_AuthQoP+CHR(58)+Digest_Auth_HA2 
MD5_Success(3) = CheckSum (MD5_String(3),29,0,Digest_Resp_little())
MoveBytes(Digest_Resp(),0,Digest_Resp_little(),0,16,4)
Sprintf(Digest_Auth_Resp,"%8.8x%8.8x%8.8x%8.8x",Digest_Resp(1), _
Digest_Resp(2),Digest_Resp(3),Digest_Resp(4))
'Build the authorization string
Digest_AuthStr  = "Authorization: Digest"
Digest_AuthStr += " username="+CHR(34)+HTTP_USERNAME+CHR(34)
Digest_AuthStr += ", realm="+CHR(34)+HTTP_AuthRealm+CHR(34)

HTTP Troubleshooting     27



CRBasic Example 2: HTTPPost() digest authentication

Digest_AuthStr += ", nonce="+CHR(34)+HTTP_AuthNonce+CHR(34)
Digest_AuthStr += ", uri="+CHR(34)+_uri+CHR(34)
Digest_AuthStr += ", algorithm=MD5"
Digest_AuthStr += ", response="+CHR(34)+Digest_Auth_Resp+CHR(34)
Digest_AuthStr += ", qop="+CHR(34)+HTTP_AuthQoP+CHR(34)
Digest_AuthStr += ", nc="+Digest_nc
Digest_AuthStr += ", cnonce="+CHR(34)+Digest_cnonce+CHR(34)
Return @Digest_AuthStr

EndFunction
'----------------------------
Sub HTTP__AuthCheck
Dim i_ac As Long, j_ac As Long
'Take the WWW-Authenticate request and grab the useful bits
SplitStr (HTTP_Lines,HTTP_Header, CR + LF ,HTTP_LineSize,5)
For i_ac = 1 To HTTP_LineSize
If InStr (1,HTTP_Lines(i_ac),"Digest",2) Then
HTTP_AuthType = "Digest"
SplitStr (HTTP_Auth,HTTP_Lines(i_ac),CHR(34),HTTP_AuthSize,5)
For j_ac = 1 To HTTP_AuthSize
If InStr (1,HTTP_Auth(j_ac),"realm",2) Then HTTP_AuthRealm = _
HTTP_Auth(j_ac+1)
If InStr (1,HTTP_Auth(j_ac),"nonce",2) Then HTTP_AuthNonce = _
HTTP_Auth(j_ac+1)
If InStr (1,HTTP_Auth(j_ac),"qop",2) Then HTTP_AuthQoP   = _
HTTP_Auth(j_ac+1)

Next j_ac
ElseIf InStr (1,HTTP_Lines(i_ac),"Basic",2)
HTTP_AuthType = "Basic"
SplitStr (HTTP_Auth,HTTP_Lines(i_ac),CHR(34),HTTP_AuthSize,5)
For j_ac = 1 To HTTP_AuthSize
If InStr (1,HTTP_Auth(j_ac),"realm",2) Then HTTP_AuthRealm = _
HTTP_Auth(j_ac+1)

Next j_ac
EndIf

Next i_ac
HTTP_Request_Status = "HTTP AUTH updated"

EndSub
 
'----------------------------
Sub HTTP__GET
HTTP_Request_Status = "HTTP (GET) Occuring"
HTTP_Result = HTTPGet(HTTP_URI,HTTPResponse,HTTP_Header,7500)
HTTP_Request_Status = "Server Response = "
If InStr(1,HTTPResponse,"401",2) Then
HTTP_Request_Status &= "unauthorized"
Auth_Complete = False
Digest_NonceCount = 0

HTTP Troubleshooting     28



CRBasic Example 2: HTTPPost() digest authentication

Call HTTP__AuthCheck
ElseIf InStr(1,HTTPResponse,"200",2) Then
HTTP_Request_Status &= "success"
Auth_Complete = True

ElseIf InStr(1,HTTPResponse,"204",2) Then
HTTP_Request_Status &= "success, no content"
Auth_Complete = True

Else
HTTP_Request_Status &= "fail, unknown response"
Auth_Complete = False

EndIf
 
EndSub
 
'Main Prog
'----------------------------
BeginProg
 
Scan (2,Min,0,0)
PanelTemp (PTemp,50)
Battery (Batt_Volt)
 
CallTable Test

 
NextScan
 
'--------------------------
'SlowSequence Scan for HTTPGET()
SlowSequence
Scan(60,Min,0,0)
 
For i_http = 1 To 5
Select Case i_http
Case 1  'The first interaction with the http server has no extra headers 
'and will fail, but the Digest Authentication challenge information
'will be delivered. This is needed to be able to login.
HTTP_Header  = ""
Call HTTP__GET()

Case Is > 1 'After the first interaction, use the Digest challenge 
'information to form up the appropriate Authentication headers and 
'try again.
HTTP_Header = "Connection: keep-alive" + CR + LF
_ptrDigest = _HTTP__DigestStr("GET",HTTP_URI)
HTTP_Header += !(String!)_ptrDigest + CR + LF
HTTP_Header += "Accept: */*" + CR + LF
Call HTTP__GET()

EndSelect

HTTP Troubleshooting     29



CRBasic Example 2: HTTPPost() digest authentication

 
If Auth_Complete = True Then ExitFor

Next i_http
 
NextScan
EndSequence

EndProg

HTTP Troubleshooting     30



A.3 HTTPPost() with an API using an API Key
HTTPPost() with an API using an API Key using Notifyre messaging service (your API will 
interact different; be sure to check your documentation and frame your request accordingly).

CRBasic Example 3: HTTPPost() with an API key

Public PTemp, Batt_volt
Public textsendtest As Boolean
Public ContentsString As String *500
Public HTTPResponse As String *200
Public NotifyreURL As String *100
Public campaignname As String *100
Public HTTPHeader As String *200
Public ContentsString1 As String *200
Public ContentsString2 As String *240
Public ContentsString3 As String *200
 
Public fromnumber As String *15
Public recipient1 As String *15
Public recipient2 As String *15
Public recipient3 As String *15
Public recipient4 As String *15
 
Public recipientstring1 As String *70
Public recipientstring2 As String *60
Public recipientstring3 As String *60
Public recipientstrings As String *200
 
Public RecipientNum As Long
 
Public MessageBody As String *250
Public APIKey As String *100
 
'Define Data Tables
DataTable (Test,1,-1) 'Set table size to # of records, or -1 to autoallocate.
DataInterval (0,15,Sec,10)
Minimum (1,Batt_volt,FP2,False,False)
Sample (1,PTemp,FP2)

EndTable
 
'Main Program
BeginProg
'This is the correct URL. If you make changes, ensure your code matches the 
'cURL example from Notifyre instead of the .Net, Node.js, or PHP.
'Notifyre API Documentation available here: 
'https://docs.notifyre.com/api/sms-send
NotifyreURL = "https://api.notifyre.com/sms/send"
'Your from number needs +1 appended to the front of it

HTTP Troubleshooting     31



CRBasic Example 3: HTTPPost() with an API key

fromnumber = "+1XXXXXXXXXX"
'Enter the number of recipients here. The remaining fields will be ignored
RecipientNum = 4
'Your recipients numbers need +1 appended to the front of them. Multiple 
'recipients need to be individually enclosed in quotes and separated by a comma.
recipient1 = "+1XXXXXXXXXX"
recipient2 = "+1XXXXXXXXXX"
recipient3 = "+1XXXXXXXXXX"
recipient4 = "+1XXXXXXXXXX"
MessageBody = "Test Text Message! Be sure to check the battery voltage level to 
ensure the station is operational after dark."
APIKey = "API Key from Notifyre goes Here"
campaignname = "Enter your Campaign Name you have entered in Notifyre Here"
 
Scan (1,Sec,0,0)
PanelTemp (PTemp,15000)
Battery (Batt_volt)
 
CallTable Test

NextScan
 
SlowSequence
Scan (5,Sec,3,0)
 
If textsendtest = -1 Then
recipientstring1=recipient1
recipientstrings=recipientstring1
If RecipientNum = 2 Then
recipientstring1=recipient1 &CHR(34)&CHR(13)&CHR(10)& "}" &CHR(44) _
&CHR(13)&CHR(10)&"{" &CHR(13)&CHR(10)&CHR(34)& "type"&CHR(34)&":" _
&CHR(34)& "mobile_number"&CHR(34)&CHR(44)&CHR(13)&CHR(10)& CHR(34)& _
"value"&CHR(34)& ":"&CHR(34)& recipient2
recipientstrings=recipientstring1

EndIf
If RecipientNum = 3 Then
recipientstring1=recipient1 &CHR(34)&CHR(13)&CHR(10)& "}" &CHR(44) _
&CHR(13)&CHR(10)&"{" &CHR(13)&CHR(10)&CHR(34)& "type"&CHR(34)&":" _
&CHR(34)& "mobile_number"&CHR(34)&CHR(44)&CHR(13)&CHR(10)& CHR(34)& _
"value"&CHR(34)&":"&CHR(34)& recipient2
recipientstring2=CHR(34)&CHR(13)&CHR(10)& "}" &CHR(44) &CHR(13)&CHR(10)& _
"{" &CHR(13)&CHR(10)&CHR(34)& "type"&CHR(34)&":"&CHR(34)& _
"mobile_number"&CHR(34)&CHR(44)&CHR(13)&CHR(10)& CHR(34)& "value" _
&CHR(34)&":"&CHR(34)& recipient3
recipientstrings=recipientstring1 & recipientstring2

EndIf
If RecipientNum = 4 Then
recipientstring1=recipient1 &CHR(34)&CHR(13)&CHR(10)& "}" &CHR(44) _

HTTP Troubleshooting     32



CRBasic Example 3: HTTPPost() with an API key

&CHR(13)&CHR(10)&"{" &CHR(13)&CHR(10)&CHR(34)& "type"&CHR(34)&":" _
&CHR(34)& "mobile_number"&CHR(34)&CHR(44)&CHR(13)&CHR(10)& CHR(34)& _
"value"&CHR(34)&":"&CHR(34)& recipient2
recipientstring2=CHR(34)&CHR(13)&CHR(10)& "}" &CHR(44) &CHR(13)&CHR(10)& _
"{" &CHR(13)&CHR(10)&CHR(34)& "type"&CHR(34)&":"&CHR(34)& _
"mobile_number"&CHR(34)&CHR(44)&CHR(13)&CHR(10)& CHR(34)& "value" _
&CHR(34)& ":"&CHR(34)& recipient3
recipientstring3=CHR(34)&CHR(13)&CHR(10)& "}" &CHR(44) &CHR(13)&CHR(10)& _
"{" &CHR(13)&CHR(10)&CHR(34)& "type"&CHR(34)&":"&CHR(34)& _
"mobile_number"&CHR(34)&CHR(44)&CHR(13)&CHR(10)& CHR(34)& "value" _
&CHR(34)&":"&CHR(34)& recipient4
recipientstrings=recipientstring1 & recipientstring2 & recipientstring3

EndIf
 
ContentsString1 = "{" &CHR(13)&CHR(10)&CHR(34)& "Body"&CHR(34)&":" _
&CHR(34)& MessageBody &CHR(34)&CHR(44)&CHR(13)&CHR(10)&CHR(34)& _
"Recipients"&CHR(34)&":["&CHR(13)&CHR(10)&"{" &CHR(13)&CHR(10)&CHR(34)& _
"type"&CHR(34)&":"&CHR(34)& "mobile_number"&CHR(34)&CHR(44)&CHR(13)&CHR(10) _
&CHR(34)& "value"&CHR(34)&":"&CHR(34)
ContentsString2 = recipientstrings &CHR(34)&CHR(13)&CHR(10)& "}" _
&CHR(13)&CHR(10)&"]"&CHR(44)&CHR(13)&CHR(10)&CHR(34)&"From"&CHR(34)&":" _
&CHR(34)& fromnumber &CHR(34)&CHR(44)&CHR(13)&CHR(10)&CHR(34)& _
"AddUnsubscribeLink"&CHR(34)&":"&"false"&CHR(44)&CHR(13)&CHR(10)
ContentsString3 = CHR(34)&"CampaignName"&CHR(34)& ":" &CHR(34)& _
campaignname &CHR(34) &CHR(13)&CHR(10)& "}"
ContentsString = ContentsString1 & ContentsString2 & ContentsString3
 
HTTPHeader = "x-api-token: " & APIKey &CHR(13)&CHR(10)& "Content-Type: 
application/json"
 
HTTPPost (NotifyreURL,ContentsString,HTTPResponse,HTTPHeader)
textsendtest = 0

EndIf
 
NextScan

EndProg

HTTP Troubleshooting     33



A.4 HTTPGet() bearer (token) authentication 
example

CRBasic Example 4: HTTPGet () bearer (token) authentication

Public PTemp, Batt_volt
Public HTTPResult As Long
 
Public httpHead As String * 4048
Public httpHead1 As String * 512
Public httpHead2 As String * 512
Public httpHead3 As String * 512
Public httpHead4 As String * 512
 
Public Response As String * 200
 
'Define Data Tables
DataTable (Test,1,-1) 'Set table size to # of records, or -1 to autoallocate.
DataInterval (0,1,Min,10)
Minimum (1,Batt_volt,FP2,False,False)
Sample (1,PTemp,FP2)

EndTable
 
'Main Program
BeginProg
Scan (1,Min,0,0)
PanelTemp (PTemp,15000)
Battery (Batt_volt)
 
CallTable Test

NextScan
 
SlowSequence
Scan (1,Hr,3,0)
'Note: Token is simulated for a generic application using HTTPPost()
httpHead1 = "Authorization: Bearer " & CHR(13) & CHR(10)& 
"rF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgrF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgF8Uzm3RGWH2bD
byE4nqJPChQnL52YxgrF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgR5cCI6ImF0K2p3dCIsIng1dCI6Ik
5HNmQzaUNoMUYzrF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgdCVG9CLXJWVlRCTrF8Uzm3RGWH2bDbyE
4nqrF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgrChQnL52YxgI6MTcyMDcwNrF8rF8Uzm3RGWH2bDbyE4
nqJPChQnL52YxgL52Yxgy9hcGkubXlrrF8Uzm3RGWH2bDbyE4nqJPChQnL52Yxg52YxgrF8Uzm3RGW
H2bDbyE4nqJPChQnL52YxgrF8Uzm3RGWH2bDbyE4nqJPChQnL52Yxg"
httpHead2 = 
"rF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgrF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgrF8Uzm3RGWH2b
DbyE4nqJPChQnL52YxgrF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgM0EwMUZBQjU1NTRDMTNSpIjoiMU
E1MjkzQjJFNDhGOTc2M0Y2RrF8Uzm3RGWH2bDbyE4nqJPrF8Uzm3RGWH2bDbyE4nqJPChQnL52Yxgg
OjrF8Uzm3RGWH2bDbyE4nqJPChQnL52Yxgzm3RGWH2bDbyE4nqJPChQnL52YxgQURTWVNURU0iLCJX
UklURVNZrF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgU1RFTSJdrF8Uzm3RGWH2bDbyE4nqJPChQnL52Y
xgrcBK3GiekVoY7RW4r0D941pdPAraYhvqO_PYU55wFzso6mU0opz6vG-677"

HTTP Troubleshooting     34



CRBasic Example 4: HTTPGet () bearer (token) authentication

httpHead3 = "rF8Uzm3RGWH2bDbyE4nqJPChQnL52Yxg" & CHR(45) & 
"rF8Uzm3RGWH2bDbyE4nqJPChQnL52Yxg" & CHR(45) & 
"rF8Uzm3RGWH2bDbyE4nqJPChQnL52Yxg" & CHR(45) & 
"rF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgrF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgrF8Uzm3RGWH2b
DbyE4nqJPChQnL52YxgrF8Uzm3RGWH2bDbyE4nqJPChQnL52Yxg" & CHR(45) & 
"BMy7A1FHgyo3kIzHTKrF8Uzm3RGWH2bDbyE4nqJPChQnL52Yxg5u7Bv803AoCI29c1Y9kNNd5unTf
u" & CHR(45) & "rF8Uzm3RGWH2bDbyE4nqJPChQnL52Yxg" & CHR(45) & 
"rF8Uzm3RGWH2bDbyE4nqJrF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgPChQnL52Yxg"
httpHead4 = "rF8Uzm3RGWH2bDbyE4nqJPChQnL52YxgrF8Uzm3RGWH2bDbyE4nqJPChQnL52Yxg" 
& CHR(13) & CHR(10)
 
httpHead = httpHead1 & httpHead2 & httpHead3 & httpHead4
 
HTTPResult = HTTPGet
("https://api.exampleURI.com/v2/systems/me?page=1&itemsPerPage=10"
,Response,httpHead,7500)

 
NextScan

EndProg

HTTP Troubleshooting     35



A.5 HTTPPut() bearer (token) authentication 
example for Microsoft Azure Blob Storage

CRBasic Example 5: HTTPPut() bearer for Microsoft Azure

Public PanelTempC, Battvolt
Public http_post_tx
Public TestFileSize As Long
Public HTTP_RESPONSE As String * 150
 
Public OutStat
Public LastFileName As String *30
 
DataTable (Test,True,-1)
DataInterval (0,1,Min,10)
TableFile ("USR:TableName",8,-1,0,24,Hr,OutStat,LastFileName)
Sample(1,Battvolt,FP2)
Sample(1,PanelTempC,FP2)

EndTable
 
BeginProg
Scan (1,Sec,3,0)
Battery (Battvolt)
PanelTemp (PanelTempC,60)
CallTable Test

NextScan
 
SlowSequence
Scan(1,Min,0,0)
 
If TimeIntoInterval(0,60,Min) Then
TestFileSize = FileSize(LastFileName)
'The example token details with Azure are not valid. You'll need to 
'substitute real ones.
http_post_tx = HTTPPut
("https://azureserveraddress.blob.core.windows.net/subdirectory/" + 
LastFileName + "?sv=2024-11-09&si=nccospublicstor-subdirectory-
user.user&sr=c&sig=dFspqhBxwlWYthpe3Ko7Y2w464gaY8d4Qv%2CojBJlfbW%3D"
,LastFileName,HTTP_RESPONSE,"x-ms-blob-type: BlockBlob" & CHR(13) & CHR(10) & 
"Content-Type: text/plain" & CHR(13) & CHR(10) & "Content-Length: " + 
TestFileSize & CHR(13) & CHR(10),0,0,Min,8)
TCPClose (http_post_tx)

EndIf
 
NextScan

HTTP Troubleshooting     36



Australia
Location:
Phone:
Email:
Website:

Garbutt, QLD Australia
61.7.4401.7700
info@campbellsci.com.au
www.campbellsci.com.au

Brazil
Location:
Phone:
Email:
Website:

São Paulo, SP Brazil
11.3732.3399
vendas@campbellsci.com.br
www.campbellsci.com.br

Canada
Location:
Phone:
Email:
Website:

Edmonton, AB Canada
780.454.2505
dataloggers@campbellsci.ca
www.campbellsci.ca

China
Location:
Phone:
Email:
Website:

Beijing, P. R. China
86.10.6561.0080
info@campbellsci.com.cn
www.campbellsci.com.cn

Costa Rica
Location:
Phone:
Email:
Website:

San Pedro, Costa Rica
506.2280.1564
info@campbellsci.cc
www.campbellsci.cc

France
Location:
Phone:
Email:
Website:

Montrouge, France
0033.0.1.56.45.15.20
info@campbellsci.fr
www.campbellsci.fr

Germany
Location:
Phone:
Email:
Website:

Bremen, Germany
49.0.421.460974.0
info@campbellsci.de
www.campbellsci.de

India
Location:
Phone:
Email:
Website:

New Delhi, DL India
91.11.46500481.482
info@campbellsci.in
www.campbellsci.in

Japan
Location:
Phone:
Email:
Website:

Kawagishi, Toda City, Japan
048.400.5001
jp-info@campbellsci.com
www.campbellsci.co.jp

South Africa
Location:
Phone:
Email:
Website:

Stellenbosch, South Africa
27.21.8809960
sales@campbellsci.co.za
www.campbellsci.co.za

Spain
Location:
Phone:
Email:
Website:

Barcelona, Spain
34.93.2323938
info@campbellsci.es
www.campbellsci.es

Thailand
Location:
Phone:
Email:
Website:

Bangkok, Thailand
66.2.719.3399
info@campbellsci.asia
www.campbellsci.asia

UK
Location:
Phone:
Email:
Website:

Shepshed, Loughborough, UK
44.0.1509.601141
sales@campbellsci.co.uk
www.campbellsci.co.uk

USA
Location:
Phone:
Email:
Website:

Logan, UT USA
435.227.9120
info@campbellsci.com
www.campbellsci.com

Campbell Scientific Regional Offices

mailto:info@campbellsci.com.au
http://www.campbellsci.com.au/
mailto:vendas@campbellsci.com.br
http://www.campbellsci.com.br/
mailto:dataloggers@campbellsci.ca
http://www.campbellsci.ca/
mailto:info@campbellsci.com.cn
http://www.campbellsci.com.cn/
mailto:info@campbellsci.cc
http://www.campbellsci.cc/
mailto:info@campbellsci.fr
http://www.campbellsci.fr/
mailto:info@campbellsci.de
http://www.campbellsci.de/
mailto:info@campbellsci.in
http://www.campbellsci.in/
mailto:jp-info@campbellsci.com
https://campbellsci.co.jp/
mailto:sales@campbellsci.co.za
http://www.campbellsci.co.za/
mailto:info@campbellsci.es
http://www.campbellsci.es/
mailto:info@campbellsci.asia
http://www.campbellsci.asia/
mailto:sales@campbellsci.co.uk
http://www.campbellsci.co.uk/
mailto:info@campbellsci.com
http://www.campbellsci.com/

	1. Introduction
	2. Verify Internet/network connectivity
	3. Set DNS information if necessary
	4. Validating your CRBasic code for HTTPGet()
	5. Validating your CRBasic code for HTTPPost() and HTTPPut()
	6. Verify result and response codes
	7. Starting your header for different authentication types
	7.1 Plain text authentication
	7.2 Basic authentication
	7.3 Digest authentication
	7.4 Bearer (token) authentication

	8. Framing your header in the HTTPHeader parameter
	9. Managing string length in a header
	10. Testing a request on a generic HTTP server
	11. Instructions for sniffing HTTPPost(), HTTPPut(), and HTTPGet() from the terminal mode in Device Configuration Utility
	12. Instructions for sniffing DNS from the terminal mode in Device Configuration Utility
	12.1 Interpreting DNS Sniff file results:

	13. Troubleshooting DNS resolution failures
	14. Quick reference for HTTPPost(), HTTPPut(), and HTTPGet() errors
	Appendix A. Example programs
	A.1 HTTPPost() basic authentication (Base64) example
	A.2 HTTPPost() digest authentication example
	A.3 HTTPPost() with an API using an API Key
	A.4 HTTPGet() bearer (token) authentication example
	A.5 HTTPPut() bearer (token) authentication example for Microsoft Azure Blob Storage


