
CSI Datalogger Web Service API
Jon Trauntvein

Version 1.00.11

Copyright © 2010, 2020

22 April 2021

Table of Contents
1. Introduction .. 3

1.1. Commands Common Features .. 3
1.1.1. uri Parameter .. 3
1.1.2. format Parameter ... 4

1.2. Authentication ... 4
1.2.1. .csipasswd File ... 4
1.2.2. Using Bearer Authorisation and Access Tokens .. 5

2. Datalogger Web Services API Commands ... 7
2.1. Data Collection Related Commands .. 8

2.1.1. DataQuery Command .. 8
2.1.2. DataQuery Response ... 11
2.1.3. DataQuery Command Examples ... 11

2.2. Browse Server Symbols ... 15
2.2.1. BrowseSymbols Command .. 15
2.2.2. BrowseSymbols Response ... 15

2.3. Control (Set Variable) .. 19
2.3.1. SetValueEx Command .. 19
2.3.2. SetValueEx Response ... 19
2.3.3. CheckAuthorization Command ... 21
2.3.4. CheckAuthorization Response .. 21

2.4. Station/Server Time Related Commands ... 24
2.4.1. ClockCheck Command .. 24
2.4.2. ClockCheck Response ... 24
2.4.3. ClockSet Command .. 26
2.4.4. ClockSet Response .. 26

2.5. Files Related Commands .. 29
2.5.1. NewestFile Command .. 29
2.5.2. NewestFile Response ... 29
2.5.3. ListFiles Command .. 29
2.5.4. ListFiles Response ... 30
2.5.5. Sending a File using PUT .. 35
2.5.6. SendFile Command .. 35
2.5.7. SendFile Response .. 35
2.5.8. FileControl Command .. 37
2.5.9. FileControl Response ... 38

2.6. Alarms Related Commands .. 40
2.6.1. CheckAlarm Command .. 40

Page 1

CSI Datalogger Web Service API

2.6.2. CheckAlarm Response ... 40
2.6.3. ListAlarms Command .. 44
2.6.4. ListAlarms Response ... 44

2.7. Commands Associated with Access Tokens .. 49
2.7.1. GetAccessToken Command ... 49
2.7.2. RefreshAccessToken Command ... 49
2.7.3. GetAccessToken and RefreshAccessToken Response 50

3. Using Web Sockets .. 51
3.1. Introduction to Web Sockets .. 51
3.2. Web Sockets Implementation Details .. 51
3.3. Messages Passed Over Web Sockets ... 53

3.3.1. AddRequests Command .. 54
3.3.2. RequestStarted Notification ... 58
3.3.3. RequestRecords Notification ... 59
3.3.4. RequestFailed Notification ... 60
3.3.5. RemoveRequests Command ... 61
3.3.6. AlarmChanged Notification ... 61
3.3.7. Logon Command ... 63
3.3.8. LogonAck Message ... 63
3.3.9. StartTerminal Command Message .. 65
3.3.10. TerminalData Message .. 65

A. Log of Changes to This Document ... 67

Page 2

CSI Datalogger Web Service API

1. Introduction
The Datalogger Web Services API is a collection of HTTP commands that can be used to query
a datalogger for its data and meta-data and to control that datalogger. This API is implemented
by the CSI Web Server product as well as the CR1000, CR800, CR3000, and CR6 dataloggers.
This document is intended to document the various HTTP commands and formats that can be
used in this API.

1.1. Commands Common Features
All of the transactions in the Datalogger Web Service API follow certain patterns. For the CSI
Web Server product, the published project that responds to a request will depend upon the path
specified in the request URL. For instance, if I have a project published to the oft sub-directory
in the web server's home directory and a received request specified that path, the servlet that
handles that request will be associated with that published path.

For dataloggers, the path specified in the request will not matter. The datalogger will respond
the same way regardless of the path that was specified.

Every request that can be sent as a part of the Datalogger Web Services API must contain a URL
parameter named command that will specify the name of the operation to be performed. Every
request can optionally specify a format URL parameter that will specify the format in which
the client expects a response.

1.1.1. uri Parameter

Many requests can specify a uri parameter that can specify the path of a data source, station,
table, or variable that is effected by the request. How this parameter value is interpreted will
depend upon the web server and the data source type. This parameter must be formatted according
to the following syntax:

uri := source-name [":" data-address].
data-address := ln-address |
 db-address |
 file-address |
 http-address |
 logger-address.
ln-address := station ["." table ["." field-name]].
db-address := table ["." field-name].
file-address := table ["." field-name].
http-address := table ["." field-name].
logger-address := table ["." field-name].
field-name := field ["(" subscript
 { "," subscript } ")"].

Page 3

CSI Datalogger Web Service API

If any of the components of a data source URI contains a period character ('.'), that character
must be escaped using a backslash ('\') in the URI. Note that this same syntax is used in RTMC
expressions to identify data fields, stations, and tables.

1.1.2. format Parameter

Most commands will recognise a format parameter that optionally specifies the format of the
response message. The following values are recognised by most commands:

html Specifies the response should be formatted as HTML. If the format parameter is not
specified, the format of the response will automatically be selected as HTML.

xml Specifies that the response should be formatted as an XML document. The structure of
this document will depend upon the command parameter.

json Specifies that the response should be formatted as a JSON document. The structure of
this document will depend upon the command parameter. This option is generally the
most useful when the response needs to be parsed by a machine.

1.2. Authentication
Because most HTTP transactions take place over a publicly available TCP interface and can
expose control services particularly, it is necessary to secure access to the web server. The
datalogger web services API uses Basic Access Authentication (see http://en.wikipedia.org/wiki/
Basic_access_authentication) in order to control access. In addition to this, it is possible to use
the API using HTTPS. In addition to this, it may be possible to use Digest Access Authentication
(see http://en.wikipedia.org/Digest_access_authentication) with minimal changes to the services.

1.2.1. .csipasswd File

Authentication access information will be encoded in a .csipasswd that will be stored on
the web server. The dataloggers will maintain this file on their CPU: storage device. The CSI
Web Server application will maintain a root password file but will also allow individual projects
published to the web server (in sub-directories) to be used. The .csipasswd file is very similar
to the .htaccess files used by Apache web servers. The .csipasswd file is a text file that
must conform to the following format:

csipasswd := realm "\r\n" { account "\r\n" }.
account := account-name ":" encrypted-passwd
 [":" access-level].
access-level := ("0" | "1" | "2" | "3").

realm Specifies the string that the browser will use to identify the site when
it presents the logon dialogue.

account-name Specifies the user's account name.

Page 4

http://en.wikipedia.org/wiki/Basic_access_authentication
http://en.wikipedia.org/wiki/Basic_access_authentication
http://en.wikipedia.org/Digest_access_authentication

CSI Datalogger Web Service API

encrypted-passwd Specifies the password associated with the account encrypted using
the CSI signature based encryption.

access-level An encoded integer that identifies that user's access level. With the
exception of value zero, these access levels should correspond with the
access levels assigned by datalogger security. The following values
are defined:

0 All access denied

1 All access allowed

2 Set variables allowed

3 Read-only access

.csipasswd files can be created on the datalogger using the Edit .csipasswd File
button that can be found in the Device Configuration Utility's Deployment/Network
Services panel for dataloggers. It can be edited for the CSI web server using the CSI Web
Admin utility.

If the client sends a request that does not contain authentication parameters in its header, the
server will default to whatever security level is assigned to the anonymous account. This
account can be disabled by assigning an access level of zero or removing that account.

If a client sends an HTTP request that does not contain authentication parameters in its header or
the authentication parameters are invalid (or reference a disabled account), the web server will
respond with an HTTP response code of 401 Authorization Required.

1.2.2. Using Bearer Authorisation and Access Tokens

Starting with version 1.07 of the CSI Web Server and also with newer dataloggers, a web client
can also choose to use Bearer type authentication in the Authorization HTTP header
followed by a an access token that can be obtained using the services described in Section 2.7,
“Commands Associated with Access Tokens”. An access token is an opaque string that is
generated by the web server using client-provided user credentials. This access token can be sent
by the client in the HTTP header of a request similar to the following:

Authorization: Bearer eyJhbGciOiAiSFMyNTYiLCJ0eXAiOiAiSldUIn0.
 eyJpYXQiOiAxNjAyNTY1OTkwLCJleHAiOiAxNjAy
 NTY5NTkwLCJ1c2VyIjogImpvbiIsImFjY2VzcyI6
 IDF9.8WdGw3tm1FSltLiXtf5gHMRjOHp39Q_DLHI
 8Dsyr1ZY

Note that the line breaks were introduced for readability on the page. The access token sent in
the actual request would be formatted all on the same line in the header.

The format of this bearer token is JWT (JSON Web Token) and is described in RFC 7519 [https://
tools.ietf.org/html/rfc7519]. It consists of a header, body, and signature that are all Base64 URL

Page 5

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

CSI Datalogger Web Service API

encoded and separated by periods. To the web client, these tokens can be treated as opaque strings
that are provided as authorisation for one or more HTTP requests. To the web server, the token
header and body contains information including user identification that has been signed by the
web server in such a way that the token cannot be changed without invalidating the digest at the
end of the token which the server will use to validate the token.

A client first obtains an access token by invoking the server's GetAccessToken command
(see Section 2.7.1, “GetAccessToken Command”). If this request succeeds, the server will
return a JSON structure that provides an access_token and refresh_token properties
aas well as properties that report the expiration interval for both of these properties. The client can
persist these tokens by storing a copy of this structure in local storage. The first request to obtain
these tokens requires that the client provide user credentials (user name and password) in order to
generate the first set of tokens. Once this transaction succeeds, the client can refresh access tokens
by periodically posting the refresh_token in the RefreshAccessToken command (see
Section 2.7.2, “RefreshAccessToken Command”). The response to this request will also
be a JSON structure that will contain newly issued access and refresh tokens.

Page 6

CSI Datalogger Web Service API

2. Datalogger Web Services API
Commands

The commands and responses in the Datalogger Web Services API can be divided up into the
following categories:

• Section 2.1, “Data Collection Related Commands”

• Section 2.2, “Browse Server Symbols”

• Section 2.3, “Control (Set Variable)”

• Section 2.4, “Station/Server Time Related Commands”

• Section 2.5, “Files Related Commands”

• Section 2.6, “Alarms Related Commands”

Page 7

CSI Datalogger Web Service API

2.1. Data Collection Related Commands
A client can collect data from the web server by specifying DataQuery as the value for the
command parameter in the URI. The client must provide other parameters that will specify the
data to be returned, starting positions, order options, and format.

2.1.1. DataQuery Command

In order to successfully send a DataQuery command, the client must authenticate with an
account that has a minimum access level of read-only.

The DataQuery command supports the following URI parameters:

command Must be set to a value of DataQuery in order to specify that the request is
a data query command.

uri Specifies the address of the data to be returned. This parameter must reference
either a table or a data field value. It must conform to the syntax described in
Section 1.1.1, “uri Parameter”.

mode Specifies the nature of the data query. The following values are supported:

most-recent Specifies that up to the number specified by p1 of most
recent records logged in the table should be returned.

since-time Specifies all of the records logged since the time stamp
specified in p1 should be returned.

since-record Specifies that all records with a record number greater
than or equal to the value specified in p1 should be
returned. If that record number is not present in the table,
data should returned starting with the oldest record in
the table. Starting with CSI Web Server version 1.0.50,
the p2 parameter can optionally specify a start time
stamp as well. This feature will provide the server more
information to choose the starting point in the case of
data file and database data sources where the record
number can be repeated.

date-range Specifies that all data contained in the half-open time
interval specified by the p1 and p2 parameters which are
interpreted as time stamps. Records will be returned that
have a time stamp greater than or equal to the time stamp
specified by p1 and less than the time stamp specified
by p2.

backfill Specifies that all records starting with the first record that
has a time stamp greater than or equal to the time stamp
of the newest record less the time interval specified by
p1 in seconds.

Page 8

CSI Datalogger Web Service API

p1 Specifies qualifying information based upon the value of the mode parameter.
The interpretation of this parameter varies as follows:

most-recent Specifies the maximum number of records to return.

since-record Specifies the record number at which the server should
start sending records.

since-time,
date-range

Specifies the starting record time stamp. The first record
that has a time stamp that is greater than or equal to this
value will be selected as the starting point.

backfill Specifies a time interval in units of seconds that should
be subtracted from the time stamp of the newest table
record in order to find the starting record.

p2 Specifies further qualifying information for some values of the mode
parameter. The interpretation of this parameter varies as follows:

date-range Specifies the ending time stamp of the half-open time
interval. The records returned will have a time stamp less
than this value.

since-record Optionally specifies a starting time stamp to be used with
data sources, such as data files and databases, that have
the possibility of having duplicate record numbers.

All others This parameter will be ignored for any other value of
mode.

format Optionally specifies the expected format of the server response. If this
parameter is not specified, a value of html will be assumed by the server.
The following values are supported:

html Specifies that the data will be formatted as an HTML table and that
the Content Type field of the HTTP response must be set to
text/html.

json Specifies that the data will be returned in a JSON structure
that conforms to the CsiJSON format (see chapter 9 of
http://engsoft.campbellsci.com/protocols/csi_file_formats.pdf). The
server must specify the Content Type field in the HTTP response
as application/json.

When the json format is specified, there are certain features which
become available:

• The server may choose to break up the response into multiple
queries. It will indicate whether there are more records available
using the more member in the CsiJSON response structure.

Page 9

http://engsoft.campbellsci.com/protocols/csi_file_formats.pdf

CSI Datalogger Web Service API

• The server will send a table definition signature in the
head.signature of the CsiJSON response. If the client sends
this signature in headsig parameter of the next request and
this signature matches the server's, the server will not include
the head.environment or head.fields members of the
response.

toa5 Specifies that the data should be returned as comma-separated values
with an extended header. The return format must conform to that
specified in chapter 7 of http://engosoft.campbellsci.com/protocols/
csi_file_formats.pdf. The server must specify the Content Type
field of the HTTP response as text/csv.

tob1 Specifies that the data should be returned as binary with a comma-
separated header. The format of the response content must conform
to that specified in chapter 12 of http://engsoft.campbellsci.com/
protocols/csi_file_formats.pdf. The Content Type field of the
HTTP response must be set to binary/octet-stream.

xml Specifies that the data should be formatted as an XML structure as
described in chapter 8 of http://engsoft.campbellsci.com/protocols/
csi_file_formats.pdf. The Content Type field of the HTTP
response must be set to a value of text/xml.

nextpoll Optionally specifies the time interval, in seconds, in the future at which the
web client expects to repeat this query. This parameter will be ignored by the
datalogger but it will be used by the CSI web server to cache the associated
data source request if it can be cached. If this parameter is not specified or it
is specified with a value of 0xFFFFFFFF (the default), the data source will
not be cached.

transaction Optionally specifies the transaction number that the server will use to set
the transaction identifier in the CSIJson format when the format
parameter is set to json. This is useful inside of a web client in keeping track
of responses to various pending requests. This parameter will be ignored for
any other value of the format parameter.

headsig Optionally specifies a data header signature returned from a previous request
formatted as json. If the value of this parameter matches the web server's
value, the web server will not include the environment or fields fields
in the response data structure. This parameter will be ignored for any other
value of the format parameter. The server will return the expected value in
the head.signature member of any CSIJson response.

refresh Optionally specifies the minimum interval, in seconds, at which the table
specified by uri should be polled for LoggerNet data sources. This parameter
will be ignored by the datalogger and will also be ignored by the CSI Web
Server for tables that are not from LoggerNet sources. If this parameter is
specified and the table identified is associated with a LoggerNet source, the

Page 10

http://engosoft.campbellsci.com/protocols/csi_file_formats.pdf
http://engosoft.campbellsci.com/protocols/csi_file_formats.pdf
http://engsoft.campbellsci.com/protocols/csi_file_formats.pdf
http://engsoft.campbellsci.com/protocols/csi_file_formats.pdf
http://engsoft.campbellsci.com/protocols/csi_file_formats.pdf
http://engsoft.campbellsci.com/protocols/csi_file_formats.pdf

CSI Datalogger Web Service API

web server will perform selective manual polls for the table at the specified
interval.

order Specifies the order in which the records should be reported in the response
from the CSI Web Server. This parameter is ignored by the datalogger. The
following values are defined:

real-time Specifies that the server will skip over
historic records in favour of most recently
logged records.

collected Specifies that the records should be returned
in the order in which they were collected
by LoggerNet. This order can differ from
logged order when one-way or data advise
data collection is used in conjunction with
hole collection.

logged-with-holes Specifies that the data should be reported
in the order in which it was logged by the
datalogger. If there are holes that have not
yet been collected by LoggerNet, newer data
will not be returned until those holes have
been collected or they are deemed no longer
collectible by LoggerNet.

logged-without-holes Specifies that the data should be reported
in the order in which it was logged by the
datalogger. If there are uncollected holes,
those records will be skipped in favour of
more recent records.

2.1.2. DataQuery Response

The format of the response as well the Content Type field of the HTTP response will depend
upon the value of the format parameter in the HTTP request. Since one of the reasons for using
the DataQuery command is to be able to store the data into a file, the server must specify
the Content-Disposition field in the response header. An example of this would be as
follows:

Content-Disposition:filename=OneDay.json

2.1.3. DataQuery Command Examples

We will present examples of commands and responses in various formats for the same data. Note
that the URL examples have been broken up to fit on the printed page. If used, the URL must
appear all on one line.

Page 11

CSI Datalogger Web Service API

2.1.3.1. HTML Format Example

The following URL will produce an HTML format output:

http://jtrauntvein-mpw/engsoft?command=DataQuery&
uri=localhost:cr1000.one_day.temp_degf_avg&
mode=most-recent&
p1=1&
format=html

This command will produce the following output from the CSI Web Server:

<!DOCTYPE HTML>
<html> <head>
<title>Table Display</title>
</head>
<body>
<h1>Table Name: one_day</h1>
<table border='1'>
<tr>
<th nowrap='1'>Time Stamp</th>
<th nowrap='1'>Record</th>
<th nowrap='1'>temp_degf_Avg</th>
</tr>
<tr>
<td nowrap='1'>2014-11-25 00:00:00</td>
<td>69</td>
<td nowrap='1'>72.40345</td>
</tr>
</table>
</body>
</html>

2.1.3.2. JSON Format Example

The following URL can produce an output in JSON:

http://jtrauntvein-mpw/engsoft?command=DataQuery&
uri=localhost:cr1000.one_day.temp_degf_avg&

Page 12

CSI Datalogger Web Service API

mode=most-recent&
p1=1&
format=json

This will produce the following output:

{
 "head": {
 "transaction": 0,
 "signature": 64455,
 "environment": {
 "station_name": "cr1000",
 "table_name": "one_day"
 },
 "fields": [
 {
 "name": "temp_degf_Avg",
 "type": "xsd:float",
 "units": "DegF",
 "process": "Avg",
 "settable": false
 }
]
 },
 "data": [
 {
 "no": 69,
 "time": "2014-11-25T00:00:00",
 "vals": [72.40345]
 }
],
 "more": false
}

We can condense the output from the server by specifying the header signature in the URL:

http://jtrauntvein-mpw/engsoft?command=DataQuery&
uri=localhost:cr1000.one_day.temp_degf_avg&
mode=most-recent&
p1=1&
format=json&

Page 13

CSI Datalogger Web Service API

headsig=64455

This URL will generate the following response:

{
 "head": {
 "transaction": 0,
 "signature": 64455
 },
 "data": [
 {
 "no": 69,
 "time": "2014-11-25T00:00:00",
 "vals": [72.40345]
 }
],
 "more": false
}

Page 14

CSI Datalogger Web Service API

2.2. Browse Server Symbols
Symbols represent meta-data or information about the data that is available on the server. The
BrowseSymbols command can be used to get lists of symbols: data sources, stations, tables,
and fields available on the server.

2.2.1. BrowseSymbols Command

The BrowseSymbols command can be used to obtain a list of child symbols to the symbol that
is identified in the optional uri parameter. This command requires a minimum access level of
read-only to succeed. If a client authorises with an account that does not have at least read-
only permission, the server must respond with a 401 Authorization Required in its
HTTP response. The BrowseSymbols command supports the following parameters:

command BrowseSymbols must be specified in order to browse symbols.

uri Optionally specifies the identifier for the parent symbol for which the response
should list children. This value must conform to the syntax specified in
Section 1.1.1, “uri Parameter”.

format Optionally specifies the format of the response. If not specified, the format will
default to html. Supported values include html, xml, and json.

2.2.2. BrowseSymbols Response

The format of the response will depend upon the value of the format parameter of the
BrowseSymbols command. Regardless of the format, however, the following information will
be returned for each symbol:

uri Specifies the unique identifier for the child symbol. This value must conform
to the syntax described in Section 1.1.1, “uri Parameter”. If the client
specifies a uri value for a symbol that does not exist, the server must return
an empty list of child symbols.

name Specifies the name of the symbol. This could be a data source name, a station
name, a table name, or a field name.

type Specifies a numeric code for the type of symbol being represented. The
following values are defined:

1 LoggerNet Data Source

2 Data File Data Source

3 Database Data Source

9 HTTP Data Source

4 LoggerNet Station

5 LoggerNet Statistics Broker

Page 15

CSI Datalogger Web Service API

6 Table

7 Array

8 Scalar

is_enabled Specifies a boolean value that is true if the symbol is enabled for scheduled
collection. This applies mostly to LoggerNet data sources.

is_read_only Specifies a boolean value that is set to true if the symbol is considered to
be read-only. A value of false will indicate that the symbol value can be
changed using the SetValueEx command.

can_expand Specifies a boolean value if this symbol represents something that can be
expanded with another BrowseSymbols request.

2.2.2.1. HTML Response Format

If the format parameter of the BrowseSymbols command is set to html or it is not specified,
the symbols will be output in an HTML table structure with one row per symbol. The following
is an example of an output:

<!DOCTYPE HTML>
<html> <head>
<title>BrowseSymbols Response</title>
</head>

<body>
<h1>BrowseSymbols Response</h1>

<table border="1">
 <tr>
 <th>name</th>
 <th>uri</th>
 <th>type</th>
 <th>is_enabled</th>
 <th>is_read_only</th>
 <th>can_expand</th>
 </tr>
 <tr>
 <td>CR1000</td>
 <td>localhost:CR1000</td>
 <td>4</td>
 <td>true</td>
 <td>true</td>
 <td>true</td>
 </tr>

Page 16

CSI Datalogger Web Service API

 <tr>
 <td>__Statistics__</td>
 <td>localhost:__Statistics__</td>
 <td>5</td>
 <td>true</td>
 <td>true</td>
 <td>true</td>
 </tr>
</table>

</body></html>

2.2.2.2. XML Response Format

If the format parameter to the BrowseSymbols command is set to a value of xml, the output
will be formatted as an XML data structure with a BrowseSymbolsResponse root element
and each child of that root representing a child symbol. The symbol attributes will be represented
with XML attributes. The following is an example XML output:

<?xml version="1.0" encoding="UTF-8"?>
<BrowseSymbolsResponse>
 <symbol can_expand="true"
 is_enabled="true"
 is_read_only="true"
 name="CR1000"
 type="4"
 uri="localhost:CR1000" />
 <symbol can_expand="true"
 is_enabled="true"
 is_read_only="true"
 name="__Statistics__"
 type="5"
 uri="localhost:__Statistics__" />
</BrowseSymbolsResponse>

2.2.2.3. JSON Response Format

If the format parameter of the BrowseSymbols command is set to a value of json, the
output will be structured as an object that contains an array of child objects named symbols.
Each child object in that array will represent a child symbol. The following is an example JSON
output:

Page 17

CSI Datalogger Web Service API

{
 "symbols": [
 {
 "name": "CR1000",
 "uri": "localhost:CR1000",
 "type": 4,
 "is_enabled": true,
 "is_read_only": true,
 "can_expand": true
 },
 {
 "name": "__Statistics__",
 "uri": "localhost:__Statistics__",
 "type": 5,
 "is_enabled": true,
 "is_read_only": true,
 "can_expand": true
 }
]
}

Page 18

CSI Datalogger Web Service API

2.3. Control (Set Variable)
The SetValueEx command can be used to set the value of a variable on the server.
Dataloggers also support an older SetValue command but that version does not recognise
HTTP authorisation or other URL parameters. In order to use the SetValueEx command,
the client must authenticate using an account with at least read/write privileges assigned.
If the authorisation account does not have this privilege, the server must respond with 401
Authorization Required.

2.3.1. SetValueEx Command

The SetValueEx command is used to set the value of a variable identified by uri parameter
and to return the result. Since this command has the effect of changing the data being reported,
it should be performed using the POST HTTP method. This command recognises the following
parameters:

command The command parameter must be set to a value of SetValueEx.

uri Identifies the value that should be set. This URI must identify a changeable variable
in order for this transaction to succeed. This value must conform to the syntax
described in Section 1.1.1, “uri Parameter”.

value Specifies a string that represents the value to be set.

format Specifies the expected format of the response. This can be one of html, xml, or
json. If this parameter is not specified, it will default to html.

2.3.2. SetValueEx Response

Regardless of the value of the format parameter, there are certain fields that will be returned.
These fields are as follows:

outcome Specifies a numeric code that identifies the outcome of the transaction. The
following values are defined:

0. An unrecognised failure occurred.

1. The variable was set (success)

2. The data source connection failed.

3. LoggerNet logon failed (LoggerNet sources only)

4. Blocked by LoggerNet security (LoggerNet sources only)

5. The column is read-only

6. Invalid table name specified

7. Invalid column name specified

8. Invalid column data type

Page 19

CSI Datalogger Web Service API

9. Invalid column subscript

10.Datalogger communication failed

11.Datalogger communication is disabled (LoggerNet sources only)

12.Blocked by datalogger security

13.Invalid LoggerNet table definitions

14.Invalid LoggerNet device name

15.Invalid web client authorisation

description Specifies a text description of the outcome code.

2.3.2.1. HTML Response Format

The HTML response will be formatted as a table where each field is represented on a separate
row. An example of this format follows:

<!DOCTYPE HTML>
<html> <head>
 <title>SetValueExResponse</title>
</head>

<body>
<h1>SetValueExResponse</h1>

<table>
 <tr>
 <td>outcome</td>
 <td>1</td>
 </tr>
 <tr>
 <td>description</td>
 <td>The variable was set</td>
 </tr>
</table>

</body> </html>

2.3.2.2. XML Response Format

The XML response format will consist of a single root element with the response parameters
formatted as XML attributes. The following specifies an example of this format:

Page 20

CSI Datalogger Web Service API

<?xml version="1.0" encoding="UTF-8"?>
<SetValueExResponse description="The variable was set"
 outcome="1" />

2.3.2.3. JSON Response Format

The JSON response format will consist of an object with a outcome and description
member. The following is an example of this format:

{
 "outcome": 1,
 "description": "The variable was set"
}

2.3.3. CheckAuthorization Command

The CheckAuthorization command can be used by the client to get the access level
that the server has assigned for the provided authorisation parameters. Unlike other web API
commands, this command requires that the authorisation be specified in the HTTP header. If
there is no authorisation, the server must respond with 401 Authorization Required.
The command recognises the following parameters:

command The command parameter must be set to a value of CheckAuthorization.

uri Optionally identifies the station for which the authorisation value should be
checked. This value must conform to the syntax described in Section 1.1.1, “uri
Parameter”. If this parameter is omitted, the server will evaluate the client's local
access.

format Specifies the expected format of the response. This can be one of html, xml,
json, or html. If this parameter is not specified, the default will be html.

anonymous Specifies a boolean value (true or false) that, if set, will return the access
level associated with the anonymous account.

2.3.4. CheckAuthorization Response

Regardless of the value of the format parameter, the response will always contain an access
level entitled authorization. This value will have the following values:

0. No access allowed

Page 21

CSI Datalogger Web Service API

1. All access allowed

2. Read/Write access allowed

3. Read-Only access allowed

99.An error occurred in determining access level

2.3.4.1. HTML Response Format

The response to the CheckAuthorization command will be formatted as HTML when the
format parameter is set to html or when the format parameter is not set. An example of
this format follows:

<html>
 <head>
 <title>CheckAuthorizationResponse</title>
 </head>
 <body>
 <h1>CheckAuthorizationResponse</h1>
 <table>
 <tr>
 <td>authorization</td>
 <td>1</td>
 </tr>
 </table>
 </body>
</html>

2.3.4.2. JSON Response Format

The response to the CheckAuthorization command will be formatted as a JSON document
when the format parameter is set to json. An example of this format follows:

{
 "authorization": 1
}

2.3.4.3. XML Response Format

The response to the CheckAuthorization command will be formatted as an XML document
when the format parameter is set to xml. An example of this format follows:

Page 22

CSI Datalogger Web Service API

<?xml version="1.0" encoding="UTF-8"?>
<CheckAuthorizationResponse authorization="1"/>

Page 23

CSI Datalogger Web Service API

2.4. Station/Server Time Related Commands

2.4.1. ClockCheck Command

The ClockCheck command can be used to read the clock from the web server, a LoggerNet
server through a LoggerNet data source, or a datalogger. This command requires a minimum
access level of read-only and should be accessed using the HTTP GET method. If the
user's account does not have read-only privileges, the server must respond with a 401
Authorization Required HTTP response.

The ClockCheck command recognises the following URI parameters:

command This parameter must be set to ClockCheck.

uri Optionally specifies the data source URI for the data source or station to check. If
this parameter is not specified, the web server system time will be returned. This
value must conform to the syntax specified in Section 1.1.1, “uri Parameter”.

format Optionally specifies the expected format of the response. This can be one of html
(the default if not specified), xml, or json.

2.4.2. ClockCheck Response

The response to the ClockCheck command will be as an HTML document, and XML
document, or a JSON document depending upon the value of the format parameter of the
command URI. Regardless of the format, the response will have the following parameters:

outcome Specifies a numeric code that describes the outcome of the command. The
following values are defined:

1. The clock was checked.

2. The clock was set (LoggerNet may combine a new clock check transaction
with an existing clock set transaction).

3. The LoggerNet session failed.

4. Invalid LoggerNet logon.

5. Blocked by LoggerNet security.

6. Communication with the specified station failed.

7. Communication with the specified station is disabled.

8. Blocked by datalogger security.

9. Invalid LoggerNet station name.

10.The LoggerNet device is busy.

Page 24

CSI Datalogger Web Service API

11.The value specified by uri does not reference an object that has a clock.

time Specifies the current value of the server or datalogger real-time clock. This
parameter will only be present if the value of outcome is set to one or two.

description Specifies a text description of the outcome parameter.

2.4.2.1. HTML Response Format

When the format option is set to html or is not specified, the response will be in the form of an
HTML table where each response field is on its own row. The following example demonstrates
this format:

<html>

<head>
<title></title>
</head>
<body>
<table border="1">
<tr>
<td>outcome</td><td>1</td>
</tr>
<tr>
<td>time</td><td>2014-11-26T12:39:23.252</td>
</tr>
<tr>
<td>description</td><td>The clock was checked</td>
</tr>
</table>
</body>
</html>

2.4.2.2. XML Response Format

When the format parameter is set to XML, the response will be formatted as an XML document
with a single root element named ClockCheckResponse and with each parameter specified
as an attribute. The following example demonstrates this format:

<?xml version="1.0" encoding="UTF-8"?>
<ClockCheckResponse description="The clock was checked"
 outcome="1"

Page 25

CSI Datalogger Web Service API

 time="2014-11-26T12:44:25.629" />

2.4.2.3. JSON response Format

When the format parameter is set to json, the response will be formatted as a JSON document
with a single object that has members named for each response parameter. The following example
demonstrates this format:

{
 "outcome": 1,
 "time": "2014-11-26T12:49:11.879",
 "description": "The clock was checked"
}

2.4.3. ClockSet Command

The ClockSet command can be used to adjust the real time clock of a datalogger. This
command requires a minimum of read/write access. If the command is attempted using a
lower authorisation, the server must respond with a 401 Authorization Required HTTP
response. The command recognises the following URL parameters:

command The value of command must be ClockSet in order to set the clock.

uri Specifies the data source URI that identifies the datalogger that should have its clock
set. This parameter is required for LoggerNet or HTTP data sources. The datalogger
will ignore this parameter when acting as the web server. The value of this parameter
must conform to the syntax specified in Section 1.1.1, “uri Parameter”.

time Specifies the new value for the datalogger real time clock. This parameter is optional
when the CSI Web Server is acting as the web server but is required when the
datalogger is acting as the web server. If this parameter is not set, the CSI Web
Server will use the host clock to determine the new datalogger time.

format Optionally specifies the expected format of the response. This can be one of html
(the default when this parameter is not specified), xml, or json.

2.4.4. ClockSet Response

The response to the ClockSet command can be formatted as an HTML document, an XML
document, or a JSON document depending upon the value of the format parameter. Regardless
of the format, all responses will have the following parameters:

outcome Specifies a code that represents the outcome of the command. The following
values are defined:

Page 26

CSI Datalogger Web Service API

1. The clock was set.

2. The connection to LoggerNet failed.

3. Invalid LoggerNet logon.

4. Blocked by LoggerNet security.

5. Communication with the datalogger failed.

6. Communication with the datalogger is disabled.

7. Blocked by datalogger security.

8. An invalid uri parameter was specified.

9. LoggerNet is busy with the station.

time Specifies the value of the datalogger real time clock before it was set.

description Specifies a text description of the outcome code.

2.4.4.1. HTML Response Format

A response is sent as an HTML document when the value of the format parameter is set to
html or that parameter is not specified. The output will be structured in an HTML table where
each response parameter is on its own row. The following example demonstrates this format:

<html>

<head>
<title></title>
</head>
<body>
 <table border="1">
 <tr>
 <td>outcome</td><td>1</td>
 </tr>
 <tr>
 <td>time</td><td>2014-11-26 14:21:43.28</td>
 </tr>
 <tr>
 <td>description</td><td>The clock was set</td>
 </tr>
 </table>
</body>
</html>

Page 27

CSI Datalogger Web Service API

2.4.4.2. XML Response Format

A response is sent as an XML document when the format parameter is set to xml. This
document has a root element named ClockSetResponse and each response parameter is
formatted as an attribute. The following example demonstrates this format:

<?xml version="1.0" encoding="UTF-8"?>
<ClockSetResponse description="The clock was set"
 outcome="1"
 time="2014-11-26T14:23:11.79" />

2.4.4.3. JSON Response Format

A response is sent as a JSON document when the format parameter is set to json. This
document is formatted as a JSON object with the response parameters being represented as
members to this object. The following example demonstrates this format:

{
 "outcome": 1,
 "time": "2014-11-26T14:27:32.73",
 "description": "The clock was set"
}

Page 28

CSI Datalogger Web Service API

2.5. Files Related Commands

2.5.1. NewestFile Command

Both LoggerNet and dataloggers are able to manage collections of accumulated files, such as
camera images. These files might have been stored by the datalogger on its USR: or CRD: drives
or they might have been retrieved by LoggerNet. As these file accumulate, it is difficult for the
client to keep track the file names. The NewestFile command can be used to retrieve the
newest in a series of files using a wild card expression. This command requires a minimum access
level of read-only. If the request authorisation maps to a lower access level, the server must
respond with a 401 Authorization Required HTTP response.

The NewestFile command recognises the following parameters:

command Must be specified as NewestFile.

expr Specifies the complete path and wild card expression for the desired set of files.
An appropriate value for the datalogger would be CRD:*.jpg which would pick
the newest file on the card device with the JPG extension. If the web server is
the CSI Web Server, the directory specified must be in the set allowed in the site
configuration file (.sources.xml). This policy exists as a security measure in
order to prevent the remote client from being able to access any file system on the
host machine.

uri Optionally specifies a data source URI that identifies a datalogger or HTTP data
source. This parameter is ignored by when the datalogger is acting as the web server.
If this parameter is omitted or is specified as an empty string, the expr will be
applied on the host computer's file system. This value must conform to the syntax
specified in Section 1.1.1, “uri Parameter”.

2.5.2. NewestFile Response

If a matching file is found, the web server will transmit the contents of that file as the content
of the response. The web server should set the Content Type parameter of the HTTP
response header to match the MIME type associated with the file extension. It should also set
the Content-Disposition parameter in the HTTP response header to match the name of
the file that was selected. If no matching file is found, the web server must send a 404 Not
Found HTTP response.

2.5.3. ListFiles Command

The ListFiles command provides the client with the means of obtaining a list of file names
and other meta-data in or below the web server's working directory. It can also be used with
the CSI Web Server to get a list of files on the file system of a datalogger accessed through
a LoggerNet source. This command requires an access level of read-only or higher. If the
client's access level is lower than this, the web server must respond with a 40 Authorization
Required HTTP response. The path specified in the HTTP request must specify the directory
to be enumerated. The ListFiles command recognises the following parameters:

Page 29

CSI Datalogger Web Service API

command Must be specified as ListFiles

format Optionally specifies the expected format of the response. Must be one of html (the
default if this parameter is not specified), xml, or json.

uri Optionally specifies the data source URI for a station accessed through a LoggerNet
data source. If this parameter is not specified, the web server will return the list
from its own file system.

2.5.4. ListFiles Response

Depending upon the value of the format parameter of the ListFiles command, the web
server will respond with the files list formatted as an HTML document, and XML document,
or as a JSON document. Regardless of the format, the following parameters will be described
for each file or directory:

path Specifies the path of the file or directory relative to the URL path.

is_dir Specifies a boolean flag that is set to a value of true if the path references
a directory.

size Specifies an integer that gives the size of a file in bytes or the free space
if the entry is for a directory.

last_write Specifies the date and time when the file or directory was last written
or updated.

run_now Specifies a boolean flag that indicates whether the file is a datalogger
marked to be the current datalogger program. The CSI Web Server will
set this value to false when listing files from its own directory.

run_on_power_up Specifies a boolean flag that indicates whether the file is a datalogger
program marked as the program to run on power up. The CSI Web
Server will set this value to false when listing files from its own
directory.

read-only Specifies a boolean flag that indicates that the file is read-only.

paused Specifies a boolean flag that indicates whether the file is a datalogger
program that is in a paused state. The CSI Web Server will set this value
to false when listing files from its own directory.

The web server should not report any file, such as .sources.xml and .csipasswd that
begins with a period. These files should be considered to be protected and should not be returned
if the client attempts to retrieve them either.

2.5.4.1. HTML Response Format

The response will be formatted as an HTML document when the value of the format request
parameter is set to html or when that parameter is not specified. The document will be structured

Page 30

CSI Datalogger Web Service API

as an HTML table where each row of the table represents a file or directory. The following is
an example of this format:

<html>

<head>
<title>ListFiles Response</title>
</head>

<body>

<h1>
ListFiles Response
</h1>

<table border="1">

<tr>
<td>

Path

</td><td>

Is Directory

</td><td>

Size

</td><td>

Last Write

</td><td>

Run Now

</td><td>

Run On Power Up

</td><td>

Read Only

</td><td>

Page 31

CSI Datalogger Web Service API

Paused

</td>
</tr>

<tr>
<td>CPU:</td>
<td>true</td>
<td>80384</td>
<td>2014-12-01 10:35:30.325</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>

<tr>
<td>CPU:lights-web.cr1</td>
<td>false</td>
<td>17921</td>
<td>2014-09-16 09:36:04</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
</table>

</body>

</html>

2.5.4.2. XML Response Format

The response will be formatted as an XML document when the value of the format
request parameter is set to xml. The root element of this document will be named
ListFilesResponse and each child element will describe a file or directory. The following
is an example of this format:

<ListFilesResponse>
 <file is_dir="true"
 last_write="2014-12-01T10:40:37.444"
 path="CPU:"

Page 32

CSI Datalogger Web Service API

 paused="false"
 read_only="false"
 run_now="false"
 run_on_power_up="false"
 size="80384" />
 <file is_dir="false"
 last_write="2014-09-16T09:36:04"
 path="CPU:lights-web.cr1"
 paused="false"
 read_only="false"
 run_now="true"
 run_on_power_up="true"
 size="17921" />
</ListFilesResponse>

2.5.4.3. JSON Response Format

The response will be formatted as a JSON document when the value of the format parameter is
set to a value of json. The document will be structured as an object containing an array named
files. Each element of that array will be an object that describes the file or directory. The
following is an example of this format:

{
 "files": [
 {
 "is_dir": true,
 "name": "CPU:",
 "size": 80384,
 "last_write": "2014-12-01T10:45:05.038",
 "run_now": false,
 "run_on_power_up": false,
 "read_only": false,
 "paused": false
 },
 {
 "is_dir": false,
 "name": "CPU:lights-web.cr1",
 "size": 17921,
 "last_write": "2014-09-16T09:36:04",
 "run_now": true,
 "run_on_power_up": true,
 "read_only": false,
 "paused": false
 }
]

Page 33

CSI Datalogger Web Service API

}

Page 34

CSI Datalogger Web Service API

2.5.5. Sending a File using PUT

An HTTP client can send a file to the web server using the HTTP PUT method. The name and
path of the file to be transmitted must be specified in the URL path. In order for the request to
succeed, the request must authorise with an access level of all. If the client access level is less
than this, the server must respond with a 401 Authorization Required HTTP response.

2.5.6. SendFile Command

The SendFile command is used to request that the web server send the file with contents in
the message body to the datalogger identified by the uri parameter. This command is supported
only in the CSI web serve version 1.05.00.04 and newer. In order for this command to succeed,
the client must have an access level of all. If the client's assigned access level is lower, then
the server must respond with a 401 Authorization Required HTTP response.

The only data source types that the SendFile command can be expected to work with are the
LoggerNet data source and the HTTP data source.

The SendFile command requires the following parameters:

command The command parameter must be set to SendFile.

uri Specifies the data source URI that identifies the datalogger to which the file will
be sent. For an HTTP data source, this will be the name of the data source. For
LogggerNet data sources, this must include the data source name and the LoggerNet
station name.

path Specifies the device and file name used by the datalogger to store the file. This
parameter must conform to the following syntax:

path := drive ":" file-name.
drive := "CPU" | "USR" | "CRD" | "USB".
file-name := string.

format Optionally specifies the format of the server response. If this parameter is not
specified, a value of html will be assumed by the server. Supported values include
html, json, and xml.

2.5.7. SendFile Response

Depending upon the value of the format parameter of the SendFile command, the web server
will format the response as an HTML document, a JSON document, or as an XML document with
appropriate Content-Type header values. Regardless of the format, the following parameters
will be given in the response:

Page 35

CSI Datalogger Web Service API

outcome Specifies a code that represents the outcome of the command. The following
values are defined:

0 An unrecognised error condition occurred while sending the file.

1 The file was successfully sent.

2 The connection to the data source failed.

3 Invalid logon parameters were specified for the data source.

4 The uri parameter did not identify a station that supports the send file
operation.

5 Blocked by LoggerNet server security.

6 Communication with the station failed while sending the file.

7 Communication to the station is disabled.

8 An invalid file name was specified in the command path parameter.

9 The datalogger does not have resources available to store the file.

10 Blocked by datalogger security.

11 The datalogger drive root directory is full.

12 An invalid uri was specified or a uri was specified to a data source
that does not support the file send operation.

description Specifies a text description of the outcome parameter.

Page 36

CSI Datalogger Web Service API

2.5.8. FileControl Command

The FileControl command allows the client to perform certain operations on files on a
datalogger. In order for this command to succeed, the client must have an access level of all.
If the client has a lower access level, the server must respond with 401 Authorization
Required HTTP request. The FileControl command recognises the following parameters:

command The command parameter must be set to FileControl.

uri Specifies a data source URI that identifies the station on which the file control
operation should take place. This parameter is required by the CSI web server
(version 1.05 and newer) and must be associated with either an HTTP or a
LoggerNet data source.

action Specifies the file control action that should take place. The following values are
supported:

1. Compile and run the program specified by file and mark it as the program to
run on power-up.

2. Mark the program specified by file as the program to run on power-up.

3. Mark the file specified by file as hidden.

4. Delete the file specified by file.

5. Format the device specified by file.

6. Compile and run the program specified by file and preserve existing data if
possible.

7. Stop the currently running program.

8. Stop the currently running program and delete any associated data files.

9. Perform a full memory reset.

10.Compile and run the program specified by file but do not change the run on
power-up program.

11.Pause the execution of the currently running program.

12.Resume the execution of the currently running program.

13.Stop the currently running program, delete any associated data, compile and run
the program specified by file and mark it as the program to run on power up.

14.Stop the currently running program, delete any associated data, compile and
run the program specified by file without affecting the program to be run on
power-up.

15.Move the file specified by file2 to the name and location specified by file.

Page 37

CSI Datalogger Web Service API

16.Move the file specified by file2 to the name and location specified by file,
stop the currently running program, delete its associated data, and compile and
run the program specified by file while marking it to run on power-up.

17.Move the file specified by file2 to the name and location specified by file,
stop the currently running program, delete its associated data, and compile and
run the program specified by file without changing the program to run on
power up.

18.Copy the file specified by file2 to the name and location specified by file.

19.Copy the file specified by file2 to the name and location specified by file,
compile and run the program specified by file, and set it to run on power-up.

20.Copy the file specified by file2 to the name and location specified by file,
stop the currently running program, delete any of its associated data, and compile
and run the program specified by file without affecting the program that will
run on power-up.

file Specifies the first parameter for the file control operation. This parameter must be
specified when the value of action is set to 1, 2, 3, 4, 5, 6, 10, 13, 14, 15, 16,
17, 18, 19, and 20.

file2 Specifies the second parameter for the file control operation. This parameter must
be specified when the value of action is equal to 15, 16, 17, 18, 19, and 20.

format Optionally specifies the expected format of the response. This can be one of html
(the default if this parameter is not specified), xml, and json.

2.5.9. FileControl Response

The format of the response to the FileControl command depends upon the optional
format parameter in the HTTP request. The format can either be formatted as an HTML
table with each response parameter on its own row, an XML document with a root name of
FileControlResponse and the response parameters specified as attributes, or as a JSON
document with each response parameter formatted as its own member.

If the datalogger must reset as a result of the file control operation that was specified, it must
transmit the complete HTTP response before doing so.

The following parameters must be included in the response:

outcome Specifies the outcome of the operation. The following values are defined:

-1 An unrecognised error condition was identified.

0 The operation was completed successfully.

1 Permission denied by the datalogger

2 Invalid logon parameters specified.

Page 38

CSI Datalogger Web Service API

3 The connection to the datalogger failed.

4 An invalid station URI was specified.

5 File Control is not supported.

6 Permission denied by the LoggerNet server.

7 Communication with the datalogger failed.

8 Communication with the datalogger is disabled.

9 Insufficient resources on the datalogger.

10 The LoggerNet server has the datalogger locked.

11 The datalogger root directory is full.

12 The datalogger is busy with the file.

13 An invalid value was specified for file or file2

14 The datalogger drive is busy.

19 An unsupported value was specified for action.

20 The file system directory is full.

holdoff Specifies an interval in seconds for which the web client should not
attempt to communicate with the datalogger. If a value of zero is specified,
communication can resume immediately. This parameter is needed because
the datalogger will reset for many of the file control actions and it can be
unresponsive for possibly tens of seconds.

description Specifies a text description of the code specified by outcome.

Page 39

CSI Datalogger Web Service API

2.6. Alarms Related Commands
Starting with CSI Web Server version 1.02, it is now possible to publish projects that contains
alarm. These alarms are described to the web server in the .sources.xml file read by the
web server which also describes the data sources and allowed directories for that project. These
alarms can be used to generate alerts via e-mail, send files via FTP, forward derived variable
values to other data sources, or to simply flag exceptional conditions to web clients. When alarms
are published to the CSI Web Server, that server becomes responsible for monitoring the data,
apply any logic, and carrying out any actions associated with an alarm condition. The web server
provides commands that allow the client to monitor the state of published alarms and, optionally
acknowledge these alarms.

The commands described in this section are not supported by datalogger web servers.

2.6.1. CheckAlarm Command

The CheckAlarm command can be used to check the status of one of the alarms published to
the web server. It can also be used to optionally acknowledge a triggered alarm. The command
requires a minimum access level of read-only but will require a minimum access level of
read/write when the acknowledge parameter is set to true. If the request specifies less
access than the required level, the web server must respond with a 401 Authorization
Required HTTP response.

The CheckAlarm command recognises the following parameters:

command Must be set to a value of CheckAlarm.

name Specifies the name or unique ID for the alarm. If an alarm name
is used, there is a chance that multiple alarms might use the same
name. In that case, the alarm affected will be the first declared
with that name.

format Optionally specifies the expected format of the response.
This parameter can be specified as html (the default if this
parameter is not specified), xml, or json.

acknowledge Optionally specifies whether the alarm should be acknowledged
if it is in a signaled state. If this parameter is not specified or is
set to false, the state of the alarm will not be changed.

acknowledge_comments Optionally specifies the comments that will be logged when
the alarm is acknowledged. This is generally supplied by
the user. This parameter will be ignored unless the value of
acknowledge is set to true.

2.6.2. CheckAlarm Response

If the client specifies an identifier or name for an alarm that is not defined for the web server, it
will respond with an 404 Not Found HTTP response. Otherwise, the format of the response
will depend upon the value of the format command parameter.

Page 40

CSI Datalogger Web Service API

Regardless of the format specified, the response will contain the following parameters:

name Specifies the name (user assigned) for the alarm.

id Specifies the unique generated identifier for this alarm.
Typically, this is a GUID that gets generated by RTMC
when the alarm is created.

value Specifies the value that was last evaluated by the alarm's
source expression.

value_type Specifies a data type for the value parameter.
This can be one of xsd:string, xsd:double, or
xsd:boolean.

state Specifies the current state of the alarm. This value can be
one of the following:

on One of the alarm's conditions has
been asserted and the alarm has not
been acknowledged by any client.

off None of the alarm's conditions are
triggered and there is no need for
acknowledgement.

acknowledged One of the alarm's conditions is
still asserted but the alarm has been
acknowledged.

last_error Specifies the last error that the alarm reported for its
source expression. This value will be an empty string if
there is no error condition.

triggered_condition_name Specifies the name of the alarm's currently triggered
condition. This value will be empty if the alarm is not
triggered.

actions_pending Specifies the number of actions that are currently pending
for this alarm.

last_action_error Specifies an error string that describes any error for the
last action. If the last action succeeded, this value will be
an empty string.

2.6.2.1. HTML Response Format

If the value of format is not specified or is specified as html, the response will be formatted as
an HTML document which contains a table for which each row specifies a response parameter.
The following shows an example of this response:

Page 41

CSI Datalogger Web Service API

<html>

<head>
<title></title>
</head>

<body>

<h1>
CheckAlarmResponse
</h1>

<table border="1">

<tr>
<td>
<tt>
name
</tt>
</td><td>Basic Alarm</td>
</tr>

<tr>
<td>
<tt>
id
</tt>
</td><td>650f7b8d-b670-4433-8ccc-2b7b95882f0c</td>
</tr>

<tr>
<td>
<tt>
value
</tt>
</td><td>73.55914</td>
</tr>

<tr>
<td><tt>value_type</tt></td>
<td>xsd:double</td>
</tr>

<tr>
<td>
<tt>
state
</tt>
</td><td>off</td>

Page 42

CSI Datalogger Web Service API

</tr>

<tr>
<td>
<tt>
last_error
</tt>
</td>
<td>
</td>
</tr>

<tr>
<td>
<tt>
triggered_condition_name
</tt>
</td><td></td>
</tr>

<tr>
<td>
<tt>
actions_pending
</tt>
</td><td>0</td>
</tr>

<tr>
<td>
<tt>
last_action_error
</tt>
</td><td></td>
</tr>

<tr>

</tr>

</table>

</body>

</html>

Page 43

CSI Datalogger Web Service API

2.6.2.2. XML Response Format

The response to the CheckAlarm command will be formatted as an XML document when
the value of format is set to xml. The root element if this document will be named
CheckAlarmResponse and each of the response parameters will be represented as a child
element. The following is an example of this format:

{
 "name": "Basic Alarm",
 "id": "650f7b8d-b670-4433-8ccc-2b7b95882f0c",
 "value": "73.55914",
 "value_type": "xsd:double",
 "state": "off",
 "last_error": "",
 "triggered_condition_name": "",
 "actions_pending": 0,
 "last_action_error": ""
}

2.6.3. ListAlarms Command

The ListAlarms command can be used to get obtain a list of all alarms defined for a site. This
command does not change the state of any of these alarms. The minimum access level required
for this command is read-only. If a client does not have this access, the web server must
respond with a 401 Autorization Required HTTP response.

The ListAlarms command recognises the following parameters:

command This value must be set to ListAlarms.

format Optionally specifies the format of the response. Can be one of html (the default if
this parameter is not specified), xml, and json.

2.6.4. ListAlarms Response

The format of the ListAlarms response will depend upon the value of the format parameter
specified in the command. The parameters specified for each alarm will correspond with those in
the CheckAlarm response (see Section 2.6.2, “CheckAlarm Response”). Regardless of the
format, each alarm that is defined for the site will have the following parameters:

name Specifies the user assigned name for the alarm.
This value can be used to identify an alarm
in the CheckAlarm command (see Section 2.6.1,
“CheckAlarm Command”) but is not guaranteed to be
unique.

Page 44

CSI Datalogger Web Service API

id Specifies a unique identifier for this alarm. This value is
typically specified as a GUID.

value Specifies the current value of the alarm source expression.

value_type Specifies the data type for the value parameter. This
value can be one of xsd:double, xsd:string, or
xsd:boolean.

state Specifies the current state of the alarm. This value can be
one of the following:

on One of the alarm's conditions has
been asserted and the alarm has not
been acknowledged by any client.

off None of the alarm's conditions are
triggered and there is no need for
acknowledgement.

acknowledged One of the alarm's conditions is
still asserted but the alarm has been
acknowledged.

last_error Specifies the last error that the alarm reported for its
source expression. This value will be an empty string if
there is no error condition.

triggered_condition_name Specifies the name of the alarm's currently triggered
condition. This value will be empty if the alarm is not
triggered.

actions_pending Specifies the number of actions that are currently pending
for this alarm.

last_action_error Specifies an error string that describes any error for the
last action. If the last action succeeded, this value will be
an empty string.

2.6.4.1. HTML Response Format

The response to the ListAlarms command will be formatted when the value of the format
parameter is set to html or when that value is not present. The HTML document will be
formatted as a table with each alarm occupying one row and each alarm parameter occupying
one column. The following example demonstrates this format:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>

Page 45

CSI Datalogger Web Service API

<title></title>
</head>

<body>

<h1>
ListAlarmsResponse
</h1>

<table border="1">

<tr>
<th>

name

</th><th>

id

</th><th>

value

</th>
<th>value_type</th>
<th>

state

</th>
<th>last_error</th>
<th>

triggered_condition_name

</th><th>

actions_pending

</th><th>

last_action_error

</th>
</tr>

<tr>
<td>Basic Alarm</td><td>ef579b87-66b1-4d95-82b7-aca1a3e32d9e</td>

Page 46

CSI Datalogger Web Service API

<td>73.55914</td>
<td>xsd:double</td>
<td>off</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>

</table>

</body>

</html>

2.6.4.2. XML Response Format

The response is formatted as an XML document when the value of the format parameter is
set to xml. The root element of this document is named ListAlarmsResponse. Each of
the defined alarms is represented by an alarm child element and the alarm attributes will be
represented as child elements to the alarm element. The following example demonstrates this
format:

<ListAlarmsResponse>
 <alarm>
 <name>Basic Alarm</name>
 <id>ef579b87-66b1-4d95-82b7-aca1a3e32d9e</id>
 <value>73.55914</value>
 <value_type>xsd:double</value_type>
 <state>off</state>
 <last_error/>
 <triggered_condition_name/>
 <actions_pending>0</actions_pending>
 <last_action_error/>
 </alarm>
</ListAlarmsResponse>

2.6.4.3. JSON Format Response

The response is formatted as a JSON document when the value of the format parameter is
set to json. This document is structured as an object that contains a single array property
called alarms. Each defined alarm is listed as an object in this array. The following example
demonstrates this format:

Page 47

CSI Datalogger Web Service API

{
 "alarms": [
 {
 "name": "Basic Alarm",
 "id": "ef579b87-66b1-4d95-82b7-aca1a3e32d9e",
 "value": "73.55914",
 "state": "off",
 "last_error": "",
 "value_type": "xsd:double",
 "triggered_condition_name": "",
 "actions_pending": 0,
 "last_action_error": ""
 }
]
}

Page 48

CSI Datalogger Web Service API

2.7. Commands Associated with Access Tokens
This section describes commands that can be used by the client to obtain an access token that
can be used with Bearer type authorisation instead of having to provide the user name and
password for Basic authorisation.

2.7.1. GetAccessToken Command

This command can be used by the client to request that the server generate a pair of access tokens
that can be used to authorise HTTP requests.

The GetAccessToken command recognises the following parameters:

command Must be set to a value of GetAccessToken.

scope Optionally specifies the scope of the requested tokens. If specified with a value of
off_line, the server will return a refresh token with no set expiration date that
can be used at any time to get a new set of access tokens. This feature is useful
for clients that shouldn't store user credentials but need periodic access to server
resources.

This command must be sent using the POST method and must also specify a Content-Type
of application/json. The content must be a JSON formatted structure that contains the
following properties:

grant_type (string) Must specify a value of password

credentials (object) Must specify an object with the following properties:

username (string) Specifies the name of the account
to use for generating the access
token.

password (string) Specifies the password associated
with the user account.

2.7.2. RefreshAccessToken Command

This command can be used by the client to obtain a new set of access tokens from the server using
a refresh token that was returned by an earlier request. This command recognises the following
parameters:

command Must be set to a value of RefreshAccessToken

The request must be sent using HTTP POST and the request content must be JSON document
that has the following properties:

refresh_token (string) Specifies the refresh token that was obtained using a previous
GetAccessToken or RefreshAccessToken request.

Page 49

CSI Datalogger Web Service API

2.7.3. GetAccessToken and RefreshAccessToken Response

The server must respond to the GetAccessToken or RefreshAccessToken command
with a JSON document in its content. If the attempt to get the access token fails, the server will
respond with an HTTP error (500) and the response body will be a JSON document that describes
the circumstance of the failure. A successful response must have the following properties:

access_token (string) Specifies the access token that the client must use to
authorise future requests.

expires_in (number) Specifies the interval in seconds during which the server
will accept the access token between the time that it was
issued and the time that it will expire.

token_type (string) Must be set to a value of Bearer

access_level (number) Specifies the access level assigned to the account at the
time that the access token was generated. This can be used
by the client to determine what parts of the UI should be
disabled based upon access.

refresh_expires_in
(number)

Specifies the interval in seconds from the time that the
refresh token was generated for which the server will
accept the refresh token. If set to a value of zero, the
generated refresh token is an off-line token and can be
used at any time to refresh both tokens.

refresh_token (string) Specifies the token that must be passed with
the RefreshAccessToken (see Section 2.7.2,
“RefreshAccessToken Command”) in order to
obtain new access and refresh tokens.

Page 50

CSI Datalogger Web Service API

3. Using Web Sockets

3.1. Introduction to Web Sockets
Starting with version 1.04 of the CSI Web Server, it is possible for the client to monitor data and
alarms using Web Sockets. Web Sockets is a protocol related to HTTP that allows a web client
and server to asynchronously exchange messages on a stream. The definition of the Web Sockets
protocol can be found at http://tools.ietf.org/html/rfc6455. It starts out with an HTTP request
with an upgrade specification. Once the server generates an appropriate response, the client and
the server can send binary or text messages at any time. The content of these messages is up to
the "sub-protocol" that is negotiated between the server and the client during the HTTP upgrade.

The web socket starts when the client sends an HTTP request similar to this example:

GET /engsoft HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: com.campbellsci.webdata
Sec-WebSocket-Version: 13

The web server must respond to this request appropriately as follows:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: com.campbellsci.webdata

3.2. Web Sockets Implementation Details
In order to fit in with the other services in the datalogger web API, use of Web Sockets will have
the following features:

• Older web servers will assume that all command messages received on a web socket will
have read-only access requirements. Newer web servers will assign an access level to the web
socket at the time of its creation based upon the access level granted to the Authorization

Page 51

http://tools.ietf.org/html/rfc6455

CSI Datalogger Web Service API

field of the upgrade header. A client can change that authorisation in these newer versions by
sending a logon command message (see Section 3.3.7, “Logon Command”).

• The path specified in the request URI will specify the path to a published site.

• All messages passed to or from the server will be text and will be formatted as JSON
documents.

Page 52

CSI Datalogger Web Service API

3.3. Messages Passed Over Web Sockets
The following messages can be sent on an established web socket:

• Section 3.3.1, “AddRequests Command”

• Section 3.3.2, “RequestStarted Notification”

• Section 3.3.4, “RequestFailed Notification”

• Section 3.3.3, “RequestRecords Notification”

• Section 3.3.5, “RemoveRequests Command”

• Section 3.3.6, “AlarmChanged Notification”

• Section 3.3.7, “Logon Command”

• Section 3.3.8, “LogonAck Message”

• Section 3.3.9, “StartTerminal Command Message”

• Section 3.3.10, “TerminalData Message”

Page 53

CSI Datalogger Web Service API

3.3.1. AddRequests Command

The AddRequests command is sent from the client to the server to add one or more data
source requests for that client. The message is formatted as a JSON document that is structured
as an object that contains an array of request objects. The parameters of these request objects
are similar to those specified by the DataQuery command (see Section 2.1.1, “DataQuery
Command”).

Any requests specified in this message will be appended to requests that have already been
started. The client must provide a unique transaction parameter for each new request. The
web server will track all of the requests that have been added by the client and report any data
using the RequestRecords notification message (see Section 3.3.3, “RequestRecords
Notification”). These requests must maintain until one of the following happens:

• The client closes the request using the RemoveRequests message (see Section 3.3.5,
“RemoveRequests Command”).

• The request fails. The server must notify the client of this using the RequestFailed
notification message (see Section 3.3.4, “RequestFailed Notification”).

• The web socket is closed or broken.

The AddRequests message recognises the following parameters:

message This member must be set as a string to AddRequest

requests Specifies an array that contains one or more data source request objects. Each
request will be a JSON object that contains the following fields:

uri Specifies the data source URI for the data to be monitored. This
must reference either a table or a field in a table. This value
must conform to the syntax described in Section 1.1.1, “uri
Parameter”.

mode Specifies the nature of the data query. The following values are
supported:

most-recent Specifies that up to the number specified
by p1 of most recent records logged in the
table should be returned.

since-time Specifies all of the records logged since
the time stamp specified in p1 should be
returned.

since-record Specifies that all records with a record
number greater than or equal to the value
specified in p1 should be returned. If
that record number is not present in the
table, data should returned starting with
the oldest record in the table.

Page 54

CSI Datalogger Web Service API

date-range Specifies that all data contained in
the half-open time interval specified by
the p1 and p2 parameters which are
interpreted as time stamps. Records will
be returned that have a time stamp greater
than or equal to the time stamp specified
by p1 and less than the time stamp
specified by p2.

backfill Specifies that all records starting with
the first record that has a time stamp
greater than or equal to the time stamp of
the newest record less the time interval
specified by p1 in seconds.

transaction Specifies a transaction number that will uniquely identify this
request in messages sent on this web socket connection.

p1 Specifies qualifying information based upon the value of the
mode parameter. The interpretation of this parameter varies as
follows:

most-recent Specifies the maximum number of
records to return.

since-record Specifies the record number at which the
server should start sending records.

since-time,
date-range

Specifies the starting record time stamp.
The first record that has a time stamp that
is greater than or equal to this value will
be selected as the starting point.

backfill Specifies a time interval in units of
seconds that should be subtracted from the
time stamp of the newest table record in
order to find the starting record.

p2 Specifies further qualifying information for some values of the
mode parameter. The interpretation of this parameter varies as
follows:

date-range Specifies the ending time stamp of the
half-open time interval. The records
returned will have a time stamp less than
this value.

since-record Optionally specifies a starting time stamp
to be used with data sources, such as

Page 55

CSI Datalogger Web Service API

data files and databases, that have the
possibility of having duplicate record
numbers.

All others This parameter will be ignored for any
other value of mode.

order Specifies the order in which the records should be reported
in the response from the CSI Web Server. This parameter is
ignored by the datalogger. The following values are defined:

real-time Specifies that the server will
skip over historic records
in favour of most recently
logged records.

collected Specifies that the records
should be returned in the
order in which they were
collected by LoggerNet. This
order can differ from logged
order when one-way or data
advise data collection is used
in conjunction with hole
collection.

logged-with-holes Specifies that the data should
be reported in the order
in which it was logged
by the datalogger. If there
are holes that have not yet
been collected by LoggerNet,
newer data will not be
returned until those holes
have been collected or
they are deemed no longer
collectible by LoggerNet.

logged-without-holes Specifies that the data should
be reported in the order
in which it was logged
by the datalogger. If there
are uncollected holes, those
records will be skipped
in favour of more recent
records.

refresh Optionally specifies the mininum interval, in seconds, at which
the web server should poll the table specified by the uri

Page 56

CSI Datalogger Web Service API

parameter. This parameter will be ignored by for any data
source type except LoggerNet sources.

For each request in the set specified in the AddRequests message, the server will send
either a RequestStarted (see Section 3.3.2, “RequestStarted Notification”) or a
RequestFailed (see Section 3.3.4, “RequestFailed Notification”) message.

3.3.1.1. AddRequests Example

The following shows an example of the AddRequests message format where a single request
backfilled by an interval of one day is being added:

{
 "message": "AddRequests",
 "requests": [
 {
 "uri": "localhost:cr000.one_hour.temp_degf_avg",
 "mode": "backfill",
 "transaction": 1,
 "p1": 86400,
 "order": "collected"
 }
]
}

Page 57

CSI Datalogger Web Service API

3.3.2. RequestStarted Notification

The RequestStarted notification is a message sent by the server to the client when a data
source request has been reported as started. This message will be formatted as a JSON object
that specifies the request transaction number as well as the CSIJson header for that request. The
format of this message follows:

message Must be set to RequestStarted.

transaction Specifies the value of the transaction that was given in the original client
request.

head Specifies the CSIJson header for the data that will be returned for the request.
The complete header will be specified here while the truncated header will
be provided with the RequestRecords notification (see Section 3.3.3,
“RequestRecords Notification”).

3.3.2.1. RequestStarted Example

An example of this format follows:

{
 "message": "RequestStarted",
 "transaction": 1,
 "head": {
 "transaction": 1,
 "signature": 64455,
 "environment": {
 "station_name": "cr1000",
 "table_name": "one_hour"
 },
 "fields": [
 {
 "name": "temp_degf_avg",
 "type": "xsd:float",
 "units": "DegF",
 "process": "Avg",
 "settable": false
 }
]
 }

Page 58

CSI Datalogger Web Service API

3.3.3. RequestRecords Notification

The RequestRecords message is sent by the server to the client to report records for a
request. The data will be reported using the CSIJson format. Since the complete header will have
already been reported in the RequestStarted notification message, this format will contain
the truncated header. The parameters sent for this message include the following:

message Must be set to a value of RequestRecords

transaction Specifies the request transaction number that was specified in the
Section 3.3.1, “AddRequests Command” message.

records Specifies the data to be reported formatted as a CSIJson object.

An example of this format follows:

{ "message": "RequestRecords",
 "transaction": 5,
 "records":{
 "head": {
 "transaction": 5,
 "signature": 44130
 },
 "data": [
 {
 "no": 23302,
 "time": "2015-08-24T07:10:00",
 "vals": [12.85, 32, 68.14, 7.131, 0, 0,
 1725.3, 1729.3, "C", 4, "HZ",
 "Haze"]
 }
],
 "more": true
 }
}

Page 59

CSI Datalogger Web Service API

3.3.4. RequestFailed Notification

The RequestFailed notification is a message sent by the server to the client when a data
source request failure has been reported. The message will be formatted as a JSON object that
specifies the request transaction number and any available information about the failure. The
parameters for this message follow:

transaction Specifies the client assigned transaction that was specified in the
AddRequests command message.

failure Specifies a numeric code that identifies the type of failure. This can be one
of the following values:

0. An unrecognised failure condition has occurred.

1. An invalid data source name was specified.

2. The data source connection failed.

3. Invalid LoggerNet logon parameters.

4. An invalid station name was specified.

5. An invalid table name was specified.

6. Blocked by LoggerNet security.

7. An invalid mode or unsupported start option was specified.

8. An invalid order option was specified.

9. The table was deleted.

10.The station was shut down.

11.Unsupported operation was attempted.

12.An invalid column name was specified.

13.An invalid array address was specified.

14.An invalid transaction parameter was specified.

description Specifies a text description of the failure code.

Page 60

CSI Datalogger Web Service API

3.3.5. RemoveRequests Command

The RemoveRequests command is sent from the client to the server to remove one or
more requests that have already been started. The following parameters are recognised for this
command:

message Must be set to a value of RemoveRequests.

transactions Specifies an array of transaction numbers. These number must match the
values specified when the AddRequests command message was sent (see
Section 3.3.1, “AddRequests Command”).

3.3.5.1. RemoveRequests Example

{
 "message": "RemoveRequests",
 "transactions": [1]
}

3.3.6. AlarmChanged Notification

The AlarmChanged notification is sent by the server to the client to report that the state of
an alarm has changed. One of these messages will be sent by the server when the web socket is
first created and one message will be sent each time that the state of an alarm has changed. The
message is formatted as a JSON object and will have the following parameters:

message This value must be specified as AlarmChanged.

name Specifies the user assigned name for the alarm.
This value can be used to identify an alarm
in the CheckAlarm command (see Section 2.6.1,
“CheckAlarm Command”) but is not guaranteed to be
unique.

id Specifies a unique identifier for this alarm. This value is
typically specified as a GUID.

value Specifies the current value of the alarm source expression.

value_type Specifies the data type for the value parameter. This
value can be one of xsd:double, xsd:string, or
xsd:boolean.

state Specifies the current state of the alarm. This value can be
one of the following:

Page 61

CSI Datalogger Web Service API

on One of the alarm's conditions has
been asserted and the alarm has not
been acknowledged by any client.

off None of the alarm's conditions are
triggered and there is no need for
acknowledgement.

acknowledged One of the alarm's conditions is
still asserted but the alarm has been
acknowledged.

last_error Specifies the last error that the alarm reported for its
source expression. This value will be an empty string if
there is no error condition.

triggered_condition_name Specifies the name of the alarm's currently triggered
condition. This value will be empty if the alarm is not
triggered.

actions_pending Specifies the number of actions that are currently pending
for this alarm.

last_action_error Specifies an error string that describes any error for the
last action. If the last action succeeded, this value will be
an empty string.

3.3.6.1. AlarmChanged Example

The following fragment demonstrates the message format of the AlarmChanged message:

{
 "message": "AlarmChanged",
 "name": "Basic Alarm",
 "id": "650f7b8d-b670-4433-8ccc-2b7b95882f0c",
 "value": "73.55914",
 "value_type": "xsd:double",
 "state": "off",
 "last_error": "",
 "triggered_condition_name": "",
 "actions_pending": 0,
 "last_action_error": ""
}

Page 62

CSI Datalogger Web Service API

3.3.7. Logon Command

Requests that a new authorisation level be given to this web socket session. The web server
will assign the initial level for the session based upon the access level derived from the logon
parameters given in the Authorization HTTP header field of the HTTP upgrade request that
started the web socket.

The server must respond to this message with the LogonAck message (see Section 3.3.8,
“LogonAck Message”) message. This message is formatted as a JSON document that will have
the following parameters:

message This value must be specified as logon.

transaction Specifies a token that must be repeated in the acknowledgement message to
help the client identify the response.

user_name Specifies the user name associated with the account that should be used.

password Specifies the password associated with the account that should be used.

access_token Specifies the access token returned by the GetAccessToken and
RefreshAccessToken commands (see Section 2.7, “Commands
Associated with Access Tokens”). This value can be specified instead of the
user name and password.

An example of this format follows:

{ "message": "logon",
 "transaction": 1,
 "user_name": "leonidas",
 "password": "sparta"
}

3.3.8. LogonAck Message

The server will send this message in response to the Logon command message (see
Section 3.3.7, “Logon Command”). This message will report the access level that the server has
assigned to the web socket session. The format of this message follows:

message This value must be specified as LogonAck.

transaction Specifies the transaction token that the client specified in the Logon
message.

access Specifies the access level that is now assigned to the web socket session. This
value must be one of the following:

Page 63

CSI Datalogger Web Service API

0 Indicates that all access is denied. This can happen if the the client
specified a non-existent account, the password was wrong, or an account
was referenced that is disabled.

1 All access allowed

2 Read/write access allowed

3 Read-only access allowed

The following is an example of this message format:

{
 "message": "LogonAck",
 "transaction": 1,
 "access": 1
}

Page 64

CSI Datalogger Web Service API

3.3.9. StartTerminal Command Message

This command message is sent by the client to request that a terminal session be started on the
web socket. This message will provide a transaction token that will be used to identify all future
terminal messages for this session. It will also identify the URI for the station with which terminal
I/O should be conducted.

In order to perform terminal I/O with a station, a client must first send this message to request
the resource from the server. If the web socket session has the requisite permission (likely full
access) and the transaction parameters check out, the web server will respond with an initial
TerminalData message (see Section 3.3.10, “TerminalData Message”) that will indicate
whether the session could begin. Thereafter, the client can send the TerminalData message
when it has data to transmit and the server will also send the TerminalData message when it
has data to transmit. Either side will be able to cancel the terminal session by either closing the
host web socket or by sending a TerminalData message with the appropriate close code.

message Must be set to a value of StartTerminal.

transaction Specifies the transaction token that will identify all future terminal I/O with
the specified station.

station_uri Specifies the data source URI that identifies the station with which terminal
I/O will be conducted. This parameter will be ignored by a datalogger acting
as a web server.

The following is an example of a StartTerminal command:

{
 "message": "StartTerminal",
 "transaction": 1,
 "station_uri": "ln:cr6"
}

3.3.10. TerminalData Message

This message can be sent by either the client or the server once a terminal session has been
started with the StartTerminal command message (see Section 3.3.9, “StartTerminal
Command Message”). It will convey any data that is to be moved to or from the terminal as well
as the state of the terminal session. The following describes the format of this message:

message Must be set to a value of TerminalData.

transaction Specifies the transaction property that the client first specified in the
StartTerminal message.

status Specifies the current status if the terminal session. This must be one of the
following values:

Page 65

CSI Datalogger Web Service API

1. The session is still active.

2. Sent by the server to indicate that the web socket session does not have
permission to keep the session going.

3. Sent by the server when the client sends a TerminalStart command
that uses a transaction token that is already in use on the web socket
session.

4. Sent by the server to indicate that a terminal session is already in progress
with the station specified in the StartTerminal command.

5. Sent by the server to indicate that the station does not exist or has been
deleted.

6. Sent by the client or the server to indicate that the terminal session must
end.

binary Optional property that can be set to true to indicate that the content of this
message is binary and therefore encoded as base64. If this property is omitted,
the receiver will assume that the content is UTF-8 encoded text.

content Specifies the data that is to be sent or has been received from the datalogger.
This field can be empty if this message is sent to convey status data. This
string will be interpreted as UTF-8 encoded unicode text if the binary
property is set to false or omitted. If the binary property is set to true, this
string will be decoded as BASE64 encoded binary.

The following example shows a TerminalData message received from a datalogger:

{
 "message": "TerminalData",
 "transaction": 1,
 "status": 1,
 "binary": false,
 "content": "\r\nCR6>"
}

Page 66

CSI Datalogger Web Service API

A. Log of Changes to This Document

Version 1.00.11 - 22 April 2021 (Jon Trauntvein)
Added commands to obtain or refresh access tokens and added the ability to use access tokens
as authorisation in API requests and also in the logon websocket command (see ???.

22 November 2017
• I have added a description of the CheckAuthorization (see Section 2.3.3,

“CheckAuthorization Command”) command.

20 April 2017 (Jon Trauntvein)
• I have added a style sheet asnd profile for compiling this document for customer consumption.

23 September 2016 (Jon Trauntvein)
• I have added new web socket messages to deal with logging in (see Section 3.3.7,

“Logon Command” and Section 3.3.8, “LogonAck Message”) as well as terminal
services (see Section 3.3.9, “StartTerminal Command Message” and Section 3.3.10,
“TerminalData Message”).

31 May 2016 (Jon Trauntvein
• I have added new response codes the file control response (see Section 2.5.9, “FileControl

Response”).

12 May 2016 (Jon Trauntvein)
• I have added a new HTTP command to send files to the datalogger via the CSI web server

(see Section 2.5.6, “SendFile Command”).

• I have added a new optional parameter, uri, for the FileControl command (see
Section 2.5.8, “FileControl Command”).

26 August 2015 (Jon Trauntvein)
• I have corrected the web socket service that should be reported and requested

from com.campbellsci.logger-web to com.campbellsci.web-data. See
Section 3.1, “Introduction to Web Sockets”.

• I have added a parameter that was missing in the web sockets RequestRecords notification
(see Section 3.3.3, “RequestRecords Notification”). The transaction fields is now
described.

Page 67

CSI Datalogger Web Service API

• I have added an example of the RequestRecords web socket message (see Section 3.3.3,
“RequestRecords Notification”).

8 December 2014 (Jon Trauntvein)
• I have added a section that writes about the proposed web sockets extensions.

2 December 2014 (Jon Trauntvein)
• I have rewritten the API document so that a PDF can be generated in order to make it easier

to share.

• I have removed much of the text from the original document that dealt with proposals.

Page 68

	CSI Datalogger Web Service API
	Table of Contents
	1. Introduction
	1.1. Commands Common Features
	1.1.1. uri Parameter
	1.1.2. format Parameter

	1.2. Authentication
	1.2.1. .csipasswd File
	1.2.2. Using Bearer Authorisation and Access Tokens

	2. Datalogger Web Services API Commands
	2.1. Data Collection Related Commands
	2.1.1. DataQuery Command
	2.1.2. DataQuery Response
	2.1.3. DataQuery Command Examples
	2.1.3.1. HTML Format Example
	2.1.3.2. JSON Format Example

	2.2. Browse Server Symbols
	2.2.1. BrowseSymbols Command
	2.2.2. BrowseSymbols Response
	2.2.2.1. HTML Response Format
	2.2.2.2. XML Response Format
	2.2.2.3. JSON Response Format

	2.3. Control (Set Variable)
	2.3.1. SetValueEx Command
	2.3.2. SetValueEx Response
	2.3.2.1. HTML Response Format
	2.3.2.2. XML Response Format
	2.3.2.3. JSON Response Format

	2.3.3. CheckAuthorization Command
	2.3.4. CheckAuthorization Response
	2.3.4.1. HTML Response Format
	2.3.4.2. JSON Response Format
	2.3.4.3. XML Response Format

	2.4. Station/Server Time Related Commands
	2.4.1. ClockCheck Command
	2.4.2. ClockCheck Response
	2.4.2.1. HTML Response Format
	2.4.2.2. XML Response Format
	2.4.2.3. JSON response Format

	2.4.3. ClockSet Command
	2.4.4. ClockSet Response
	2.4.4.1. HTML Response Format
	2.4.4.2. XML Response Format
	2.4.4.3. JSON Response Format

	2.5. Files Related Commands
	2.5.1. NewestFile Command
	2.5.2. NewestFile Response
	2.5.3. ListFiles Command
	2.5.4. ListFiles Response
	2.5.4.1. HTML Response Format
	2.5.4.2. XML Response Format
	2.5.4.3. JSON Response Format

	2.5.5. Sending a File using PUT
	2.5.6. SendFile Command
	2.5.7. SendFile Response
	2.5.8. FileControl Command
	2.5.9. FileControl Response

	2.6. Alarms Related Commands
	2.6.1. CheckAlarm Command
	2.6.2. CheckAlarm Response
	2.6.2.1. HTML Response Format
	2.6.2.2. XML Response Format

	2.6.3. ListAlarms Command
	2.6.4. ListAlarms Response
	2.6.4.1. HTML Response Format
	2.6.4.2. XML Response Format
	2.6.4.3. JSON Format Response

	2.7. Commands Associated with Access Tokens
	2.7.1. GetAccessToken Command
	2.7.2. RefreshAccessToken Command
	2.7.3. GetAccessToken and RefreshAccessToken Response

	3. Using Web Sockets
	3.1. Introduction to Web Sockets
	3.2. Web Sockets Implementation Details
	3.3. Messages Passed Over Web Sockets
	3.3.1. AddRequests Command
	3.3.1.1. AddRequests Example

	3.3.2. RequestStarted Notification
	3.3.2.1. RequestStarted Example

	3.3.3. RequestRecords Notification
	3.3.4. RequestFailed Notification
	3.3.5. RemoveRequests Command
	3.3.5.1. RemoveRequests Example

	3.3.6. AlarmChanged Notification
	3.3.6.1. AlarmChanged Example

	3.3.7. Logon Command
	3.3.8. LogonAck Message
	3.3.9. StartTerminal Command Message
	3.3.10. TerminalData Message

	A. Log of Changes to This Document

